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Abstract. Multiple extensions of Dung’s argumentation frameworks
(AFs) have been proposed in order to model features of argumenta-
tion that cannot be directly modeled in AFs. One technique that has
already previously proven useful to study and combine such extensions
is the meta-argumentation methodology involving the notion of a flat-
tening. In order to faithfully model the interaction between explana-
tion argumentation in scientific debates, Šešelja and Straßer have intro-
duced Explanatory Argumentation Frameworks (EAFs). In this paper,
we first prove that the flattening technique works as expected for re-
cursive (higher-order) attacks. Then we apply this technique in order to
combine EAFs with multiple other extensions that have been proposed to
AFs, namely with recursive attacks, joint attacks and a support relation
between arguments. This gives rise to Extended Explanatory Argumen-
tation Frameworks (EEAFs). We illustrate the applicability of EEAFs
by using them to model a piece of argumentation from a research-level
philosophy book.

1 Introduction

Dung’s argumentation frameworks (AFs) [7] are a powerful and flexible for-
mal tool for formally modelling argumentative discourse. However, various re-
searchers have felt the need to extend AFs in order to model features of argu-
mentation that cannot be directly modeled in AFs, e.g. by enriching them with
recursive (higher-order) attacks [2], joint attacks [9], a support relation between
arguments [5,4], or explanatory features [10].

One technique that has already previously proven useful to study and com-
bine such extensions is the meta-argumentation methodology involving the no-
tion of a flattening [3]. A flattening is a function that maps some extended variant
of argumentation frameworks into standard AFs. If the definition of the various
argumentation semantics for that extended variant of AFs is independent from
the definition of that flattening function, one wants the flattening to satisfy the
property that it preserves these semantics, in the sense that applying the flatten-
ing function, then calculating the extensions according to some argumentation
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semantics, and finally unflattening the extensions should yield the same result
as directly calculating the extensions according to the corresponding argumenta-
tion semantics for the extended variant of argumentation frameworks. However,
flattenings can also be used to define argumentation semantics for extended
variants of AFs for which there is no definition of the semantics independent of
flattenings. This approach has proven particularly useful for combining multiple
extensions of AFs [3], because in this case, it is often much clearer what the
“right” definition of a flattening is than what the “right” direct definition of the
various argumentation semantics is.

Previous work on flattening argumentation frameworks with recursive attacks
(AFRAs) was limited to second-order attacks [3,1], even though the original def-
inition of recursive attacks was for arbitrarily deeply nested higher-order attacks
[2]. This means that for the purpose of defining the flattening, attacking an
attack between two arguments was allowed, but attacking such a second-order
attack was already not allowed. In Section 3.1, we show how to define a flatten-
ing of arbitrary AFRAs, and prove that it conforms with the direct definition of
the semantics of AFRAs.

The rest of the paper is devoted to applying the meta-argumentation method-
ology of flattening and unflattening in order to incorporate recursive attacks,
joint attacks and a support relation between arguments into Explanatory Ar-
gumentation Frameworks (EAFs), which have been proposed by Šešelja and
Straßer [10] in order to faithfully model the interaction between explanation and
argumentation in scientific debate. EAFs feature explananda and an explanatory
relation that can hold either between an argument and an explanandum, or be-
tween two arguments. We use the terms Extended Explanatory Argumentation
Frameworks (EEAFs) for this enriched formalism that incorporates recursive
attacks, joint attacks and a support relation into EAFs.

The explanatory relation from EAFs cannot be easily flattened. Therefore, for
defining the semantics of EEAFs, we apply the meta-argumentation methodology
by allowing the output of the flattening function to be an EAF rather than an
AF. In other words, we flatten away recursive attacks, joint attacks and the
support relation, but we do not flatten away explanations, instead making use
of the semantics of EAFs instead of the semantics of standard AFs.

Finally, we illustrate the applicability of EEAFs by using them to model
a piece of argumentation from the introduction to Hartry Field’s book Saving
Truth from Paradox [8], an important, relatively recent, monograph about se-
mantic paradoxes, a major research topic within the field of philosophical logic.

The rest of the paper is structured as follows: In Section 2, we describe
the various proposed extensions to AFs and outline the meta-argumentation
methodology of flattening and unflattening. In Section 3, we first extend the
meta-argumentation methodology to arbitrarily deeply nested AFRAs, and then
use this methodology to formally define the semantics of EEAFs. In Section 4 we
present an example that illustrates the applicability of EEAFs, before concluding
the paper in Section 5.
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2 Basics of Formal Argumentation

We use the standard notions of abstract argumentation frameworks as defined
by P. M. Dung in 1995 [7].

2.1 Explanatory Argumentation Frameworks

In scientific debates, the discussions are usually centered around some phe-
nomenons or evidence and the different parties propose theories to explain them.
With this idea in mind, D. Šešelja and C. Straßer have extended abstract argu-
mentation framework with explanatory features [10]. In these frameworks, there
are not only arguments but also explananda. These are scientific phenomenons
of which, unlike arguments, the acceptability is not being questioned.

Definition 1. An explanatory argumentation framework (EAF) is a tuple 〈A,X ,
→, 99K,∼〉, where A is a set of arguments, X is a set of explananda, → ⊆
A × A is an attack relation, 99K ⊆ A × (A ∪ X ) is an explanation relation
from arguments to either explananda or other arguments, and ∼ ⊆ A × A is a
symmetric incompatibility relation.

Note that the incompatibility relation’s purpose is to differentiate between
the opposing theories, as scientists usually do not accept multiple explanations
of a given phenomenon at the same time.

Definition 2. Let 〈A,X ,→, 99K,∼〉 be an EAF. A set of arguments S ⊆ A is
said to be conflict-free if and only if there are no arguments a, b ∈ S such that
(a, b) ∈ →∪∼.

Note that the definition of admissible sets still stands but with the revised
definition of conflict-freeness.

Definition 3. An explanation X[e] for e ∈ X offered by a set of arguments S
is a subset S′ of S such that there exists a unique argument a ∈ S′ such that
a 99K e and for all a′ ∈ S′ \ a, there exists a path in 99K from a′ to a.

Fig. 1. Example EAF1

Example 1. Consider the EAF on Figure 1. Note that the incompatibility
relation has been represented by a straight line with no arrow between a and b.
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Here we have two explananda, e1 and e2. a explains both e1 and e2 while b
explains only e2. Consider the conflict-free set {a, d, f}. It contains two expla-
nations for e1, namely X1[e1] = {a} and X2[e1] = {a, d}. Similarly, it offers two
explanations for e2. The conflict-free set {b, f} however offers an explanation
only for e2.

For our goal of selecting the best theory from our model, we need a way to
compare how much and how well a given set of arguments is able to explain.

Definition 4. A set of arguments S1 is explanatory more powerful than a set of
arguments S2 (S1 >p S2) if and only if the set of explananda for which S1 offers
an explanation is a strict super-set of the set of explananda for which S2 offers
an explanation.

An explanation X1[e] is explanatory deeper than another explanation X2[e]
(X1[e] >d X2[e]) if and only if X2[e] ⊂ X1[e].

In our previous example, we have that {a, d} >p {b} since {a, d} offers an ex-
planation for {e1, e2} while {b} only offers an explanation for {e2}. Additionally,
we have that {a, d} >d {a} and {a, d, f} >d {a, f}.

Šešelja and Straßer [10] then propose two procedures for the selection of the
best sets of arguments with respect to these notions. We have redefined them as
extensions, in order to be more in line with abstract argumentation extensions,
while preserving their concepts.

Definition 5. Let 〈A,X ,→, 99K,∼〉 be an EAF and S ⊆ A a set of arguments.

1. We say that S is satisfactory iff S is admissible and there is no S′ ⊆ A such
that S′ >p S and S′ is admissible.

2. We say that S is insightful iff S is satisfactory and there is no S′ ⊆ A such
that S′ >d S and S′ is satisfactory.

3. We say that S is an argumentative core extension (AC-extension) of ∆ iff S
is satisfactory and there is no S′ ⊃ S such that S′ is satisfactory.

4. We say that S is an explanatory core extension (EC-extension) of ∆ iff S is
insightful and there is no S′ ⊂ S such that S′ is insightful.

In our example, the AC-extension is {a, d, f}, while the EC-extension is
{a, d}.

2.2 Argumentation Frameworks with Recursive Attacks

While EAFs add explanatory features to abstract argumentation frameworks,
Baroni et al. [2] have developed an extension which enhances the expressive
power of the attack relation. In their frameworks, they allow for attacks to target
other attacks. This way, an argument may refute an attack relation between two
other arguments without contesting the acceptability of any of them.

Definition 6. An Argumentation Framework with Recursive Attacks (AFRA)
is a pair 〈A,→〉 where A is a set of arguments and → ⊆ A × (A ∪ →) is an
attack relation from arguments to either arguments or attacks.
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For a given attack α = (A,X) ∈ →, we say that the source of α is src(α) = A
and its target is trg(α) = X.

Now that attacks can be targeted, we need to extend our notions of accep-
tance to also include them.

Definition 7. Let F = 〈A,→〉 be an AFRA, ϕ ∈ →, ψ ∈ (A ∪ →) and S ⊆
(A ∪→). We say that ϕ defeats ψ iff either ψ = trg(ϕ) or src(ψ) = trg(ϕ).

Additionally, we say that S is conflict-free iff there do not exist ϕ,ψ ∈ S
such that ϕ defeats ψ.

The notions of defense and admissibility then follows with a similar idea as
in standard abstract argumentation frameworks.

Definition 8. Let F = 〈A,→〉 be an AFRA, ϕ ∈ (A ∪→) and S ⊆ (A ∪→).
We say that S defends ϕ iff for every ψ ∈ → such that ψ defeats ϕ, there exists
a δ ∈ S such that δ defeats ψ. We say that S is admissible iff S is conflict-free
and defends its elements.

The complete semantics then follows with a similar definition as in classical
abstract argumentation but using the adapted notions just defined.

Definition 9. Let F = 〈A,→〉 be an AFRA and S ⊆ (A ∪→). We say that S
is a complete extension of F iff S is admissible and contains every ϕ ∈ (A∪→)
it defends.

2.3 Support in Abstract Argumentation

While classical abstract argumentation revolves around attacks, there has been
research on extending it with a positive relation of support between arguments.
We will first examine the formalism introduced by Cayrol and Lagasquie-Schiex
called bipolar argumentation framework [5], as summarized by G. Boella et al.
in [4].

Definition 10. A bipolar argumentation framework (BAF) is a triple 〈A,→,⇒〉
where A is a set of arguments, →⊆ A×A is an attack relation and ⇒⊆ A×A
is a support relation.

Boella et al. [4] treat support in a deductive sense and thus introduce medi-
ated attacks. The intuition behind these attacks is that if from a we can deduce
b, then if we do not have b, we also cannot have a.

Definition 11. Let 〈A,→,⇒〉 be a bipolar argumentation framework. For a, b ∈
A, there is a mediated attack from a to b if and only if there is a sequence
a1 ⇒ a2, ..., an−1 ⇒ an such that n ≥ 2, a = a1 and b→ an.

They then define the semantics of bipolar argumentation frameworks with re-
spect to their flattening. The flattened framework will consist of meta-arguments
and an attack relation only, with the support relation from the BAFs being rep-
resented as a combination of auxiliary meta-arguments and attack relations.
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Definition 12. Given a bipolar argumentation framework 〈A,→,⇒〉, the set
of corresponding meta-arguments MA is {acc(a) | a ∈ A} ∪ {Xa,b, Ya,b | a, b ∈
A} ∪ {Za,b | a, b ∈ A} and →2⊆ MA ×MA is a binary relation on MA such
that:

– For all a, b ∈ A such that a→ b, we have acc(a)→2 Xa,b, Xa,b →2 Ya,b and
Ya,b →2 acc(b)

– For all a, b ∈ A such that a⇒ b, we have acc(b)→2 Za,b and Za,b →2 acc(a)

Example 2. The example represented in Figure 2 is flattened in Figure 3:

Fig. 2. Example bipolar argumentation framework

Fig. 3. Flattened BAF from Figure 2

In the flattening, the mediated attacks are made apparent. By applying the
semantics of classical abstract argumentation frameworks we can then retrieve
the corresponding extensions of the BAF.

Note that Baroni et al [6] have combined higher-order attacks and supports,
with semantics defined directly on the higher-level frameworks. However, unlike
with the flattening approach, it is unclear how to take further features into
account in those direct semantics.

2.4 Joint attacks

Another extension of AFs allows for joint attacks, where multiple arguments join
forces to attack another argument. D. Gabbay [9] calls this kind of relation a
joint attack. He defines it as follows:

Definition 13. A higher level argumentation framework is a triple (S, S0,→),
where S 6= ∅ is a set of arguments, S0 is the family of all finite non-empty subsets
of S and →⊆ S0 × S is an attack relation.
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Fig. 4. Higher level argumentation framework

For simplicity of notation we will identify the singleton set {x} with x.
Similarly as before, the semantics of higher level networks will be defined in

terms of their flattening. We define the flattening as follows:

Definition 14. Given a higher level argumentation framework (S, S0,→), the
set of corresponding meta-arguments MA is {acc(a), rej(a) | a ∈ A} ∪ {e(X) |
X ∈ S0} and →2⊆MA×MA is a binary relation on MA such that:

– For all a ∈ A, we have acc(a)→2 rej(a)
– For all X ∈ S0, and every b ∈ A such that X → b, we have that e(X) →2

acc(b) and rej(a)→2 e(X) for every a ∈ X.

In the flattening, the success of a joint attack depends solely on the accep-
tance of the meta-argument e(X), which itself depends on the acceptance of
every argument in the coalition.

The flattening of the framework from Figure 4 is depicted in Figure 5.

Fig. 5. Flattened version of the framework from Figure 4

3 Aggregating multiple extensions of abstract
argumentation frameworks: EEAFs

In this section, we will introduce Extended Explanatory Argumentation Frame-
works (EEAFs), an extension of EAFs from Section 2.1 with meta-argumentation
features such as higher order attacks, support and joint attacks.

In order to motivate the semantics of EEAFs based on a flattening function,
we will start by suggesting a flattening for AFRAs of any order. We will prove
that this flattening leads to the same extensions as the AFRA semantics defined
by Baroni et al. [2].
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3.1 Flattening AFRAs

Boella et al. [3] define a flattening function for second-order AFRAs, which
allows one to obtain for a given AFRA an equivalent abstract argumentation
framework. We will now propose a flattening function for AFRAs of any order.

We will first define a function m which will associate each argument and
each attack relation to the corresponding meta-argument. For an argument a, it
will be the meta-argument acc(a), while for an attack, it will be the Y auxiliary
argument, since its acceptability is synonym of success for the attack.

Definition 15. Let F = 〈A,→〉 be an AFRA. The set of corresponding meta-
arguments is MA = {acc(a) | a ∈ A}∪{Xa,ψ, Ya,ψ} | a ∈ A, ψ ∈ (A ∪ →)}. We
define a partial function m: (A ∪ →) 7→MA, such that:

– if ϕ ∈ A, then m(ϕ) = acc(ϕ).
– if ϕ ∈→ such that for some ψ ∈ A and some δ ∈ (A ∪ →), ϕ = (ψ, δ), then
m(ϕ) = Yψ,δ.

We define the flattening function f to be f(F ) = 〈MA,→2〉, where →2⊆
MA×MA is a binary relations on MA such that

acc(a)→2 Xa,ψ, Xa,ψ →2 Ya,ψ and Ya,ψ →2 m(ψ) for all a ∈ A, ψ ∈ (A ∪ →)

One can then apply the classical abstract argumentation semantics such as
complete, stable, preferred and grounded. We then need to define a function
which can transform a meta-extension from the flattened AFRA to an extension
for the original AFRA. A similar unflattening function has been introduced in
[3], and has been slightly modified here to also unflatten attacks.

Definition 16. Given a set of meta-arguments B ⊆MA, we define the unflat-
tening function g as:

g(B) = {a | acc(a) ∈ B} ∪ {(a, ψ) | Ya,ψ ∈ B}

We also define a function f̄ which provides a correspondence between a set
of arguments and attacks from an AFRA and a set of meta-arguments from its
flattened version.

Definition 17. Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉 its flattening
and S ⊆ (A ∪ →). We define the correspondence function f̄ : P(A ∪ →) 7→
P(MA) as follows:

f̄(S) = {acc(a) | a ∈ S ∩ A} ∪ {Ya,ψ | (a, ψ) ∈ S ∩ →} ∪
{Xb,ψ | (a, b) ∈ S ∩ →, ψ ∈ →}

Notice that g(f̄(S)) = S. We add the extra Xi,j meta-arguments in order to
represent the indirect attacks which the arguments in S might carry out, i.e. the
attacks which are indirectly attacked by arguments in S due to them attacking
the source of these attacks.
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In [2], Baroni et al. define the semantics of AFRAs without having recourse
to flattening. We will show that the process of flattening, applying complete
semantics on the flattened frameworks and then unflattening it is equivalent to
the directly applying the semantics they define for the complete semantics. We
will show this gradually by first stating and proving three lemmas:

Lemma 1. Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉 and S ⊆ (A ∪ →).
S is conflict-free in F if and only if f̄(S) is conflict-free in f(F ).

Proof:
Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉 and S ⊆ (A ∪ →).

1. ⇒: Assume that S is conflict-free in F . Then, there is no ϕ,ψ ∈ S such
that trg(ϕ) = ψ or trg(ϕ) = src(ψ). Suppose for a contradiction that f̄(S)
is not conflict-free in f(F ). This means that there exists two arguments
p, q ∈ f̄(S) such that p →2 q. By the construction of →2 defined by the
flattening function, there are only four possible cases, which all lead to the
contradiction that S is not conflict-free. Therefore f̄(S) is conflict-free.

2. ⇐: Suppose f̄(S) is conflict-free. Suppose for a contradiction that S is not
conflict-free. Then, there exists (a, ϕ), (b, ψ) ∈ S such that ϕ = (b, ψ) or
ϕ = b. In both cases we can reach the contradiction that f̄(S) is not conflict-
free, therefore S is conflict-free. �

Lemma 2. Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉, ϕ ∈ (A ∪ →)
and S ⊆ (A ∪ →). We have that:

ϕ is defended by S in F and if ϕ = (a, ψ) ∈ →, we have a ∈ S, iff
m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then acc(src(ϕ)) is also

defended by f̄(S).

Proof :
Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉, ϕ ∈ (A ∪ →) and

S ⊆ (A ∪ →).

1. ⇒: Suppose that ϕ is defended by S in F and if ϕ = (a, ψ) ∈ →, we have
a ∈ S. Consider m(ϕ) in f(F ). Suppose for some p ∈ MA, p →2 m(ϕ). By
the construction of →2 defined by the flattening function, either p = Ya,ϕ
for some a ∈ A, or p = Xsrc(ϕ),trg(ϕ). In both cases, m(ϕ) is defended by
f̄(S). Hence, if ϕ is defended by S in F , then m(ϕ) is defended by f̄(S) in
f(F ). We now have to show that if ϕ ∈ →, then acc(src(ϕ)) is also defended
by f̄(S).
Suppose ϕ ∈ → and p ∈ MA such that p →2 acc(src(ϕ)). Then, p must be
of the form Ya,src(ϕ) for some a ∈ A, and hence there exists (a, src(ϕ)) ∈ →.
Since (a, src(ϕ)) defeats ϕ, there exists some δ ∈ S such that δ defeats
(a, src(ϕ)). We distinguish two cases: Either δ = (b, a) or δ = (b, (a, src(ϕ)))
for some b ∈ A. In both cases, acc(src(ϕ)) is also defended by f̄(S).
Therefore, if ϕ is defended by S in F and if ϕ = (a, ψ) ∈ →, we have a ∈ S,
then m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then acc(src(ϕ)) is
also defended by f̄(S).
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2. ⇐: Supposem(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then acc(src(ϕ))
is also defended by f̄(S). Consider ϕ in F . Suppose that for some ψ ∈ →,
ψ defeats ϕ. This means that either ψ = (a, ϕ) or ψ = (a, src(ϕ)) for some
a ∈ A.In both cases, we can conclude that there exists a δ ∈ S such that δ
defeats ψ by contradiction. Therefore, ϕ is defended by S.
We now have to show that if ϕ = (a, ψ) ∈ →, we have a ∈ S, still under
the assumption that m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then
acc(src(ϕ)) is also defended by f̄(S).
Suppose that ϕ = (a, ψ) ∈ →. Then, by the construction of →2 defined
by the flattening function, we have Xa,ψ →2 Ya,ψ. Since m(ϕ) = Ya,ψ is
defended by f̄(S), there exists p ∈ f̄(S) such that p →2 Xa,ψ. By the con-
struction of →2, the only possibility is p = acc(a). Hence, acc(a) ∈ f̄(S).
Therefore, we have a ∈ S.

Thus, we can conclude that ϕ is defended by S in F and if ϕ = (a, ψ) ∈ →, we
have a ∈ S, if and only if m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then
acc(src(ϕ)) is also defended by f̄(S). �

Lemma 3. Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉 and S ⊆ (A ∪ →).
We have that:

S is admissible in F and for every (a, ψ) ∈ (S ∩ →), we have that a ∈ S
if and only if

f̄(S) is admissible in f(F ).

Proof : Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉 and S ⊆ (A ∪ →).

1. ⇒ :Suppose f̄(S) is admissible in f(F ). Then, f̄(S) is conflict-free. Hence,
according to Lemma 1, S is also conflict-free.
Let ϕ ∈ S. We need to show that ϕ is defended by S. We do this by applying
Lemma 2, i.e. by establishing that m(ϕ) is defended by f̄(S) in f(F ) and if
ϕ ∈ →, then acc(src(ϕ)) is also defended by f̄(S). We have m(ϕ) ∈ f̄(S) and
m(ϕ) is defended by f̄(S) since f̄(S) is admissible. By the definition of f̄ , for
every (a, ψ) ∈ (S ∩ →), we have Ya,ψ ∈ f̄(S). Therefore, acc(a) ∈ f̄(S), since
it is the only argument which can defend Ya,ψ from Xa,ψ’s attack and f̄(S) is
admissible. This means that acc(a) is defended by f̄(S). Thus, according to
Lemma 2, every ϕ ∈ S is defended by S, which means that S is admissible,
and for every (a, ψ) ∈ (S ∩ →), we have that a ∈ S.

2. ⇐ :Suppose S is admissible in F and for every (a, ψ) ∈ (S ∩ →), we have
that a ∈ S. Then, S is conflict-free and so, according to Lemma 1, f̄(S) is
also conflict-free.
Let p ∈ f̄(S). p is either of the form m(ϕ) for some ϕ ∈ S, or of the form
Xa,b for some a, b ∈ MA and (ψ, a) ∈ S. In both cases, p is defended by
f̄(S). Hence, f̄(S) is admissible in f(F ).

Therefore, S is admissible in F and for every (a, ψ) ∈ (S ∩ →), we have that
a ∈ S, if and only if f̄(S) is admissible in f(F ). �
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Theorem 1. Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉 and S ⊆
(A ∪ →). S is a complete extension of F if and only if f̄(S) is a complete
extension of f(F ).

Proof :
Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉 and S ⊆ (A ∪ →).

1. ⇒: Suppose S is a complete extension of F . For every (a, ψ) ∈ (S ∩ →), by
the definition of defeat, a is defended by S, and thus a ∈ S. Therefore, by
Lemma 3, f̄(S) is admissible.
Take some arbitrary p ∈MA and suppose that p is defended by f̄(S). Then,
either p = m(ϕ) for some ϕ ∈ (A ∪ →), or p = Xa,b for some a, b ∈ A.
(a) Suppose that p = m(ϕ) for some ϕ ∈ (A ∪ →). Now assume that

ϕ ∈→. Then, m(ϕ) = Ysrc(ϕ),trg(ϕ). By construction of →2, we have
that Xsrc(ϕ),trg(ϕ) →2 Ysrc(ϕ),trg(ϕ). The only argument which can de-
fend Ysrc(ϕ),trg(ϕ) from Xsrc(ϕ),trg(ϕ) is acc(src(ϕ)). Since f̄(S) defends
Ysrc(ϕ),trg(ϕ), we have that acc(src(ϕ)) ∈ f̄(S). As f̄(S) is admissible,
acc(src(ϕ)) is defended by f̄(S). Hence, if ϕ ∈ →, then acc(src(ϕ)) is
defended by f̄(S).
Therefore, by Lemma 2, ϕ is defended by S. Since S is a complete ex-
tension, this means that ϕ ∈ S. Therefore, p = m(ϕ) ∈ f̄(S).

(b) Now suppose that p = Xa,b for some a, b ∈ A. According to our assump-
tions, f̄(S) defends Xa,b. By construction of ⇒2, the only argument
which attacks Xa,b is acc(a). Hence, there exists Yc,a ∈ f̄(S) for some
c ∈ A. So, by definition of f̄ , we have that p = Xa,b ∈ f̄(S).

In either case, we have that p ∈ f̄(S). Hence, f̄(S) contains all arguments it
defends. Since it is also admissible, f̄(S) is a complete extension of f(F ).

2. ⇐ :Suppose that f̄(S) is a complete extension of f(F ). Then, f̄(S) is admis-
sible and contains all arguments it defends. According to Lemma 3, we have
that S is admissible and for every (a, ψ) ∈ (S ∩ →), we have that a ∈ S.
Suppose that for some ϕ ∈ (A ∪ →), ϕ is defended by S. Hence, by Lemma
2, m(ϕ) is defended by f̄(S). Since f̄(S) is a complete extension of f(F ),
m(ϕ) ∈ f̄(S). Hence, by construction of f̄(S), we have that ϕ ∈ S. There-
fore, for any ϕ ∈ (A ∪ →) such that ϕ is defended by S, we have ϕ ∈ S.
Since S is also admissible, S is a complete extension of F .

Hence, S is a complete extension of F if and only if f̄(S) is a complete extension
of f(F ). �

3.2 Extended Explanatory Argumentation Frameworks

We will now extend EAFs, as seen in Section 2.1, by integrating them with the
meta-argumentation techniques we have discussed so far.

Definition 18. An extended explanatory argumentation framework (EEAF) is
a tuple 〈A,X ,→, 99K,∼,⇒〉, where A is a set of arguments, X is a set of ex-
plananda, 99K ⊆ (A × A) ∪ (A × X ) is an explanatory relation, → ⊆ (P(A)
∪ 99K ∪ →)× (A ∪ 99K ∪ → ∪ ⇒) is a higher-order attack relation, ∼ ⊆ A×A
is an incompatibility relation and ⇒ ⊆ A×A is a support relation.
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We then define the semantics of EEAFs in terms of their flattening.

Definition 19. Let F = 〈A,X ,→, 99K,∼,⇒〉 be an EEAF. The set of meta-
arguments corresponding to F is MA = {acc(a), rej(a) | a ∈ A} ∪ {Xm(ϕ),m(ψ),
Ym(ϕ),m(ψ) | ϕ ∈ (A∪→∪ 99K), ψ ∈ (A ∪ → ∪ 99K ∪ ⇒)} ∪ {e(S) | S ⊆ A with
at least two elements} ∪ {Pa,ψ, Qa,ψ | a ∈ A, ψ ∈ (A ∪ X )} ∪ {Za,b | a, b ∈ A}
and the set of meta-explananda is MX = X . We define a partial function m
which assigns for each element of the framework a corresponding meta-argument.

m: (A ∪ → ∪ 99K ∪ ⇒) 7→MA.

such that:

– if ϕ ∈ A, then m(ϕ) = acc(ϕ);
– if ϕ ∈ X , then m(ϕ) = ϕ;
– if ϕ ∈⇒ such that for some a, b ∈ A, ϕ = (a⇒ b), then m(ϕ) = Za,b;
– if ϕ ∈→ such that for some S ⊆ A with at least two elements and some
ψ ∈ (A ∪ 99K ∪ → ∪ ⇒), ϕ = (S → ψ), then m(ϕ) = e(S);

– if ϕ ∈→ such that for some ψ ∈ (A ∪ 99K ∪ →) and some δ ∈ (A ∪ 99K ∪ →
∪ ⇒), ϕ = (ψ → δ), then m(ϕ) = Yψ,δ;

– if ϕ ∈99K such that for some a ∈ A and ψ ∈ (A ∪ X ), ϕ = (a 99K ψ), then
m(ϕ) = Pa,ψ.

We define the flattening function f to be f(F ) = 〈MA,X ,→2, 99K2,∼2〉,
where →2,∼2⊆MA×MA and 99K2⊆MA× (MA ∪ X ) are such that:

– Xm(ϕ),m(ψ) →2 Ym(ϕ),m(ψ), Ym(ϕ),m(ψ) →2 m(ψ) for all ϕ,ψ ∈ (A ∪ → ∪ 99K
∪ ⇒);

– m(ϕ) →2 Xm(ϕ),m(ψ) if and only if ϕ → ψ and ϕ is not a set of arguments
with at least two elements;

– acc(a)→2 rej(a) for all a ∈ A;
– e(S)→2 m(ϕ) if and only if S → ϕ for S ⊆ A with at least 2 elements;
– rej(a)→2 e(S) if and only if a ∈ S;
– Za,b →2 acc(a) for all a, b ∈ A;
– acc(b)→2 Za,b if and only if a⇒ b;
– acc(a) 99K2 Pa,ϕ, Pa,ϕ 99K2 m(ϕ), acc(a)→2 Qa,ϕ and Qa,ϕ →2 Pa,ϕ if and

only if a 99K ϕ;
– acc(a) ∼2 acc(b) if and only if a ∼ b.

Notice that the set of meta-arguments MA and the correspondence function
m are defined through a simultaneous inductive definition, which is well-founded,
because → is a well-founded relation (assuming that the set theory presupposed
in Definition 6 is a standard set theory like ZFC that satisfies the Axiom of
Foundation).

Note that we do not fully flatten the explanatory relation and flatten EEAFs
into EAFs instead of AFs. This is due to the fact that the explanatory relation
is not easily flattened, and extensions can still be extracted from explanatory
argumentation frameworks via the two EAF extensions which are well-suited for
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our task. In order to do this, we need to define an unflattening function which
will map a set of meta-arguments from a flattened EEAF to the corresponding
set of arguments from the original EEAF.

Definition 20. Given an EEAF F and a set of meta-arguments B ⊆MA such
that MA corresponds to F , we define the unflattening function g to be:

g(B) = {a | acc(a) ∈ B}

Notice that in the unflattening, we only care about the arguments and do
not unflatten the meta-arguments which represent the other elements of EEAFs.
This is due to the fact that we are only interested in selecting the arguments of
the EEAF, which make up the argumentative and explanatory cores.

Definition 21. Let F be an EEAF and G = f(F ) its flattening. We say that
S ⊆ A is an AC-extension of F iff S = g(S′), where S′ is an AC-extension of G.
Similarly, we say that S ⊆ A is an EC-extension of F iff S = g(S′), where S′ is
an EC-extension of G.

4 Applying EEAFs to the liar paradox

Let us now move on to an example, which focuses on two groups of solutions for
the liar paradox. The arguments are extracted from Saving Truth from Paradox
[8]. The first group is the solutions which weaken classical logic, namely the
paracomplete, paraconsistent and semi-classical solutions. The second group is
comprised of the underspill and overspill solutions.

We have the following arguments:

– Ep: This explanandum represents the paradox.
– A: The paracomplete, paraconsistent and semi-classical solutions which pro-

vide explanations for the paradox by weakening classical logic.
– B: The underspill and overspill solutions which provide their own explanation

of the paradox by suggesting that for some predicates F, F is true of some
objects that aren’t F or vice-versa.

– C: We did not change logic to hide the defects in other flawed theories such
as Ptolemaic astronomy, so why should we change the logic simply to hide
these paradoxes?

– D: There is no known way of saving these flawed theories such as Ptolemaic
astronomy and even if there was, there is little benefit to doing so.

– F : We have worked out the details of the new logics and they allow us to
conserve the theory of truth.

– G: Changing the logic implies changing the meaning.
– H: Change of meaning is bad.
– I: The change is mere.
– J : This is no ‘mere’ relabelling.
– K: Change of truth schema is a change of the meaning of ‘true’.
– L: The paradox forces a change of meaning.
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The framework is represented in Figure 6 and its flattening in Figure 7. We have
omitted less-relevant auxiliary arguments for the sake of visibility.

Fig. 6. EEAF representing the reasoning behind the excerpt

Fig. 7. Flattened EEAF representing the reasoning behind the excerpt

We get that the AC-extensions are {A,C,D, F, L,G, J,K} and {B,C,D, F,
L,G, J,K}. We can distinguish here the two rivaling solutions which are both
selected. This is due to the fact that even though the author might have a
preference for one or another, in the excerpt we have analyzed, he is merely
defending the solutions represented in A from attacks and making no argument
which attacks the solutions represented in B.

The EC-extensions are {A,D,F, L}, {A,D,F, J} and {B, J}. Notice that
there are two different EC-extensions which contain A, as there are two argu-
ments which individually defend A from the coalition attack of {G,H}.
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5 Conclusion and future work

We have examined several extensions of abstract argumentation frameworks that
add explanatory features, recursive attacks, support and joint attacks. In the
cases of recursive attacks, support and joint attacks, we have presented a flat-
tening function, which allows us to instantiate these extended framework as stan-
dard AFs. We have shown that in the case of AFRAs, the complete semantics
defined in terms of the flattening is equivalent to the complete semantics which
has been defined directly on AFRAs. We have then aggregated these extensions
into one framework, EEAFs, and defined the semantics in terms of its flattening
to EAFs. Finally, we have explored an application of EEAFs to argumentation
from a research-level philosophy book.

Concerning future work in the line of research of this paper, we plan to extend
the result about the flattening of AFRAs to other argumentation semantics
than the complete semantics. Furthermore, it might be interesting to investigate
flattening the explanatory relation and explananda. Due to their intricate nature,
it is not obvious how to flatten them and obtain semantics equivalent to the ones
defined on EAFs. Another point of interest would be to apply EEAFs to other
areas of scientific debates and examine whether the current features provide
enough expressive power.
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cardo Simari. On the acceptability semantics of argumentation frameworks with
recursive attack and support. In Computational Models of Argument - Proceedings
of COMMA 2016, pages 231–242, 2016.

7. Phan Minh Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artificial
intelligence, 77(2):321–357, 1995.

8. Hartry Field. Saving truth from paradox. Oxford University Press, 2008.
9. Dov M Gabbay. Fibring argumentation frames. Studia Logica, 93(2-3):231–295,

2009.
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