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Abstract

The complexity of embedded software in safety-critical domains, such as automotive and
avionics, has significantly increased over the years. For most embedded systems, standards re-
quire system testing to explicitly demonstrate that the software meets its functional and safety
requirements. In these domains, system test cases are often manually derived from functional re-
quirements in natural language plus other design artefacts, like UML statecharts. The definition of
system test cases is therefore time-consuming and error-prone, especially given the quickly rising
complexity of embedded systems.

The benefits of automatic test generation are widely acknowledged today but existing ap-
proaches often require behavioural models that tend to be complex and expensive to produce, and
are thus often not part of development practice.

The work proposed in this dissertation focusses on the automated generation of test cases for
testing the compliance between software and its functional and timing requirements. This disser-
tation is inspired by contexts where functional and timing requirements are expressed by means of
use case specifications and timing automata, respectively. This is the development context of our
industrial partner, IEE, an automotive company located in Luxembourg, who provided the case
study used to validate the approach and tool described in this dissertation.

This dissertation presents five main contributions: (1) A set of guidelines for the definition of
functional and timing requirements to enable the automated generation of system test cases. (2) A
technique for the automated generation of functional test cases from requirements elicited in the
form of use case specifications following a prescribed template and natural-language restrictions.
(3) A technique that reuses the automatically generated functional test cases to generate timeli-
ness test cases from minimal models of the timing requirements of the system. (4) A technique
for the automated generation of oracles for non-deterministic systems whose specifications are
expressed by means of timed automata. In the context of this dissertation, automated oracles for
non-deterministic systems are necessary to evaluate the results of the generated timeliness test
cases. (5) The evaluation of the applicability and effectiveness of the proposed guidelines and
techniques on an industrial case study, a representative automotive embedded system developed
by IEE.
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Chapter 1

Introduction

1.1 Context
The complexity of embedded software in safety-critical domains, such as automotive and avionics,
has significantly increased over the years. When testing critical systems in the automotive domain,
similar to other application domains, rigorous testing processes conforming to established industry
standards such as ISO 26262 [ISO, 2011] must be employed. Such standards mandate the level of
rigour required for software testing, with the level of rigour increasing as the potential for the system
to lead to loss of life increases. Even for systems that are deemed to have a relatively low probability of
causing loss of life, ISO 26262 effectively mandates stringent requirement-based testing. In practice,
this entails constructing system test cases that can be traced to high-level system requirements.

In current industrial practice, system test cases are often derived manually by the software engi-
neers who read functional requirements written in natural language plus other software specification
artefacts, for example timed automata or UML statecharts capturing the timing requirements of the
system. The definition of system test cases is therefore time-consuming and error-prone, especially
so given the quickly rising complexity of embedded systems in safety-critical domains.

This dissertation focusses on software development contexts where functional and timing require-
ments are expressed by means of use case specifications and timed automata, respectively. This is the
development context of our industrial partner, IEE, an automotive company who provided the case
study used to validate the techniques described in this dissertation, which is BodySense, an airbag
control system. The specific development context considered in this dissertation has influenced the
definition of the research problem addressed, and the identification of the solutions proposed. More
specifically, this dissertation focuses on the problem of automatically generating test cases that verify
the compliance of the system with both its functional requirements, i.e. functional test cases, and its
timing requirements, i.e., timeliness test cases. We use the term software timeliness to indicate the
ability of the software to satisfy timing constraints. We focus on functional and timeliness test cases
because for companies developing embedded automotive systems like IEE, testing the compliance
of the system with functional and timing requirements is of crucial importance for ensuring proper
system behavior and safety. For an airbag control system, for example, the timely identification of
error conditions and the proper execution of the consequent error management activities is necessary
to guarantee the safety of the passengers of the car.

1



Chapter 1. Introduction

The benefits of automatic test case generation are widely acknowledged today and there are many
proposed approaches in the literature [Escalona et al., 2011]. However most of the existing test
automation approaches require very detailed behavioural models of the system in order to gener-
ate executable test cases. Usually, such detailed system models are expensive to produce, and their
cost cannot be justified if they are used only for testing but not for other development activities. In
case engineers decide to rely upon less detailed and high-level models, then they have to face the
challenge that these models can be used only to generate abstract test cases. Abstract test cases
can be concretized into executable test cases by means of test adaptation or test transformation ap-
proaches [Utting and Legeard, 2006], but the cost, however, for transforming an abstract test case into
an executable test case is not negligible. The solutions proposed in this dissertation have been derived
by the idea, inspired by our industrial partner, that a test generation technique can be successfully
adopted in an industrial context if the additional information (e.g., models) required to enable test
case generation is kept minimal.

Many approaches for the generation of functional test cases require that system specifications
are captured as UML behavioural models such as activity diagrams [Linzhang et al., 2004], state-
charts [Ryser and Glinz, 1999], and sequence diagrams [Nebut et al., 2006]. In modern industrial
systems, these behavioural models tend to be complex and expensive if they are to be precise and
complete enough to support test automation, and are thus often not part of development practice. To
minimize the costs of modelling in this dissertation we propose solutions that exploit, to the maxi-
mum extent, the information available in common analysis and design artefacts, produced for other
purposes such as contractual agreements with customers, to automate test case generation.

Concerning the testing of timing requirements, most of the existing techniques require that the
timing constraints of the system are modelled by means of Timed Automata [Hessel et al., 2008, En-
Nouaary et al., 2002, Aboutrab et al., 2013, En-Nouaary and Hamou-Lhadj, 2008] or UML state-
charts [Mücke and Huhn, 2004]. However, to limit modelling effort, our observation is that software
engineers derive very high level models that capture only the state transitions controlled by timing
constraints. These models are thus used only to generate abstract test cases, which, as indicated
above, lead to non-negligible additional costs if they are used to generate executable test cases. To
automate the generation of executable test cases while keeping the modelling of timing requirements
simple and high level, in this dissertation we define solutions that exploit the information available in
use case specifications.

1.2 Research Contributions
In this dissertation, we address the problem of automatically generating functional and timeliness
test cases from requirement specifications in contexts where development is use case-driven and ad-
ditional modelling effort required for testing purposes must be kept to a minimum. To this end, we
propose a set of guidelines for eliciting test-ready functional and timing requirements and a set of
approaches that (1) generate functional test cases from requirements elicited by means of use case
specifications, (2) combine the generated functional test cases with timing specifications to test tim-
ing requirements, (3) rely upon a stochastic solution to deal with the problem of building reliable
oracles in the presence of partial state visibility and non-determinism. More precisely, we provide the
following contributions:
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1.2. Research Contributions

1. A set of practical guidelines (realistic modelling) for the definition of test-ready functional
and timing requirements. These guidelines include the adoption of a structured and analysable
form of use case specifications, i.e., Restricted Use Case Modeling (RUCM) [Yue et al., 2013],
and the adoption of Timed Automata [Alur and Dill, 1994] for eliciting timing requirements.
RUCM is based on a template with restriction rules, enabling the automated extraction of behav-
ioral information by reducing imprecision and incompleteness in use cases. Timed Automata
are one of the formalisms usually adopted for the specification of the timing behaviour of the
system.
The proposed guidelines have been described in two conference papers [Wang et al., 2015,
Wang et al., 2017] and are discussed in Chapter 2.

2. A technique for generating executable system test cases by exploiting the behavioural in-
formation implicitly described in use case specifications. We named this technique Use Case
Modelling for System Tests Generation (UMTG). UMTG requires a domain model of the sys-
tem, which enables the definition of constraints that are used by UMTG to generate test data and
oracles. UMTG avoids behavioral modelling by applying Natural Language Processing (NLP)
to use case specifications expressed using RUCM. UMTG employs NLP to build Use Case Test
Models (UCTMs) from RUCM specifications. A UCTM captures the control flow implicitly
described in the RUCM specification. During NLP, a list of textual descriptions of pre, post and
guard conditions in use cases is extracted. The software engineer further manually reformu-
lates these textual descriptions using constraints written using the Object Constraint Language
(OCL) [OMG, 2004] based on the domain model. UMTG combines UCTMs with the OCL
constraints to enable automated test generation via constraint solving.
This contribution has been published in a conference paper [Wang et al., 2015] and is discussed
in Chapter 3.

3. A technique for automatically generating executable test cases targeting software time-
liness. We named the technique Test Generation combining Timed Automata and Use Case
Specifications (TAUC). TAUC works by processing use case specifications and models of the
timing requirements of the system elicited using timed automata to build the detailed models
necessary to generate executable test cases. In this way, TAUC prevents software engineers
from designing very detailed timed automata when use case specifications are available. In
addition, TAUC automatically builds test suites that exercise the functionality regulated by tim-
ing requirements by optimising diversity among test inputs, thus increasing the probability of
identifying problems dependent on specific input sequences.
This contribution has been published in a conference paper [Wang et al., 2017] and is discussed
in Chapter 4.

4. A technique to automate the generation of effective oracles for timeliness test cases de-
rived from timed automata in the presence of non-deterministic behaviour. We named
the technique Stochastic Testing with Unique Input Output Sequences (STUIOS). STUIOS ad-
dresses the problem of generating oracles in the presence of non-deterministic behaviour. As
main components of STUIOS, we introduce the concepts of stochastic test cases and proba-
bilistic UIO sequences (PUIO sequences). A PUIO sequence is an input-output sequence with
an associated probability of observing the given output sequence in response to the inputs. The
underlying idea is that probabilistic UIO sequences enable fault detection by determining if the
output sequences observed through testing are unlikely, based on multiple executions of the
same test cases. Stochastic test cases extend the same idea to the entire test case. A stochastic
test case specifies the expected probability of observing a specific output sequence after a given
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test input sequence; in addition, it includes a PUIO sequence that is used to check if the test
execution brings the system to the expected state.
This contribution has been submitted and is under review. It is discussed in Chapter 5.

1.3 Organisation of the Dissertation
Chapter 2 describes a set of analysis and design guidelines that enable the adoption of the techniques
proposed in this dissertation. We take advantage of the example models presented in this chapter also
to provide an overview of BodySense, the case study system provided by IEE.

Chapter 3 describes UMTG along with the empirical results achieved with BodySense.

Chapter 4 describes TAUC along with the empirical results achieved with BodySense.

Chapter 5 describes STUIOS along with the empirical results achieved with BodySense.

Chapter 6 discusses related work.

Chapter 7 summarises the contributions of this dissertation and discusses perspectives on future
work.

Appendix A provides a description of the software tools that were developed to support the proposed
approaches and run empirical studies.
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Chapter 2

Requirement Analysis Guidelines for the
Automated Generation of Functional and
Timeliness Test Cases

This dissertation presents a set of techniques that automate the generation of functional and timeliness
test cases by relying upon the availability of analysis and design artefacts produced according to
specific guidelines. The availability of these analysis and design artefacts is a precondition for the
adoption of the techniques proposed in this dissertation. We intentionally rely upon artefacts that are
commonly produced in industrial practice and that are realistic in terms of what can be expected from
development engineers of embedded systems when explicit requirements and traceability between
requirements and test cases are required. The industrial environment where our case study took place
matches this description and helped us clarify our working assumptions.

In this chapter, we thus summarize the activities that should be performed by software engineers
during analysis and design to produce the design artefacts processed by the techniques proposed in
the dissertation. We propose two sets of guidelines: (1) functional requirements, and (2) timing
requirements.

To give concrete examples of requirements defined according to the proposed guidelines we rely
upon the analysis artefacts produced for BodySense, the case study system used to evaluate the tech-
niques proposed in this dissertation. For this reason, this chapter presents also a brief overview of the
BodySense system.

This Chapter proceeds as follows. Section 2.1 overviews the characteristics of BodySense, the case
study system used to evaluate the techniques proposed in this dissertation. BodySense specifications
are used to ease the description of the methodology itself. Section 2.2 describes the activities required
to elicit functional requirements. Section 2.3 describes the activities that must be performed to elicit
timing requirements.
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2.1 Case Study System
BodySense is a capacitive sensing system supporting airbag suppression for child restraint systems in
vehicles. Infant-only suppression, in combination with low-risk airbag deployment technology, is the
most widely accepted safety strategy to fulfil the advanced airbag requirements of the FMVSS 208
regulation issued by the National Highway Traffic Safety Administration (NHTSA) in the U.S.

BodySense is able to distinguish between child restraint systems (class 1) and passengers in the
front seat (class 2), suppressing airbag deployment in the first situation in case of a collision. The
system also supports the seat belt reminder function and can generate an airbag off sign. Moreover,
BodySense offers reliable classification regardless of seat belt tension, occupant position, weight or
height. BodySense monitors a car seat for occupancy and classifies the occupant by using a sensor
in the passenger seat. By measuring the change in the electrical field between an electrode and
the vehicle body, BodySense is able to provide a robust classification between passengers and child
restraint systems.

2.1.1 Testing of BodySense
BodySense is already in production and presents several critical functional and timing requirements
that IEE engineers must verify in compliance with the ISO-26262 safety automotive standard [ISO,
2011].

BodySense is developed on a real-time operating system named MicroC/OS [Micrium Embedded
Software, 2016] by using IBM Rational Rhapsody [IBM Rhapsody, 2017], a well-known modelling
tool, for automated code generation in the C programming language. The system communicates
with other components in the vehicle via LIN protocol. CANoe [Vector, 2017] is the software used
for system testing, which simulates the sending of messages through the standard automotive LIN
protocol.

To satisfy the requirements imposed by ISO-26262, IEE engineers must prove that each require-
ment has been tested and, to this end, traceability between software requirements and test cases is
maintained. The tool adopted to keep traces of requirements and test cases is IBM Doors [IBM
Doors, 2017], a requirements management tool, which is used by IEE engineers to both trace soft-
ware requirements and the system test cases.

Table 2.1. An example test case for BodySense

Line Operation Inputs/Expectations
1 Reset power and wait
2 ResetPower Time=INIT_TIME
3 Set occupant status - Adult
4 SetBus Channel = RELAY

Capacitance = 85
5 Check SeatBeltReminder status

is Occupied and AirBagControl
status is Occupied

6 ReadAndCheckBus D0=OCCUPIED
D1=OCCUPIED
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Table 2.1 gives a simplified version of a real test case for BodySense. The BodySense system
test cases are stored in IBM Doors and include both high-level operation descriptions, i.e., informal
descriptions of the operations to be performed on the system, and the concrete test driver operations
that should be executed during testing. Lines 1, 3, and 5 provide high-level operation descriptions.
These lines are followed by the name of the functions that should be executed by the test driver along
with the corresponding input/output values. For instance, Line 4 invokes the function SetBus with a
value indicating that the test driver should simulate the presence of an adult on the seat (for simplicity
assume that the field sensor positioned on a seat sends the value 85 on the bus when an adult is seated).

2.2 Eliciting Functional Requirements
We assume that software engineers elicit requirements by means of use case specifications, and define
domain models of the system by relying upon UML class diagrams. Use case specifications and
domain models are common in requirements engineering practice [Larman, 2002], such as in IEE,
the partner’s organization in our research.

Further, we expect that use case specifications to be elicited according to a use case modelling
approach named RUCM [Yue et al., 2013]. Previous work has shown that RUCM is usable and
beneficial with respect to making use case specifications less ambiguous and more amenable to precise
analysis and design. In addition to this, we stress that one of the results of the research work presented
in this dissertation consists in the delivery of the RUCM method to our industrial partner, IEE. The
software engineers at IEE have in fact started eliciting the requirements for their products by following
the RUCM guidelines.

2.2.1 Eliciting Use Cases with RUCM
Restricted Use Case Modelling (RUCM) is a use case modelling approach [Yue et al., 2013] which is
composed of a use case template that merges several aspects of existing templates and a set of well-
defined restrictions to the use of natural language for documenting UCSs. RUCM aims to both reduce
ambiguity and facilitate automated processing of textual requirements by mean of natural language
processing.

The use case template of RUCM contains fields similar to those encountered in standard use case
templates [Cockburn, 2000, Bittner, 2002, Phalp et al., 2007]. Table 2.2 shows a simplified version
of the use case ‘Identify Initial Occupancy Status of a Seat’ of BodySense written according to the
RUCM rules.

Use case specifications written according to RUCM contain one basic flow (i.e., description of the
main success scenario) and one or multiple alternative flows. The basic flow in Table 2.2 describes
the main successful path that satisfies stakeholder interests. It contains a sequence of steps and a
postcondition (Lines 3-10). A step can be one of the following interactions: an actor sends a request
and/or data to the system (Line 4); the system validates a request and/or data (Line 6); the system
replies to an actor with a result (Line 7); the system alters its internal state (Line 14).

Alternative flows describe other scenarios, both success and failure. An alternative flow always
depends on a condition in a specific step of the basic flow. In RUCM, there are three types of alter-
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Table 2.2. Use Case Identify Initial Occupancy Status of a Seat

1 Precondition
2 The system has been initialized
3 1.1 Basic Flow
4 1. The seat SENDS occupancy status TO the system.
5 2. INCLUDE USE CASE Classify occupancy status.
6 3. The system VALIDATES THAT the occupant class for airbag control is valid and the occupant class for seat belt

reminder is valid.
7 4. The system SENDS the occupant class for airbag control TO AirbagControlUnit.
8 5. The system SENDS the occupant class for seat belt reminder TO SeatBeltControlUnit.
10 Postcondition: The occupant class for airbag control and the occupant class for seat belt reminder have been sent.
11 1.2 Bounded Alternative Flow
12 RFS 2-3
13 1. IF voltage error is detected THEN
14 2. The system resets classification filters.
15 3. ENDIF
16 4. RESUME STEP 1.
17 Postcondition: Classification filters have been reset.
18 1.3 Specific Alternative Flow
19 RFS 3
20 1. IF the occupant class for airbag control is not valid and the occupant class for seat belt reminder is not valid THEN
21 2. The system SENDS the previous occupant class for airbag control TO AirbagControlUnit.
22 3. The system SENDS the previous occupant class for seat belt reminder TO SeatBeltControlUnit.
23 5. RESUME STEP 1.
24 4. ENDIF
25 Postcondition: The previous occupant classes for airbag control and seat belt reminder has been sent to AirbagControlUnit

and to SeatBeltControlUnit respectively.
26 1.4 Specific Alternative Flow
27 RFS 3
28 1. IF the occupant class for seat belt reminder is not valid THEN
29 2. The system SENDS the occupant class for airbag control TO AirbagControlUnit.
30 3. The system SENDS the previous occupant class for seat belt reminder TO SeatBeltControlUnit.
31 5. RESUME STEP 1.
32 4. ENDIF
33 Postcondition: The occupant class for airbag control has been sent to AirbagControlUnit and the previous occupant class

for seat belt reminder has been sent to SeatBeltControlUnit.

native flows: specific, bounded and global. A specific alternative flow refers to a step in the basic
flow (Lines 19 and 27). A bounded alternative flow refers to more than one step in the basic flow
(Line 12) while a global alternative flow refers to any step in the basic flow. For specific and bounded
alternative flows, the keyword ‘RFS’ is used to refer to one or more reference flow steps (Lines 12,
19 and 27).

RUCM includes 26 rules that both restrict the use of natural language (16 rules) and enforce the
use of keywords for specifying control structures (10 rules). Most of the rules in the former category
(11 rules) aim to reduce ambiguity in use case specifications, while the latter category aims to facilitate
the automated processing of the text written in use case specifications.

The keywords defined by RUCM specify conditional logic sentences (IF-THEN-ELSE-ELSEIF-
ENDIF), concurrency sentences (MEANWHILE), condition checking sentences (VALIDATES THAT),
and iteration sentences (DO-UNTIL). These keywords limit ambiguities in use case specifications.
Keywords ABORT and RESUME STEP are used to describe an exceptional exit action and where
an alternative flow merges back in its reference flow, respectively. An alternative flow ends either
with ABORT or RESUME STEP, which means that the last step of the alternative flow should clearly
specify whether the flow returns back to the reference flow and where (using keywords RESUME
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STEP followed by a returning step number) or terminates (using keyword ABORT).

Some of the RUCM keywords are shown in the use case in Table 2.2. For example, the keyword
‘INCLUDE USE CASE’ in Line 5 indicates the inclusion of other use cases.

The keyword ‘VALIDATES THAT’ (Line 6) indicates a condition that must be true to proceed to
the next step, otherwise an alternative flow is taken. In Table 2.2, the system proceeds to Step 4 (Line
7) only if the occupant classes for the airbag control and the seat belt reminder are valid (Line 6).

Extensions to RUCM

As result of our research, we have introduced three main extensions to the original RUCM template,
described in the following.

According to the original RUCM template, bounded and global alternative flows begin with the
keyword ‘IF .. THEN’ for the guard condition under which the alternative flow is taken (Line 13).
Instead specific alternative flows do not begin with the keyword ‘IF .. THEN’ since a guard condition
is already indicated in its reference flow step (Line 6). We have extended the RUCM template to
handle the case in which composite conditions need to be further refined in multiple alternative flows.
This is the case for Table 2.2 in which multiple alternative flows are considered to be executed (Lines
12, 19, and 27) when the condition in the reference flow step (Line 6) evaluates to false. This case
was originally not covered by RUCM. Therefore, we suggest to use the ‘IF .. THEN’ keyword also
in specific alternative flows (Lines 20 and 28). The alternative flows are evaluated in the order they
appear in the use case.

We have also introduced two other extensions to RUCM regarding the adoption of ‘IF’ conditions
and the way input/output messages are expressed. More specifically we have decided to follow the
guidelines that suggest not to use multiple branches within the same use case path [Larman, 2002],
thus enforcing the adoption of ‘IF’ conditions only as a mean to specify guard conditions for alterna-
tive flows.

Also, we introduced the keyword ‘SENDS .. TO’ as an RUCM extension for the system-actor
interactions. The keyword eases automatic identification of steps for these interactions. According to
our experience, in embedded systems the system-actor interactions are always specified in terms of
messages. For instance, Step 1 in Table 2.2 (Line 4) indicates an input message from the seat to the
system while Step 4 (Line 7) contains an output message from the system to the airbag. Additional
keywords can be defined for other systems.

2.2.2 Domain Modelling
We expect that a domain model of the system is produced by relying upon UML class diagrams
according to standard software engineering practice. In particular, we expect that the names appearing
in entities and attributes of the domain model are consistent with the names appearing in the use case
specifications. This practice is enforced by the test case generation technique presented in Chapter 3.

Figure 2.1 shows a portion of the domain model for BodySense. There are three car components:
BodySenseSystem, AirbagControlUnit, SeatBeltControlUnit. BodySenseSystem periodically provides

9



Chapter 2. Requirement Analysis Guidelines
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Figure 2.1. Partial domain model for BodySense

the classified occupancy status to the AirbagControlUnit and SeatBeltControlUnit. BodySenseSystem
is connected to a temperature sensor which measures the environment temperature.

Figure 2.1 shows that the system must be able to deal with multiple types of errors. The cardinality
in the association between BodySenseSystem and Error shows that zero or multiple errors can be
detected in case the corresponding detection condition is satisfied. For example, if the environment
temperature goes beyond a certain range, a temperate error will be detected.

Communication between BodySenseSystem and other car components, such as AirbagControlUnit
or SeatBeltControlUnit, are via messages sending through the communication bus. For example,
the message OccupancyInfo and CarInfo contain the data of occupancy status and seatbelt status
required by AirbagControlUnit and SeatBeltControlUnit. Engineers (and mechanicians) can request
the execution of a service by sending a ControlRequest message through the communication bus. For
instance, the engineer can send a request for clearing the error data stored in the system by sending a
ControlRequest message with a ServiceId (sId) of type ClearData.

BodySense also works with several types of interrupts (we show only two in this picture). For
example, when sensor data is updated a DMAInterrupt is triggered, while when messages arrive on
the communication bus a LINInterrupt is triggered.

2.3 Modelling Timing Requirements
In this dissertation, we assume that the timing requirements of a system are modelled using Communi-
cating Timed Automata [Alur and Dill, 1994]. Timed automata are one of the formalisms commonly
used to model timing properties of systems, along with UML statecharts [Larman, 2002]. In this
dissertation, we rely upon the former primarily because of the availability of tools that enable model
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based test generation and analysis of the timing properties. An example of this category of tools
is the UPPAAL model checker [Bengtsson et al., 1995], which is one of the components integrated
with our toolset. Approaches for translating UML statecharts into Timed Automata can be used when
needed [David et al., 2002].

A timed automaton is a tuple (L, l0,C,A,V,E, I), where L is a set of locations, l0 ∈ L is the initial
location, C is a set of clocks, A is a set of actions, V is a set of state variables, E is a set of edges
between locations. I is a set of invariants assigned to locations. Each edge may have an action, a
guard and a set of updates. Updates are expressed in form of assignments that can reset clocks or
state variables. Each location might be associated with a state invariant that constrains clocks or state
variables.

With communicating timed automata, the state of the system is captured by the values of state
variables and the set of active locations across all the automata. Actions are used to synchronize
different automata. Each action is expressed with the notation event! or event?. The notation event!
indicates that the event is sent when the edge is fired, while the notation event? indicates that the edge
is fired only if this event has been received from another automaton.

unDetected?

detected?

DetectedNotQualified

DetectedQualified

NotDetectedNotQualified

NotDetectedQualified
unDetected?

detected?

isDetected := true, x := 0

isDetected := false, x := 0

isDetected := true, x := 0 

isDetected := false, x := 0

x >= 3100x >= 6100 

unDetected?

isQualified := false isQualified := true

detected?

x <= 4800

x <= 8100

Figure 2.2. Automaton that captures how TemperatureErrors are qualified and dequalified in BodySense. Edges
are labelled by the triple guard (green), action (light blue), and update (blue).

Figure 2.2 shows a timed automaton that captures the timing properties concerning the qualifi-
cation of temperature errors. The variable x is a clock variable, while isDetected and isQuali f ied
are two state variables. The edge that connects locations NotDetectedNotQualified and DetectedNot-
Qualified can be fired only when the event detected, which indicates that a temperature error has been
detected, has been received by the automaton. The location DetectedNotQualified has an invariant
that indicates that the clock variable x must be below 4800 ms when the location is active. The guard
condition on the edge between the location DetectedNotQualified and DetectedQualified indicates
that this edge cannot be fired if the clock x is below 3100. In effect, the edge between locations
DetectedNotQualified and DetectedQualified can be fired anytime when the clock variable x has a
value between 3100 and 4800. TAs are usually modeled this way (i.e., by including time ranges) in
practice, to allow for timing uncertainties, since software engineers cannot predict/control with abso-
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lute precision when operations start/end when software is running on the actual deployment platform.
In Chapter 5 we discuss the problems caused by this uncertainty in the timing specifications of the
system.

In general, we expect that software engineers use timed automata to capture both the timing prop-
erties of the entities of the domain model and the properties of the environment. The following
paragraphs provide additional details for these two cases.

2.3.1 Modelling the Timing Properties of Domain Entities
The identification of timing requirements is a manual activity. We expect that software engineers
define a timed automaton for each entity in the domain model that features one or more timing con-
straints. In the rest of the dissertation, we use the term timing requirements automata to refer to timed
automata used to model the timing properties of domain entities.

State variables appearing in the timed automata have counterparts in the domain model. More
specifically, we expect that each state variable is also an attribute of the entity modelled by the timed
automaton. Figure 2.2 shows the automaton that captures the timing constraints related to the entity
TemperatureError. The variables isDetected and isQualified are two attributes of the entity Temper-
atureError and, therefore, the assignments to the state variables isDetected and isQualified capture
changes to the state of the entity TemperatureError.

Events in the network of timed automata are used both to synchronize with different timed au-
tomata, and to indicate the processing of an input or the generation of an output. We have observed
that in practice, software engineers may also use events to avoid details that are unnecessary to de-
scribe timing requirements, i.e. details about the functional operations that trigger certain state transi-
tions. In fact, software engineers may produce timed automata with edges synchronized with events
that stand for the execution of one or several specific functional scenarios. These events are not gener-
ated by any other automata of the system; we call these events scenario events, since they are expected
to be generated as a result of the completion of a functional scenario.

To enable automated generation of timeliness test cases we constrain the adoption of scenario
events by requiring that scenario events always lead to updates of state variables (the scenario event
detected in Figure 2.2, for example, updates the state variable isDetected). Proper updating of state
variables is required since it is the analysis of such updates that enables one of the techniques pro-
posed in this dissertation, TAUC, to identify dependencies between use case specifications and timed
automata (see Chapter 4).

Chapter 4.4 shows how TAUC automatically detects scenario events without requiring additional
information from software engineers. Our modelling approach allows software engineers to follow
usual design practices with reasonably small timed automata models.

2.3.2 Modelling the Timing Properties of the Environment
Environment automata are used to capture the arrival frequency of inputs, including interrupts or
messages. This information is necessary to avoid the generation of invalid test cases, e.g. test cases
that send inputs with a frequency not supported by the system bus.
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DMAInterrupt!

x := 0

x > 41

x := 0

x > 40
OccupancyInfo!

x > 40
ControlRequest!

x > 40
CarInfo!

(a) (b)

Figure 2.3. Environment automata for BodySense

We model the arrival of inputs by means of events. The event names must match entity names used
in the domain model. Figure 2.3 shows two environment automata of BodySense that capture timing
characteristics of interrupts and messages, respectively. For example, the minimal interarrival time of
DMA interrupts is 41 milliseconds (a), while messages’ minimal interarrival time is 40 milliseconds
(b).
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Chapter 3

Automatic Generation of System Test Cases
from Use Case Specifications

In this chapter, we present Use Case Modelling for System Tests Generation (UMTG), an approach
for the generation of executable functional test cases. UMTG requires use case specifications written
according to RUCM and a domain model of the system, which enables the definition of constraints
that are used by UMTG to generate test data and oracles. In addition, the approach includes a spec-
ification refinement activity during which engineers are asked to provide constraints, referring to the
domain model, defined with the Object Constraint Language (OCL) [OMG, 2004]. OCL is the natural
choice when defining high-level constraints on class diagrams. The constraints are used to generate
test data via constraint solving [Ali et al., 2013].

UMTG employs NLP to build Use Case Test Models (UCTM) from RUCM specifications. UCTMs
capture the control flow implicitly described in the RUCM specification. During NLP, a list of tex-
tual descriptions of pre, post and guard conditions in use cases is extracted. The software engineer
further manually reformulates these textual descriptions using OCL constraints based on the domain
model, iteratively refining the latter when required. Our approach combines UCTMs with the OCL
constraints to enable automated test generation. As a final step, it automatically generates system test
cases with test inputs and outputs from UCTMs via constraint solving [Ali et al., 2013].

To summarise, the contributions of this chapter are:

• UMTG, an approach for the automatic generation of executable system test cases from use case
specifications and a domain model, without resorting to behavioral modelling;
• an NLP technique generating test models (UCTMs) from use case specifications expressed with

RUCM;
• an algorithm combining UCTMs and constraint solving to automatically generate test inputs;
• a demonstration of the feasibility of the approach based on an industrial case study in the auto-

motive domain.

This chapter is structured as follows. Section 3.1 introduces the challenges that need to be tackled
in order to design an automated test generation approach for embedded systems. In Section 3.2,
we provide an overview of UMTG. In Section 3.3 we present the NLP pipeline in our approach.
In Sections 3.4 to 3.8, we detail the automated activities in UMTG. In Section 3.9, we present our
empirical evaluation.
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3.1 Motivation
This section provides details about the challenges that need to be tackled in order to automate the
generation of functional test cases in the context of an embedded system.

To illustrate the problem we introduce a simplified version of a test case for a scenario of the use
case ‘Identify initial occupancy status of a seat’ for BodySense in Table 3.1. Lines 1, 3, and 5 provide
high-level operation descriptions, i.e., informal descriptions of the operations to be performed on the
system. These lines are followed by the name of the functions that should be executed by the test
driver along with the corresponding input/output values. For instance, Line 4 invokes the function
SetBus with a value indicating that the test driver should simulate the presence of an adult on the seat
(for simplicity assume that the field sensor positioned on a seat sends the value 85 on the bus when
an adult is seated).

Table 3.1. An example test case for BodySense

Line No. Operation Inputs/Expectations
1 Reset power and wait
2 ResetPower Time=INIT_TIME
3 Set occupant status - Adult
4 SetBus Channel = RELAY

Capacitance = 85
5 Check SeatBeltReminder status is Occupied

and AirBagControl status is Occupied
6 ReadAndCheckBus D0=OCCUPIED

D1=OCCUPIED

The exhaustive test cases needed to validate a safety-critical embedded system are difficult both
to derive and maintain as requirements are changing. For instance, the real test case from which we
derived the simplified test case in Table 3.1, includes 30 test steps, around 50 variable assignments,
and 15 references to other specifications providing further explanations about the inputs. The effort
required to specify test cases for the whole BodySense is overwhelming. A test suite exercising all use
case scenarios would include more than 400 such test cases. Without automated test case generation,
such testing activity remains not only expensive but also infeasible under typical time constraints.

Within the context of testing safety-critical embedded software system such as BodySense, we
identify three challenges that need to be considered for the automatic generation of system test cases
from functional requirements:

Feasible Modelling. Most of the existing automatic system test generation approaches are model-
based and rely upon behavioural models such as sequence or activity diagrams. In complex industrial
systems, behavioural models that are precise enough to enable test automation are quite complex that
their specification cost is prohibitive and the task is often perceived as overwhelming by engineers. To
evaluate the applicability of behavioral modelling on BodySense, we asked the IEE software engineers
to specify system sequence diagrams corresponding to the use cases of BodySense. For example,
the system sequence diagram for the use case ‘Identify initial occupancy status of a seat’, includes
74 messages, 19 nested blocks, and 24 references to other system sequence diagrams that had to be
derived. This was clearly considered too complex for software engineers and required significant help
from the authors of this paper, and many iterations and meetings. Note that this is a relatively simple
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use case compared to what can be found in other, more complex systems at IEE, and that, therefore,
our conclusion was that behavioural modelling was not a practical option for test automation.

Test Data Generation. Without behavioral modelling, most approaches mainly exploit NL re-
quirements specifications in which it is hard to extract test data for executable test cases. Test cases
derived in such a way that requires significant manual intervention. For instance, even the simplified
test case in Table 3.1 has 50 variable assignments to be manually entered as test input. Automatically
generating test data, and not just abstract test scenarios, is therefore important.

Deployment of the Software under Test. Execution of test cases for a system like BodySense
entails the deployment of software under test on the target environment. To speed up software testing,
test case execution is typically automated through test scripts invoking test driver functions. These
functions simulate sensor inputs and computational results receiving from a communication bus. Any
test generation approach should generate appropriate functions and test data in a processable format
for the test driver. For instance, the test drivers in BodySense need to invoke driver functions (e.g.,
SetBus) to simulate occupancy on a seat.

3.2 Overview of the Approach
Figure 3.1 shows the main steps of the approach. The goal of UMTG is to address the challenges
given in Section 3.1. In UMTG, behavioral information and high-level operation descriptions are
generated from use cases (the first challenge), test inputs are generated through constraint solving
(the second challenge), while test driver functions corresponding to informal descriptions and ora-
cles implementing the postconditions of the use case scenarios are generated through mapping tables
provided by the software engineer (the third challenge).

The software engineer elicits requirements with RUCM (Step 1). The domain model is manually
created as a UML class diagram (Step 2). UMTG automatically checks if the domain model includes
all entities mentioned in the use cases (Step 3) and tool support is provided to guide engineers in
completing the domain model. NLP is used to extract domain entities from the use cases. Missing
entities are shown to the software engineer who refines the domain model (Step 4). Steps 3 and 4 are
iterative: the domain model is refined until it is complete.

Once the domain model is completed, textual descriptions of pre, post and guard conditions in
the use cases are automatically extracted (Step 5) to be reformulated as OCL constraints by engineers
(Step 6). UMTG further processes the use cases with the OCL constraints to generate a Use Case Test
Model for each use case (Step 7). A generated test model is a directed graph that explicitly captures
the implicit behavioural information in the corresponding use case.

UMTG relies on constraint solving for OCL constraints that are attached to the nodes of the test
models. The goal is to generate test inputs associated with use case scenarios (Step 8). We use the
term use case scenario for a sequence of use case steps that start with a use case precondition and
ends with a postcondition of either a basic or alternative flow. Test inputs cover all paths in the testing
model and therefore cover all possible use case scenarios.

The software engineer provides a mapping table that maps high-level operation descriptions and
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Figure 3.1. Overview of the UMTG Approach

test inputs to the concrete driver functions and inputs that should be executed by test cases (Step
9). Executable test cases are automatically generated through the mapping table (Step 10). If the test
infrastructure and hardware drivers change in the course of the system lifespan, then only the mapping
table needs to change.

The rest of the chapter provides a detailed description of each step of UMTG shown in Figure 3.1,
except Steps 1 and 2 already introduced in Chapter 2.2.

3.3 NLP Pipeline for UMTG
Three UMTG steps in Figure 3.1, ‘evaluate the model completeness’, ‘identify constraints’, and ‘gen-
erate the use case test model’, are supported by an NLP application to extract behavioral information
from RUCM use cases.

The NLP application in UMTG is based on the GATE workbench [Cunningham et al., 2002],
an open source NLP framework, and implements the analysis pipeline in Figure 3.2. The pipeline
includes both default NLP components (grey) and components configured to process RUCM use
cases (white). The Tokenizer splits the use cases into tokens. The Gazetteer identifies the RUCM
keywords. The POS Tagger tags tokens according to their nature: verb, noun, and pronoun. The
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Figure 3.2. NLP pipeline applied to extract the behaviour of a Use Case

pipeline is terminated by a set of transducers that tag block of words to distinguish the kinds of
RUCM steps: output, input, include, and internal operations. The pipeline has also transducers to
distinguish specific, bounded and global alternative flows, plus reference blocks, and constraints part
of guard and post conditions.

Figure 3.3 gives an example transducer for constraints. Capital names on the arrows correspond to
the transducer’s inputs, i.e., tags previously identified by either the POS tagger, the gazzetteer or other
transducers. Italic names show the tags associated with the transducer to the words corresponding to
the transducer input. Figure 3.4 gives the tags associated with the use case step in Line 6 of Table 2.2
after the execution of the transducer in Figure 3.3. In Figure 3.4, multiple tags are associated with the
same block of words: the clause ‘the occupant class for airbag control is valid’ is tagged both as a
simple constraint and as a part of a composite constraint.
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Figure 3.3. Part of the transducer that identifies constraints
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Figure 3.4. Tags associated with the use case step in Lines 6 of Table 2.2

3.4 Evaluation of the Model Completeness
UMTG automatically evaluates the model completeness (Step 3 in Figure 3.1) by identifying missing
domain entities. This is done by checking correspondences between the domain entities identified
by the NLP application and the entities in the domain model. Please recall that we assume naming
conventions for the use cases and domain model1.

OccupantClass

«enumeration»
BodySenseSystem

Error
Child
Adult
EmptyError

VoltageError TemperatureError

occupantClassForAirbagControl

occupantClassForSeatBeltReminder

occupancyStatus

status

OccupancyStatus

AirbagControlUnit SeatBeltControlUnit

status

initialized : Boolean

errors

1

1..*

1 1
1 1

11

1

1

1

1

Figure 3.5. Portion of the domain model for BodySense

Sometimes domain entities identified in a use case are not modelled as classes but as attributes.
Figure 3.5 shows a simplified portion of the domain model for BodySense where the domain entities
‘occupant class for airbag control’ and ‘occupant class for seat belt reminder’ are modelled as at-
tributes of the class OccupancyStatus. UMTG follows a simple yet effective solution to check class
and attribute names. For each domain entity identified through NLP, UMTG generates an entity name
by removing all white spaces and by putting all first letters following white spaces in capital. For
instance, the domain entity ‘occupant class for airbag control’ becomes ‘OccupantClassForAirbag-
Control’. UMTG checks generated entity names in the domain model. If the entity name appears
either as a class name or as an attribute name, the entity is considered present, otherwise it is consid-
ered missing.

1The precise identification of correspondences between the domain entities in the use cases and the entities in the
domain model in the presence of inconsistent name usage can be tackled by syntactic and semantic similarity checking
algorithms but it is not in the scope of this dissertation.
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Table 3.2. Some constraints for the use case ‘Identify Occupancy Status of a Seat’.
# Condition in the Use Case Corresponding OCL Constraint
1 the occupant class for airbag

control is valid
BodySenseSystem.allInstances()
→ f orAll(b|b.occupancyStatus.occupantClassForAirbagControl <> OccupantClass :: Error)

2 the occupant class for seat belt BodySenseSystem.allInstances()
→ f orAll(b|b.occupancyStatus.occupantClassForSeatBeltReminder <> OccupantClass :: Error)reminder is valid

3 voltage error is detected Error.allInstances()
→ select(e|e.oclIsKindO f (VoltageError))→ f orAll(v|v.valid = true)

4 the occupant classes for airbag
control and seat belt reminder
have been sent

AirbagControlUnit.allInstances()→ f orAll(a|a.status = a.bodySense.occupancyStatus
.occupantClassForAirbagControl) AND SeatBeltControlUnit.allInstances()
→ f orAll(s|s.status = s.bodySense.occupancyStatus.occupantClassForSeatBeltReminder)

5 The system has been initialized BodySenseSystem.allInstances()→ f orAll(b|b.initialized = true)
6 The system resets classification

filters
BodySenseSystem.allInstances()→ f orAll(b|b.occupancyStatus.occupant
ClassForSeatBeltReminder = null AND b.occupancyStatus.occupantClassForAirbagControl = null)

3.5 Identification of Constraints
The pre- and guard- conditions used in a use case specification capture the conditions under which a
given use case scenario is executed, in other terms, they allow to determine the inputs that enable the
covering of a given use case scenario. UMTG automatically identifies these conditions by means of
NLP and asks the software engineer to reformulate them as OCL constraints. In later steps, UMTG
uses a constraint solver to solve the provided OCL constraints and automatically generate test inputs
(see Section 3.7). Postconditions instead capture the expected state of the system after the execution
of the scenario. UMTG asks the software engineer to reformulate postconditions as OCL constraints
as well. Postconditions are later translated into oracles for the test cases.

To minimize manual effort, the NLP application first locates use case conditions and then identifies
repeating and negated ones through an NLP transducer. If the use cases both feature the condition
and its negation, only the condition is reformulated as an OCL constraint and its negated version in
OCL is automatically derived. Table 3.2 provides some of the use case conditions in Table 2.2 with
their corresponding OCL constraints based on the domain model.

3.6 Generation of the Use Case Test Model
A Use Case Test Model enables the mapping of use case steps with test case steps. It makes the
implicit control flow in a use case specification explicit. Figure 3.6 gives the metamodel for the Use
Case Test Model.

The UseCaseStart represents the beginning of a use case and is thus associated to a precondition
and to the first step in the use case. Steps can be of two different types: Sequence and Condition. A
Sequence has only a single successor, while a Condition has two possible successors. A Condition
has a reference to a constraint and it is associated with the steps taken according to the truth value of
the constraint.

A Constraint has a description informally written in the use case (the first column in Table 3.2)
and a corresponding OCL constraint referring to the domain model (the second column in Table 3.2).
ComplexConstraints and SimpleConstraints are introduced to reduce the number of manually written
OCL constraints. ComplexConstraints simply concatenate SimpleConstraints using the operators OR
and AND.
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Figure 3.6. Metamodel for the Use Case Testing Model

An Input Step indicates that a test case should invoke an input operation during test case execution.
Input steps reference a DomainEntity that represents the data passed as input to the system. An
Interrupt indicates the presence of inputs that enable the evaluation of a condition of a Global or
Bounded Alternative Flow that may disrupt the execution of the basic flow. For this reason, it is
linked to the corresponding Condition step. This is further detailed in Section 3.7.

An Internal Step indicates that the system alters its internal state. In order to specify the effects
of an internal step on the system state, the Internal Step is associated to an OCL constraint specified
by the software engineer.

An Exit Step is the last step of a use case flow and contains a reference to the corresponding
postcondition. An Exit Step for the Basic Flow does not point to any further step, while the Exit Step
of an Alternative Flow points to the step indicated by the keyword Resume in the use case. Abort
Steps instead terminate an anomalous execution flow and do not point to any further step.

Figure 3.7 shows the Use Case Test Model generated from the use case specification in Table 2.2
(to improve readability, the figure shows only the objects that model the execution flow).

The Use Case Test Model for a use case is generated by processing the use case specification anno-
tated by the NLP application. UMTG generates a Use Case Test Model for each use case specification.
The use case document is parsed from the beginning to the end. Each time a textual element tagged
as Input, Include, Internal, or Conditional is encountered, the technique generates a corresponding
Step instance and connects it to the last Step instance created.

Whenever a domain entity is encountered, a corresponding DomainEntity object is created (if it
does not exists already) and is linked to the Step that refers to that domain entity.

When a Specific Alternative Flow is found, the Reference block is used to find the corresponding
Condition Step of the Basic Flow and to connect it with the first step of the Alternative Flow. The
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Figure 3.7. The Use Case Testing Model derived from the Use Case in Table 4.1

Condition Step of line 6 in Table 2.2, for example, is connected with the step of line 20 (the first of
the Specific Alternative Flow).

Global and Bounded Alternative Flows lead to the generation of multiple Condition Steps. In
UMTG, Global and Bounded Alternative Flows begin with a guard condition, i.e. a Condition step.
In case of a Global Alternative Flow, the Condition step at the beginning of the Alternative Flow is
added before all the steps of the basic flow. For a Bounded Alternative Flow, the Condition step is
added before all the steps covered by the Bounded Alternative Flow. In the use case in Table 2.2,
the Condition step of line 13 belongs to a Bounded Alternative Flow that is bounded by lines 5 to 6,
which results in the Use Case Test Model containing two Step instances ’Condition line 13’ before
the steps of lines 5 and 6.

If multiple alternative flows depend on the same condition of the basic flow, UMTG simply con-
nects their guard Conditions in cascade following the order in the use case specification. This is the
case of Conditions on lines 20 and 28 of the use case in Table 2.2, which are connected in cascade in
Figure 3.7.

3.7 Generation of Scenarios and Test Inputs
Test inputs can be identified from the Use Case Test Model to cover all the possible scenarios of the
use case, i.e., all the paths that begin with a UseCaseStart step and end with an Exit step.

According to our definition, a use case scenario does not include the steps in the Use Case Test
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Model that follow an Exit step, and thus we can treat the Use Case Test Model as an acyclic graph.
For this reason, we implemented a test generation algorithm that covers all the paths of the Use Case
Test Model by following a depth-first traversal.

Constraint solvers can be used to solve the path condition that must be satisfied to cover a specific
path and thus help identify test inputs. UMTG can work with any constraint solver dedicated to
OCL. We have worked with two distinct constraint solvers, one that relies upon search algorithms to
efficiently generate test inputs that satisfy the given path condition (please refer to [Ali et al., 2013]
for more details), and one based on a model transformation that allows to use the Alloy Analyzer to
generate results, i.e. object models, that satisfy the given OCL constraints [Anastasakis et al., 2007].

Require: step, the step to inspect
Require: scenario, list of steps that constitute the current test case
Require: pc, the current path condition
Require: results, list of test inputs already generated
Require: dm, the domain model
Require: M, the Use Case Test Model under test
Ensure: results, a list of pairs < scenario,ob jectDiagram >

1: if step is UseCaseStart then
2: scenario← scenario∪ step
3: pc← pc AND step.precondition
4: GenerateInputs(step.next,scenario, pc, tests,dm,M)
5: end if
6: if step is Input then
7: scenario← scenario∪ step
8: GenerateInputs(step.next,scenario, pc, tests,dm,M)
9: end if

10: if step is Condition then
11: //prepare f or visiting the true branch
12: scenarioT ← scenario //create a copy
13: if step belongs to Global or Bounded then
14: scenarioT ← newInputInstruction(step.entities)
15: end if
16: scenarioT ← scenarioT ∪ step
17: pcT ← pc AND step.condition
18: GenerateInputs(step.true,scenarioT , pcT , tests,dm,M)
19: //prepare f or visiting the f alse branch
20: scenarioF ← scenario
21: if step belongs to Global or Bounded then
22: pcF ← pc
23: else
24: scenarioF ← scenario∪ step
25: pcF ← pc AND ! step.condition
26: end if
27: GenerateInputs(step. f alse,scenarioF , pcF , tests,dm,M)

28: end if
29: if step is Internal then
30: scenario← scenario∪ step
31: pc← pc AND step.postcondition
32: GenerateInputs(step.next,scenario, pc, tests,dm,M)
33: end if
34: if step is Exit OR Abort then
35: scenario← scenario∪ step
36: ob jectDiagram← oclSolver(pc,dm)
37: results← results∪< scenario,ob jectDiagram >
38: end if

Figure 3.8. GenerateInputs: the Test Generation Algorithm adopted in UMTG

The following paragraphs describe GenerateInputs, the algorithm used by UMTG to build and
solve the path conditions. Figure 3.8 shows the algorithm.
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The algorithm takes six inputs: step, the step to inspect, scenario, the current test scenario, which
is a list of steps covered during the traversal, pc, the path condition of the scenario, results, a list of
results generated, dm, the domain model, UCTM, the Use Case Test Model for which we intend to
generate test cases. The algorithm generates a list of pairs < scenario,ob jectDiagram >. Each pair
shows an object diagram that includes the input values enabling the coverage of a specific scenario.

UMTG generates the scenario and test inputs of the Use Case Test Model under test by invoking
GenerateInputs using the UseCaseStart as the parameter step. The lists scenario, pc, and results are
initially empty and are populated by GenerateInputs during its execution.

Before executing GenerateInputs, UMTG includes into the Use Case Test Model under test the
steps of the included use cases. This is done in a fashion that is similar to the generation of inter-
procedural control flow graphs [Harrold et al., 1998], i.e., by connecting the step that precedes the
Include step with the UseCaseStart of the included Use Case Test Model, and by connecting the Exit
step of the basic flow of the included Use Case Test Model with the step that follows the Include step.
Additionally, UMTG removes branches that lead to loops in the included Use Case Test Model.

GenerateInputs traverses the Use Case Test Model by following a depth-first traversal and popu-
lates the list scenario with the steps visited within a path. Figure 3.9 shows three scenarios generated
for the running example. The following paragraphs describe the activities performed for the different
kinds of steps.

In the case of a UseCaseStart step, GenerateInputs adds the pre-condition of the UseCaseStart
step to the path condition. This is done because it enables the initialisation of the test case (lines 1 to 5
in Figure 3.8).

In the case of a Condition step, GenerateInputs visits first the true branch and then the false
branch. Visiting the true and the false branch simply consists in recursively invoking GenerateInputs
after appropriately updating the path condition. When visiting the true branch, GenerateInputs adds
a new Interrupt step to the scenario if the Condition step belongs to a Global or Bounded Alternative
Flow (line 14 in Figure 3.8). This is done because the execution of the true branch of a Bounded or
Global Alternative Flow indicates the presence of an interruption. Scenario B in Figure 3.9 shows the
Interrupt step added before the Condition step of line 13. The path condition built to visit the true
branch of line 13 is the conjunct of conditions 5 and 3 of Table 3.2.

Lines 19 to 27 in Figure 3.8 handle the visit of the false branch. GenerateInputs adds the Condition
step to the scenario only if it does not belong to a Global or Bounded Alternative Flow. This is done
because the guard conditions of Global and Bounded Alternative Flows influence the behaviour of
a use case only when they are true. If the Condition step does not belong to a Bounded or Global
Alternative flow, GenerateInputs adds the negation of the associated OCL constraints to the path
condition (line 25). Scenario A in Figure 3.9 corresponds to the basic flow of the use case in Table 2.2.
The Figure shows that the scenario does not include the condition of the Bounded Alternative flow
starting in line 13 of Table 2.2. An example of the negation of a constraint that does not belong to
a Bounded Alternative flow is shown in Scenario C (Figure 3.9). The bold font shows the negated
constraint.

An Internal step indicates that the system changes its internal state. Since the change may affect
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Figure 3.9. Three scenarios built by UMTG for the use case in Table 2.2

the truth value of following Condition steps, GenerateInputs includes in the path condition the con-
straints associated with the Internal steps visited (line 31 in Figure 3.8). An example is given by the
path condition of Scenario B in Figure 3.9.

The generation of a scenario terminates when either an Exit or an Abort step is reached (line 34 in
Figure 3.8). GenerateInputs adds the Exit or Abort step to the scenario (line 35) and then invokes the
OCL solver to solve the current path condition (line 36). A pair < scenario,ob jectDiagram > with
the current scenario, and the object diagram returned by the OCL solver is added to the list results
(line 37).

3.8 Generation of Test Cases
UMTG generates test cases by processing all the pairs < scenario,ob jectDiagram > produced by
the algorithm GenerateInputs. UMTG performs three activities to generate test cases: Identify input
values, Generate high-level operation descriptions, and Generate calls to driver functions. These

26



3.8. Generation of Test Cases

activities are tailored to the specific format described in Section 2.1 but may be changed, following
similar principles, to generate test cases in different formats for embedded systems using a different
test infrastructure and hardware.

Table 3.3 shows a test case automatically generated from the basic flow of the use case in Table 2.2
(lines 1,3, and 5 are high-level operation descriptions; lines 2,4, and 6 are driver function calls). This
test case corresponds to the manually written test case in Table 3.1. Figure 3.10 shows the activities
performed by UMTG to automatically generate the test case.

UMTG first processes the object diagram to identify the whole set of input values for the test case
(activity 1 in Figure 3.10). To this end, UMTG looks for the attributes in the object diagram that
appear in the constraints of the scenario.

UMTG generates high-level operation descriptions by first creating Input operations and then
Check operations. UMTG creates a test line with an Input operation for every UseCaseStart and
Input step of the scenario. For each input line in the test case, UMTG selects input values that
belong to the domain entities appearing in the corresponding step of the scenario. For instance, in
activity 2.2 in Figure 3.10, the inputs occupancyStatus.occupantClassForAirbagControl = Adult and
occupancyStatus.occupantClassForSeatBeltReminder = Adult are selected when processing the Input
step in line 4 (see Scenario A in Figure 3.9). In fact, the Input step in line 4 refers to to the domain
entity OccupancyStatus.

At the end of the test case, UMTG generates a test line with a Check operation and the postcondi-
tion of the scenario under test (see activity 2.3 in Figure 3.10).

Table 3.3. A generated test case for BodySense

Line
No.

Operation Inputs

1 Input System.initialized = true
2 ResetPower Time=INIT_TIME
3 Input occupantClassForAirbagControl = Adult

occupantClassForSeatBeltReminder = Adult
4 SetBus Channel=RELAY Capacitance=85
5 Check AirbagControlUnit.allInstances()→ forAll(a|a.status = a.bodySense

.occupancyStatus.occupantClassForAirbagControl) AND ..
6 ReadAnd D0=OCCUPIED

CheckBus D1=OCCUPIED

Table 3.4. Mapping table for BodySense (excerpt)

Matching Patterns
(Operation and Inputs)

Result
(Operation and Inputs)

Input .*ClassForAirbagControl = Adult Set Bus Channel = RELAY
.*SeatBeltReminder = Adult Capacitance = 85

Input System.initialized = true Reset Power Time=INIT_TIME
Check AirbagControlUnit.allInstances()-

>forAll(a|a.status=a.bodySense.occupancy...
ReadAndCheckBus D0=OCCUPIED

D1=OCCUPIED

To generate calls to driver functions, UMTG parses each high-level operation description by using
the mapping table provided by the software engineers (activity 3 in Figure 3.10). Table 3.4 shows a
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1. Identify input values

System.initialized = true
System.occupancyStatus.occupantClassForAirbagControl  = Adult 
System.occupancyStatus.occupantClassForSeatBeltReminder  = Adult

2.3 Process the Exit step of line 9: add the following line to the test case

Check

2.1 Process the UseCaseStar step of line 2: add the following line to the test case

Input System.initialized = true

Input System.occ...tus.occupantClassForAirbagControl = Adult 
System.occ...tus.occupantClassForSeatBeltReminder = Adult

2.2 Process the Input step of line 4: add the following line to the test case

3. Generate calls to driver functions
    Lines 2, 4, and 6 in Table 4 are generated by processing the high-level operation 
    descriptions according to the Mapping Table

Object diagram:

:BodySenseSystem

occupantClassForAirbagControl = Adult

occupantClassForSeatBeltReminder = Adult

occupancyStatus
:OccupancyStatus

initialized = true

Test Case Generation:

AirbagControlUnit.allInstances() - > forAll(a|a.status = 
a.bodySense.occupancyStatus .occupantClassForAirbagControl) 
AND SeatBeltControlUnit.allInstances() - >  forAll(s|s.status 
= s.bodySense.occupancyStatus.occupantClassForSeatBeltReminder)

2. Generate high-level operation descriptions

Figure 3.10. Activities performed by UMTG to generate the test case in Table 3.3

mapping table for BodySense. The mapping table is made of four columns. The first two columns
provide operation names and regular expressions that match high-level operation descriptions in the
test case. The last two columns provide the driver function calls that should be added after a match
of a high-level operation description. For example, line 1 of the test case in Table 3.3 matches the
expression ‘System.initialized = true’ and thus leads to the generation of line 2 of the test case.

UMTG generates test oracles by translating OCL postconditions into the scripting language of the
testing framework. In our current implementation the translation is simply performed by means of the
mapping table (see the third row in Table 3.4). As a future work, we plan to integrate more complex
strategies to perform the translation.

3.9 Empirical Evaluation
We have conducted an empirical evaluation of UMTG that aims to evaluate its applicability and
effectiveness based on an industrial case study, BodySense.

The empirical evaluation aims to respond to two research questions:

• RQ1. Is the modelling and analysis effort required by UMTG acceptable in an industrial con-
text? UMTG requires use case specifications written according to a specific format (RUCM),
plus the specification of OCL constraints that correspond with constraints written in natural
language. This research question aims to evaluate whether the required effort is acceptable in
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an industrial context.
• RQ2. Is UMTG effective in generating test cases that cover the requirements captured by use

case specifications? UMTG aims to generate test cases that demonstrate that a software imple-
mentation complies with its functional specifications. The goal of this research question is to
evaluate whether UMTG allows to generate test cases that cover all the functional requirements
of the system.
• RQ3. Does UMTG scale? UMTG aims to generate system test cases which might in principle

require the generation of complex inputs after solving complex OCL constraints. RQ3 aims to
evaluate whether the approach scales to the size of industrial projects.

3.9.1 RQ1. Is the modelling and analysis effort required by UMTG
acceptable in an industrial context?

In order to respond to RQ1 we both conducted informal interviews with IEE engineers, and measured
the additional effort required by IEE engineers in order to produce the input artefacts required by
UMTG. More specifically, we measured the number of scenarios that need to be defined to write
six use case specifications of BodySense according to RUCM, and we compare this number with the
number of scenarios specified by IEE engineers before adopting RUCM. Also we counted the number
of OCL constraints that need to be provided by engineers in order to apply UMTG.

Table 3.5. Results obtained with the case study

Use Case ID Use Case Flows OCL Constraints
IEE UMTG

1 6 8 9
2 11 13 7
3 4 8 8
4 7 11 12
5 7 8 5
6 6 6 12

Table 3.5 shows the collected measurements. Column Use Case Flows-UMTG shows that the
RUCM format lead to use case specifications that include more use case flows than the original spec-
ifications written by IEE engineers (Column Use Case Flows-IEE), this mostly depends on the fact
that RUCM forces engineers to avoid ambiguous requirement steps.

The column OCL Constraints shows the number of constraints we specified by using OCL. The
table shows that the number of constraints to define for each use case is low, ranging from 5 to 12.
Furthermore several constraints are shared by multiple use cases, engineers thus had to define 48
unique constraints, less than the sum of the constraints of each use case (53).

Also, we report that the OCL constraints we had to specify are relatively simple and easy to
express. Only 12 constraints are complex constraints that result from the conjunction of simple con-
straints. Furthermore most of the obtained constraints correspond to equalities (the operator ’=’
appears 28 times, while the operators ’<’ and ’>’ appear 11 and 8 times respectively).
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Finally we report that IEE engineers consider the modelling effort required by UMTG acceptable,
and also, at the time of this dissertation writing, they have started adopting the RUCM to elicit the use
case specifications for ongoing projects.

3.9.2 RQ2. Is UMTG effective in generating test cases that cover the
requirements captured by use case specifications?

To evaluate UMTG effectiveness and compare it with manual testing we measured the amount of
scenarios covered by the test cases generated with UMTG, and compared with the scenarios covered
by the test cases manually written by IEE engineers, based on domain expertise.

The last two columns of Table 3.6 show the number of use case scenarios covered by both the
test cases manually written by IEE software engineers, and by UMTG. The table shows that UMTG
covers use case scenarios that are not covered by manually derived use cases. This is mainly due
to the fact that test engineers tend not to test all the scenarios that can be derived from bounded or
global alternative flows (a same bounded or global alternative flow may lead to multiple paths, i.e.
scenarios, in the Use Case Test Model). Doing that type of path analysis manually is indeed difficult
for an engineer. Another reason for this discrepancy is that RUCM is a more precise description of
use case specifications than standard use cases, thus leading to the identification of more scenarios.

Table 3.6. Results obtained for RQ2

Use Case ID Scenarios Covered
ID IEE UMTG
1 30 37
2 10 13
3 8 8
4 24 28
5 4 8
6 4 6

3.9.3 RQ3. Does UMTG scale?
To respond to RQ3 we measured the execution time required by UMTG to generate test cases, in
addition, to discuss the generalizability of the results we report the number of steps of each use case
specification, and the number of arcs and node of the generated testing models.

Most of the computation time during test case generation was spent on constraint solving. As
mentioned in Section 3.7 in our experiments we relied upon two different constraint solvers, one
based on Alloy, and one dedicated to OCL which based on a search algorithm [Ali et al., 2013].

We noticed that the execution time required to generate test cases highly varies depending on the
constraint solver adopted. In the case of the solver dedicated to OCL the automatic generation of a
test case, for each use case scenario, approximately took 12 minutes on average, with a maximum
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execution time of 56 minutes, and a minimum execution time of one minute. In the case of Alloy the
execution time was much lower, 10 seconds per test case on average.

The identification of the constraint solver to be used in our context is out of the scope of this
dissertation, however, these numbers clearly indicate that the approach scales since, in the worst case,
test case generation can be run overnight and each test case could easily be generated in parallel on a
high-performance computing platform.

The data about the size of test cases and testing models are reported in Table 3.7 and shows that
the use case specifications considered for our evaluation are non-trivial, including from 25 to 50 steps
each. Also the Table shows that the number of nodes and arcs in the UCTM models is not small,
which makes us believe that the considerations about the scalability of the approach may generalize
to other industrial embedded systems.

Table 3.7. Results obtained for RQ3

Use Cases UCTM
ID Steps Flows Nodes, Arcs
1 50 8 154, 182
2 44 13 46, 55
3 35 8 35, 40
4 59 11 119, 140
5 30 8 32, 38
6 25 6 27, 30

3.9.4 Threats to Validity
Internal threats

Threats to the internal validity of our empirical observations may depend on a potentially wrong
implementation of the toolset for generating the test cases. For this reason, to avoid errors depending
on a wrong implementation of our toolset we manually inspected both the use case testing models
generated by UMTG, the abstract test cases, and the final test cases generated by the technique.

External threats

Threats to the external validity regard the generalisability of our findings. Given that BodySense must
comply with safety standards we consider the test cases developed by IEE engineers being an example
of good manual test cases. Thus, we expect that the test cases provided by IEE engineers can test most
of the foreseeable execution scenarios. Also, we stress that BodySense is a representative automotive
embedded system developed by IEE which have been sold for many years. For all these reasons
we assume that our considerations about the effectiveness of UMTG test suites, which improves the
coverage of the manual test suite implemented by IEE engineers, might generalize to many other
embedded systems.
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3.10 Conclusion
In this chapter, we presented an automated approach for the generation of functional system test cases.
The approach is driven by use case specifications, augmented with a domain model.

The approach combines NLP and constraint solving to extract implicit behavioural information
from use case specifications, and help generate test scenarios and data. In addition, to enable test data
generation the approach requires that guard, pre, and post conditions of RUCM are refined by means
of OCL expressions based on the domain model.

The industrial case study shows that our automated approach works with industrial use case speci-
fications for a representative automotive embedded system. The time required for test case generation
enables the entire process to run overnight, and furthermore, it could easily be parallelised if required.
Our experience also suggests that the modelling requirements of our approach, in terms of use case
specifications and domain modelling, is feasible in an industrial context.
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Chapter 4

System Testing of Timing Requirements
based on Use Cases and Timed Automata

This chapter presents Test Generation combining Timed Automata and Use Case Specifications,
TAUC, a technique that automatically generates executable test cases targeting software timeliness.

TAUC automatically builds the detailed models necessary to generate executable test cases. This is
achieved by combining the information appearing in use case specifications and models of the timing
requirements of the system (timed automata). It thus prevents software engineers from designing very
detailed timed automata when use case specifications are available.

In addition, TAUC automatically builds test suites that exercise the functionality regulated by
timing requirements by optimising diversity among test inputs, thus increasing the probability of
identifying problems dependent on specific input sequences.

To automate testing, TAUC needs to determine what functional inputs are needed to reach certain
system states, and for this reason, TAUC must identify the dependencies between functional scenarios
and timed automata. More specifically, TAUC determines which functional scenarios bring the system
into a specific state, and which functional scenarios can take place when the system is in a given
state. TAUC relies upon UMTG to identify the test inputs that exercise functional scenarios and
automatically processes test inputs and timed automata to identify their dependencies.

TAUC automatically models these dependencies by augmenting the set of user-provided timed au-
tomata capturing timing requirements. This helps contain the engineers’ modelling effort and enables
the use of UPPAAL [Bengtsson et al., 1995], a model checker for symbolic reachability analysis of
timed automata. TAUC relies upon UPPAAL to generate test cases that include both inputs derived
from use case specifications and timing constraint on the inputs, e.g. the delay between two inputs,
derived from timed automata.

Test generation with UPPAAL guarantees edge coverage, i.e. functional coverage, but does not
aim at increasing the chance to identify the violation of timing requirements. For this reason, TAUC
includes a meta-heuristic search algorithm that iteratively modifies the test cases generated by UP-
PAAL to maximize test suite diversity within a certain test budget. Test suite diversity is maximized
by deriving test cases that provide diverse sequences of inputs to the system, thus increasing the
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probability of identifying violations of timing requirements that depend on specific input sequences.

The contributions of this chapter are summarized as follows:

• A model-based, automated strategy to test timeliness requirements at the system level, in the
context of use case driven development.
• The definition of timeliness test models, i.e., models based on the timed automata formalism

that enables the automated generation of executable test cases.
• A strategy for generating timeliness test models from functional and timing requirements pro-

vided as use case specifications and timed automata. This strategy allows to minimize modeling
overhead and automates test generation targeting timeliness requirements.
• An empirical evaluation based on BodySense that shows the effectiveness of the approach.

The chapter proceeds as follows. In Section 4.1 we discuss the limitations of existing approaches
for generating test cases for software timeliness that motivate the development of TAUC. In Section
4.2 we overview the benefits given by TAUC. In Section 4.3 we provides an overview of the steps
taken by TAUC to automate test generation. In Sections 4.4 to 4.7, we provide details about TAUC
steps. In Section 4.8 we discuss the empirical results obtained with BodySense. In Section 4.9 we
provide final remarks.

4.1 Limitations of Test Generation Based on Timed Automata

unDetected?

detected?

DetectedNotQualified

DetectedQualified

NotDetectedNotQualified

NotDetectedQualified
unDetected?

detected?

isDetected := true, x := 0

isDetected := false, x := 0

isDetected := true, x := 0 

isDetected := false, x := 0

x >= 3100x >= 6100 

unDetected?

isQualified := false isQualified := true

detected?

x <= 4800

x <= 8100

Figure 4.1. Automaton that captures how TemperatureErrors are qualified and dequalified in BodySense. This
is the same automaton shown in Figure 2.2. Edges are labelled by the triple guard (green), action (light blue),
and update (blue).

Software engineers may use the timed automaton of Figure 4.1 to automatically generate timeli-
ness abstract test cases by using an automated technique [Hessel et al., 2004]. The first three oper-
ations performed by an automatically generated test case might be: (1) generate the event detected
(which is supposed to bring the system into the state DetectedNotQualified from the initial state Not-
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DetectedNotQualified), (2) wait for 4801 milliseconds (to be sure that the edge has been fired), (3)
check that the system is in the state DetectedQualified and otherwise fail.

To transform this abstract test case into an executable test case, the software engineer needs to
determine how to generate the event detected. This activity is not trivial because one has to care-
fully read the software specifications to determine the conditions under which a temperature error is
detected. For a complex system, finding all the temperature requirements could be particularly ex-
pensive. For example, the engineer might need to read all the specification documents to be sure that
the temperature range does not vary according to working conditions (e.g. in the presence of other
system errors).

4.2 Automated Testing with TAUC
TAUC assumes that software engineers have produced use case specifications written in the RUCM
format with OCL constraints defined by following the UMTG approach. Also TAUC requires timed
automata that capture timing requirements as shown in Chapter 2.

Table 4.1. BodySense Use Cases
0 Use Case: Identify the Occupancy Status of a Seat
1 Precondition
2 The system has been initialized
3 1.1 Basic Flow
4 1.The system REQUESTS capacity FROM the seat sensor.
5 2.INCLUDE USE CASE Self diagnosis.
6 3.INCLUDE USE CASE Classify occupancy status.
7 4.The system VALIDATES THAT no error is detected and no error is qualified.
8 5.The system VALIDATES THAT the occupant class is valid.
9 6.The system SENDS the occupant class TO AirbagControlUnit.
10 Postcondition: The occupant class has been sent to AirbagControlUnit.
11 1.2 Specific Alternative Flow
12 RFS 4
13 1. The system sends the error class to AirbagControlUnit.
14 2. ABORT.
15 Postcondition: Classification filters have been reset.
... ...
30 Use Case: Self Diagnosis
31 2.1 Basic Flow
32 1.The system REQUESTS temperature FROM the temperature sensor.
33 2.The system VALIDATES THAT the temperature is valid.
... ...
37 2.2 Specific Alternative Flow
38 RFS 2
39 1. The system sets the TemperatureError as detected.
40 2. RESUME 3.

Table 4.1 shows two use cases of BodySense, Identify the Occupancy Status of a Seat (Line 0) and
Self Diagnosis (Line 30). The former describes the main functionality of BodySense, while the latter
deals with the identification of runtime errors, e.g. it detects the presence of a TemperatureError if
the temperature measured by the sensor is out of range (Line 39). This is a refined version of the use
case presented in Table 2.2 that contains only the steps required to provide a clear understanding of
TAUC.

To enable test case generation, UMTG requires that software engineers specify constraints ex-
pressed in the Object Constraint Language (OCL [OMG, 2004]), based on the domain model. These
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constraints precisely specify conditional statements, effects of internal steps, and post-conditions of
use case flows.

The constraint TemperatureSensor: self.temperature.value > 0 and self.temperature.value < 40
for example, is used to further specify the conditional statement in Line 33 (the temperature is valid)
and shows that the temperature is valid when its value lies between 0 and 40.

The test generation process implemented by TAUC guarantees that all the edges of the timing
requirements automata are covered at least once and that, furthermore, test suites contain test inputs
that are combined in ways to maximize their diversity.

For example, TAUC may generate a timeliness test case for BodySense that begins in the state
NotDetectedNotQualified (initial state of the system), simulates the sending of the value 76 from the
temperature sensor (in this way the edge is fired and the new active location is DetectedNotQualified),
waits for 4801 milliseconds, and checks that the system is in the state DetectedQualified. In contrast
to the test case generated with a traditional approach (Section 4.1), the test case generated by TAUC
does not require that the software engineer manually determines that an input temperature with a
value above 40 is needed to reach location DetectedNotQualified. The concrete test input to be used
is automatically generated by TAUC.

To identify the concrete test inputs to be used in a test case, TAUC relies upon the identification
of dependencies between functional scenarios and timed automata. These dependencies are used to
determine which functional scenarios need to be exercised to bring the system to a specific state. In the
case of BodySense, TAUC automatically detects that there is a dependency between the event detected
on the automata in Figure 4.1 and the use case step of Line 39, The system sets the TemperatureError
as detected. This dependency enables TAUC to determine that the inputs that exercise the use case
scenario that covers Line 39, i.e. an object diagram that assigns the value 76 to the temperature sensor,
is necessary to bring the system into the state DetectedNotQualified.

TAUC also generates test cases that highly differ from one another, to maximize the diversity of
the test suite. A test case, different from the one presented above, is generated by TAUC to send an
interrupt, followed by a message, while the system is in the location DetectedNotQualified. Such test
cases check the effect of different inputs on timing requirements. Details are provided in the coming
sections.

4.3 Overview of TAUC
When use case specifications are used to specify the software functional behaviour, TAUC spares
software engineers from the burden of manually determining the functional inputs required for testing
timing requirements. TAUC works in six steps, shown in Figure 4.2.

In Step 1, analysis and design, software engineers produce RUCM use case specifications that
capture the functional requirements of the system, and timed automata that capture both the timing
requirements of the system and the timing properties of the environment.

In Step 2, identification of functional scenarios, the technique relies upon UMTG to automatically
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3. Identification of Dependences
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Figure 4.2. Steps of TAUC.

identify functional scenarios, and the inputs required to trigger each scenario.

Step 3 concerns the identification of the dependencies between functional scenarios and timed
automata. We identify two types of dependencies: (1) the outputs produced by the system during the
execution of specific functional scenarios may correspond to events that trigger state transitions, (2)
specific functional scenarios might be executed only in certain system states, i.e. only when specific
state invariants hold. TAUC automatically identifies these dependencies.

In Step 4, TAUC generates a Timeliness Test Model, i.e. a collection of models that include envi-
ronment automata provided by software engineers in Step 1, automata generated by TAUC to model
functional scenarios (scenario automata), and automata generated by TAUC by extending timing re-
quirements automata. Timeliness Test Models capture the dependencies between functional scenarios
and timing requirements automata, and thus enable the adoption of UPPAAL for the generation of
executable test cases targeting timeliness.

In Step 5, TAUC derives timeliness scenarios. A timeliness scenario is a sequence of delays,
edges and locations of the Timeliness Test Model, that specifies a valid execution. A single timeliness
scenario generally covers multiple functional scenarios. TAUC generates an initial suite of timeliness
scenarios with UPPAAL. This initial test suite is then extended by TAUC using a meta-heuristic
search strategy that maximizes diversity among the timeliness scenarios in the test suite.

In Step 6, TAUC generates executable test cases from the timeliness scenarios derived in Step 5.
This activity is performed by means of a mapping table provided by software engineers.

The next sections describe in details the different steps of TAUC with the exception of Step 1
and Step 2, which respectively coincide with the modelling of timing requirements as indicated in
Section 2.3, and the execution of UMTG, already described in Chapter 3.

4.4 Identification of dependencies
Dependencies between timed automata and functional scenarios are of two kinds: (1) outputs pro-
duced by functional scenarios may fire state transitions, (2) certain functional scenarios can be exe-
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cuted if and only if the system has reached specific states, i.e. specific state invariants are true.

To identify these dependencies, TAUC works in three steps: First, TAUC looks for scenario out-
puts and assignments to state variables by analyzing the object diagram associated by UMTG to each
specific scenario. Then it compares scenario outputs and update operations in the automata to iden-
tify the edges fired by each scenario. Finally, it relies upon state assignments to identify the state
invariants of each functional scenario.

4.4.1 Analysis of attributes in object diagrams
To identify the dependencies between scenarios and timed automata, TAUC first classifies each value
assigned to the attributes of the object diagrams generated by UMTG. This is done to distinguish
between the inputs required to exercise a functional scenario, the state invariants that must hold when
a functional scenario is executed, and the output generated during the execution of the scenario.

In the following, after recalling the characteristics of the output generated by UMTG, we provide
details about the process adopted by TAUC to classify attributes in object diagrams.

Exit 
(line 14)

UseCaseStart 
(line 2)

Constraint
#1

Input (line 4)

DomainEntity
Capacity

pre-condition entities

Input 
(line 32)

DomainEntity
Temperature

entities

Condition
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#2

Internal
(line 39)
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#3

Constraint
#4
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(line 13)
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#5

Condition
(line 7) 

Legend:

Use Case StepF

F

F
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the conditional
step has been taken

Constraint/
Domain Entity

Constraint#2:  context  TemperatureSensor: self.temperature.value > 0 
and self.temperature.value < 40)

Constraints mentioned in the paper:

Constraint#3:   context  TemperatureError: self.isDetected = true

Constraint#4:   context  Error: self.isDetected = false and self.isQualified = false

Figure 4.3. Model of a functional scenario that covers the Alternative Flow 2.2 in Table 4.1.

Identification of Test Inputs with UMTG Recall that for each scenario under test, UMTG builds
a path condition and uses a constraint solver dedicated to OCL to identify an instance of the domain
model, i.e. an object diagram, for which the path condition evaluates to true. UMTG identifies a set
of functional scenarios, i.e. sequences of steps in a use case specification, that ensure that the basic
flow and each alternative flow of the use case specifications are covered at least once.

Figure 4.3 shows the functional scenario that covers line 39 of BodySense use case specifications.
Each scenario is a sequence of steps in the use case specification. UMTG associates to each step
the following information: Input steps are linked to the domain entities received as input by the
system. Conditional steps are linked to the OCL constraints that further specify them, e.g. the step
of Line 33, which detects the presence of a temperature value out of range, is linked to constraint #2
(see Figure 4.3). Internal steps are linked to postconditions that characterize the state resulting from
their execution. The internal step of Line 39, for example, is linked to constraint #3, which indicates
that the system has set TemperatureError as being detected (see Figure 4.3).
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errors

:BodySense

occupancyStatus

value = 76

:OccupancyStatus

:Temperature

status = OccupantClass::Error

:AirbagControlUnit

occupantClassForAirbagControl = OccupantClass::Init

:TemperatureSensor temperature

temperatureSensor

:TemperatureError

isDetected = true
isQualified = false

Figure 4.4. Object diagram generated by UMTG to satisfy the path condition that covers the scenario in
Figure 4.3.

Figure 4.4, shows an object diagram that satisfies the path condition required to exercise the
scenario in Figure 4.3.

Analysis of Attributes TAUC classifies the assignments in the object diagrams as input, output,
and state.

Output assignments set values to satisfy the post-conditions of internal steps. Input assignments
and state assignments instead set values that satisfy the constraints associated with the conditional
steps of a scenario. Assignments to attributes of domain entities appearing in input steps are consid-
ered input assignments. Assignments to attributes of domain entities not associated with input steps
are state assignments (attributes that are not input parameters must be state variables).

Temperature.value:=76

TemperatureError.isQualified:=false

TemperatureError.isDetected:=true

InputAssignment: regards an attribute of class 
Temperature, linked to the input step of line 32.

OutputAssignment: generated to satisfy 
constraint#3, which is linked to an internal step.

StateAssignment: generated to satisfy constraint 
#4. TemperatureError is not linked to any input step. 

Figure 4.5. Assignments required to exercise the scenario in Figure 4.3.

Figure 4.5 shows a classification of the assignments appearing in the object diagram of Figure 4.4.
The assignment Temperature.value := 76 in Figure 4.5 is an input assignment. Indeed, the attribute
value, which belongs to the entity Temperature, is referred to in the input step of Line 32 (Figure 4.3).
The assignment TemperatureError.isDetected := true is an output assignment since it satisfies the
constraint #3, which is associated with the InternalStep of Line 39 (Figure 4.3). The assignment
TemperatureError.isQualified := false is a state assignment since it satisfies the negation of constraint
#4, which is associated with the conditional step of Line 7 (Figure 4.3), and TemperatureError is not
an input, thus implying TemperatureError.isQualified is a state variable.

4.4.2 Identification of functional scenarios that trigger state transitions
In Chapter 2.3 we have anticipated that we expect that software engineers adopt scenario events to re-
duce modelling effort. To further reduce engineers effort, TAUC automatically detects the functional
scenarios that dispatch each scenario event.
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By relying upon scenario events, software engineers hide details about the complex relationships
between system inputs and the firing of an edge. For example in the automaton of Figure 4.1, the edge
that connects states NotDetectedNotQualified and DetectedNotQualified is fired upon the reception of
the scenario event detected. The model does not specify the input constraints under which the edge
is fired, but shows the effect of the execution of this edge on the system state, i.e. the assignment of
the value true to variable isDetected.

Since scenario events trigger edges that update the system state, to automatically detect the sce-
narios that dispatch scenario events, TAUC assumes that a functional scenario triggers a scenario
event if it brings the system into the same state, i.e. if it generates a set of output assignments that
is a superset of the assignments in the update operations associated with the edge that consumes the
scenario event.

The functional scenario in Figure 4.3 leads to the output assignment TemperatureError.isDetected:=true
(see Figure 4.5), which appears also in the updates of the edge that connects locations NotDetected-
NotQualified and DetectedNotQualified (see the timed automata of Figure 4.1). For this reason, TAUC
determines that the scenario in Figure 4.3 is the one that dispatches the event detected that triggers
the edge between the two above-mentioned locations.

4.4.3 Identification of state invariants
Functional scenarios are enabled only when specific state invariants hold. For example, in BodySense,
a scenario that performs self diagnosis in the absence of error conditions cannot be exercised if the
system already detected errors in previous executions.

State invariants are implicitly specified in use case specifications by means of constraints that
capture properties of state variables. TAUC makes the state invariants associated with each functional
scenario explicit by identifying the constraints that determine the value of each state assignment.
State assignments aim to satisfy conditions that must hold to execute a specific functional scenario
and these conditions are thus state invariants.

In the running example the state assignment TemperatureError.isQualified:=false results from
Constraint #4 in Figure 4.3. This constraint is thus a state invariant that must hold to execute the
functional scenario.

In the presence of constraints that relate both input and state variables, TAUC extracts the subex-
pression concerning state variables only. In the presence of multiple state assignments, TAUC builds
a state invariant that joins all the constraints that determine the value of the different state variables.

4.5 Generation of the Timeliness Test Model
We use the term Timeliness Test Model to indicate a network of communicating timed automata that
enable the generation of timeliness test cases.

Timeliness Test Models include the environment automata, scenario automata that capture the
behaviour of functional scenarios, and augmented timing requirements automata. Scenario automata
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and augmented timing requirements automata are automatically generated by TAUC. Augmented tim-
ing requirements automata include guard conditions and events that capture the dependencies between
timing requirements automata and functional scenarios. The Timeliness Test Models capture all the
information required for test generation in the form of timed automata, thus enabling TAUC to rely
upon UPPAAL for the automatic generation of test cases.

Scenario automata

For each functional scenario, TAUC automatically generates a scenario automaton. Each scenario
automaton contains two edges.

The first edge of the scenario automaton captures dependencies by means of a guard condition
for the state invariant of the scenario, and an update for each output assignment. This means that the
edge can be fired, i.e. the scenario is executed, only if the state invariant holds. The firing of the edge
updates the state of the system as specified by the output assignments. In other words, the scenario
automaton shows when a scenario executes and how it affects the state of the system. Given that state
invariants identified in the previous step are expressed as OCL constraints, TAUC translates these
constraints in a format compatible with the UPPAAL syntax. According to our experience, the set of
primitive types supported by UPPAAL (boolean, integer, and double) is rich enough to not limit the
kinds of constraint that can be translated in practice.

Figure 4.6 shows an example of generated automaton. The guard condition on the first edge in-
dicates that TemperatureError should not have been already qualified at the beginning of the scenario
(as shown by the guard condition TemperatureError.isQualified == false). The update operations on
the edge capture the scenario output by setting the TemperatureError as detected (see the assignment
TemperatureError.isDetected := true).

The second edge of the scenario automaton is used to synchronize scenarios and augmented timing
requirements automata. This edge generates the event scenario, which is consumed by the augmented
timing requirement automata, and indicates that the scenario has been executed to completion. This
edge also presents a guard condition that captures the scenario frequency (provided by the software
engineer). In the case of BodySense, each scenario is executed every 1700 milliseconds (See Fig-
ure 4.6).

scenario!
RunningStart

temperatureError.isDetected := true, x := 0

x <= 1700

temperatureError.isQualified == false

x == 1700

Figure 4.6. Automaton for the Scenario in Figure 4.3

Augmented timing requirements automata

The next step is to modify and augment timing requirements automata. TAUC proceeds as follows.
For each scenario event mapped to a scenario output, TAUC replaces the event name in the timing
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requirements automata with the synchronization event scenario?, which indicates that the event is
dispatched only if a scenario had been executed to completion.

Furthermore, TAUC adds a guard condition that checks if the output of the scenario just executed
corresponds with the output assignment mapped to the scenario event. This way an edge with a
scenario event is fired only if the scenario that generates the corresponding output assignment has
been executed.

scenario?

scenario?
DetectedNotQualified

DetectedQualified

NotDetectedNotQualified

NotDetectedQualified

scenario?

scenario?

 x := 0

x := 0

 x := 0 

 x := 0

x >= 3100x >= 6100

scenario?

isQualified := false isQualified := true

scenario?

scenario?scenario?

isDetected == true

isDetected == false isDetected == trueisDetected == false

isDetected == false isDetected == true

isDetected == true

isDetected == false

x <= 4800

x <= 8100

Figure 4.7. Augmented Timing Requirements Automaton derived from the automaton in Figure 4.1.

Figure 4.7 shows, for example, that the edge from location NotDetectedNotQualified to location
DetectedNotQualified is fired only if a functional scenario has been executed and temperatureError
has been set to detected. The latter is captured through a guard condition which distinguishes different
scenarios.

4.6 Identification of Timeliness Scenarios
TAUC automatically generates the timeliness test suite for the system, which consists of a set of time-
liness scenarios. A timeliness scenario is a sequence of delays, edges and locations of the Timeliness
Test Model, that specifies a valid execution.

A minimal test adequacy criterion to test software timeliness is to exercise all the timing con-
straints at least once. This is achievable by relying upon a test suite that covers all the locations with
invariants including clock variables and all the edges with guard conditions including clock variables.
In practice, this condition can be easily satisfied by a test suite that achieves edge coverage. However,
in addition to this, we should consider that some failures may only be triggered by specific sequences
of test inputs that might not be generated by achieving edge coverage.

In our context, we thus need to generate timeliness scenarios in such a way that, within a test
budget, we achieve edge coverage and maximize our chances to find a sequence of inputs that triggers
a failure. Moreover, these two goals should be achieved without relying upon the execution of test
cases during test generation. In fact in many embedded systems, the test budget, i.e. the number of
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test cases that can be executed, is limited because test execution is particularly expensive, e.g. the test
execution environment and hardware must be manually set up. Given our objectives and constraints,
we present below a test strategy based on maximizing diversity among timeliness scenarios.

Our strategy to increase the chances to trigger a failure, is to generate a test suite that: 1) executes
as many diverse paths as possible that include the same edges relevant to timeliness, 2) executes
paths with a maximum diversity of inputs, interrupts, and messages. However, in the presence of
multiple timed automata, the search space for the identification of execution sequences is large and,
for a given test budget, cannot be exhaustively explored to identify an optimal diverse subset of
timeliness scenarios. For this reason, the test generation process implemented by TAUC relies upon a
metaheuristic search algorithm that maximizes the differences among the timeliness scenarios in the
test suite.

The algorithm performs four activities described in the following paragraphs: Generation of Sce-
narios That Cover All Edges, Generation of New Scenarios, Computation of Similarity Score, Identi-
fication of Scenarios that Maximize Diversity.

Generation of Scenarios That Cover All Edges

To achieve edge coverage, TAUC relies upon the approach proposed in [Hessel et al., 2004].
It builds a reachability formula that checks for the existence of a trace for which all the edges are
covered. TAUC then relies upon UPPAAL to identify the shortest timeliness scenario (called trace in
UPPAAL) that satisfies the given formula.

Some of the events generated by UPPAAL automata correspond to parametric system inputs.
In the case of BodySense this happens for messages of type CarInfo, which have two associated
parameters, velocity and beltStatus. Parameter values are not generated by UPPAAL, but are required
to properly execute the system. For this reason, TAUC processes the timeliness scenarios generated
by UPPAAL and automatically selects the parameter values to be associated to parametric inputs.
TAUC simply assigns to each parameter a valid, randomly selected value. In the case of BodySense,
we deal with both enumerations and numeric values. Enumeration values are selected from the values
indicated in the domain model, while numeric values are randomly selected within a range specified
by the software engineer.

Generation of New Scenarios New scenarios are then generated by mutating an existing scenario.
To this end, TAUC selects an existing timeliness scenario and a mutation point, i.e. a position in the
scenario, and then generates a new scenario by copying the events in the scenario up to the mutation
point and then by filling the rest of the new scenario with new events. These new events are identified
by employing the simulation functionality provided by UPPAAL, which, given the current state of the
automata, returns a list of enabled edges. New events are randomly selected till the same length of the
initial timeliness scenario is reached. Values of parametric events are generated as well, by following
the same procedure indicated previously.

Computation of Similarity Score The diversity among the timeliness scenarios in a test suite is
maximized when the average pairwise similarity between all pairs of timeliness scenarios in a test
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edge(TemperatureError.DetectedNotQualified ->
TemperatureError.DetectedQualified) +3edge(TemperatureError.DetectedNotQualified ->

TemperatureError.DetectedQualified)

clock x in  [3100,4800] +3clock x in  [3100,4800]

CarInfo(Driving, UnBuckled) +1.5CarInfo(Driving, Buckled)

edge(TemperatureError.NotDetectedNotQualified -> 
   TemperatureError.DetectedNotQualified) +3edge(TemperatureError.NotDetectedNotQualified -> 

   TemperatureError.DetectedNotQualified) 

-1ControlRequest(ClearData) -

+3scenarioscenario
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Similarity 
Score

edge(ScenarioAutomata2.Start ->
   ScenarioAutomata2.Running) 

edge(ScenarioAutomata1.Start ->
   ScenarioAutomata1.Running) 

Timeliness Scenario 2Timeliness Scenario 1

Figure 4.8. Alignment of two Timeliness Scenarios

suite is minimized [Hemmati et al., 2013].

To compute the similarity score, TAUC takes into account differences in both event names and
event parameter values. TAUC relies upon the Levenshtein string alignment algorithm to identify
matching events [Levenshtein, 1966]. Similarly to [Hemmati et al., 2013], TAUC assigns a score of
+3 to matching events, -2 to mismatching events, and -1 to gaps. In addition to this, in the presence of
mismatching parameter values, TAUC decreases the score by a value between -1 (gap) and -2 (mis-
match). More precisely, TAUC decreases the score by 1 plus the fraction of mismatching parameter
values. Figure 4.8 shows the similarity score calculated for the alignment of two timeliness scenarios
of BodySense.

Identification of Scenarios that Maximize Diversity

To build the timeliness test suite, TAUC first augments the UPPAAL test suite with newly gener-
ated timeliness scenarios until the test suite reaches the desired size (budget). Such new scenarios are
then iteratively updated to maximize diversity.

TAUC replaces a scenario already in the test suite with a new scenario only if the new scenario
augments the diversity of the test suite. More precisely, every time a new scenario is generated, TAUC
identifies the scenario that should be replaced to obtain a test suite with the lowest average pairwise
similarity. Test generation terminates after a given number of iterations provided by the user.

4.7 Generation of Executable Test Cases
For each timeliness scenario, TAUC generates a corresponding abstract test case.

The abstract test cases generated by TAUC have the same structure of the abstract test cases
generated by UMTG, with the only difference that abstract test cases generated by TAUC include not
only input operations and oracles, but also delays. Figure 4.9-a shows an abstract test case generated
from a timeliness scenario of BodySense. Input operations are followed by the input parameters to
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1 Time = INIT TIMEInput System.initialized = true Reset

Check

Check

Input

Input

Input

Wait

6 TemperatureError.isQualified = true TEMPERATURE_ERROR = 81hCheckBus

4800 Wait Value = 48005

CarInfo(Driving,Buckled)4 MsgID = 3Ah  D1 = 1 D2 = 0SndMsg

TEMPERATURE_ERROR = 01hCheckBus3 TemperatureError.isDetected = true

SetPin...ClassForAirbagControl = Adult Channel = RELAY  Capacitance = 85

SetBusTemperatureSensor.value = 76 Pin = TEMPERATURE  Value = 76

Executable Test CaseAbstract Test CaseScenario 
Steps

Figure 4.9. (a) Abstract Test Case generated from Timeliness Scenario 2, and (b) Executable Timeliness Test
Case.

be set, delays are identified by the keyword wait followed by the time to wait for, while oracles
(identified by the keyword check in Figure 4.9-a) consist of a list of expressions that check the values
of observable system variables.

To generate test inputs TAUC focusses only on the edges that belong to environment automata and
scenario automata. For each edge of environment automata that generates an event, TAUC identifies
a corresponding test input (event names correspond to entities of the domain model, see CarInfo in
Figure 4.9). Every time TAUC encounters the first edge of a scenario automata, it adds to the abstract
test case the input assignments associated with the scenario to be executed (see Step 1 in Figure 4.9-
a). All the other edges of environment and scenario automata are ignored because they correspond to
synchronization operations between automata.

To generate delays TAUC takes into account the fact that timing properties are typically charac-
terized by uncertainty expressed in terms of ranges in which edges are expected to be taken. TAUC
focusses on the maximum amount of time in the range and introduces a delay using a wait operation
blocking for the maximum amount of time in the range.

To generate oracles TAUC should ideally add, for each edge, an operation that checks if the
expected target location has been reached. However, given that many embedded systems, such as
BodySense, do not make their current internal state fully observable, TAUC can be configured to
derive an oracle that checks for the values assigned to observable system variables. Figure 4.9-a
shows an oracle derived from the edge that connects location DetectedNotQualified with location
DetectedQualified (Step 6 of Scenario 2).

Abstract test cases are then translated into executable test cases by means of mapping tables as
described in [Wang et al., 2015]. Mapping tables contain regular expressions that match the inputs
in the abstract test cases and allow to replace abstract test inputs with concrete test inputs. Table 4.2
shows a portion of the mapping table used to transform the abstract test case in Figure 4.9-a into the
executable test case of Figure 4.9-b.
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Table 4.2. Mapping Table for BodySense

Pattern to match (Operation and Inputs) Result (Operation and Inputs)
Input TemperatureSensor.value = (*) SetBus Pin =TEMPERATURE Value = $1
Check TemperatureError.isDetected=true CheckBus TEMPERATURE_ERROR=01h

4.8 Empirical evaluation
We performed an empirical evaluation of TAUC that aims to respond to the following research ques-
tions:

• RQ1. Is TAUC effective in generating test cases able to detect faults that affect software time-
liness? This question aims to evaluate the effectiveness of TAUC in terms of its capability of
identifying faults that affect software timeliness.
• RQ2. Is the modelling and analysis effort required by TAUC acceptable in an industrial context?

TAUC requires timed automata, use case specifications, and mapping tables. This research
question aims to determine whether the cost associated with the production of these artefacts
can be justified in an industrial context.

4.8.1 RQ1. Is TAUC effective in generating test cases able to detect faults that
affect software timeliness?

To respond to RQ1 we compared the fault coverage of the BodySense test suite manually written by
software engineers familiar with the system and domain, with the fault coverage of 10 test suites
(to account for randomness) generated with TAUC and with a random approach, which serves as a
baseline. To be fair, we configured the random approach to generate timeliness scenarios with the
same number of events in the test cases generated by TAUC. We considered test suites of various
sizes, including 25, 50, 75, 100, and 122 test cases. The BodySense actual test suite contains 122 test
cases and was therefore considered to represent a realistic test budget.

Modifying the implementation of BodySense to create faulty versions for purely experimental
purposes and running all the test suites on all mutant implementations on the actual deployment
platform is far too expensive. For this reason, we automatically generated 323 faulty versions of the
Timeliness Test Model by means of dedicated mutation operators, then simulated the execution of the
test cases against the mutated models by adapting the approach described in [Hessel et al., 2004] to
our case.

Different mutation operators for timed automata are described in literature [Aboutrab et al., 2013,
Aichernig et al., 2013]; for our experiments, we considered the mutation operators that may impact
timing requirements, including Restricting Clock Conditions [Aboutrab et al., 2013], Widening Clock
Conditions [Aboutrab et al., 2013], Shifting Clock Conditions [Aboutrab et al., 2013], Change Target
Location (CTL) [Aichernig et al., 2013]. We did not consider operators that alter the functional
behaviour only, for example, the ones that change the source and the target of an edge. However, to
simulate the case in which the system is stuck in a state and breaks timing requirements, we configured
the CTL operator to create self-loops on edges with clock variables.

We generated each faulty version of BodySense models by executing a single mutation operator
on the Timeliness Test Model. All the guard conditions, invariants, and edges of the Timeliness
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Table 4.3. Fault Coverage Measured Against 323 Faulty Versions.
Average Coverage (± Std. Dev) by Test suite size (number of test cases)
25 50 75 100 122

TAUC 85%
±0

88%
±0.41

91%
±0.46

91%
±0.38

91%
±0.42

Random 7%
±0

12%
±3.26

22%
±3.16

30%
±5.96

40%
±3.58

Manual - - - - 60%

Test Model are mutated once by each applicable mutation operator. Mutation operators may lead to
equivalent mutants, i.e. timed automata that satisfy the original requirements. We manually removed
all the equivalent mutants and ended up with an evaluation benchmark of 323 mutant versions of
BodySense timeliness test models.

Simulation of test cases execution is based on UPPAAL and requires that executable test cases are
translated into sequential timed automata to be composed with the BodySense mutated models [Hessel
et al., 2004]. The generated automata have edges that either send inputs to the system or validate
operation results. A dedicated testing clock is used to trace execution time. Operation results are
validated by means of guard conditions that check if system variables have specific values when the
testing clock reaches a given value, i.e the time appearing in the wait conditions of the executable test
cases. An error state is reached when the values are not the expected ones. A test case is considered
to fail if an error state is reachable.

Results. We measured the percentage of faults (mutants) identified by each test suite. A test suite
identifies a fault if at least one of its test cases fails. Table 4.3 reports the results obtained with the
three approaches (for TAUC and random we report the average across the 10 runs). The table clearly
shows that TAUC detects between two and twelve times more faults than random testing, depending
on the test suite size. It is also clear that TAUC is significantly more effective than expertise-based
manual testing with 31% additional faults detected, on average. In addition, TAUC is more effective
than both random and manual testing even with much smaller-size test suites. This mostly results
from the capability of TAUC to generate input sequences covering non-trivial interactions between
system components. For example, to increase test diversity, TAUC generates test cases that send
multiple messages on the bus thus enabling the detection of faults that slow down the execution of the
interrupt handler, which in turn causes a delay in the qualification of errors.

TAUC subsumes the other approaches, i.e. TAUC detects all the faults detected by the random
and the manual test suites. However, TAUC does not identify all the faults. Since, in the case of
BodySense, TAUC has to rely upon partial oracles that check state variable values only and not the
complete system state also captured by active locations. Such information, in embedded systems,
is often not observable, as discussed in section 4.7. The faults not covered by TAUC are caused by
the CTL operator, which leads to mutated edges that correctly update system variables but bring the
system into a wrong state.

TAUC test cases always exercise the fault, i.e. cover the mutated edge, but only the test cases that
verify additional system behaviors after reaching the faulty state can detect the fault (some of TAUC
test cases do this by sending additional inputs to the system and by detecting that the system response
is not the expected one). Test cases that terminate just after reaching the faulty state instead cannot
fail. Manual and random test cases suffer from the same problem.
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4.8.2 RQ2. Is the modelling and analysis effort required by TAUC acceptable
in an industrial context?

In the case of TAUC, testing cost depends on the effort required for producing timed automata, use
case specifications, and mapping tables.

To perform the experiment, there was no additional cost associated with writing use case specifi-
cations as they were already produced for communication purposes and to perform functional testing
with UMTG.

We supported software engineers in the design of 25 timed automata: three environment automata
(with a total of 6 locations, 11 edges, and 8 guard conditions) and 22 requirement automata that
model error conditions. Note that modelling of requirement automata is simplified by the fact that
the different errors are managed in similar ways (all the automata match the same template, which
has 4 locations, 10 edges, 2 guard conditions and 2 scenarios events). Such numbers suggest that
the complexity of the models required by TAUC can be managed by experienced software engineers.
In addition, given that timed automata provide a clear representation of timing requirements, usu-
ally spread across textual specification documents, engineers agreed that their value goes beyond the
benefits provided by automatic test generation.

4.8.3 Threats to Validity
Internal threats

Threats to the internal validity of the empirical observations we made may depend either on the com-
ponents developed for generating the test cases. Our implementation includes third party components,
more precisely the UPPAAL model checker (to derive a test suite that covers all the edges of the re-
quirements automata), and a set of components that we developed to derive Timeliness Test Models,
and generate test suites based on meta-heuristic search.

We assume that the implementation of UPPAAL is correct because it has been used in several re-
search projects. To verify the correctness of the components developed by us, we manually inspected
all the generated models to look for major errors, and, also, we inspected the generated test cases to
identify major problems in the generated test suite (e.g., inputs not related to the scenarios covered by
the test case).

External threats

Threats to the external validity regard the generalisability of our findings. We consider the test cases
developed by IEE engineers being an example of carefully defined manual test cases. BodySense
must comply with safety standards, and has already been installed on cars produced by several car
manufacturers. Thus, we expect that the test cases provided by IEE engineers can test most of the
foreseeable execution scenarios. For this reason we assume that our considerations about the effec-
tiveness of TAUC test suites compared to manual testing might generalize to many systems.
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4.9 Conclusion
In this Chapter we presented TAUC, a model-driven approach, inspired by industrial practice, to
automate the system testing of software timeliness properties in the context of use-case driven de-
velopment, when system requirements are expressed as use cases to communicate with clients and
other stakeholders. In addition to use case specifications, TAUC relies on timed automata to capture
timing requirements and relevant environment properties. It generates effective test cases by means
of a meta-heuristic search algorithm that maximizes test suite diversity. Our objective is to minimize
modelling overhead while enabling effective test generation in contexts where it cannot be guided by
test execution results, e.g., embedded systems.

TAUC processes use case specifications to identify the test inputs that fire the state transitions in
timed automata. It automatically identifies dependencies between use case specifications and timed
automata, and captures them in timeliness test models that are also timed automata, thus enabling the
use of UPPAAL for test automation. Timeliness test models are fed into UPPAAL to generate test
cases that guarantee a basic coverage of edges with timing requirements.

To generate test cases that effectively stress timing requirements given a certain budget (test suite
size), TAUC uses a meta-heuristic search algorithm that iteratively improves the test cases generated
with UPPAAL to build a test suite that maximizes test case diversity, which has shown in past studies
to increase fault detection.

Empirical results obtained with BodySense show that, given a constant test budget, TAUC is signif-
icantly more effective than a manual test suite devised by experienced engineers and random testing.
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Chapter 5

Oracles for Testing Software Timeliness with
Uncertainty

In this chapter, we address the problem of deriving automated oracles for testing software timeliness
in the presence of non-deterministic behaviour caused by time uncertainty.

Although embedded systems are developed in a way to ensure their operations comply with pre-
specified timing constraints, most of the timing specifications provided by software engineers are
characterized by uncertainty [David et al., 2012]. A common example of uncertainty is given by
timing constraints expressed as ranges (e.g., a software operation is expected to last between two and
four seconds).

Time uncertainty in software specifications may be due to multiple reasons, for example, design
choices. An example of design choice is the sampling of sensor values in a control loop at a given
time rate. This case is very common in embedded and cyber-physical systems because many real-
world events can be detected only by polling the environment in a control loop and, therefore, it
cannot be determined with precision when the system will be able to observe and process them. This
may, in turn, lead to non-deterministic system behaviors that make testing more difficult, and most
particularly the definition of test oracles, as illustrated below.

A concrete example of uncertainty in timing specification is BodySense. This system implements
a control loop that first samples temperature sensors, on a regular basis, and then performs other
activities; this system is characterized by uncertainty since it may detect overheating with a maximum
delay that corresponds to the duration of the loop execution. The specifications for this system will
thus indicate that the system should be able to detect overheating within a certain time range. Such
uncertainty in the timing specification may lead to non-deterministic software behaviors as the exact
time at which the BodySense system reports overheating is not exactly known.

In this chapter we address the problem of building oracles for non-deterministic systems where
the source of non-determinism is time uncertainty.

Most of the existing work on testing the timing properties of software systems focuses on schedu-
lability analysis for real-time systems [Davis and Burns, 2011]. These approaches address a different
problem than ours, i.e., the development of techniques to test or verify that software tasks are able to
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meet their deadlines.

The few approaches that address the problem of testing software timeliness in the presence of
uncertainty are based on online testing [Krichen and Tripakis, 2004, Larsen et al., 2005, David et al.,
2012]. Online testing approaches rely upon models of the expected software behaviors (e.g., timed
automata) to determine the test inputs to send to the system at runtime, during test case execution,
based on the observed outputs. Unfortunately, online testing approaches might have limited applica-
bility because they require that the testing framework provides programmable APIs, which are not
always available, to build a test adaptation layer. In addition to this, the test adaptation layer itself
may, in turn, introduce latency and thus be inappropriate for testing real-time systems.

An additional limitation is that most existing timeliness testing approaches do not take into ac-
count stochasticity; more specifically, they do not verify if the frequency of appearance of the expected
outputs comply with the specifications, nor do they verify if the observed results can give statistical
guarantees for the validity of the test outcome. The effects of stochasticity are taken into account
by solutions [Ševčíková et al., 2006, Yoo, 2010, Patrick et al., 2016, Hierons and Merayo, 2009],
which rely upon statistical tests to determine if the output of a stochastic system follows an expected
distribution. Among these, the only approach targeting timing requirements [Hierons and Merayo,
2009], cannot be applied in our context because it focuses on the generation of complete test suites,
and cannot be adopted to generate oracles for test suites derived with different criteria.

In this work, we focus on systems where online testing is not an option, and we assume that the
timing constraints of the system are specified by means of timed automata. The type of uncertainty
that we consider in this chapter is common in industrial settings and relates to time triggered transi-
tions (i.e., internal transitions that are enabled when a constraint on clock variables evaluates to true
and do not need to synchronize with any event), which are a typical cause of uncertainty [David et al.,
2012].

Traditional approaches that derive test cases from finite state machine (FSM) specifications rely
upon Unique Input-Output (UIO) sequences to derive effective test oracles [Lee and Yannakakis,
1996, Derderian et al., 2006]. The adoption of UIO sequences as oracles is motivated by the lack of
observability that usually characterizes certain types of systems, including embedded systems. Unfor-
tunately, the existing approaches for deriving UIO sequences from FSM and EFSM, e.g. [Robinson-
Mallett et al., 2006], do not work with timed automata and, more specifically, cannot deal with time-
triggered transitions. In addition, the non-deterministic behaviour caused by time uncertainty affects
the reliability of oracles derived from UIO sequences. In the presence of time uncertainty, multiple
valid states could be legally reached after a given input sequence, which means that multiple, perfectly
legal output sequences might be observed for a same sequence of test inputs, making the detection of
a fault more challenging.

To address the above challenges, in this chapter, we propose Stochastic Testing with Unique Input-
Output Sequences (STUIOS), an approach for the automated generation of effective oracles for time-
liness test cases derived from timed automata, in the presence of uncertainty.

In this chapter, we introduce the concepts of stochastic test cases and probabilistic UIO sequences
(PUIO sequences). A PUIO sequence is an input-output sequence with an associated probability of
observing the given output sequence in response to the inputs. The underlying idea is that probabilistic
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UIO sequences enable fault detection by determining if the output sequences observed through testing
are unlikely, based on multiple executions of the same test cases. Stochastic test cases extend the
same idea to the entire test case. A stochastic test case specifies the expected probability of observing
a specific output sequence after a given test input sequence; in addition, it includes a PUIO sequence
that is used to check if the test execution has likely brought the system to the expected state.

STUIOS receives as input the timing specifications of the system expressed as a network of timed
automata, and a set of test cases derived from these specifications either manually by the software
engineers, or automatically. STUIOS generates stochastic test cases that include the input-output se-
quences from the test cases provided by software engineers, and automatically derives corresponding
expected probabilities and PUIO sequences.

One significant contribution and innovation is that STUIOS combines statistical model checking
and UIO techniques adapted to timed automata to address the challenges stated above. STUIOS
generates stochastic test cases by relying on the simulation capabilities of the UPPAAL model checker
and by automatically identifying UIO sequences from timed automata. Further, it derives probabilities
for both the identified UIO sequences and the provided test output sequences based on statistical
model checking software, in this dissertation the statistical extension of UPPAAL. Finally STUIOS
identifies faults by repeatedly executing test cases with the associated PUIO sequences and making
use of statistical hypothesis testing to determine the test verdicts (pass or fail) and decide when to stop
test case executions.

The contributions of this chapter can be thus summarized as follows:

• We define the concepts of stochastic test cases and probabilistic UIO sequences, and explain
how can they be adopted to address the problems stated above.
• We propose STUIOS, a technique that generates stochastic test cases after processing the timing

specifications of the system expressed as a network of timed automata and a set of test cases
derived from these specifications.
• We report an empirical evaluation of the approach using BodySense as a case study.

This chapter is structured as follows. Section 5.1 is a background section that introduces the no-
tation used in this chapter to model test cases. In section 5.2 we motivate the work presented in this
chapter by discussing the issues to expect when generating oracles from timed automata with uncer-
tainty. Section 5.3 presents the STUIOS approach and its steps. Section 5.4 reports on the empirical
results obtained from an industrial case study in the automotive domain. Section 5.5 concludes the
chapter.

5.1 Modelling of Test Cases
This section introduces the notation used in this chapter to model test cases.

In the presence of software specifications elicited by using FSMs, software engineers derive test
cases according to criteria whose objective is to maximize the probability of finding faults. A com-
monly adopted criterion for example is edge coverage, which consists of generating test cases so that
all the edges of the timed automata are covered, at least once, during test execution.
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Figure 5.1. Automaton that captures how temperature errors are qualified and dequalified in BodySense.

We model test cases derived from TAs as sequences of input / output pairs. Each pair indicates
the output expected to be generated by the system after a given input. In embedded systems, inputs
and outputs typically correspond to system events. However, since TAs include state variables, the
expected output indicated in a test case also includes the expected value of observable state variables.
In addition, since edges in TAs might be triggered by time delays, inputs might be expressed as wait
operations.

An example test case is shown in Figure 5.2. This test case is derived from the TA in Figure 5.1 and
checks if temperature errors are qualified on time. This test case covers the edges of the shorter path
from location NotDetectedNotQualified to location DetectedQualified, and checks if
state variables and outputs contain the expected result after each input or time delay. The first line
of the test case indicates that after the event detected is observed by the system, then the system
should set its observable state variables isQualified, isDetected and qc to false, true,
and zero, respectively.

<detected>/ (isQualified == false, isDetected == true, qc == 0)
<wait for 4800 ms> / (isQualified == true , isDetected == true, qc == 1)

Note: We use the symbol / to separate inputs from the expected results (i.e., the values of the observable state
variables that should be verified as test oracle).

Figure 5.2. A Test Case that checks if TemperatureErrors are qualified on time.

5.2 Testing with UIO Sequences
The state of the actual software system that implements the timing specifications expressed in TAs is
partially observable. More specifically, we expect that the software cannot be queried to determine
which are the active locations in the abstract representation of its state, furthermore, not all the state
variables used in the TAs have an observable counterpart in the concrete implementation of the system.
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Figure 5.3. Automaton that shows a possible transition fault in the implementation of Figure5.1.

The limited observability which characterizes TAs usually makes oracles that simply check if the
expected output sequence has been generated after test inputs ineffective. These oracles for example
do not detect transition faults which are faults that manifest when the active location of a TA following
a state transition is incorrect but the system updates its state variables and generate outputs as expected
(this problem has been observed during the experiments reported in Chapter 4 Section 4.8.1).

In the case of BodySense a transition fault may keep the system in location DetectedNot-
Qualified for more than the allowed time (4800 ms). Location DetectedQualified is ex-
pected to become active if a temperature error remains detected in the system for 4800 ms. Figure 5.3
provides a model of the behaviour triggered by this fault. This fault cannot be detected with the test
case in Figure 5.2 which simply checks the values of the observable state variables isDetected
and isQualified after waiting for 4800 ms, because these two variables are updated as expected.

When specifications are given in the form of FSMs, common approaches for testing in the pres-
ence of partial observability are based on the identification of Unique Input-Output (UIO) sequences [Lee
and Yannakakis, 1996, Derderian et al., 2006]. A UIO sequence is composed of a sequence of inputs
and corresponding outputs generated by the system. It provides the guarantee that the expected output
sequence is observed only when the system is in a specific known state. An oracle derived from a
UIO sequence is executed after a test case, and checks if the system is in the expected state by sending
the inputs specified by the UIO sequence and by verifying that the system responds with the expected
output sequence. We model UIO sequences in the same way as test cases, i.e. by using sequences of
IO pairs that include time delays and observable state variables.

5.2.1 Generation of UIO sequences from TAs
We model UIO sequences in the same way as test cases, i.e. by using sequences of IO pairs that
include time delays and observable state variables.

One of the aspects to consider when generating UIO sequences from TAs is context dependency.
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This characteristic is typical of UIO sequences derived from FSMs including state variables (e.g.,
EFSM), such as clocks in the case of TAs. Context dependency implies that the path specified by
a UIO sequence might be feasible only for specific values taken by state variables, which in turn
implies that the output of a UIO sequence depends on the values of state variables [Ramalingom
et al., 1996]. Context dependency cannot be ignored; a simple yet effective solution to deal with
context dependency that we include in our approach is to generate a different UIO sequence for each
test case of the test suite.

<undetected> / ( isQualified == true, isDetected == false, qc == 1)
<wait for 8100ms> / ( isQualified == false, isDetected == false, qc == 1 )

Figure 5.4. UIO sequence that characterises state DetectedQualified after the execution of the test case in
Figure 5.2.

Figure 5.5 shows the test case of Figure 5.2 followed by a UIO sequence (blue lines) to determine
if the system has reached location DetectedQualified after the execution of the test.

<detected>/ ( isQualified == false, isDetected == true, qc == 0)
<wait for 4800 ms> / ( isQualified == true , isDetected == true, qc == 1)
<undetected> / ( isQualified == true, isDetected == false, qc == 1)
<wait for 8100ms> / ( isQualified == false, isDetected == false, qc == 1 )

Figure 5.5. Test case of Figure 5.2 including the UIO sequence in Figure 5.4.

The first line of the UIO sequence in Figure 5.5 indicates to send the input event undetected
to the system (i.e., bring the temperature back to normal). As a consequence, the system should
make location NotDetectedQualified active (this cannot be observed by a tester), and set the
variables isDetected, isQualified, and qc to false, true and one, respectively. This
IO pair can distinguish location DetectedQualified from locations NotDetectQualified
and NotDetectNotQualified since in both cases the value of isDetected would not have
changed to false.

The second line indicates to wait for 8100 ms and then check that the variables isDetected,
isQualified, and qc are set to false, false and one respectively. This last IO pair al-
lows to distinguish location DetectedQualified from location DetectedNotQualified.
In the case location DetectedNotQualified is active in place of DetectedQualified af-
ter test case execution, then the event sent by the first UIO line has brought the system in location
NotDetectedNotQualified without changing the value of variable isQualified (the first
line of the UIO thus do not allow to distinguish the two locations). The second line of the UIO then,
makes the system wait for 8100 ms, and after this delay, the system remains in the same location
(NotDetectedNotQualified) without changing its state variables, thus distinguishing the two
locations.

We can notice that the UIO sequence is context dependent because although it can be used to check
if the execution of the test case in Figure 5.2 has brought the system to location DetectedQua-
lified, it cannot be used to check if other test cases terminate in the same state. For instance,
this UIO sequence cannot be used to check if location DetectedQualified has been reached
after executing a test case that traverses the sequence of locations DetectedNotQualified,
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DetectedQualified, NotDetectedNotQualified, NotDetectedQualified, and De-
tectedQualified. In this case, the expected value of the state variable qc will be two, not one
as indicated in the UIO sequence of Figure 5.4.

In addition to accounting for context dependency, to effectively support testing, we need to au-
tomatically generate UIO sequences. Unfortunately, to the best of our knowledge, there are no ap-
proaches focused on deriving UIO sequences from TAs characterised by uncertainty. In the case
of TAs without uncertainty, existing approaches for generating UIO sequences from EFSM could
be applied, because of the similarity between EFSM and TA formalisms, but these approaches can-
not be adopted in the presence of uncertainty. For example, the approach proposed by Robinson et
al. [Robinson-Mallett et al., 2006] requires deterministic EFSM with transitions that are always trig-
gered by some input event and thus cannot be applied to TAs characterised by uncertainty because
they present time-triggered transitions.

5.2.2 Consequences of uncertainty
In the following paragraphs, we report three critical aspects that should be considered when generating
test oracles for test cases derived from TA: (1) uncertainty may limit the fault detection effectiveness
of test oracles; (2) uncertainty may lead to multiple valid test outcomes whose frequency of appear-
ance must be checked to verify if the software complies with the specifications; (3) uncertainty may
lead to scalability problems during testing because of an unmanageable number of oracles in a test
suite.

Uncertainty limits the fault detection effectiveness of test oracles

One of the effects of uncertainty is non-determinism, and this may limit the effectiveness of test
oracles in the presence of faults that affect the implementation of timing constraints.

Consider for example a faulty implementation of BodySense that may take up to 6000 ms to
qualify an error. The test case in Figure 5.5 is able to detect the fault only when BodySense takes
more than 4800 ms to qualify an error during test execution. If the fault manifests itself in a non-
deterministic way, a single test case execution may not be able to detect its presence. When testing
timing requirements, multiple test case executions might be needed to obtain statistical guarantees
about the correctness of results.

Oracles must take into account the frequency of expected output

A consequence of uncertainty is that same input may bring the system into multiple valid locations,
with the consequence that a single test case execution may lead to multiple valid results. This implies
that the failure of an oracle that simply verifies if the system has reached a specific state (or, has
generated a specific output sequence) may not indicate the presence of a fault.

An example of the effect of uncertainty on test oracle reliability is given by a test case that checks
if the system behaves properly when a temperature error appears just for a short time. A test case
designed for this purpose is shown in Figure 5.6. This test case checks if the system is able to detect a
temperature error that remains active just for 4000 ms, qualify it, and then de-qualify it. If BodySense
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<detected> / (isQualified == false, isDetected == true, qc == 0)
<wait for 4000ms> / (isQualified == true, isDetected == true, qc == 1)
<undetected> / (isQualified == true, isDetected == false, qc == 1)
<wait for 8100 ms> / (isQualified == false, isDetected == false, qc == 1)
<detected> / (isQualified == false, isDetected == true, qc == 1)

Figure 5.6. Test case that verifies the qualification of a temperature error that appears for a short time.

does not qualify the temperature error between 3100ms and 4000ms, the test case in Figure 5.6 will
fail when checking the condition isQualified==true, isDetected==true, qc==1.

A single failure of this test case does not indicate the presence of a fault in BodySense since the
specifications indicate that BodySense can take more than 4000 ms to qualify an error. However, if
the test case never generates the expected output, then this can be an indication of a problem since the
specifications indicate that the system may qualify errors between 3100 ms and 4000 ms.

More complex examples can be observed in the presence of dependencies between different TAs.
In the case of BodySense, this is observed with test cases covering errors with different qualification
priorities. For example, a sensor error cannot be qualified if a temperature error has already been
qualified. In these cases, testing is complicated by the effect of timing uncertainty on the interplay
between the state of different automata. For example, a test case that checks if both sensor and
temperature errors are qualified within the timing bounds (i.e., 4800 ms) may thus fail depending on
which error is qualified first, but in general, engineers expect that such a test case passes according to
a given frequency that depends on the timing ranges appearing in the model.

To correctly evaluate test results, we thus need to know the expected probability that the system
responds with a specific output sequence. In the presence of uncertainty, an implementation is faulty if
and only if, over multiple executions, the various possible outputs are not observed with their expected
frequency. This observation shows the need for oracles to take into consideration the probability of
observing a given output in order to determine if a test case passes or fails. We will refer to such test
cases as stochastic test cases in this work.

Uncertainty may lead to scalability problems

Because of non-determinism, the execution of a test case might correctly bring the system into mul-
tiple states, and, consequently, generate multiple valid output sequences. However, verifying that the
system can reach all the valid states after a test execution (i.e., generate all the valid outputs), might
easily lead to scalability issues. This may be the case if each test case needs to be executed multiple
times, until every expected output is observed, including the least probable ones.

To deal with this problem, and thus find a balance between testing cost and test cases effective-
ness, we assume that engineers are interested in verifying if the system has been able to reach a single
specific location that we refer as desired final test location, which is the location that should be always
reached if the system was deterministic (e.g., if the time triggered transitions are fired at a specific
time). Usually this is the location that should be reached with the highest probability. In the case
of the test case in Figure 5.6, for example, software engineers are interested in verifying if location
DetectedQualified is active after detecting a temperature error and waiting for 4000 milliseconds. Lo-
cation DetectedQualified is the location that should be always reached if the system was deterministic,
for example if the edge between locations DetectedNotQualified and DetectedQualified was triggered
when the clock reaches 4000.
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5.3 The STUIOS approach

5.3.1 An Overview
Figure 5.7 shows an overview of the STUIOS approach. Note that all the values in that figure are hy-
pothetical and are there just to convey the idea underlying the approach. STUIOS works in two phases:
(1) it generates stochastic test cases by extending the test cases provided by software engineers; (2)
it executes the stochastic test cases and attempts to determine whether they pass or fail.
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Figure 5.7. An overview of the STUIOS approach

STUIOS receives as input a test suite (in the form of IO sequences), which we assume to be
derived from specifications elicited as a network of TAs. Any test criterion can be used to generate
the test suite. We simply expect that each test case of the test suite is defined as an IO sequence (i.e., a
sequence of pairs <input action> / <expected output> that matches a feasible path of the automaton,
as described in Section 5.1). An example test case is shown in Figure 5.6.

STUIOS wraps the given test cases into stochastic test cases that handle non-determinism with the
aim of reducing incorrect failures.

For each test case, we also expect that software engineers specify a single location (with highest
probability where the system states) that is expected to be checked for being active after the test case
execution (this is the desired final test location).

We define a stochastic test case as a test case that includes an IO sequence that covers a specific
test scenario, followed by a PUIO sequence that checks if the software has reached the desired final
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test location. A stochastic test case specifies both the probability of observing the test scenario output
and the probability of observing the output of the PUIO sequence.

To generate stochastic test cases, STUIOS performs four steps (shown in Figure 5.7). In Step
1.1, STUIOS identifies a UIO sequence for each final test location and test case provided by software
engineers. In Step 1.2, STUIOS builds corresponding PUIO sequences, which means that it calculates,
for each UIO sequence, the probability of observing its output when the UIO sequence is executed
after the corresponding test case. In Step 1.3, STUIOS calculates the probability of observing the
output expected by each test case. Steps 1.1 to 1.3 rely on the simulation and verification capabilities
of the UPPAAL model checker [Bengtsson et al., 1995].

In Step 1.4, STUIOS builds stochastic test cases. Each generated test case specifies the probability
of observing the output sequence of the provided test case, and includes the PUIO sequence that
checks if the desired final test location has been reached.

In the second phase (Execute Stochastic Test Cases in Figure 5.7), STUIOS executes each stochas-
tic test case against the software implementation multiple times (until we have statistical guarantees
about the test outcome, as discussed below) and collects test results. STUIOS relies upon statistical
hypothesis testing to decide when an accurate test result can be drawn from multiple executions of the
same test case. Test execution is stopped when we have sufficient statistical guarantees that the test
cases either pass of fail. More specifically, a test case fails if the test case output or the PUIO output
are not as frequent as expected, considering a confidence interval, and otherwise passes.

After a brief overview of the capabilities of UPPAAL exploited by STUIOS, the following sections
provide additional details about the activities performed by STUIOS.

5.3.2 Probability Estimation with UPPAAL
To generate PUIO sequences (Steps 1.1 and 1.2 in Figure 5.7) and calculate test case probabilities
(Steps 1.3), STUIOS relies upon UPPAAL [Bengtsson et al., 1995]. UPPAAL is a model checker
for network of TAs that provides model checking and statistical model checking capabilities. STU-
IOS more specifically makes use of the verification of properties (e.g., reachability) expressed using
computation tree logic (CTL), the simulation of the model execution, and the estimation of the true
probability of a model property (i.e., the probability that a property holds).

We briefly describe the probability estimation feature of UPPAAL as some readers may not be
familiar with it. UPPAAL can estimate the probability that a given property of the system holds
within a certain time frame, e.g., it can estimate the probability that a single location of a network of
TAs is reached in 4000 clock ticks. UPPAAL relies upon an algorithm that resembles Monte-Carlo
simulation to compute the probability estimation. Additional details are described in [Hérault et al.,
2004].

5.3.3 Generating Stochastic Test Cases
We now describe the steps followed by STUIOS to generate stochastic test cases (Step 1 in Figure 5.7).
Figure 5.8 shows the activities for generating stochastic test cases, in an algorithmic form.
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Require: T S, the test suite
Require: TAS, the timing specifications (network of TA)
Require: f tL, the final test location
Require: L, the maximum length of a UIO sequence
Ensure: ST S, a stochastic test suite derived from T S

1: for testCase in T S do
2: //1.1 Identify a PUIO for testCase
3: //1.1.1 Determine the context of the PUIO
4: testTA← generateTestAutomaton(testCase)
5: trace← reachabilityAnalysis(TAS, testTA)
6: stateVariableAssignments,activeLocations←
7: extractContextIn f ormation(trace)
8: //1.1.2 Identify potential UIO sequences
9: pathLen← 1

10: uioFound← FALSE
11: while pathLen < L && uioFound == FALSE do
12: potentialUIOS←
13: depthFirstVisit(TAS,stateVariableAssignments,activeLocations)
14: for PUIO in potentialUIOS do
15: uioTA← generateTestAutomaton(PUIO)
16: locations← activeLocations\ f tL
17: TA f tL← retrieveAutomatonContaining( f tL)
18: otherLocations← allLocationsIn(TA f tL)\ f tL
19: isUIO← T RUE
20: for oL in otherLocations do
21: newActive← locations∪oL
22: trace← reachabilityAnalysis
23: (TAS,uioTA,newActive,stateVariableAssignments)
24: if trace 6= null then //final state is reachable
25: isUIO← FALSE
26: break
27: end if
28: end for
29: if isUIO == T RUE then
30: //1.2 Build PUIO sequence
31: timeBound = sumAllT heDelaysIn(uioTA)
32: pPUIO← probabilityAnalysis(TAS,uioTA,
33: timeBound,activeLocations,stateVariableAssignments)
34: //1.3 Calculate test output probability
35: timeBound = sumAllT heDelaysIn(testTA)
36: ptest ←
37: probabilityAnalysis(TAS, testTA, timeBound)
38: //1.4 Build stochastic test case
39: stochasticTest←< testTA, ptest ,PUIO, pPUIO >
40: ST S← ST S∪ stochasticTest
41: end if
42: if isUIO == T RUE then //A valid UIO has been found
43: break //Terminate the iteration for the current test
44: end if
45: end for
46: pathLen← pathLen+1
47: end while
48: end for

Function reachabilityAnalysis performs reachability analysis with UPPAAL by process-
ing a network formed by the software specifications and the test automaton.
Function probabilityAnalysis returns the probability of reaching the final state of the
given test automaton in the provided time bound as calculated by UPPAAL.
The additional parameters appearing in lines 23 and 33 are used to set the initial state of
the system (otherwise the initial state is specified in the software specifications).

Figure 5.8. The algorithm to generate stochastic test cases.
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Identify UIO Sequences (Step 1.1 in Figure 5.7)

To generate UIO sequences STUIOS performs three activities: (1) it determines the context (active
locations and value of state variables) of each UIO sequence, (2) it identifies all the potential UIO se-
quences for a given final test execution state, (3) it identifies a valid context-dependent UIO sequence
among the potential UIO sequences found (i.e., it ensures that the UIO sequence generates a unique
output to detect transition faults).

Activity 1 of 3-Determining the context of a UIO sequence UIO sequences for TAs are context
dependent (as discussed in Section 5.2.1). Since STUIOS uses UIO sequences to determine if the
execution of a test case has brought the system into a given location (i.e., it executes a UIO sequence
after a corresponding the test case), the context of a UIO sequence coincides with the state of the
system after the execution of test cases (hereafter final test state). In TAs the state of the system is
given by both the active locations and the values of the state variables.

Though the final test state can be deducted by simulating test case execution against the TA net-
work, STUIOS relies upon reachability analysis to speed up the process.

STUIOS first translates the IO sequence into a sequential timed automaton (hereafter test automa-
ton, see Line 4 in Figure 5.8). The test automaton resembles the test case: each edge either sends a
test input or checks if the output corresponds to test expectations. In case the output does not corre-
spond to the expectations, an error state is reached, otherwise the computation continues. Figure 5.9
shows a test automaton derived from the test case in Figure 5.2. The edge between locations L1 and
L2 captures the sending of the event detected, the edge between locations L3 and L4 simulates a delay
of 4800 ms, while the other edges check for the expected value of observable variables, and activate
location Error in case the values are not the expected ones.

STUIOS then exploits the reachability analysis feature of UPPAAL to identify a trace that shows
the effects of the test case execution (Line 5 in Figure 5.8). This is done thanks to a reachability
formula that specifies that the desired final test location should be reached after the test case execu-
tion (i.e., E<> test.FinalTestLocation && te.DetectedQualified in our running
example). The trace generated by UPPAAL shows the value of all the state variables of the system
after the execution of the test case and the list of active locations.

Figure 5.9. Test Automaton derived from the test case in Figure 5.7.

Activity 2 of 3-Identifying all the potential UIO sequences To identify all the potential UIO
sequences of a specific length, STUIOS explores all the feasible paths of the timed automata by taking
advantage of the UPPAAL simulator.
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STUIOS explores all the feasible paths up to a length L given by the software engineer. The explo-
ration is performed in a depth-first manner starting from the final test state (Line 7 in Figure 5.8). The
paths traversed during the visit are potential UIO sequences since they capture the output sequence
expected following additional inputs being sent to the system after test case execution, but do not give
any guarantee about uniqueness.

The process for finding potential UIO sequences starts with a path length equal to 1 (Line 9 in
Figure 5.8) and then the process iterates by increasing the value of the path length by one (Line 46)
if none of the recorded sequence is recognized a valid UIO sequence, as explained in the following
sections.

Activity 3 of 3-Identification of valid UIO sequences A valid UIO sequence guarantees that the
expected output sequence is observed only if the test case has terminated in the desired final test
location. Thus, a potential UIO sequence cannot be a valid UIO sequence if it generates the same
expected output when the final test location is not the expected one. For this reason, STUIOS identifies
valid UIO sequences by looking for a potential UIO sequence whose inputs never lead to the expected
output sequence when the active location is different from the desired final test location.

STUIOS identifies a valid UIO sequence by iteratively processing all the potential UIO sequences.
First STUIOS translates each potential UIO sequences into a sequential automaton (hereafter UIO
automaton) by following the same process adopted to derive test automata (Line 15 in Figure 5.8).

Then STUIOS relies upon the reachability analysis feature of UPPAAL to determine if the UIO
sequence can generate the expected output even when the test case terminates in a location different
than the desired final test location (Line 24). Because we want to determine if the potential UIO
sequence generates a different output when the final test location is not the expected one, STUIOS
starts reachability analysis from the same active locations and variable values as those of the test
termination state, except for the desired final test location. STUIOS iterates the process multiple
times so that all the locations of the timed automaton containing the final test location are considered
(see lines 16 to 20).

STUIOS identifies a UIO sequence when the final location of the test automaton is never reached.
STUIOS repeats the process for all the potential UIO sequences till a valid UIO sequence is found
(see the break instruction in Line 43).

5.3.4 Building PUIO Sequences
In the next step (Step 1.2 in Figure 5.7), STUIOS associates to each UIO sequence a value that captures
the probability that the system responds with the expected output after the input sequence (Lines 31
to 33 in Figure 5.8). As discussed earlier, to calculate this probability, STUIOS uses the probability
estimation feature of UPPAAL.

Since the final location of the test automata is reached only if the output expected by the UIO
sequence is observed, STUIOS computes the probability of the UIO sequence by estimating the prob-
ability of reaching the final location in the test automata in the given test execution time. The test
execution time is computed by summing all the delays in the test automata (see variable timeBound
in Line 31).
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Probability estimation is performed against a test automata that joins the test case automata with
the UIO sequence test automata (Line 33).

5.3.5 Identifying Test Case Probabilities and Building Stochastic Test Cases
STUIOS computes the probability of observing the output expected by the test case (Step 1.3 in Fig-
ure 5.7) by following the same approach described in Section 5.3.4 (i.e., by computing the probability
of reaching the final location of the test automaton, which does not include the PUIO sequence, see
Lines 35 to 37 in Figure 5.8).

A stochastic test case is then built (Step 1.4 in Figure 5.7) using the PUIO sequences and the
probability of observing the expected test output (Line 39).

5.3.6 Test Execution
STUIOS executes each stochastic test case in a loop till a stopping condition is met (Step 2 in Fig-
ure 5.7). We have identified three different stopping conditions: (1) the actual output is illegal (in this
case, the test case fails), (2) the expected output occurs with the expected frequency (in this case, the
test case passes), (3) the expected output does not occur with the expected frequency (in this case too,
the test case fails). We describe in the following the three cases in more detail.

Case 1: The output is illegal. The output of a test case is illegal if the observed output sequence
cannot be generated by the network of TAs that capture the software specifications, in other terms
there is no path in the TAs that lead to the observed output sequence after the given input sequence.

The output sequence in Figure 5.10 shows an example of an illegal output for the TA in Figure 5.1.
This outputs sequence is illegal if it is generated in response to the test inputs of the test case in
Figure 5.6. The specifications for BodySense indicate that the system, after waiting for 4000 ms
(second line of the test case), is allowed to either stay in location DetectedNotQualified, thus
keeping the variables isQualified and qc set to false and 0 respectively, or move to location
DetectedQualified, and set the values of the two variables to true and 1 respectively (these
are the values expected by the test case Figure 5.6). The faulty output in Figure 5.10 shows that the
system sets the value of variable isQualified to true but keeps variable qc set to zero after
waiting for 4000 ms. This combination of values is not a legal output for the TA in Figure 5.1.

STUIOS thus stops executing a test case if it leads to an invalid output sequence because this
clearly indicates that the software does not meet its specifications. The test case is considered to have
failed.

(isQualified == false, isDetected == true, qc == 0)
(isQualified == true, isDetected == true, qc == 0)

Figure 5.10. Portion of a faulty output sequence generated after the execution of the test case in Figure 5.6.

Cases 2 and 3: The output is valid. If the system produces legal outputs (i.e., an output that can
be generated according to the software specifications), then we need to determine if, across multiple
executions of the stochastic test case, the system generates, among all the legal output sequences
generated, the output sequence expected by the stochastic test case with the expected frequency. Since
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stochastic test cases include both test cases provided by software engineers and PUIO sequences, we
need to observe that both the following output sequences occur with the expected frequency: (1) the
sequence of output values (hereafter out putT EST ) generated after the inputs belonging to the original
test case and (2) the output sequence (hereafter out putPUIO) generated after the inputs of the PUIO
sequence.

We assume that each execution of a test case is independent; this assumption generally holds for
stateless systems and for systems that provide means to reset the system state between the executions
of different test cases (this the case of BodySense). Since each execution of a test case is independent
and since the result is either pass or fail, we apply hypothesis testing based on binomial distribution
(binomial test) to determine if the system behaves according to specification. A test case fails if the
null hypothesis “the expected output occurs with the expected frequency" is rejected.

Given the observed probability, the expected probability, and the significance level α (which
captures the desired likelihood of encountering a Type I error1, in our case 0.05), a hypothesis test
indicates if the null hypothesis should be rejected. In our context, this means that the hypothesis test
indicates if the system under test should be considered faulty.

To apply hypothesis testing, we rely upon the Wilson score interval because it is known to be
reliable even in the presence of a small number of samples (i.e., executions of a test case in our
context) [Zou et al., 2009].

The Wilson score interval is computed according to the following formula:

1
n+z2

[
nS+ 1

2z2± z
√

1
n ∗nS∗nF + 1

4z2
]

where z is known as standard score, and depends on the value of α (for α=0.05 z=1.96), n is the
total number of runs considered, nS is the number of successes (in our case the output of the test case
is the expected one), nF is the number of failures (in our case the output of the test case is not the
expected one). The confidence interval indicates that the estimated parameter has a probability of 1-α
of lying in it (0.95 with α=0.05). A null hypothesis is thus rejected if the expected probability (in our
context this coincides with the expected frequency of an output) lies outside this interval.

Hypothesis testing helps us determine if the system is faulty. However, to provide trustable results
we would like to collect enough samples, i.e. repeat the execution of a test case for a sufficient
number of times, to be confident about the outcome. Generally speaking, the more observations,
the higher the confidence about the absence of faults. We determine if we have collected enough
samples (i.e., executed enough runs of a same test case) based on the confidence interval. With a
small interval, when the null hypothesis is not rejected, we can conclude that the estimated parameter
(i.e., the frequency of occurrence of the expected test output) is close to the expected value generated
with UPPAAL, with a given degree of confidence (0.95 in our example). Based on this observation
we stop testing and assume that a test case passes when the null hypothesis is not rejected and the
confidence interval is small enough. In this case we chose to have an interval of size 0.1 so that
we have a 95% chance for the actual probability to be within a maximum distance of 0.1 from the
probability determined from the specifications. For the same reason, we indicate that a test case fails

1Type-I errors consist of erroneously rejecting the null hypothesis
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if the null hypothesis is rejected and the confidence interval is 0.1.

Since STUIOS applies hypothesis testing twice for each test case execution, considering both
out putT EST and out putPUIO, STUIOS proceeds as follows. When the confidence interval is smaller
than 0.1 and the null hypothesis is supported for both out putT EST and out putPUIO, then STUIOS
indicates that the test case has passed. When the confidence interval is smaller than 0.1 and the null
hypothesis is rejected in the case of either out putT EST or out putPUIO, then STUIOS indicates that the
test case has failed. Otherwise (i.e., if the confidence interval never becomes smaller than 0.1), the
execution of the test case continues till a maximum number of executions is reached (we use 100 in
our experiments). In this case, we indicate that the test case passes if the null hypothesis is confirmed
for both out putT EST and out putPUIO and otherwise the test case fails, though in this case we also
indicate that the test case outcome might not be reliable.

For example, the test case T1 in Figure 5.7 passes because the Wilson score interval calculated
for out putT EST after multiple runs of T1 is [0.66,0.68], which is smaller than 0.1 and includes the
frequency of the expected output (i.e., 0.67), and the Wilson score interval calculated for out putPUIO
includes the expected frequency as well (i.e., 0.5). The test case T2 instead fails because the Wilson
score interval calculated for both out putT EST and out putPUIO does not include the expected values.
Finally the test case T3 fails because the Wilson score interval calculated for out putPUIO does not
include the expected value.

5.4 Empirical Evaluation
To evaluate the effectiveness of the STUIOS approach, we conducted an empirical evaluation, based
on an industrial case study, addressing the following three research questions:

• RQ1. How does STUIOS compare with a simpler and less expensive alternative? This research
question aims to determine whether STUIOS performs significantly better than a much simpler
and less expensive alternative that derives test cases that do not include UIO sequences and
whose oracles rely solely on analyzing output sequences (referred to below as "simple oracles").
• RQ2. Does STUIOS generate oracles that are effective in the presence of time uncertainty?

This research question aims to evaluate the effectiveness of STUIOS in terms of fault detection
capability of the generated test suite when faults affecting timing requirements are characterized
by time uncertainty.
• RQ3. Can STUIOS negatively impact the efficiency of the testing process? This question aims

to evaluate whether STUIOS can be successfully adopted in an industrial context and what are
the costs associated with its adoption.

5.4.1 RQ1. How does STUIOS compare with a simpler and less expensive
alternative?

To respond to RQ1, we compared STUIOS oracles with oracles that do not include UIO sequences,
which are the kind of oracles generated by traditional approaches relying on analyzing outputs se-
quences. There are no approaches that focus on deriving UIO sequences from specifications provided
as TAs.
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To perform the experiment, and avoid bias in the selection of the test cases, we considered the suite
of 122 test cases used for the experiments described in Chapter 4 (Section 4.8). From the 122 test
cases, we derived two test suites: (1) a test suite made of the 122 provided test cases, which include
only simple oracles, and (2) a test suite containing the stochastic test cases generated by STUIOS by
extending the 122 provided test cases with PUIO sequences and probabilistic information.

We compared the two test suites considering fault detection effectiveness. To this end we relied on
mutation analysis. We derived the faulty versions of BodySense by means of specification mutation
(i.e., by using mutation operators to derive software specifications that characterize the behaviour of
a faulty program). In the literature, different mutation operators for TAs have been described (e.g.,
[Aboutrab et al., 2013, Aichernig et al., 2013]). For our experiments, we considered the same muta-
tion operators adopted in the experiments described in Chapter 4, which are: Restricting Clock Con-
ditions [Aboutrab et al., 2013], Widening Clock Conditions [Aboutrab et al., 2013], Shifting Clock
Conditions [Aboutrab et al., 2013], and Change Target Location [Aichernig et al., 2013]. Applying
the above mutation operators led to 323 mutated specifications for BodySense.

Manually modifying the implementation of BodySense to create 323 faulty versions that behave
as the mutated specifications, and deploying the faulty versions on the dedicated hardware for purely
experimental purposes, is far too expensive since it would require huge engineering effort. For this
reason, we generated 323 programs that implement the mutated specifications of BodySense. Since
these programs are generated for experimental purposes, they only implement the behavior under test
related to timeliness and are therefore much simpler. We have used the 323 generated programs to
evaluate the effectiveness of the stochastic test cases generated by STUIOS.

We executed each test case of the two test suites on each of the faulty software versions (mutants).
In the case of STUIOS, each test case was executed multiple times on the software under test as
required by STUIOS, and we kept track of passing and failing test cases. We measured fault detection
effectiveness at the test suite level and report the percentage of faults discovered by the two test suites.
Both test suites never report failures when executed against the valid version of the software.

The empirical results show that the test suite generated by STUIOS is more effective than the
traditional test suite since it is able to discover 100% of the faults, while the test suite integrating
simple traditional oracles discover only 91% of the faults. More precisely, the test suite integrating
the simple traditional oracles does not detect all the transition faults, which are instead successfully
discovered by the test suite generated by STUIOS.

5.4.2 RQ2. Does STUIOS generate oracles that are effective in the presence of
time uncertainty?

To respond to RQ2, we evaluated the effectiveness of STUIOS in the presence of time uncertainty.
More precisely we are interested in evaluating the effectiveness of the oracles generated by STUIOS
(i.e., the capability of detecting failures), when failures are related to software timeliness (i.e., the
capability of satisfying timing constraints), and the executed test cases lead to non-deterministic be-
haviour because of time uncertainty. To this end we evaluated the capability of STUIOS oracles in
detecting failures that regard the timing requirements of BodySense. More specifically we focussed on
failures that may affect the capability of BodySense of qualifying error conditions (e.g., the presence
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of a temperature value out of range) within the given time ranges.

For our experiments, we considered both a valid implementation of the BodySense specifications
and 44 faulty versions. The latter is a subset of the 323 faulty versions considered to address RQ1.
We selected only mutated specifications derived by applying the mutation operators Restricting Clock
Conditions and Widening Clock Conditions on the TA edges that capture the qualification time of each
different error condition, thus mimicking faults that lead to error conditions being qualified with an
erroneous timing. Applying the two mutation operators on the BodySense specifications lead to two
different faulty versions for each TA regarding the detection of error conditions, each containing a
single fault. Since BodySense specifications includes 22 TAs regarding error conditions, one for each
different kind of error condition detected at runtime by BodySense, this is how we end up with 44
faulty versions of BodySense.

To perform our experiments, we did not consider all 122 test cases executed to answer RQ1 since
many of these test cases stress deterministic behaviors of BodySense only. For example, the subset
of test cases that cover the qualification of error conditions simply checks if the system qualifies
error conditions within the maximum allowed time bound, and thus, are not affected by the non-
deterministic behaviour caused by time uncertainty.

To address RQ2, we thus considered a test suite of 22 test cases that cover non-deterministic
behaviours. The considered test cases check if BodySense is able to qualify errors within 3950 ms
(i.e., the middle point in the allowed range) with the expected probability. Each test case verifies the
timing constraints of a single error condition managed by BodySense.

We executed each test case against both the valid version and the two faulty versions for a total
of 66 test case runs (please note that each run may imply repeated executions of the test case because
of the probabilistic nature of STUIOS). Test cases executed against the valid version are expected to
pass while test cases executed against faulty versions are expected to fail.

To respond to RQ2, we computed the precision and recall according to standard formulas. In our
context, true positives correspond to test cases correctly failing against the faulty version, whereas
false positives correspond to test cases unexpectedly failing against the correct version. True negatives
match test cases not failing when executed against a faulty version.

Empirical results show that STUIOS provides perfect precision and recall (1.0). Please note that
test cases with simple oracles simply cannot be executed in this context because they would fail every
time the system does not qualify errors in 3950 ms, which happens in 50% of the passing executions
since in the case of BodySense the qualification time follows a uniform distribution.

5.4.3 RQ3. Can STUIOS negatively impact the efficiency of the testing
process?

STUIOS requires multiple executions of the same test case in order to determine the test outcome.
This could clearly be an issue when test execution is manual because of the time spent by software
engineers in running the test cases (though, for safety-critical software, such costs might be justified
by increased fault detection capability).
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In our context, like in many other embedded development environments, the repeated execution of
test cases is not a problem. Software engineers are expected to set up the physical environment only
once, at the beginning of the testing process, and as in many other industrial contexts, the execution of
test suites is usually conducted automatically by test automation frameworks [Garousi and Mäntylä,
2016]. The efficiency of the testing process might thus be affected only when the number of test case
executions is so high that such executions cannot be performed within available time. However, the
number of test cases in such embedded systems, especially when using effective strategies such as the
one implemented by TAUC, is usually not very large.

To respond to RQ3, we compared the number of test executions required to generate test results
with STUIOS against those required by the simple test approach, i.e., 122 execution, one for each
of the 122 test cases. In our empirical study, we determined that STUIOS requires 57 executions, on
average, for each test case, and a minimum and maximum number of 35 and 100 executions. Although
the number of test case executions is high, the execution time is acceptable in practice. Indeed, each
test case takes on average 2.5 minutes to execute on the actual execution environment. This matches
a total execution time of 290 hours which is a bit more than 10 days. Given that these test cases can
be concurrently executed on several test environments and that acceptance testing usually lasts days,
the fact that STUIOS significantly increases the number of test cases executions has limited practical
consequences.

5.4.4 Threats to Validity
5.4.4.1 Internal threats

To limit the threats to the internal validity of the empirical evaluation, that is, a faulty implementation
of our toolset that may lead to erroneous results, we have carefully tested our prototype implemen-
tation. In addition to this, we have manually inspected all the generated test suites. In particular we
have manually verified that all the UIO sequences generated by our toolset are valid, and that the
generated stochastic test cases contain the correct pair of test inputs and PUIO sequences. We did
not verified if the probabilities calculated for PUIO sequences and test outputs are correct because we
rely upon UPPAAL for this functionality, and we assume a correct implementation of the tool.

5.4.4.2 External threats

Threats to the external validity concern the generalisability of results. More precisely we observe two
potential problems, the first is related to the representativeness of BodySense, the second concerns our
choice of adopting a synthetic implementation of BodySense for our experiments.

BodySense is a control system implemented by means of a main control loop that poll data from the
environment and then perform other operations. These kinds of control components are common in
embedded and cyber-physical system, and we thus believe that many software systems might benefit
from STUIOS. In addition to this, we believe that BodySense is a system with a typical complexity
(in terms of size and number of models required to capture its timing properties) for software of that
kind, and thus we expect that STUIOS can be successfully adopted to test other similar systems.

In our experiments, we have used synthetic implementations of BodySense that behave as indi-
cated by a set of faulty models generated from the valid models of BodySense. Although these systems
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are not real implementations of BodySense and do not integrate all the features of BodySense (e.g.,
they do not work on the LIN bus), they behave exactly as BodySense for the subset of features that
we have considered for our experiment, more precisely they detect error conditions and signal them
according to the given timing specifications.

5.5 Conclusions
In this chapter, we have proposed an approach named STUIOS that addresses the automated genera-
tion of effective test oracles for timeliness test cases in the presence of uncertainty.

STUIOS generates stochastic test cases that extend a set of test cases provided by software en-
gineers. A stochastic test case generated by STUIOS includes the input-output sequences from the
initial test cases, a probability value that indicates the expected probability of observing the output
sequence generated by the test case, plus a probabilistic UIO sequence. A probabilistic UIO se-
quence captures the probability of observing the output of a UIO sequence, identified by STUIOS,
which determines if the test case has terminated in the desired final state. Probability values capture
the expected frequency of non-deterministic output sequences and thus allow STUIOS to deal with
non-determinism. STUIOS then relies on executing multiple times each test case in such as way that
it can employ hypothesis testing to determine whether a test case has passed (i.e., if it has generated
the expected output with the expected frequency).

Results from an industrial case study in the automotive domain demonstrated that STUIOS is able
to achieve higher fault detection effectiveness compared to the simpler test cases generated by TAUC
(described in chapter 4). In practice, though STUIOS expectedly requires significant additional test
execution time, this can be considered to have negligible practical consequences if case test execution
is automated.
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Chapter 6

Related Work

This chapter provides an overview of existing work related to the approaches researched and devel-
oped for this dissertation: automated generation of functional system test cases, automated testing of
software timeliness, and definition of oracles for non-deterministic systems charachterized by time
uncertainty.

6.1 Generation of Functional System Test Cases
Several approaches require that system requirements are given in UML behavioral models such as
activity diagrams [Linzhang et al., 2004] [Nayak and Samanta, 2011], statecharts [Ryser and Glinz,
1999] [Bandyopadhyay and Ghosh, 2009], and sequence diagrams [Briand and Labiche, 2002] [Nebut
et al., 2006]. Nebut et al. [Nebut et al., 2006] propose a use case driven test generation approach based
on system sequence diagrams. Briand and Labiche [Briand and Labiche, 2002] use both activity and
sequence diagrams to generate system test cases. While sequential dependencies between use cases
are extracted from an activity diagram, sequences in a use case are derived from system sequence di-
agrams. In contrast, UMTG only requires use case specifications complemented by a domain model
including OCL constraints, the latter being required even for techniques relying on behavioural mod-
els to generate test data and executable test cases.

There are approaches generating UML behavioral models from NL requirements [Yue et al.,
2013] [Yue et al., 2010] [Frohlich and Link, 2000]. For example, Yue et al. [Yue et al., 2013] [Yue
et al., 2011] generate UML state machines from RUCM use cases. One issue that prevents using such
an approach for automated test generation is that software engineers have to correct and complete
the complex, generated models, thus forcing engineers to deal with complex behavioural models,
which we mean to avoid in our work. Frohlich and Link [Frohlich and Link, 2000] show how use
cases can be systematically transformed into UML state charts, from which test cases are derived.
The approach proposed by Frohlich and Link has two drawbacks: (i) generated test sequences have
to be edited and (ii) test data have to be manually provided. In contrast, UMTG not only generates
sequences of function calls but also generates test data for these functions.

Different approaches use NLP techniques to derive test cases from NL requirements. Unfor-
tunately, most of these approaches require that generated test cases be manually augmented with
missing data [Escalona et al., 2011]. In very recent work, developed concurrently with ours, Zang et
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al. [Zhang et al., 2014] generate test cases from RUCM use cases by identifying sequences of use case
steps that satisfy branch and loop coverage. Test cases cannot be executed automatically because they
do not include concrete test data. In contrast, UMTG introduces some extensions in RUCM which,
combined with the use of OCL constraints on a domain model, enable the generation of executable
test cases with concrete test data. Another recent approach that generates test cases without test data
from NL requirements is that of Sarmiento et al. [Sarmiento et al., 2014].

Carvalho et al. [Carvalho et al., 2013] generate executable test cases for reactive systems, from
requirements written according to a restricted grammar and dictionary. There are two main limita-
tions: the underlying dictionary may change from project to project, while a restricted grammar may
not be suitable to express the requirements of different kinds of systems. UMTG does not impose a
restricted dictionary for use cases, but simply relies on a generic and restricted use case format that
can be used to express use cases of different kinds of systems.

Similar to our approach, Archetest [Kaplan et al., 2008] requires a domain model and a use case
specification with invariants and processable guard and post conditions. Unfortunately, Archetest can
generate only test data without test case scenarios.

6.2 Automated testing of software timeliness
Techniques that support testing of software timeliness include model-based approaches, and ap-
proaches based on meta-heuristic search.

Model-based approaches for testing software timeliness often rely upon timed automata [Hessel
et al., 2008]. Most test generation approaches rely upon coverage strategies adapted from traditional
finite state machine testing [Chow, 1978, Cardell-Oliver and Glover, 1998]. Other approaches adopt
model checkers for test generation. In these cases, the model is typically annotated with auxiliary
variables or automata that enable the formulation of the testing purpose or the coverage criterion
as a reachability problem [Hessel et al., 2008, Hessel et al., 2004]. Finally, some approaches rely
upon coverage criteria explicitly defined for guard conditions over clock variables [Aboutrab et al.,
2013, En-Nouaary and Hamou-Lhadj, 2008]. The main limitation of these approaches is that they
require complete models, i.e. models that contain all the information required to identify the inputs
to be sent to the system in order to trigger state transitions. Without complete models, model-based
approaches can be used to generate abstract test cases only, which then need to be concretized through
test adaptation, or test transformation approaches [Utting and Legeard, 2006]. TAUC instead requires
minimal modelling of the timing properties and no additional adaptation or transformation layers. It
further relies upon use case specifications, which are commonly used in many domains for commu-
nication purposes, to generate the test inputs that lead to targeted state transitions.

Other approaches rely upon other formalisms such as UML Statecharts [Mücke and Huhn, 2004],
Extended Finite State Machines [Zheng et al., 2008], and Attribute Event Grammars [Auguston et al.,
2005], but they share the same practical limitations mentioned above with approaches based on timed
automata.

Metaheuristic search has been successfully applied to testing deadline misses and computing
worst-case execution time. Di Alesio et al. combine genetic algorithms and constraint programming
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to identify scenarios in which the tasks execution time is close or breaks the deadline [Di Alesio et al.,
2015]. TAUC has a different goal in a different context, i.e. the system testing of timing requirements,
expressed as timed automata, based on information available in use case specifications.

Iqbal et al. [Iqbal et al., 2012] use search-based algorithms to stress test real-time software by
repeatedly executing the software while simulating the environment. Their goal, which is quite dif-
ferent from ours, is to reach critical error states. Another main difference is that TAUC does not
require the execution of test cases, thus being more suitable when test cases execution is expensive or
the environment cannot be fully simulated.

A few approaches use genetic algorithms to generate test cases specifically targeting timing prop-
erties specific to interrupt handlers [Regehr, 2005, Yu et al., 2014]. In contrast, TAUC is generally
applicable to all systems whose functionality is captured as use case specifications.

6.3 Definition of oracles for systems charachterized by time
uncertainty

Related work includes techniques for the generation of test cases and oracles from state-based for-
malisms, e.g., finite state machines (FSMs), TAs, and Extended FSMs (EFSMs), as well as approaches
for testing real-time systems.

Most of the related work for the generation of test cases and oracles based on finite-state spec-
ifications deals with FSMs, not TAs. Two surveys are relevant, one focusing on FSM-based testing
approaches [Lee and Yannakakis, 1996] and a more recent one also including experimental compar-
isons [Dorofeeva et al., 2010]. Other approaches focus on EFSMs [Duale and Uyar, 2004, Robinson-
Mallett et al., 2006], but require deterministic EFSMs and thus cannot be applied in the context of
this paper, as discussed in Section 5.3.3.

On the other hand, several approaches working with TAs target the generation of test cases and
do not address the problem of generating precise test oracles. For example, Springintveld et al.
introduced a technique for translating TAs into grid automata to enable generation of test sequences
by means of traditional coverage-based algorithms for FSM testing [Springintveld et al., 2001].

AbouTrab et al. [Trab et al., 2010, Aboutrab et al., 2013] use region automata to generate test
traces that satisfy the transition coverage criterion. EnNouaary et al. [En-Nouaary, 2008] rely upon
sampling to convert a TA into a traditional FSM and then generate test cases.

Few techniques focussing on testing real-time systems in the presence of time uncertainty ex-
ist [David et al., 2012, Garousi, 2008, David et al., 2009, Hierons and Merayo, 2009]. The main
difference with STUIOS is that these approaches focus on test case generation and do not deal with
the problem of generating test oracles for existing test suites, as described next.

In [David et al., 2012], David et al. present a survey of approaches for testing real-time systems
under partial observability and uncertainty in the presence of specifications given as TAs and Timed
Game Automata (i.e., TAs with the set of edges partitioned into controllable ones and uncontrollable
ones). Garousi [Garousi, 2008] instead proposes a stress testing methodology to detect network-
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traffic-related faults in real-time systems based on the design UML models in the presence of time
uncertainty (i.e., when the timing information of messages is imprecise or unpredictable). Differently
from other approaches, the methodology is not based on formal specifications of the system but on
the barrier scheduling heuristic, taken from the operating systems literature.

The two approaches closest to STUIOS are that of David et al. [David et al., 2009] and Hierons
et al. [Hierons and Merayo, 2009]. David et al. [David et al., 2009] generate test cases under “partial
observability”. They model a given SUT using Timed Game Automata (TGA) with internal actions,
uncontrollable outputs and timing uncertainty of outputs and generate test cases by relying upon a
stochastic extension of UPPAAL. Test generation is driven by test requirements specified in Compu-
tation Tree Logic (CTL) formulas. The main difference with STUIOS is that David et al. perform
test generation based on CTL objectives — thus preventing engineers from reusing or extending test
suites derived with different criteria — while STUIOS focus on the generation of oracles for existing
test suites.

The test approach proposed by Hierons et al. [Hierons and Merayo, 2009] relies on mutation test-
ing and probability estimation to build test suites that verify if a software conforms to specifications
given as probabilistic FSMs. The approach derives test cases that aim to spot specific implementation
faults. To this end, the approach identifies sequences of test inputs that can determine if a mutated
specification, which models a fault, differs from the original one. Like in the case of David et al.
the approach proposed by Hierons et al. cannot be applied to derive oracles for existing test suites.
Furthermore, its effectiveness has not been evaluated and it cannot handle specifications given as a
network of TAs (typical in industrial systems).

74



Chapter 7

Conclusions and Future Work

This chapter is organised as follows. Section 7.1 summarises the contributions of this dissertation.
Section 7.2 discusses potential future work.

7.1 Summary
In this dissertation, we address the problem of automatically generating system test cases that verify
the compliance of an embedded software system with its functional and timing requirements while
minimizing the effort needed to produce the artefacts (e.g., models) required to enable automated test
case generation. We focus on functional and timing requirements because these are usually of crucial
importance for ensuring proper system behavior and safety. To make our approach practical we have
focused on solutions targeting common embedded development contexts where functional and timing
requirements are expressed by means of use case specifications and timed automata, respectively. The
techniques developed in the context of this thesis have been validated against an industrial case study,
BodySense, a representative embedded system developed by IEE, a company located in Luxembourg.

In this dissertation, we presented a set of coherent guidelines for the analysis and definition of
functional and timing requirements, followed by three techniques that enable the automated genera-
tion of functional and timeliness test cases. The guidelines for requirement analysis enable engineers
to adopt the test automation techniques presented in this dissertation. Some of the proposed guide-
lines, for example, the adoption of a template for the definition of use case specifications, have been
adopted by our industrial partner, as they were convinced of its benefits.

The first test automation technique presented in this dissertation, UMTG, integrates a natural lan-
guage processing solution that enables the automated generation of test cases from use case specifica-
tions. The additional modelling effort required by UMTG to enable testing consists of the definition of
OCL constraints to clarify the conditional statements in use case specifications, and the pre- and post-
conditions of use case flows. Our experience with IEE has shown that the required OCL constraints
helped engineers make software specifications more precise by resolving ambiguities. In addition
to this, our empirical evaluation has shown that the generated test cases cover important use case
scenarios not covered by the current test suites developed by engineers based on domain expertise.

The second technique presented in the dissertation, TAUC, automatically generates executable
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test cases for testing software timeliness from high-level specifications of timing requirements given
as timed automata. To this end, TAUC exploits the test cases automatically generated by UMTG.
More specifically it identifies dependencies between the events consumed in the timed automata and
the use case specifications in order to identify sequences of functional test cases that trigger the events
required to cover timeliness requirements. In addition, the technique integrates meta-heuristic search
to generate test cases that stress timing requirements by maximizing test suite diversity. Our empirical
evaluation has shown that the test suite generated by TAUC can detect more faults than the manual
test suite defined by IEE software engineers.

The third technique presented in this dissertation, STUIOS, automatically generates oracles for
testing non-deterministic systems where the source of non-determinism is time uncertainty, a typical
occurrence in embedded systems. STUIOS integrates statistical model checking and statistical testing
in order to determine if the output of a test case including a unique input output sequence occurs with
the expected frequency. The empirical results obtained so far have shown that STUIOS enables the
detection of more faults than traditional test cases including simpler oracles.

7.2 Future Work
In the future, we aim to both consolidate the techniques developed in the context of this dissertation
and define new techniques that build upon them to achieve full automation of test case generation.

As already mentioned in the previous chapters some of the guidelines proposed in this dissertation
have been already integrated in the development process of IEE. We have delivered two workshops
about UMTG and the supporting modelling guidelines that enabled software engineers at IEE to
adopt the proposed techniques. As a consequence, we will be able to perform additional studies about
the effectiveness and fault detection capability of UMTG. This will in turn also enable additional
evaluations of TAUC. TAUC has not been adopted by IEE yet, but it is our plan to deliver workshops
to support engineers in the adoption of the technique.

Among all the models required by the techniques proposed in this dissertation the only inputs
required for testing purposes are the OCL constraints. The automatic generation of OCL constraints
will enable the fully automated generation of system test cases from functional requirements. To
achieve this goal we will focus on the development of techniques for the automated generation of
the OCL constraints required by UMTG from the use case specifications written in natural language.
Existing approaches that generate executable test cases from requirements written in natural language
either require that software specifications are written according to very restricted domain specific
languages [de Figueiredo et al., 2006, Carvalho et al., 2013], or they require the same additional
modelling effort required by UMTG [Kaplan et al., 2008]. We aim to exploit recent advances in
semantic analysis based on natural language processing (e.g., the ones that enable arithmetic word
problem solving [Punyakanok et al., 2008, Roy and Roth, 2016]) to achieve this goal without imposing
too restrictive a language for defining use case specifications.
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Appendix A

Tool Suite Description

A tool suite was developed to automate the approaches that we propose in this dissertation. This
chapter provides an overview of the architecture of implemented tools.

A.1 UMTG Toolset
We have implemented UMTG as a Java toolset that is integrated with two widely used requirement
and design tools that are adopted by our industry partner: IBM Doors [IBM Doors, 2017] and IBM
Rhapsody [IBM Rhapsody, 2017] (UMTG works with the version of Rhapsody integrated with the
Eclipse development environment [Eclipse, 2017]). Figure A.1 shows the UMTG architecture.

The main components of UMTG are two plug-ins that extend Doors and Rhapsody. These plug-ins
provide the user interface of UMTG and orchestrate the other components of UMTG that implement
the steps in Figure 3.1 (see Figure A.1 where the black circles denote the steps).

Consistency 
Checker

Rhapsody
XMI Toolkit

OCL 
Editor

Rhapsody Plugin

Document
Exporter

NLP
Processor

DOORS 
plug-in

DXL Script 
Generator

Executable
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OCL
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Table Editor 
(Excel)

DOORS

Legend

Data 
Flow
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2
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Figure A.1. UMTG architecture (grey boxes show third party components, black boxes UMTG components
with nested components)

The UMTG Doors plug-in provides the menu buttons that activate the UMTG steps related to the
elicitation of use cases while the UMTG Rhapsody plug-in provides the menu buttons that activate
the steps related to test generation. Figure A.2 shows the contextual menus provided by the UMTG
plug-ins where black circles denote the corresponding steps in Figure 3.1.

The UMTG Rhapsody plug-in also provides the interface to visualize and edit the artefacts pro-
duced by UMTG. UMTG takes advantage of the plug-in architecture of Eclipse to reuse functionality
provided by third party plug-ins. In particular, UMTG relies upon the following user interfaces: the
Eclipse Web Browser to visualize the domain entities missing from the domain model, the OCL editor
provided by the Eclipse OCL plug-in [Eclipse OCL, 2017] to support software engineers in editing
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the list of OCL constraints, the Eclipse Text Editor to visualize abstract test cases, the default Eclipse
Table Editor (e.g. Microsoft Excel) to edit mapping tables, and the Eclipse Project Explorer to list
the UMTG artefacts.

IBM Doors plug-in IBM Rhapsody plug-in

3
2

5
8
10

Figure A.2. Menus provided by the UMTG plug-ins

The other components in Figure A.1 implement the steps of the UMTG workflow automated by
the UMTG toolset, i.e. Steps 2, 3, 5, 8, and 10 in Figure 3.1. The NLP Processor implements
Steps 2 and 3. It is based on the GATE workbench [Cunningham et al., 2002], an open source NLP
framework. To load use cases from IBM Doors, UMTG uses the Doors Document Exporter, an API
that exports Doors content as text files.

The UMTG Rhapsody plug-in implements Steps 5, 8, and 10. The UMTG Rhapsody plug-in
relies upon a third-party application, the Rhapsody XMI Toolkit, to export the domain model in the
XMI format. This is necessary since Rhapsody saves models into its own proprietary format. The
Consistency Checker and the Abstract Tests Generator implement steps 5 and 8. The OCL Solver is
the constraint solver described in [Ali et al., 2013].

The Executable Test Generator implements Step 10, it takes the mapping table and the abstract
test cases as input, and generates the executable test cases as output. The Executable Test Generator
exploits the Door eXtension Language (DXL) to load the generated test cases into Doors. The DXL
functionality is also used to automatically generate the traceability links between use case specifica-
tions and the generated test cases. UMTG adds to each generated test case a set of traceability links
indicating the flow of the use case specifications covered by the test cases. Furthermore, for each use
case flow covered by a test case, it generates traceability links indicating the test cases covering it.

# The system sets all errors as not detected.
..
# [TRUE] The system VALIDATES THAT the seat heater circuit 
integrity is valid.
# The system requests CableShieldIntegrityStatus from the 
BodySenseSensor.
# [FALSE] The system VALIDATES THAT the cable shield integrity 
is valid.
# Postcondition: The system sets CableShieldIntegrityError as 
detected.
..
<INPUT> BodySenseSensor.SeatHeaterCircuitIntegrityStatus = 
DomainModel::HWStatus::OK
<INPUT> BodySenseSensor.CableShieldIntegrityStatus = 
DomainModel::HWStatus::NotOK
...
<CHECK> CableShieldIntegrityErrorIsDetected

A

B

C

Figure A.3. Example of an Abstract (left) and a corresponding Executable (right) Test Case Generated by
UMTG
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A.1.1 Test Cases Generation with The UMTG toolset
This section overviews a usage scenario of the UMTG toolset, with the aid of pictures of the imple-
mented tool.

UMTG automatically checks the RUCM syntax. Syntax checking is required to ensure the proper
functioning of the automated steps implemented by UMTG. Figure A.4 shows the window that in-
dicates the presence of syntax errors. By clicking on each error the user is directly pointed to the
erroneous step in IBM Doors.

Figure A.4. RCUM Syntax Report

After verifying use cases syntax engineers can switch to Eclipse/Rhapsody to edit the domain
model and very its consistency with the use case specifications (Figure 3.5).

The UMTG functionality for checking model consistency in UMTG (Figure A.2, label 5) shows
the results of the consistency check in a popup window (Figure A.5). The result is shown in Figure A.5
indicates that the entity ClassificationFilter is missing and might be added by software engineers to
the domain model.

Figure A.5. Consistency Check Report

The constraints to be provided by software engineers are then listed within Eclipse/Rhapsody in a
file named Conditions.ocl (Figure A.6).
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Figure A.6. List of OCL Constraints

Abstract test cases are generated in the ATS folder of the Rhapsody workspace. Abstract test cases
contain an header and a body (see Figure A.3).

UMTG generates two sets of test cases: abstract test cases and executable test cases (see Fig-
ure A.3).

Abstract test cases include test inputs and oracles expressed in terms of domain model entities.
The left part of Figure A.3 shows an example of an abstract test case. Abstract test cases are saved
in text files under the Eclipse/Rhapsody workspace. Each abstract test case includes a header section
that depicts the steps of the scenario under test, and a body section with a list of input operations
and oracles. The header lines in Figure A.3 show that the test case covers a scenario in which the
condition the cable shield integrity is valid is false (header lines begin with the symbol #). One of the
test inputs in Figure A.3 is an assignment of the value NotOK to CableShieldIntegrityStatus (this is
the value that falsifies the condition above).

Step 9. A mapping table is provided by software engineers (Figure A.9).

Figure A.7. Mapping table

Step 10. Test cases with traceability links are directly generated in Doors (Figure A.8).

Figure A.8. Traceability Links Generated for a Test Case.
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The executable test cases generated by UMTG extend the abstract test cases by including calls to
the test driver functions that need to be invoked to execute the system.

The right part of Figure A.3 shows a portion of an executable test case generated by UMTG.
The generated test case includes lines with abstract test inputs that are included to provide high-level
operation descriptions. These lines are followed by the test driver functions with the concrete inputs
to be used to test the system. Label A in Figure A.3 points to the high-level operation description
that indicates that the test case must set the CableShieldIntegrityStatus to the ‘failed’ status. Label B
points to the corresponding test driver function, i.e., Set AMGB. Set AMGB is used to simulate an input
signal coming from a sensor (in this case it sends an error status on the channel of the shield integrity
sensor). The generated test case also contains test oracles. Label C shows an oracle implemented by
means of an invocation of function Lin Publish, which is used to check the signals sent on a channel.

Executable test cases are generated by means of a mapping table that is provided by software
engineers. Figure A.9 shows a portion of the mapping table used for BodySense. To generate calls to
driver functions, UMTG parses each line in the abstract test cases according to the mapping table. The
mapping table is made of five columns. The first two columns provide operation names and regular
expressions that match an input in the abstract test case. The last three columns provide the driver
function calls and parameters that should be added to the executable test case when an abstract input
matches the regular expression.

Figure A.9. Portion of a Mapping Table

A.2 TAUC Toolset
TAUC has been implemented as a set of Java programs integrated with both the UPPAAL model
checker and UMTG. The programs belonging to TAUC have been wrapped into a set of executable
executable jar files. In the following, we describe the developed programs according to their role, i.e.
if they implement the TAUC technique and thus can be used to perform test generation, or if they are
support tool that we adopted to perform the empirical evaluation.

A.2.1 Test Generation Tools
Two programs belong to this category ttmGen and taucGen. The program ttmGen processes two
inputs: (1) a network of UPPAAL timed automata including timing requirements automata and envi-
ronment automata, and (2) the functional test cases generated by UMTG. ttmGen generates as output
a Timeliness Test Model in the UPPAAL TA format. ttmGen follows the process described in Chap-
ter 4.5. First, ttmGen generates scenario automata from the UMTG functional test cases, then it
identifies the dependencies between timing requirement automata and functional scenarios following
the rule defined in Chapter 4.4 . Recall that the dependencies between timing requirement automata
and functional scenarios are of two kinds: (1) outputs produced by functional scenarios may fire state
transitions, (2) certain functional scenarios can be executed if and only if the system has reached
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specific states, i.e. specific state invariants are true. Finally ttmGen generates the augmented timing
requirement automata by augmenting the dependency information with the time timing requirement
automata.

The program taucGen instead is the TAUC test case generator, and it is used to generate timeliness
test suite after the Timeliness Test Model has been generated. taucGen takes as input a Timeliness Test
Model. Figure A.10 shows the list of arguments accepted by taucGen.

Figure A.10. Description of taucGen.jar

A.2.2 Empirical Evaluation Tools
In chapter 4.8 we have shown that we evaluated the effectiveness of TAUC against a set of modified
timed automata that simulate the presence of faults in the system. To this end, we implemented three
programs, muTA, vmodels, and verifier. The first generates mutated timeliness models, the second
translates the test cases generated by TAUC into timed automata, the third simulates the execution of
test cases against these models.

The program muTA automatically generates modified Timeliness test model by relying upon a
subset of the mutation operators suggested in [Aboutrab et al., 2013, Aichernig et al., 2013] which
may impact timing requirements. This enables the generation of mutants that represent faulty imple-
mentations of the system. Figure A.11 shows a description the program arguments of muTA.

Figure A.11. Description of muta.jar

The program vmodels translates generated test cases into sequential timed automata (hereafter test
automata) by following the approach described in [Hessel et al., 2004], and then embeds the generated
automata into each mutated model generated by muTA. Each of the generated models is composed
by a test automata and a mutated timeliness test model, we use the term verification model to refer to
these generated models. Figure A.12 shows the parameters accepted by vmodels.

92



A.3. STUIOS Toolset

Figure A.12. Description of vmodels.jar

The program verifier finally, determines if each test case may fail or not if executed against a
program that behaves as the mutated model. In addition to this, the program verifier counts the
amount of mutated specifications killed by the test suite. A mutated specification is killed by the test
suite when at least one of the test cases belonging to the test suite fails. Figure A.13 shows the usage
of verifier.

Figure A.13. Description of verifier.jar

A.3 STUIOS Toolset
We have implemented STUIOS as a set of Java program briefly described in the following.

The program testBuilder automatically generates a stochastic test suite from a given set of test
cases. testBuilder implements the algorithm described in Figure 5.8 of Chapter 5. To this end,
testBuilder interacts with the UPPAAL API in order to automatically identify the potential UIO se-
quences, and then executes UPPAAL to identify the valid UIO sequences and the probabilities for
both the test cases and the PUIO sequences identified.

The program stochasticOracle is a wrapper around the R toolsuite [R Core Team, 2013] which
is used to calculate the Wilson Score interval and then decide the test execution results. For each
executed test case stochasticOracle checks if the output corresponds to the output of the stochastic
test case, if not, it checks if the output is legal by using the UPPAAL simulator APIs to determine if
the timing specifications given by the end users may generate the given output. Finally it determines
whether to stop testing or not according to the criterion indicated in Section 5.3.6.

The STUIOS test suite has not been made available to other researchers yet, this is planned in our
future work.
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