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ABSTRACT

The features of a software product line—a portfolio of system
variants—can be realized using various variability implementation
techniques. Each technique represents a feature’s software artifacts
(a.k.a. feature artifacts) differently, typically classified into anno-
tative and modular variability representations, each with distinct
advantages and disadvantages. Annotative representations, such as
C preprocessor annotations, are easy to apply, but clutter source
code and hinder program comprehension. Modular representations,
such as feature modules, support comprehension, but are difficult
to realize. Most importantly, to engineer feature artifacts, developers
need to choose one representation and adhere to it for evolving and
maintaining the same artifacts.

We present the approach PEoPL (Projectional Editing of Product
Lines), which combines the advantages of different variability rep-
resentations. When engineering a feature artifact, developers can
choose the most-suited representation for the given task, switch
representations on demand, and even use different representations
in parallel. PEoPL relies on separating a product line into an in-
ternal and external representation, the latter by providing editable
projections used by the developers.

In summary, we contribute a programming-language-independent
internal representation of variability, seven editable projections re-
flecting different variability representations (e.g., annotative, modu-
lar, variant-specific, reuse-specific), facilities for modeling, analyzing
and managing variability, a supporting IDE, and a tailoring of PEoPL
to Java and fault trees.

We evaluate PEoPL using three different methodologies. First,
we classify PEoPL using a well-defined set of quality criteria along
with other implementation techniques, finding that PEoPL provides
a novel engineering flexibility, and that the approach is indeed
desirable. Second, we evaluate PEoPL’s practicality, scalability, and
flexibility in eight Java-based product lines, finding that all can be
realized, projections are feasible, and that variant computation is
fast (<45ms on average for our largest subject Berkeley DB). Third,
to learn more about PEoPL’s practicality and usability, we conduct
two pilot user studies, finding that the approach is usable, and that
switching representations is useful. We conclude that PEoPL is ready
for real users.
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Part1

THE (IN)FLEXIBILITY OF VARIABILITY
ENGINEERING



INTRODUCTION

A software product line (SPL) is a customizable portfolio of software
systems engineered in a specific application domain, such as telecom-
munication, automotive or industrial automation [46, 146]. Ideally,
the portfolio is constructed in terms of end-user-visible domain ab-
stractions, so-called features [30]. These can be selected, for instance
by a customer, to initiate an automated process, which reduces the
portfolio to a concrete, individual software system (a.k.a. variant or
product) [14]. Since different individual variants are derived from a
single portfolio, they typically share common parts. For example, all
variants that can be derived from a park assistant SPL may support
a common set of distance sensors, but the support for the features
autonomous parking, assisted parking, or even both, is variable and de-
pends on the customer’s choices.

As such, engineering an SPL amounts to leveraging the common-
alities among variants, while managing the differences (a.k.a. vari-
abilities) among them [14]. In doing so, we distinguish two key ac-
tivities: modeling and implementing variability [14, 159]. Variability
modeling reflects the stakeholders’ perspective, their requirements
and the definition of the individual variants that can be derived from
the SPL [14]. In fact, developers capture all their abstract design de-
cisions in a variability model by declaring features and dependencies
between features. To implement these feature declarations (i.e., to im-
plement variability), many language- and tool-based techniques, so-
called wvariability mechanisms have emerged. This includes wvariability
annotations [94, 102, 121, 177], templates [94], deltas [115, 157, 158] or
feature modules [7, 11, 22, 147]. Each technique provides different mech-
anisms for constructing a feature’s common and variable software
artifacts (a.k.a. feature artifacts) [14, 30]). Although each technique rep-
resents feature artifacts differently, the majority of them can be dif-
ferentiated into annotative and modular representations, each having
their own advantages and disadvantages [7, 159, 198].

Annotative representations—e.g., the C preprocessor (CPP), or the
Colored IDE (CIDE) [102]—capture all feature artifacts directly in the
codebase by wrapping them with annotations (i.e., textual or visual
variability markers). Such annotations are easy to apply, but chal-
lenge program comprehension [135] by obscuring the structure and
data-flows of source code [177]—hampering editing experience and
impacting maintenance and evolution negatively [65]. Moreover, de-
velopers always see all possible variants, many of which might not be
relevant for the current engineering activity.



1.1 PEOPL OVERVIEW

Modular variability representations—e.g., AHEAD [22], and Fea-
tureHouse (FH) [7]—capture all feature artifacts of a feature in one
module. Thus, they facilitate a clear structure of the system and allow
engineering features without being distracted by irrelevant ones. Yet,
decomposing a system into modules is challenging since it requires
finding the right decomposition strategy and since creating modules
imposes substantial overhead for fine-grained program extensions.

Although annotative and modular representations are complemen-
tary [100, 103, 118, 171], existing approaches for implementing SPL
variability typically focus on only one representation. Most impor-
tantly, these approaches force developers to choose one representa-
tion for developing a feature artifact and to adhere to it for evolv-
ing and maintaining this artifact. While refactorings were proposed
for switching between annotative and modular representations [103],
such refactorings are heavyweight and do not allow to quickly switch
the representation for a feature artifact. Ideally, developers could ex-
ploit the benefits of different representations on-demand and always
flexibly choose the one that suits the current engineering activity. In
addition, it is desirable to maintain the possibility to switch to and
edit individual variants [178, 205, 206] since implementation complex-
ity can be reduced this way.

1.1 PEOPL OVERVIEW

In this dissertation, we present the approach PEoPL (Projectional Edit-
ing of Product Lines), which realizes the desired SPL engineering flex-
ibility. PEoPL allows developers to flexibly choose and switch to the
best suited among very different variability representations of feature
artifacts. Moreover, developers can use these representations in paral-
lel (side-by-side) even for the very same artifact.

The core idea of PEoPL is to establish an internal representation
of the SPL and separate it from the external representations that de-
velopers use. Figure 1.1 illustrates PEoPL’s key ideas and concepts.
Internally, the feature artifacts are uniformly represented in a varia-
tional abstract syntax tree (AST). Externally, this variational AST is rep-
resented using different editable projections which developers use
to engineer feature artifacts. Any of their editing activities directly
changes the underlying AST, which immediately updates all projec-
tions. We conceive projections showing feature artifacts as (i) textual
annotations (#ifdef), (ii) visual annotations (colored bars), (iii) fea-
ture modules, (iv) annotations blended into modules, (v) variants (i.e.,
hiding artifacts related to non-selected features), (vi) fine-granular
fade-in feature modules, and (vii) reused code snippets (for avoiding
feature-related Type-I code clones [153, 162]).

Based on our internal variability representation, we also conceive
two variability modeling facilities (simple and advanced), which en-



1.1 PEOPL OVERVIEW

editing
@ 1 ) } Developer
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Internal representation CoreVar tailorings (e.g., JavaVar)

Figure 1.1: PEoPL separates internal and external variability representations

able developers to setup their SPLs and derive concrete, executable
variants. Moreover, we provide variability management facilities that
enable developers to handle an SPL’s inherent complexity by automat-
ing the extraction of dependencies between features and analyzing
data-flows of variants.

We show the feasibility of the PEoPL approach by realizing a com-
plete IDE, built upon the language workbench Jetbrains Meta Pro-
gramming System (MPS)'[145, 202]. The PEoPL IDE realizes our pro-
jections and operations for engineering feature artifacts while benefit-
ing from MPS’ common program-editing facilities (e.g., for Java). To
evaluate the PEoPL approach and IDE, we use three different method-
ologies.

First, we use and extend existing classification frameworks to clas-
sify PEoPL together with other SPL implementation approaches. Our
results show that PEoPL compares well with other SPL implementa-
tion approaches while providing a novel SPL engineering flexibility.

Second, we use the PEoPL proof-of-concept IDE to adopt and im-
plement eight Java SPLs. Our largest subject (and running example)
is Berkeley DB, an SPL with 70kLOC including 42 features and 218
classes. PEoPL’s expressiveness suffices to realize all SPLs without
any workarounds. The evaluation also shows that it is feasible and
practical to conceive an internal representation that is projected into
very different external representations. Furthermore, our approach
scales: all projections can be rendered and edited without introduc-
ing significant latencies. For instance, variant editing is smooth, since
computing a specific file variant (<1ms on average for all subjects)
and calculating all AST nodes included in a variant is quick (<45ms
for Berkeley DB on average).

Third, we conduct two explorative pilot user studies to learn more
about PEoPL’s practicality and usability. Our results show that the
approach is ready for real users and that choosing between multiple
representations of feature artifacts is useful.

1 https://www.jetbrains.com/mps/
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1.2 CONTRIBUTIONS

1.2 CONTRIBUTIONS

This dissertation contributes to the domain of software product line
engineering research. Figure 1.2 shows a dissertation roadmap pro-
viding an overview of our contributions and their relationships.

CHALLENGES, CLASSIFICATION AND COMPARISON. Based on
the literature, our experience of using PEoPL and other tools, and
our observations made in two pilot user studies (Sec. 5.3), we explore
three major challenges that arise when being bound to a single con-
crete variability representation (Sec. 2.5). On this basis, we use and ex-
tend existing classification frameworks to compare PEoPL with other
SPL implementation approaches [100, 118] (Sec. 5.1). Our results un-
derline the value of a symbiosis of different variability representa-
tions.

INTERNAL VARIABILITY REPRESENTATION. Given the opportu-
nities of a symbiosis, we unify variability representations using a
language-oriented approach. We present a novel variability language
called CoreVar, enabling a uniform treatment of variability indepen-
dent of the end-user visible concrete syntax (Ch. 7). In a nutshell,
the language concepts of CoreVar are used to annotate arbitrary AST
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Figure 1.2: Dissertation roadmap showing the main contributions
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nodes—creating a variational AST (Sec. 7.1). CoreVar is black-box
generic, independent of programming languages and even artifact-
types, and thus, not bound to textual representations. With CoreVar,
we also introduce a set of generic editing operations to enable devel-
opers to manipulate variational ASTs (Sec. 7.2), and an infrastructure
to derive variants (Sec. 7.3). For meaningful variational ASTs, Core-
Var provides a tailoring infrastructure and domain-specific languages
(DSLs) supporting the declaration of annotatable language concepts
(e.g., Java’s Statement concept) and more (Sec. 7.4). Thus, CoreVar
can easily be tailored to specific (programming) languages. In sum-
mary, PEoPL relies on composing CoreVar, the concrete target lan-
guage (e.g., Java), and a language tailoring CoreVar to the target lan-
guage (cf. Fig. 1.1). We give examples and an implementation to make
full Java 1.8 and a fault-tree language variability-aware (Sec. 7.5).

EXTERNAL VARIABILITY REPRESENTATIONS. Based on CoreVar,
we present the conceptual design and proof of concept for rendering
a common, variational AST into different variability representations
(Sec. 8.1). We also show that the model can be rendered into differ-
ent variability modeling facilities (Sec. 8.2). To this end, we provide
projections for textual and visual annotations and feature modules,
as well as projections that allow blending annotations into modules,
reusing elements, and editing variants. Moreover, we show the flexi-
bility of projectional editing by proposing a fade-in module projection
which integrates code of external modules to support fine-grained
changes. We also present concrete usage scenarios for all projections
(i.e., from the developer’s perspective) using Java, mathematical for-
mulas, and fault trees (Ch. 3 and 4). This way, we demonstrate that
the approach is, in fact, independent of languages and artifact-types.

VARIABILITY MANAGEMENT FACILITIES. To support developers
in dealing with an SPL’s inherent complexity (Sec. 4.2 and Ch. 9),
we conceive ways for extracting artifact-related feature dependencies
(a.k.a. feature artifact dependencies). In fact, based on a variational
AST, constraints describing dependencies between features can be ex-
tracted automatically from the SPLs implementation without prior
static analysis (cf. [137]). Consequently, static declaration and main-
tenance of such dependencies in a variability model is unnecessary.
Moreover, we support developers in performing a variant-based data-
flow analysis.

PRACTICAL APPLICABILITY. To show the practical applicability of
our entire approach, we provide a proof-of-concept implementation
with the PEoPL IDE (Ch. 6). Based on the MPS language workbench,
we present an industry-strength variability-aware IDE with support
for a full GPL (i.e., Java). While we just use the projectional editing
technology of MPS for our realization, we provide evidence that our
solution scales for rendering different variability representations. To
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evaluate the PEoPL approach and IDE, we conduct eight Java case
studies with subjects up to 70KLOC (Sec. 5.2). In two pilot user stud-
ies, we demonstrate PEoPL’s practical usability, emphasizing that it is
ready for real users (Sec. 5.3). We also contribute an online appendix?
with replication packages and screencasts.

1.3 READING GUIDE AND OUTLINE

This dissertation is divided into three parts and twelve chapters. Part i
contains this introduction and provides the necessary background
knowledge. Part ii is concerned with engineering and managing vari-
ability using PEoPL (i.e., the SPL developer’s perspective). Part iii
discusses how PEoPL is realized and how it can be used to make lan-
guages variability-aware (i.e., the language engineer’s perspective).
Notice that Part ii and iii are closely related, and thus, switching be-
tween the two is possible. For instance, it is possible to start reading
how projections are used by developers (Ch. 3), and then to move
on with the realization details (Sec. 8.1). Notice that before reading
the details, it is helpful to get to know PEoPL’s tooling and archi-
tecture (Ch. 6), and in particular, PEoPL’s feature model depicted in
Figure 6.3. We now provide an overview of the remaining chapters.

Part I: The (In)Flexibility of Variability Engineering

CHAPTER 2 introduces a running example and the necessary back-
ground for understanding this dissertation. To familiarize readers
with the key concepts, we discuss different variability modeling ap-
proaches and variability representations, and show how to map from
modeling artifacts (i.e., features) to implementation artifacts (i.e., fea-
ture artifacts). Finally, we discuss the challenges caused by being
bound to a single variability representation.

Part 1I: Engineering and Managing Variability in PEoPL

CHAPTER 3 presents PEoPL from the SPL developer’s perspective,
discussing how it addresses the challenges caused by variability and
how it can be used to engineer an SPL. We present how an SPL can be
implemented, using different projections (e.g., annotations, modules,
variant-specific). Realization details of this chapter are presented in
Chapter 7 and Chapter 8.

CHAPTER 4 discusses how an SPL can be set up and managed in
PEoPL. We outline how PEoPL helps developers to deal with an SPL’s
inherent complexity using feature constraint extraction and variant-

2 http://www.peopl.de
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based data-flow analysis. Realization details of this chapter are pre-
sented in Section 8.2 and Chapter o.

CHAPTER 5 intends to encourage developers to exploit PEoPL’s
novel flexibility. All in all, we present how we evaluate PEoPL from
the SPL developer’s perspective. We show PEoPL’s practical applica-
bility, novelty and usability. We catalog concrete popular approaches
and compare them with PEoPL. Then, we implement eight Java-based
product lines. Finally, we conduct two explorative pilot user studies
with students.

Part 1II: Realizing PEoPL using Language Engineering

CHAPTER 6 briefly presents PEoPL’s tooling and architecture, and
therewith provides a basis for the following chapters. Moreover, we
discuss the underlying platform MPS and its key properties necessary
to understand the remaining implementation details.

CHAPTER 7 presents PEoPL’s internal representation and intro-
duces the programming-language-independent variability language
CoreVar. We present CoreVar’s variability formalizations, a corre-
sponding language structure, generic editing operations, and variant
derivation facilities. We also present how to employ CoreVar to make
concrete target languages variability-aware (i.e., Java and fault trees).

CHAPTER 8 presents PEoPL’s external representations. We present
several variability representation projections and the concrete realiza-
tion of each in PEoPL. We also present the realization of PEoPL’s
modeling facilities.

CHAPTER 9 shows how to extract feature constraints from a varia-
tional AST, and how to realize the variant-based data-flow analysis.

CHAPTER 10 evaluates PEoPL from the language engineer’s per-
spective comparing language independence and variability represen-
tation independence. Moreover, we discuss the effort to realize and
extend PEoPL.

CHAPTER 11 provides an overview on closely related work.

CHAPTER 12 concludes the dissertation and provides a discussion
on future directions of the PEoPL approach.

8
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ENGINEERING VARIABILITY IN CLASSICAL
APPROACHES

We start by outlining the process of engineering and managing SPL
variability (Sec. 2.1). Then, we discuss the idea of configuring vari-
ability using a running example (Sec. 2.2). Thereafter, we focus on
the variability engineering process and its differentiation into model-
ing variability and implementing variability. With feature modeling,
we present a popular variability modeling approach (Sec. 2.3). Subse-
quently, we introduce different well-known approaches to implement
SPL variability (Sec. 2.4). Finally, we discuss the challenges of imple-
menting variability (Sec. 2.5), and conclude that a flexible implemen-
tation approach is missing, yet desirable (Sec. 2.6).

2.1 PROCESS OF ENGINEERING AND MANAGING VARIABILITY

Classical software engineering is concerned about single software prod-
ucts (a.k.a. software variants) that are tailored to a customer’s require-
ments manually. To build different but related software products, for
instance for other customers, software engineers typically copy or
branch the code to be reused and customized, which is an ad hoc
strategy called clone-and-own (a.k.a. grow-and-prune) [3, 64, 75, 136].
Although engineers can make quick changes in the beginning, evolv-
ing and maintaining all cloned variants is a challenging task. For ex-
ample, it is difficult to fix a bug in a multitude of clones [91].

In contrast, SPL engineering facilitates systematic reuse and au-
tomated software customization [14, 46, 146]. An SPL is a portfo-
lio of software variants, which is typically constructed in terms of
stakeholder-visible features [14, 30]. From a feature selection, an indi-
vidual variant can be derived automatically. Hence, the variants can
be distinguished by the features they realize. Since variants may share
features, commonalities among variants are possible.

As such, engineering SPL variability amounts to engineering fea-
tures. Figure 2.1 illustrates the engineering process, which is typi-
cally distinguished into two major engineering activities: modeling
variability and implementing variability (cf. [14, 159]). Modeling vari-
ability amounts to constructing a variability model—a specification
of features and their relationships on an abstract level. The variability
model captures the SPL engineer’s scoping decisions—the features
that are to be supported by the SPL—as well as all satisfiable feature
selections. To realize the scoping decisions in code, developers imple-
ment the desired features in terms of concrete feature artifacts. In fact,
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Figure 2.1: Engineering and managing SPL variability: An overview

each feature artifact is implemented by using exactly one of various
SPL implementation techniques [14, 159]. Notice that each technique
represents a feature artifact differently, and thus, the variability rep-
resentation differs among these techniques (cf. Sec. 2.4).

Since a feature artifact may use or refer to artifacts of other features,
dependencies between features may arise. Such artifact-related fea-
ture dependencies are typically extracted into the variability model
to maintain the satisfiable feature selections. This variability manage-
ment is crucial since feature artifacts serve as input for variant gen-
eration, which fails if an artifact-related feature dependency is not
satisfied. For example, imagine a method call foobar being a feature
artifact of a feature Foo. Now assume that foobar refers to a corre-
sponding method declaration which, however, is a feature artifact of
a feature Bar. Note that we introduced an artifact-related feature de-
pendency. The feature Foo depends on Bar to function correctly, and
thus, variant derivation fails if only Foo but not Bar is selected. In fact,
a dangling reference appears as foobar cannot be resolved. That is,
no declaration matches the call’s signature.

2.2 CONFIGURING VARIABILITY

Throughout this dissertation, we discuss real-life SPL examples taken
from our case studies, whenever suitable. In this Chapter, to ease un-
derstanding the different ways of engineering variability, we mainly
use a Stack SPL, which has been similarly used in previous work by
others [67, 100, 102, 147, 162, 165]. Implementing a stack is a common
computer science problem, and thus, simple enough to easily acquire
domain-knowledge. Yet, it is also complex enough to illustrate dif-
ferent variability representations and their respective strength and
weaknesses.

The Stack SPL is a portfolio of stack libraries, each of which is dis-
tinguished by the features it realizes. Based on a feature selection,

11
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the Stack SPL can be tailored to a specific stack library. One way to
enable feature selections are configuration menus. Figure 2.2 shows
an example menu for our Stack SPL. Radio buttons enable choos-
ing either the feature Array or Stack. The rationale is that the stack’s
data can be either stored in an array or a list, but not in both at the
same time. Thus, stakeholders need to decide between performance
(array) and flexibility (list). Moreover, optional features are selectable
via checkboxes. For instance, Synchronization, which enables access-
ing the stack from multiple threads, and Undo, which allows undoing
the last operation—that is, push or pop.

Realizing a configuration menu from scratch is very time consum-
ing. For instance, artifact-related feature dependencies must be im-
plemented manually. In fact, we would need to write an algorithm
that (un)checks dependant features in the menu automatically. For in-
stance, to find the target object in the stack, assume that a feature arti-
fact of the feature Search uses an iterator defined in the feature Iterable.
Then, Search depends on the feature Iterable to function correctly and
thus, we need an algorithm that selects Iterable automatically when
Search has been selected. Otherwise, the stack library variant to be
derived would be invalid.

In summary, it is desirable to reduce the effort of implementing
such menus. Optimally, we could derive the configuration menu
and the algorithms to handle dependencies automatically. Variability
modeling approaches address this desire.

Stack Software Product Line: Feature Selection Menu

Storage: ® Array O List
Iterable: [ ] provide means to iterate over the stack elements
Synchronization: [ | support synchronized stack access
Commands

Clear: []allow clearing the stack
Undo: [ ] allow undoing the last operation

Search: [ ] allow searching for an element

StringBuilder: [ ] allow building a string from the stack's content

Logging: log operations to [ | terminal, and [ ] file

Test: [ | provide several test routines to test the stack library

Figure 2.2: Configuration menu of the Stack SPL

2.3 MODELING VARIABILITY

Variability modeling enables engineers to express an SPL’s features
and their dependencies. Several approaches for modeling variability
have been proposed, such as feature models [99], grammars [21, 51, 95],
propositional formulas [21], clafers [18], and KConfig models [129]. We fo-

12
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cus on the widely used feature models since they help understanding
this dissertation.

A feature model is a hierarchical configuration menu that repre-
sents features in a tree-like structure [99]. As such, individual features
have a parent-child relationship. Each feature is either abstract or con-
crete [185]. Abstract features do not have any feature artifacts as they
are typically used to structure the feature model. Moreover, each fea-
ture is either optional or mandatory with the latter being selected by
default. The children (a.k.a. sub-features) of a feature may be grouped
in an or-group or an alternative-group. In an optional or-group, none,
one, many or all features may be selected. In contrast, in an alter-
native group, which represents a one-out-of-many relationship, only
exactly one of the group’s features may be selected.

Figure 2.3 shows a feature model for our Stack SPL, which con-
forms to the configuration menu discussed above (Fig. 2.2), while the
feature model provides more design details. The abstract feature Log-
ging has the concrete sub-features Terminal and File. The two features
are in an or-group—that is, either Terminal or File, or both features
can be selected. Since the feature Logging is optional, neither Terminal
nor File must be selected. In fact, there can be variants without log-
ging support. The abstract feature Storage in turn is mandatory, and
thus, one of its children must be included in a variant to produce a
valid stack library. Its sub-features Array and List are in an alternative-
group—that is, only one of the two features can be selected for the
stack’s underlying data storage. As a result, either Array or List must
be selected (modeled via radio-buttons in Fig. 2.2).

As detailed above, simple artifact-related feature dependencies
may appear in the variability implementation. However, variability
modeling is not restricted to expressing such dependencies. In fact,
engineers can constrain the selection of features in a more general
sense to enforce the correct behavior or “appearance” of variants.
The tree-like structure of feature models already provides means
to express simple constraints, such as alternative-groups. So-called

Stack Legend:
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Optional

g\
Logging | | Test Or
N

/‘\ Alternative

Terminal File

Storage lterable Commands Synchronization

AZa N

Array List Clear Undo Search StringBuilder

Abstract

Concrete

Search = lterable
StringBuilder = Iterable

Test A List A Synchronization = Clear

Figure 2.3: Feature model of the Stack SPL
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cross-tree constraints enable more complex configuration restrictions.
A cross-tree constraint is a propositional formula over features,
expressing dependencies and relationships between (multiple) fea-
tures [21]. Notice that our feature model depicted in Figure 2.3
contains three cross-tree constraints, each of which uses an implies-
operator (=). For instance, selecting the feature Search implies that
the feature Iterable must be selected as well, which is indicated by
the constraint Search = Iterable. The third constraint is also simple.
It says, if all three features Test, List and Synchronization are selected,
then Clear must also be selected.

In summary, a feature model allows expressing complex feature
relationships. Moreover, it serves as input for automatically deriving
configuration menues and the algorithms handling dependencies.

2.4 IMPLEMENTING VARIABILITY

Variability modeling defines features as domain abstractions that de-
scribe the functional and non-functional characteristics of an SPL.
To realize the desired characteristics, each feature is typically imple-
mented in (multiple) feature artifacts. To implement a feature artifact,
developers can choose from various SPL variability implementation
approaches. Since each approach represents feature artifacts differ-
ently, we start with a brief overview on the different variability repre-
sentations, followed by a brief description how variants are derived
from the respective representations. Then, we take a closer look at
annotative, modular and variant representations.

2.4.1  Qverview of Implementation Approaches

VARIABILITY REPRESENTATIONS. Features can be implemented
in various ways, for instance by using variability annotations [94, 121,
150, 177], templates [94], aspects [2, 111], deltas [157, 158], or modules [7,
11, 22, 147]. Although features are implemented differently, many of
these approaches represent a feature’s artifacts either as annotations
or modules [14, 159]. Some approaches also allow showing the feature
artifacts conditionally—that is, representing the SPL’s variability in a
concrete variant based on a feature selection (cf. Fig. 2.4).

Annotative representations constitute feature artifacts as variabil-
ity annotations (e.g., CPP and CIDE [102]). Each annotation marks a
snippet of the codebase as variable, and thus, the implementation of
a feature is scattered across the program (cf. Fig. 2.4a).

Variant representations are typically realized on top of an anno-
tative representation (e.g., version editor [16] and CIDE [104]). They
enable developers to edit SPL variants in isolation—that is, editing
only the feature artifacts relevant for the current task (cf. Fig. 2.4b).
Thus, the SPL’s variability is shown in a less complex manner.
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Figure 2.4: Implementing features using different variability representa-
tions: features in the variability model (upper halfs) and feature
artifacts in the variability representation (lower halfs)

Modular representations aggregate all feature artifacts of a feature
in a distinct cohesive unit (cf. Fig. 2.4c), which is also called compo-
sition unit [7], feature module [99, 147], delta module [157, 158], or just
module [22]. For brevity, we mainly use the term module throughout
this dissertation. The key idea is to start with a common base mod-
ule and use other modules to step-wise introduce new structural ele-
ments, and refine or override existing elements [22, 56] (e.g., AHEAD
or FH), or even remove existing elements [158] (e.g., delta modeling
approaches [115, 157, 158]).

On a final note, some approaches represent variability neither
pure modular nor pure annotative [7, 97], for instance, Aspect] [110],
invasive software composition [15], explicit programming [41], metapro-
gramming with traits [149], FeatureCoPP [118], and the compositional
choice calculus [204]. These hybrid approaches, typically combine
annotations with feature modules.

VARIANT DERIVATION. The core essence of all SPL implementa-
tion approaches is the ability to provide a variant from the variabil-
ity representation. We distinguish compile-time and runtime variabil-
ity [14]. Approaches supporting the latter skip the content not con-
tained in the variant during runtime. In contrast, approaches sup-
porting compile-time variability physically transform the feature arti-
facts into a variant. Annotative approaches realize this transformation
by removing irrelevant feature artifacts from the SPL during variant
derivation (a.k.a. negative variability [80, 198]). In contrast, many mod-
ular approaches [7, 22] are composition-based. They synthesize fea-
ture artifacts to derive a variant (a.k.a. positive variability [8o, 198]).
Some approaches, such as delta modeling, support negative and pos-
itive variability, and thus, allow a complex variant restructuring.

On a final note, there are approaches that only support a manual
derivation of variants, yet facilitate reuse [97]. Components and ser-
vices are the most prominent modular examples for non-automated
SPL development [20, 122, 146]. The problem with these approaches
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is that it is time-consuming to deploy a variant by integrating differ-
ent components/services manually. In this dissertation, we focus on
an automated derivation of variants from a feature selection, and thus
omit a detailed discussion of non-automated approaches.

2.4.2 Annotative Representations

As exemplified in Figure 2.4a, annotative approaches implement
features using variability markers embedded into a program. These
markers are either textual or visual. Next, we discuss a concrete
approach of either category, and provide an overview on related
work.

2.4.2.1  Textual Annotations: The C Preprocessor

The CPP is the most frequently used and most contested approach
to implement textual annotations and variability [65, 66, 121, 177].
It has been used in various software projects [126] with the Linux
kernel being the most prominent large-scale example. In fact, kernel
release 4.8.6" comprises over 11,000,000 LOC and around 16,000 fea-
tures (a.k.a. configuration options), most of which can be selected to
derive a kernel variant [1, 29], for instance for a router, server, or PC.

The CPP has been originally written for C, but it is a language-
independent text-processor. Its textual annotations are called prepro-
cessor directives. The directives #if, #ifdef, #ifndef, #elif, #else, and
#endif mark the beginning and the end of a feature artifact. Each di-
rective has a presence condition—typically a Boolean expression over
features. Based on a feature selection, the CPP evaluates each pres-
ence condition to a Boolean value in a preprocessing step. The con-
tent of directives whose presence condition evaluates to true is part
of the selected variant, content of the ones evaluating to false not.

Figure 2.5 shows a CPP implementation excerpt of our Stack SPL.
Each concrete feature—declared in the feature model in Figure 2.3—is
implemented, using a set of textual annotations. For instance, feature
artifacts of the feature List appear in two different program locations
(Lines 11-14 and 45—46). The corresponding code is only included
in the final variant if the feature List has been selected, otherwise
removed.

Notice that developers use Boolean operators in presence condi-
tions to express the combination of features in various situations [126],
for instance, to achieve compliance with the feature model [155], to
avoid code duplication, or to implement feature interactions explic-
itly. Feature interactions are of particular importance in SPL develop-
ment since they are a cause for subtle errors. Two features interact if
they behave well in isolation, but not in a setting with both being se-

1 http://kernel.org/
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1| #ifdef Stack

2 | public class Stack

3 | #ifdef Iterable

4 | implements Iterable<Object>

5 | #endif

6 {

7 private int top = 0;

8 #ifdef Array

9 private Object[] dataArray;

10 #elif List

11 private Stack.Node topNode = null;

12 private class Node { ...

13 private Node(Object element, Stack.Node next) { ... }
14 }

15 #endif

16 #ifdef Synchronization

17 private final ReentrantLock lock = new ReentrantLock();
18 private final Condition notEmpty = lock.newCondition();
19 #endif

20 #ifdef Synchronization && Array

21 private final Condition notFull = lock.newCondition();
22 #endif

23 public void push(Object data)

24 #ifdef Array || Synchronization

25 throws

26 #ifdef Array

27 ArrayIndexOutOfBoundsException

28 #endif

29 #ifdef Synchronization

30 , InterruptedException

31 #endif

32 #endif

33 {

34 #ifdef Synchronization

35 lock.lock();

36 try {

37 #endif

38 #ifdef Synchronization && Array

39 while (isFull()) notFull.await();

40 #endif

41 #ifdef Array

42 if (isFull()) throw new ArrayIndexOutOfBoundsException();
43 dataArray[top] = data;

44 #elif List

45 Stack.Node newElement = new Node(data, topNode);
46 topNode = newElement;

47 #endif

48 top++;

49 #ifdef Synchronization

50 notEmpty.signalAll();

51 } finally { lock.unlock(); }

52 #endif

53 }

54 public Object pop() ... { ... }

55 #ifdef Array

56 private boolean isFull() { return top >= dataArray.length; }
57 #endif

58 cee

59 | }

60 | #endif

Figure 2.5: Excerpt of a CPP-based Stack SPL implementation

lected [42, 108, 139]. Thus, to handle interactions, we need code that
explicitly coordinates the interaction.

In our CPP example, the features Array and Synchronization inter-
act. We use the presence condition Synchronization && Array to in-
clude the required coordination code when both features are selected
(Fig. 2.5, Lines 20 and 38). In fact, we add overflow-avoidance to array-
based, synchronized stacks—that is, if the stack is full, a thread must
wait until there is space on the stack again (Line 39).
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Line 24 shows another example for using Boolean operators. The
keyword throws is only included in variants if either Array, Synchro-
nization or both features have been selected. The concrete throws-
items are then included if their respective features are selected (Lines
26 and 29).

Notice that in the Stack SPL’s current implementation, we control
the mutual exclusion of the features Array and List—as expressed
in the feature model in Figure 2.3—using #elif directives, each of
which denotes that Array has priority over List (Lines 8, 10, 41 and 44).
That is, both features may be selected, but only the feature artifacts
of Array will be included in the variant then. To conform with the
feature model, we could express the mutual exclusion more explicitly.
In fact, we could use #ifdef Array && IList instead of #ifdef Array,
and #elif !Array && List instead of #elif List. Moreover, we could
throw an exception in #else blocks, or the Stack’s constructor, if
both features have been selected: #ifdef Array && List.

Not only the support for complex Boolean expressions makes the
CPP a very powerful tool, but also the ability to add preprocessor di-
rectives to arbitrary program locations. Depending on an annotation’s
location in the program, the annotation is either disciplined or undis-
ciplined [125]. Similar to C [125], we define for Java that annotations
on one or a sequence of entire classifiers (e.g., classes and interfaces),
classifier members (e.g., method declarations and inner classes), and
statements (e.g., try-statement and block statement) are disciplined,
all other annotations are undisciplined. This differentiation is impor-
tant since undisciplined annotations complicate the development of
tools for managing variability [125]. Notice that in practice roughly
16% of all annotations are undisciplined [125], and thus implementa-
tion approaches should support them.

In our Stack SPL example, there are several disciplined annotations,
such as the annotations of the class Stack (Line 1-60), the method
declaration isFull (Lines 56), or the while-statement (Line 39). In
contrast, the annotation of the try-statement—which wraps other
statements—is undisciplined since the annotation does not mark the
entire try-statement (Lines 34—37) as variable. In other words, the try-
statement is only partially annotated, since its body is not annotated.

Notice that the discipline of annotations is closely related to the
granularity of feature artifacts—that is, the structural level at which
a feature artifact is implemented [14]. At the lower end there are fine-
grained feature artifacts, such as an undisciplined annotation on a
method parameter, an expression, or even a single character. The
upper end denotes coarse-grained feature artifacts, such as an dis-
ciplined annotation on a file or a Java class. In our Stack example
there are several undisciplined, fine-grained feature artifacts, such as
the annotations on the implements-list (Line 4), and the throws-items
(Lines 24-32).
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2.4.2.2  Visual annotations: CIDE

The tool CIDE is a prominent academic preprocessor with support
for visual annotations [102]. In CIDE, each feature (declared in a fea-
ture model) has a distinct color. The different colors are used in the
background of the program’s text to visualize annotations. Figure 2.6
illustrates an excerpt of our Stack SPL, implemented with CIDE. For
instance, the class Stack is colored gray (Lines 1-28) and thus realizes
the feature Stack.

Notice that there are no Boolean expressions over features for con-
trolling the SPL’s configuration in a CIDE implementation. In fact,
each feature represents a Boolean value during variant derivation. If
the feature is selected, the corresponding colored code is included,
otherwise pruned. Thus, including a feature artifact in a variant if a
feature is not selected requires workarounds in the implementation.
Moreover, mutual exclusion cannot be modeled explicitly in the im-
plementation. Instead, corresponding constraints have to be lifted up
and maintained in the feature model. For instance, we could create
a new feature using the desired Boolean operators in its name. Then,
we could control the inclusion of this new feature using propositional
cross-tree constraints reflecting the desired feature combination. To
implement and-expressions, we can however use nested annotations,
which are represented in the program text by blending feature colors.

In Figure 2.7, we show a short CPP example, which illustrates the
semantic equivalence of an annotation with a Boolean and-expression
and a nested annotation. The annotated content is only included if

Features Stack Array List Iterable Synchronization
1 | public class Stack implements Iterable<Object> {
2 private int top = 0;
3 private Object[] dataArray;
4 private Stack.Node topNode = null;
5 private class Node { ...
6 private Node(Object element, Stack.Node next) { ... }
7 }
8 private final ReentrantLock lock = new ReentrantLock();
9 private final Condition notEmpty = lock.newCondition();
10 private final Condition notFull = lock.newCondition();
11
12 public void push(Object data) throws ArrayIndexOutOfBoundsException,
13 InterruptedException {
14 lock.lock();
15 try {
16 while (isFull()) notFull.await();
17 if (isFull()) throw new ArrayIndexOutOfBoundsException();
18 dataArray[top] = data;
19 Stack.Node newElement = new Node(data, topNode);
20 topNode = newElement;
21 topt+;
22 notEmpty.signalAll();
23 } finally { lock.unlock(); }
24 }
25 public Object pop() ... { ... }
26 private boolean isFull() { return top >= dataArray.length; }
27
28 |}

Figure 2.6: Excerpt of a CIDE-based Stack SPL implementation

19



2.4 IMPLEMENTING VARIABILITY

we select both features A and B. Notice that in our CIDE example
in Figure 2.6 all annotations in the class Stack are nested, and thus
blended with the color gray.

A note on CIDE’s internals:

. . #ifdef A && B #ifdef A
CIDE persists all annotations o o | piract B
in XML files, each of which Fendif P
accompanies a correspond- #endif

ing compilation unit, such as
a Java class file. This way, the
program’s source code remains untouched when assigning variability.
In fact, all annotations are assigned to nodes of the program’s AST—
the underlying structural representation of the program. To ensure
syntactic correct annotations, CIDE uses two simple rules [105]:

Figure 2.7: And-expression logic

1. OPTIONAL-ONLY RULE. The placement of markers in the
concrete syntax is limited to the program’s underlying AST
nodes, which are optional according to a language’s syntax spec-
ification (e.g., Java [83]). These are the nodes that can be re-
moved without invalidating the tree.

2. SUBTREE RULE. When an AST node is colored, all its children
must be colored as well. This way, no unrelated nodes remain
upon deletion.

Figure 2.8a illustrates the coloring of a try-statement, a node that
is optional and has a subtree. If the gray feature has not been se-
lected, all gray nodes get deleted. As a result, the method declaration
which contains the subtree remains valid. Figure 2.6 shows more fine-
grained examples. It is valid to remove the interface implementation
(Line 1) and the throw-items (Lines 12-13), as the corresponding AST
nodes are optional. In contrast, removing the class’ visibility—that is,
public—is not possible, since the respective node is non-optional.

Thus, the two rules are too strict, limiting annotations to a disci-
plined use—recap that around 16% of a program’s annotations are
undisciplined in practice [125]. To enable undisciplined annotations
to align with the AST, CIDE provides FeatureBNF [105], a grammar
specification language. Using FeatureBNF, language engineers can
specify exceptions to the optional-only and the subtree rule in a target
language’s grammar, such as Java.

For non-optional language concepts, such as Java’s Type, engineers
can specify a default value in FeatureBNF, which enables develop-
ers to annotate corresponding non-optional nodes (i.e., the language
concept instances). These nodes will not be removed during variant
derivation. Instead, the default value is filled in, such as void for a
method’s non-optional return type.

To make exceptions to the subtree rule, engineers can specify wrap-
per language concepts—that is, language elements that wrap other
concepts, such as if, for, and try statements. Then, developers can
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1| void foobar() { 1| void foobar() {
2 try { 2 try {
Concrete | int £fo0; ... 3 int foo; ...
Syntax ||y finally { ...} 4| 3} finally { ...}
5} 5]}
Abstract
Syntax
Tree TryStatement Wrapper 4 |[TryStatement
(AST) ; ;
| Body | | FinallyBody | Wrappee -U Body ‘ | FinallyBody |
VariableDecl VariableDecl
foo foo
(a) disciplined annotation (b) undisciplined wrapper annotation

Figure 2.8: Coloring the abstract syntax tree

color the respective wrapper instances without coloring their body
(the wrappee). During variant derivation, an additional transforma-
tion step is employed. This step attaches the wrappee to the wrap-
per’s parent (instead of removing the wrapper and its entire subtree).
Figure 2.8b provides an example for such a partially annotated wrap-
per. In fact, the annotated try-statement and its finally-body can
be safely removed without removing the try-statement’s body. It is
attached to the body of the method declaration during derivation. No-
tice that the necessary infrastructure is generated from a FeatureBNF
specification (e.g., a variability-aware parser and pretty printer).

2.4.2.3 Other Textual and Visual Annotative Approaches

OTHER TEXTUAL APPROACHES. The CPP has been introduced for
the C programming language. The languages Fortran, Pascal and the
cross-platform toolkit Haxe* also come with their own preprocessors.
For other languages, similar approaches have emerged. For instance,
the preprocessors Munge3 and Antenna*—developed with Java’s
Swing library and Java ME, respectively—add conditional compila-
tion facilities to Java. In C# and Visual Basic conditional compilation
is even a language feature.

In the industrial sector, Gears [117] and pure::variants [35] are well-
known commercial tools supporting textual annotations. In addition,
several other solutions emerged supporting textual-annotation pre-
processing, such as XVCL [94], SPLET [154], General-purpose Preproces-
sor (GPP)5, M4°, and the choice calculus [63].

2 https://haxe.org/

3 https://publicobject.com/2009/02/preprocessing-java-with-munge.html
4 http://antenna.sourceforge.net/wtkpreprocess.php

5 https://logological.org/gpp

6 http://www.gnu.org/software/m4/ma.html
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OTHER VISUAL APPROACHES. Similar to CIDE, the FeatureCom-
mander tool uses background colors to augment CPP directives [68, 69,
71, 72]. In the same line, the mbeddr [197, 201] tool uses background
colors to highlight feature artifacts.

Outside the SPL context, visual annotations have been used to high-
light code, aggregate information and provide additional informa-
tion to developers. Well-known examples are [Query [92], the Aspect
Browser [85], concern graphs [151], and Spotlight [48].

2.4.3 Modular Representations

Figure 2.4c illustrates that modular variability representations imple-
ment each feature in a corresponding feature module, and thus fol-
low the principle of separation of concerns [182]. Next, we outline
two important modular programming paradigms for implementing
SPL variability: feature-oriented programming (FOP) and delta-oriented
programming (DOP). In fact, we discuss two concrete example ap-
proaches and conclude with an overview on related work.

2.4.3.1 Feature-oriented Programming: FeatureHouse

FOP [147] approaches, such as FH [7], build upon the concepts of in-
crementally developing program families [142, 143]. The core idea is
to start with a small base program and extend the program with func-
tionality step by step. In fact, FOP approaches encapsulate the SPL’s
core functionality—the functionality that is common to each variant—
in a so-called base module (a.k.a. core module). All other modules refine
or extend the base module in a step-wise manner (a.k.a. step-wise re-
finement [22, 56]). In other words, the modules extend the SPL’s core
functionality. In FH, each module is realized as a file system directory
serving as a container for a feature’s artifacts. To extend or refine an
existing program element (e.g., a class or a method), developers repli-
cate the element’s signature [7].

Figure 2.9 shows a FH realization of our Stack SPL. Each feature
declared in the feature model (Fig. 2.3) is implemented in a respec-
tive feature module. The module Stack constitutes the base code of
the class Stack (Fig. 2.9a). All other modules refine or extend the
Stack’s core implementation (indicated by the replicated signatures).
For instance, the module Array depicted in Figure 2.9b contributes
several feature artifacts to the basic Stack, such as the array holding
the objects (Line 2), and the method isFull (Line 9).

Using feature modules, FH basically supports refinement up to
statement level. To refine a method declaration, developers simply
replicate the target method’s signature. Then, the keyword original
allows accessing the original implementation of the method—that is,
the one implemented in the feature module to be refined. Technically,
the original keyword is simply a method call to the original decla-
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a) Feature module: Stack

public class Stack {

private int top = 0;

public void push(Object data) { top++; } ...
}

=W N e

b) Feature module: Array

public class Stack {
private Object[] dataArray;
public void push(Object data)
throws ArrayIndexOutOfBoundsException {
if (isFull()) throw new ArrayIndexOutOfBoundsException();
dataArray[top] = data;
original(data);
}
private boolean isFull() { return top >= dataArray.length; } ...
}

c) Feature module: List

O W N U A WN R

(Ayoueialy Juswoauyal ey e) 4epio uonsodwo)

public class Stack {
private Stack.Node topNode = null;
private class Node { ...
private Node(Object element, Stack.Node next) { ... }
}
public void push(Object data) {
Stack.Node newElement = new Node(data, topNode);
topNode = newElement;
original(data);
} ...
}

O W ®NOoU s WN R

o

d) Feature module: Iterable

1 |public class Stack implements Iterable<Object> { ... }

e) Feature module: Synchronization && Array
public class Stack {
public void push(Object data) throws InterruptedException {
while (isFull()) notFull.await();
original(data);
}
}

o U E WN R

f) Feature module: Synchronization

1| public class Stack {

2 private final ReentrantLock lock = new ReentrantLock();

3 private final Condition notEmpty = lock.newCondition();

4 private final Condition notFull = lock.newCondition();

5 public void push(Object data) throws InterruptedException {
6

7

8

lock.lock();
try {
original(data);
9 notEmpty.signalAll();
10 } finally { lock.unlock(); }
11 }o...

12} v

Figure 2.9: Excerpt of a FeatureHouse-based Stack SPL implementation

ration of the method. Notice that we use the original-keyword quite
regularly in our FH implementation. For instance, the module Array
refines the method push, which is indicated by the replicated signa-
ture (cf. Line 3 in Fig. 2.9a and Fig. 2.9b, respectively). In particular,
the refinement introduces a throws-item and a sequence of statements
(Fig. 2.9b, Lines 5-7). Note that FH’s keyword original is used to call
the original implementation of push (Line 7), which is declared in the
feature module Stack (Fig. 2.9a, Line 3).

Feature modules are also used to implement feature interactions.
However, since there are no Boolean expressions over features in a FH
implementation, we need to add a corresponding feature to the fea-
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ture model as well as cross-tree constraints that select the feature auto-
matically if all interacting features are selected. Figure 2.9e shows the
feature module Synchronization && Array, which implements the fea-
ture interaction of the two modules Synchronization and Array. Note
that the “&&”-symbols are simply tokens in the module’s name. Thus,
a corresponding feature and respective cross-tree constraints must be
declared in the Stack SPL’s feature model (not depicted in Fig. 2.3).
Upon variant derivation, the SPL’s feature modules serve as input.
In particular, the selection of features determines the selection of mod-
ules, each of which contributes feature artifacts to the final variant.
Thereby, a so-called refinement hierarchy denotes the ordering in which
the modules are to be composed. In each composition step, the refin-
ing method’s signature remains unchanged, while there is a suffix
added to the refined method’s name—that is, the name of the feature
module to be refined. Then, in the refining method declaration, each
occurrence of the original keyword is replaced with a method call
to the refined method declaration—that is, the one with the suffix.
Figure 2.10 illustrates the example of a variant derived from
selecting the feature modules Stack, Array, and Synchronization
(Fig. 2.9a, b, f). Notice that the module Synchronization && Array
is selected automatically to coordinate Array and Synchronization
(Fig. 2.9e). According to the refinement hierarchy, the feature Syn-
chronization is the last one to be composed (Fig. 2.9). Thus, the push
method of Synchronization has not been renamed (Fig. 2.10, Line 19).
To realize the refinement, the push method introduced with the
module Synchronization && Array is called (Fig. 2.10, Line 22), which

1 |public class Stack {

2 private int top = 0;

3 private Object[] dataArray;

4 private final ReentrantLock lock = new ReentrantLock();
5 private final Condition notEmpty = lock.newCondition();
6 private final Condition notFull = lock.newCondition();

7 private void push__wrappee_ Stack (Object data) { top++; }
8 private void push__wrappee Array (Object data)

9 throws ArrayIndexOutOfBoundsException {

10 if (isFull()) throw new ArrayIndexOutOfBoundsException();
11 dataArray[top] = data;

12 push__wrappee_Stack(data);

13 }

14 private void push__wrappee_ SynchronizationAndArray (Object data)
15 throws InterruptedException {

16 while (isFull()) notFull.await();

17 push__wrappee_ Array(data);

18 }

19 public void push(Object data) throws InterruptedException {
20 lock.lock();

21 try {

22 push__wrappee_ SynchronizationAndArray(data);

23 notEmpty.signalAll();

24 } finally { lock.unlock(); }

25 }
26 private boolean isFull() { return top >= dataArray.length; }

Figure 2.10: Stack variant derived in FH by composing the feature mod-
ules Stack, Array, Synchronization, and Array && Synchronization

(cf. Fig. 2.9)
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adds the necessary feature details and then calls the push method of
the module Array (Line 17), which in turn calls the push method’s
base code (Line 12).

Thus, the order in which modules are composed may matter. In
fact, notice that the condition notFull—which is only required for
array-based, synchronized stacks—is introduced by the module Syn-
chronization (Fig. 2.9f, Line 4), although the logically correct module
would be Synchronization && Array. However, we cannot move the
condition notFull to this module, since an error would arise. The
problem is that the field lock, which is introduced with the module
Synchronization, cannot be referenced before it is defined (Fig. 2.10,
Lines 4 and 6). Moreover, we cannot switch the two modules in the
refinement hierarchy as we need to synchronize the call to the method
isFull (Fig. 2.10, Line 16). As a result, the class Stack cannot be mod-
ularized properly using only the two modules Synchronization and
Synchronization && Array.

2.4.3.2 Delta-oriented programming: Delta]

DOP is a popular modular paradigm, closely related to FOP though
more powerful. Features are separated into (multiple) delta modules
(a.k.a. deltas) [33, 115, 157, 158]. Each delta not only supports intro-
ducing and refining feature artifacts (as known from FOP), but also
removing them during variant transformation [157, 158].

Delta] [115] puts DOP into practice for Java by introducing inter alia
the keywords delta, adds, modifies, original, and removes. Note
that the latter four keywords enable manipulating a variant. In fact,
similar to FH, Delta] uses a core delta—an initial variant to which all
further deltas apply their transformations in a given order.

Figure 2.11 illustrates an implementation excerpt of our Stack SPL
using Delta]. The delta dStack is the core delta. The delta dArray
depicted in Figure 2.11b adds the field dataArray (Line 2) and the
method isFull (Line 8) to the core delta. Moreover, dArray imple-
ments a modification of the method push (Lines 3—7). Notice that simi-
lar to FH access to the original code is given by the original keyword
(Line 6). Delta] transforms each appearance of the original keyword
into a method call to the modified original method (cf. Fig. 2.10). As
a result, the same issues as in FH emerge. For instance, the order in
which transformations are to be applied matters. Moreover, a techni-
cal limitation of Delta]’s current realization is that throws-items can-
not be properly modularized. Instead, throws-items must be added
to the core delta (cf. Fig. 2.11a, Line 6).

Notice that instead of a feature model, Delta] uses a so-called SPL
declaration for modeling and configuring the SPL’s variability. In par-
ticular, the SPL declaration allows developers to declare features and
feature constraints. Moreover, deltas and the mapping of features to
deltas can be declared using propositional formulas over features.
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a) Delta module: dStack

1 | delta dStack { adds{ §
2 package my; a
3 public class Stack { IS
4 private int top = 0; §
5 public void push(Object data) %
6 throws ArrayIndexOutOfBoundsException, InterruptedException { %
7 top++; Q
8 }o.e.. %
91t} =

b) Delta module: dArray

delta dArray { modifies my.Stack {
adds private Object[] dataArray;
modifies push(Object data) {
if (isFull()) throw new ArrayIndexOutOfBoundsException();
dataArray[top] = data;
original(data);
}oee.
adds boolean isFull() { return top >= dataArray.length; }

W NU A WN R

18

c) Delta module: dlterable

delta dIterable { modifies my.Stack{
adds interfaces Iterable<Object>;

N

303}

d) Delta module: dSyncAndArray
delta dSyncAndArray { modifies my.Stack {
modifies push(Object data) {
while (isFull()) notFull.await();
original(data);

}
18

e) Delta module: dSynchronization

delta dSynchronization { modifies my.Stack {
adds private final ReentrantLock lock new ReentrantLock();
adds private final Condition notEmpty lock.newCondition();
adds private final Condition notFull = lock.newCondition();
modifies push(Object data) throws InterruptedException {
lock.lock();
try {
original(data);
notEmpty.signalAll();
10 } finally { lock.unlock(); }
11 }

I

o U EWN R

© N U W N R

©

Figure 2.11: Excerpt of a delta-oriented Stack SPL implementation

This way, developers can specify when and in which order deltas
are to be applied. Finally, developers can specify feature selections in
variant declarations.

Figure 2.12 illustrates the Stack’s SPL declaration, which conforms
to our feature model (Fig. 2.3). In addition to declaring features
(Line 2) and deltas (Line 3), we use two constraints to specify that
Stack and either Array or List must be selected in each product
variant (Line 4). The Partitions section allows introducing a mapping
of features to deltas (Lines 5-10). For instance, the delta dSyncAn-
dArray must be applied if the features Array and Synchronization
are selected (Line 9), which is the case in the product configuration
called SyncedArrayStack (Line 13). Notice that the transformations
are applied during variant derivation in the order of the partitions
section from top to bottom (i.e., from dStack to dSynchronization).
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1 | SPL AnotherStackDeltad {

2 Features = {Stack, Array, List, Synchronization, Iterable}

3 Deltas = {dStack, dArray, dList, dSynchronization, dSyncAndArray, dIterable}
4 Constraints { Stack; Array " List; ... }

5 Partitions { {dStack} when (Stack);

6 {dArray} when (Array);

7 {dList} when (List);

8 {dIterable} when (Iterable);

9 {dSyncAndArray} when (Array & Synchronization);
10 {dSynchronization} when (Synchronization);

11 }

12 Products { ListStack = {Stack, List};

13 SyncedArrayStack = {Stack, Array, Synchronization};
14 }

15 |}

Figure 2.12: Delta-oriented Stack SPL declaration

2.4.3.3 Other Modular Approaches

OTHER FOP APPROACHES. Aside from FH, other approaches, such
as AHEAD and FeatureC++ [11], also realize FOP. All approaches real-
ize the paradigm in different, yet very similar ways, typically sharing
two key commonalities. First, approaches are usually language-based,
which results in the concrete syntax of a target language, such as Java
or C, being enhanced with variability-related keywords (instead of
managing variability on the tool level). Second, they decompose a sys-
tem into cohesive feature modules, each of which is realized as a file
system directory serving as the container for feature artifacts. How-
ever, FOP approaches also differ. First, the concrete syntax employed
to implement variability is typically different among approaches. For
instance, while FH indicates the refinement of program elements
by means of replicated signatures [7], AHEAD uses the keyword
refines to indicate refinement explicitly [22]. Second, approaches
differ in the way variants are derived—that is, module composition
differs. For instance, while FH language-independently merges the
substructure of modules using superimposition [7, 10], AHEAD
synthesizes modules using Java-specific transformations [22].

OTHER DOP APPROACHES. Notice that the program transforma-
tions proposed with delta modeling are independent of programming
languages and artifact-types [168]. In fact, delta modeling has been
manually tailored to Java in Delta]. Delta modeling has also been
used for various other target environments and languages, such as
Matlab/Simulink [88] and architecture description languages (ADL) [87].

OTHER MODULAR APPROACHES. Aside from FOP and DOP, there
are several implementation approaches that support modularity at
their core, such as aspects [2, 111], collaboration-based design [190], mix-
ins [40, 176], and traits [32, 34, 58]. They all share the idea of encapsu-
lating variability in modules.
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2.4.4 Variant Representations

Typically realized on top of an annotative representation, variant
representations allow editing SPL variants in isolation. Several ap-
proaches for editing SPL variants have been proposed, such as the
version editor [16], the wvariation-control system (VCS) [178], CIDE’s
variant editor [104], and others [119, 166, 206]. They are influenced
by the idea of bidirectional transformations [19, 52, 54, 76, 196]. In
fact, some approaches fold [120] or hide [102, 175] feature code.
Others, such as VCS, mimic the workflow of version-control systems
by allowing to checkout variants, edit them, and commit the edited
variants [178, 205, 206].

In this dissertation, we distinguish two different types of variant
editors: proactive and reactive ones. Proactive variant editors show
all feature information while editing the variant, for instance as anno-
tations [104]. This way, feature-related decisions can be made before
editing and code can be unambiguously assigned to features. Reactive
approaches typically do not show feature information. Any feature-
related decisions are made (semiautomatically) after editing. For in-
stance, VCS requires to assign the implemented artifacts to features
upon pushing the changes back into the SPL [178].

Notice that CIDE provides facilities to hide feature artifacts based
on a feature selection. Figure 2.13a shows the proactive, colored vari-
ant editor provided by CIDE. It shows the Stack SPL with the features

Features Stack Array

1 | public class Stack {

2 private int top = 0;

3 private Object[] dataArray;

4 public void push(Object data) throws ArrayIndexOutOfBoundsException {
5 if (isFull()) throw new ArrayIndexOutOfBoundsException();

6 dataArray[top] = data;

7 top++;

8 }

9 public Object pop() ... { ... }

0 private boolean isFull() { return top >= dataArray.length; }
1%}

(a) CIDE’s proactive, colored variant editor for the selection of the features
Stack and Array in our Stack SPL

1 | public class Stack {

2 private int top = 0;

3 private Object[] dataArray;

4 public void push(Object data) throws ArrayIndexOutOfBoundsException {
5 if (isFull()) throw new ArrayIndexOutOfBoundsException();

6 dataArray[top] = data;

7 top++;

8 }

9 public Object pop() ... { ... }

10 private boolean isFull() { return top >= dataArray.length; } ...
11| }

(b) A reactive variant editor for the selection of the features Stack and Array
in our Stack SPL

Figure 2.13: Editable variant representations
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Stack and Array being selected. Figure 2.13b in turn shows a reactive
variant editor, such as VCS, for the same features being selected.

2.5 CHALLENGES CAUSED BY VARIABILITY

We now discuss three challenges caused by SPL variability. We start
with problems that emerge while implementing variability. Then, we
review the different variability representations with regard to poten-
tial comprehension, maintenance and evolution issues. Notice that in
Section 5.1, we use—complementary to this section—different quality
criteria to assess and categorize different concrete SPL implementa-
tion approaches and our approach.

2.5.1  Challenge I: Implementation

Implementing SPL variability is the process of creating feature arti-
facts. The efficiency to create these artifacts differs among the imple-
mentation approaches.

TEXTUAL AND VISUAL ANNOTATIONS. In annotative approaches,
developers simply mark the beginning and the end of feature artifacts
in the codebase. To create annotations (i) using the CPP, we wrap
the code to be annotated with #ifdef-directives; (ii) using CIDE, we
select the code to be annotated and choose the desired feature(s) via
a popup menu. Thus, implementing new, even fine-grained feature
artifacts from scratch, and transitioning an existing non-variational
codebase into an SPL is easy.

Figures 2.14a and 2.14b underline that it is simple to implement
fine-grained feature artifacts using the CPP and CIDE, respectively.
In fact, the two semantically equivalent implementations of the Stack
SPL’s push-method are more fine-grained than the one depicted in
Figure 2.5. Next, we briefly discuss the CIDE version—whose an-
notations are added to the underlying AST and visualized in the
implementation (Fig. 2.14b, lower and upper halfs). To synchronize
the access to the Stack’s resources in the push-method, we pass a
ReentrantLock as a method parameter and assign it to the feature
Synchronization by coloring it blue (Line 3). Moreover, we verify valid-
ity of both method parameters in an if-statement (Line 7), and also
color the reference to the parameter ReentrantLock blue. Otherwise,
variants without Synchronization selected are type-incorrect—that is, a
dangling reference would appear, since the parameter ReentrantLock
would be removed (Line 3), but not the reference to it (Line 7).

VARIANTS. Variant editors, which typically use an annotative rep-
resentation internally, also enable developers to efficiently implement
feature artifacts. In fact, proactive variant editors show annotations,
and thus provide the same straightforward workflow as annotative
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#ifdef Stack

public void push(Object data

#ifdef Synchronization

, ReentrantLock lock

#endif

)

throws NullPointerException

#ifdef Array

, ArrayIndexOutOfBoundsException

#endif

#ifdef Synchronization

, InterruptedException 10

#endif 11

{ 12
if(data == null 13
#ifdef Synchronization 14
|| lock == null 15
#endif 16
ythrow new NullPointerException; 17
#ifdef Synchronization 18
lock.lock(); 19

W NU A WN P

try {
#endif
//2) more code
topt+;
//3) more code
#ifdef Synchronization
notEmpty.signalAll();
} finally {
lock.unlock();
}
#endif
}
}
#endif

(a) CPP implementation (b) CIDE implementation (upper half)
and underlying AST (lower half)

Feature module: Stack

W NV A WN

10

public class Stack {
public void push(Object data) {
if(data == null || push_sync_hookl())
throw new NullPointerException();
push_sync_hook2(data)
}

public void push_sync_hookl() { return false; }
public void push_sync_hook2(Object data) { top++; }
}

Feature module: Synchronization

© N oUW N

©

11
12
13
14
15

public class Stack {
ThreadLocal<ReentrantLock> currentLock = new ThreadLocal<ReentrantLock>();
public void initLock(ReentrantLock lock) { currentLock.set(lock); }

public void push_sync_hookl() { return currentLock.get() == null; }
public void push_sync_hook2(Object data) {
currentLock.get().lock();
try {
original(data);
notEmpty.signalAll();
} finally {
currentLock.get().unlock();
}
}
}

Figure 2.14: Implementation of fine-grained feature artifacts using the CPP,

(c) FH implementation

CIDE and FH (inspired by [102, 162])
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2.5 CHALLENGES CAUSED BY VARIABILITY

approaches. In contrast, reactive variant editors, such as VCS, impose
an editing overhead—that is, the checkout-edit-commit workflow to
implement feature artifacts.

MODULES. Using a modular approach, it is also efficient to imple-
ment feature artifacts from scratch. Developers simply introduce new
artifacts, refine, override, or even remove existing ones in the respec-
tive feature module. Yet, decomposing an existing non-variational
program into modules is challenging since developers need to find
the right decomposition strategy and restructure the codebase man-
ually. Moreover, modules impose an overhead for fine-grained fea-
ture artifacts requiring workarounds, such as hook methods [102] and
code clones [162]—that is, boilerplate code. In fact, we found that a
large number of boilerplate code is necessary in real world SPLs. For
instance, in our case study subject Berkeley DB with 70kLOC, 78%
off all methods refined only once require boilerplates in pure modu-
lar approaches (cf. Sec. 5.2.3.3).

Figure 2.14c shows the FH-version of the fine-grained Stack SPL
example, we introduced above. The main problem is that it is not
possible to properly modularize the feature Synchronization in FH.
First, the method parameter variability cannot be realized (as in
Fig. 2.14b, Line 3). Instead, each thread has its own thread-safe
ReentrantLock (Fig. 2.14c, Synchronization, Line 2), which must be
initialized before calling the push method (Line 3). Second, to assign
the variable reference lock to the feature Synchronization (as realized
in Fig. 2.14b, Line 7), we need to prepare the base module Stack
by adding a hook method (Fig. 2.14¢, Lines 3 and 8). The hook’s
declaration is then overridden in the feature module Synchronization
by a check whether the lock is valid (Fig. 2.14c, Line 5). Third, locking
the codebase just partially—where not all statements of the codebase
are synchronized—is not possible without adding yet another hook
method (Line 6).

We conclude that assigning annotations is straightforward, while
implementing modules can be more difficult. With regard to vari-
ant representations, assigning features during development (proac-
tive variant editor) might be more efficient than making all feature
decisions after a commit (reactive variant editor).

2.5.2  Challenge II: Comprehension

Program comprehension is "the process of understanding program code
unfamiliar to the programmer’ [114]. As developers spent a majority of
their time with comprehending programs [131, 179, 188], it is one of
the major cost drivers in software development [38]. The different
variability representations influence program comprehension very
differently. Although general measures exist [59, 169] and (pilot) stud-
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2.5 CHALLENGES CAUSED BY VARIABILITY

ies have been conducted [8, 171, 172], providing a concise ranking for
variability representations is difficult [67, 170].

Based on the literature, our experience from implementing SPLs
(Sec. 5.2.2), and our observations made in two pilot user studies
(Sec. 5.3), we investigate program comprehension from two different
perspectives. First, we discuss rather general comprehension issues
induced by different variability representations. Second, we refine
these issues according to their cause. That is, we discuss variability-
aware code smells [73], and how they lead to incomprehension across
different variability representations.

2.5.2.1 Representation-related Comprehension Issues

When developers try to comprehend programs, each variability rep-
resentation has its own individual strengths and weaknesses.

TEXTUAL ANNOTATIONS. Textual annotations are well known and
well adopted in practice. Yet, several studies have shown that textual
annotations have a negative impact on program comprehension [62,
65, 102, 116, 126, 177]. Textual annotations are embedded into the
program text, and thus intermingle with the program’s functional-
ity, making a program’s control flow difficult to follow—especially
if fine-grained annotations and complex presence conditions appear.
Understanding whether the variational code is reachable [183] and if
so under which circumstances is tedious and error-prone [8o, 89, 135].
Our CPP-based Stack SPL implementation depicted in Figure 2.14a
illustrates the source code obfuscation. In fact, reasoning about the
Stack’s functionality is difficult. Unfortunately, there are even more
extreme examples in every day practice [90, 125].

VISUAL ANNOTATIONS. To improve the comprehensibility of tex-
tual annotations, previous work proposed to augment CPP directives
with background colors [69, 72]. Tools, such as mbeddr [201] and
CIDE [102], also use background colors to visualize annotations aim-
ing at an improved program readability. In fact, our Stack SPL ex-
cerpts illustrate that using background colors instead of #ifdef direc-
tives substantially improves the program’s readability (cf. Fig. 2.14a
and 2.14b).

However, relying solely on background colors can be problematic.
First, for nested feature artifacts, background colors are blended.
Thus, distinguishing colors and relating them to features can be
challenging [138], or even impossible (e.g., color-blind developers).
Second, recap that colored non-optional AST nodes, such as expres-
sions, cannot be removed from the program’s AST during variant
derivation since we would invalidate the AST (cf. Sec. 2.4.2.2). For in-
stance, a right-expression of an or-expression cannot be removed (cf.
Fig. 2.14b lower half, and upper half, Line 7). For such non-optional
AST nodes, CIDE allows language engineers—the developer who
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tailors CIDE to a programming language to declare a default value
in the target-programming-language’s grammar (e.g., “0” or “1”),
which is then used during derivation. Yet, which value is used by
default is opaque to the SPL developer—a subtle cause of errors.

All in all, background colors are discussed controversially. For ex-
ample, in an early study of the mylyn tool, Kersten and Murphy re-
ceived negative feedback for mylyn’s fixed background colors [109].
In particular, two developers indicated that they “prefer their IDE to
be less colorful” [109]. In another study conducted by Melo et al., a
participant who tried to understand a program colored with CIDE
explained [135]: “I tried to keep all different paths in mind, but it was
especially difficult with multiple colors.” In the same study, another par-
ticipant claimed “with more variability you need to build up exponentially
more traces in your head” [135].

VARIANTS. Variant editors—which are typically realized upon an
annotative representation—reduce the variability-related complexity,
since they show a smaller set of feature artifacts. Optimally, depend-
ing on the current comprehension task, they either show or hide the
underlying annotations in the variant (cf. Sec. 2.4.4). If annotations
are shown, developers can comprehend which features are involved.
If annotations are hidden, the code is less cluttered—looking like the
generated variant—which makes control-flows easier to understand.
Thus, both variant representations are valuable, but often only either
way is supported in respective tooling [102, 175].

Notice that there are also comprehension tasks where a variant rep-
resentation is not the perfect choice. On the one hand, code that is rel-
evant for understanding the SPL may be hidden. On the other hand,
the code of a variant might still be too cluttered when containing ir-
relevant feature artifacts, which challenges comprehension. In fact, a
variant representation does not provide true modularity, and thus a
feature cannot be explored in isolation.

MODULES. Modularity enables developers to “identify, encapsulate,
and manipulate only those parts of a software that are relevant to a partic-
ular concept, goal, or purpose” [141]. In fact, already in the early days
of software engineering, modularity has been associated with an im-
proved program comprehension [56, 142, 144]. In modular SPL repre-
sentations, each feature is clearly separated into a respective feature
module, and thus the information overhead is smaller. As a result,
the developer’s working memory might be less stressed [17, 171].
Yet, sometimes there is too little context information to understand
a feature module’s implementation in isolation. In the worst case,
developers must search manually for related, external feature arti-
facts, which are declared in other modules. Our fine-grained FH Stack
implementation illustrates the issue (Fig. 2.14c): the code of the fea-
ture module Synchronization cannot be understood without reasoning
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about the feature module Stack. That is, we must look up the positions
of the hook method calls to understand the decomposition (Fig. 2.14c,
Stack, Lines 3 and 5).

To mitigate such issues, feature-context interfaces emerged for FH
recently [160]. Using static analysis, an algorithm collects context in-
formation about external feature artifacts automatically. The gathered
information is then presented to the developer in an additional IDE
window and the code completion menu. Yet, optimally, the informa-
tion could be directly integrated into the source code. Unfortunately,
several other modular approaches, such as AHEAD and Delta], do
not support such context interfaces at all. This lack poses an issue in
implementations using Delta] (and other delta modeling solutions),
since it is challenging to understand without guidance whether a
feature artifact of a delta will be deleted by another delta. Type-
checking the SPL mitigates this issue to a certain degree [33, 53, 156],
but a mechanism for showing context information and giving hints—
optimally, directly in the codebase—is still desirable.

2.5.2.2 Representation-unrelated Comprehension Issues

Comprehension issues not only appear because of variability repre-
sentation weaknesses. In some cases, the functionally same imple-
mentation can be difficult to comprehend across different represen-
tations. This issue is typically caused by so-called code smells—flaws
in a software’s design and implementation [77]. Based on an exist-
ing code smell catalog [77], Fenske and Schulze derive four code
smells that appear in the context of (textual) annotations and feature
modules [73]. Most important, they identify that methods containing
many feature artifacts of different features are difficult to understand
irrespective of the representation. Then, for a more thorough investi-
gation, they distinguish the smell into LONG REFINEMENT CHAIN
(feature modules) and ANNOTATION BUNDLE (annotations) [73].
ANNOTATION BUNDLE describes a method that contains many,
potentially nested annotations [73]. For instance, the Stack SPL’s push-
method is rather short since it comprises only twelve statements.
Yet, these statements are obscured by an ANNOTATION BUNDLE of
five annotations making the control flow difficult to follow (Fig. 2.5).
LONG REFINEMENT CHAIN is the modular counterpart, describ-
ing a method that is often refined [73]. For example, the Stack SPL’s
FH implementation includes four separate modules, each refining the
push-method which already makes it difficult to understand how a
possible variant looks like and how the features interact (Fig. 2.9).
Altogether, annotations and modules are both not perfectly suited
for understanding methods that contain a lot of variability. Thus,
Fenske and Schulze propose to correct these variability-aware smells
by reorganizing the implementation in the course of future work [73],
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but ideally developers could cope with ANNOTATION BUNDLE and
LONG REFINEMENT CHAIN more flexibly.

2.5.3 Challenge III: Maintenance and Evolution

Maintenance tasks, such as implementing minor changes, fixing bugs,
and improving the overall software quality are common engineer-
ing activities which consume on average half of a developer’s pro-
gramming time [82]. Evolving software is another common activity,
which comprises major modifications to the implementation, such as
adding entirely new functionality. Both activities involve comprehen-
sion tasks, since developers must understand the relevant program
parts before they can maintain or evolve them. In addition to the
previously discussed comprehension issues, there are several mainte-
nance and evolution issues that arise when using a particular variabil-
ity representation in isolation. Next, we discuss these issues.

TEXTUAL AND VISUAL ANNOTATIONS. Several studies explored
the impact of annotation-based variability on maintenance and evolu-
tion tasks [1, 73, 133, 135, 150, 164]. In fact, many developers report
that they regularly deal with bugs related to annotations [133]. All in
all, maintaining and evolving code that is enriched with annotations
can be cumbersome and error-prone [133, 164]. For instance, chang-
ing code in an ANNOTATION BUNDLE requires great caution as in-
advertencies may lead to bugs, such as broken presence conditions or
dangling references [73]. Thus, while trying to fix a variability-related
bug one may introduce another bug, which leads to a vicious circle.

However, there is also good news. In an annotative representation,
the "bug-finding time appears to increase only linearly with the degree of
variability’ [135]. Thus, although time-consuming, finding bugs in an-
notated code seems to be practical.

VARIANTS. Yet, if the exact variant configuration in which the bug
appears is known, it is easier to explore the respective variant than
the full variational codebase (e.g., a customer, whose feature selection
is available, reported an error). This way, irrelevant code must not be
explored. In contrast, if the variant subset is unknown, finding a bug
is difficult. In fact, if developers observe all variants manually (in the
hope to detect the bug at some point), there would be an exponential
explosion in the bug finding time [135].

All in all, as obscuring elements are hidden, making minor or ma-
jor changes is typically more efficient in a variant than in the full SPL.
In fact, a study of Atkins et al. has shown that the productivity of
developers can be increased by 40% when editing a variant instead of
the entire SPL [16]. However, developers must take special care while
changing methods which contain a lot of variability. Code alignment
issues (with respect to the hidden code) and unexpected feature inter-
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actions could appear. Such unexpected feature interactions are hard
to detect without contextual information. Unfortunately, there seems
to be no variant editor available that informs the developer about an
ANNOTATION BUNDLE while editing.

MODULES. Modularity promises an improved customizability [86]
and maintenance [140, 189], as well as a better traceability [4] and
reusability of feature artifacts [6, 36]. Feature modules give a clear
structure of the SPL and offer the benefit of editing individual fea-
tures without being distracted by irrelevant ones. Thus, maintaining
and evolving a single feature in a dedicated module is typically
straightforward. A LONG REFINEMENT CHAIN, however, may
cause unexpected problems. A developer may accidentally neglect
the refinement hierarchy, which results in a so-called ordering issue [7].
For instance, moving the feature Synchronization up in the refinement
hierarchy invalidates thread-safety (Fig. 2.9). In fact, the Stack’s
resources would be unsynchronized, which is a cause of subtle
errors. Such issues are difficult to detect in isolation. Yet, a modular
approach that informs the developer about a LONG REFINEMENT
CHAIN seems to be missing. Moreover, similar to variant editing, it
is time-consuming and difficult to find a bug across a set of modules
if the exact feature in which it appears is unknown. Then, developers
must explore all feature modules in the hope of finding the bug at
some point.

2.6 CONCLUDING REMARKS

Notice that this dissertation does not intend to give a recommenda-
tion, which variability representation is the best for engineering an
SPL. Instead, the discussion of SPL implementation challenges has
shown that all common variability representations share distinct ad-
vantages, and thus are complementary [100, 103, 171]. Unfortunately,
existing SPL implementation approaches typically focus on one rep-
resentation. Most importantly, these approaches force developers to
choose one representation for developing a feature artifact and to
adhere to it for evolving and maintaining this artifact. While refactor-
ings were proposed for switching between annotative and modular
representations [103], such refactorings are heavyweight and do not
allow to quickly switch the representation for a feature artifact. Ide-
ally, developers could exploit the benefits of different representations
on-demand and always choose the one that suits the current engineer-
ing activity.
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Part II

ENGINEERING AND MANAGING
VARIABILITY IN PEOPL



IMPLEMENTING VARIABILITY: PEOPL’S
FLEXIBILITY

We present how developers implement, comprehend, maintain, and
evolve SPLs in PEoPL, a novel approach and IDE. PEoPL allows de-
velopers for a given feature artifact and task to flexibly and fluently
choose the best-suited one among very different variability represen-
tations. We start with an overview (Sec. 3.1) and PEoPL’s key benefits,
which help to address the variability engineering challenges (Sec. 3.2).
Using the example of variational Java code, we illustrate how develop-
ers use PEoPL’s diverse variability representations, even for the very
same feature artifact (Sec. 3.3). Then, we underline PEoPL’s language
and artifact-type independency by showing how developers use it for
variational mathematics and fault trees (Sec. 3.4). Finally, we discuss
how developers browse the SPL using variability-aware file explorers
(Sec. 3.5). In summary, we focus in this chapter on the SPL developers’
perspective and how developers use PEoPL. We discuss conceptual
details and how the approach is realized in Part iii.

3.1 PEOPL’S CORE IDEA: AN OVERVIEW

PEoPL is a general approach combining very different variability rep-
resentations in a flexible environment—conceived as an IDE. The core
idea of PEoPL is to establish a single, common internal variability
representation of the SPL and separate it from the external variability
representations that developers use. Figure 3.1 illustrates these ideas
using a real-life scenario taken from our Berkeley DB case study. The
lower half of the figure shows the internal representation, where fea-
ture artifacts are uniformly persisted in a variational AST. The upper
part illustrates PEoPL’s basic external representations, realized as so-
called projections (cf. [203]). In fact, we conceive, realize, and evaluate
projections—many of which are closely related to the variability rep-
resentations we have seen thus far—showing feature artifacts

¢ as textual annotations (#ifdef directives),

e as visual annotations (colored bars),

¢ in feature modules (similar to AHEAD and FH modules),
e as annotations blended into feature modules,

* in proactive and reactive variant representations, which hide
artifacts related to non-selected features,

¢ in fade-in feature modules (adopting some Delta] keywords),

* as reused code elements (instead of cloning an artifact).
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Developers use the projections—as we will explain in this chapter—
to engineer feature artifacts. Any of their editing activities directly
change the underlying variational AST, which immediately updates
all projections. Thus, developers see the concrete syntax of the vari-
ational program (upper half of Fig. 3.1), but directly interact with
the underlying AST (lower half of Fig. 3.1). Notice that this way of
editing is fundamentally different to parser-based text editing, where
developers see and edit the program’s concrete syntax. Such a projec-
tional editing has long been seen as problematic, hindering efficient
code-editing. Yet, improvements [195]—realized in modern language
workbenches [60, 61], such as MPS [61, 145, 201]—and recent stud-
ies [31, 203] have shown that

* editing efficiency is quickly achievable by user training,
* projectional editing even leads to fewer typing mistakes, and

* recent, novel editing support facilities—especially for editing
expressions—substantially improve projectional editing.

Our own experience and our pilot user studies confirm these findings.
In fact, we found that projectional editing—as employed for imple-
menting SPL variability in PEoPL—is practical.

3.2 PEOPL’S BENEFITS: ADDRESSING THE CHALLENGES

The key benefits of our approach can be summarized from the SPL
developer’s perspective as follows.

B1: PEoPL has a uniform internal representation, designed to support
diverse external variability representations. Uniformity allows
persisting variability in a consistent manner. Using different (in-
ternal) representations would break uniformity—for instance,
when adding #ifdef directives into FH modules. As a result,
using PEoPL, developers need not to combine and coordinate
different tools to implement feature artifacts in diverse ways.
Instead, they simply choose the best technique for a given task.

B2: Developers can switch the external representation of a feature arti-
fact (e.g., class) on demand. In fact, PEoPL allows a fluent move-
ment between the external representations of a feature artifact—
for instance of DatabaseImpl in the upper half of Figure 3.1—to
enable developers to exploit the distinct advantages of different
techniques for a given feature artifact and task.

B3: Developers can observe and edit the same feature artifact using
different external representations in parallel (by showing them side-
by-side), which enables an even faster movement between dif-
ferent representations. For instance, the artifact DatabaseImpl in
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a) Textual annotation projection b) Simple product line declaration d) Module projection with annotation marker blending

SHONHATIVHD HHL ONISSHIAAV SLIAANHG S, TdOdAd ¢

1| #ifdef Base Module-specific constraints { 1 [ module Memory Budget
2| class DatabaseImpl { << add constraints >> -
3 static class PreloadProcessor {...} } ; refJf.r.les Clisi.Datibase;mP]i {dP .
4 #ifdef Statistics . refines static class PreloadProcessor
5 PreloadStats Module declarations { 4 refines void processLSN(long c, LogEntTyp t){
6 #else Base 5 original(c, t);
7 void Memory Budget 6 if (envImp.getMemoryBudget().get())//1) TO5S
8| #endif Statistics 7 ) }
i 8
9 preload(PreloadConfig c) { Latches X X .
10 long maxByte = c.getmaxByte(); //3) moge } 9| refines void preload(PreloadConfig c){ E
: code =g
11 #ifdef Memory_ Budget 11 if (maxByte == 0) //4) more code I
i == . .. o
g ;Z:;T;Byte 0) //4) more code ¢) Visual annotation projection s
14 #ifdef Statistics 1{[class DatabaseImpl { g
15 PreloadStats ret = new PreloadStats(); 2| static class PreloadProcessor { <
16 #endif 3 void processLSN(long c, LogEntTyp t){ 12| } Q
17 PreloadProcessor cb = new 4 assert ¢ != DbLsn.NULL_LSN nore 131} 3
18 PreloadProcessor (envImp, maxByte, tTime 5 if(envImp.getMemoryBudget().get()) //1) code 7
19 #ifdef Statistics 6 if(childType.equals(...)) //2) more code . L. —_
20 , ret 7 } e) Variant projection (Base and Memory Budget selected) m
21 #endif 8 . g
22 ); //5) more code 9| void @ PreloadStats preload(PreloadConfig c) { Variant projection for Base and Memory Budget 3
. . . Q
23 #ifdef Statistics 10 long maxByte = c.getmaxByte(); //3) more code =
2 try { 11 if (maxByte == 0) //4) more code ! class.Dat.]a-baseImpi {d g
25 #endif 12 PreloadStats ret = new PreloadStats(); 2 Stat.:lc class PreloadProcessor { °
26 walker.walk(); 13 PreloadProcessor cb = new PreloadProcessor ( 3| void processLSN(long ¢, LogEntTyp t){ o
27 #ifdef Statisti . 4 assert ¢ != DbLsn.NULL_LSN @
1tde atistics . 14 envImp, maxByte, tTime, ret); if (envIm MemorvBudget . //1)more g
28 } catch (HaltPreloadException HPE) { 15 //5) more code 5 (envImp.getMemoryBudget().get()) ) code 3
29 ret.status = HPE.getStatus(); } 16 try { 6] ¥ ) 2
30 #endif 7| void preload(PreloadConfig c) { o
31 #ifdef Latches 17 walker.walk(); X 8 long maxByte = c.getmaxByte(); //3) more code a
32 //6) more code 18 } catch (HaltPreloadException HPE) { 9 if (maxByte == 0) //4) more code -
33 #endif 19 ) ret.status = HPE.getStatus(); 10 PreloadProcessor cb = new PreloadProcessor (
20 i .
: s 11 envImp, maxByte, tTime)
34 #ifdef Statistics 7 //6) more code > ’ ’ H
35 return ret; N 12 5) more code
36 #endif 22 return ret; 13|  walker.walk();
37 1} a0} 14| }
38| #endif 24( 1} 15|}
) Variational AST *rendering rendering f * rendering
( N
YZIP ClassConcept
fo DatabaselImpl
T 000
ClassConcept MethodDeclaration ?
PreloadProcessor preload o
T _ReturnType T 3 <
MethodDeclaration 4.] void StatementList 3 g:‘
processLSN VP4 vp o
12 A=
| m— I —— 2N0n0pti0nal fg FeatureBlock Feature\ }% 5
atementLis . . T 3
T L\ S Altelrnatlve | VariableDeclaration | Block fpp ﬁ o
Pi ,/’ VPZJ ' p3) | cb Catch Retlurn s >
3 ReturnType Clause S o
f; FeatureBlock | fr FeatureBlockl fj, FeatureBlock | ClassCreator Statement ]
T T T ret =
AssertStatement Ifst?tement Iflstatement e P Variable 3’
assert c envImp... childType... 9 Reference
\Memory_Budget /| Statistics ) Base ret )

.

The lower half shows the variational AST (internal representation).

Figure 3.1: An excerpt of Berkeley DB implemented in PEoPL. The upper half shows the projections used by developers (external representation).
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3.3 PROJECTIONS I: VARIABILITY REPRESENTATIONS

the upper half of Figure 3.1 can be indeed edited in its diverse
representations in parallel. Any edit in one representation im-
mediately updates all other representations. Thus, PEoPL helps
observing the impact of changes made from one representation
to another in real-time (e.g., editing a feature module and a vari-
ant in parallel).

B4: PEoPL mitigates typical shortcomings of modular representations, im-
posed by granularity problems, and the lack of context informa-
tion (as they are contained in external modules). In fact, PEoPL
allows developers to blend annotations into a module’s imple-
mentation on demand, and fade-in external module code. This
way, developers can implement fine-grained feature artifacts in
modules (without breaking modularity and uniformity) and in-
tegrate context information from other modules directly into
the implementation—that is, it is possible to show all accessible
tield and method declarations in a modular implementation.

Bs: Our uniform internal representation enables plugging new exter-
nal representations into PEoPL on demand. In fact, developers can
draw on an extensible set of variability representations, which
enables them to change the appearance of their SPL implemen-
tation on demand. This way, PEoPL can serve as a framework
for the evaluation of diverse variability representations from the
developer’s perspective.

These benefits enable a flexible and novel implementation of SPL
variability. In fact, each variability representation has its own advan-
tages and disadvantages with regard to different implementation,
comprehension, maintenance and evolution tasks (cf. Challenges I-
II in Sections 2.5.1, 2.5.2, and 2.5.3), and thus the ability to switch
between PEoPL’s projections and to leverage them is indeed valu-
able. For instance, assume that a developer faces an ANNOTATION
BUNDLE—a method that contains a lot of annotations in relation to
its statements (cf. Sec. 2.5.2.2). If the developer just wants to reason
about a single feature’s control flow or the control flow of a vari-
ant, switching to the respective projection reduces the complexity,
and thus is a valuable option. Likewise, if a developer faces a LONG
REFINEMENT CHAIN—a method that is refined multiple times (cf.
Sec. 2.5.2.2)—integrating the statements of external feature modules
facilitates understanding the refinement hierarchy.

In the remainder of this chapter, we discuss more concrete exam-
ples and novelties underlining PEoPL’s flexibility (B1-Bs5).

3.3 PROJECTIONS I: VARTABILITY REPRESENTATIONS

We conceive, realize, and evaluate seven external representations (pro-
jections), each of which represents feature artifacts differently. In the
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3.3 PROJECTIONS I: VARIABILITY REPRESENTATIONS

following, we discuss the different projections, their conceptual de-
tails, the concrete syntax, and the variability-related editing opera-
tions available in the respective projection. For explaining syntactical
details, we use our Berkeley DB example depicted in Figure 3.1, and
the fine-grained Stack SPL shown in Figure 2.14. The examples are
written in Java, but the different projections are independent of a spe-
cific programming language (e.g., C is supported as well [74]), and
even the artifact-type of structural elements—that is, graphical repre-
sentations are also supported (cf. Sec. 3.4).

3.3.1 Textual Annotation Projection

Reflecting the CPP’s popularity, we provide a projection with textual
CPP annotations. Since most developers are familiar with the CPP,
yet not with PEoPL’s other external representations, starting in a CPP
projection is a useful option.

CONCEPTUAL DETAILS AND SYNTAX. Figure 3.1a shows our tex-
tual annotation projection. Notice that PEoPL allows developers to
implement various undisciplined annotations—that is, annotations
that do not mark one or a sequence of entire classifiers, classifier
members, and statements as variable (cf. Sec. 2.4.2.1). Lines 4-8, 20, 24
show such undisciplined annotations on types, method parameters,
and wrappers. Recap that the latter are program elements wrapping
a block of code in a body (wrappee). Such wrappers can be either
annotated completely or partially (without annotating the wrappee).

EDITING OPERATIONS. So developers see and work with #ifdef
directives that are embedded into the program text. To annotate a
code snippet, a developer simply types #ifdef, #elif or #endif—
which directly creates feature artifacts in the underlying variational
AST (as we explain in Ch. 7). Then, the developer chooses a feature or
a combination of features, declared before (Fig. 3.1b) as the presence
condition. In fact, the feature’s name can be either typed or selected
from a code completion menu.

3.3.2 Visual Annotation Projection

When #ifdef directives clutter code and challenge comprehension,
we can switch to visual annotations. The learning curve is low, since
#ifdef directives and visual annotations can be explored for the same
feature artifact in parallel.

CONCEPTUAL DETAILS AND SYNTAX. Figure 3.1c shows a projec-
tion of the class DatabaseImpl with annotations represented as col-
ored bars, each of which relates to a feature (combination) declared in
Figure 3.1b. For instance, light-gray bars relate to the feature Base. We

42



3.3 PROJECTIONS I: VARIABILITY REPRESENTATIONS

distinguish vertical and horizontal bars. Vertical bars are shown at the
left of the program code and align with its indentation. Notice that
each code snippet is colored by at least one vertical bar (i.e., PEoPL
enforces that each code snippet is contained by at least one feature
artifact). Wide vertical bars mark statements that relate to the code-
base’s feature artifact (e.g., Lines 4 and 10). This way, it is easy to
identify the base implementation. Horizontal bars in turn underline
fine-grained feature artifacts within a line of code (e.g., the method
call parameter in Line 14) and partially annotated wrappers (e.g., the
try/catch statement in Line 16). Moreover, to make alternatives ex-
plicit, we use a @-sign (Line 9). Notice that using such graphical ele-
ments in the concrete syntax is a direct benefit of projectional editing,
which allows mixing textual and visual syntax elements.

Notice that we decided against using background colors for visual-
izing annotations in PEoPL, because of their problems (cf. Sec. 2.5.2),
and our own (negative) experiences of using them. In fact, we argue
that subtle, colored vertical and horizontal bars—embedded into the
source code—are more suitable to visualize annotations:

1. Bars are more elegant than background colors and less prone
to obscuring the annotated source code. In fact, horizontal bars
integrate well with the surrounding source code (not overlap-
ping with text) and vertical bars align automatically with the
indentation. Moreover, feature artifacts can be unambiguously
nested—that is, showing multiple bars in parallel, next to each
other. As a result, the features involved are easy to distinguish.
Background colors are less concise and hamper comprehension
as they are typically blended to visualize nested annotations.

2. Regardless of a bar’s coloring, the source code remains readable.
For instance, dark and saturated bars do not pose any prob-
lems, but dark and saturated background colors make the code
impossible to read.

3. To ease distinguishing features, all bars can be easily aug-
mented with additional feature information on demand—that
is, the corresponding feature’s name is shown in the code
(cf. Fig. 3.2, Lines 1, 14, 21, and 27). Distinguishing the dif-
ferent features using only background colors is more difficult.
Although CIDE mitigates this issue by showing a tooltip with
feature information on a mouse-over, it is still time-consuming
and cumbersome to grasp feature relations this way.

4. We augment colored bars with the ©-sign to make alternatives
and their default values explicit. For instance, in Figure 3.2,
Line 12, void is the preload-method’s default return type. Such
default values must be assigned by the developer. In contrast,
solely relying on background colors is ambiguous and neither
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1 » Base

2| class DatabaseImpl {

3 static class PreloadProcessor {

4 void processLSN(long ¢, LogEntTyp t){

5 assert ¢ != DbLsn.NULL LSN

6 » Memory Budget

7 if (envImp.getMemoryBudget().get()) //1) more code

8 » Statistics

9 if(childType.equals(...)) //2) more code

10 }

11

12 void @ PreloadStats (> Statistics) preload(PreloadConfig c) {
13 long maxByte = c.getmaxByte(); //3) more code

14 » Memory_Budget

15 if(maxByte == 0) //4) more code

16 > Statistics

17 PreloadStats ret = new PreloadStats();

18 PreloadProcessor cb = new PreloadProcessor (

19 envImp, maxByte, tTime, ret (» Statistics));

20 //5) more code

21 try (» Statistics) {

22 walker.walk();

23 } catch (HaltPreloadException HPE) {

24 ret.status = HPE.getStatus();

25 }

26 // some more code in the DatabaseImpl |

27 » Latches

28 //6) more code Editing Operations Menu
29 » Statistics > Assign Variability to Comment
30 return ret; > Assign Alternative to Comment
31 }

32|}

Figure 3.2: Visual annotation projection with support for toggling feature
information

suitable for comprehending alternative code pieces nor default
values.

On a final note on the concrete syntax, the Spotlight tool—which
is outside the SPL context—also uses vertical bars to visualize anno-
tations [47, 48]. However, the bars are placed in the IDE’s left margin
and thus do not align with the source code. Thus, it is questionable
whether the approach scales for a larger number of nested annota-
tions. Moreover, there is no support for horizontal bars, and thus
inter-line annotations are not supported.

EDITING OPERATIONS. To (partially) annotate a code snippet or
assign an alternative to it, developers use a so-called editing operations
menu (a.k.a. intentions menu)—which is a pop-up over a code snip-
pet, available in all projections. Figure 3.2 shows such a menu over a
comment in our Berkeley DB example (Line 26).

The figure also shows that developers can toggle feature informa-
tion into the source code, which allows them to easily assign a fea-
ture artifact to another feature. We simply select the desired feature’s
name from a code completion menu, or type its name. Notice that tog-
gling feature information into the source code is not restricted to the
visual annotative projection, but also available in all other projections
that are enriched with colored bars.

44



3.3 PROJECTIONS I: VARIABILITY REPRESENTATIONS

3.3.3 Feature Module Projection

Now, imagine we want to evolve the Memory_Budget feature or fix a
bug in it, without being distracted by irrelevant code. Obviously, it
is beneficial to edit the class Databaselmpl in isolation and therefore
switch from the annotative projection to the feature module imple-
menting Memory_Budget.

CONCEPTUAL DETAILS AND SYNTAX. Figure 3.1d shows our fea-
ture module projection. As in AHEAD, the refines keywords indi-
cate that the module Memory_Budget modifies the class DatabaseImpl,
the inner class PreloadProcessor, and its method processLSN (Lines
2-8). As in FH, the original-keyword is used to refer to the refined
method declaration (cf. Sec. 2.4.3). Moreover, we propose to show
complexity indicators, such as a warning sign, in modules to make
developers aware of potential ordering issues (not depicted). In fact,
methods that are refined multiple times—that is, a LONG REFINE-
MENT CHAIN (cf. Sec. 2.5.2.2)—are prone to ordering issues, and
thus a complexity indicator might help.

EDITING OPERATIONS. Using the modular projection, developers
introduce feature artifacts by simply typing the desired code ele-
ments. In fact, PEoPL automatically assigns the typed code to the re-
spective feature in the internal representation. Refining existing code
that is introduced by an external feature module is also easy. A devel-
oper simply selects the accessible, external class, or method to be re-
fined from a popup-menu. Then, the keyword original can be typed
to refer to the original implementation, which internally restructures
the underlying AST.

3.3.4 Blending Annotation and Module Projections

Notice that Figure 3.1c shows several fine-grained feature artifacts,
such as scattered base code (Lines 10, 13-15, and 17), alternative re-
turn types (Line 9), and parameter variability (Line 14). These can-
not be implemented without workarounds in classical modular ap-
proaches (cf. Sec. 2.4.3 and [102]). Although we could explore the an-
notative and the modular projection in parallel, it might be beneficial
to allow integrating annotation markers into modules.

CONCEPTUAL DETAILS AND SYNTAX. Figure 3.1d shows a blend-
ing projection, which enriches a feature module with statement-level
markers (Lines 9g—12). To avoid obfuscation, only Memory_Budget code
is shown. All other code is hidden—that is, code of external modules
is collapsed into colored bars. This way, the granularity trade-off of
modular approaches can be addressed and fine-grained changes im-
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plemented. Since the surrounding, external code of other modules
might be important for comprehension, we allow developers to

¢ expand a selected or all markers showing the content of annota-
tions, and

* project accessible fields and forward method declarations di-
rectly into the module on demand.

This way, developers get context-information that may help to bet-
ter understand the source code, how the feature interacts with its
surroundings, and the possible implementation options of a module.
For instance, the variable maxByte in Line 11 of Figure 3.1d is declared
in the hidden base code—as shown in Line 10 of Figure 3.1c. To ease
comprehension, expanding the respective marker is possible.

EDITING OPERATIONS. Editing is as simple as in the pure feature
module projection. In addition, the editing operations menu enables
to show markers, and expand them on demand.

3.3.5 Variant Projection

Now, imagine we want to evolve the features Base and Memory_Budget
or fix a bug that occurs when both features are enabled. We could
show all feature artifacts of Base by expanding the respective annota-
tion markers in the module Memory_Budget (Fig. 3.1d), or switch to a
corresponding variant editor.

CONCEPTUAL DETAILS AND SYNTAX. Figure 3.1e shows our reac-
tive variant projection, which allows exploring variant-specific code
and control flows in isolation. To understand which code artifact im-
plements which feature, we can show colored bars in the variant as
depicted in Figure 3.3. This way, code can be unambiguously assigned
to features in a proactive fashion.

EDITING OPERATIONS. Edits in the reactive variant editor are cur-
rently assigned to features without the developers awareness—that

Variant projection for Base and Memory Budget
1| ' class DatabaseImpl {
2 static class PreloadProcessor {
3 void processLSN(long c, LogEntTyp t){
4 assert ¢ != DbLsn.NULL_LSN
5 if (envImp.getMemoryBudget().get()) //1) more code
6 }
7 void preload(PreloadConfig c) {
8 long maxByte = c.getmaxByte(); //3) more code
9 if (maxByte == 0) //4) more code
10 PreloadProcessor cb = new PreloadProcessor (
11 envImp, maxByte, tTime);
12 //5) more code
13 walker.walk();
4|0} }

Figure 3.3: Proactive variant editor with colored bars
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is, developers do not see to which feature an edit belongs. Thus, the
proactive variant representation should be used for editing instead.
In fact, it provides the same variability-aware editing operations as
the annotative editor.

3.3.6 Fade-in Feature Module Projection

Aside from realizing the aforementioned “standard projections”, we
also experimented with the concrete syntax of projections (i.e., an in-
herent advantage of separating the internal variability representation
from the external representations). According to our own experience,
we found that blending annotations into feature modules sometimes
obscures the code too much. In fact, it might be irrelevant for the de-
veloper to which feature an annotated code snippet (or the respective
marker) belongs. For instance, in the Stack SPL example in Figure 3.4a
(cf. Fig. 2.14), it might be irrelevant that the if-statement belongs to
the codebase (Line 8), or that there are four different markers (Lines
11-14). Thus, we conceive a projection fading modules—that is, inte-
grating code of external modules (wWhenever necessary) into a module,
while hiding external feature relationships.

CONCEPTUAL DETAILS AND SYNTAX. Figure 3.4b shows a fade-in
feature module for our fine-grained Stack SPL example (cf. Fig. 3.4a
and Fig. 2.14). The module provides a coherent view on all content
belonging to the feature Synchronization, while supporting to visu-
alize fine-grained feature artifacts. The concrete syntax is similar to
what we know from Delta] (cf. Sec. 2.4.3.2). In particular, we adopted
the keywords adds and modifies for clarity reasons—that is, making
introductions and modifications explicit. Notice that PEoPL also sup-
ports the removal of feature artiacts, but currently not via a respec-
tive keyword (as we will discuss in Ch. 4). To ease the identification
of code that belongs to the current module, any code snippet that is
introduced by an external feature module is represented light gray.
Moreover, coherent external feature code is collapsed into a textual
marker on the statement level (i.e., <ExternalFeatureCode>, Line 10).
Thus, multiple markers may appear. To ease comprehension, sub-
statement feature artifacts are always shown in their context. For
instance, it is straightforward to comprehend that the module Syn-
chronization adds the method parameter, the throws-item, and the ex-
pression (Lines 6 and 7).

EDITING OPERATIONS. Modifying an existing external class or
method corresponds to the process provided with the standard fea-
ture module—that is, a pop-up menu allows to select classes and
methods introduced externally. On the statement-level, the markers
can be expanded on demand using the editing operations menu, for
instance to add a new (fine-grained) feature artifact.
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1| module Synchronization

2 | refines class Stack {

private final ReentrantLock lock = new ReentrantLock();
private final Condition notEmpty = lock.newCondition();

w

4
5
6 refines public void push(Object data, ReentrantLock lock)
7 throws InterruptedException {

8

9

if(data == null || lock == null) throw new NullPointerException();
lock.lock();

10 try {

11

12

13

14

15 notEmpty.signalAll();

16 } finally { lock.unlock(); }

17 }

18|}

(a) Feature module with annotations to mark fine-grained feature artifacts

1| module Synchronization

2 modifies

3 adds private final ReentrantLock lock = new ReentrantLock();
4 adds private final Condition notEmpty = lock.newCondition();
5

6 modifies ReentrantLock lock) throws InterruptedException
7 lock == null

8 lock.lock();

9 try {

10

11 notEmpty.signalAll();

12 } finally { lock.unlock(); 1}

(b) Fade-in module with fine-grained feature artifacts (code introduced by exter-
nal feature modules is gray)

Figure 3.4: Implementing fine-grained feature artifacts by blending annota-
tions (markers) into feature modules (a), or using an fade-in fea-
ture module (b)

3.3.7 Reuse Projection

There is still one use case that is not properly supported by solely
using the aforementioned projections. Assume that we want to reuse
a concrete feature artifact (multiple times). If we copy and paste the
artifact, we introduce a code clone, which hampers maintenance activ-
ities, such as detecting [124] and fixing bugs [96]—that is, developers
may fix a problem in one clone instance, but miss another instance.
Thus, it would be beneficial to reuse a feature artifact by letting it “ap-
pear” in other program locations. This way, a change to the feature
artifact itself or one of its appearances is consistent, since any edit di-
rectly changes the sole physical artifact in the internal representation.
We discuss the necessary fundamentals, and our projection, which
enables the desired reuse next.

FUNDAMENTALS. Basically, implementing a feature means imple-
menting program extensions that either add new structural elements
or replace existing elements [14]—as opposed to a program change,
which also enables removing elements. As such, an extension com-
prises a set of feature artifacts, for instance new classes, methods,
and statements; or even replacements for other classes and methods.
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The literature often distinguishes program extensions into hetero-
geneous and homogeneous extensions [9, 49]. Figure 3.5 illustrates
this differentiation. A heterogeneous extension adds different feature
artifacts to different “extension points” in the SPL’s codebase (con-
tained by other feature artifacts). Such extension points are typically
not specified explicitly, but either from within the extension itself (fea-
ture modules) or by annotating the codebase. In contrast, a homoge-
neous extension uses the very same feature artifact to extend various
positions in the codebase. A prominent approach focussing on homo-
geneous extensions is aspect-oriented programming (AOP) [111]. There,
aspects have advice, which can be applied to multiple join points.

In real SPLs, heterogeneous extensions amount to over 9o % [126]
to 98 % [5] of the codebase. As such, SPL engineering typically fo-
cusses on heterogeneous extensions—which are not supported well
by AOP [101]. All in all, support for rare homogeneous extensions is
desirable to a certain degree.

CONCEPTUAL DETAILS AND SYNTAX. Our reuse projection adds
homogeneous extension support to PEoPL. Figure 3.6 gives an exam-
ple of a feature Trace, whose feature artifact prints a method’s name in
different program locations. In fact, we reused the print-statement, in-
stead of copying and pasting it. A reused (original) feature artifact is
highlighted by a colored opening square bracket (Line 3), its appear-
ance by a colored closing square bracket (Lines 7 and 11). Changes to
the reused feature artifact appear directly in all reuse-positions (e.g.,
Lines 7 and 11). Likewise, editing an appearance directly changes the
feature artifact. Notice that the reuse projection can be used within
all projections we have discussed thus far. The design of more ad-
vanced visualization and editing facilities is subject of future work.
For instance, we could allow developers to specify a homogeneous
extension from within a module in an AOP fashion, or make changes
to feature artifact appearances without changing the reused artifact.

EDITING OPERATIONS. Employing the reuse projection is simple.
Similar to copy and paste, we provide the operations pick and appear,
which are available via a menu or respective keyboard shortcuts.

heterogeneous homogeneous
extension extension
extension{
extension point <«— extends feature artifact

Figure 3.5: Feature artifacts can realize heterogeneous and homogeneous ex-
tensions (adapted from [14])
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class Stack {
public void push(Object data) {

ESystem.out.println(Thread.currentThread( ) .getStackTrace()[1].getMethodName());

// 1) more code

1

2

3

4

5 }

6 public Object pop() {
7

8

9

]

I System.out.println(Thread.currentThread().getStackTrace()[1].getMethodName()) ;j

// 2) more code

}
public Object isFull() {

11 I System.out.println(Thread.currentThread().getStackTrace()[1].getMethodName()) ;j

12 // 3) more code
13 }
14 }

I "Trace" feature E Reused feature artifact : Feature artifact appearance

Figure 3.6: Feature artifact reuse instead of cloning

3.4 PROJECTIONS II: NON-CODE FEATURE ARTIFACTS

Projectional editing enables developers to use and combine diverse
notations, for instance, program code can be enriched with graphical
elements such as diagrams [199]. As such, PEoPL, which realizes a
projectional approach, is not bound to text. In fact, it inherently allows
assigning software artifacts to features irrespective of their type. Next,
we demonstrate how we use PEoPL in the context of mathematical
formulas [199] that are embedded into program text, and fault trees.

3.4.1 Variational Mathematical Formulas

Figure 3.7 shows a simple example of using math in C code. The
number 77 is calculated in three different ways using Gregory and Leib-
niz’s formula, the Madhava-Leibniz series, and the Monte Carlo Method.
In Figure 3.7b, the code is difficult to read, especially for inexperi-
enced programmers, since the math is transformed into text. Using
mathematical symbols [199] instead of program text substantial im-
proves the comprehensibility of formulas as illustrated in Figure 3.7a.
In fact, mathematical symbols, for instance, va and ) as used in

A2+ 3 E07 (1 - .
12 % ) %57 (Line 16), can be simply selected from a code com
k=0

pletion menu (after typing the symbol’s name, e.g., sum).

Using PEoPL, we make the 7t calculation variational (Fig. 3.7a).
Each formula relates to a feature named after the corresponding al-
gorithm, while the three features are alternative to each other—that
is, only one of them can be selected at a time, which is indicated in
the code by the ®-sign (e.g., Line 13). Thus, we can generate C code
calculating 7 using exactly one of these methods (depending on the
algorithm choice).
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Base IGregory—Lei_bniz IMadhava—].eibniz

Monte-Carlo

1 exported int32 main(int32 c, stringl[] v) {
2 printf ("%.8f\n", calcPi(1000000));
3 return 0;
4 ¥
5 double calcPi(uint64 n) {
6 return gregoryLeibnizPi(n);
7 return madhavalLeibnizPi(n);
8 return monteCarloPi(n);
9 ¥ . 1| double gregoryLeibnizPi(int32_t n) {
10 _double gregorylLeibnizPi(int32 n) { 2| // Gregory and Leibniz's series
11 // Gregory and Leibniz's series 3| double sum = 0;
n (-1 *? 4| for ( int32 t k = (1) ; k <= (n); ++k ) {
1 return 4 kZl Txk-1 ' 5| sumt= ((Pow((-1), k+ 1)) / (2% k=-1));
B D ¥ ? ietu.rn 4 * sum;
14 ~| double madhavaleibnizPi(int32 n) { 8|y ’
15 // f»'la(//mva—Leunuzn series ) 9| double madhavaLeibnizPi(int32_t n) {
(-3)" 10| // Madhava-Leibniz series
16 return V12 * kgo 2 x k + 1 11| double sum = 0;
17 3 N 12| for (int32 t k = (0) ; k <= (n); ++k ) {
1P| double monteCarlopi(int32 n) { 3] sum 4= ((pow((-3), -k)) / (2 %k +1));

19

20
21

// Monte-Carlo Pi
int64 inCircle = 0;
for (int64 i = 0;i < n; i++ ) {

}
return sqgrt(12) * sum;

}
double monteCarloPi(int32_t n) {

22 double x = —randO) ; 18| // Monte-Carlo Pi

RANDF::; (; 1.0 19 int327t inCir(l:le = 0;. )
23 double y = —mmm 8 ™ ; 20| for (int32 t i =0 ; i <n; i++ ){

RAND_MAX + 1.0 21 double x = (rand() / (RAND MAX + 1.0));
24 if (/2 + 2 <D A 22 double y = (rand() / (RAND MAX + 1.0));
25 inCircle++; 23 if (sqrt(pow(x, 2) + pow(y, 2)) < 1) {
26 ¥ 24 inCircle++;
27 ¥ 25 }

((double) (4 * inCircle)) 26| }

28 return i 27| return ((double)((4 * inCircle))) / (n);

29

n

¥

ical formulas in PEoPL

(a) Annotated C code containing mathemat-

}

(b) Standard text editor without

support for visualizing mathe-

matical symbols

Figure 3.7: Annotated C code containing mathematical formulas

On a final note, projects, such as ExaStencils', highlight that as-
signing features to mathematical algorithms is indeed desirable, for
instance, to avoid wasting memory or to increase performance [84,
123]. Additionally, visualizing mathematical symbols using projec-
tional editing positively affects the comprehensibility of complex
mathematical formulas.

3.4.2 Variational Fault Trees

On the example of fault trees, we now show how PEoPL is used to
assign more complex non-code artifacts to features. We give a quick
overview on fault tree analysis (FTA), outline the textual and graphical
representations we use for constructing fault trees, and show how we
deal with variability in fault trees using annotations, modules, and
variants.

1 http://www.exastencils.org/
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3.4.2.1  Fault Tree Analysis: A Quick Overview

Safety-critical systems perform control-tasks that in case of failure
lead to catastrophic consequences, such as serious harm to humans or
the environment. Such systems must be certified by authorities before
the safety-critical system can be used. Typically, for a system to be cer-
tified, it requires a rigorous assessment of possible risks. FTA is one
way to assess risks and, in fact, the causes of hazards. FTA is a deduc-
tive technique to identify and analyze failure paths of systems [191].
Constructing a fault tree amounts to identifying and expressing the
root causes for a given hazardous event utilizing Boolean logic. In
fact, a fault tree is a logic equation of causes (a.k.a. basic events), where
each cause has a probability to occur, and thus the probability of such
a hazardous event can be calculated.

Moreover, safety critical systems typically contain a lot of variabil-
ity, since different customers have different requirements. Yet, certi-
fication authorities deal with single systems, and thus it is desirable
to cope with variability in fault trees as well. In fact, it is worthwhile
to derive a product-specific fault tree automatically instead of con-
structing fault trees for each product from scratch. To enable variabil-
ity in fault trees, previous work proposed to use annotations [55, 161,
180], components [98], meta-modeling [81], and deltas [167]. Yet, ideally
developers could move fluently and transparently between different
variability-aware fault tree representations (i.e., annotations, modules,
and variant-specific). To address this desire, we use PEoPL, and thus
underline its independence of a specific programming-language and
artifact-type.

3.4.2.2 Textual and Visual Fault Tree Representations

To construct fault trees in PEoPL, we conceive a flexible fault tree
notation, which is based on our previous work [26, 132]. We differ-
entiate a fault tree into an internal and two editable external parts
(projections) that developers use. In fact, developers can work with
and fluently switch between a textual fault tree representation (pro-
gram text) and a graphical representation (diagrams). While the for-
mer allows making complex changes in an efficient manner, the latter
typically eases comprehension. We discuss both projections next.

TEXTUAL FAULT TREE PROJECTION. The textual notation allows
creating fault trees in a programmatic fashion. In general, a textually
specified fault tree has the following shape:

TopEvent [<top event description>]
OrGate [<gate description>] [ with { <list of event ids> } ]
AndGate [<gate description>] [ with { <list of event ids> } ]
NotGate [<gate description>] [ with { <event id> } ]

BasicEvent <event id> = <event description> has <probability>

52



3.4 PROJECTIONS II: NON-CODE FEATURE ARTIFACTS

We use these language constructs to create fault trees. Developers
start with a TopEvent—the hazard—to which different gates, such as
OrGates and AndGates can be attached. A gate is a Boolean operator,
representing an intermediate event (i.e., an intermediate cause of the
hazard to occur). In fact, the gates are nested using indentation to
structure the tree (hierarchy). Moreover, each fault tree has a set of
BasicEvents, each of which represents a root cause of the hazard that
occurs with a certain probability. Notice that events have a unique ID,
which is used to attach the event to a gate (or multiple gates). In fact,
different gates can refer to the same basic event, and thus a directed
acyclic graph may be constructed. Moreover, fault tree elements may
be unassigned—that is, not every element needs to be a descendant
of the top event.

As an example scenario, we adopt a fault tree for the personal robot
TurtleBot used in previous research [26, 167]. In a possible hardware
configuration, the robot has actuators for moving and bumpers to
detect collisions. Figure 3.8 shows a corresponding fault tree using
the data from the TurtleBot example [167]. The hazardous top event is
a catastrophic collision (Line 1) caused by the two intermediate events
breaking fails and bumped into obstacle (Lines 2—4). In fact, breaking
may fail if the robot is moving on a low friction surface, such as ceramic
tiles or a wet floor (Lines 6—7). Moreover, the robot bumped into an
obstacle if (i) the robot is moving, (ii) there is an obstacle in its way,
and (iii) we indeed have detected a bump (Line 8—9).

Notice that the four basic events have a probability assigned that
enables calculating the probability of a catastrophic collision. To cal-
culate the probability, we first calculate the so-called minimum cut
set [191]—the smallest conjunctions of basic events causing the top
event. In fact, the fault tree description of the TurtleBot can be trans-
lated into Boolean logic as follows:

collision := (Ifs A rim) V (rim A\ bum A oiw)

This equation is already our minimum cut set, since there is no
smaller conjunction of basic events causing the top event. Notice
that we would use a top-down approach using the rules of Boolean

BasicEvent bum
BasicEvent oiw

"Bump detect" has 0.95
"Obstacle in way" has 0.15

1 [ TopEvent "Catastrophic collision"

2 OrGate

3 AndGate "Breaking fails" with { rim, 1lfs }

4 AndGate "Bumped into obstacle" with { rim, bum, oiw }
5

6 | BasicEvent rim = "Robot is moving" has 0.8

7 |BasicEvent 1fs = "Low friction surface" has 0.02

8

9

Figure 3.8: Example textual fault tree for a robot with actuators and
bumpers
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3.4 PROJECTIONS II: NON-CODE FEATURE ARTIFACTS

algebra to determine the cut set otherwise. Then, the probability of
the top event is the union of the cut sets [191]:

collision = (0.02 % 0.8) + (0.8 % 0.95 % 0.15) = 0.13

GRAPHICAL FAULT TREE PROJECTION. Aside from implementing
the tree textually, we can use a graphical representation. In fact, the
graphical notation allows creating fault trees as diagrams. In general,
a graphically specified fault tree has the following shape:

Type Graphical Element In | Out
TopEvent |:| [<top event description>] 1 0

OrGate 21| [<gate description>] n 1

AndGate [<gate description>] n 1

NotGate [<gate description>] 1 1

. [<event id>] [<event description>]

B E t 0
asickven O [<probability>] n

Reused /~\ [<event id>] [<event description>] 0 1

BasicEvent ‘-’ [<probability>]

Connection | —» - -

Notice that the graphical elements match the textual description.
Developers start with a TopEvent and then add new gates and basic
events in a step-wise manner. Figure 3.9 shows the graphical repre-
sentation of the textual TurtleBot example (Fig. 3.8). Notice that con-
nections between fault tree elements point towards the root. This way,
we clarify that basic and intermediate events are the cause for other
intermediate events (or the top event).

On a final note, other approaches to construct fault trees typically
either allow a textual or a graphical editing of the data structure
(not side-by-side in parallel). Textual approaches, such as the Haskell

Catastrophic collision Catastrophic collision
Breaking Bunped into Breaking >1 Bumped into

fails obstacle

tacl

=
o b 50

fails obstacle

Low Robot Bump Cbstacle Low Robot  Rabot Bump Obstacle
friction is  detected in way friction is is  detected in way
surface moving  0.95 0.15 surface moving moving  0.95 0.15

0.02 0.8 0.02 0.8 0.8

Figure 3.9: Graphical fault tree for a robot with actuators and bumpers. On
the left, the reuse of the basic event Robot is moving is represented
by multiple output edges. On the right, the reuse is made ex-
plicit by a dotted circle which eases comprehension in complex
trees (or more precise graphs). Both representations are logically
equivalent.
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3.4 PROJECTIONS II: NON-CODE FEATURE ARTIFACTS

fault tree package?, only support rendering the textual notation into
a graphical notation that cannot be edited (e.g., using Graphviz3).
Visual fault tree representations—provided by tools such as Open-
FTA4, FaultTree+5, or the RAM Commander®—are typically realized
using a rendering engine, which is tailored to graphical editing. Con-
sequently, developers cannot move fluently between the different rep-
resentations.

3.4.2.3 Projecting Variability into Fault Trees

Now imagine that we construct three different hardware variants of
the TurtleBot (cf. [167]), each of which has actuators to move, but a
different sensor setting:

V1: Bumpers (to detect collisions)
V2: A laser scanner (to detect obstacles in the robot’s range)

V3: Bumpers and a laser scanner (to detect obstacles and collisions)

Obviously, we need a respective fault tree for each variant (for cer-
tification). Instead of creating each variant from scratch, potentially
cloning fault tree elements, we create an SPL, where the two sen-
sors are represented by the features Bumper and LaserScanner, respec-
tively. Then, we can select the features and create the variant’s fault
tree automatically. We now discuss how developers can work with
variability-aware fault trees using the annotative, modular and vari-
ant projections we conceived in PEoPL.

ANNOTATION PROJECTION. Using PEoPL, variational fault trees
can be constructed by annotating the fault tree’s external textual and
graphical representation. Figures 3.10a/b show textual and graphi-
cal fault trees for the TurtleBot SPL. Annotations are represented as
colored bars. Notice that we only color gates. The rationale is that
if a gate is removed during variant derivation, the references to the
basic events are removed as well—which typically is sufficient. For in-
stance, if the feature Bumper is not selected, then the and-gate Bumped
into obstacle is together with the references to the basic events re-
moved.

VARIANT PROJECTION. Now imagine that we want to understand
what a specific fault tree variant looks like. We simply switch to
the textual (e.g., Fig. 3.10c) or graphical (e.g., Fig. 3.10d) variant
projection. In fact, comparing the graphical annotation projection

2 https://hackage.haskell.org/package/faulttree

3 http://www.graphviz.org/

4 http://www.openfta.com/

5 https://www.isograph.com/software/reliability-workbench/
faulttree-analysis/

6 http://aldservice.com/Fault-Tree-Analysis-FTA-Software.html
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AndGate "Bumped into obstacle" with [ rim, bum, oiw ]
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Figure 3.10: Variational fault tree for a robot rendered into different external variability representations
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3.5 PROJECTIONS III: VARIABILITY-AWARE FILE EXPLORERS

(Fig. 3.10b) and the graphical variant projection (Fig. 3.10d) side-by-
side—which is possible in PEoPL—eases comprehension. Notice that
the gate Sensor detected collision is not rendered, since it is obsolete for
the variant—that is, Unavoidable obstacle is the only input gate.

MODULE PROJECTION. When developers want to understand and
edit a fault tree of a specific module in isolation, they simply switch
to the textual or graphical modular projections. For instance, in
our TurtleBot example, we can observe the fault tree of the module
Bumper in isolation as illustrated in Figures 3.10e/f. To understand
how the module contributes to the hazard the path to the top event
is shown (in grey). Moreover, notice that in both, the textual and the
graphical projection, only the referenced basic events are visible. To
refer to another basic event, developers can blend available events
into the module.

3.5 PROJECTIONS III: VARTABILITY-AWARE FILE EXPLORERS

So far, we only discussed variability within files (i.e., on source code
snippets). However, developers need to be able to explore an SPL’s
files in a variability-aware manner as well. To deal with annotative,
variant, and modular representations, we conceive respective file ex-
plorers, as discussed next.

ANNOTATIVE REPRESENTATIONS. For exploring annotated files,
a standard file explorer is sufficient, since it inherently shows all files
of the SPL. Figure 3.11a shows an example file explorer for Berke-
ley DB (cf. Fig. 3.1), where all source files (e.g., our example class
DatabaseImpl) are organized in respective packages. The only addi-
tion we make to the standard explorer is that the respective top level
feature is shown after each file’s name—which is possible, since each
code snippet is contained by at least one feature artifact. Thus, it is
easy to identify that, for instance, the class BtreeStats is introduced
by the Statistics feature and the class DatabaseImpl by the Base feature
(cf. Fig. 3.1).

VARIANT REPRESENTATIONS. For exploring the files of a specific
variant, we use a standard explorer, which hides the files unrelated to
a feature selection. For instance, the variant file explorer depicted in
Figure 3.11b shows the files for selecting only the Base feature. Since
the Statistics feature is not selected, the class BtreeStats is hidden.

MODULAR REPRESENTATIONS. Exploring the files introduced or
modified by a feature is also straightforward. In fact, our modular
file explorer organizes the SPL’s implementation into feature mod-
ules, each of which shows the files it introduces and modifies. For
instance, Figure 3.11c shows the four features Base, Memory_Budget,
Statistics, and Latches of our Berkeley DB example. To distinguish in-
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v Berkeley DB v Berkeley DB
v <F> com.sleepycat.je v gvg Feature Modules
» (©) Btreestats (statistics) V & Base
» (© cursor (Base) v <F> com.sleepycat. je

| 2 @ Database (Base) | 2 © Cursor
: > © Database

v <F> com.sleepycat.dbi 5
\4 <F> com.sleepycat.dbi

» © cursorImpl
> © DatabaseImpl

> @ CursorImpl (Base)
» (©) patabaseImpl (Base)

=Y
(a) Standard file explorer g ‘i Memor,y_?udget
V = statistics
v <F> com.sleepycat.je
v Berkeley DB | 4 @ BtreeStats
v <P> com.sleepycat.je
| 2 @Cursor (Base)

> @ Database (Base) v <F> com.sleepycat.dbi

| 2 © Database (Base)

g | 2 © CursorImpl (Base)
v <F> com.sleepycat.dbi | 4 © DatabaseImpl (Base)
| 2 @ CursorImpl (Base) :

| 2 @ DatabaseImpl (Base) » 7 Latches
(b) Variant file explorer for selecting (c) Modular file explorer

only the Base feature

Figure 3.11: Different variability-aware file explorers supported by PEoPL

troduction and refinement, we extend the modified file’s name with
the external module’s name—that is, the module, which introduced
the file. In our example, it is, in fact, easy to distinguish introductions
and modifications. For instance, the module Base introduces the file
DatabaseImpl, while Statistics modifies it (indicated by the file name’s
suffix).

36 CONCLUDING REMARKS

We have seen that PEoPL enables developers to implement, compre-
hend, maintain, and evolve SPLs in diverse ways. Establishing an in-
ternal variability representation and separating it from the external
representations that developers use, enables a very flexible and novel
way of editing SPLs. In fact, PEoPL allows developers to leverage the
advantages of annotations, modules, and variant-specific SPL edit-
ing, and thus helps addressing common variability engineering chal-
lenges. We discussed PEoPL’s diverse variability projections, their in-
dividual strength and weaknesses, and possible usage scenarios. We
have shown how developers can browse the SPL using variability-
aware file explorers, and that PEoPL is not restricted to code artifacts,
but enables adding variability to arbitrary textual and graphical ele-
ments. Aside from implementing variability, PEoPL supports model-
ing and managing variability as we will see in the following chapter.
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MODELING AND MANAGING VARIABILITY

We now discuss how developers use PEoPL to setup a product line
and derive variants (Sec. 4.1). Moreover, we discuss how PEoPL helps
developers to deal with an SPL’s inherent complexity and the correct-
ness of variants (Sec. 4.2).

4.1 PRODUCT LINE SETUP AND VARIANT DERIVATION

To model an SPL, PEoPL provides DSLs for a simple and an advanced
SPL setup. Both ways for configuring an SPL are projections of a
common, internal configuration representation, which can be directly
edited by experts (cf. Sec. 8.2.1). Notice that all projections enable
declaring feature modules to which developers refer from the SPL’s
implementation, but internally only one module declaration per mod-
ule exists. Thus, developers can switch from a simple declaration to
an advanced declaration, if necessary without redeclaring the SPL’s
feature modules and changing the implementation. In the following,
we discuss the simple and advanced ways for modeling an SPL.

4.1.1  Simple Product Line Declaration

A simple setup of an SPL has only two types of declarations: feature
modules and constraints over feature modules.

FEATURE MODULE DECLARATIONS. FEach feature (and feature in-
teraction) maps to exactly one feature module declaration as illus-
trated in our Berkeley DB example in Figure 3.1b. Subsequent to its
declaration, a feature module is implemented using a set of concrete
feature artifacts (each of which refers to the module’s declaration).
For instance, the Base feature module comprises five feature artifacts
(Fig. 3.1¢, Lines 4, 9, 10, 13-15, and 17).

Since the feature artifacts of different modules can be alternative to
each other (e.g., the return types void and PreloadStats in Fig. 3.1c,
Line 9), developers need to be able to specify which module’s arti-
facts shall be included in a variant. To decide between such mutually
exclusive artifacts, developers declare feature modules in a certain
ordering—that is, developers implicitly assign a priority to each fea-
ture module. Then, the module with the higher priority overrides the
conflicting artifacts of the lower prioritized module. According to the
ordering in our example, Latches has the highest priority and Base the
lowest (Figure 3.1b). Consequently, the module Statistics will override
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4.1 PRODUCT LINE SETUP AND VARIANT DERIVATION

conflicting artifacts defined in Base. In fact, PreloadStats, and not
void will be included in a variant with both feature modules being
selected. Yet, if we changed the priority such that Statistics had the
lowest priority (i.e., move the declaration to the top), the return type
void would be included in respective variants.

During variant derivation, all modules are composed while resolv-
ing conflicts according to their priority (i.e., bottom-up). In fact, com-
posing modules results in a greater set of feature artifacts—that is, the
artifacts included in the target variant. For instance, if all four feature
modules of our example are selected (using checkboxes), then Latches
is composed with Statistics, the resulting larger module with Mem-
ory_Budget and so on, and thus all artifacts (except void in Line 9) are
included in the variant.

CONSTRAINT DECLARATIONS. To enforce correctness of the SPL,
developers can constrain the selection of features. A constraint is a
propositional formula over feature modules (cf. Sec. 2.3) which en-
ables developers to express dependencies and relationships between
(multiple) features. In PEoPL, constraints can be built using the fol-
lowing operators:

e ! (not)
&& (conditional and)

|| (conditional or)

*|| (one-out-of-many)

= (implies)

For instance in our Berkeley DB example (Figure 3.1b), we could use
the constraint Base && Memory_Budget to define that any variant re-
quires the feature modules Base and Memory_Budget to be selected.

4.1.2  Advanced Product Line Declaration

If the simple product line declaration does not suffice, developers can
switch to an advanced declaration, which has been inspired by delta-
oriented product line declarations [115, 157], and thus has a similar
shape (cf. Sec. 2.4.3.2). Figure 4.1 shows the structure of an advanced
declaration, which comprises the following elements:

* a set of features characterizing the SPL (Line 2)

* a set of feature modules (Line 3) which are referenced by devel-
opers from the implementation to mark feature artifacts

* a set of constraints over features using propositional logic to
declare a feature model and enforce behavioral correctness of
the SPL (Line 4)
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4.1 PRODUCT LINE SETUP AND VARIANT DERIVATION

SPL <SPL name> {
Features { <list of features> }
Modules { <list of feature modules> }
Constraints { <list of feature constraints using propositional logic> }
Mappings {
<list of modules> when (<Boolean expression over features>);

NOoO U A WN

[

[ <list of modules> removal of artifacts when (<Boolean expression over features>); ]

0| }

11 Variants {

12 <variant name> = { <list of feature selections> }
13
14| }
15|}

Figure 4.1: The shape of PEoPL’s advanced product line declaration

¢ an ordered set of mappings from features to feature modules
(Lines 6 and 8) with each individual mapping comprising a list
of modules that add, override, or remove feature artifacts if the
corresponding expression over features evaluates to true

* a set of valid variant configurations, each of which comprises a
selection of features (Line 12)

To derive a variant, all modules—whose Boolean expression over
features evaluate to true for a given feature selection (Line 6)—are
applied according to their priority (i.e., bottom up). The result is a
transient variant set of feature artifacts. Then, in a second step, the
modules that remove feature artifacts are applied (if their Boolean
expression over features evaluates to true). The result is a final variant
set of feature artifacts. In a final step, to transform the SPL into the
variant, feature artifacts that are not in the variant set are removed.

Figure 4.2 shows an advanced SPL declaration for our Berkeley DB
example (cf. Figure 3.1). We declare a set of features (Line 3) and
a set of modules (Lines 6-7). Notice that there is no ambiguity be-
tween feature and feature module declarations. In fact, we can even
use the same names, since either features or feature modules, but
not both, can be referred from a clause. For instance, a constraint
can only be declared, using a set of features (e.g. Line 11). Most fea-
tures in the example are mapped to a corresponding module (with
the same name)—that is, a simple one-to-one mapping (Lines 14—
18). Moreover, to add coordination code for the features Statistics and
Memory_Budget, we include the module StatisticsAndMemory_Budget
when both features are selected (Line 19).

Now assume that stakeholders can select a feature Optimization
(Line 3), which improves the performance of the database. In fact,
imagine that selecting the feature triggers the removal of some fea-
ture artifacts of the module Statistics. To enable removal, developers
mark the implementation artifacts to be removed using a module. No-
tice that we internally use an alternative to realize removal (as we will
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1[(SPL BerkeleyDB {

2 Features {

3 Base, Statistics, Memory Budget, Evictor, Latches, Optimization,
4}

5 Modules {

6 Base, Statistics, Memory Budget, Evictor, Latches,

7 RemStatistics, StatisticsAndMemory Budget,

8l }

9 Constraints = {

10 Base && Evictor ;

11 Memory Budget => Evictor && Latches

12| %}

13 Mappings {

14 Base when (Base);

15 Memory Budget when (Memory Budget);

16 Statistics when (Statistics);

17 Latches when (Latches);

18 Evictor when (Evictor);

19 StatisticsAndMemory Budget when (Statistics && Memory_ Budget);
20 RemStatistics removal of artifacts when (Optimization);
21 }

22 Variants {

23 Basic = { Base, Memory Budget };

24 OptimizedBasic = { Base, Memory Budget, Optimization };
25 }

26|}

Figure 4.2: Advanced product line declaration for the Berkeley DB example
(cf. Sec. 3.1)

discuss in Ch. 7). To visualize removal in the code, we show a removal
marker on the feature artifact in our visual annotative projection as il-
lustrated in Figure 4.3. Notice that we did not use removal in our case
studies (cf. Sec. 5.2.2), and thus only realized the projection as a proof
of concept. Consequently, integrating a removes keyword in the mod-
ular projections (similar to the delta-oriented removes-keyword [115,
157]) is subject of future work.

On a final note, expert users can configure variants on an even
more fine-grained level—for instance, removing feature artifacts at
any composition state—using PEoPL’s underlying algebra as we
will detail during the discussion of PEoPL’s internal representation
(Ch. 7).

1 » Base

2| class DatabaseImpl {

3 static class PreloadProcessor {

4 void processLSN(long c, LogEntTyp t){
5 assert ¢ != DbLsn.NULL_LSN

6 » Memory Budget

7 if (envImp.getMemoryBudget().get())
8 > Statistics (remove artifact if P RemStatistics)
9 if(childType.equals(...))

10 }

11 }

12|}

Figure 4.3: Enhanced visual annotation projection with a removal marker
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4.2 PRODUCT LINE CORRECTNESS

A product line is a complex beast to deal with. In fact, unmet depen-
dencies between features are a common cause for subtle errors [137,
152]. In order to minimize issues and avoid problems before de-
ployment (i.e., while editing the SPL), PEoPL automatically detects
artifact-related feature dependencies in the SPL’s entire implementa-
tion. Moreover, PEoPL allows analyzing the data flow of a variant to
be deployed or all valid variants of the SPL. We discuss both next.

4.2.1 Artifact-related Feature Dependency Analysis

Prior work has shown that unresolved artifact-related feature depen-
dencies can lead to syntactical errors and to type errors during prod-
uct generation [12, 13, 106, 127, 147, 152, 184]. Recap that such a fea-
ture artifact dependency appears if a feature’s artifact depends on
another feature’s artifact. There are multiple strategies to detect this
issue, for instance, type checking and static analysis [186]. In our case
studies (cf. Sec. 5.2.2), we also encounter a great need for resolving
feature artifact dependencies. In particular, we adopt product lines
by re-assigning features manually to the codebase in order to learn
more about PEoPL and possible usability issues. This approach is er-
ror prone, and thus we need support for calculating and handling
such dependencies in PEoPL. For instance, to detect, when we forgot
to annotate a code snippet.

Based on our internal representation, we implement a set of simple
checking rules that run with the type checker (as detailed in Sec. 9.1).
To enable developers to handle dependencies, we add IDE support
for navigating to dependent nodes and highlighting dependencies in
the code. Figure 4.4 exemplifies the latter using a code snippet from
our graph-product-line (GPL) case study. There, the variable reference
weight is not annotated, and thus a feature artifact dependency be-
tween the features GN_OnlyNeighbors and Weighted emerges. In fact,
if GN_OnlyNeighbors is selected, but not Weighted, a dangling refer-
ence appears. Notice that such missing annotations are difficult to de-
tect without tool support, especially if a dependency spreads across
methods and classes (a.k.a. inter-procedural dependencies [152]).

To enforce correctness of the SPL in the presence of intra- and
inter-procedural code-level dependencies [152], classical approaches
require developers to lift each dependency up into the variability
model. PEoPL in turn extracts such dependencies automatically and
informs developers about unresolved dependencies in the product
line declaration. This way, variability model and variability imple-
mentation are clearly separated.

A quick note on internals. Relying on the concept of projectional
editing has the potential of leveraging static analyses that are usually

63



4.2 PRODUCT LINE CORRECTNESS

1| » Base
2 public class Graph { ...
3 EdgeIfc addEdge(Vertex s, Vertex end, int weight(» Weighted)) {
4 cee
5 » GN_OnlyNeighbors (Tt
6 Neighbor e = new Neighbor(end, weight);
ANARAAA
7 AN
8 } Info: reference to 'weight' causes a feature
9 } artifact dependency: GN_OnlyNeighbors => Weighted

Figure 4.4: Example of an artifact-related feature dependency

expensive in parser-based systems. Since projectional editors operate
on an AST (which is directly modified by the user’s editing gestures),
references between AST nodes (e.g., method call to method declara-
tion) are actively maintained. PEoPL analyzes the AST for extracting
feature constraints. In contrast to expensive static analyses required
for parser-based systems [137], our analysis is quick (<1,8s on av-
erage for Berkeley DB). We discuss the concrete realization of the
dependency checker in Section 9.1.

4.2.2  Variant-based Data-Flow Analysis

Another challenge is to achieve SPL correctness. Figure 4.5 illustrates
the issue. The variable entryType is not initialized if the feature Trans-
actions has not been selected (cf. assignments in Lines 4, 9, 12 and the
reference in Line 16). In fact, a variability-unaware data-flow analysis
would not indicate an error, since the variable entryType is initialized
in the 150% model (Lines g and 12). PEoPL mitigates this issue, since
it enables developers to analyze the data flow of a target variant as
well as all valid variants (each reflecting a different feature selection)
of the SPL in a brute-force fashion.

Notice that analyzing the codebase for different feature selections
in a brute-force fashion is a non-optimal solution. The computational
cost is high, since the number of variants might be exponential (worst
case). Thus, if the number of features is too large, the variant-based
analysis might be too expensive or actually infeasible. To address this
issue, previous work proposed, for instance, to increase the abstrac-
tion of the SPL to approximate the analysis—that is, trading in preci-
sion for speed, which makes the analysis of SPLs with a large number
of variants feasible [57].

Another option is a so-called family-based data-flow analysis (a.k.a
lifted data-flow analysis or feature-sensitive data-flow analysis) in which
data-flow graphs of variants are not generated, but a variational data-
flow graph is analyzed (cf. [37, 39, 57]). This is helpful to find prob-
lems, such as unreachable code or uninitialized variables, in all vari-
ants before compiling the code (as illustrated in Fig. 4.5, Line 16). So
creating variational data-flows (from the variational AST) is a valu-
able approach to be investigated for PEoPL in the future.
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1 » Base

2 public class LN {

3 private long log(..., Locker locker) throws DatabaseException {
4 LogEntryType entryType; - _

5 // 1) more code TTTTTme—-o_

6 Txn logTxn; Tl

7 » Transactions ™

8 if (locker != null && locker.isTransactional()) { h

9 entryType = getTransactionalLogType(); /

10 // 2) more code » //

11 } else { N il

12 entryType = getLogType(); €--~_ ‘| ///

13 // 3) more code \\ || /

14 } \\\ :| /,’

15 // 4) more code s

16 LNLogEntry logEntry = new LNLogEntry(entryType, this, ...);
17 // 5) more code K

18 } Error: Variable 'entryType' is not initialized
19 } if the feature 'Transactions' is not selected

Figure 4.5: Checking the data flow of a variant where the Berkeley DB fea-
ture Transactions is not selected

All in all, it might be valuable to exploit different analysis tech-
niques for PEoPL in the future. For more information, we refer inter-
ested readers to a survey on available analysis strategies for software
product lines [186].

On a final note, we discuss the concrete realization of the data-flow
analyzer in Section 9.2.

4.3 CONCLUDING REMARKS

Notice that, for now, PEoPL does not provide full-fledged variability-
aware type checking support (cf. [107]). Thus, PEoPL currently can-
not detect all problems in advance (before variant derivation). For
instance, duplicated method signatures that occur due to the removal
of method parameters cannot be detected. Instead, such errors are
detected while transforming the SPL into a variant. Yet, detecting
feature artifact dependencies and analyzing data flows of variants
already helps resolving many issues before transformation. In sum-
mary, we plan to increase the validity of SPLs developed in PEoPL
by leveraging techniques, such as family-based type checking [107]
or model checking [44].
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VIEW

To validate PEoPL from the SPL developer’s perspective, we rely on
three ingredients.

5.1: We use and extend existing classification frameworks [8o, 100,
118] to compare PEoPL with other SPL implementation tech-
niques. This way, we quantify PEoPL’s practicality on a set of
well defined quality criteria and investigate whether the ap-
proach is indeed desirable.

5.2: We implement a series of Java SPLs in PEoPL. These case stud-
ies enable us to understand the practicality of our approach
and to investigate its scalability. Moreover, we approximate the
number of boilerplates necessary in pure modular approaches
to underline the usefulness of PEoPL, and its ability to switch
between and blend annotative and modular representations.

5.3: We conduct two pilot user studies to learn more about PEoPL’s
usability. We identify possible usage scenarios and lay ground
for future studies.

5.1 CLASSIFICATION I: COMPARING TECHNIQUES AND TOOLS

We have seen in Section 2.5 that different variability representations
have distinct advantages [100, 103, 171]. We now complement this dis-
cussion by evaluating and comparing PEoPL with other concrete SPL
engineering techniques and tools. To study and discuss different qual-
ity criteria, we use a classification framework which has been simi-
larly proposed and used by others [14, 80, 100, 118, 171]. In contrast
to previous work [100, 118], we quantify a broader set of techniques
and tools. That is, we not only discuss CIDE (visual annotations),
FH (feature modules), and a refactoring from CIDE into FH and vice
versa on a set of quality criteria, but we also consider the CPP (tex-
tual annotative), Delta] (delta modules), and the VCS (reactive variant
editing). Moreover, we expand the previously proposed set of quality
criteria [14, 118]. In addition to preplanning effort, adoption, uniformity,
granularity, modularity, traceability, and information hiding [14, 118], we
also quantify the criteria variability implementation flexibility, expressive
power, homogeneous extension, and variant editing. Table 5.1 shows our
results, which we discuss in detail next.
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Variability Implementation Approach
Refac-

CPP CIDE FH DeltaJ VCS PEoPL
toring!

Preplanning effort low low high mid Ilow low low
Adoption I’ 0 00 0O ©O [ 1@) [ 1)) ( 1 J
;/Z:i;?;il;y;mp lementation o5 00 0O 0O €0 ee
Uniformity v v v v v X v

Granularity e 60 00O 0O eo 0 0
Modularity oo 00 e [ ID) @) [ 1@) o0
Feature traceability I O e ee ee O ( 1)) ( 1)
Information hiding I O OO0 eO eO 0O [ ]©) ( Jo)
Expressive power [ 0 6O o0 00 o0 ( 1@} ( D)
Homogeneous extensions ¥ OO 0O @0 OO 0O 0O | Jou
Variant editing I o0 e OO 00O (1] o0 ( 1)

@@ very good, @0 good, @O medium, ©O poor, OO no support
IRefactoring engine to transform CIDE into FH implementations and vice
versa [103].

2The full strength of the underlying concepts are yet to be exploited.

Table 5.1: Classification of variability implementation techniques from the
SPL developer’s perspective (extended/adapted [100, 118])

5.1.1 Preplanning Effort

Developers need to preplan an SPL’s realization irrespective of the
concrete technique or tool used [14]. What are the features to be
realized (a.k.a. scoping decisions) and how will they interact? Some
approaches facilitate systematic reuse, while others induce a higher
effort.

In approaches that support annotations such as the CPP, CIDE,
and PEoPL the preplanning effort is low. That is, annotations can
be added in an ad hoc manner at any time in the development life
cycle [14, 100]. Thus, there is no upfront investment for separating
commonalities and variabilities in the implementation. Approaches
that support refactoring from and into annotations benefit from this
advantage as well.

In VCS, the preplanning effort is also low. A developer just starts
editing a certain product variant in an ad hoc manner. During a com-
mit which requires a developer to assign features, all changes are
merged into the underlying database—the SPL’s 150% model.

Modular approaches such as FH require a higher preplanning ef-
fort as developers need to find the right decomposition strategy. In
particular, developers need to properly identify the SPL’s commonali-
ties and variabilities encapsulating them in a base module and several
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additional (optional) modules. If unidentified variabilities appear in
later project phases, the base module must be restructured, and the
variable code must be moved to a respective optional module in a
cut & paste manner. Thus, pure FOP approaches make it rather ex-
pensive to fix unidentified variabilities in evolved structures.

DOP approaches mitigate this and other FOP issues [158]. Develop-
ers start the modular implementation from any product expressed in
a core delta. If hitherto undiscovered variabilities are identified in the
core delta, the developer can introduce a new delta, which (partially)
removes the content of the initial product. This way, the core delta re-
mains untouched and the program’s evolution is better manageable.
For instance, if a scoping decision is to be reverted the respective
delta is simply removed (instead of refactoring the code again as in
FH). Still, DOP approaches induce a medium preplanning effort as
decomposition into deltas must be planned to a certain degree to ob-
tain a well structured system.

5.1.2  Adoption jump to overview 1

Adoption mainly describes the (potential) interest of industrial soft-
ware engineers and developers to use a certain variability representa-
tion in isolation [100]. Consequently, adoption is closely coupled with
the (preplanning) effort to use a certain representation.

Practitioners have already widely adopted the CPP (@®) to imple-
ment variability (e.g., Linux) [9o]. The main reason for the success
of annotations is that they are easy to use, allowing developers to
quickly produce results [45, 100]. Thus, the initial risk for companies
is very low [45]. CIDE (@©) poses a similar line of work, and thus
skills for visually annotating the source code can be quickly acquired.
Although the CIDE prototype itself has not been adopted in practice,
it has inspired tools such as mbeddr [193, 197], which is actually used
by industrial developers [194].

Clone-and-own is also common industrial practice [3, 64, 75, 136].
To create a new variant, developers copy or branch the code to be
reused and customized. However, this strategy is problematic, espe-
cially when changes need to be merged back into multiple variants.
A VCS (@0) could improve this process, and thus the SPL’s maintain-
ability. Instead of manually applying changes to each variant, a devel-
oper can specify which variants are affected by a change [178]. Thus,
although contemporary approaches are academic [178], a full-fledged
VCS could have the potential to be adopted in practice. On the other
hand, the acceptance of a reactive variant-editor is yet to show. One
could argue that it is error-prone and intellectually challenging to as-
sign a multitude of features after implementing all the functionality,
and to decide additionally which variants should be changed.
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Unfortunately, FOP (©0O) and DOP (©0O) approaches are rarely
adopted in industrial practice despite their benefits [14, 100, 102]. The
main issue is that the short-term risk for companies is high. Quick re-
sults cannot be expected as developers must learn a new technique
from scratch. Moreover, developers must find the right decomposi-
tion strategy for implementing the SPL’s modules, and potentially
deal with boilerplates. Thus, the benefits of modular solutions re-
main unexploited in practice. Refactoring engines (@©) promise to
reduce this adoption-barrier. Developers can start with visual annota-
tions and transform them into modules and vice versa. Yet, there is
currently no advanced refactoring engine allowing to refactor diverse
representations—that is, only CIDE to FH and vice versa is available.

In contrast, PEoPL (@®) allows developers to start with a CPP-
based projection and to use it with several other variability represen-
tations in parallel. Based on this flexibility, we argue that the potential
interest of using PEoPL in industrial practice is the highest among its
academic companions. Since projectional editing is substantially dif-
ferent to classical text editing, one could argue that developers need
to learn new concepts, weakening adoption. However, recent work
has shown that projectional editing efficiency is quickly achievable
by short user trainings [31, 203]. In fact, a 45-minute training suffices
to achieve editing skills comparable to classical text editing [31].

5.1.3 Variability Implementation Flexibility jump to overviewt

To quantify variability implementation flexibility, we investigate tech-
niques and tools in the light of two key questions:

RQ1: How fluently can developers switch between the available variability
representations?

A fluent movement enables using the best variability represen-
tation for a given feature artifact and task on demand.

RQz2: Can developers observe and edit a feature artifact (e.g., class) using
different variability representations in parallel (side-by-side)?

Parallel editing enables an even faster movement between two
techniques. Moreover, it helps observing the impact of changes,
for instance to a variant.

The CPP, FH, Delta] and VCS do not support switching variability
representations out of the box (0O).

CIDE (@0) only supports visual annotations (background colors)
and a simple variant editor, which hides feature artifacts. True modu-
larity is not supported. To edit a variant, developers unselect features.
Yet, moving between the annotated codebase and different configura-
tions is cumbersome, since for each configuration the correct features
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need to be selected manually and from scratch—that is, configura-
tions cannot be predefined (RQ1). Moreover, developers cannot see
and edit the full annotated codebase and a specific variant side-by-
side in parallel (RQ2).

Figure 5.1a illustrates the editing possibilities in a refactoring en-
vironment (@0). First, refactoring is time-consuming as a variabil-
ity representation must be transformed into another representation.
Thus, moving efficiently between different variability representations
is not possible (RQ1). Second, refactoring does not support parallel
editing properly, since only one particular snapshot of the SPL can
be edited consistently at a time. In fact, parallel editing of different
refactored versions causes inconsistencies, and demands developers
to resolve conflicts (RQ2).

Figure 5.1b illustrates the projectional environment of PEoPL (@@®),
which seems to be the most flexible approach thus far. PEoPL allows
developers to move fluently between its different variability repre-
sentations for a given feature artifact (RQ1). Moreover, developers
can edit the code using different techniques side-by-side in parallel
(RQ2). In fact, any editing activity directly manipulates the internal
representation of the SPL, while the variational concrete syntax (e.g.,
annotated program) is just a rendering. This way, inconsistencies are
avoided by design.

)

Program | |Annotated | | Modular Program | | Annotated | | Modular
Variant Program Program Variant Program Program

T render T T

ransform Internal Representation

Refactoring Engine Projectional Environment

(a) Refactoring engine (b) Projectional Environment

Figure 5.1: Editing activities compared: refactoring vs. rendering

5.1.4 Uniformity jump to overview

Uniformity describes a consistent, homogeneous variability encoding,
regardless of the feature artifact type (e.g., text or diagrams) [14, 22].
If different (internal) representations are intertwined, variability is
persisted in an inconsistent manner. Then, developers need to inte-
grate and coordinate different tools, and thus tracing a feature to all
its artifacts becomes more difficult.

The CPP, CIDE, FH, DeltaJ, and VCS have their own variability
representation, and thus persist variability in a uniform manner (v).
Notice that PEoPL (v') allows developers to use diverse external vari-

70



5.1 CLASSIFICATION I: COMPARING TECHNIQUES AND TOOLS

ability representations, but is build upon a common, internal variabil-
ity representation. Thus, uniformity is achieved as well. In contrast,
using partial refactoring (X), variability is persisted inconsistently. For
instance, CIDE annotations can appear within FH modules, which re-
quires developers to integrate and coordinate the two tools.

5.1.5 Granularity jump to overview 1

Feature artifacts implement features and their functionality. Recap
that granularity describes the structural level a feature artifact pos-
sesses in a program [14] (cf. Sec. 2.4.2.1). The CPP (@®) and VCS
(@®) are text-based. As such, they support the addition of very fine-
grained annotations to arbitrary positions in the program’s concrete
syntax. Yet, a drawback is that developers can accidentally invalidate
the program’s syntactic correctness. For instance, annotating a state-
ment while missing the semicolon.

To enforce only syntactically correct annotations [105], CIDE (@0©)
and PEoPL (@0) allow an addition of annotations only to AST nodes.
Still, both approaches support fine-grained variability. In fact, they
allow developers to realize the most important undisciplined annota-
tions, for instance adding an annotation to a method parameter, or a
wrapper [125]. As a result, they are powerful enough to implement
real-world SPLs such as Oracle’s Berkeley DB [27, 102].

Modular approaches such as FH (©0) and Delta] (©0O) are known
to support variability only on a medium to coarse-grained level. In
fact, fine-grained extensions require workarounds such as hook meth-
ods, code clones, or additional fields [102, 162]. Refactoring engines
(@0©) improve granularity of modular approaches, since they allow
an integration of annotations into modules.

5.1.6 Modularity jump to overview T

Modularity enables developers to clearly separate an SPL’s concerns.
It is “the ability to identify, encapsulate, and manipulate only those parts of
a software that are relevant to a particular concept, goal, or purpose” [141].
Optimally, modular approaches even enable the separate compilation
of individual modules [43]. This way, content-sensitive modules can
be compiled before handed over to customers.

Typically, modularization is not supported by approaches that have
a 150% model at their core. In fact, the CPP, CIDE and VCS do not
support true modular reasoning (OO). FH (@©) and Delta] (@ ©) are
better in that concern, since features are mapped to individual mod-
ules or deltas, respectively. Yet, neither FH nor Delta] supports sepa-
rate compilation of modules.

Using a refactoring engine (@0), developers can start with annota-
tions and refactor them into separate modules. Yet, refactoring may
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introduce unforeseen hook methods in modules refactored from fine-
grained annotations [103]. Alternatively, partial refactoring is pos-
sible, which would leave some annotations unmodularized. Conse-
quently, either way weakens modularity.

Compared to refactoring, PEoPL (@0©) offers a more powerful and
flexible solution. Fine-grained modular reasoning is available in an-
notated and fade-in feature modules. Exploring a feature in isola-
tion is possible as PEoPL employs a modularity-aware 150% model,
which treats feature modules as first-class citizens (explained shortly
in Ch. 7). However, the drawback of employing a 150% model is that
separate compilation is not available.

5.1.7 Feature Traceability jump to overview T

Feature traceability describes the ability to trace a feature from its dec-
laration to its feature artifacts [4, 14, 50, 100]. This traceability is im-
portant, for instance, when exploring a feature’s implementation, or
when searching for bugs that are known to be introduced with a cer-
tain feature [100].

Using the CPP (O0), each feature’s implementation is scattered
across multiple annotations. Thus, without additional tooling, the
CPP does not support feature traceability [14]. The VCS (©0) sup-
ports to check out a variant with only the relevant features selected.
However, it is likely that selected feature code is nested within unse-
lected feature code. In this scenario feature artifacts are missing, and
thus the trace results are incomplete. CIDE (@©) performs better, al-
though building upon a 150% model. In fact, CIDE allows hiding all
irrelevant features by unselecting them. If the code of a selected fea-
ture is nested within the code of an unselected feature, then the code
of the unselected features is shown. Thus, it is likely that the selected
feature’s code is cluttered by irrelevant feature code, which in turn
weakens the traceability.

The traceability support of modular approaches is better, since they
separate features into distinct modules [4, 14]. In FH (@®), a feature
can be easily traced to a corresponding module. In Delta] (@®), map-
pings from features to deltas can be expressed in an SPL declaration
explicitly. Partial refactoring (@©) weakens traceability [100]. For in-
stance, if a feature module contains annotations, then the underlying
variational models are intertwined. In fact, we would need to addi-
tionally hide all code that is irrelevant for the selected feature within
a module (e.g., using CIDE).

In contrast to partial refactoring, PEoPL (@®) uses a single internal
variability representation, and thus even fine-grained feature artifacts
can still be related to their respective feature module. All in all, PEoPL
is on a par with other modular approaches, and thus supports trace-
ability well.
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5.1.8 Information Hiding jump to overview

The key idea of information hiding is to divide a module into an in-
ternal part and an external part [14]. The internal part is only visible
within the module, whereas the external part is publicly available
via an interface—a contract, which specifies how the module commu-
nicates with all other modules [14]. On this basis, a developer can
implement and understand a module by reasoning about the mod-
ule’s internal part as well as all imported external parts of other mod-
ules [14]. Note that information hiding is strongly linked to modu-
larity, and thus non-modular variability representations, such as the
CPP, CIDE and VCS, do not support information hiding at all (O0)

Without explicit external parts (i.e., interfaces), feature internals
cannot be hidden. Moreover, a developer needs to find all code acces-
sible in other modules manually—a tedious and error-prone endeav-
our. For instance, to find all methods that are available in a given mod-
ule, a developer must browse through all external modules, identify-
ing the public methods declared and accessible in all configurations.
Unfortunately, FH (@0), Delta] (@ 0) and other modular approaches
handle information hiding this way without additional tooling [14].
To deal with this issue in an automated fashion, feature context inter-
faces recently emerged, showing an outline of accessible fields and
methods for a given module and enriching code completion [160].

PEoPL (@0O) uses a similar but more flexible approach. In fact, it
does not require developers to search for all the accessible declara-
tions. Instead all available declarations can be temporarily included
in the current feature module (by projecting them in). Moreover, code
completion shows accessible declarations as well. Yet, unsound re-
sults such as declarations, which are not available in the configura-
tion set, are not filtered out currently. In addition, interfaces are not
explicit, and thus we count PEoPL’s information-hiding support only
as mediocre.

5.1.9 Expressive Power jump to overview T

Expressive power (a.k.a. expressiveness) describes the ability of a tech-
nique to modify the SPL’s implementation (i.e, which kinds of
changes are applicable by a feature artifact).

The CPP (@@®) is clearly the most expressive approach. It allows de-
velopers to conditionally include a feature artifact, using a presence
condition, which declares a possibly complex expression over proper-
ties (typically features). Even equations, inequations, and arithmetic
operations are possible. Thus, feature artifacts can be included or re-
moved if a feature is not selected or a certain threshold is met. In
contrast, the current VCS (@0©) version supports only Boolean pres-
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ence conditions over features [178]. Thus, it is slightly less expressive
than the powerful CPP.

Delta] (@©) and other delta-oriented approaches are highly expres-
sive. They allow the addition, modification and removal of feature
artifacts through deltas. In fact, using Delta]’s SPL declaration, de-
velopers can control the application of a delta by means of a propo-
sitional formula over features. More recently, Parametric Delta] (@®)
emerged, which enables developers to propagate feature attributes to
deltas, and to use equations, inequations, and arithmetic operations
within feature constraints [207]. As a result, Parametric Delta] is even
more expressive.

PEoPL (@©) provides the same expressiveness as standard
Delta] [25], since feature modules enable the addition, modification
and removal of feature artifacts. Moreover, PEoPL’s SPL declaration
allows developers to conditionally apply a set of modules using a
propositional formula over features.

In contrast, CIDE (@0) represents annotations as simple presence
conditions over features. Thus, if a feature is selected, the correspond-
ing code is included, otherwise not. As a result, CIDE is less expres-
sive. For example, it is not supported to include a feature artifact if
the corresponding feature is not selected. One possible workaround
on the statement-level is to exclude the corresponding code at run-
time, using the target language. For instance in Java, a developer
colors only an if(false) statement, but not its body. If the feature
is not selected, the wrapper is removed, otherwise the if-statement
prohibits execution at runtime. Yet, there is no workaround above
statement-level, and uniformity is weakened this way, since variabil-
ity is encoded using CIDE and the target language (e.g., Java).

Similar problems arise in FH (@0), which only allows the addition,
refinement, and replacement of feature artifacts. In fact, removal of
feature artifacts is not supported. As CIDE and FH only provide a
mediocre expressiveness, a refactoring (@0) between the two cannot
perform better.

5.1.10 Homogeneous Extensions jump to overview

Homogeneous and heterogeneous extensions are the two fundamen-
tal ingredients of a feature’s implementation (regardless of the vari-
ability representation employed) [9, 49]. Recap that a heterogeneous
extension adds different feature artifacts to different program loca-
tions, while a homogeneous extension adds the same feature artifact
to multiple program locations (cf. Sec. 3.3.7).

Variability mechanisms support homogeneous extension very dif-
ferently [7, 130]. For instance, aspect languages, such as Aspect]* (@®),
provide full-fledged support, since aspects have advice applied to po-

1 http://www.eclipse.org/aspectj/
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tentially multiple join points. Similarly, FH (@©) provides support
for homogeneous extensions on its underlying structural level—that
is, the program’s FST, which is a simplified stripped down AST [7].
In fact, via a query, FH supports the specification of positions in the
program’s FST to which a set of feature artifacts are to be applied.
However, extensions in the control-flow such as in Aspect] are not
possible.

PEoPL (@0) supports homogeneous extensions in general (cf. reuse
projection in Sec. 3.3.7). In fact, a feature artifact’s multiple appear-
ance can be persisted in the internal representation (explained shortly
in Ch. 7). Yet, there is currently no support for specifying a set of join
points in a projection, for instance, via a query. Instead, developers
add and maintain homogeneous extensions manually, using a pick
& appear process (cf. Sec. 3.3.7). In fact, a developer simply selects a
piece of code (similar to copy) and then selects positions across the
program where the code should appear (paste). Notice that internally
the variational AST is enriched with cross-tree references for each
appearance pointing to the original piece of code (i.e., the feature ar-
tifact). This way, in contrast to FH, even fine-grained homogeneous
extensions are possible, and changes made in one appearance are
automatically visible in all other appearances. Adding an advanced
query mechanism is subject to future work.

All other approaches in our classification (OO) do not properly sup-
port homogeneous extensions. In fact, developers use workarounds,
such as copy & paste, which leads to code clones, making bugs diffi-
cult to detect [124] and fix [96]. As a possible workaround, developers
can implement homogeneous extensions using an AOP approach on
top of the variability representation (e.g., CPP) which breaks unifor-
mity.

On a final note, a study of forty C-based product lines has shown
that up to 10% of the extensions are homogeneous [126]. Interestingly,
a study of eleven Aspect] programs indicates that developers seem
not to leverage the expressive power of Aspect] as only about 2%
of the extensions are homogeneous [5]. Consequently, support for
homogeneous extensions seems not to be a crucial feature.

5.1.11  Variant Editing jump to overview 1

Most modular approaches such as FH (O0) and Delta] (OO) do not
support editing concrete variants. An exception is AHEAD (@0),
which is not classified here. It provides the jampack composer [22],
which composes Jak language files—that is Java files enriched
with variability—and transforms the composite file into Java code.
Changes made in the Java code can be merged back into the compos-
ite Jak file. However, it is unclear how to propagate the changes back
into the source Jak files.
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In the VCS (@@®), developers can pull a certain variant from a com-
mon database. After implementing the desired functionality, the cor-
responding changes can be commit into the database. Refactoring
(@0©) a FH SPL into CIDE enables variant editing, since CIDE (@0©)
emulates a variant editor by hiding feature-related code. Yet, it is not
possible in CIDE to switch fluently between variants as detailed in
Section 5.1.3. Moreover, it is not clear whether the selected variant
is valid or not (i.e., conforms to the feature model). This issue arises
as CIDE’s hiding facilities are not connected to CIDE'’s satisfiability
solver, which ensures validity of a certain configuration. This lack
however constitutes a major issue as ‘many developers fail to exactly
identify the set of erroneous configurations, already for a low degree of vari-
ability’ [135].

In contrast, PEoPL (@®) provides full-fledged proactive variant
editing support, which is based on a valid feature configuration—that
is, PEoPL checks the propositional formula of a given configuration.
In fact, valid configurations can be preconfigured, and thus it is pos-
sible to fluently switch between different variants on demand.

5.2 CASE STUDIES

We now evaluate PEoPL with three objectives on a set of case studies.

5.2.1 Objectives

O1: Analyze practicality: We show that PEoPL can realize SPLs by
writing them from scratch or migrating from common annota-
tive or modular variability representations.

O2: Analyze scalability: We investigate latencies for creating variant
projections of a specific file and for deriving full variants, to-
gether with qualitatively assessing the editing efficiency.

O3: Assess the benefit of multiple projections: We study this benefit by
analyzing the overhead of a classical pure modular approach by
approximating the boilerplate code it would require to write.

5.2.2  Case Study Subjects

Table 5.2 shows our SPLs. We migrate seven SPLs used in previous
research [7, 101, 102, 115, 128, 163], and implement one (Jest) from
scratch. All cover different domains and scales. Most migrations are
CIDE projects, for two reasons. First, it is easy to migrate annotative
SPLs to PEoPL. We import the codebase and manually re-implement
annotations. Second, we aim at using annotative SPLs to evaluate
the potential overhead in a pure modular approach. We also migrate
three projects from Delta] and FeatureHouse respectively. They both
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use modular representations. We import each module as a Java pack-
age into PEoPL and use our modular projection for migrating the
code. The adoption effort for all subjects is moderate. Creating the
subjects takes seven days for Berkeley DB, three days for Jest, and
just a few hours each for the others (including comprehending the
SPLs).

5.2.3 Investigation

We now investigate our three objectives by discussing metrics,
methodologies and results.

5.2.3.1 Practicality (O1)

Although time-consuming and error-prone, and although an analyti-
cal approach could have sufficed to evaluate PEoPL, the manual adop-
tion helps us understand the usability of our projections. No subject
requires specific workarounds. We conclude that PEoPL indeed en-
ables developers to realize annotative and modular SPLs. To reduce
adoption effort, we plan to write custom importers.

5.2.3.2 Scalability & Latencies (O2)

METRICS. We use the following three metrics (all in milliseconds)
to evaluate scalability. TCF (time to compose file) is the time to com-
pose the variant’s set of feature artifacts of a single file. TCV (time to
compose variant) is the time to compose the variant set of all files
(i.e., the complete set of feature artifacts of a variant). TGV (time to
generate variant) includes TCF plus the time to write all Java classes
of the variant to disk. We use TGV to compare PEoPL to composition
times of other SPL tools. Finally, we also measure the time it takes to
rebuild the feature artifact dependencies across all feature modules
for the entire SPL (TMD) using our dependency checker.

METHODOLOGY. TCV measures the editing latencies of variant pro-
jections, since we compose a full product to update the variant editor
and explorer (i.e., the tree view on a product’s files). PEoPL caches
the current variant’s set of feature artifacts until variability-related
operations (e.g., adding a new feature artifact or changing a mod-
ule assignment) invalidate the cache. So we turn off caching to avoid
confounding. To measure TCV, we compose all modules included in
the current configuration. TCV is most important, as it excludes the
confounding model-to-text transformation introduced with TGV. We
compare TCV to TCF to determine whether the reduced set of feature
artifacts of TCF improves composition performance and yields a bet-
ter efficiency. A drawback of TCF may be that we need to populate all
feature artifacts in a file that belong to a module before composition,
since the reduced set is not persisted.
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Size & Complexity Scalability & Latency
SPL LOC CLA MET F FM FA | TGV TCV TCF TMD Source Tool | Description
Jest 19k 144 1105 22 22 205 |2535ms o9ms <ims 24oms | From scratch | Java ElasticSearch client*
Berkeley DB | 70k 218 3433 42 83 1373 |5153ms 45ms <1ms 1753ms CIDE Embedded database™ [102]
GPL 1k 15 125 21 26 105 | 248ms 2ms <1ms 54ms CIDE Graph product linel [128]
Java-Chat o6k 8 588 9 9 33 | 26o0ms <1ms <1ms 22ms CIDE Chat clientT
Lampiro 45k 140 1693 19 19 181 |4234ms 7ms <ims 1883ms CIDE Instant-messaging client' 1
Prop4] 2k 6 174 14 14 192 | 249ms 1ms <ims 98ms | FeatureHouse | Propositional formula libary§
Vistex 2k 9 99 16 16 37 | 28yms <ims <ims 62ms | FeatureHouse | Graph visualization and text editorS
STE 1k 9 128 10 10 38 | 259ms <1ims <I1mMS 50mS Delta] Simple text editort [79, 115]

LOC: lines of code (source) | CLA: classes | MET: method declarations | F : features | FM : feature modules

FA: feature artifacts (sanitized) | TGV: time to generate/derive a variant | TCV: time to compose a full variant

TCF: time to compose a file variant | TMD: time to rebuild feature artifact dependencies

*https://github.com/searchbox-io/Jest +http://1ampiro.bluendo.com/

ihttps://www.tu—braunschweig.de/isf/research/deltas/#fulljava §http://splZgo.cs.ovgu.de/ ﬂhttp://ckaestne.github.io/CIDE/

Table 5.2: Case study subjects: Java-based product lines realized in PEoPL
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5.2 CASE STUDIES

We conduct all measurements on a standard 2011 iMac (3,1GHz
Intel i5, 16GB, Radeon HD 6970M, OS X 10.10.5, MPS 3.3.6, Java 1.8)
with randomly generated distinct variants that conform to the feature
artifact dependencies. We then compare the composed variant to all
variants previously generated. If sets of feature artifacts are equal, we
skip the variant, otherwise we save it for future comparison.

RESULTS. Table 5.2 shows all results and Figure 5.2 the distribution
of TCV values for Berkeley DB (for the others, the values are too low
to be meaningful). Generating and writing 2000 Berkeley DB variants
to disk is below 5.2 sec. on average (TGV). Using equivalent product
configurations, we compose and write the same Berkeley DB variant
to disk using PEoPL (around 6 sec.), FeatureHouse (around 18 sec.),
and CIDE (around 7 sec.). Composing a full variant is below 45 ms
on average (TCV) and just a single document below 1 ms (TCF). Calcu-
lating the feature artifact dependencies is quick as well (for Berkeley
DB <1,8 sec. on average, TMD in Table 5.2).

In summary, the PEoPL prototype scales well to SPLs of Berkeley
DB size. Latencies to calculate the feature artifacts for a variant pro-
jection are efficient according to the TCF and TCV measures. PEoPL
does not introduce any significant overhead, and thus developers can

experience a smooth edltlng
}—[E: |
L

50 100
latency in ms

Berkeley DB

ofF T

Figure 5.2: Calculation times for a full variant (TCV)

5.2.3.3 Boilerplates in Modules (O3)

METRICS. The basic idea of O3 is that a developer uses feature
modules for their advantages. Yet, classical modular approaches re-
quire boilerplate code for fine-grained feature artifacts, such as hook
methods (cf. Sec. 2.5.1). We aim to show the need for annotations,
providing indirect evidence that PEoPL—which allows blending an-
notations into modules and switching to annotations on demand—is
useful. To approximate the potential interest of these two PEoPL facil-
ities, we measure the number of methods that would require boiler-
plate code in a pure modular projection in correlation to the involved
modules. This shows whether variability in a method’s body intro-
duced by different modules impacts the number of boilerplates.

METHODOLOGY. To determine whether a method requires boiler-
plate code, we search for variability in the middle of a method, and
fine-grained variability (e.g., annotated method-call parameters). A
method requires boilerplates if such variability is found. Notice that
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we allow variational method parameters and return-types in our mod-
ular projection. Thus, we do not mark such methods as demanding
boilerplates—although they would require boilerplates in some clas-
sical modular approaches.

RESULTS. It is not surprising that all the methods adopted from
the modular FeatureHouse and Delta] examples do not require ad-
ditional boilerplates in a pure modular projection. Thus, we concen-
trate on the CIDE examples. With total numbers of 13% (Berkeley DB),
1% (Lampiro), 6% (GPL), and 15% (Java-Chat), all tested annotative
SPLs contain a relatively small number of methods requiring boiler-
plates. However, as soon as investigating variability in the method’s
body, the need for blended projections and fluent movement between
projections becomes obvious.

Table 5.3 shows our boilerplate test results. The majority of meth-
ods not requiring boilerplates in pure modular approaches are simple
introductions (i.e., only one module is involved). The picture changes
as soon as a method gets refined (i.e., at least two modules are in-
volved). Especially, the Berkeley DB methods require a large number
of boilerplates.

Berkeley DB | Lampiro GPL Java-Chat
FM | MET BOIL | MET BOIL | MET BOIL | MET  BOIL
1 | 2813 0% |1567 0% 77 0% | 40 0%
2 | 398 78% | 21 86% | 12 25% | 6 83%
3 82  86% 8  88% 5 40% | 5 60%
4 | 35 91% 2 100% | 3 0% 1 0%
5 21 95% 1 100% | - - - -
6 5 100% | 1 100%| 1 100% | - -
7 100% | - - - - - -
8 1 100% | - - 2 100% | - -

FM: feature modules involved in method body
MET: method declarations
BOIL: method declarations that would require boilerplate code

Table 5.3: Method declarations requiring boilerplates in pure modular ap-
proaches

5.2.4 Threats to Validity

INTERNAL VALIDITY. To mitigate the threat that our SPLs are in-
correctly implemented, we cross-checked their implementations and
carefully specified and reviewed our variant transformation rules.
Moreover, in the final Java code-generation, MPS—the base platform
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we used to implement PEoPL—would have detected invalid ASTs.
Furthermore, PEoPL relies heavily on cross-tree references in the in-
ternal representation. We carefully designed our internal represen-
tation to maintain these references throughout the AST editing, as
broken references can invalidate a program’s variability.

To enhance the validity of our scalability evaluation (O2), we ran-
domly created variants and implemented a checking rule to detect
duplicated ones. We double-checked that tested configurations are
not biased (i.e., too few or many feature modules over all configura-
tions).

Finally, for the modularity overhead (O3), we inspected a sample
of files to verify that the boilerplates are actually necessary.

EXTERNAL VALIDITY. To increase external validity, seven of our
eight subjects are publicly available SPLs of different size and com-
plexity previously used as SPL benchmarks. Among them, there is
Berkeley DB, a substantial embedded database that has been decom-
posed using different techniques before[7, 101, 102]. Furthermore,
although we extensively tested PEoPL only with Java, it is a main-
stream language. Java not only benefits from PEoPL’s projections, but
also from variability support in general. Still, evaluating PEoPL in the
context of other languages—especially C—and larger SPLs is valuable
future work.

5.2.5 Lessons Learned

We found switching representations and using them in parallel use-
ful when adopting our subject SPLs. For instance, we switched the
modular to the annotative (or blended) projection when contextual in-
formation was required for comprehension. We also switched for im-
plementing fine-grained variability or exploring feature interactions.
Using the annotative projection, we found a behavior-related issue in
the STE SPL that was neither easy to identify in the original Delta] im-
plementation, nor in our modular projection [25]. We typically used
either the modular and product projection, when annotative code was
too complex, or we searched for bugs known to occur in a feature. We
also leveraged the locality of the modular projection to identify how
a single feature was implemented.

We learned that using our dependency checker and variant-based
data-flow analysis is straightforward and valuable. We actually found
57 implementation-specific dependencies which were not declared in
the feature model of the CIDE version of Berkeley DB. So incorrect
variants could have been generated.
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5.3 PILOT USER STUDIES

We now discuss our two PEoPL pilot user studies. Our aim is to
validate the study setup and prepare a larger (longitudinal) study
and a controlled experiment. We start with a discussion of our objec-
tives defining two variability-related research questions and one re-
search question related to projectional editing in general (Sec. 5.3.1).
Then, we introduce the participants and the general study format
(Sec. 5.3.2). Moreover, we discuss the material and tasks for setting
up the experiments (Sec. 5.3.3), and our methodology and analysis
(Sec. 5.3.4). We conclude by discussing and interpreting the results
providing an outlook for future studies (Sec. 5.3.5 and 5.3.7). Note
that all materials and results are available online>.

5.3.1 Objectives

The goal of PEoPL is to increase the flexibility of programmers when
working on an SPL’s implementation. For instance, facing limitations
of a variability representation, developers can switch projections on
demand. We are interested in how developers use PEoPL’s projections
when adding variability to real-world systems, implementing new
features from scratch, and extending existing features.

We investigate PEoPL-specific usage scenarios and the behavior of
developers using the following research questions:

RQz1: Which variability projections do developers use, how frequently and in
which scenarios?

We use this question to determine the preferred variability rep-
resentation of developers (i.e., the ratio of using PEoPL’s anno-
tative, modular, and variant-specific projections). We are also
interested in analyzing the decision making of developers (i.e.,
when to choose which projection) to identify pitfalls and give
more solid future guidelines for projection usage and the over-
all development process.

RQz2: Do developers frequently switch projections and edit the same code,
using different variability representations side-by-side?

In our case studies, we regularly switched projections and
edited the same code, using different representations side-by-
side. For instance, we use full annotative and variant projections
side-by-side to determine the impact of editing activities on
variants in real-time. We want to determine whether developers
use similar strategies to be able to give thorough usage advice.

We are also interested in the general usage of PEoPL and the un-
derlying MPS language workbench to answer the question:

2 http://peopl.de/pilot-user-studies/
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RQ3: Which IDE elements do developers use and which shortcuts?

We want to determine how much time developers spend on non-
code editing activities. For instance, using the project explorer
or finding the usage of a specific node within the project. This
way, we can provide recommendations on how to use PEoPL in
general, and identify possible pitfalls in the overall development
process.

5.3.2 Participants and Study Format

We conducted two pilot studies. The first study was part of the Soft-
ware Product Line Engineering course open for students of the Chalmers
University of Technology and the University of Gothenburg from
November 2016 to January 2017. The second study was part of the
Software Architecture course at htw saar from February to March 2017.
In the following, we refer to the first study with Chalmers and to the
second with htw.

The subjects of the Chalmers group were four computer science
master students, the subjects of the htw group three master students
in an applied computer science study program. The Chalmers group
had one, the htw group two lectures on Variability Implementation
Techniques and Concepts in which classical annotative, modular and
variant-based variability representations were taught on a compara-
ble level of detail. All students were able to choose between differ-
ent projects, of which one was an SPL implementation project using
PEoPL. To solicit participation, we briefly presented the PEoPL IDE
during a lecture, and taught basic skills in a small scale development
task during 12 hours of hands-on lab sessions. In doing so, students
had to implement an SPL from scratch, first using solely annotative
and then modular projections. Students used neither PEoPL nor the
language workbench MPS before.

All students who chose the PEoPL project were aware of their par-
ticipation in a pilot user study. There was no compensation for par-
ticipation. With regard to grading, students were informed that the
plausibility of their SPL scoping decisions, the quality of their devel-
oped SPL, and the quality of a mandatory experience report were
used for grading. Thus, neither their efficiency in using PEoPL nor
any usage-related data was taken into account.

Students were given a project description, which included the key
learning goals of the project, an example description of a subject sys-
tem, our expectations for the experience report, and the evaluation
criteria for their grading. Students in the Chalmers group had six
weeks, students in the htw group eight weeks to meet all the require-
ments for course completion. All students were asked for participa-
tion in our anonymous user interaction tracking program, which au-
tomatically captures and transmits data to us. After successful project
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completion, we asked them to complete a questionnaire. Both, the
monitoring and the post-experiment questionnaire were voluntary.

5.3.3 Material and Tasks

We now present the subject systems used by each group. Moreover,
we discuss the ingredients we used for evaluation: experience report,
questionnaire, and IDE interaction monitoring.

5.3.3.1 Subject Systems

The domain was not fixed, and thus students could propose a sub-
ject system from a domain they were familiar with. Yet, the chosen
subject system had to be a feature-rich Java project (importable into
PEoPL). In our project proposal, we outlined an example scenario us-
ing Jest3, a Java client for ElasticSearch available on github with 832
commits from 48 contributors. While Jest is relatively small compared
to other Java enterprise software (19KLOC in 144 classes), its size is
manageable within a six weeks project. In fact, we implemented a
PEoPL reference SPL implementation of Jest, which we used to check
whether time constraints can be fulfilled by students (cf. Sec. 5.2.2).

The Chalmers group chose the Jest ElasticSearch project from our
proposal. The htw group chose a different project. They implemented
the Simple Java Mail* client, which is available on github and has 456
commits from four contributors. It is smaller than Jest (5400 LOC in
68 classes), but also feature-rich.

5.3.3.2 Subject System Setup

Both groups were required to analyze the domain of their chosen
subject system and make scoping decisions. Based on their decisions
they had to specify a feature model and appropriate domain-specific
constraints. Then, each student had to progressively grow the SPL in
PEoPL by implementing the identified features using the projections
provided. As a bonus for grading, we proposed to implement new
features from scratch, and to extend existing features. For instance,
we proposed the Chalmers group to integrate a GUI into Jest for three
fictional customers (e.g., user, assistant, administrator), while the htw
group integrated support for emojis. In fact, our intention was to
see whether they would use modular techniques for implementing
features from scratch—since transitioning a single software product
into an SPL is easier with annotative approaches, and thus biased.

3 https://github.com/searchbox-io/Jest
4 https://github.com/bbottema/simple-java-mail
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5.3.3.3 Experience Report

An integral part of the students’ grading was a mandatory project
report in which they had to elaborate their experiences of implement-
ing the SPL and using PEoPL. We advised them to keep a daily diary
to systematically gather data for their report. Moreover, we informed
them that there should be a focus on their experience using PEoPL.
For instance, we proposed to discuss how they used the different pro-
jections to adopt the identified variability, how they reasoned about
the product line, and how they implemented new features. Moreover,
we asked them to report whether and when they switched projections,
when they edited the code using different projections side-by-side,
and how they used the tool in general.

5.3.3.4 Questionnaire

We use a post-experiment questionnaire to capture the students” per-
ceptions. Using a five-point Likert scale—for instance, ranging from
very poor to excellent—we ask closed questions such as “How do you
estimate the impact of visual annotations on the understandability, main-
tainability and evolvability of the implementation”. We also ask them for
a self-assessment in questions such as: “Which projections did you use in
PEoPL and how regularly?” We use this quantitative data for compari-
son with our user interaction monitoring (explained shortly). In open
questions, such as “In which scenarios do you prefer to use the visual an-
notative projection (i.e., code enhanced with colored bars)?” and “Was there
anything you wish you could have done with a particular projection, but
could not?”, we gather qualitative information about experiences.

Moreover, to guarantee sufficient programming experience of the
students, we measure their GPL and SPL programming experience
based on a previous proposal of Siegmund et al. [70]. For instance,
we ask questions about their experience with different programming
paradigms and industry projects.

5.3.3.5 IDE Interaction Monitoring

To transparently and anonymously capture usage statistics in MPS,
we implemented an interaction monitoring mechanism, which was in-
spired by the Eclipse mylyn5 plugin [109]. The interaction monitoring
allows us to augment our qualitative measures from the experience
report and questionnaire with a larger set of significant data. Based
on the captured data, we can recall all past contexts and quantita-
tively analyze the usage of PEoPL. In particular, our monitor captures
keyboard and mouse events to determine active editors (projections),
window and editor changes, selections, periods of inactivity, key bind-
ings, as well as editing and navigation behavior. All interaction events

5 http://www.eclipse.org/mylyn/
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are stored in memory until persisted in an interaction history—that
is, an XML file. We benchmarked that the interaction history for a
single person day amounts to up to 300KB.

5.3.4 Method and Analysis

For all research questions, we triangulate three sources of data: expe-
rience report, questionnaire, and IDE interactions. First, we inspect
the experience report. We are particularly interested in the strategies
used by developers to cope with variability and their overall experi-
ence in using PEoPL. Second, we analyze the questionnaire’s closed
questions (Likert scale) using box plots, and inspect the open ques-
tions.

To analyze the interaction monitoring usage data, we implement
a simple analysis tool that extracts relevant interaction information
and creates usage statistics. All interaction monitoring data is auto-
matically captured and uploaded to a Dropbox account, along with
message and event logs (e.g., info, warning and error information).
The entire process is anonymous (i.e., each user creates a unique
anonymous identifier at the beginning of the experiment). Transmis-
sion does not require user interaction and is performed automatically.

With regard to RQ1, we determine the ratio of variability representa-
tion usage—the number of code editing in a projection over the num-
ber of code navigations. In other words, we capture the amount of
keystrokes in a projection and compare it to the number of mouse
activities (i.e., moving the mouse, scrolling, and selecting) in the pro-
jection. A higher ratio indicates a higher editing activity in the corre-
sponding projection, while a lower ratio indicates that the projection
is rather used for exploring the code. Using this data, we can generate
usage statistics for each projection and compare them.

For RQz2, we chronologically analyze the history in regard to active
editor windows that render the same file. To assess RQ3, we analyze
the activity of mouse and cursor interactions in the entire IDE. This
way, we can determine, which windows are used by developers and
how regularly.

5.3.5 Results

We now discuss the results of our pilot study. Before we proceed with
details, note that our sample is too small, and the majority of students
were too inexperienced in programming in general and in the differ-
ent variability representations involved in the study. We also exclude
the user interaction, monitoring data gathered from the Chalmers
group, since we just used it as a trial run for improving the interac-
tion monitoring and fixing bugs. Unfortunately, a student of the htw
group identified issues with the interaction monitoring on Windows
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when his computer switched to stand-by (i.e., NullPointerException),
which reduces the validity of approximately two thirds of the data
of the htw group. Consequently, we cannot control all answers from
the questionnaire, responses using a second valid source of data. We
thus focus on the experience report and the questionnaire. Moreover,
two questionnaire responses from the htw group are contradictory
(explained shortly), and thus we exclude them from our evaluation.
Altogether, our results are not meaningful enough and only reflect
tendencies. In fact, the results are only suggestions laying ground for
future studies.

Nevertheless, we can confirm that PEoPL is indeed usable, since
both groups successfully realized their SPLs and gave us positive
feedback on PEoPL’s usability. Moreover, we made several interest-
ing observations that we discuss next.

5.3.5.1  Which variability projections do developers use, how frequently and
in which scenarios? (RQ1)

All students indicated in the responses to the questionnaire that they
used the visual annotative projection by default, which the interac-
tion data tendencies confirm. Yet, due to the “sleep bug” in the user
interaction monitoring, the edit samples for calculating the edit ratio
are too small to be meaningful. Figure 5.3 provides an overview on
the variability-representation usage of participants based on question-
naire responses. Note that participants typically avoided the textual
annotative projection, while the modular and variant projections have
a higher usage frequency.

The questionnaire responses and experience reports also provide
qualitative insights. All participants rated the comprehensibility,
maintainability and evolvability of programs rather high when using
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Figure 5.3: Results for the question: “Which projections did you use in PEoPL
and how frequently?”
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visual annotations. Textual annotations in turn are rather poorly
rated. Modular and variant projections are generally seen as ben-
eficial and helpful. The open questions provide insights why the
participants focussed almost entirely on the visual annotative pro-
jection. One htw participant explained that she mostly uses visual
annotations,

“[...] because you have an overview of all features and their as-
signment.”

Along the same line of argumentation a Chalmers participant says:

“Visual annotative is the simplest view for annotating features
in the code. The procedure is not complicated to learn, and it is
easy to see the separation of concerns. Visual annotations clearly
show different features, and to which feature the code belongs to.
So, I used it when making changes to the code and adding new
features.”

Another Chalmers participant says that she focussed on visual anno-
tations, because using them

“[...] it is very clear to see the base code together with all possible
variants.”

With regard to textual annotations one Chalmers participant explicitly
explained:

“These annotations are not so often used for our project. [...]
#ifdef directives make the code harder to view and understand
in comparison to visual annotations.”

The same participant claims:

When creating new features, it is better to use modular projec-
tions, you can see clearly what features there are in the project.
With the modular projection, you can select the desired class to
refine, and it also forces you to write the code densely rather than
widely scattered. The new habit makes it easier to find different
features and make changes to the features later on.

5.3.5.2 Do developers frequently switch projections and edit the same code
using different variability representations side-by-side? (RQ2)

Three participants claimed that they sometimes switched projections,
two that they switched rather seldomly. However, a Chalmers partic-
ipant says:

“I became quite familiar with visual annotations and found it
easy to use. [...] So, I didn’t switch projections to be honest.”
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So, we cannot count her “seldom”-response. Note that she reported
that she neither used the modular nor the textual annotative projec-
tion (cf. Fig. 5.3), but the variant projection “often”, which is question-
able based on her response. All (other) participants found the ability
to switch projections on demand (very) useful in general. A Chalmers
participant notes:

“The annotated view is good enough for implementing the
project, and sometimes when necessary other views, such as
modular and variant, can be applied to assist in bug finding or
adding new features.”

One htw participant claims that she switched projections:
“To check if my variant looks like expected.”

A participant of the Chalmers group came to the same conclusion.
She also comments:

“There are always advantages and disadvantages in different
views, and [...] the developer can make use of the view that is
most appropriate to solve the problems at hand.”

Four participants (out of five valid responses) claim that they have
edited the same feature artifact using different representations side-
by-side. Yet, one Chalmers participant could not remember in which
situations she used side-by-side editing eventually. So, we count her
“yes-I-used-it” rather weakly. The Chalmers participant who did not
switch projections and focussed on visual annotations says about side-
by-side editing:

“I found it a bit confusing. I was getting lost as to what I was
working on at that time.”

The other participants found side-by-side editing helpful in general.
One htw participant says that she edited the same code using visual
annotative and variants side-by-side. Likewise, a Chalmers partici-
pant says that she explored visual annotations and modules side-by-
side while adding and removing code.

5.3.5.3 Which IDE elements do developers use and which shortcuts?
(RQ3)

Notice that the monitoring of IDE elements and shortcut usages was
stable and independent of the MPS-specific listeners (i.e., we used an
additional AWTEventListener to monitor IDE elements and shortcuts).
Thus, we count the results valid as opposed to the general editor
usage monitoring capturing the editing ratio.

According to the data our interaction monitoring captured, the top
three IDE elements used by the htw students (in relation to their over-
all activities) are the projectional editors (60%), the project explorers

89



5.3 PILOT USER STUDIES

(19%) and the messages window (18%), which shows errors, warn-
ings, and infos (e.g., compiler messages). So the students spent most
of their time on development activities.

Figure 5.4 shows the accumulated monitoring results for the short-
cut (a.k.a. keybinding) usage of the three htw students in relation to the
overall shortcut usage of MPS-specific and PEoPL-specific shortcuts,
respectively. The MPS-specific shortcut usage shows that they regu-
larly used MPS’ autocompletion, which is not surprising, since de-
velopment in MPS heavily relies on autocompletion. They also often
used the shortcut to open MPS’ intentions menu, which is also used
to assign a code snippet to a feature. All other MPS-specific shortcuts
are quite common and not surprising (e.g., copy, cut, paste, and undo).
Figure 5.4b shows the data for switching between projections, which
basically confirms the htw group’s questionnaire responses. They typ-
ically switched between visual annotations and a variant projection.
Note that the modular projection cannot be reached via a shortcut.
Instead, developers must currently use the modular project explorer,
and thus the corresponding data is unfortunately not included.

Note that two participants of the Chalmers group had problems
using MPS itself, which can be very efficiently commanded through
keyboard shortcuts, each of which can be triggered from MPS" menu
structure, too. To help developers in the editing process, we provide a
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Figure 5.4: Interaction monitoring results for the usage of shortcuts. Each
value is relative to the overall usage of the MPS-specific we used
and PEoPL-specific shortcuts, respectively.
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one page cheat sheet with the 22 most important keyboard shortcuts.
Yet, one Chalmers participant says:

“It didn’t act like most IDEs [...] a difficulty was remembering
all the keyboard shortcuts (some of which I couldn’t find in the
menu).”

Along the same line of argumentation, another Chalmers student
says:

“Too much short-cuts need to be memorized. So, maybe adding
some buttons to the menu will be good.”

In contrast, all htw students claim that they like working with short-
cuts, which are in fact similar to the ones in JetBrains Intelli] IDE®.

5.3.6 Threats to Validity

We now discuss internal and external threats to validity, as well as
conclusion and construct threats.

5.3.6.1 Internal Validity

We chose Java as the target programming language, increasing the
chances to attract students to the project and study. Java is typically
well known. We only admit students that have a good background
knowledge of Java. Yet, two participants of the Chalmers group and
one participant of the htw group left the impression that their expe-
rience in programming is at a rather mediocre level in general. So,
we carefully assessed whether their answers in the questionnaire are
relevant.

Our interaction monitoring could be erroneous, producing false
results. We systematically tested the logging mechanisms and per-
formed a trial run with the Chalmers group. Unfortunately, a partic-
ipant of the htw group reported an error—we did not find before—
that appears on Windows when the systems goes to sleep. We fixed
the problem and excluded the erroneous, distorted data.

We also checked participants for color blindness, since it could have
biased them towards textual annotations and modular projections.

Since we graded participants for their performance, we did not
expect them to deliberately perform poorly.

5.3.6.2  Conclusion Validity

Since our (valid) sample is too small, we use our evaluation only for
the feasibility of the study setting. Thus, we do not interpret the study
data for giving ultimate recommendations on representation usage.
We only describe tendencies for using them, and thus omit statistical
tests—that is, we only use descriptive statistics (boxplots).

6 https://www.jetbrains.com/idea/
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5.3.6.3 Construct Validity

When comparing variability representations, we need to ensure that
participants have a comparable level of knowledge of each represen-
tation. To control this threat, we taught (classical) variability repre-
sentations at a comparable level of detail. However, we found that a
more detailed training is required to decrease the adoption barrier of
modular representations. Annotations appear more natural and have
a lower learning curve.

To ensure that students know what to do, we provided a detailed
project description including an example scenario and our expecta-
tion of their implementation. Moreover, the description detailed our
experience report expectations and elaborated in detail how we grade
the project. Moreover, we conducted 12 hours of hands on sessions to
demonstrate how they can use PEoPL.

We decided to eliminate a questionnaire response if answers in-
dicate a contradiction in terms. We eliminated two questionnaires of
htw participants. One response of a Chalmers student was a marginal
case, but we decided to include the data (explained shortly).

5.3.6.4 External Vailidity

Our study is dedicated to PEoPL and its several variability repre-
sentations. Comparing PEoPL with other (textual) variability imple-
mentation techniques in a user study (e.g., controlled experiment) is
valuable, but was not intended at this stage.

A threat of a longitudinal study is that we cannot control the activ-
ities of participants. So, participants could have used MPS for other
tasks than the study project. To mitigate this threat, we asked them to
use the PEoPL instance exclusively for their project tasks. Using the
interaction data, we also checked whether the used editors render
PEoPL’s internal representation or just any file that does not belong
to the project.

In general, our results are only relevant for student and not ex-
pert programmers. To draw sound conclusions, future studies must
include industry experts.

5.3.7 Interpretation and Lessons Learned

Unfortunately, our sample is too small, and the majority of students
were too inexperienced with the different variability representations
involved in PEoPL (based on our impression). Thus, we cannot draw
sound conclusions. Yet, we still made some interesting observations.
First, according to their feedback, all students liked working with
PEoPL and found the tool usable in general. The usability problems
issued by participants are mainly MPS-specific (and not PEoPL-
specific). MPS does not behave like a text editor, since it directly
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operates on the underlying AST. For instance, a common problem
was over deletion—that is, deleting an AST node, deletes its entire
subtree. For instance, deleting a closing curly brace, deletes the
entire method with all its content. This and other issues have been
identified before [31]. The hotspots are planned to be fixed in the
future by JetBrains.

Second, one Chalmers participant found working with different
projections side-by-side confusing. Although all other participants
generally liked the ability to use different projections of the same fea-
ture artifact in parallel, we plan to provide indicators in the IDE that
better guide side-by-side development. For instance, it could be help-
ful to clearly separate full annotative and variant editors, using dedi-
cated IDE positions for the respective editor windows. Another idea
would be to introduce a right hand vertical bar (or another marker)
to indicate the variant view. Based on the feedback and before con-
ducting the htw study, we introduced a variant projection indicator
at the top of a projected file variant as illustrated in Figure 3.1e.

Third, the project task focussed too much on transitioning a single
software product line into an SPL. Although both groups had an as-
signment to realize a from-scratch-implementation task, they did not
implement many additional features from scratch in their projects. So
the study just confirms the better adoption performance of annotative
approaches (cf. Sec. 5.1.2) but lacks maintenance and more advanced
evolution tasks. These should be included in future studies.

Fourth, our findings confirm the results of a previously conducted
controlled experiment by Siegmund et al. [171]. They investigated the
correctness, response times and search behavior of students in five
bug fixing tasks. They divided the eight student participants into a
CPP (five students) and a FH group (three students). Two out of three
students expressed that they were unhappy to be in the FH group,
since they did not like the modular paradigm. We also found that the
modular variability representation challenges students. In our opin-
ion, this reluctance appears to be a result of the need to learn a com-
pletely new development paradigm. It seems that this barrier and es-
pecially the short time frame to complete their development project
led to the rather low usage of the modular projection. In fact, most
students focussed on the visual annotative view, since it is the closest
technique to what they already know (i.e., the program still looks like
a regular program that is just enriched with annotations). Note that
these results contradict our own experience made in our case studies.
We found using different projections helpful, especially the modular
projection (cf. Sec. 5.2.5). Consequently, expertise appears to play an
important role.

Fifth, we found that one or two lectures on variability implementa-
tion is too short for students to learn the necessary development skills.
Although the time frame was sufficient to enable them to understand

93



5.3 PILOT USER STUDIES

the concepts, they were still not proficient enough to independently
use and choose between the different variability representations (i.e.,
beyond annotations). Two htw participants even did not know that
there is a modular projection. One htw student told us that it would
be nice to see a feature in isolation, which is in fact possible using
our modular projection. Another htw student indicated a very high
exclusive usage of the modular projection in the questionnaire, al-
though the interaction monitoring clearly contradicts this statement.
The students obviously did not implement the voluntary assignment
for using the modular projection, and thus we count their question-
naire answers as not relevant and exclude their data. Altogether, we
conclude that a complete course on variability implementation with
more hands on sessions would be better suited for setting up a lon-
gitudinal study than just a few lectures (cf. the SPL course at the
Carnegie Mellon University”?). This way, the knowledge and experi-
ence of participants could be significantly improved, leading to more
valid results. We would like to point out that PEoPL is still a great
tool to learn the different variability representations. The code can be
explored in parallel, and thus differences between techniques can be
grasped easily.

Sixth, based on our experience, it might be worthwhile to create
a catalogue of tasks providing hypotheses for which variability rep-
resentation might leverage in which situation. To evaluate these hy-
potheses, we plan to conduct a controlled experiment for investigat-
ing exact usage scenarios of multiple projections, providing sound
empirical results. We also plan to use this data for creating a recom-
mender system, which supports developers to choose the best tech-
nique for a given task. Then, developers could use the validated cat-
alogue and the recommender system, which would enable us to con-
duct a more solid longitudinal user study. We conclude that the cata-
logue, the recommender system, and eventually a better user training
could lower the adoption barrier of modular approaches in the future.
PEoPL’s flexibility provides a valuable first step.

Finally, we summarize our observations and the pitfalls that should
be avoided in another longitudinal study:

1. Teaching a comparable level of knowledge requires focussing
more on the “esoteric" representations (modules, reuse, and
variants), since annotations are easy to learn

2. Providing clear guidelines and a catalogue of examples when
to use which technique

3. Providing a recommender system that facilitates projection us-
age and gives hints at development time

7 https://www.cs.cmu.edu/~ckaestne/17708/

94


https://www.cs.cmu.edu/~ckaestne/17708/

5.4 CONCLUDING REMARKS

4. Using a better balanced study setting including a mixture of
adoption, implementation, maintenance, and evolution tasks.

5.3.8 Future Research Questions

Besides the aforementioned activities to provide a better study setting,
we plan to investigate SPL complexity handling more detailed. Real-
izing variability is challenging: (i) product configurations need to be
expressible in a structured way while providing guidance to handle
and fix invalid configurations, and (ii) feature artifact dependencies
need to be manageable. We want to identify possible shortcomings
of PEoPL and determine whether PEoPL suffices for engineering and
managing SPL variability. We propose to investigate the following
research question:

Is the IDE support for handling variability provided by PEoPL
beneficial for mastering the complexity of real-world C applica-
tions? Which additional features are helpful or needed?

In particular, we plan to analyze the usage history of our feature mod-
ule dependency checker, which allows developers to conveniently re-
solve corresponding issues. We will determine the ratio of dependency
fixes—that is, the number of navigations to dependent code, using
the dependency checker over the number of corresponding module
assignments. Likewise, we also plan to investigate the usage of the
variant-based data-flow analysis and the corresponding fixes. More-
over, we plan to assess the time spent in the product line declaration,
module configuration, and dependency resolution.

5.4 CONCLUDING REMARKS

We evaluated PEoPL from the SPL developer’s perspective using
three ingredients. First, we used and extended existing classification
frameworks to compare PEoPL with other SPL implementation tech-
niques. We found that PEoPL compares well to other techniques,
while enabling new interesting opportunities (e.g., lowering the
adoption barrier of modular approaches). Second, we evaluated
PEoPL’s practicality, scalability, and flexibility in eight Java-based
product lines, finding that all can be realized, that our external repre-
sentations are feasible, and that variant computation and rendering
projections is quick. Third, we conducted two pilot user studies for
investigating PEoPL’s usability and laying ground for more detailed
future studies. We found that PEoPL is in fact usable and identified
pitfalls that should be avoided in future studies.

95



Part III

REALIZING PEOPL USING LANGUAGE
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PEOPL’S TOOLING AND ARCHITECTURE

Thus far, we discussed how developers use PEoPL to engineer and
manage SPL variability. In the remainder of this dissertation, we focus
on the internals of PEoPL, how language engineers use PEoPL to
make target languages (e.g., Java, C, and fault trees) variability-aware
and how new variability representations can be realized.

In this chapter, we provide an overview on tooling. We start by
briefly elaborating why we use a language workbench for realizing
the PEoPL approach (Sec. 6.1), and—together with conceptual details
and concrete examples—why we use MPS in particular (Sec. 6.2).
Moreover, we discuss the architecture of PEoPL in a feature model
(Sec. 6.3), which helps understanding the general relationships.

6.1 WHY AND HOW PEOPL USES A LANGUAGE WORKBENCH

In 2005, Fowler [78] popularized the term language workbench [60,
61] characterizing several key concepts of modern projectional edit-
ing tools such as Intentional Programming"® [173, 174] and MPS [145,
201]. He defines the key characteristics of a language workbench as
follows [78]:

C1: “The primary source of information is a persistent abstract rep-
resentation”

C2: “Language users manipulate a DSL through a projectional edi-
tor”

C3: “Language designers define a DSL in three main parts: schema,
editor(s), and generator(s)”

C4: “Users can freely define new languages which are fully inte-
grated with each other”

Cs: “A language workbench can persist incomplete or contradictory
information in its abstract representation”

PEoPL leverages these characteristics. It stores variability in an
internal representation—that is, feature artifacts are uniformly per-
sisted in a single, variational AST (C1). Users manipulate this internal
representation through diverse projectional editors, each representing
a different external variability representation (C2). In particular, we
conceive the core-variability language CoreVar, which provides the

1 http://www.intentsoft.com/
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structure for representing variability together with projectional edi-
tors and generators for dealing with variability (C3). Language engi-
neers use CoreVar to add variability to arbitrary target (programming)
languages (irrespective of artifact-types), which is possible since lan-
guages can be integrated into each other (C4). In fact, no parser is
involved and AST nodes are always unambiguously assigned to a
language.

For meaningful variational ASTs, CoreVar can easily be tailored to
specific (programming) languages using CoreVar’s tailoring infras-
tructure and DSL. In this dissertation, we provide a tailoring to Java
called JavaVar declaring which AST node types are annotatable, for
instance, Class and Statement. Moreover, we briefly discuss a tailor-
ing to fault trees. As part of the PEoPL project, Fey also realized a
tailoring of CoreVar to the C programming language to underline the
flexibility and practicality of the approach [74].

Altogether, to make a target (programming) language variability-
aware in a meaningful manner, language engineers simply integrate:

1. the target language (e.g., Java),
2. the generic CoreVar language, and

3. the tailoring language (e.g., JavaVar), which uses CoreVar’s tai-
loring infrastructure and DSL to tailor CoreVar to the target lan-

guage.

On a finale note, CoreVar is in fact black-box generic. It must not
be manipulated to make a target language variability-aware. Any re-
strictions and extensions are defined in external tailoring languages.

6.2 THE MPS LANGUAGE WORKBENCH

To implement the concepts of the PEoPL approach, we use the MPS
language workbench, which is available under the Apache 2.0 license.
That is, we did not develop MPS, but simply use it to put PEoPL into
practice. MPS evolved over the past decade to a mature tool that

1. provides the currently most advanced projectional editing fa-
cilities, which we need for rendering our external variability
representations,

2. allows engineers to define how languages integrate in a sophis-
ticated fashion, which we need for making target languages
variability-aware in a meaningful way, and

3. provides all common language-design facilities of a modern lan-
guage workbench [60, 61], which we need for providing an effi-
cient and user-ready implementation with support for checking
the SPL’s correctness.
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We now discuss the basic language aspects used in MPS to con-
struct a language: structure (a.k.a. schema), editor, and generator. De-
tails on all language aspects available in MPS—for instance, so-called
actions and intentions for efficient, on-the-fly AST editing—can be
found in the literature [192, 195, 202].

6.2.1 Structure

In MPS, the abstract syntax (a.k.a. meta model) of a language is
defined using so-called language concepts (cf. Fig. 6.1a-d), which
declare the structure (i.e., properties, children, and references) of
concept instances (AST nodes). Some instances (e.g., ClassConcept
or Interface instances in Java) act as root nodes of an AST. These
root nodes are contained by a so-called model (similar to a package in
a Java program), so a model aggregates multiple ASTs, and thus we
consider a program as one large AST.

If a language concept is instantiated, its children, and the children
inherited from other concepts (explained shortly) are considered for
instantiation as well. For instance, the TryStatement concept in our
example declares a body, a finally-body and potentially multiple
catch clauses (Fig. 6.1c). So if a TryStatement instance appears in

the AST, it must have—according to the childrens’ cardinality “[1]"—

exactly one body, and exactly one finally-body. Catch clauses in turn
are optional (i.e., the cardinality is “[0..n]”). Using these rules, an AST
is always constructed in compliance with the involved language(s).

To specialize a language concept, we can use language concept
inheritance, which in fact corresponds to the idea of inheritance in
object-oriented languages. Figure 6.1e gives an example overview of
the inheritance hierarchy of language concepts. The abstract concept
BaseConcept is the super concept of all concepts in MPS. For instance,
the TryStatement concept inherits from Statement, which in turn in-
herits from BaseConcept.

Another way to extend language concepts are so-called node at-
tributes, which allow the extension of language concepts without mod-
ifying the structure of the AST explicitly (i.e., they are non-invasive).
In particular, any concept inherits from BaseConcept, which holds an
Attribute as a child (cf. Fig. 6.1e and 6.1a). So sub-concept instances
of Attribute (e.g., NodeAttribute) can be attached to any AST node.
Thus, a node attribute is in fact an annotation.

In PEoPL, we leverage such annotations to embed additional (var-
iability-related) information in a non-invasive fashion into the AST.
In particular, we use a Fragment concept instance to mark an AST
node as a feature artifact (details are discussed shortly in Ch. 7). Note
that each fragment (i.e., feature artifact) knows its feature module
via a cross-tree reference (cf. Fig. 6.1d). Such cross-tree references are
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abstract concept BaseConcept
extends <default>
implements <none>

instance can be root: false
alias: <no alias>
short description: <no short description>

properties:
shortDescription : string
alias : string
virtualPackage : string
children:

smodelAttribute : Attribute[0..n]

references:
<< vl >>

concept Statement
extends BaseConcept
implements ILocalvVariableElement ...

instance can be root: false
alias: <statement>
short description: <no short description>

properties:
<< L. >>

children:
<< L.l S>>

references:
<L ... >>

(a) BaseConcept language concept in
MPS core

(b) Statement language concept in
Java

concept TryStatement
extends Statement
implements IContainsStatementList ...

instance can be root: false
alias: try {...} finally
short description: <no short description>

properties:
<< .0 >>

children:

body : StatementList[1]
finally : StatementList[1]
catchClause : CatchClause[0..n]

references:
<< .0 >>

@attribute info

multiple: false

role: Fragment

attributed concepts: BaseConcept
concept Fragment extends NodeAttribute

instance can be root: false
alias: <no alias>
short description: <no short description>

properties:

children:
<< L. S>>

references:
myModule : FeatureModule[1]

(c) TryStatement language concept in
Java

(d) Fragment node attribute language
concept in CoreVar

MPS Core
BaseConcept
i BaseLanguage (Java)
I T T 1
. Generic
‘ Attribute ‘ ‘ beclaration ‘ ‘ Statement ‘ ‘ Type ‘
Node s Try
1 £
‘ Attribute ‘ ‘ Classifier ‘ ‘ Statement ‘
A .o
c ClassConcept

—— Feature
gm Module
CorevVar s

(e) Overview on the language concept inheritance hierarchy in MPS

Figure 6.1: Different concrete language concepts that are used to construct
a language’s structure (a), and the inheritance hierarchy of lan-
guage concepts (b)
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actively maintained by MPS (e.g., method call to method declaration),
and thus the AST is actually a directed graph.

In summary, using different languages in MPS enables construct-
ing a concrete AST using diverse language concepts. Thus, a concrete
AST may contain language concept instances from potentially multi-
ple languages (cf. C4 in Sec. 6.1).

6.2.2 Editor

Projectional editors allow developers to work conveniently with the
variational AST (instead of manipulating it manually). Each language
concept requires a projectional editor defining the rules for render-
ing it into concrete syntax. An editor definition consists of so-called
editor cells [195]. Figure 6.2 shows an example for the editor of the
TryStatement language concept (Sec. 6.1c). The editor adds a con-
stant cell with the keyword try and surrounds the body cell with
curly braces. In fact, the body cell embeds the editor of the body’s
StatementList (cf. Sec. 6.1c), which in turn just embeds each state-
ment’s editor, and so on. Likewise, the catchClause cell embeds a
CatchClause editor for each catch clause child. Then, the editor of the
CatchClause concept renders the catch keyword and the curly braces
(using constant cells). Consequently, editors also follow a hierarchy.

Moreover, editors can accommodate so-called editor hints defining
in which context the rendering rules are to be applied. In fact, a lan-
guage concept can have different editors through different (combi-
nations of) hints. Then, in a concrete model, MPS allows develop-
ers to select (a.k.a. push) hints for a given editor component—that
is, a concrete instance of an editor for a given AST node (typically
a root node). Note that Figure 6.2 shows the default editor for the
TryStatement concept. Default editors are used by MPS if no hint has
been pushed by the developer or there is no editor implementing one
of the hints selected.

On a final note, we leverage such projectional editors and hints for
rendering the variational AST into PEoPL’s diverse external represen-
tations (as we will discuss in Ch. 8).

editor for concept TryStatement
node cell layout:

~ -
~ltry |74
%| body | %
~ '} (- |%| catchClause |% /empty cell: <constant> -) || finally "~ {
% finallyBody %
"}
-1

inspected cell layout:

Figure 6.2: Projectional editor of the TryStatement language concept
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6.2.3 Generator

The persisted ASTs need to be transformed into program text which
can be compiled and executed. As such, MPS uses a generator to
translate a language concept either into another concept or into com-
pilable program text. In other words, language engineers can specify
for a concept a tree-to-tree mapping (i.e., a model-to-model transforma-
tion) or a text generation (i.e., model-to-text transformation).

In PEoPL, we leverage transformation rules to reduce specialized,
variability-related language concepts into other language concepts,
and to construct variants using a preprocessing script. In a nutshell,
before another model-to-model or model-to-text transformation kicks
in, PEoPL simply decides whether a feature artifact must be removed
or the tree must be restructured (as explained shortly in Ch. 7).

On a final note, it was not clear whether MPS scales for the PEoPL
approach. With our case studies (Sec. 5.2.2), we provide evidence that
it is indeed feasible to use MPS as PEoPL’s base platform. In fact,
we also experimented with other tool-implementation technologies.
For instance, for testing PEoPL’s internal representation [28], we used
the academic Snippet System prototype [112, 113], which however did
not scale. That is, generating a Berkeley DB variant and writing the
source code to disk takes about 2 hours in the Snippet System, while
in MPS the very same variant generation algorithm is quick (about
5 seconds). The reason is that MPS—in contrast to the Snippet Sys-
tem prototype—heavily relies on caching the internal data structure,
which is crucial for software of Berkeley DB size (with over 192,000
AST nodes). To be fair, the snippet system was not made for such a
demanding environment (i.e., handling ASTs and large numbers of
nodes). It focusses on dealing with office documents, the smart reuse
of elements within these documents, and more [113].

63 AN OVERVIEW ON PEOPL’S ARCHITECTURE

Figure 6.3 shows a feature model with PEoPL’s key features—that is,
we package PEoPL’s languages and some language aspects into fea-
tures to discuss the relationships in a feature-oriented fashion. Each
language is categorized into either internal variability representation,
external variability representation, or variability management facili-
ties (i.e., depending on the main contribution of the language within
PEoPL). The following chapters on PEoPL’s internals are organized
accordingly. We now provide an overview on each category. More-
over, we briefly discuss the extras, such as helpful tools, developed in
the course of the PEoPL project.

102



Feature focusses on and mainly contributes to PEoPL's MPS
@ Internal Variability Representation
@ External Variability Representations

@ Variability Management Facilities

MPSCore Java C PEoPL
@ (o)
CoreVar CoreVarTailorings Extras
Modeli VariantDerivati Impl tati CoreVarTailori M t ®Q/O® @ /\)
odelng aliafit=cHivation] | Impemeritation orevariaroring anagemen CVar |JavaVar FaultTreeVar Tools FaulTree
Facilities Facilities Facilities Infrastructure Facilities
Simple Advanced Generic | GenericEditing Editor DependencyExtraction | JavaSpecificVariant || JavaSpecific Statistics User
SPLDeclaration 'SPLDeclaration | Editors Operations Infrastructure Infrastructure DataFlowAnalysis Editors Monitoring
@ o
JavaSpecific
@ ® ® @ ® @ DependencyExtraction
Textual Visual . Variability | Variability Dropbox
Annotative = | Annotative R ] Rty [ Statistics = | Monitoring Upload

Javavar = (Java A CoreVar A CoreVarTailoringInfrastructure)
JavaSpecificDependencyExtraction = (CoreVar A VariabilityManagementFacilities)
JavaSpecificEditorFacilities = (CoreVar A Modular A Blended)

Cvar = (C A CoreVar A CoreVarTailoringInfrastructure)
FaultTreeVar = (FaultTree A CoreVar A CoreVarTailoringInfrastructure)
(VariabilityMonitoring V VariabilityStatistics) = CoreVar

Blended = (VisualAnnotative A Modular)

Figure 6.3: PEoPL’s feature model with the most important languages and aspects being packaged as features. An indicator highlights for each lan-
guage whether it focusses on PEoPL’s internal variability representation, external variability representation, or its variability management
facilities. Note that each language can, of course, also contribute to the other parts, but we decided to make the main contribution clear.
Dependencies between PEoPL’s languages are modeled as well. For instance, JavaVar depends on Java, CoreVar, and the CoreVar tailoring
infrastructure, which enables tailoring CoreVar to Java. That is, JavaVar only functions correctly if the other two languages are available.
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6.3.1 Internal Variability Representation

CoreVar is the most important language in PEoPL, since it imple-
ments a formalism for constructing variational ASTs. Focussing on
internals, several languages (and language aspects) build upon this
formalism (shown as sub-features in Fig. 6.3). In fact, CoreVar pro-
vides:

1. a set of generic editing operations that are used to manipulate
variability information in the AST,

2. variant derivation facilities that enable the composition of feature
modules and the transformation of the variational AST to a spe-
cific variant, and

3. a tailoring infrastructure that contains the definition of a DSL,
which is used within specific tailorings to tailor CoreVar to a
target language.

The PEoPL tool provides exemplary tailoring specifications for C,
Java, and fault trees in the languages CVar, JavaVar and FaultTreeVar,
respectively. More tailorings for other languages can easily be added,
since PEoPL is extensible.

6.3.2 External Variability Representation

To be able to manipulate the internal variability representation, Core-
Var provides languages for simple and advanced SPL declaration to-
gether with a set of generic editors (annotative, variant, and reuse)
that can be directly used for target languages. Moreover, it provides
the infrastructure to build modular and blended editors, which (for
now) have to be implemented in target-language-specific editors (e.g.,
Java-specific).

6.3.3 Variability Management Facilities

CoreVar also provides a generic infrastructure for dependency extrac-
tion. Yet, the concrete references to be checked are target language
dependent (e.g., method call and variable reference) and must be
declared. These are realized in target-language-specific dependency
extractions (e.g., Java-specific).

6.3.4 Extras

Together with PEoPL, we also package a fault tree language, tools to
extract statistics from a product line (e.g., number of feature artifacts)
and to monitor a user’s interaction. These tools are language inde-
pendent, extended with additional facilities to understand CoreVar.
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PEOPL’'S INTERNAL VARIABILITY
REPRESENTATION

In this chapter, we present PEoPL’s internal variability representation.
We start with CoreVar’s language structure, describing variational
ASTs (Sec. 7.1). For manipulating such ASTs, we conceive generic
editing operations (Sec. 7.2). Then, we discuss the process of deriving
individual variants, which takes a variational AST as input (Sec. 7.3).
Thereafter, we present CoreVar’s tailoring infrastructure and DSLs
for describing variability aspects and restricting annotations to a
meaningful level for a given target language (Sec. 7.4). Finally, we
demonstrate the concrete tailoring of CoreVar to Java and fault trees

(Sec. 7.5).
7.1 COREVAR’S LANGUAGE STRUCTURE

We start with an abstract formalization of variability (Sec. 7.1.1) and
introduce a variational AST formalism on this basis (Sec. 7.1.2). To
put the formalizations into practice, we conceive a general meta
model (Sec. 7.1.3), and provide a concrete implementation in MPS

(Sec. 7.1.4).
7.1.1  Variability Formalism

CoreVar adopts, modifies, and extends the structured document alge-
bra (SDA) [24]—an abstract formalization of feature modularity. The
SDA enables variability through feature modules, which assign frag-
ments to variation points (VPs). A VP represents a point of variability
in a product line and a fragment marks content as a feature artifact.
Let V = {vp1,vpa, ...} be aset of VPs and F = {fj, f2, ...} a set of frag-
ments. A feature module m : V ~~ F is an injective partial function
assigning fragments from F to VPs from V. In contrast to SDA (not
using an injective function), fragments are unique to a VP—that is,
a fragment cannot be assigned to multiple VPs to reflect a homoge-
neous extension. Notice that this is not a limitation in practice, but
just eases our implementation (explained shortly).

The domain dom(m) of a module m is the set of VPs assigned by
m. The module m assigns a fragment to the VP vp if vp € dom(m),
otherwise vp is not related to m. A feature module can assign a VP
only once, but multiple modules can assign different fragments to the
very same VP.

105



7.1 COREVAR’S LANGUAGE STRUCTURE

For a fragment f € F, we define the helper function VP(f) return-
ing the VP vp associated with f (possible as of injection). Similarly,
let M(f) be the helper function returning the module m assigning f
to VP(f). Moreover, we define the helper function F,,(vp), which re-
turns all fragments of a given VP vp. All helper functions return L if
there is no module m assigning f to vp—that is, before a developer
explicitly chooses m for assigning f to vp.

For the fragment f; in our Berkeley DB example, the helper func-
tion M( f1) yields the module Base and the helper function VP(f;) the
VP vp, (cf. Fig. 3.1f and 7.1). All VPs in Berkeley DB

VBerkeley = {UPOI UP1s e vpu}

are associated with fragments via modules, for instance

Base : {vpy — fo,vpy — f1,0p4 > fa1, ..}
Statistics : {vpy — f3,0py — fa2, ...}

Feature modules assign fragments to VPs in their domain, for in-
stance

dom(Base) = {vp,, Up1, VP, UP5, UPg, VP11
dom(Statistics) = {vp;, VP, VP, UPg, VP10, UP1a }

Notice that dom(Base) N dom(Statistics) = {vp,}, and thus Base and
Statistics share vp, (cf. Fig. 3.1f and Fig. 7.1).

7.1.2 Variational AST Formalism

Using this variability formalism, we now discuss how AST nodes are
made variable. In the course of this, we distinguish heterogeneous
and homogeneous extensions.

HETEROGENEOUS EXTENSIONS. AST nodes are made variable—
that is, marked as a feature artifact—by annotating them with frag-
ments from F. Let AST = {ny,ny,...} be a set of AST nodes. A vari-
ational AST wvast : F ~— AST is an injective, non-surjective function
assigning AST nodes to fragments from F.

The image vast(F) of a variational AST wvast is the set of AST nodes
annotated with fragments. An AST node # is annotated if n € vast(F).
The domain dom (vast) is the set of fragments F (i.e., the AST nodes as-
signed to fragments by wvast). Due to injection, fragments are unique
to AST nodes. Every fragment annotates exactly one node, but not
every node must be annotated. The helper function FN(n) either re-
turns the fragment annotating the node n € AST or L if the node is
not annotated (i.e., n ¢ vast(F)).
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v F AST
vast

»FeatureBlock
ReturnType ClassCreator
NonOptionalAlternative

Figure 7.1: Relationships of AST nodes, fragments, and variation points

Figure 7.1 shows an excerpt of the mappings in our Berkeley DB ex-
ample (Fig. 3.1f). For instance, the image of Berkeley DB’s variational
AST is a set of concrete AST nodes (i.e., feature artifacts):

0ast(F perkeley) = {FeatureBlock,
ReturnType,
NonOptionalAlternative,...}

Moreover, the helper functions yield fragments, VPs, and modules:

FN(ReturnType) = f11
VP(EN(ReturnType)) = uvp,
M(FN(ReturnType)) = Base

HOMOGENEOUS EXTENSIONS. Recap that a fragment cannot be
assigned to multiple VPs, since a module is an injective partial func-
tion. Thus, we need a different way to enable homogeneous extension
support (known from AOP, where advice can be applied to multi-
ple join points). To provide support and realize our reuse projection
(cf. Sec. 3.3.7), a VP can appear in the variational AST through a place-
holder element—that is, a special AST node referring to a VP [28].

Let P = {p1, p2, ...} be a set of placeholder members that appear
in AST—that is, P C AST. Then, we use a non-injective total func-
tion appear : P — VP assigning VPs to placeholders. The image
appear(p) yields the VP to which p refers. Notice that appear is cycle-
free, since we forbid assigning fragments to placeholders (explained
shortly). Figure 7.2 gives an example where a FeatureBlock is reused
twice through two Placeholder instances that appear in the AST.
In fact, if vp; is filled with content during derivation (i.e., with the
FeatureBlock), then the Placeholder’s are filled with this content as
well. To enable editing in our reuse projection, the FeatureBlock is
rendered at each Placeholder’s AST position.

AST
»FeatureBlock

v

F
Base (fzzz:zfi vast

appear

Placeholder ClassCreator

Placeholder

Figure 7.2: Placeholders enable developers to reuse AST nodes
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7.1.3 Language Structure of Variational ASTs

We now propose a generic language structure (i.e., meta model) for
our variational AST formalism. Figure 7.3a shows the structure and
relationships of CoreVar’s language concepts (upper half), and how
CoreVar is applied to arbitrary trees (lower half). To discuss model
details, we use a stack example which makes the assignment of frag-
ments to VPs explicit in an internal (Fig. 7.3b) and an external repre-
sentation (Fig. 7.3¢).

According to the formalisms, a module is associated with a set of
fragments (cf. Fig. 7.3a) and each fragment is associated with exactly
one module. Thus, fragments are unique to modules. Logically, a frag-
ment acts as a container for content (i.e., represents a feature artifact).
Given its content, a fragment can fill exactly one VP. Figure 7.3b illus-
trates the idea of containers and the relationships between fragments
and modules by coloring the AST nodes that are annotated with a
fragment (and all descendants of the node). For instance, the frag-
ment f;, which is associated with the module Log (light gray box), an-
notates the method declaration sLog. Notice that VPs are illustrated
as elements next to the fragment (e.g., vp;) to clarify which fragments
can fill the VP with content.

To clarify the relationships of a variational AST, Figure 7.3c shows
an external modular representation which makes the assignment of
fragments to VPs through modules explicit. For instance, the Base
module assigns the fragment fo—which contains the class Stack—to
vpo (cf. root node in Fig. 7.3b). Within the class, multiple VPs appear
that are external to the Base module—that is, the module does not
assign fragments to these VPs.

Notice that the VP vp, appears twice in the Base module and once
in the Peek module. To fill vp, with content, the Log module assigns
fr—which contains the method call sLog—to it. In the variational
AST depicted in Figure 7.3b, the method call appears also three times.
Once as a child within the push method, and twice via placeholders
that refer to sLog’s VP vp,. Consequently, a VP can in fact appear
multiple times in the AST (cf. Fig. 7.3a). In particular, according to
our model, an AST node can have two different types of children:
other AST nodes or a placeholder that refers to a VP.

Moreover, a VP can be filled by multiple alternative fragments—
that is, a VP maintains an ordered list of fragments (cf. Figure 7.3a). In
fact, a VP represents a potential point of variability that can be filled
by multiple fragments with content. Yet, during product generation
only one fragment can fill a VP at a time, so fragments assigned to
the same VP are alternative to each other. Figure 3.1 gives an example.
There, the fragments f41 and f4, are assigned to vpy.

On a final note, to compute the domain dom (m)—the set of VPs a
module m administers—we simply collect the VPs instantiated by the
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Figure 7.3: CoreVar’s language structure (a) and internal and external repre-
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fragments associated with m. For instance, in Figure 7.3c, the module
Log is associated with f; and f,, which instantiate vp; and vp,, re-
spectively (i.e., dom(Log) = {vp1,vp2}).

7.1.4 Implementation in MPS

We now implement the language structure of CoreVar in MPS. We use
76 language concepts and five interface concepts—similar to a Java
interface—in total. Thereof, the simple SPL declaration uses nine, the
advanced SPL declaration 15 language concepts. CoreVar’s tailoring
infrastructure introduces 25 language concepts. The core language
structure comprises five main language concepts, and 22 language
concepts easing and enabling our implementation. Figure 7.4a shows
an inheritance diagram for the main concepts relevant for adding
and handling variability. Notice that the most important concepts are
highlighted. Since CoreVar only inherits and uses concepts from MP-
SCore, not MPS” model of Java, it is language-independent and can
be used to make other languages variability-aware.

Based on our generic language structure (cf. Sec. 7.1.3), we de-
fine the associations of CoreVar’s main language concepts. In fact,
we enable making AST nodes optional in MPS. Figure 7.4b shows
the most important associations of variability-related language con-
cepts. Since the fragment concept inherits from MPS’ NodeAttribute
concept (cf. Fig. 7.4a), fragments can be directly attached to existing
AST nodes (cf. the Fragment to BaseConcept relationship in Fig. 7.4b).
This way, existing nodes are made optional in a non-invasive fash-
ion. Each fragment belongs to exactly one module and to exactly one
VP (cf. Fig. 7.4b). While fragments are contained by the respective
AST node, modules and VPs are persisted by a dedicated container
concept attached to the project root (not depicted).

Using these concepts, the original AST structure is not changed.
However, for convenience reasons when long sequences of AST sib-
lings (i.e., Statement instances) belong to the same module, JavaVar
(more details are explained shortly) introduces the FeatureBlock con-
cept, which groups AST nodes that are mapped to fragments belong-
ing to the same module and VP. In fact, the FeatureBlock concept
implements CoreVar’s feature group interface, which can be imple-
mented by other languages and for other concepts as well. Notice that
each FeatureBlock has exactly one fragment, and thus is optional by
default (Fig. 7.4b).

Placeholders are also realized as node attributes (Fig. 7.4a). In fact,
placeholders annotate an existing node that is to be replaced with
the VP’s content (i.e., the AST node annotated by the Fragment) in
projections and during variant derivation (Fig. 7.4b). For instance, a
placeholder can annotate an empty statement or an empty classifier
member in Java.
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We use annotations also for non-optional AST nodes that cannot
have siblings in the AST (e.g., exactly one return type is required
in a method declaration according to Java’s syntax). For such non-
optional nodes, CoreVar provides the NonOptionalAlternative lan-
guage concept, whose instances are used to annotate a non-optional
node, while holding an alternative node for it (cf. Fig. 7.4b). For
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(a) Inheritance diagram of language concepts in MPS
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(b) Realization of CoreVar’s language structure in MPS

Figure 7.4: Realizing PEoPL’s internal variability representation using the
MPS language workbench
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example, the return type of the method preload is annotated by a
NonOptionalAlternative holding an alternative return type (cf. fio
in Fig. 3.1f).

Optimally, all AST nodes of the SPL relate to at least one module—
more precisely, to a fragment that belongs to a module. In fact, nodes
belonging to an SPL’s commonality should be mapped to a core, top-
level module (e.g., Base in Fig. 7.3b and 7.3c). CoreVar provides the
interface concepts ICompilationUnitContainer, which holds multi-
ple ICompilationUnit instances. In a nutshell, the container concept
makes it possible to have multiple alternative compilation units (e.g.,
classes). These interfaces are implemented in CoreVar tailorings, for
instance, JavaVar’s ClassContainer and VariationalClassConcept as
shown in Figure 7.4a. Notice that a VariationalClassConcept must
have exactly one fragment, and thus the root node is assigned to a
module (Fig. 7.4b).

7.2 COREVAR’S GENERIC EDITING OPERATIONS

To manipulate the AST, CoreVar provides five basic variability-related
editing operations which can be refined by its tailoring extensions
(e.g., JavaVar): assign variability, assign wrapper variability, assign al-
ternative, remove variability, and select and appear—all available via a
popup menu over a code snippet in the concrete syntax (cf. Fig. 3.2)
or triggered automatically by an editing gesture (e.g., typing #ifdef
or #elif).

7.2.1 Assign Variability Operation

The operation marks an AST node as optional, for instance, the class
DatabaseImpl assigned to fy (Fig. 3.1f). An algorithm creates a new
VP vp; € V and fragment f; € F, and annotates the selected AST node
n; with the fragment such that vast(f;) := n;. Then, the developer
selects the desired module m; assigning f; to vp;.

7.2.2  Assign Wrapper Variability Operation

The operation marks only a wrapping node as variable, not its body
(the wrappee). The idea is to annotate the wrapping node such that its
wrappee is not removed during variant derivation (explained shortly).
Assigning variability to a wrapping node corresponds to the assign
variability operation. The only difference is that an additional anno-
tation called wrapper is added to the target node which refers to the
wrappee (cf. Fig. 3.1f, vp;).
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7.2.3 Assign Alternative Operation

The operation marks an AST node 7, as an alternative to another AST
node n,. Let n, be variational with FN(n,) # L, and let its fragment
fo := EN(n,) be assigned to the VP vp, := VP(f,) with VP(f,) # L.
If the alternative node n, is variational with FN(n,) # L, then an
algorithm changes the alternative node’s module M(FN(n,)) such
that it assigns the fragment FN(n,) to vp,, which is then associated
with f, and FN(n,). If the node n, is not variational, an algorithm
creates a fragment f, in F, assigns it to vp, (according to the devel-
oper’s module selection), and annotates 1, with the fragment such
that vast(f,) := n,. Figure 7.1 gives an example. The fragments fy;
given by FN(ReturnType) and fs, by FN(NonOptionalAlternative)
are both assigned to vp, by their respective modules.

Notice that 1, and n, are typically, but not necessarily siblings in
the AST (e.g., statements alternative to each other). Recap that some
non-optional AST nodes cannot have siblings (e.g., return type decla-
rations). CoreVar provides the concept NonOptionalAlternative for
such non-optional nodes. In fact, NonOptionalAlternative instances
are used by the assign-alternative operation to annotate n,, while
holding an alternative node n,. For instance, the preload method’s
return type is annotated by a NonOptionalAlternative holding an al-
ternative return type (cf. f4 in Fig. 3.1f). Notice that non-optional lan-
guage concepts are declared in CoreVar tailorings (explained shortly
in Section 7.4).

7.2.4 Remove Variability Operation

Removing variability from a specific variational AST node is straight-
forward. The operation’s algorithm simply removes the fragment an-
notation and the corresponding VP, if no other fragment fills it.

7.2.5 Select and Appear Operation

The operation enables reusing an AST node. Developers explicitly ex-
ecute a select operation, which is then followed by (multiple) appear
operations. In fact, select and appear is analogous to copy and paste
without introducing a physical copy, but only references. Let 11, be the
node to be reused (i.e., selected) and 7y, 1y, ...n,, the nodes where 1,
shall appear. Notice that 1, must be annotated with a fragment to en-
able reuse (cf. Fig. 7.3b). So, if n, is not variational FN(n,) = L, then
the select operation’s algorithm calls the assign variability operation
to mark n, optional. Then, VP(FN(n,))—that is, the VP associated
with n,—is cached for connecting it with placeholders. Each appear
operation then annotates the target node under the cursor (e.g., 1)
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with a placeholder, which in turn refers to the cached VP. Figure 7.3b
gives an example, where vp; is referenced by two placeholders.

7.3 COREVAR’S VARIANT DERIVATION FACILITIES

The derivation of variants is a three-step process. First, we calcu-
late the set of fragments contained in the variant by composing fea-
ture modules. Second, we remove the placeholders referring to a VP,
which is not filled by a fragment. If the VP is filled by a fragment, the
corresponding fragment’s AST node replaces the placeholder. Third,
we remove any variability by iterating over all fragments in the tree
to either remove the fragment, to remove the annotated node, or to
restructure the tree (for wrapper and non-optional alternative nodes).

7.3.1  Composition of Feature Modules

Composing modules results in a transient variant set Fyariant, contain-
ing all fragments of a variant. SDA provides three operations to com-
pose modules: addition (+), subtraction (-), and overriding (—), which
we adopt in PEoPL as follows.

Let F,, and F, be the set of fragments associated with a module m
and n, respectively. The addition of two modules m + n fails if m and
n contain conflicting fragments: dom(m) Ndom(n) # @. In Figure 7.1,
fragments f41 and f4, are conflicting, since both assign fragments to
the VP ovp,.

Without conflicting fragments, addition results in a greater set of
fragments F,1, = {Fy UF,} and therefore a larger module, serving
as input for further operations. Notice that the fragments of the larger
module reflect a preliminary or the final variant set Fyariant. The sub-
traction of m — n is the set Fy,—, = {f|f € Fu A VP(f) ¢ dom(n)}.
In other words, we remove the fragments of m that share a VP with
fragments of 1, so subtraction removes fragments from the variant
set. Overriding is simply a combination of addition and subtraction:
m —n =4¢ m+ (n —m) to enable replacement.

Table 7.1 shows different compositions for our Berkeley DB exam-
ple (Fig. 3.1). For instance, configuration (2), adding the modules Base
and Memory_Budget, results in a valid set of fragments. In contrast,
configuration (3), adding Base and Statistics, is erroneous, as frag-
ments f;1 and f;, fill the same VP vp,.

To resolve conflicting fragments, we use subtraction and overriding.
For instance, configuration (4) removes fs1. The resulting fragment
set is valid, but the AST invalid (both return types pruned), which
is detected during derivation. Type-checking module composition is
part of our future work.

Using overriding, developers decide between conflicting fragments.
For instance, configuration (5) denotes that all fragments of Base re-
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No | Module configuration | Variant’s fragment set (Fy,riant) | Valid

(1) | Base fo, fi, fa1, f5, fs, f11 v

(2) | Base + Memory_Budget | fo, f1, f2, f11, fs, fe, fs, f11 v

(3) |Base + Statistics for f1: f3.%: f: f: fo: foo X
fio, f11, f12

(4) |Base — Statistics for fr 13, f5. f1 fo fo. X
fio, f11, f12

(5) | Base — Statistics 00,0110 657 Aty Yo oty oo v

(6) | Statistics — Base for 1 f3, fa2, f5, f7, - v

Table 7.1: Example module compositions for Berkeley DB (cf. Fig. 3.1)

place those conflicting with Statistics. Notice that ordering matters for
overriding, since configuration (6) includes the fragments of Statistics
instead. Moreover, notice that a feature selection can be realized by
overriding modules according to their declaration order. For instance,
configuration (6) reflects a selection of Base and Statistics based on the
ordering defined in Figure 3.1b (i.e., Base has lowest priority).

7.3.2  Remove or Replace Placeholders

To remove or replace placeholders, we iterate over them. For each
placeholder, an algorithm checks whether the corresponding VP is
filled by a fragment in the variant’s fragment set Fyariant. In fact, let p
be the placeholder to be checked. Then, appear(pcheck) yields the VP
UPcheck to which the placeholder refers. Subsequently, our algorithm
uses the helper function Fyp(0pcheck) to yield the set of fragments
filling the VP vpcheck- The placeholder p is removed if Fyp(0pcheck) N
Fiariant = ©. Otherwise we check for each fragment fi, fo,..., fu €
va(vpcheck) whether it is in Fyrant. Notice that only one fragment
fi € Fyariant can fill vppeck, since else the variant is invalid, which is
detected during composition. Since f; marks an AST node as optional,
we can simply yield this node vast(f;) and replace the placeholder p
with it—that is, we copy vast(f;) to the position of the placeholder p.
On a final note, in our proof of concept implementation placehold-
ers are realized as AST node annotations. Thus, we remove or replace
the placeholder’s parent and not the placeholder itself in practice.

7.3.3 Remove Variability from the Variational AST

We now remove any variability (i.e., fragment) from our AST such
that vast(F) = @. Figure 7.5 shows our algorithm, which takes the
variational AST wvast and the variant’s fragment set Fyariant as input.
We iterate over all fragments in the variational AST (Line 2). If the
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func removeVariability(func vast, set<fragment> F
for each f € dom(vast) {
if(f € Fariant) f-delete; // delete only the fragment
else {
if (hasWrapperAnnotation(vast(f)) { // handling the wrapper
for each n € getWrappee(vast(f)).children {
vast(f).add prev-sibling(n); // moving the content up
}
else if(hasNonOptionalAlternatives(vast(f))) {
node a = popFirstAlternative(vast(f)).getTheNodeIHold();
a.addAll (getNonOptionalAlternatives(vast(£f)));
vast(f).replace with(a); // replace the node
return;
}
vast(f).delete; // delete the node and its fragment
P rd

variant) {

O 000N VT A WN B

N =
oA WNRS
-~

Figure 7.5: Algorithm to remove variability from the AST

fragment is in Fyariant, We simply delete the fragment to remove vari-
ability (Line 3). Otherwise, if the AST node has a wrapper annota-
tion, we move the wrappee’s children up in the tree as siblings of the
wrapper (Line 7) and remove the wrapper (Line 15). If the AST node
is non-optional (i.e., has NonOptionalAlternatives), we pop the first
alternative and get the node it holds (Line 10), such as the alterna-
tive return type PreloadStats in Fig. 3.1f. Since an AST node may
have multiple non-optional alternatives, we must add all of them to
the popped alternative (Line 11). Then, we can safely replace the non-
optional node in the tree with it (Line 12). If the AST node neither
has a wrapper annotation nor is a non-optional alternative, we sim-
ply remove the AST node (Line 15).

7.4 COREVAR’S TAILORING INFRASTRUCTURE AND DSLS

PEoPL enables tailoring CoreVar to a specific target language. We
now explain the shape of tailorings in general, and in the next section
we explain concrete tailorings using Java and fault tree examples.

7.4.1  Annotatable Nodes Declaration

Without restriction, the editing operations of CoreVar allow annotat-
ing any AST node (also non-optional ones) with fragments, which
may lead to syntactically incorrect variants. To declare annotatable
nodes and restrict editing operations to a meaningful level, CoreVar
provides can-assign-variability and can-assign-alternative declarations
(i.e., DSLs used for tailorings). Moreover, language engineers can de-
clare a custom behavior for operations and language concepts of a
given target language (e.g., extending the assign alternative operation
with custom behavior for method declarations). Figure 7.6 provides
an overview showing the shape of these declarations.
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Annotatable node declarations and custom behavior for <language>

Can-assign-variability declarations

1 Inclusions:
2 simple inclusion for concepts: <list of concepts>
3 parameterized inclusion for node: (sourceNode) -> boolean {
4 <return true (included) or false (not included)>
5 }
6 << more inclusions >>
7 Exclusions (overrides inclusions):
8 simple exclusion for concepts: <list of concepts>
9 parameterized exclusion for node: (sourceNode) -> boolean {
10 <return true (excluded) or false (not excluded)>
11 }
12 << more exclusions >>
Can-assign-alternative declarations
13 all rules from can-assign-variability: <default: true>
14 non-optional node concepts: <list of concepts>
15 << inclusions and exclusions >>

Custom behavior declarations
16 custom alternative operation for <language concept>

17 (originalNode) -> node<> {
18 <return the node alternative to the original node>
19| 3

20 << more custom alternative creations >>

Figure 7.6: The shape of the annotatable nodes declaration DSL

Can-assign-variability declarations restrict our assign variability
operation. The declarations are distinguished into concept instance
inclusions and exclusions. Both declarations can be either simple or
parameterized. In a simple inclusion, language engineers provide a
list of annotatable language concepts (Line 2), which enables the
annotation of concept instances (and their subconcept instances due
to concept inheritance). At runtime the assign variability operation
checks whether the selected concept instance of a tailored language
can be optional. Parameterized inclusions enable more flexible runtime
checks (Line 3-5), since engineers can specify whether a node can
be annotated using program logic (e.g., a Boolean expression). If
the parameterized inclusion returns true, the node is annotatable,
otherwise not. Exclusions override inclusions. This way, engineers
can include a concept and its subconcept instances, and refine this
inclusion using restrictions. Exclusions are also simple (Line 8)
or parameterized (Lines 9-11) and implemented analogously to
inclusions.

The can-assign-alternative declaration restricts CoreVar’s assign al-
ternative operation. In fact, it allows adopting the rules declared in
can-assign-variability (Line 13), and declaring non-optional language
concepts (Line 14). Notice that the latter enables the assign alterna-
tive operation to annotate the original, non-optional AST node with
NonOptionalAlternative instances. In addition, engineers can add
new inclusions and exclusions for the assign alternative operation.
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Aside from can-assign-variability and can-assign-alternative dec-
larations, language engineers can also specify custom behavior for
CoreVar’s editing operations. For instance, it is possible to customize
the behavior of the assign alternative operation (Lines 16—19). This
way, initialized siblings can be created in a custom setting.

7.4.2  Wrapper Declaration

Which nodes in the AST can have a wrapper annotation—where the
wrapping node is variable, but not its subtree (wrapper body)—is
target-language-dependent. Figure 7.7 shows the shape of our wrap-
per declarations DSL. A wrapper declaration specifies the wrapper’s
language concept and the corresponding wrappee (child node). At
runtime, the declarations are used by the assign wrapper operation
to annotate the wrapper and refer to the wrappee. These annotations
and references, in turn, are used during variant derivation to replace
the wrapper with its wrappee (if the wrapper is not included in the
variant).

Wrappers that can be partially annotated in <language>

instance of <language concept> replaced by its <child node>;
<< more wrapper declarations >>

Figure 7.7: The shape of the wrapper declaration DSL

7.4.3 Further Declarations

While tailoring CoreVar to a target language, language engineers typ-
ically make further declarations and implementations.

1. To ease the handling of a group of AST siblings that belong
to the same module, CoreVar’s IFeatureGroup convenience in-
terface concept can be implemented. The IFeatureGroup inter-
face provides the basic infrastructure for creating, merging and
splitting groups. This behavior can be refined in the concrete
implementation of a CoreVar tailoring language (e.g., JavaVar).
To generate a language-specific grouping behavior and mak-
ing our generic editing operations aware of concrete groups,
CoreVar provides a feature group declaration DSL as illustrated
in Figure 7.8. Engineers declare which concrete IFeatureGroup

Feature group declarations for <language>

concrete IFeatureGroup implementation <IFeatureGroup language concept>
groups <language concept>
<< more IFeatureGroup implementations >>

Figure 7.8: The shape of the feature group declaration DSL
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concept (i.e., the concept implementing the IFeatureGroup inter-
face) groups which concrete concept instances (e.g., statements
in Java).

2. Since ASTs should relate to at least one top-level feature (for
meaningful variational ASTs), language engineers should imple-
ment the ICompilationUnit and ICompilationUnitContainer
interface concepts (cf. Fig. 7.4). Then, the annotation of root
nodes with fragments is enforced and compilation units that
are alternative to each other can be created.

3. To analyze and manage the SPL, tailoring CoreVar typically
also includes declaring variability-specific type-system and
data-flow rules for the target language (cf. Ch. 9).

7.5 TAILORING COREVAR TO A TARGET LANGUAGE

We now tailor CoreVar to Java and fault trees.

7.5.1 Tailoring CoreVar to Java

ANNOTATABLE NODES DECLARATION. Figure 7.9a shows an ex-
cerpt of our annotatable nodes declaration for Java (implemented in
JavaVar). For example, fragments can annotate Statement concept in-
stances (Line 5), and thus also all Statement subconcept instances
(e.g., IfStatement and TryStatement instances). Moreover, we declare
that throwsItems of method and constructor declarations can be an-
notated (Lines 12—19)

In JavaVar’s can-assign-alternative declaration, we adopt the rules
of can-assign-variability (Line 25), add new rules, and declare non-
optional nodes. For instance, JavaVar enables developers to annotate
the language concept instances of Type, Expression, and Visibility
with NonOptionalAlternative instances (cf. Figure 7.9a, Lines 26-28,
and the NonOptionalAlternative in Fig. 3.1f).

All in all, due to concept inheritance, not many declarations are
needed for Java. The can-assign-variability declaration has nine sim-
ple and eight parameterized inclusions, as well as two simple and
one parameterized exclusion. The can-assign-alternative declaration
adopts these rules plus three non-optional node inclusions, one sim-
ple and one parameterized inclusion.

Moreover, JavaVar customizes the assign alternative operation for
BaseMethodDeclaration (Lines 31-34). In particular, we create an al-
ternative method declaration with the original method’s name and a
random suffix (Line 33).

WRAPPER DECLARATION. Figure 7.9b shows JavaVar’s four wrap-
per declarations. For instance, a TryStatement can be replaced by
its body. Notice that the AbstractLoopStatement concept is abstract
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Annotatable node declarations and custom behavior for Java

Can-assign-variability declarations

Inclusions:

simple inclusion for concepts: Interface,
BaseMethodDeclaration,
BaseVariableDeclaration,
Statement,
SwitchCase,
ParameterDeclaration,
DotExpression,
StaticInitializer,
IncompleteMemberDeclaration

parameterized inclusion for node: (sourceNode) -> boolean {
return (sourceNode.parent.isInstanceOf(BaseMethodDeclaration)
&& sourceNode.hasRole(BaseMethodDeclaration : throwsItem));

}

parameterized inclusion for node: (sourceNode) -> boolean {
return (sourceNode.parent.isInstanceOf (ConstructorDeclaration)
&& sourceNode.hasRole(ConstructorDeclaration : throwsItem));

}

<< more inclusions >>

Exclusions (overrides inclusions):
simple exclusion for concepts: PlaceholderMember,
TernaryOperatorExpression

<< more exclusions >>

Can-assign-alternative declarations

all rules from can-assign-variability: <default: true>
non-optional node concepts: Type,

Expression,

Visibility
<< inclusions and exclusions >>

Custom behavior declarations
custom alternative operation for BaseMethodDeclaration
(originalNode) -> node<BaseMethodDeclaration> {
node<BaseMethodDeclaration> altMeth = originalNode.concept.new instance();
altMeth.name = originalNode.name + " " + (int) (Math.random() * 900);
return altMeth;

}

<< more custom alternative creations >>

(a) Annotatable nodes declaration for Java

Wrappers that can be partially annotated in Java
instance of AbstractLoopStatement replaced by its body;
instance of IfStatement replaced by its trueBody;
instance of SychronizedStatement replaced by its block;
instance of TryStatement replaced by its body; ...

(b) Wrapper declaration for Java

Feature group declarations for Java

concrete IFeatureGroup implementation FeatureBlock
groups Statement
<< more IFeatureGroup implementations >>

(c) FeatureBlock declaration for Java

Figure 7.9: Tailoring CoreVar to Java in JavaVar
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and replaced by its body. This way, concrete language subconcepts of
AbstractLoopStatement, such as WhileStatement and ForStatement,
are inherently supported.

FURTHER DECLARATIONS. JavaVar also declares variability-
specific type-system and data-flow rules. Moreover, it extends the
Java language with an implementation of the IFeatureGroup con-
venience concept that eases handling variability. In fact, JavaVar’s
FeatureBlock concept implements the IFeatureGroup interface to
group statements belonging to the same module (cf. Fig. 3.1f). In fact,
we enforce that any statement (except partially annotated wrappers)
are contained by at least one FeatureBlock (e.g., fi in Fig. 3.1f). Oth-
erwise, individual statements would need to be annotated (as they
are siblings in the AST). Notice that in the projections, the block’s
statement list is just rendered without showing curly braces (cf.
statement-level vertical bars in Figure 3.1c). A FeatureBlock also ex-
tends its enclosing statement list’s scope to make the FeatureBlock’s
statements visible to its siblings. During variant derivation, if the
FeatureBlock’s module is in the variant, it is replaced by its state-
ments, otherwise removed.

In addition, JavaVar implements the interfaces ICompilationUnit
and ICompilationUnitContainer in the concepts ClassContainer
and VariationalClassConcept, respectively (cf. Fig. 7.4a). This way,
each AST relates to at least one module.

7.5.2 Tailoring CoreVar to Fault Trees

The language structure of fault trees is simple (cf. Sec. 3.4.2). It is
comprised of language concepts reflecting events (basic, intermediate,
and top), gates (e.g., and, or and not), and facilities to attach/detach
nodes from a fault tree. Tailoring CoreVar to fault trees is straightfor-
ward, since FaultTreeVar simply allows annotating events and gates.
Gates wrap gates—that is, a gate can be replaced by another gate.
For instance, in Figure 3.10b, the gate Sensor detected collision can be
replaced by the gate Unavoidable obstacle in variants (cf. Fig. 3.10d). In
fact, we customized the wrapper behavior such that gates with only
one child gate are replaced by it automatically. In FaultTreeVar, we do
not implement a feature group, since gates already group fault tree
nodes.

7.6 CONCLUDING REMARKS

CoreVar enables adding variability to arbitrary languages. It provides
variant derivation facilities and a set of generic, extensible editing
operations. We demonstrated that tailoring CoreVar to mainstream
languages such as Java is straightforward using CoreVar’s tailoring
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facilities and DSL (i.e., the engineering effort is low). We have also
shown that non-textual languages are supported (i.e., fault trees).



PEOPL’S EXTERNAL REPRESENTATIONS

Thus far, we discussed PEoPL’s internal variability representation. In
this chapter, we show how we realized PEoPL’s external variability
projections on top. We start with CoreVar’s generic editors (annota-
tive, variant and reuse). Then, we illustrate how the current language-
dependent modular and blended projections are realized for a given
target language. Finally, we discuss the realization of PEoPL’s model-
ing facilities (i.e., simple, advanced, and expert SPL declarations).

8.1 IMPLEMENTATION FACILITIES

Recap that each language concept requires a projectional editor, defin-
ing the rules for rendering language concepts into concrete syntax
(cf. Sec. 6.2.2). For instance, Java’s BlockStatement editor renders its
StatementList and surrounds it with curly braces. Moreover, recap that
editors can accommodate editor hints, defining in which context the
rendering rules are to be applied. A language concept can have differ-
ent editors through different hints, and thus the concrete syntax can
appear in different ways. We leverage hints in PEoPL to switch exter-
nal variability representations. PEoPL’s variability-related language
concept is the fragment. For each of a fragment’s external representa-
tions, we implement a projectional editor (with a specific hint) that is
oblivious to the target language (e.g., Java).
Next, we explain how we realize our projectional editors.

8.1.1 Rendering Annotations

Realizing textual and visual annotation projections is easy. Figure 8.1
shows a visual annotative editor for Fragments—CoreVar’s main con-
cept for making ASTs variability-aware. Recap that editor definitions
consist of editor cells [195]. The [annotated node] cell embeds the editor
of the AST node annotated with the fragment (Lines 3, 4, and 6). The
fragment editor renders fragment concept instances in three ways—
that is, the editor checks whether the annotation is disciplined, within
a line of code, or complex:

1. Disciplined annotations are rendered as a vertical bar and a fea-
ture module selection (Line 3). The macros #VerticalBar# and
#Module# refer to so-called editor components—editors reusable
among different editors. We leverage these components to reuse
vertical and horizontal bars across different editors. The ®-sign
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1| VisualAnnotative editor for concept Fragment

2 node cell layout: r
ce s e a1 s

3 if isDisciplined(): ?@® WerticalBar #Module# [annotated node]
4 else if isWithinLine(): |?@ |[annotated node]|#Module#
5 #HorizontalBar#
6 else if isComplex(): [annotated node]
7 inspected cell layout:
8

Inspector
9| show if(editorContext, node)->boolean {
10 return node.hasAlternative(); // the node is the Fragment instance
1| }

Figure 8.1: Simplified visual annotative projectional editor for fragments
(upper half) with a cell inspector adding a rendering condition
(show if) for the @-sign (lower half)

is a constant cell (Line 3). The question mark denotes that a ren-
dering condition is attached to the cell. In fact, for each editor
cell a so-called inspector allows configuring the cell, inter alia,
adding a rendering condition. So, we check in the ®-sign’s in-
spector simply whether the fragment has an alternative (Fig. 8.1,
Line 10)—that is, the ®-sign is rendered if the fragment has al-
ternatives assigned to the same VP.

2. Undisciplined annotations within a line of code are underlined
with a horizontal bar (Lines 4-5). The ®-sign is rendered if the
fragment has an alternative.

3. Annotations requiring a more specific syntax are propagated
to the customized target node’s editor (Line 6), which targets a
target-language-specific concept that recognizes a fragment and
provides respective coloring.

For instance, colored else-if clauses require a more complex col-
oring. Figure 8.2a shows the editor, which renders a combina-
tion of vertical and horizontal bars. Notice that the variability-
related editor components (e.g., HorizontalBar) are optional. In
fact, if no fragment annotates the else-if clause, no module in-
formation and bars are rendered. Figure 8.2b shows an example
rendering.

Non-optional alternatives—AST nodes that cannot be sim-
ply removed without invalidating the tree—also require a
more specific rendering. Figure 8.3 shows the default, colored
concept editor for NonOptionalAlternative instances. The
NonOptionalAlternative editor basically renders the node
annotated with the NonOptionalAlternative instance and the
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VisualAnnotative editor for concept ElsifClause
node cell layout:

[_
" lelse if (|% condition %|)| ?#Module# |{
?#HorizontalBar#

: : if(a = 0) {
?#VerticalBar# % statementList % // some code
~} } else if (a == 1) » Feature {
?#HorizontalBar# // some
-1 // more
// code

inspected cell layout: )

(a) A visual annotative editor for colored else-if (b) A colored rendering of an
clauses annotated else-if clause

Figure 8.2: Projectional editor (a) and concrete syntax (b) for variability-
aware else-if clauses

<default> editor for concept NonOptionalAlternative
node cell layout:

[- | [annotated node] |® | [/ |% |alternative %| #Module# -]
#HorizontalBar#
/]
inspected cell layout:

Figure 8.3: Default editor for colored non-optional alternatives, which is in-
dependent of target languages

node—the alternative—it holds. To visualize mutual exclusive-
ness the editor renders the ®-sign.

On a finale note, the textual annotative editors look similar and
just add keywords, such as #ifdef. Thus, rendering annotations is
typically simple.

8.1.2 Rendering Variants

Realizing variant projections is also straightforward. Proactive and re-
active variant editors for the Fragment concept simply check whether
the Fragment instance is in the variant’s fragment set (cf. Sec. 7.3.1).
Figure 8.4 illustrates this ideas for a reactive variant editor. The ed-
itor has an optional annotated node cell, which conditionally em-
beds the editor of the annotated node. In the cell’s inspector, we add
the rendering condition. In fact, the annotated node is hidden, if the
fragment is not in the fragment’s variant set. Complex renderings—
that is, if the target-concept editor handles the fragment—constitute
an exception. For instance, the wrapper concept editor renders the
wrappee if the node is not in the variant’s fragment set.
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Variant editor for concept Fragment
node cell layout:

?[annotated node]

inspected cell layout:

Inspector

show if (editorContext, node)->boolean {
return (VariabilityProvider.getRuntimeForNode(node.parent).isComplex(node)
|| VariantFragmentCache.getInstance().contains(node));

Figure 8.4: Reactive variant editor (without coloring)

The proactive (i.e., colored) variant editor is basically a clone of
the colored annotative editor (cf. Fig. 8.1), but additionally checks
whether the fragment is in the variant’s fragment set.

On a final note, to provide a variant-specific file explorer as dis-
cussed in Section 3.5, we simply check for each root node (e.g., class
or interface) if it is in the current variant’s fragment set.

8.1.3 Rendering Reuse

For our reuse projection (cf. Sec. 3.3.7), we simply render the content
filling the placeholder’s VP. Figure 8.5 shows a basic Placeholder
editor where we use a so-called custom cell—that is, a cell enabling to
accommodate cells for other nodes in the AST. In our reuse projection,
the Placeholder editor’s custom cell renders other AST nodes—the
ones filling the VP—instead of the placeholder itself.

<default> editor for concept Placeholder
node cell layout:

Scustom cell$

inspected cell layout:

Inspector
1| Custom cell:
2| cell provider (editorContext, node)->AbstractCellProvider {
3 return new AbstractCellProvider() {
4 public EditorCell createEditorCell(EditorContext context) {
5 node<VP> vp = node.getVP();
6 EditorCell Collection col = EditorCell Collection.createVertical(
7 context, node);
8 vp.fragments. forEach ({~fragment => col.addEditorCell(
9 context.getCellFactory().createEditorCell (fragment.content, false)); }
10 )i
11 return col;
12 }
13}
14| }

Figure 8.5: Simple editor for reuse projections

126



8.1 IMPLEMENTATION FACILITIES

The custom cell’s inspector enables implementing the program
logic for rendering placeholders. First, we create an abstract cell
provider that enables creating a custom editor cell (Lines 3—4). Then,
we get the VP to which the placeholder refers (Line 5). Subsequently,
we create a vertical cell collection—that is, an editor cell, which holds
other cells and renders each cell in a vertical ordering (Lines 6-7).
Thereafter, we iterate over all fragments that can fill the VP, create
an editor cell for the fragment’s content (i.e., the node it annotates),
and add the content to the cell collection (Lines 8-10). Finally, we
return the cell collection, which now contains all the content of a
placeholder’s VP—that is, all nodes that the VP’s fragments annotate.

8.1.4 Rendering Modules

A module projection enables developers to explore the SPL’s code and
files in a modular fashion. For each file, we simply check whether it is
introduced or refined by the selected module (e.g., a Memory_Budget
file explorer for the example depicted in Fig. 3.1d would show the
DatabaseImpl file). In contrast to projecting annotations and variants,
projecting modular code is currently language-dependent. In fact, the
editor rendering fragments cannot simply hide annotated nodes—
that is, we also need to show refined AST nodes, which do not relate
to the selected feature module, but have a descendant that relates to
the selected module.

Luckily, it is still feasible to project a mainstream language’s AST
(e.g., a Java AST) into a concrete syntax, representing feature mod-
ules (similar to the ones of FH and AHEAD). In fact, we only need
three fragment-aware editors, defining how to render the Java lan-
guage concepts ClassifierMember (e.g., method declarations), 1Visible
(e.g., public or private), and StatementList (e.g., a method declaration’s
or a block statement’s body) in the presence of variability. In other
words, we override these editors (from Java) with editors handling
variability, induced by fragments. In the following, we discuss how
we realize these three editors and provide editing support.

8.1.4.1 Editor I: Conditionally Rendering Classifier Members

A fragment-aware ClassifierMember editor component renders classi-
fier member instances conditionally, as illustrated in Figure 8.6a. If
the classifier member itself or one of its descendants is annotated with
a fragment of the currently edited module, the classifier member is
rendered (Lines 5 and 6). For instance, as illustrated in Figure 3.1d,
Line 3, the class PreloadProcessor (a member of DatabaseImpl) is
shown in the modular editor of Memory_Budget, since a descendant
FeatureBlock is annotated with fragment f, of Memory_Budget.
Moreover, an empty line ratio defines whether an empty line,
which is actually also realized as a classifier member instance, is
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editor component ClassifierMember Modularity Component
overrides:

ClassifierMembers_Component

applicable in context:
Modular

applicable concept:
Classifier

component cell layout:

———p%?(—‘%‘member‘%‘/empty cell: <constant>‘—)‘

0

Inspector
Ref. node list cell:
link  member
filter (childNode)->boolean {
node<Module> featureModule = getEditorsFeatureModule();
return ( matchesCurrentModule (childNode, featureModule)
|| hasDescendantMatchingTheCurrentModule(childNode, featureModule)
|| isEmptyLineThatWeShouldShow(childNode)

)i

W W N U WN R

(a) An editor filtering classifier members for rendering feature modules

editor component Component Visibility Modularity
overrides:
_Component_Visibility
applicable in context:
Modular
applicable concept:
IVisible
component cell layout:

‘[—‘?‘defines‘?‘refines‘?‘alternative‘%‘visibility‘%‘-]‘
| ~—
1) Inspector
1| show if(editorContext, node)->boolean {
2 return matchesCurrentModule(node, getEditorsFeatureModule();
3}

2) Inspector

1| show if(editorContext, node)->boolean {

2 return !matchesCurrentModule(node, getEditorsFeatureModule();
3}

3) Inspector

1| show if(editorContext, node)->boolean {
return node.fragment.hasAlternative();

N

3}

(b) An editor rendering defines, refines and alternative keywords

Figure 8.6: Enabling modular renderings for Java

rendered or hidden (Line 7). In fact, for clarity reasons, we do not
render more than two empty lines between methods and fields.
8.1.4.2 Editor II: Rendering Defines, Refines and Alternative Keywords

To understand in a program’s modular implementation whether
classes and members are introductions, refinements or alternatives,

128



8.1 IMPLEMENTATION FACILITIES

we render the keywords defines, refines, and alternative into the
concrete syntax. On this purpose, we override the Visible editor com-
ponent, originally rendering only the member’s visibility (e.g., public
and private keywords). In particular, the defines-keyword is shown if
the node’s (e.g., method declaration’s or class’) module matches the
currently edited module (cf. first inspector in Fig. 8.6b, Line 2). The
refines-keyword is shown if they do not match (cf. second inspector,
Line 2). The alternative-keyword is shown if the node has a fragment,
which is alternative to another fragment or fragments—that is, the
fragments share a VP.

Figure 3.1 gives an example. The Memory_Budget feature module
only refines the class DatabaseImpl (i.e., Fig. 3.1f fy is associated with
Base), and thus the refines keyword is shown (Fig. 3.1d, Line 2).

8.1.4.3 Editor III: Rendering and Editing Method Bodies

To show a method declaration’s body in a modular fashion, we con-
ditionally render statements and the original-keyword. The latter can
be edited as well (e.g., moved to a new position). In the following, we
describe the key ideas involved in this process: (i) reordering the AST
according to a given refinement hierarchy, (ii) conditionally rendering
statements, and (iii) rendering and moving the original-keyword.

AST REORDERING BASED ON THE REFINEMENT HIERARCHY. Re-
cap that in classical modular approaches, a refinement hierarchy de-
notes the ordering in which the individual modules, and thus the in-
dividual method declarations, are to be composed (cf. Section 2.4.3).
In fact, during variant derivation, classical modular approaches re-
place each occurrence of an original-keyword (or a similar keyword
referring to the original implementation) with a method call to the re-
fined method declaration (cf. Fig. 2.9 and Fig. 2.10). Thus, a different
ordering of feature modules leads to the generation of semantically
different variants that potentially contain multiple nested method
calls.

In PEoPL, we use feature blocks instead of nested method calls. In
fact, instead of spreading the implementation across different method
declarations, we persist all variability internally—that is, in the vari-
ational AST—in a single method declaration. Thereby, feature blocks
can be ordered in correspondence to the refinement hierarchy (if de-
sired by the developer). Figure 8.7 shows an ordered method declara-
tion’s example AST (cf. Fig. 2.9 and Fig. 2.10).

An algorithm to reorder a method declaration is simple. We start
by moving all feature blocks and wrappers that refine the method
into a so-called reordering table (in memory). Thereby, we record the
relative AST position of each statement to the initial feature block (i.e.,
the one that introduces the method’s behavior). In particular, we start
at the initial feature block and add all previous siblings and all next
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‘ MethodDec Stack h
push
ReturpType StatementList
void

-
FeatureBlock |7 Wrapper izati
\_ | TryStatement nization
Statement . .
| lock.lock () | |StatementLlst FinallyClause
\Syndlmdzatim
>
FeatureBlock Feature| | FeatureBlock | | FeatureBlock |
Block :
I
IfStatement Statement Statement Statement
if (isFull... dataArray... . top++ notEmpty. ..
Q. Array List Synchronization</

Figure 8.7: AST ordering based on a refinement hierarchy. Ordering of fea-
ture modules: Stack, List, Array, Synchronization

Feature module | Fragment (incl. subtrees) | Relative position

List FeatureBlock previous
Array FeatureBlock previous
Synchronization | FeatureBlock (notEmpty) | next
Synchronization | TryStatement parent
Synchronization | FeatureBlock (lock) previous

Table 8.1: Reordering table for the variational AST depicted in Figure 8.7

siblings to the table. If the initial feature block is wrapped, we add its
wrapper (i.e., its parent) to the table. Thereby, the initial feature block
replaces the wrapper, and thus remains in the method declaration.
We continue by adding previous siblings, next siblings, and wrappers
to the table, until we reach the method declaration’s statement list.
Then, the method only contains the initial feature block. Using this
approach, the ordering table is sorted and the relative positions of all
statements are maintained (e.g., siblings of parents). Reordering table
8.1 gives an example for the variational AST depicted in Figure 8.7.

To reorder the AST, we add the statements from the table back into
the method declaration’s statement list considering the new refine-
ment hierarchy and the relative positions. In particular, feature blocks
with the previous flag are added at the beginning of the method’s state-
ment list, feature blocks with the next flag are added at the end of
the method’s statement list. Statements with the parent flag wrap any
statements introduced thus far—that is, all statements in the method’s
statement list. Subsequently, the method’s statement list only contains
this wrapper. Any other statements are added as siblings of the wrap-
per (and not the initial feature block) and so on. This way, multiple
nestings through wrappers are possible.

Figure 8.8 gives a simple step-by-step example ordering the fea-
ture modules stored in reordering table 8.1 as follows: Stack, Array,
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add: Array | FeatureBlock | previous
push

StatementList

FeaiﬁfeBlock FeatureBlock

Statement
top++

add: List | FeatureBlock | previous
push
StatementList
FeatureBlock Feaij?eBlock FeatureBlock

Statement
topt+

add: Synchronization | FeatureBlock | next
push
StatementList
FeatureBlock Fea?ureBlock FeatureBlock FeatureBlock
if... notEmpty. ..

Statement
top++

add: Synchronization | FeatureBlock | parent

MethodDec
push

StatementList
+ wrapper -
' TryStatement FinallyClause
StatementList
FeatureBlock FeatpreBlock FeatureBlock FeatureBlock
if... notEmpty. ..

Statement
top++

add: Synchronization | FeatureBlock | parent, previous

MethodDec
push

StatementList
FeatureBlock + wrapper -

lock. .. ! TryStatement FinallyClause

StatementList
FeatureBlock Fea?ureBlock FeatureBlock FeatureBlock

if... notEmpty. ..
Statement
topt++

Figure 8.8: AST reordering based on reordering table 8.1. Ordering of fea-
ture modules: Stack, Array, List, Synchronization
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List, Synchronization. According to this ordering, we start with the fea-
ture block belonging to the feature module Array, since it is the first
feature to refine the codebase introduced by the feature Stack. The
block’s relative position is previous according to the table, and thus
we add it as the method declaration’s first statement. Next, we add
the FeatureBlock belonging to the feature List as the method’s first
statement, since the block’s relative position is also previous. Subse-
quently, we add the statements belonging to the feature module Syn-
chronization. We start with the feature block containing the notEmpty
statement, since it is the first statement in the table belonging to Syn-
chronization. We add the block as the method’s last statement, since
the block’s relative position is next. The TryStatement is the next state-
ment in the ordering table that is assigned to the feature module Syn-
chronization. The TryStatement serves as a parent, and thus we add it
as a wrapper of the base code and any other statements added thus
far. Finally, due to its previous flag, the last feature block belonging to
Synchronization—that is, the one with the lock statement—is added
as the first element of the method declaration.

We now discuss another simple step-by-step example. Using the
final variational AST depicted in Figure 8.8 (i.e., the bottom AST),
we create the reordering table 8.2. Then, we reorder the feature mod-
ules as follows: Stack, Synchronization, Array, List. Figure 8.9 shows
each step. We start by adding Synchronization statements as discussed
above. Then, we proceed with the feature blocks belonging to Array
and List. Their relative position is previous, and thus we add them as
the first statement of the method’s statement list. Using our ordering
algorithm, we can reorder the AST depicted in Figure 8.9 back into
the tree depicted Figure 8.8.

Notice that our reordering algorithm is limited to statement-level
variability. That is, fine-grained extensions such as nested feature
blocks, refinements in the middle of the method, or parameter vari-
ability cannot be reordered. However, neither can these extensions be
implemented in classical modular approaches without workarounds
such as hook methods. Employing workarounds would allow for
reordering to a certain degree. Yet, we argue that in these cases other

Feature module | Fragment (incl. subtrees) | Relative position

Array FeatureBlock previous

List FeatureBlock previous

Synchronization | FeatureBlock (notEmpty) | next

Synchronization | TryStatement parent

Synchronization | FeatureBlock (lock) previous

Table 8.2: Reordering table for the final variational AST depicted in Fig-
ure 8.8
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add: Synchronization | FeatureBlock | next
add: Synchronization | FeatureBlock | parent
add: Synchronization | FeatureBlock | parent, previous

( )
push
StatementList
FeatureBlock / wrapper
lock... }: TryStatement FinallyClause
T
\
StatementList
FeatureBlock FeatureBlock
notEmpty. ..
Statement Synchronization
top++

A Y J

*add: Array | FeatureBlock | previous

‘ MethodDecl h
push
StatementList
i
FeatureBlock FeatureBlock / wrapper )
if... lock... ’ TryStatement FinallyClause
T
Array P .
StatementList
Fi Block
FeatureBlock eatureBloc
notEmpty. ..
Statement Synchronization
top++
& J
*add: List | FeatureBlock | previous
‘ MethodDecl h
push
StatementList
i
eatureBlock] FeatureBlock /1 wrapper
Feat Block]
eatureBloc F‘ LE | ﬂ: lock. .. D)} TryStatement FinallyClause
T
List Array P
StatementList
FeatureBlock FeatureBlock
notEmpty. ..
Statement Synchronization
top++
& J

Figure 8.9: AST reordering based on reordering table 8.2. Ordering of fea-
ture modules: Stack, Synchronization, Array, List

external representations, such as our fade-in modules or embedding
annotations into modules, are better suited to maintain the pro-
gram’s readability. This way, developers can edit fine-grained code
and expression-level variability (e.g., refinement in an if-statement’s
condition) from a non-classical modular representation without
being distracted by irrelevant code of other features.

Moreover, notice that custom orderings—for instance, declared in
annotative external representations—that do not reflect the refine-
ment hierarchy should typically not be reordered to maintain the
correct program behavior intended by the developer. In fact, such
methods should not be editable from a classical modular projection.
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Instead, developers could use the more concise fade-in modules or
embed annotations into classical modules.

On a final note, since we use our reordering algorithm to enable
classical modular projections, a method’s body can only be ren-
dered into a classical modular external representation if there is
only statement-level variability. Aside from the reordering algorithm,
we need a conditional rendering of the method’s statements and a
rendering of the original-keyword. We now discuss both renderings
and the editing capabilities.

CONDITIONALLY RENDERING STATEMENTS. Given an ordered
variational AST that only contains statement-level variability, we ren-
der classical modular method declarations by simply overriding the
editor of the concept StatementList—that is, the editor just embed-
ding the editor cells of each statement. Our editor simply filters out
FeatureBlock nodes whose fragment does not belong to the current
module, which is possible, since regular statements are always con-
tained by a least one feature block. For instance, the FeatureBlock in
Figure 3.1¢, Line 6, is not shown below Line 6 in Figure 3.1d.

Figure 8.10 illustrates another example making the renderings of
variational AST nodes explicit. Notice that in the method’s statement
list, we simply omit rendering the feature blocks belonging to the fea-
ture modules List and Array. Consequently, a different feature module
ordering does not affect the projection. In fact, rendering the varia-

Classical Modular External Representation

renitirin_g — refines public void push(Object data) {
7 — =P 1lock.lock();
{ — = — Pptry {
L_ — — - original(data);
rendering ‘\\— — T P> notEmpty.signalAll();
- \ / }finally{ﬂ—_———\
-~ \ // more code
s AN } \
/ Voo Y2
I \ N ~ ~Jendering rendering
\ rendering™\\ R ~ - ,
A NN o
| I \ —E— ] |
I ST S~ StatementList
1 1 i 7 yd
[FeatureBlock] FeatureBlock 1 wrapper .
[FeatureBlock| [ E J | Tock. .. / TryStatement FinallyClause |
T
List Iy
\ =
\ —— — FeatureBlock
~ - — \| FeatureBlock | notEmpty. . .
— — —
Statement Synchronization
L top++ )

Figure 8.10: Rendering a method declaration for the feature module Synchro-
nization
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tional ASTs depicted in Figure 8.7 and Figure 8.8 leads to the same
concrete syntax and behavior of the individual feature modules.
Wrappers belonging to a module are simply rendered. In case
of wrappers not belonging to the module, we omit rendering the
wrapper, while the wrappee’s statement list provides the next level
of investigation for FeatureBlocks and wrappers. As a result, only
statements of the current feature module are shown in a classical
modular representation. For example, in Figure 8.10, we render the
TryStatement and its finally-clause, since they belong to the pro-
jected feature module. Moreover, investigating the TryStatement’s
statement list, we also render the feature block containing the
notEmpty.signalAll() statement. Notice that the feature block in-
cluding the increment of the variable top belongs to the codebase. We
handle codebase feature blocks differently as we will discuss next.

RENDERING THE ORIGINAL-KEYWORD WITH EDITING SUPPORT.
In our standard, classical modular editor, we also need to show
an original-keyword for refined method declarations. In a nut-
shell, PEoPL simply renders the codebase’s FeatureBlock as an
original-keyword (matching the method’s signature). This rendering
is straightforward, since PEoPL uses feature blocks to persist all
variability in a single method declaration. Figure 8.10 shows an
example rendering. Figure 3.1d (Line 5) gives another example (cf. f;
in Fig. 3.1f). So, in contrast to classical modular approaches—where
variability is persisted across different, real method declarations—
PEoPL’s original-keyword is not a real method call. Consequently,
the keyword is currently restricted to the statement level, which
however sufficed for our case studies.

To support the original-keyword on the expression level (i.e., as a
real method call), we could implement further (but likely more com-
plex) on-the-fly tree transformations and rendering rules. In fact, we
would simply create a new method declaration and refer to it—as in
classical modular approaches. Yet, we argue that to implement fine-
grained changes—beyond statement level—developers should rather
switch to fade-in feature modules or embed annotations, since they
are more concise and also allow custom orderings.

Aside from just rendering the original-keyword, PEoPL also sup-
ports editing it. In fact, PEoPL supports a full modular editing expe-
rience on the statement-level. Developers simply type original at the
desired program position, which automatically transforms the AST,
with the result that the original-keyword is rendered at the desired
position. The corresponding algorithm is simple, but requires an or-
dered variational AST, since maintaining the relative position of all
other feature blocks and wrappers to the codebase is crucial. That is,
we only want to change the behavior of the current feature module
and not the behavior of the others. All in all, we distinguish three
different editing scenarios, which we discuss in detail next.
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1. Move the original-keyword within the same statement list

Moving the original-keyword within a statement list is straight-
forward. Figure 8.11 gives an example. The developer simply
moves the cursor to the target program position (e.g., by creat-
ing an empty statement above the comment). Then, she starts
typing original, which eventually triggers an automatic tree
transformation algorithm:

(i) Split the target feature block at the target position (i.e., at
an empty statement) into left (previous) feature block and
right (next) feature block, and remove the empty statement
where the developer typed original.

(ii) Move the left block to the beginning and the right block
to the end of the current statement list (to maintain the
relative positions of any external module’s feature block to
the codebase).

(iii) Reorder the AST according to the refinement hierarchy (to
also maintain the correct program behavior).

Notice that reordering removes empty feature blocks and
merges feature blocks whenever possible. For instance, if the
codebase’s feature block has two next-sibling blocks belonging
to the same feature, we simply merge these blocks. All in all, the
algorithm produces correct results in any statement list—that is,
the statement list of the current method or wrapper. Moreover,
the original-keyword always occupies the position where the
developer typed, since we simply render the codebase’s feature
block.

. Move the original-keyword into a wrapper

Developers can also move the original-keyword into statements
wrapping other statements (i.e., wrappers). Figure 8.12 gives an
example of typing original within a try-statement, which even-
tually initiates a simple tree transformation algorithm:

(i) Move the target feature block containing the wrapper to be
transformed (i.e., the one containing the empty target state-
ment) to the codebase’s feature block or the wrapper that
contains the codebase (i.e., the codebase could be wrapped
by the current or any other feature module internally). As
a result, the target feature block is the next sibling of the
codebase (or its wrapper). Notice that by moving only the
feature block belonging to the current module, we main-
tain the relative positions to the codebase of any other fea-
ture block and wrapper.

(ii) Split the target feature block into left feature block, target
wrapper, and right feature block. This way, we separate the
target wrapper from its previous and next statements.
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Figure 8.12: Moving the original-keyword into a wrapper and reordering

the tree

(iif) Annotate the target wrapper (or target wrappers) with
CoreVar’s wrapper-annotation. Then, group the content of
the target wrapper in a feature block at the target position
into left feature block, empty statement (i.e., the target
position is not grouped by a feature block), and right
feature block. Notice that if wrappers are nested (e.g., we
move the original keyword into the true parts of multiple
if-statements), we split into left feature block, nested
wrapper, and right feature block for each wrapper. As a
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result, we separate the target position from its previous
and next statements (and allow nested wrappers).

Replace the empty statement with the codebase’s feature
block (or the codebase’s wrapper). Notice that this strat-
egy maintains the relative positions of any other feature
block and wrapper to the codebase, since we just move the
codebase into the next sibling.

Reorder the tree according to the refinement hierarchy to
enforce correct behavior. Recap that this process removes
empty feature blocks (i.e., the ones without statements)
and merges direct feature block siblings belonging to the
same feature module (e.g., the feature blocks in Fig. 8.12
that contain comment a and b before reordering).

3. Move the original-keyword outside a wrapper
Moving the original-keyword outside a wrapper is also straight-
forward. Basically, it is the inverse process to moving the key-
word into a wrapper. Figure 8.13 gives an example of the tree
transformation algorithm:

(i)

(ii)

(iif)

(iv)

v)

Move the target feature block containing the empty target
statement to the affected wrapper (i.e., the wrapper that is
to be transformed). As a result, depending on the target
feature block’s relative position, it is now the previous or
next sibling of the affected wrapper. Thereby, we maintain
relative positions of all wrappers and blocks in the AST.

Replace the empty statement with the codebase’s feature
block (or the codebase’s wrappers introduced by other fea-
tures), and thus maintain relative positions.

Remove the wrapper-annotation of the affected wrapper,
since it does not wrap the codebase anymore. Moreover,
add the affected wrapper to a new top level feature block
belonging to the feature.

Remove any feature block within the affected wrapper,
since we only need the previously added top level feature
block. That is, any statement must be contained by a top
level feature block, and thus other blocks belonging to the
same feature are irrelevant.

Reorder the tree according to the refinement hierarchy to
enforce correct behavior.

On a final note, using these algorithms sufficed for our case stud-
ies. Yet, the approach is limited to the statement level, since the orig-
inal-keyword is not a true method call, but a simple rendering of
the codebase’s feature block. Thus, the keyword cannot be used mul-
tiple times to call the original codebase or used within an expres-
sion (e.g., in the control flow). Developers can, however, still add
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the tree

such methods manually, refine them and use them as desired. More-
over, we could implement more advanced automatic tree transforma-
tions to reflect such scenarios, which is—together with corresponding
advanced annotative renderings that hide the automatically created
method declarations—subject of our future work.
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8.1.5 Rendering Fade-in Feature Modules

Our fade-in feature module projection is similar to the standard fea-
ture module projection. We use different keywords, but the major
difference is that we define so-called surrounding concepts. For Java,
surrounding concepts are classes, interfaces, classifier members, and
statements. So if, for instance, an expression is annotated with a frag-
ment, we also render the surrounding concept’s instance (in grey)—
that is, the statement instance which holds an annotated expression
(cf. Fig. 3.4b). Furthermore there are colored method parameters. The
projection renders the classifier member holding the parameter (in
grey) as well (cf. Fig. 3.4b). External feature blocks (i.e., the ones
whose fragment relates to a different module) are collapsed into a
keyword in the concrete syntax.

8.1.6 Blending Renderings

Blended projections simply reuse editor components defined by the
projections involved. For instance, to blend annotations into modules,
elements of the annotative and modular fragment editor are reused
as well as horizontal and vertical bars.

8.2 MODELING FACILITIES

Recap that variability can be modeled using a simple and an ad-
vanced SPL declaration (cf. Sec. 4.1). We now discuss how the two
ways for modeling SPLs are realized. Moreover, we introduce an ex-
pert product line configuration which enables developers to use Core-
Var’s module operations (addition, subtraction, and overriding) to
configure an SPL (cf. CoreVar’s variant derivation facilities in Sec. 7.3).
We start with the expert product line configuration, since simple and
advanced SPL declarations automatically transform feature (module)
selections into such a configuration.

8.2.1 Expert Product Line Configuration

PEoPL’s internal representation enables composing variants to use
algebraic expressions over feature modules (cf. Sec. 7.3). Three oper-
ators are available in such expressions: addition (+), subtraction (—),
and overriding (—). We conceive language concepts reflecting the be-
havior of these operators in CoreVar (e.g., an OverridingOperator lan-
guage concept). Expert developers can use the corresponding concept
instances to construct variants as illustrated in Figure 8.14 (cf. our
concrete Berkeley DB calculations in Table 7.1).

Figure 8.15a shows the ExpertConfiguration root concept, which
provides the entry point for constructing variants from algebraic ex-
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Module configurations of BerkeleyDB

Active Variant | Base

Inactive Variant | Base + Memory Budget

Inactive Variant | Statistics — Memory Budget — Base
Inactive Variant | Statistics — Base

v

ModuleConfig Reference to a OverridingOperator
concept instance FeatureModule concept instance
concept instance

=W N R

Figure 8.14: Expert configuration (i.e., ExpertConfiguration instance) for
the Berkeley DB example (cf. Fig. 3.1)

concept ExpertConfiguration
extends BaseConcept
implements INamedConcept

instance can be root: true

alias: Expert SPL Configuration <default> editor for concept ExpertConfiguration
short description: node cell layout:
cti L/
roperties:
P Module configurations of| { name| }
(/ |% moduleConfigs| % /)
children: /empty cell: <default>
moduleConfigs : ModuleConfig[l..n] /1
references: inspected cell layout:
activeConfig : ModuleConfig[1l]
(a) ExpertConfiguration concept (b) ExpertConfiguration editor

Figure 8.15: ExpertConfiguration concept and editor, which expert devel-
opers use to configure SPL variants

pressions over feature modules. An ExpertConfiguration instance
holds a set of module configurations, while pointing to a configura-
tion representing the currently active variant (cf. Fig. 8.14, Line 1, and
the activeConfig reference in Fig. 8.15a). The ExpertConfiguration
concept editor (Fig. 8.15b) renders ExpertConfiguration concept in-
stances as illustrated in Figure 8.14. For each concrete module con-
figuration, the editor embeds the editor of the ModuleConfig concept,
which enables developers to type algebraic expressions over feature
modules (Fig. 8.14, right half of Lines 1—4).

Notice that, in an expression over feature modules, developers can
only select the modules, which have been declared in a simple prod-
uct line declaration—that is, the concept instance accommodating fea-
ture module instances (discussed next).

8.2.2  Simple Product Line Declaration and Feature Module Selection

The easiest way to declare feature modules and constraints over fea-
ture modules are simple product line declarations (cf. Sec. 4.1). To
derive a variant, developers select a set of features. We discuss the
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concepts and editors for declaring product lines and selecting mod-
ules next.

DECLARATION. We provide a simple product line declaration
as shown in Figure 3.1b by implementing a SimpleDeclaration
language concept and a corresponding editor (together with simple
checking rules ensuring a satisfiable feature selection).

A SimpleDeclaration instance holds a set of feature modules and
constraints (cf. Fig. 8.16a). Notice that for constraints, we also provide
language concepts enabling the construction of propositional formu-
las (e.g., the ImpliesOperator language concept).

Figure 8.16b shows the SimpleDeclaration concept editor, which
enables manipulating SimpleDeclaration root instances in the AST.
The editor renders a module-specific constraints section and a mod-
ule declarations section by embedding the target editor of each con-
crete constraint and feature module. Figure 8.17 shows the editor of
the FeatureModule concept. It renders a feature module’s name with
a vertical, colored bar, using the module’s color (cf. Fig. 3.1b), and, if
existent, the dependencies to other feature modules (i.e., the artifact-
related feature dependencies).

concept SimpleDeclaration <default> editor for concept SimpleDeclaration
extends  BaseConcept node cell layout:
implements INamedConcept I/

. Module-specific constraints
instance can be root: true - el - {

alias: Simple SPL Declaration (/| % |constraints|% /)
short description: /empty cell:| <default>
}
roperties:
P Module declarations {

(/| % |modules | % /)
children: /empty cell:| <default>
modules : FeatureModule[0..n] }
constraints : Expression[0..n] 7

]
references: inspected cell layout:
(a) SimpleDeclaration concept (b) SimpleDeclaration editor

Figure 8.16: SimpleDeclaration concept and editor, which developers use
for simple SPL declarations

<default> editor for concept FeatureModule
node cell layout:

[-| #VerticalBar# | { | name | }  #ModuleDependencies# -]

inspected cell layout:

Figure 8.17: Editor rendering modules using its color, name, and dependen-
cies
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FEATURE MODULE SELECTION. For configuring variants with-
out having expert knowledge of CoreVar’s algebraic operations,
developers can use the SimpleVariantConfiguration language
concept, which enables straightforward feature module selections.
Figure 8.18a shows the language concept, Figure 8.18b the concept
editor, and Figure 8.18c gives a simple example.

Notice that developers must refer to an ExpertConfiguration (cf.
Fig. 8.18a, variantConfigs, and Fig. 8.18c, Line 1). Based on a fea-
ture module selection, an algorithm provided with CoreVar automat-
ically constructs a corresponding algebraic expressions over feature
modules in the expert configuration. In fact, each module selection
directly refers to a corresponding expression. During expression con-
struction, the algorithm takes the declaration ordering of feature mod-
ules into account. Thereby, the algorithm uses the overriding opera-
tor to apply feature modules in the given ordering starting with the

concept SimpleVariantConfiguration extends BaseConcept
implements INamedConcept

instance can be root: true

alias: Simple Variant Configuration

short description:

properties:

children:
moduleSelection : ModuleSelection[O0..n]

references:
variantConfigs : ExpertConfiguration[1]

(a) SimpleVariantConfiguration concept

<default> editor for concept SimpleVariantConfiguration
node cell layout:

[/
Simple variant configuration { name |} {
Variant configurations:| (| % variantConfigs % |-> *|R/O model access * )
Variants {
(/| %/ moduleSelections |% |/empty cell: <default>|/)

/1
inspected cell layout:

(b) SimpleVariantConfiguration editor

Simple variant configuration BerkeleyDB
Variant configurations: BerkeleyDB
Variants {

Active Variant | Base
Inactive Variant | Base, Memory Budget, Statistics
Inactive Variant | Base, Statistics

oUW N R

}

(c) SimplevariantConfiguration example

Figure 8.18: SimpleVariantConfiguration concept and editor, which devel-
opers use for feature module selections (of variants)
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highest priority (i.e., from bottom to top). For instance, the feature
module declaration ordering in Figure 3.1b is used by the algorithm
to construct the algebraic expression over feature modules in Line 4
of Fig. 8.14 from the module selection in Line 5 of Fig. 8.18c. As a
result, the configuration in Line 5 of Figure 8.18c directly refers to the
expression in Line 4 of Figure 8.14. Note that if the selection changes,
the expression changes as well.

8.2.3 Advanced Product Line Declaration

The advanced SPL declaration increases the developer’s variability
modeling flexibility in comparison to using a simple declaration (cf.
Sec. 4.1.2). It adds an additional layer of abstraction: features that are
mapped to feature modules. Altogether, an advanced SPL declaration
enables developers to declare features, feature modules, constraints,
mappings, and variants.

To enable developers to model variability in an advanced fash-
ion as illustrated in Figure 4.2, we conceive an AdvancedDeclaration
language concept and editor. Figure 8.19 shows the details. Actu-
ally, developers must select concept instances of SimpleDeclaration
and ExpertConfiguration (cf. references in Fig. 8.19a, and Fig. 8.19b,
Lines 2-3). Notice that in our advanced declaration example in Fig-
ure 4.2, we omit these references for clarity reasons. In our actual
implementation, the references are used by CoreVar algorithms to au-
tomatically

1. create FeatureModule concept instances in the selected, refer-
enced SimpleDeclaration instance (Fig. 8.19b, Line 7), and

2. create algebraic expressions over feature modules from feature
selections in the ExpertConfiguration instance.

So a selection of features basically leads to a selection of feature
modules (in the given ordering of the mappings section), which in
turn is transformed into an algebraic expression over feature mod-
ules. Realizing removal in this process is straightforward. First, we
construct a chain of feature modules my — my, — ... — m,. In a
second step, we apply the feature modules that remove the feature
details: (my — mp — ... = m;) — M — Mjp — ... — My,

8.3 CONCLUDING REMARKS

Using projectional editors to create PEoPL’s external representations
is powerful, flexible, and enables a rapid prototyping. New variabil-
ity implementation and variability modeling facilities can easily be
added, extended, and exchanged. We conceived PEoPL’s modeling fa-
cilities in language-independent fashion, and thus developers can use

145



concept AdvancedDeclaration extends BaseConcept
implements INamedConcept

instance can be root: true
alias: Advanced SPL Declaration
short description: <no short description>

properties: << ... >>

children:

features : Feature[l..n]
constraints : Expression[0..n]
mappings ¢ Mappings[0..n]
featureSelections : FeatureSelection[0..n]
references:

moduleDeclarations : SimpleDeclaration[1]

variantConfigurations : ExpertConfiguration[1]

(a) AdvancedDeclaration concept
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e < e =
o U s W N R O

<default> editor for concept AdvancedDeclaration
node cell layout:

/] |
sew. a3
Module declarations:| ( %‘moduleDeclarations‘ %‘ ->‘ *‘R/O model access‘* ‘) ‘
Variant configurations: (‘%‘variantConfigurations‘ %‘ —>‘ *‘ R/0 model access‘ *‘ ) ‘
Features ‘ { ‘ (- ‘ £ ‘features‘ %‘ /empty cell:‘ <defaulf>‘ -) } ‘
Modules \{ \(-\% ‘moduleDeclarations \% \-> (/H%|n‘odules| %| /empty cell:‘ <default> \/ ) \}\
Constraints ‘{ |(/ H constraints Iﬂ /empty cell:|<default> /)| }
Mappings ‘ { ‘
(/|% mappings % |/empty cell:|<default>|/)
}
Variants | { ‘
(/ ‘% ‘featureSelections| %‘/enpty cell: <default>| / )‘
i
}
/1

inspected cell layout:
<choose cell model>

(b) AdvancedDeclaration editor

Figure 8.19: AdvancedDeclaration concept and editor, which developers use for advanced SPL declarations
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them for arbitrary target languages. PEoPL’s variability representa-
tion editors are mainly black-box generic (annotative, variant, reuse).
Modular editors are language-dependent (for now), but CoreVar pro-
vides the infrastructure to easily implement the required editors in
target-language-specific CoreVar extensions (e.g., JavaVar).
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PEOPL’S VARIABILITY MANAGEMENT FACILITIES

Engineering software product lines includes modeling and imple-
menting variability. A common problem is the gap between the two.
Artifact-related feature dependencies need to be lifted up into the
variability model using constraints. These must be maintained to en-
sure SPL correctness—a cause of subtle errors, since changes of the
implementation require a developer’s awareness of corresponding
constraints [137, 152]. From the SPL developer’s perspective, PEoPL
provides two facilities to mitigate this issue (as presented in Sec. 4.2):
feature module constraints extraction (Sec. 9.1) and variant-aware
data-flow analysis (Sec. 9.2). We now discuss how the two are real-
ized.

9.1 ARTIFACT-RELATED FEATURE DEPENDENCY ANALYSIS

Next, we realize our dependency checker, which automatically
extracts artifact-related feature dependencies as introduced in Sec-
tion 4.2.1. PEoPL’s feature model depicted in Figure 6.3 shows that
CoreVar contributes a basic, generic dependency extraction infras-
tructure (based on its internals). On top, language engineers realize
a concrete extraction for a given target language (e.g., JavaVar im-
plements the dependency extraction for Java). We now discuss the
concrete realizations in CoreVar and JavaVar.

9.1.1  CoreVar: Dependency Extraction Infrastructure

CoreVar’s internal representation enables a straightforward extraction
of dependencies between feature modules. Recap that according to
our internal representation any AST node is contained by at least one
feature module—that is, the top-level feature module annotating the
root node with a fragment. The basic idea of the extraction algorithm
is to check whether the containing feature module of a referring node
differs from the containing module of the corresponding declaring
node. For instance, imagine that a method call contained by a feature
module A refers to a method declaration contained by a module B.
Then, A depends on B, since a dangling reference would appear if we
only select A, but not B.

Figure 9.1 shows the fundamental extraction algorithm implement-
ing these ideas. The algorithm’s entry point is the checkDependency
method returning a so-called dependency message, which can be used
as a type system message (Line 2). If there is no dependency, the algo-
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1| public class DepChecker {

2| public static DepMessage checkDependency(node<> ref, node<> decl) {

3 DepMessage depMsg = new DepMessage();

4 // we treat code external to the SPL (i.e., library calls)

5 // as mandatory code, which is always available

6 if ( !decl.containing root.isInstanceOf (ICompilationUnitContainer)
7 && decl.containing root.fragment.isNull) return null;

8

9 node<FeatureModule> refModule = getModuleOfNode(ref);

10 node<FeatureModule> declModule = getModuleOfNode(decl);

11 if (refModule.isNotNull && declModule.isNotNull) {

12 if (isContainedByModule(ref, declModule)) return null;

13 if (refModule != declModule) depMsg.refDependency(refModule, declModule);
14 }

15 return depMsg;

16 }

18 public static node<> getModuleOfNode(node<> node) {
19 return getNextVariationalNode(node).module;
20 }

22 public static node<> getNextVariationalNode(node<> node) {

23 boolean foundWrappee = false;

24 foreach varNodeCandidate in node U node.ancestors {

25 if (isWrappee(varNodeCandidate)) {

26 foundWrappee = true;

27 } else if (foundWrappee && hasWrapperAnnotation(varNodeCandidate)) {
28 // wrappers are replaced by wrappees, and, thus, do not denote

29 // the next variational node (cf. next else if, which is skipped)
30 foundWrappee = false;

31 } else if (varNodeCandidate.fragment.isNotNull) {

32 return varNodeCandidate;

33 }

34 }

35 return null;

36|}

38 public static boolean isContainedByModule(node<> node,

39 node<FeatureModule> declModule) {
40 do {

41 currentNode = getNextVariationalNode(currentNode.parent);

42 if (currentNode.module.isNotNull && currentNode.module == declModule) {
43 } while (currentNode.isNotNull);

44 return false;

as| 3}

46| }

Figure 9.1: Basic algorithm for extracting artifact-related feature dependen-
cies

rithm returns null. In CoreVar tailorings, we call the method for check-
ing the dependency between a concrete referring node and its decla-
rations. Notice that code external to the SPL (e.g., a node referring
to a declaration in an external library) is treated as mandatory, and
thus there is no dependency (Lines 6—7). In fact, the algorithm checks
whether the AST’s root node is an ICompilationUnitContainer or
has a fragment annotation.

Then, the checker algorithm obtains the containing module of the
reference (Line 9) and the declaration (Line 10). In particular, the al-
gorithm calls the getModuleOfNode method, which in turn calls the
getNextVariationalNode method to search for the module of the
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node’s next variational ancestor (Line 19). The search also includes
the given node itself (Line 24) since it could be variational as well.
Moreover, notice that the search algorithm is aware of wrapper an-
notations. Recap that during variant derivation a wrapper can be re-
placed by its wrappee. So, the code within the wrappee is not depen-
dent of the wrapper (Line 23 and Lines 25-30). In any other case, the
algorithm simply returns the node that is annotated with a fragment
(Lines 31-33).

The algorithm also checks whether any module of the referring
node’s ancestors matches the declaration’s module (Line 12 and
Lines 38-45). Figure 9.2 gives a simple example. According to our
algorithm, there is no dependency from the referring node’s module
(green) to the declaration node’s module (gray). The reason is that
Foo’s method bar is only included in variants if the gray and green
features are selected. In fact, if gray is not selected, then there is no
method bar either, so the algorithm basically traverses up in the tree
and compares modules (Lines 41—42).

Finally, the algorithm checks whether the referring node’s module
and the declaration node’s module differ. If they differ, a dependency
is found (cf. Fig. 4.4) and the dependency message is set accordingly.

public class Foo { public class Ele {
public void bar() { public static void ben() {
Ele.ben(); // my code

} }
} }

Figure 9.2: Feature module containment example

9.1.2 JavaVar: Java-specifc Dependency Extraction

Using CoreVar’s generic dependency extraction infrastructure, we
now implement a concrete dependency extraction for Java. Figure 9.3
shows the simple algorithm for running a full dependency check. It
takes a Java program as input (Line 2) and maintains a list of de-
pendency messages (Line 3). Then, the algorithm conducts a depen-
dency check over several concrete language concept instances using
the generic dependency checker (Lines 4-23). For instance, we iterate
over all VariableReference instances in the AST (Line 16). For each
variable reference, we perform a dependency check using the variable
reference itself and the variable declaration it refers to (Line 17-18).
Notice that checking the dependencies of a method call requires
a more detailed investigation (Lines 20-23). In fact, the Java depen-
dency checker not only checks the dependencies of the method call
and the method declaration itself, but also of every parameter in-
volved (Lines 31-34). Using this check, we found 57 dependencies
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1| public class JavaDepChecker {

2 public static list<DepMessage> checkDependencies(JavaProgram p) {
3 list<DepMessage> depMsgs = new list<DepMessage>;

4 foreach classCreator in p.nodes(DefaultClassCreator) {

5 depMsgs .add (DepChecker .checkDependency (classCreator,

6 classCreator.classifier));
7 }

8 foreach classifierType in p.nodes(ClassifierType) {

9 depMsgs .add (DepChecker .checkDependency (classifierType,

10 classifierType.classifier));

11 }

12 foreach fieldRef in p.nodes(FieldReferenceOperation) {

13 depMsgs . add (DepChecker .checkDependency (fieldRef,

14 fieldrRef. fieldDeclaration));

15 }

16 foreach variableRef in p.nodes(VariableReference) {

17 depMsgs .add (DepChecker .checkDependency (variableRef,

18 variableRef.variableDeclaration));
19 }

20 foreach methodCall in p.nodes(MethodCall) {

21 depMsgs . unite (JavaDepChecker .checkMethod (methodCall,

22 methodCall.methodDeclaration));
23 }

24 return depMsgs;

25 }

26 public static list<DepMessage> checkMethod(node<MethodCall> call,

27 node<MethodDeclaration> decl) {
28 list<DepMessage> depMsgs = new list<DepMessage>;

29 depMsgs .add (DepChecker .checkDependency(call, decl));

30 // check dependencies of parameters

31 for(int i = 0; i < call.parameter.size, it++) {

32 depMsgs . add (DepChecker .checkDependency (call.parameter[i],

33 decl.parameter[i]));

34 }

35 return depMsgs;

36 )

37}

Figure 9.3: Algorithm for Java-specific dependency extractions

that were not declared in the feature model of the CIDE version of
Berkeley DB, and thus incorrect variants could have been generated.

In our implementation, we also implemented these dependency
checks using MPS’ type system infrastructure. This way, dependen-
cies can be detected at development time without requiring develop-
ers to explicitly run the dependency checker algorithm depicted in
Figure 9.3.

On a final note, our MPS implementation of the dependency
checker algorithm is fast, because of three main reasons. First, there
is no text parsing involved to construct the AST. Instead the AST
is directly constructed via editing operations. Second, references
are actively maintained in the AST by MPS, so there is no need for
constructing references before analyzing the AST. Third, language
concept instances are cached according to their concept in MPS. Thus,
getting all concept instances of a certain concept is quick.
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9.2 VARIANT-BASED DATA-FLOW ANALYSIS

PEoPL’s variant-based data-flow analysis is currently language-
dependent and must be implemented for all language concepts
whose instances contribute to a program’s data flow. Based on Core-
Var’s internal variability representation, we realize such an analysis
for Java. Using the data-flow DSL provided with MPS [181], we imple-
ment variability-specific checking rules for 44 Java-specific language
concepts. Notice that CoreVar and the strategy for our data-flow
analysis is independent of an implementation technology (i.e., MPS).
With our implementation, we provide evidence that implementing
the analysis is practical.

We start by discussing the necessary background for understand-
ing MPS’ data-flow builder DSL. Subsequently, we discuss how we
use this DSL to construct variant-specific data-flows from a varia-
tional AST.

9.2.1 Background

MPS provides a simple assembly-like DSL'? for building a so-called
data-flow graph (DFG) from a program. The data-flow builder takes a
language concept instance as an input to programmatically construct
the DFG from the AST. Notice that each DFG node refers to its corre-
sponding AST node to support tracing [181]. We now briefly discuss
the data-flow builder language elements necessary for understanding
our examples and for building a DFG:

1. code for calls the data-flow builder of another concept in-
stance (i.e., AST node) by creating an edge between the two
DFG nodes. This way, we can programatically denote when
and where the subgraph of another language concept is em-
bedded into the DFG. Figure 9.4a gives a simple example. A
BlockStatement instance simply embeds the data-flow builder
of its StatementList instance.

2. read denotes a read from a variable.
3. write indicates a write to a variable.

4. nop marks an empty operation used for language concepts not
manipulating the data flow. Using nop, we maintain traceabil-
ity [181].

5. jump enables us to unconditionally jump to another position in
the DFG. In the data-flow builder, we use labels as jump targets.
Then, jump creates an edge to the target DFG node. For instance,

1 https://confluence.jetbrains.com/display/MPSD20171/Data+flow
2 https://confluence. jetbrains.com/display/MPSD20171/Dataflow
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9.2 VARIANT-BASED DATA-FLOW ANALYSIS

1| data flow builder for BlockStatement {
2 (node)->void {

3 code for node.statements

4

}

(a) Data-flow builder for Java’s BlockStatement

1| data flow builder for BlockStatement {

2 (node)->void {

3 if (  node.fragment.isNull

4 || VariantFragmentCache.getInstance().contains(node)) {
5 code for node.statements

6 }

71}

8}

(b) Overridden data-flow builder for Java’s BlockStatement recognizing vari-
ants

Figure 9.4: Data-flow builder for the BlockStatement concept in Java (a) and
its overridden version in JavaVar (b)

Java’s BreakStatement jumps after the loop or switch statement,
containing the statement.

6. ifjump indicates a conditional jump to another position in the
DFG. For example, at the head of a while-loop, we either con-
tinue with the loop’s body or jump after the loop (based on the
condition).

7. ret indicates the return from the current method.

Language engineers use these operations to enable the construction
of DFGs for their languages.

9.2.2 Building Variant-specific Data-Flows

MPS is packaged with data-flow builders for Java language concepts.
Thus, it is possible to check the data flow of Java programs. However,
the analysis is not variability-aware, and thus problems as illustrated
in Figure 4.5 can appear (where a variable is initialized in the SPL,
but not in a variant).

Fortunately, making the data-flow analysis variant-aware is
straightforward. We simply clone-and-own the data-flow builders
provided for Java and add variant checks—that is, we check whether
a node is in the variant’s fragment set and build the DFG accordingly.
For instance, we clone-and-own Java’s BlockStatement data-flow
builder (Fig. 9.4a). Figure 9.4b shows our implementation. The
BlockStatement instance’s statement list (Line 5) is only included in
the DFG if the BlockStatement instance has no fragment annotation—
that is, the node is not variational—or has a fragment that is in the
variant’s fragment cache.
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9.2 VARIANT-BASED DATA-FLOW ANALYSIS

Figure 9.5a gives a more complex example overriding the data-
flow builder of Java’s WhileStatement. The basic idea is simple: we
need support for partially annotated wrappers as illustrated in Fig-
ure 9.5b. In fact, there are two different variants, either the entire
while-statement (Lines 1-3) or only the body (Line 2) is included,
since wrappees can replace their wrapper. Figure 9.5c shows the DFG
for the full variant, Figure 9.5d for the variant containing only the
body. To be able to create these two DFG variants, we make the
WhileStatement’s data-flow builder variant-aware as illustrated in
Figure 9.5a. Notice that in Line 15, we unconditionally call the data-
flow builder of the WhileStatement’s statement list (the wrappee).
Any other structural element is made optional by checking for frag-
ment annotations and whether the fragment is included in the vari-
ant’s fragment set (Lines 3—-14 and Lines 16-19). In particular, we do
not include the DFG nodes including the code for the condition (Lines
3-14) and the node that jumps to the while’s head (Lines 16-19) if the
fragment is not in the variant’s fragment set.

1| data flow builder for WhileStatement {

2 (node)->void {

3 if (  node.fragment.isNull

4 || VariantFragmentCache.getInstance().contains(node)) {
5 code for node.condition

6 if (node.condition.isInstanceOf (BooleanConstant)) {

7 node<BooleanConstant> constant = node.condition : BooleanConstant;
8 if(!constant.value) {

9 jump after node

10 }

11 } else {

12 ifjump after node

13 }

14 }

15 code for node.body

16 if (  node.fragment.isNull

17 || VariantFragmentCache.getInstance().contains(node)) {
18 jump before node

19 }

20 }

21}

(a) Data-flow builder for Java’s WhileStatement

o

while(true) {
I
// code

~N

L

ALty

(b) Concrete syntax of (c) DFG for the full varia- (d) DEG for a variant

a partially annotated tional AST containing only gray
while loop AST nodes

Figure 9.5: Variant-aware data-flow analysis of Java’s WhileStatement: data-
flow builder (a), and example (b—d)
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Figure 9.6 shows more complex DFG variants constructed from the
AST of our analysis example depicted in Figure 4.5. In the example,
the variable entryType is not initialized if the feature module Trans-
actions is not selected—that is, entryType is initialized in the Trans-
actions code (Lines 9 and 12). In the DFG variant with both features
being selected, the variable entryType is initialized (Fig. 9.6a). In fact,
in any branch of the if-statement, we write entryType (nodes 24
and 39), and thus entryType is initialized during the read (node 54).
However, if Transactions is not selected (Fig. 9.6b), then there is no
write of entryType, and thus the read is uninitialized (node 24).

4: write locker | }UneS 4: write locker |}Line3

18:read locker \
v

19:nop

20: iflump 38 - Line 8

21:read locker

)

| Znop |
[ 2twreentyType | | J}Line9

‘é

>| 38:nop |<—
¥ Line 12

&
g

| 28:n0p |

54: read entryType | 2treadentyType |
v Line 16 v

61: write logEntry | 30: write logEntry |
I~ T~

70:end | 39:end |

Line 16

(a) Variant I: Base and Transactions se- (b) Variant II: Base selected
lected (full SPL)

Figure 9.6: DFG variants of the BerkeleyDB example depicted in Figure 4.5
(cf. Line numbers)
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9.3 CONCLUDING REMARKS

Realizing dependency extraction for a target (mainstream) language,
such as Java, is straightforward. However, language engineers must
understand the structure of the target language to make sure that
all necessary language concepts are checked. Otherwise, the calcu-
lated set of dependencies is incomplete, which is a cause for subtle
errors. Likewise, realizing a variant-aware data-flow analysis is easy,
but requires more engineering effort—that is, we must clone-and-own
the variability-unaware data-flow builders and adapt them. For Java,
these are 44 language concepts which can be quickly adapted (i.e., it
took us two hours to identify and clone-and-own all necessary data-
flow builders). However, future work should focus on a better reuse
of data-flow builders to enable a more maintainable and less invasive
solution.
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EVALUATION II: THE LANGUAGE ENGINEER’S
VIEW

We now evaluate the realization of PEoPL from the language engi-
neer’s perspective. As in Section 5.1, we use and extend existing clas-
sification frameworks [80, 100, 118]. In fact, we quantify the practi-
cality of realizing new external variability representations and new
target languages. Moreover, discuss the actual effort for these realiza-
tions. We conclude that PEoPL is a productive approach.

10.1 CLASSIFICATION II. TOOL REALIZATION

Next, we compare PEoPL and classical variability implementation ap-
proaches (i.e., the ones from Sec. 5.1) with regard to language indepen-
dence and variability representation independence. Table 10.1 shows our
results, which we discuss in detail next.

10.1.1 Language Independence

With regard to language independence all approaches perform similarly
well. The CPP (@0) is a simple text-processor, and thus not bound to
C. The VCS (@0) builds upon the same principles. However, both are
bound to text, requiring workarounds for graphical languages.

CIDE (@0) and FH (@0©) can be extended for arbitrary target lan-
guages. Both take a FeatureBNF language grammar attributed with

Variability Implementation Approach

CPP CIDE FH DeltaJ VCS X6 ppopr

toring!

Language 2
. o0 00 00 OO ( 1V 0 0
independence

Variability representation
oo 00 0O 00 00 O (] ]

independence
@@ very good, @0 good, ®O medium, ©O poor, OO no support

IRefactoring engine to transform CIDE into FH implementations and vice
versa [103].

2Delta] is bound to Java, yet the underlying technique delta modeling is language-
independent [158, 168].

Table 10.1: Classification of variability implementation techniques from the
language engineer’s perspective (extended/adapted [100, 118])
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variability concepts as an input, and automatically generate the nec-
essary infrastructure, such as a variability-aware parser and pretty
printer [10, 105]. Thus, making new languages variability-aware is
a simple engineering task. Note that a refactoring engine (@©) that
transforms CIDE into FH implementations and vice versa maintains
the same language independence as both approaches use FeatureBNF
to attribute grammars [10, 105].

Delta] (OO) has been built specifically for Java. Yet, Delta] imple-
ments the concepts of delta modeling, a technique independent of
the target language [158]. The tool suite DeltaEcore leverages this lan-
guage independence and allows language engineers to automatically
create a delta language for a given target language [168].

PEoPL’s (@©) meta-model is independent of the target language
and the artifact type. To make a target language variability-aware, lan-
guage designers should at least specify the attributable language con-
cepts (from which AST nodes are instantiated). Note that this is pretty
similar to attributing a grammar, yet provides more flexibility. For
instance, the CoreVar tailoring infrastructure supports including/ex-
cluding language concepts and their combinations expressed over a
Boolean formula. Yet, to improve the editing experience and robust-
ness, language designers also should implement a modular variabil-
ity representation as well as language-specific dependency extraction
and data-flow analysis rules. All in all, although making languages
variability-aware is a simple engineering task, it would be nice to
automatize these tasks in the future. To automatize editor creation,
the recent concept of grammar cells is a first step in the right direc-

tion [195].
10.1.2  Variability Representation Independence

Variability representation independence measures the possibility and
effort to integrate diverse SPL implementation techniques in a single,
common environment. Thus, it reflects the fundamental freedom of a
developer to choose between different variability representations.

Aside from their core functionality, the CPP, FH, Delta] and VCS
do not support any additional SPL implementation techniques (OO).
CIDE (©0) provides a simple show or hide mechanism for features. This
way, at least variant editing can be emulated to a certain degree. Yet,
a plugin mechanism for adding new variability representations is not
available.

In contrast, refactoring engines (@0) are extensible by design—that
is, language engineers just add transformation rules. Thus, refactor-
ing engines basically support the integration of variability represen-
tations. Figures 10.1a and 10.1b show two possibilities for refactoring
variational models: complete and two-way refactoring. Notice that
a complete refactoring is impractical, since the involved transforma-
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Modular Modular Modular

Program Program Program
Textually Visually Visually trans- Textually
Annotated Annotated Annotated | | | form Annotated

Program Program Program . Program .

\ / transform T l T l T render T

Textually Annotated Common
Program Variational Model
(a) Complete refactoring (b) Two-way refactoring (c) One-way rendering

Figure 10.1: Refactoring versus rendering variability representations

tions form a complete graph. That is, a developer must implement
transformations from and into any variability representation to be
supported by the programming environment. As a result, n(n — 1)
transformations need to be implemented. Moreover, it is unclear how
to support a refactoring from and into variants as they are constituted
of a reduced feature set.

Two-way refactoring is more practical as developers only need to
implement transformations from and into the most expressive vari-
ability representation employed (cf. expressive power in Section 5.1.9).
For instance, two steps would be necessary to transform a visually an-
notated program into a modular program. First, we transform the vi-
sually annotated program into a textually annotated program, which
serves as a transient variability representation. Second, we transform
the transient representation into the modular program. Persisting the
transient representation in a common core would make variant edit-
ing possible, since all information are maintained in the common core
(similar to PEoPL). In fact, VCS (©0) provides a view on a variant by
employing transformations from and into a single variability repre-
sentation. More transformations could make the approach more flex-
ible. Notice that the CIDE/FH refactoring engine directly transforms
FH into CIDE programs and vice versa, but it could be easily ex-
tended to support the proposed two-way refactoring. Still, two-way
refactoring requires a significant engineering effort as two potentially
very different variational models need to be transformed into each
other.

In PEoPL (@@®), the effort to realize the desired freedom of freely
choosing a variability representation is lower. In fact, instead of imple-
menting complicated transformations, developers must only imple-
ment simple one-way rendering rules. Figure 10.1¢ gives a conceptual
overview. A rendering rule is a description of how to render an inter-
nal variability representation into a concrete variability-aware syntax.
In other words, based on a common core, language engineers just
implement rendering rules that reflect the concrete technique to be
supported. Editing is performed directly on the common core. How-
ever, not all external representations are independent of the target lan-
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guage (e.g., Java). Thus, a current drawback is that for each new target
language (e.g., C) some external representations must be cloned and
owned from an existing target language (e.g., modular and blended
representations). In fact, (semi-)automatizing the creation of external
representations of these variability representations would be valuable
future work. This way, new target languages could be instantly en-
riched with a set of SPL implementation techniques.

10.2 EFFORT FOR EXTENDING PEOPL

Based on PEoPL’s language and variability representation indepen-
dence the effort for extending PEoPL is low. We now report our expe-
riences.

10.2.1  New Target Languages

Tailoring PEoPL to a target language, using annotatable nodes and
wrapper declarations is as easy as annotating grammars [7, 105]. The
effort for creating the declarations depends on the target language’s
complexity, but was moderate for C [74] and Java (as presented in
this dissertation). In fact, thanks to CoreVar’s simple language struc-
ture and tailoring infrastructure, extending C and Java just takes a
few hours (with experience). The engineering intensive part is the im-
plementation of the language-specific data-flow analysis (clown-and-
own) and the language-specific external variability representations.
Their creation should be automatized in the future.

Moreover, thanks to concept inheritance, languages building upon
MPS’ Java such as MPS’ closure language are inherently supported.
The reason is that MPS supports unlimited language composition—
that is, different languages can be easily integrated. For instance, a
logging language that introduces a new logging statement into Java
is directly supported by JavaVar, since a logging statement is just a
statement. Tailoring is also flexible, since even non-textual languages
such as MPS” math language with its math symbols are supported
out of the box.

10.2.2 New Variability Representations

The realization effort for creating new external representations (ren-
dering rules) is moderate. For instance, it took us only two hours
to implement the blended projection (i.e., the editor infrastructure
and the Java-specific implementation). However, implementing for
instance a modular projection with advanced editing support from
scratch requires more engineering effort (e.g., restructuring the tree
when typing the original keyword). So, generating projections and
editing rules for variability representations, potentially exploiting the
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new concept of grammar cells [195] for defining projectional editors,
would be valuable.



RELATED WORK

We already discussed many differences of PEoPL to other variabil-
ity implementation approaches throughout this dissertation (cf. Ch. 3
and Sec. 5.1). In the following, we summarize and review the most im-
portant related work on integrating SPL implementation techniques.
Moreover, we review other important parser-based and projectional
approaches.

11.1 INTEGRATION OF VARIABILITY REPRESENTATIONS

Only few approaches exist to integrate the very different annotative
and modular SPL techniques.

The SDA is a formal model of feature modularity [23, 24]. PEoPL is
the first approach to put the corresponding ideas into practice. In fact,
we build upon the formalizations, yet use injective partial functions
for feature modules to forbid assigning the same fragment to differ-
ent variation points. This is no limitation in practice, but eases our
implementation. To model such (rare) homogeneous extensions [5, 9,
49], we allow variation points to appear multiple times via placehold-
ers. Using these concepts, we formalize variational ASTs, propose a
concrete language structure, and conceive a full-fledged tool infras-
tructure (modeling, implementation, and analysis facilities).

The compositional choice calculus is a formal language that combines
annotative and compositional techniques [204]. The approach allows
adding, removing and replacing feature details. Walkingshaw and
Ostermann build upon the calculus, and propose a formal model of
editable views on variational software [205]. In particular, they pro-
pose to encode choices, in a generic AST, which is used to generate
different (simplified) documents. These can be edited, parsed and
committed back into the generic AST. These concepts have been also
used for a parser-based variant editor [178]. Notice that we also rep-
resent the source code in a single, common variational AST that sup-
ports alternative paths (i.e., choices). Yet, approaches based on the
choice calculus only have one external variability representation (i.e.,
choice calculus). In other words, implementing variability depends on
the syntax of the choice-calculus language. In contrast, PEoPL relies
on projectional editing, supports extending arbitrary languages and
provides an extensible set of external variability representations. The
key difference is that instead of parsing and committing the changes
made to a document, modifications are carried out directly on the
underlying representation.
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11.2 PARSER-BASED VARIABILITY IMPLEMENTATION TECHNIQUES

Based on parsing, Kédstner et al. refactor compositional (FH) into an-
notative (CIDE) variability representations and vice versa [103]. Yet,
refactoring does neither support a fluent movement between tech-
niques nor any other advanced editing support provided by PEoPL.
Moreover, parallel editing of different refactored representations can
cause inconsistencies, challenging developers.

The XML Variant Configuration Language (XVCL) [94, 208] is an-
other attempt to integrate annotative and modular compositional ap-
proaches. Annotations are made in the program’s text, and thus syn-
tactic correctness is not guaranteed (unlike PEoPL). So-called break-
point annotations (a.k.a. hooks or extension points) allow developers to
separate implementations by inlining code that is specified externally
(similar to the hook method approach, we discussed in Sec. 2.5.1). Yet,
stepwise refinement is not supported. In contrast to PEoPL, the con-
crete syntax is fixed, and thus different variability representations are
not supported.

FeatureCopp [118] is another parser-based approach trying to com-
bine annotative and modular techniques. FeatureCopp is realized as
a simple CPP-like preprocessor. Similar to XVCL, annotations enable
inlining “modular” units via extension points. As a result, true mod-
ularity is not supported, since there is no cohesive view on a feature
that includes all extension points. The main problem with such manu-
ally added extension points, however, is that they are fragile—that is,
just renaming an extension point definition invalidates all correspond-
ing extension points, so refactoring is necessary. There is also no ad-
vanced editing facility as proposed with PEoPL enabling to change
the concrete syntax on demand. For instance, it is not possible to in-
clude contextual information of an extension point on demand. All
in all, it is unclear how to realize alternative extension points and
why one should use the FeatureCopp’s inlining mechanism instead
of annotated method calls—which, in fact, would ease type checking.

11.2 PARSER-BASED VARIABILITY IMPLEMENTATION TECH-
NIQUES

Most variability implementation techniques and tools are text-based,
and thus require a parser. This is a key difference to PEoPL since
it separates variability into an internal and external representation
leaving the concrete syntax to projections.

CIDE is a parser-based, annotative approach sharing some concepts
with PEoPL, such as annotating ASTs and wrappers [105]. Yet, CIDE’s
views on the code are less sophisticated. For instance, CIDE only sup-
ports an annotative and variant view on the code, and thus true mod-
ularity is not supported. Moreover, an artifact cannot be edited in par-
allel using different views, and new views cannot be plugged. CIDE
is also less expressive, since its preprocessor only allows adding fea-
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ture details, neither replacing nor removing them. In contrast, PEoPL
provides support for alternatives (i.e., multiple fragments can fill a
VP), which can be also explicitly assigned to non-optional nodes by
the developer. CIDE, in turn, only allows language engineers to pro-
vide a default value for non-optional language concepts in a grammar
specification, which is opaque to the SPL developer.

Delta] is another related modular approach that allows develop-
ers to add, replace, and remove feature artifacts by applying deltas
[115, 157, 158]. Like the meta-model employed in PEoPL, the un-
derlying modeling technique of Delta], delta modeling, is language-
independent [168] and not bound to text. In fact, delta modeling has
already been applied in various scenarios, for instance, the graphical
programming environment of Matlab/Simulink [88]. The key differ-
ence to delta-oriented approaches is that we embed in PEoPL all vari-
ants into a single variational AST (instead of incrementally applying
deltas). Moreover, we leave the concrete syntax of modules open to
the different projections.

FeatureIlDE [187] is an Eclipse framework that integrates several
approaches, such as FH[7], DeltaJ [115], and tools to cope with vari-
ability (e.g., feature-context interfaces [160]). The key difference is
that the very same feature artifact cannot be explored using different
representations. Moreover, if developers use different representations
for different feature artifacts, uniformity breaks.

11.3 PROJECTIONAL VARIABILITY IMPLEMENTATION TECH-
NIQUES

A projectional approach to implement SPLs was proposed before [197,
200]. The language family mbeddr provides the only other projec-
tional way to implement SPLs [201], applying disciplined C prepro-
cessor concepts to the underlying AST. mbeddr is also implemented
using MPS, but does not focus on providing multiple external rep-
resentations. Moreover, annotatable nodes cannot be specified and
there is no support for partial annotations (i.e., annotating only the
wrapper and not the wrappee). As a result, it is unclear how the pre-
processor can be applied to other (graphical) languages than mbeddr
C in a meaningful way.

On a final note on the strength of projectional editing. Most mod-
ular variability implementation approaches, such as Delta], FH [7],
and AHEAD [22] enable method replacement in an implicit fashion.
For instance, developers simply omit the original-keyword or a pen-
dant on the statement level. We argue that in large methods it might
be difficult to distinguish between a method replacement and refine-
ment as one needs to search for the original-keyword first. More-
over, to make mutual exclusiveness explicit, developers are required
to lift this information up into the SPL’s declaration using constraints.
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In PEoPL, we embed alternatives directly into the variational AST
(i.e., multiple fragments assigned to the same VP). The advantage of
this approach is that alternatives are already explicit in the implemen-
tation and do not need to be lifted up into a constraint manually. In
fact, using a projectional editor, we can show textual or visual mark-
ers to indicate a method’s refinement or replacement.

11.4 OTHER RELATED APPROACHES

Outside the SPL context, so-called effective views have been proposed
to extract the code from a database into two different text-based views
(classes and modules) [93]. Changes made to the concrete syntax can
be parsed and merged back into the database. Thus, editing incon-
sistencies may appear, which is not an issue in projectional editing,
since any edit is atomic and directly changes the AST. Moreover, the
approach neither supports editing nor generating variants and is tai-
lored /limited to two views not reflecting our notion of features.
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We presented the PEoPL approach, which aims at combining the dis-
tinct advantages of different representations of variability. It relies on
establishing a unified, internal representation that is separated from
multiple external representations. These can be used in parallel and
on demand for engineering the same variable software artifact. We
designed seven complementing representations, allowing developers
to edit artifacts using textual and visual annotations, (fade-in) feature
modules, a blending of annotations into modules, reusable artifacts,
and to edit individual variants. We also conceived different facilities
for modeling, analyzing, and managing SPL variability.

We realized the PEoPL approach as a full IDE, building upon the
projectional language workbench MPS. We discussed PEoPL’s tool-
ing and architecture showing that the tool provides a well-defined
structure and can be easily extended. By declaring annotatable nodes,
wrappers, and further convenience language concepts, we provide an
exemplary tailoring of PEoPL to two target languages: Java and fault
trees. Moreover, we realize a Java-specific extraction of feature artifact
dependencies and a varibility-aware data flow analysis. In the context
of the PEoPL project, a tailoring to C has been already realized [74].
Our experience shows that the effort for tailoring PEoPL to a target
language and creating new external variability representations is low.

We evaluated PEoPL using three different methodologies. First,
from the SPL developer’s and the language engineer’s perspective,
we classify PEoPL together with other variability implementation ap-
proaches using a well defined set of quality criteria. This way, the
strength of PEoPL is made explicit in comparison to contemporary
work underlining that PEoPL is indeed a desirable approach. Second,
we adopted eight Java SPLs, showing PEoPL’s expressiveness, scal-
ability, and benefits. Most importantly, this evaluation shows that it
is in fact feasible to separate internal and external representations,
supporting very different ways of editing feature artifacts. Latencies
to calculate variants are low, which together with our qualitative ex-
periences from adopting the SPLs and our user studies, evidences a
smooth editing experience. Third, we conducted two pilot user stud-
ies to learn more about PEoPL’s usability. Our results show the prac-
ticality of the approach in general, but also underline that modular
approaches must be taught in more detail to use diverse external rep-
resentations efficiently.

With regard to future work, we plan to use and extend PEoPL in
the following ways.
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1. PROJECTIONAL DELTA-ORIENTED PROGRAMMING

PEoPL already provides the basis for rendering the variational
AST into a concrete syntax reflecting Delta] modules [25]. We
plan to take our current modular projectional editors as a ba-
sis. This way, addition and modification will be supported by
the new editor directly. To enable removal, we currently use
dummy nodes (i.e., siblings of the node to be removed) [25]. A
more concise solution would be to introduce a new removal an-
notation, which could be used by developers to tag the nodes to
be removed explicitly.

All in all, due to the great flexibility of projectional editing, it
is possible to design editors that conform to the DOP syntax
and look exactly the same. Yet, in contrast to editing plain text,
a developer’s editing gestures change the AST directly. Design-
ing editors that allow a flexible, more text-like editing can be
challenging, yet is possible. We plan to provide automatic AST
transformations based on string patterns to allow typing the
modifies keyword for example.

. PROJECTIONAL EDITING OF HOMOGENEOUS EXTENSIONS
PEoPL’s variational AST supports heterogeneous and homoge-
neous extensions. The latter is known from AOP, where advice
can be applied to multiple join points. To enable such homo-
geneous extensions, we basically create cross-tree references in
the AST and render the reused element in different program
positions. From the developer’s perspective, a copy-and-paste-
like process enables this reuse of code elements. We plan to en-
able developers to manage homogeneous extensions in a more
sophisticated fashion from modules, using quantification and
weaving (as known from AOP). This way, developers can pro-
vide a query (e.g., the name of methods to be extended), which
automatically creates the necessary references in the AST.

. GENERATING RUNTIME VARIABILITY ON DEMAND

PEoPL removes any variability from a variational AST to create
software variants (i.e., any variability is removed in a model-
to-text transformation). This way, PEoPL is currently bound to
compile-time variability. We plan to provide the concepts and
a prototypical implementation of transformation rules for gen-
erating runtime variability on demand. Our objective is to con-
trol variation at runtime (e.g., based on external parameters),
which also enables us to employ common dynamic analysis
methods [134, 148].

. FROM VERSION-CONTROL TO VARIATION-CONTROL

With PEoPL, we conceived ways of embedding variability into
an AST. We plan to provide the concepts and a prototypical im-
plementation for synchronizing this common, variational AST,
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using version control systems. This way, we enable collabora-
tive SPL development and customers can be provided with a
specific variant (subset) containing only relevant features. Then,
changes made by the customer can be merged back into the
main repository.

5. VARIABILITY-AWARE TYPE CHECKING
We do not provide full, variability-aware type-checking
(cf. [186]). Thus, there are some problems we cannot detect
in advance, such as duplicated method signatures that occur
due to parameter removal. Addressing this issue is our future
work. Yet, our dependency checker and variant-based data-flow
analysis already help to resolve many related issues.

6. CONTROLLED EXPERIMENT AND LONGITUDINAL STUDY
Finally, we also plan to conduct a controlled experiment with
users to investigate exact usage scenarios of multiple projec-
tions. On this purpose, we plan to create a catalogue of tasks
providing hypothesis for which variability representation might
leverage in which situation. Then, we evaluate these hypothesis
with the aim to provide sound empirical results. This way, we
could create a recommender system, supporting developers in
choosing the best technique for a given task. On this basis, it
would be interesting to investigate how external representations
are used in a longitudinal study. In addition, conducting a con-
trolled experiment and longitudinal study with experienced in-
dustrial developers would be valuable. However, they typically
work with annotative approaches, and thus a sufficient training
for modular approaches would be required as well.

Finally, we hope that language designers and tool vendors will cre-
ate further projections for other variability representations, and tailor-
ings for more languages, beyond Java, C, and fault trees.
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