
Synthetic Data Generation for Statistical Testing
Ghanem Soltana, Mehrdad Sabetzadeh, and Lionel C. Briand

SnT Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg
Email: {ghanem.soltana, mehrdad.sabetzadeh, lionel.briand}@uni.lu

Abstract—Usage-based statistical testing employs knowledge
about the actual or anticipated usage profile of the system under
test for estimating system reliability. For many systems, usage-
based statistical testing involves generating synthetic test data.
Such data must possess the same statistical characteristics as
the actual data that the system will process during operation.
Synthetic test data must further satisfy any logical validity con-
straints that the actual data is subject to. Targeting data-intensive
systems, we propose an approach for generating synthetic test
data that is both statistically representative and logically valid.
The approach works by first generating a data sample that meets
the desired statistical characteristics, without taking into account
the logical constraints. Subsequently, the approach tweaks the
generated sample to fix any logical constraint violations. The
tweaking process is iterative and continuously guided toward
achieving the desired statistical characteristics. We report on
a realistic evaluation of the approach, where we generate a
synthetic population of citizens’ records for testing a public
administration IT system. Results suggest that our approach is
scalable and capable of simultaneously fulfilling the statistical
representativeness and logical validity requirements.

Index Terms—Test Data Generation, Usage-based Statistical
Testing, Model-Driven Engineering, UML, OCL.

I. INTRODUCTION

Usage-based statistical testing, or statistical testing for short,
is concerned with detecting faults that cause the most frequent
failures (thus affecting reliability the most), and with estimat-
ing reliability via statistical models [1]. In contrast to testing
techniques that focus on system verification (fault detection),
e.g., testing driven by code coverage, statistical testing focuses
on system validation from the perspective of users. Statistical
testing typically requires a usage profile of the system under
test. This profile characterizes, often through a probabilistic
formalism, the population of the system’s usage scenarios [2].

Existing work on usage profiles has focused on state- and
event-based systems, with the majority of the work being
based on Markov chains [3], [4], [5], [6], [7], [8]. For many
systems, which we refer to as data-centric and concentrate on
in this paper, system behaviors are driven primarily by data,
rather than being triggered by stimuli. For example, consider a
public administration system that calculates social benefits for
citizens. How such a system behaves is determined mainly by
complex and interdependent data such as citizens’ employment
and household makeup. The system’s scenarios of use are thus
intimately related to the data that is processed by the system.
Consequently, the usage profile of such a system is governed
by the statistical characteristics of the system’s input data,
or stated otherwise, by the system’s data profile. Given our
focus on data-centric systems and the explanation above, we

equate, for the purposes of this paper, “usage profile” and “data
profile”, and use the latter term hereafter.

When actual data, e.g., real citizens’ records in the afore-
mentioned example, is available, one may be able to perform
statistical testing without a data profile. In most cases, how-
ever, gaps exist in actual data, since new and retrofit systems
may require data beyond what has been recorded in the past.
These gaps need to be filled with synthetic data. To generate
synthetic data that is representative and thus suitable for sta-
tistical testing, a profile of the missing data will be required.

Further, and perhaps more importantly, synthetic data (and
hence a data profile) are indispensable when access to actual
data is restricted. Notably, under most privacy regulations, e.g.,
EU’s General Data Protection Regulation [9], “repurposing”
of personal data is prohibited without explicit consent. This
complicates sharing of any actual personal data with third-
parties who are responsible for software development and test-
ing. Anonymization offers a partial solution to this problem;
however, doing so often comes at the cost of reduced data
quality [10] and proneness to deanonymization attacks [11].

Data profiles have received little attention in the literature on
software testing. This is despite the fact that many data-centric
systems, e.g., public administration and financial systems, are
subject to reliability requirements and thus statistical testing.
Recently, we proposed a statistical data profile and a heuristic
algorithm for generating representative synthetic data [12].
Although motivated by microeconomic simulation [13] rather
than software testing, our previous approach provides a useful
basis for generating data that can be used for statistical testing.
However, the approach suffers from an important limitation:
while the approach generates synthetic data that is aligned
with a desired set of statistical distributions and has shown
to be good enough for running financial simulations [14],
the approach cannot guarantee the satisfaction of logical
constraints that need to be enforced over the generated data.

To illustrate, we note three among several other logical
anomalies that we observed when using our previous approach
[12] for generating test cases based on a data profile of
citizens’ records: children who were older than their par-
ents, individuals who were married before being born, and
individuals who were classified as widower without ever
having been married. Without the ability to enforce logical
constraints to avoid such anomalies, the generated data is
unsuitable for statistical testing and estimating reliability. This
is because such anomalies may result in exceptions or system
behaviors that are not meaningful. In either case, targeted
system behaviors will not be exercised.

978-1-5386-2684-9/17 c© 2017 IEEE ASE 2017, Urbana-Champaign, IL, USA
Technical Research

Accepted for publication by IEEE. c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

872

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/92691381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The question that we investigate in this paper is as follows:
Can we generate synthetic test data that is both statistically
representative and logically valid? The key challenge we
need to address when tackling this question is scalability.
Specifically, to obtain statistical representativeness, we need
to construct a large data sample (test suite), potentially with
hundreds or thousands of members. At the same time, this
large sample has to satisfy logical constraints, meaning that we
need to apply computationally-expensive constraint solving.
Contributions. The contributions of this paper are as follows:
1) We develop a model-based test data generator that can
simultaneously satisfy statistical representativeness and logi-
cal validity requirements over complex, interdependent data.
The desired statistical characteristics are expressed using
our previously-developed probabilistic UML annotations [12].
Validity constraints are expressed using UML’s constraint
language, OCL [15]. Our data generator incorporates two
collaborating components: (a) a search-based OCL constraint
solver which enhances previous work by Ali et al. [16], and
(b) a mechanism that guides the solver toward satisfying the
statistical characteristics that the generated data (test suite)
must exhibit.
2) We evaluate our data generator through a realistic case
study, where synthetic data is required for statistical testing
of a public administration IT system in Luxembourg. Our
results suggest that our data generator can create, in practical
time, test data that is sound, i.e., satisfies the necessary validity
constraints, and at the same time, is closely aligned with the
desired statistical characteristics.

II. BACKGROUND

In this section, we briefly describe our previous data genera-
tion approach [12]. We leverage this approach for (1) express-
ing the desired statistical characteristics of data, and (2) gener-
ating initial data samples which we process further to achieve
not only representativeness but logical validity as well.

For specifying statistical characteristics, we use a set of
annotations (stereotypes) which can be attached to a data
schema expressed as a UML Class Diagram. Fig. 1 illustrates
some of these annotations on a small excerpt of a data schema
for a tax administration system.

The «probabilistic type» stereotypes applied to the special-
izations of the TaxPayer class state that ≈78% of the taxpayers
should be resident and the remainder should be non-resident.

The «from histogram» stereotype attached to the birth_year
attribute provides, via a histogram, the birth year distribution
for taxpayers. The attribute birth_year is further annotated
with a conditional probability specified via the «value depen-
dency» stereotype. The details of this conditional probability
are provided by the legal age for pensioners box. The infor-
mation in the box reads as follows: 25% of pensioners have
their birth year between 1957 and 1960, i.e., are between 57
and 60 years old; the remaining 75% are older than 60.

The «multiplicity» stereotype attached to the association
between TaxPayer and Income classes describes, via the in-
come cardinality histogram, the distribution of the number

«multiplicity»
{constraints: [income

cardinality]}

1 taxpayer incomes 1..*
Income

income cardinality

- birth_year : Integer
«from histogram»
{labels: [[1979..1998], [1959..1978], [1934..1958],
[1900..1933]]; frequencies: [0.7, 0.2, 0.07, 0.03]}
«value dependency»
{queries: [dependency age for pensioners]}

TaxPayer (abstract)

ResidentTaxPayer

«probabilistic type»
{frequency: 0.7845}

NonResidentTaxPayer

«probabilistic type»
{frequency: 0.2155}

«from histogram»
{labels: [[1957..1960], [1917..1956]];

frequencies: [0.25, 0.75]}

Condition: self.incomes-> exists
(oclIsTypeOf(Pension))

dependency age for pensioners
«OCL query»

{expressions: [legal age for pensioners]}

legal age for pensioners

«from histogram»
{labels: [1, 2, 3, 4]; frequencies:

[0.8, 0.15, 0.045, 0.005]}

Fig. 1. Data Schema (Excerpt) Annotated with Statistical Characteristics

of incomes per taxpayer. As shown in Fig. 1, 80% of the
taxpayers have one income, 15% have two, and so on.

For generating a data sample, we previously proposed a
heuristic technique that is aimed exclusively at representa-
tiveness [12]. This technique traverses the elements of the
data schema and instantiates them according to the prescribed
probabilities. The technique attempts to satisfy multiplicity
constraints but satisfaction is not guaranteed. More complex
logical constraints are not supported.

In this paper, we use as a starting point the data generated
by our previous approach, and alter this data to make it valid
without compromising representativeness. Indeed, as we show
in Section V, our new approach not only results in logically
valid data but also outperforms our previous approach in terms
of representativeness.

III. APPROACH OVERVIEW

Fig. 2 presents an overview of our approach for generating
representative and valid test data. Steps 1–3 are manual and
Step 4 is automatic. In Step 1, Define data schema, we define
using a UML Class Diagram (CD) [17] the schema of the data
to generate. This diagram, illustrated earlier in Fig. 1, is the
basis for: (a) capturing the desired statistical characteristics of
data (Step 2), and (b) generating synthetic data (Step 4).

Data schema
(class diagram)

2. Define
statistical

characteristics

Annotated
data schema

<<s>>

<<p>>

<<p>>

<<
m

>>

3. Define
data validity
constraints Constraints

4. Generate
synthetic data

Synthetic
data sample
(test suite)OCL

1. Define
data schema

Data
profile

Fig. 2. Approach for Generating Valid and Representative Synthetic Data

In Step 2, Define statistical characteristics, the CD from
Step 1 is enriched with probabilistic annotations (see Sec-
tion II) to express the representativeness requirements that
should be met during data generation in Step 4. In Step 3,
Define data validity constraints, users express via the Object
Constraint Language (OCL) [15] the logical constraints that
the generated data must satisfy. For example, the following
OCL constraint states that children must be born at least
16 years after their parents: self.children->forAll(c| c.birth_year >
self.birth_year + 16). Here, self refers to a person.

Steps 2 and 3 of our approach can in principle be done in
parallel. Nevertheless, it is advantageous to perform Step 3

873

after Step 2. This is because the probabilistic annotations
of Step 2 may convey some implicit logical constraints. For
example, the annotations of Step 2 may specify a uniform dis-
tribution over the month of birth for physical persons. It would
therefore be redundant to define the following OCL constraint:
self.birth_month >= 1 and self.birth_month <= 12. Such redundancies
can be avoided by doing Steps 2 and 3 sequentially.

Step 4, Generate synthetic data, generates a data sample
(test suite) based on a data profile. In our approach, a data
profile is materialized by the combination of the probabilistic
annotations from Step 2 and the OCL constraints for Step 3.
As stated earlier, the synthetic data generated in Step 4 must
meet both the statistical representativeness and logical validity
requirements, respectively specified in Steps 2 and 3. The
output from Step 4 is a collection of instance models, i.e.,
instantiations of the underlying data schema. Each instance
model characterizes one test case for statistical testing.

In the next section, we elaborate Step 4, which is the main
technical contribution of this paper.

IV. GENERATING SYNTHETIC DATA

In this section, we describe our synthetic data generator.
Fig. 3 shows the strategy employed by the data generator.
Initially, a potentially invalid collection of instance models is
created using our previous data generation approach (see Sec-
tion II). We refer to this initial collection as the seed sample.
Our data generator then transforms the seed sample into a
collection of valid instance models. This is achieved using a
customized OCL constraint solver, presented in Section IV-A.

The solver attempts to repair the invalid instance models in
the seed sample. To do so, the solver considers the constraint
specified in Step 3 of our overall approach (Fig. 2) alongside
the multiplicity constraints of the underlying data schema and
the constraints implied by the probabilistic annotations from
Step 2 of the approach. The rationale for feeding the solver
with instance models from the seed sample, rather than having
the solver build instance models from scratch, is based on the
following intuitions: (1) By starting from the seed sample, the
solver is more likely to be able to reach valid instance models,
and (2) The valid sample built by the solver will not end up
too far away from being representative, in turn making it easier
to fix deviations from representativeness, as we discuss later.

The OCL solver that we use is based on metaheuristic
search. If the solver cannot fix a given instance model within a
predefined maximum number of iterations, the instance model
is discarded. To compensate, the seed sample is extended with
a new instance model byre-invoking our previous data genera-
tor. This process continues until we obtain the desired number
of valid instance models (test cases). The number of instance
models to generate is an input parameter that is set by users.

Once we have a valid data sample that has the requested
number of instance models in it, our data generator attempts
to realign the sample back with the desired statistical charac-
teristics. This is done through an iterative process, delineated
in Fig. 3 with a dashed boundary. We elaborate the details of
this iterative process in Section IV-B.

Create seed
sample

Create valid
sample

Seed sample
with potential

logical anomalies

Valid data
sample

All validity constraints
(user-defined constraints including
multiplicity constraints from data
schema plus constraints implied by
probabilistic annotations)

Generate
corrective
constraints

Propose
tweaked

instance model

Corrective constraints

Tweaked instance model

Final data
sample

(for each instance model in the sample)

OCL

Fig. 3. Overview of our Data Generation Strategy

Briefly, the process goes in a sequential manner through the
instance models within the valid sample, and subjects these
instance models to additional constraints that are generated
on-the-fly. These additional constraints, which we refer to
as corrective constraints, provide cues to the solver as to
how it should tweak an instance model so that the statistical
representativeness of the whole data sample is improved.

For example, let us assume that instance models represent
households in a tax administration system. Now, suppose
that the proportion of households with no children is over-
represented in the sample. If, under such circumstances, the
iterative process is working on a household with no children, a
corrective constraint will be generated stating that the number
of children should be non-zero (in that particular household).
The solver will then attempt to satisfy this constraint without
violating any of the validity constraints discussed earlier.

If the solver fails to come up with a tweaked household
that satisfies both the corrective constraint and all the validity
constraints at the same time, the original household (which is
valid but has no children) is retained in the sample. Otherwise,
that is, when a tweaked and valid household is found, we need
to decide whether it is advantageous to replace the original
household by the tweaked one. Let I be the original household
and I ′ the tweaked one. Further, let S denote the current
sample containing I (but not I ′) and let S ′ = (S \{I})∪{I ′}.
The decision is made as follows: If S is better aligned than S ′
with the desired statistical characteristics then I ′ is discarded;
otherwise, I ′ will replace I in the sample. The reason why this
decision is required is because tweaking may have side effects.
Therefore, I ′ may not necessarily improve overall representa-
tiveness, although it does reduce the proportion of households
with no children. For example, it could be that the solver adds
some children to the household in question, but in doing so, it
also changes the household allowances. These allowances too
may be subject to representativeness requirements. Without
the comparison above, one cannot tell whether the tweaked
household is a better fit for representativeness.

In the above scenario, we illustrated the iterative process
using a single corrective constraint. In practice, the process
may generate multiple such constraints, since the data sample
at hand may be deviating from multiple representativeness
requirements. We treat corrective constraints as being soft.
This means that if after the maximum number of iterations,
the solver manages to solve some of the corrective constraints
but not all, the process will give the tweaked instance model

874

a chance to replace the original one as long as the tweaked
instance model still satisfies all the validity constraints.

The rest of this section presents the technical machinery
behind the (customized) OCL solver and our data generator.

A. Solving OCL Constraints

A number of techniques exist for solving OCL constraints,
notably using Alloy [18], [19], constraint programming [20],
and (metaheuristic) search [21], [16]. Alloy often fails to
solve constraints that involve large numbers [22]. We observed
via experience that this limitation could be detrimental in
our context. For example, our case study in Section V has
several constrained quantities, e.g., incomes and allowances,
that are large numbers. As for constraint programming, to our
knowledge, the only publicly-available tool is UML2CSP [20].
We observed that this tool did not scale for our purposes. In
particular, given a time budget of 2 hours, UML2CSP did not
produce any valid instance model in our case study. This is not
practical for statistical testing where we need a representative
sample with many (hundreds or more) valid instance models.

Search, as we demonstrate in Section V, is more promising
in our context. Although search-based techniques cannot prove
(un)satisfiability, they are efficient at exploring large search
spaces. In our work, we adopt with two customizations the
search-based OCL solver of Ali et al.’s [16], hereafter referred
to as the baseline solver. The customizations are: (1) a feature
for setting a specific instance model as the starting point for
search, and (2) a strategy to avoid premature narrowing of the
search space. The former customization, which is straightfor-
ward and not discussed here, is necessary for realizing the
process in Fig. 3. The latter customization is discussed next.

The baseline solver has a fixed heuristic for selecting what
OCL clause to solve next: it favors clauses that are closer
to being satisfied based on a fitness function. For example,
assume that we want to satisfy constraint C1 defined as
follows: if (x=2) then y=5 else if (x=3) then y=4 else y=0 endif endif,
where x and y are attributes. For the sake of argument, suppose
the solver is processing a candidate solution where x = 3
(satisfying the condition of the second nested if statement)
and y = 7 (not satisfying any clause). This makes the second
nested if statement in C1 the closest to being satisfied. At this
point, the heuristic employed by the solver narrows the search
space by locking the value of x and starting to exclusively
tweak y in order to satisfy y=4. Now, if we happen to have
another constraint C2 stating y>4, the solver will fail since x
can no longer be tweaked.

The above heuristic in the baseline solver poses no problem
as long as the goal is to find some valid solution. If search fails
from one starting point, the solver (pseudo-)randomly picks
another and starts over. In our context however, starting over
from an arbitrary point is not an option. For the final data
sample to have a chance of being aligned with the desired
statistical characteristics, the solver needs to use as starting
point instance models from a statistically representative seed
sample (see Fig. 2). If the solver fails at making valid an
instance model from the seed sample, that instance model has

to be discarded. This negatively affects performance, since the
solver will need to start all over on a replacement instance
model supplied by the seed data generator, as noted earlier.

In a similar vein, if the solver fails at enforcing corrective
constraints over a (valid) instance model, it cannot help
with improving representativeness. To illustrate, suppose that
constraint C2 mentioned earlier is a corrective constraint and
that the valid solution (instance model for C1) is x = 3, y = 4.
In such a case, the baseline solver will deterministically fail
as long as the starting point is this particular valid solution.
In other words, C2 will have no effect.

To address the above problem, we customize the baseline
solver as follows: Rather than working directly on the original
constraints, the customized solver works on the constraints’
prime implicants (PI). An implicant is prime (minimal) if
violating any of its literals results in the violation of the
underlying constraint. To derive all the PIs for a given OCL
constraint, we first transform the constraint into a logical
expression with only ANDs and ORs, negation, and OCL
operations. We next transform this expression into Disjunctive
Normal Form (DNF) by applying De Morgan’s law [23]. Each
clause of the DNF expression is a PI. For instance, constraint
C1 yields three PIs: (x=2 and y=5), (x<>2 and x=3 and y=4), and
(x<>2 and x<>3 and y=0). Note that we use the term PI slightly
differently than what is standard in logic. Our literals are not
necessarily independent logically. For example, in the second
PI above, x<>2 is redundant because x=3 implies x<>2. Such
redundancies pose no problem and are ignored.

For each constraint C to be solved, the customized solver
randomly picks one of C’s PIs. For instance, if we want to
solve constraints C1 and C2 together, we would randomly pick
one of C1’s three PIs alongside C2 (whose only PI is y>4). This
way, we give a chance to all PIs to be considered, thus avoiding
the undesirable situation discussed earlier, where the baseline
solver would (deterministically) lead itself into dead-ends. For
example, from the PIs of C1, we may pick (x=2 and y=5). Now,
if we start the search at x = 3, y = 7, the solver will have
a feasible path toward a valid solution, x = 2, y = 5, which
satisfies both C1 and C2. If a certain combination of randomly-
selected PIs (one PI per constraint) fails, other combinations
are tried until either a solution is found or the maximum
number of iterations allowed is reached.

Due to space, we cannot present all the details of this
customization. We only make two remarks. First, all OCL
operations are treated as opaque literals when building PIs.
For example, the operation self.navigation−>forAll(x=3 or y=2) is
a single literal, just like, say, x=3. Solving OCL operations
is a recursive process and similar to solving operation-free
expressions. In particular, to solve OCL operations, we employ
the same DNF transformation discussed earlier. For example,
to solve self.navigation−>forAll(x=3 or y=2), we derive two PIs,
x=3 and y=2, and use them to constrain the objects at the
association end that has navigation as role name.

Second, the DNF transformation can result in exponentially
large DNF representations when there are many literals [24].
Such exponential explosion is unlikely to arise in our context:

875

Manually-written logical constraints for data models typically
include only a handful of literals. For the corrective constraints
that are generated automatically (through Alg. 2 described
later), the number of literals is at most as many as the
number of ranges (or categories) in the bar graphs that capture
the desired statistical distributions. Again, these numbers are
seldom very large. In our case study of Section V, the DNF
transformations took negligible time (milliseconds).

To summarize, using PIs instead of the original constraints
helps avoid dead-ends when solution search has to start from
a specific point in the search space. In Section V (RQ1), we
examine how customizing the baseline solver in the manner
described in this section influences performance.

B. Generating Valid and Representative Data

This section presents the technical details of our data
generation strategy, depicted in Fig. 3 and outlined earlier on.
We already discussed the creation of the seed sample (from our
previous work [12]) and how we make this sample valid using
a customized OCL solver (Section IV-A). Below, we focus on
the iterative process in Fig. 3, i.e., the region delineated by
dashed lines, and present the algorithms behind this process.

We start with some remarks about how we represent
statistical distributions. The instruments we use to this end
are barcharts (for categorical quantities) and histograms (for
ordinal and interval quantities). Without loss of generality,
and while we support both notions, we talk exclusively about
histograms in the text. A histogram is a set of bins. Each bin
is defined by a label (value or range), and a relative frequency
denoting the proportional abundance of the bin’s label. We do
not directly handle continuous distributions, e.g., the normal
distribution. Continuous distributions are discretized into his-
tograms. Doing so is routine [25] and not explained here. We
note however that the discretization should not be too fine-
grained, e.g., resulting in more than 100 bins. This is because
the corrective constraints in our approach will get complex,
in turn posing scalability issues for the OCL solver, e.g., with
respect to the DNF transformation discussed in Section IV-A.
The PIM algorithm. Alg. 1, Process Instance Model (PIM),
presents the procedure for one iteration of the iterative process
(region within the dashed boundary) in Fig. 3. PIM takes the
following as input: (1) a valid data sample, (2) a specific
instance model from the sample to process, (3) a set of validity
constraints, (4) the desired statistical characteristics defined as
histograms, (5) a parameter specifying how many attempts the
algorithm should make to generate tweaked instance models,
and (6) a parameter specifying how sensitive the algorithm is
to differences in relative frequencies. Essentially, if the differ-
ence between two relative frequencies is below the sensitivity
parameter, the two frequencies are considered equal.

The algorithm works in three stages as we describe next.
1) Generate corrective constraints (L. 1-3 of Alg. 1): In this
stage, PIM calls another algorithm GCC (Alg. 2, described
later). GCC generates corrective constraints for the instance
model being processed (L. 1). For example, assume that
the instance model is a pensioner, and that pensioners are

Alg. 1: Process Instance Model (PIM)
Inputs : (1) a set S of valid instance models; (2) an instance model

inst ∈ S to process; (3) a set V of validity constraints;
(4) a set Hdesired of desired statistical characteristics
(expressed as histograms); (5) a parameter nb_attempts
denoting the number of times that the solver will be
invoked over inst to create tweaked instance models; (6) a
parameter freq_sensitivity ∈ [0..1] denoting the margin
beyond which two relative frequencies are deemed far apart.
/* freq_sensitivity is used only for invoking GCC (Alg. 2). */

Output : Either inst or a tweaked instance model, whichever leads to
a more representative data sample.

Fun. calls: GCC: generates corrective constraints (Alg. 2);
solve: invokes the customized solver (see Section IV-A).

1 CC ← GCC(S, inst, Hdesired, freq_sensitivity)
/* CC is the set of corrective constraints returned by Alg. 2. */

2 if (CC = ∅) then
3 return inst
4 T ← ∅ /* T will store potential replacements for inst. */
5 i ← 0 /* i is the number of times the solver has been invoked so far. */
6 while (i < nb_attempts) do
7 inst_tweaked ← solve(inst, V ∪ CC)
8 i← i + 1
9 if (inst_tweaked satisfies the constraints in V) then

10 T ← T ∪ {inst_tweaked}

11 inst_best← inst
12 Sbest ← S
13 foreach candidate ∈ T do
14 S′ ← (S \ {inst}) ∪ {candidate}
15 if (S′ is better aligned with Hdesired than Sbest) then
16 inst_best← candidate
17 Sbest ← S′
18 return inst_best

currently over-represented in the data sample. In response,
GCC will generate the following corrective constraint, named
CC1: self.incomes->forAll(not oclIsTypeOf(Pension)). If GCC does
not yield any corrective constraints, then the original instance
model will be retained in the sample (L. 2-3).
2) Build tweaked instance models (L. 4-10 of Alg. 1): In this
stage, PIM attempts to produce a set of tweaked instance mod-
els based on the corrective constraints generated previously.
These constraints are fed to the solver alongside the validity
constraints (L. 7). To illustrate, consider the example corrective
constraint CC1 generated at the first stage. This constraint
instructs the solver to tweak the instance model at hand so
that the income type will no longer be pension. PIM tries
building tweaked instance models multiple times (L. 6). This
is intended at coming up with multiple candidates (ideally
more than one) for replacing the original instance model in
the sample. As noted earlier, we treat corrective constraints as
soft and try to satisfy them on a best-effort basis. Therefore,
any tweaked instance model returned by the solver will be
included in the set of candidate replacements as long as the
validity constraints hold (L. 9-10).
3) Select best replacement (L. 11-18 of Alg. 1): In this stage,
PIM chooses to either retain the original instance model or
replace it with one of the tweaked instance models computed
in the second stage. The criterion applied for the decision is
which instance model, once incorporated into the sample, will
result in the most statistically representative sample.

The metric we use for measuring statistical representa-
tiveness is Euclidean distance [26]. This metric measures

876

how far two histograms are from one another. The closer
the distance between two histograms is to zero, the better
aligned the histograms are. For example, suppose that the data
sample is composed of 40% resident versus 60% non-resident
taxpayers. As showed in the data schema excerpt in Fig. 1,
the desired distribution is ≈78% resident versus ≈22% non-
resident. The Euclidean distance between the data sample and
the desired distribution is ≈0.55, indicating that the sample
is not representative. Since PIM needs to take into account
several distributions simultaneously, it uses the average of the
Euclidean distances computed for all the histograms.

We next describe the GCC algorithm that PIM calls (on L. 1
of Alg. 1) for generating corrective constraints.
The GCC algorithm. Given an instance model inst within a
data sample S, Alg 2., titled Generate Corrective Constraints
(GCC), provides suggestions (in the form of constraints)
as to how inst can be tweaked so that S will become a
more representative sample. The input to GCC was described
previously as part of PIM’s input. GCC works in three stages
as explained below. Throughout the explanation, we will be
referring to Table I, Table II and Fig. 4 for illustration.
1) Generate OCL literals (L. 1-18 of Alg. 2): In this stage,
GCC groups histograms that annotate the same data schema
element, i.e., class, attribute or association, as illustrated in
Fig. 1 (L. 4-11). For each group, sets O and U will be built
(L. 12-18). These two sets contain OCL literals for Over-
represented and Under-represented histogram bins, respec-
tively. These literals will later be assembled into intermediate
constraints (see second stage below).

The literals in O and U are derived as follows: We com-
pare in a pairwise manner the relative frequencies of the
actual characteristics of S against the desired characteristics
in Hdesired (L. 13-15). To illustrate, consider rows 2 and 3
of Table I. The relative frequencies to compare are F1
against D1, F2 against D2, and so on. If for an index i,
|Fi − Di| > freq_sensitivity (L. 15), the algorithm will
generate a literal. Whether an exclusion or inclusion literal
is generated depends on whether the underlying bin is over-
or under-represented (L. 16-18). For example, in Table I, the
difference between F1 and D1 is |0.9− 0.7| = 0.2, which is
larger than the (user-provided) freq_sensitivity value on row 4
of Table I. Since F1 is over-represented, the following literal
is added to O in order to exclude L1: TaxPayer.allInstances()-
>select(id = 1)->forAll(not (birth_year >= 1979 and birth_year <= 1998)).
Note that the generated literal targets the specific instance
model being processed, since ultimately, the literal is intended
at tweaking that particular instance model. The case for under-
representation is dual and not illustrated.
2) Combine literals (L. 19-21 of Alg. 2): In the second stage,
the algorithm combines the literals in O and U into what we
call an intermediate constraint. We use the term “intermediate”
to distinguish the output of this stage from the final corrective
constraint built in the next (third) stage of the algorithm,
described later. In particular, in the final corrective constraint,
we have to account for the fact that some histograms apply
only under certain conditions. For example, histogram H2 on

Alg. 2: Generate Corrective Constraints (GCC)
Inputs : (1) a set S of valid instance models; (2) an instance model

inst ∈ S for which corrective constraints should be
generated; (3) a set Hdesired of desired statistical
characteristics (expressed as histograms); (4) a parameter
freq_sensitivity ∈ [0..1] denoting the margin beyond which
two relative frequencies are deemed far apart.

Output : A set CC of corrective constraints for inst.
Fun. calls: includeBin (resp. excludeBin): generates an OCL literal

prescribing the inclusion (resp. exclusion) of a specific
histogram bin.

1 CC ← ∅
2 Hcurrent← Statistical characteristics of S
3 M← {H ∈ Hcurrent | H 7→ ""} /* M maps each histogram in
Hcurrent onto an “intermediate” constraint (explained in the text).
All histograms are initially mapped onto an empty expression.

4 P ← ∅ /* P will store histograms (from Hcurrent) which have been
already processed. */

5 foreach H ∈ Hcurrent do
6 if (H ∈ P) then
7 continue /* We have already processed H and thus skip the loop. */
8 Let e be the data schema element to which H has been attached
9 Let L be the set of all histograms in Hcurrent that annotate e

10 foreach L ∈ L do
11 P ← P ∪ {L} /* Histogram L is marked as processed. */
12 Let O and U be initially empty sets of OCL literals

/* U stores literals generated for Under-represented bins;
O stores literals generated for Over-represented bins. */

13 foreach relative frequency F ∈ L do
14 Let D be the relative frequency in Hdesired corresponding to F
15 if (|F −D| > freq_sensitivity) then
16 if (F > D) then
17 O ← O ∪ {excludeBin(inst, F)};
18 else U ← U ∪ {includeBin(inst, F)};

19 if (O 6= ∅ or U 6= ∅) then

20 OCLintermediate ←
(

j=|O|∧
j=1

Oj ∧
j=|U|∨
j=1

Uj

)
/* See Fig. 4. */

21 M ←M∪ {L 7→ OCLintermediate}
22 A ← {A ∈M | M(A) 6= ""} /* A is the set of all histograms in
M with a non-empty intermediate constraint */

23 if (A 6= ∅) then
24 if (|A| = 1 and M(single histogram in A) is unconditional) then
25 OCLfinal← M(single histogram in A) /* Row 1 of Table II */
26 else
27 OCLelse ← "true" /* OCLelse will store the “catch all” else rule

when all of A’s histograms are conditional (Row 3 of Table II) */
28 foreach A ∈ A do
29 conditionA ← "true" /* conditionA will store the OCL

condition for histogram A’s intermediate constraint. */
30 if (A is conditional) then
31 conditionA ← condition of A
32 OCLelse ← OCLelse ∧ (¬ conditionA)
33 foreach B ∈ (A \ {A}) do
34 /* Now, complete A’s condition based on other histograms in A. */
35 if (B is conditional) then
36 conditionA ← conditionA ∧ (¬ conditionB)

37 OCLfinal ← OCLfinal ∨ (conditionA ∧M(A))

38 if (all histograms in A are conditional) then
39 OCLfinal ← OCLfinal ∨ OCLelse

40 CC ← CC ∪ {OCLfinal} /* Store OCLfinal in CC. */

41 M← {H ∈ Hcurrent | H 7→ ""} /* Reset M. */
42 return CC

row 2 of Table I applies to pensioners only. This detail is not
captured by the literals in O and U .

The construction of the intermediate constraint is straight-
forward, noting that we take the conjunction of the literals inO
which prescribe exclusions, and the disjunction of the literals
in U which prescribe inclusions (L. 20). In Fig. 4, we provide

877

TABLE I
ILLUSTRATIVE EXAMPLE FOR ALG. 2

Construct Value

1
Excerpt of the
instance model to
process.

- id = 1
- birth_year = 1986

T1: ResidentTaxPayer
I1: Employment

2

Desired statistical
characteristics
(Hdesired): For
simplicity, we
limit our
illustration to the
histograms
attached to the
birth_year
attribute of
TaxPayer in Fig. 1.

The first histogram, H1, attached to birth_year:
- Bin labels: {L1=[1979..1998], L2=[1959..1978],
L3=[1934..1958], L4=[1900..1933]}
- Relative Frequencies: {D1=0.7, D2=0.2,
D3=0.07, D4=0.03}
- Condition: true (none)

The second histogram, H2, attached to birth_year:
- Bin labels: {L5=[1957..1960], L6=[1917..1956]}
- Relative Frequencies: {D5=0.25, D6=0.75}
- Condition: self.incomes->exists
(oclIsTypeOf(Pension))

3

Statistical
characteristics of
the current sample
(Hcurrent computed
on L. 2 of Alg. 2).
Hcurrent differs
from Hdesired only
in the relative
frequencies.

Histogram H1′ for the sample (differs from H1 on
row 2 above only in relative frequencies):
- Relative Frequencies for H1′: {F1=0.9, F2=0.05,
F3=0.05, F4=0}

Histogram H2′ for the sample (differs from H2 on
row 2 only in relative frequencies):
- Relative Frequencies for H2′: {F5=0.5, F6=0.5}

4 freq_sensitivity. 0.03

((TaxPayer.allInstances()->select(id = 1)->
forAll(not(birth_year >= 1979 and birth_year <= 1998)))
and
(TaxPayer.allInstances()->select(id = 1)->
forAll(not(birth_year >= 1959 and birth_year <= 1978))))

and
(TaxPayer.allInstances()->select(id = 1)->
forAll(birth_year >= 1900 and birth_year <= 1933))

{
{

O

U

From

From

Fig. 4. Intermediate OCL Constraint for Distribution H1′ in Table I

an example of an intermediate constraint for histogram H1′,
shown on row 3 of Table I.
3) Generate final constraints (L. 22-41 of Alg. 2): In the third
(and final) stage, the algorithm (1) adds to the intermediate
constraints conditions that describe under what circumstances
these constraints apply (L. 27-36), and (2) combines the
intermediate constraints, now complemented with conditions,
into corrective constraints (L. 25, 37 and 39). Due to space,
we do not show the final corrective constraint for the example
of Table I. Detailed exemplification of corrective constraints,
including the corrective constraint generated for the example
of Table I, can be found in our supplementary material [27].

Instead, in Table II, we show all possible scenarios for
composing a corrective constraint from the set of histograms
that annotate a given data schema element. In the first scenario
(row 1 of Table II), there is no condition involved. The correc-
tive constraint is thus the same as the intermediate constraint
built for the unconditional histogram (L. 25 of Alg. 2). In
the second scenario (row 2 of Table II), the algorithm first
complements with conditions the intermediate constraints of
the conditional histograms. The condition of one (conditional)
histogram is naturally exclusive of the conditions of others
(L. 33-36). This has been illustrated in the second column of
Table II. The third scenario (row 3 of Table II) is similar to
the second scenario. The only difference is that, since there is
no unconditional histogram, we need an extra clause to deal
with the situation where none of the conditional histograms

TABLE II
SCENARIOS FOR COMPOSING CORRECTIVE CONSTRAINTS

Possible annotation scenarios for
a data schema element

Shape of the final
corrective constraint

1 The element is annotated only by
one unconditional histogram, U . Uintermediate

2

The element is annotated by one un-
conditional histogram, U , plus one
or more conditional histograms, Ci.
The shape shown is for when there
are two conditional histograms.

Uintermediate or (C1condition and not
C2condition and C1intermediate) or
(not C1condition and C2condition and
C2intermediate)

3

The element is annotated only by
conditional histograms, Ci. The
shape shown is for when there are
two conditional histograms.

(C1condition and not C2condition and
C1intermediate) or (not C1condition
and C2condition and C2intermediate) or
(not C1condition and not C2condition)

apply (L. 38-39). This “catch all” clause ensures that the final
corrective constraint will not impact an instance model to
which none of the conditional histograms should apply.

V. EVALUATION

In this section, we empirically evaluate our synthetic data
generator through a realistic case study.

A. Research Questions (RQs)

Our evaluation aims to answer the following RQs:
RQ1: How does the customized OCL solver fare against
the baseline OCL solver? As discussed in Section IV-A, we
customize a baseline OCL solver [16]. RQ1 compares the cus-
tomized solver against the baseline across two dimensions: (a)
execution time, and (b) success rate, i.e., how often each solver
succeeds in constructing a logically valid instance model.
RQ2: Does our synthetic data generator run in practi-
cal time? Statistical testing requires representative test data.
Achieving representativeness often necessitates a large number
of instance models to be built. RQ2 investigates whether our
approach can construct a sufficiently large number of instance
models within practical time.
RQ3: Can our approach generate data samples that are
both valid and statistically representative? RQ3 investigates
whether our approach yields data samples suitable for statisti-
cal testing. Since the approach enforces the validity constraints
of interest over all instance models, data samples generated by
the approach always meet the validity requirement. Answering
RQ3 therefore boils down to determining how well our data
generator meets the representativeness requirement.

The experimental setup for answering these RQs is elabo-
rated in Section V-D alongside our results and discussion.

B. Implementation

Our data generator (http://people.svv.lu/tools/SDG/) has
been implemented in Java using the Eclipse Modeling Frame-
work [28]. Excluding comments and third-party libraries, our
data generator is approximately 39K lines of code.

C. Case Study Description

Our case study is motivated by an anticipated difficulty that
acceptance testing of a public administration IT system in
Luxembourg will pose, once the development of the system is
completed. For this system, many of the software development

878

http://people.svv.lu/tools/SDG/

TABLE III
COMPARISON AGAINST THE BASELINE SOLVER (RQ1)

Baseline Solver Customized Solver
Execution time (per

instance model)
Avg = 58.3 sec.
Std dev = 17.66

Avg = 17.5 sec.
Std dev = 11.33

Success rate (calculated
based on 100 attempts) 21% 92%

and testing activities have been commissioned to third-parties.
Since the actual data that the system will manipulate is
sensitive and of a personal nature, sharing the data with third-
parties poses complications. Further, there are gaps in the
actual data as well as structural mismatches between the data
schema used by the system under development and the data
schema in which the historical records have been archived.
Due to these issues, our collaborating partners have concluded
that the most practical way to ascertain reliability is through
testing the system using synthetic test data.

The schema for the core data items manipulated by our case
study system was developed with participation from subject-
matter experts at our collaborating partners. The resulting
schema, expressed as a UML class diagram, has 64 classes,
17 enumerations, 53 associations, 43 generalizations, and 344
attributes. The statistical characteristics of the data items
were captured using 15 histograms (e.g., for age and income
type), 7 conditional distributions (e.g., age distribution upon
the condition that the individuals are pensioners), and 13
distributions of other types (e.g., uniform distribution for the
day of the year on which individuals are born).

The validity constraints over the data are expressed using 68
OCL invariants available in our supplementary material [27].
Of these, 26 target avoiding logical anomalies (e.g., chil-
dren being older than their parents). Of the remaining 42
constraints, 30 are implied by the ranges (upper and lower
bounds) of the probabilistic annotations, and the final 12 are
multiplicity constraints from the data schema. The constraints
include 10 nested if-then-else expressions, 7 occurrences of
OCL quantifiers, 23 variable declarations, 107 references to
predefined OCL operations, and 212 logical operators.

D. Results and Discussion
In this section, we present our case study results and discuss

the RQs. The experiments in this section were conducted on a
laptop with a 3GHz dual-core processor and 16GB of memory.
RQ1: To answer RQ1, we attempted to generate 100 valid
instance models with both the customized and the baseline
solver. In this experiment, we considered only the validity
constraints of our case study, without taking representativeness
into account. We recall that in contrast to the baseline solver
which starts from a randomly-generated instance model, the
customized solver is seeded with the output of the data gen-
erator presented in Section II. Further, the two solvers differ
in their strategy for exploring the search space as discussed in
Section IV-A. In Table III, we report the execution time and
success rate of the two solvers in the 100 attempts made. We
note that different runs of the customized solver were seeded
with different and randomly-selected initial instance models.
None of these initial instance models were valid.

0

100

200

300

400

500

600

700

100 200 300 400 500 600 700 800 900 1000

Ex
ec

ut
io

n
tim

e
(in

 m
in

ut
es

)

Number of instance models in the sample

Generating
tweaked
instance models
Generating
corrective
constraints
Generating
valid sample

Generating
seed sample

Fig. 5. Execution Times for Generating Valid Data Samples of Different Sizes

As shown in Table III, the customized solver is on average
≈3 times faster than the baseline solver. More importantly,
the customized solver is on average ≈4 times more likely to
succeed in reaching a valid instance model. Stated otherwise,
the customized solver produces a valid instance model in
much fewer runs, thus significantly decreasing wasted time
and CPU usage when compared to the baseline. The observed
improvements are explained mainly by two factors: First, the
customized solver has a better starting point (initial instance
model) which is easier to make valid. And second, the cus-
tomized solver has a strategy (explained in Section IV-A) for
avoiding entrapment in regions of the search space that do not
contain any valid solutions.

The answer to RQ1 is that the customized solver outperforms
the baseline by a factor of ≈3 in terms of execution time and
by a factor of ≈4 in terms of success rate.

RQ2: To answer RQ2, we measured the average execution
time of our data generator for building data samples of
different sizes, ranging from 100 to 1000. In the context of
our case study, each element in the sample is an instance
model that represents a household for the purposes of taxation.
For a given data sample size, the data generation process was
repeated five times to account for random variation.

For this experiment, we configured our data generator as
follows: (a) The number of times the solver is invoked over
a given instance model in order to create tweaked instance
models (parameter nb_attempts of Alg. 1) is set to two, and
(b) the margin for comparing relative frequencies (parameter
freq_sensitivity of Alg. 1) is set to 0.01. This means that a dif-
ference of 1% between a relative frequency in the data sample
and the corresponding frequency in the desired characteristics
will prompt our data generator to take corrective action.

Average execution times for different sample sizes are
shown in Fig. 5. For example, the average execution time
(across five runs) for producing a data sample with 500 (valid)
instance models is ≈200 minutes. Overall, we generated
(100 + 200 + ... + 1000) × 5 = 27500 (valid) instance
models. On average, an instance model from this cumulative
population has 40 objects, 276 attribute values, and 37 object
links. Average instance model size depends on the specific
data profile of the system under test.

Fig. 5 further provides a breakdown of the execution times
over the different steps of our data generator. The breakdown

879

indicates: First, the time required for creating an initial seed
sample is negligible. Second, the generation of corrective
constraints (by Alg. 2) is highly scalable with its execu-
tion time showing a linear growth trend. Finally, the most
computationally-intensive steps are those involving constraint
solving (i.e., generating valid sample and generating tweaked
instance models in Fig. 5). Constraint solving accounts on
average for 85% of the execution time. Despite its complexity,
our data generator could produce in less than ten hours a data
sample with 1000 instance models (i.e., 1000 test cases). This
execution time is practical in our context because, in the worst
case, the data can be generated overnight. Indeed, since data
profiles are often stable, one can imagine that the test data can
be generated early on and well before the testing phase. For
systems with more complex data schemas, parallelization can
be considered, noting that the solver technology underlying
our approach is search-based and easily parallelizable [16].

The answer to RQ2 is that our data generator could produce
samples with up to 1000 instance models in less than
ten hours. This execution time is practical in our context,
since data generation can be performed overnight. For more
complex systems, parallelization of search during constraint
solving can be considered. Further, test data generation can
be initiated well in advance of the testing phase, and as soon
as the data profile for the system under test has stabilized.

RQ3: To answer RQ3, we use the same experimental setup
and instance models as in RQ2. The basis for our answer is
the average distance between the statistical distributions in a
given sample and the corresponding distributions specified by
the data profile. Note that for a given sample size, we compute
average distances based on five runs, as explained in RQ2.

As noted in Section IV-B, we use the Euclidean distance
metric for guiding data generation. Euclidean distance is
nevertheless not the only metric that one can use for quan-
tifying representativeness. To gain more thorough insights
about the representativeness of the data samples generated
by our approach, we employ two additional distance metrics,
namely Manhattan and Canberra [26]. These additional metrics
were selected on the basis of the following criteria: (1) they,
alongside Euclidean distance, are among the most commonly-
used distance metrics for comparing distributions [26], and
(2) robust implementations of the metrics were readily avail-
able [29]. These two new distance metrics are interpreted in
the same way as Euclidean distance: the closer the distance
is to zero, the better aligned a given pair of distributions are.
Using these additional metrics in our evaluation helps ensure
that our results are not strongly biased toward the specific
notion of representativeness induced by Euclidean distance.

Figs. 6(a) – (c) respectively show the representativeness re-
sults computed by the Euclidean, Manhattan, and Canberra
distance metrics. For each sample size, distances are computed
for: (1) the seed (potentially invalid) data sample (2) the initial
valid data sample built based on the seed sample, and (3) the
final sample returned by our data generator. These distances

(c)

(a)

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

100 200 300 400 500 600 700 800 900 1000

Eu
cl

id
ea

n
di

st
an

ce

Number of instance models in the sample

Distance for (invalid)
seed sample (d₁)

Distance for initial
valid sample (d₂)

Distance for final
valid sample (d₃)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

100 200 300 400 500 600 700 800 900 1000

M
an

ha
tta

n
di

st
an

ce

Number of instance models in the sample

Distance for (invalid)
seed sample (d₁)

Distance for initial
valid sample (d₂)

Distance for final
valid sample (d₃)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

100 200 300 400 500 600 700 800 900 1000
C

an
be

rr
a

di
st

an
ce

Number of instance models in the sample

Distance for (invalid)
seed sample (d₁)

Distance for initial
valid sample (d₂)

Distance for final
valid sample (d₃)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

100 200 300 400 500 600 700 800 900 1000

C
an

be
rr

a
di

st
an

ce

Number of instance models in the sample

Distance for (invalid)
seed sample (d₁)

Distance for initial
valid sample (d₂)

Distance for final
valid sample (d₃)

Fig. 6. Distance between Generated Sample and Desired Distributions: (a)
Euclidean Distance, (b) Manhattan Distance, and (c) Canberra Distance

are denoted d1, d2 and d3 as shown in Fig. 6. The difference
between d2 and d1 results from fixing the logical anomalies
in the seed sample. The difference between d3 and d2 is
the improvement induced by the corrective constraints. The
difference between d3 and d1 indicates the improvement in
representativeness brought about by our data generator when
compared to the representativeness of the seed sample.

The same trends are observed across the results irrespective
of the distance metric used: First, we see that d2>d1. This
is natural, since we initially attempt to make the seed sam-
ple valid without accounting for representativeness. Second,
d2�d3, which means that the generated corrective constraints
have been effective at guiding constraint solving toward rep-
resentativeness. Thirdly, and remarkably, d1>d3. The average
of (d1−d3) across all data sample sizes is ≈0.2, ≈0.25 and
≈0.6 for the Euclidean, Manhattan and Canberra distance
metrics, respectively. This means that our data generator, in
addition to producing logically valid samples, has surpassed
in terms of representativeness the seed sample, which was built
exclusively to be representative.

When considering the final data samples, the largest stan-
dard deviation observed in distances across the five runs made
for each sample size was ≈0.004 (not shown in Fig. 6). This
provides confidence that random variation has little influence
over the representativeness of the final data samples.

The answer to RQ3 is that the (final) data samples created
by our data generator are valid, and at the same time,
surpassing the state-of-the-art in terms of representativeness.

880

E. Threats to Validity

Conclusion and external validity are the most relevant
aspects of validity to our case study.
Conclusion validity. As stated in Section V-C, our case study
was prompted by a foreseen difficulty in the acceptance testing
of a system that is still under development. The unavailability
of the final system prevented us from using the data generated
by our approach for system-level testing. This leaves the
possibility that the system may require test data beyond what
was generated. To mitigate this threat, we ensured that the
data schema was validated by domain experts. Further, since
the system is an operationalization of procedures described in
taxation and social security laws, we were able to check our
data schema against legal provisions and make sure that no
important concepts were overlooked. We thus believe that the
likelihood of major omissions in our data schema is low.
External validity. Generalizability is always a concern in case
study research, particularly when the results are drawn from
a single case. Our evaluation results need to be interpreted
with respect to the complexity of our data schema and the
associated OCL constraints. Further studies remain essential
to determine how our approach will perform on more complex
data profiles. This said, our case study system is by any stan-
dard a complex data-intensive system. In addition, and as noted
earlier, our approach provides two alternatives for further en-
hancing scalability: (1) to start test data generation long before
the testing starts, and (2) to parallelize constraint solving.

VI. RELATED WORK

Usage profiles. In the introduction, we already compared our
work with the existing literature on usage profiles. Without
repeating what was already said, we make some additional
remarks. Existing usage profiles mainly target embedded and
web-based systems. The behaviors of these systems typically
lend themselves to being modeled as states and transitions
(for web-based systems, web pages represent states, and clicks
on links and buttons represent transitions [6]). State-machine-
like notations such as Markov chains therefore provide a
convenient way to build usage profiles for these systems.
Our work in contrast focuses on systems whose behavior is
driven by data that is interdependent and subject to complex
logical constraints. A data schema enhanced with probabilistic
information and constraints is a more natural choice for
encoding usage profiles in our application context.
Synthetic data generation. The ability to create synthetic data
is an integral part of automated test case generation. Since,
in practice, it is often infeasible to cover all possible test
scenarios, test case generation (and thus the underlying data
generation strategy) is typically targeted at optimizing some
notion of coverage, e.g., state or path coverage [30]. Meta-
heuristic search is widely used for generating data to support
coverage-based testing [30]. Our data generation strategy relies
on search, but rather than attempting to maximize some cov-
erage criterion, we try to achieve statistical representativeness.

In the context of model-based development, data generation
has been considered from many angles, including model
verification and model-based testing. The most notable tool
to mention here is Alloy [31], which provides a specification
language based on first-order logic and a SAT-based model
finder. Another interesting work strand is UML2CSP [20],
where constraint programming is employed for generating
instance models that satisfy a given set of OCL constraints. In
theory, we could have employed in our approach either Alloy
or UML2CSP for constraint solving. Nevertheless, due to the
technical limitations already discussed in Section IV-A, most
importantly scalability, we opted for a search-based solution.

Aside from the above work, a number of heuristic tech-
niques exist for generating large synthetic data. Notably, Hart-
mann et al. [32] propose a rule-based technique for generating
realistic smart grid instances according to the grid’s known
topological characteristics. And, Mougenot et al. [33] adopt
random sampling for generating large models in linear time.
These techniques cannot enforce complex validity constraints
over data. The techniques, on their own, are therefore not
sufficient for achieving our goals in this paper.
Whole test suite generation. Whole test suite generation builds
an entire test suite by simultaneously optimizing multiple fit-
ness functions (e.g., for multiple coverage criteria) [34], [35].
In principle and with appropriate fitness functions defined for
validity and representativeness, the problem addressed in this
paper can be formulated as whole test suite generation. The
realization is however impractical: Whole test suite generation
has been applied mainly to unit testing, where the test cases
are small. In our context, test cases are much larger and are
composed of complex and interdependent data elements. A
whole test suite would therefore be prohibitively large for
being manipulated by search. Further, our goal is not to
optimize validity, but rather to guarantee it while optimizing
representativeness. Our approach therefore takes a different
route than whole test suite generation. We achieve validity
and representativeness separately. Specifically, we start with a
representative but invalid test suite. We make this test suite
valid, but in the process, reduce its representativeness. At the
end, we optimize representativeness without affecting validity.

VII. CONCLUSION

Focusing on data-intensive systems, we proposed an ap-
proach for building synthetic test data. We evaluated the
approach over an industrial case study. Our empirical results
suggest that our approach can generate within practical time
test data that is both statistically representative and logically
valid. Meeting these criteria is key for meaningful reliability
estimation via statistical testing. For future work, we would
like to use the generated data for actual system testing. We
further plan to conduct additional case studies to better assess
the usefulness and scalability of our data generation approach.

Acknowledgment. This project has received funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement No 694277).

881

REFERENCES

[1] P. Runeson and C. Wohlin, “Statistical usage testing for software
reliability control,” Informatica, vol. 19, no. 2, pp. 195–207, 1995.

[2] J. D. Musa, “Operational profiles in software-reliability engineering,”
IEEE Software, vol. 10, no. 2, pp. 14–32, 1993.

[3] J. A. Whittaker and J. H. Poore, “Markov analysis of software specifi-
cations,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 2, no. 1, pp. 93–106, 1993.

[4] J. H. Poore and C. J. Trammell, “Application of statistical science to
testing and evaluating software intensive systems,” in Statistics, Testing,
and Defense Acquisition, M. L. Cohen, D. L. Steffey, and J. E. Rolph,
Eds. National Academies Press, 1999, ch. 3.

[5] C. Kallepalli and J. Tian, “Measuring and modeling usage and reliability
for statistical web testing,” IEEE Transactions on Software Engineering
(TSE), vol. 27, no. 11, pp. 1023–1036, 2001.

[6] P. Tonella and F. Ricca, “Statistical testing of web applications,” Journal
of Software Maintenance and Evolution: Research and Practice, vol. 16,
no. 1-2, pp. 103–127, 2004.

[7] H. L. Guen, R. Marie, and T. Thelin, “Reliability estimation for statistical
usage testing using markov chains,” in Proceedings of 15th IEEE Inter-
national Symposium on Software Reliability Engineering (ISSRE’04).
IEEE, 2004, pp. 54–65.

[8] S. Herbold, P. Harms, and J. Grabowski, “Combining usage-based and
model-based testing for service-oriented architectures in the industrial
practice,” International Journal on Software Tools for Technology Trans-
fer (STTT), 2016, (in press).

[9] “General Data Protection Regulation (Regulation (EU) 2016/679),”
2016. [Online]. Available: http://eur-lex.europa.eu/legal-content/EN/
TXT/?uri=OJ:L:2016:119:TOC

[10] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Fragments and loose associations: Respecting privacy in
data publishing,” Proceedings of Very Large Data Bases Endowment
(VLDB), vol. 3, no. 1, pp. 1370–1381, 2010.

[11] D. Al-Azizy, D. Millard, I. Symeonidis, K. O’Hara, and N. Shadbolt,
“A literature survey and classifications on data deanonymisation,” in
Proceedings of 10th International Conference on Risks and Security of
Internet and Systems (CRiSIS’10). Springer, 2015, pp. 36–51.

[12] G. Soltana, N. Sannier, M. Sabetzadeh, and L. Briand, “Model-based
simulation of legal policies: Framework, tool support, and validation,”
Software & Systems Modeling (SoSyM), 2016, (in press).

[13] F. Figari, A. Paulus, and H. Sutherland, “Microsimulation and policy
analysis,” Handbook of Income Distribution, vol. 2, 2014.

[14] G. Soltana, M. Sabetzadeh, and L. Briand, “Model-based simulation of
legal requirements: Experience from tax policy simulation,” in Proceed-
ings of 24th IEEE International Requirements Engineering Conference
(RE’16). IEEE, 2016.

[15] Object Management Group, “Object Constraint Language 2.4 Specifi-
cation,” 2004, http://www.omg.org/spec/OCL/2.4/, last accessed: May
2017.

[16] S. Ali, M. Z. Iqbal, M. Khalid, and A. Arcuri, “Improving the per-
formance of OCL constraint solving with novel heuristics for logical
operations: a search-based approach,” Empirical Software Engineering
(ESE), vol. 21, no. 6, pp. 2459–2502, 2016.

[17] Object Management Group, “OMG Unified Modeling Language
(UML),” 2015, http://www.omg.org/spec/UML/2.5, last accessed: March
2017.

[18] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “On challenges
of model transformation from UML to Alloy,” Software & Systems
Modeling (SoSyM), vol. 9, no. 1, pp. 69–86, 2010.

[19] A. Cunha, A. Garis, and D. Riesco, “Translating between Alloy spec-
ifications and UML class diagrams annotated with OCL,” Software &
Systems Modeling (SoSyM), vol. 14, no. 1, pp. 5–25, 2015.

[20] J. Cabot, R. Clarisó, and D. Riera, “On the verification of UML/OCL
class diagrams using constraint programming,” Journal of Systems and
Software (JSS), vol. 93, pp. 1–23, 2014.

[21] S. Ali, M. Z. Iqbal, A. Arcuri, and L. C. Briand, “Generating test data
from OCL constraints with search techniques,” IEEE Transactions on
Software Engineering (TSE), vol. 39, no. 10, pp. 1376–1402, 2013.

[22] M. P. Krieger and A. Knapp, “Executing underspecified OCL operation
contracts with a SAT solver,” Electronic Communication of the European
Association of Software Science and Technology (ECEASST), vol. 15, pp.
1–16, 2008.

[23] P. Hurley, A concise introduction to logic. Nelson Education, 2014.
[24] P. B. Miltersen, J. Radhakrishnan, and I. Wegener, “On converting CNF

to DNF,” Theoretical Computer Science, vol. 347, no. 1-2, pp. 325–335,
2005.

[25] R. K. Hammond and J. E. Bickel, “Discretization methods for continuous
probability distributions,” in Wiley Encyclopedia of Operations Research
and Management Science. Wiley, 2015.

[26] S.-H. Cha, “Comprehensive survey on distance/similarity measures be-
tween probability density functions,” Mathematical Models and Methods
in Applied Sciences, vol. 1, no. 2, pp. 300–307, 2007.

[27] G. Soltana, M. Sabetzadeh, and L. Briand, “Synthetic data generation
for statistical testing: Supplementary material,” SnT Centre for Secu-
rity, Reliability and Trust, University of Luxembourg, Supplementary
Material, May 2017, http://people.svv.lu/soltana/ASE17_supp.pdf.

[28] Eclipse Foundation, “EMF: Eclipse Modeling Framework,” http://www.
eclipse.org/emf, last accessed: May 2017.

[29] Apache Foundation, “Apache commons mathematics library,” http://
commons.apache.org/proper/commons-math/, last accessed: May 2017.

[30] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege,
“A systematic review of the application and empirical investigation
of search-based test case generation,” IEEE Transactions on Software
Engineering (TSE), vol. 36, no. 6, pp. 742–762, 2010.

[31] D. Jackson, Software Abstractions: logic, language, and analysis. MIT
press, 2012.

[32] T. Hartmann, F. Fouquet, J. Klein, Y. Le Traon, A. Pelov, L. Toutain, and
T. Ropitault, “Generating realistic smart grid communication topologies
based on real-data,” in Proceedings of 5th IEEE International Confer-
ence on Smart Grid Communications (SmartGridComm’14), 2014, pp.
428–433.

[33] A. Mougenot, A. Darrasse, X. Blanc, and M. Soria, “Uniform random
generation of huge metamodel instances,” in Proceedings of 5th Eu-
ropean Conference on Model Driven Architecture - Foundations and
Applications (ECMDA-FA’09), 2009, pp. 130–145.

[34] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Trans-
actions on Software Engineering (TSE), vol. 39, no. 2, pp. 276–291,
2013.

[35] J. M. Rojas, M. Vivanti, A. Arcuri, and G. Fraser, “A detailed inves-
tigation of the effectiveness of whole test suite generation,” Empirical
Software Engineering (ESE), vol. 22, no. 2, pp. 852–893, 2017.

882

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/UML/2.5
http://people.svv.lu/soltana/ASE17_supp.pdf
http://www.eclipse.org/emf
http://www.eclipse.org/emf
http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/

	Introduction
	Background
	Approach Overview
	Generating Synthetic Data
	Solving OCL Constraints
	Generating Valid and Representative Data

	Evaluation
	Research Questions (RQs)
	Implementation
	Case Study Description
	Results and Discussion
	Threats to Validity

	Related Work
	Conclusion
	References

