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Abstract—
Malicious users can attack Web applications by exploiting injection vulnerabilities in the source code. This work addresses the
challenge of detecting injection vulnerabilities in the server-side code of Java Web applications in a scalable and effective way. We
propose an integrated approach that seamlessly combines security slicing with hybrid constraint solving; the latter orchestrates
automata-based solving with meta-heuristic search. We use static analysis to extract minimal program slices relevant to security from
Web programs and to generate attack conditions. We then apply hybrid constraint solving to determine the satisfiability of attack
conditions and thus detect vulnerabilities.
The experimental results, using a benchmark comprising a set of diverse and representative Web applications/services as well as
security benchmark applications, show that our approach (implemented in the JOACO tool) is significantly more effective at detecting
injection vulnerabilities than state-of-the-art approaches, achieving 98% recall, without producing any false alarm. We also compared
the constraint solving module of our approach with state-of-the-art constraint solvers, using six different benchmark suites; our
approach correctly solved the highest number of constraints (665 out of 672), without producing any incorrect result, and was the one
with the least number of time-out/failing cases. In both scenarios, the execution time was practically acceptable, given the offline nature
of vulnerability detection.
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1 INTRODUCTION

S YMBOLIC execution and constraint solving represent a
state-of-the-art approach used in security analysis to

identify vulnerabilities in software systems. Symbolic execu-
tion executes a program with symbolic inputs and at the end
generates a set of path conditions. Each of them corresponds
to a constraint imposed on the symbolic inputs to follow
a certain program path, i.e., a constraint characterizing
a possible execution. By solving these constraints with a
constraint solver, one can determine which concrete inputs
can cause a certain program path to be executed.

In the context of security analysis this approach is
used [1], [2], [3], [4] to detect injection vulnerabilities, i.e.,
program locations in which certain malicious inputs can
alter the intended program behavior. Roughly speaking, this
approach consists of solving the constraints obtained by
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conjoining the path conditions (generated by the symbolic
execution) with attack specifications provided by security
experts. The main strength of this approach is that vulner-
ability detection yields a limited number of false positives,
since the concrete inputs determined with constraint solving
prove the existence of vulnerabilities. However, the effec-
tiveness and precision of this approach are challenged by
two main problems that affect symbolic execution and con-
straint solving [5]: 1) path explosion and 2) solving complex
constraints (e.g., constraints involving regular expressions
or containing string/mixed or integer operations). Notice
that while these problems are independent from the context
in which symbolic execution and constraint solving are
applied, the solutions to mitigate them can be tailored for
a specific context. Nevertheless, existing proposals [1], [2],
[3], [4] in the context of vulnerability analysis have not fully
addressed these problems.

The path explosion problem is triggered by the huge
number of feasible program paths that symbolic execution
has to explore in large programs. To mitigate this problem in
the context of vulnerability analysis, in previous work [6] we
proposed an approach to extracting security slices from Java
programs. A security slice contains a concise and minimal
sequence of program statements that affect a given security-
sensitive program location (sink), such as an SQL query
statement. Symbolic analysis can then be performed on
security slices instead of the whole program; in this way
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path conditions are analyzed only with respect to the paths
leading to sinks instead of every path in the program. Since,
according to our experience [6], the number of sinks in a
program is low1 and security slices are much smaller (ap-
prox. 1%) than the program containing them, this approach
can effectively mitigate the path explosion problem.

The problems related to solving complex constraints are
mainly due to the support for strings and their operations.
In general, solving constraints that contain string operations
requires to analyze the implementation of these operations,
unless they can be treated as primitive functions in the
constraint solver. However, there are typically hundreds of
string operations in a given programming language that
cannot be solved because their semantics is not known to
the constraint solver (e.g., java.lang.Object.hashCode() and
java.lang.String.format(...)); we denote these operations
as unsupported operations. Existing approaches support only
a limited number of string operations—such as concate-
nation, assignment, and equality—as primitive functions.
More complex operations have to be analyzed and trans-
formed into an equivalent set of basic constraints containing
primitive functions. This task is often not trivial and requires
proficiency in the input language of the solver. A constraint
solver that supports a limited set of operations can fail
in solving constraints that contain unsupported operations,
resulting in missed vulnerabilities. To partially mitigate this
problem, in previous work [7] we proposed a fallback mech-
anism to extend existing string constraint solvers for dealing
with constraints with unsupported string operations. This
mechanism, implemented in the ACO-Solver tool, used an
off-the-shelf automata-based string constraint solver com-
bined with a search-driven constraint solving procedure
based on the Ant Colony Optimization meta-heuristic [8].

The goal of the work presented in this paper is to provide
a scalable approach, based on symbolic execution and constraint
solving, to effectively find injection vulnerabilities in source code,
which generates no or few false alarms, minimizes false negatives,
and overcomes the path explosion problem and the one of solving
complex constraints.

We propose a new analysis technique for injection vul-
nerabilities, which leverages the synergistic combination of
security slicing with hybrid constraint solving.

We leverage our previous work on security slicing [6] to
mitigate the path explosion problem, by generating during
the symbolic execution only the constraints that charac-
terize the security slices of the program under analysis.
This step allows us to identify paths and statements in the
program where vulnerabilities can be exploited; this helps
make the remainder of the approach scalable. The generated
constraints are then preprocessed in order to simplify the
following step.

The next step uses a hybrid approach that orchestrates a
constraint solving procedure for string/mixed and integer
constraints with a search-based constraint solving proce-
dure. The idea behind this hybrid solving strategy is to solve
a constraint through a two-stage process:

1) First, our solving procedure solves all the constraints
with supported operations, by leveraging automata-

1. Our experiments show that, on average, there are only 3 sinks in a
Web program, related to the type of vulnerabilities we consider.

based solving for solving string and mixed constraints,
and linear interval arithmetic for solving integer con-
straints. In both cases, constraint solving rules are ex-
pressed using recipes that model the semantics of the
operations. In particular, we provide recipes for many
string/mixed operations, including 16 input sanitiza-
tion operations from widely used security libraries [9],
[10], and commonly used integer operations. In this
way, the constraints involving supported operations
can be efficiently solved, without transforming them
into a set of primitive functions.

2) In the second stage, we use a search-driven solving
procedure, which is based on and extends our previous
work [7]. This procedure leverages the Ant Colony
Optimization meta-heuristic to solve the remaining
constraints which contain unsupported operations. The
search space of this procedure is represented by the in-
put domains as determined in the first stage; the search
is driven by different fitness functions, depending on
the type of the constraints.

The solver in the first stage is used to reduce (possibly in
a significant way) the search space, i.e., the domains of the
string and integer variables, for the search-driven solving
procedure; hence, it makes the search in the second stage
more scalable and effective.

Our approach constitutes a targeted security analysis
method, since its target (i.e., the type of vulnerabilities to
analyze) can be specified by providing the corresponding
threat models, i.e., generalized attack specifications (also
called attack patterns) associated with different types of
sinks. The approach analyzes the satisfiability of a threat
model in conjunction with the path condition that leads to
a given sink. In this sense, our approach can be considered
general, since it can detect any type of vulnerability whose
threat model can be described using regular expressions. To
show this generality, in this paper we provide the threat
models for five common types of vulnerabilities: cross-
site scripting (XSS), SQL injection (SQLi), XPath injection
(XPathi), XML injection (XMLi), LDAP injection—LDAPi).
Moreover, the approach is also language-independent, since
the modeling of string/mixed and integer operations pro-
posed in this paper—although provided in the context of
the Java language—can be easily ported to other languages.

Our integrated technique achieves high effectiveness in
detecting vulnerabilities. In particular, we assessed the vul-
nerability detection capability of our tool (JOACO) by com-
paring it, using a benchmark comprising a set of diverse and
representative Web applications/services as well as security
benchmark applications, with SFlow [11] and LAPSE+ [12]—
two state-of-the-art security analysis tools for Java—and
also with our previous work JoanAudit+CVC4+ACO-Solver,
i.e., the combination of our security slicing tool JoanAudit [6]
with CVC4+ACO-Solver [7]. CVC4+ACO-Solver is the com-
bination of the CVC4 solver with ACO-Solver, which was
shown [7] to be the best performing constraint solver (in
the context of vulnerability detection) when compared with
CVC4, Z3-str2, and Z3-str2+ACO-Solver.
JOACO achieved a high recall of 98% and 100% precision,
detecting 93 vulnerabilities (out of which 8 were previ-
ously unknown), missing only 2 vulnerabilities, without
producing any false alarm. JOACO performed much bet-
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ter than state-of-the-art vulnerability detection tools, yield-
ing a higher recall (ranging between +70pp and +73pp,
with pp=percentage points) and precision (ranging between
+16pp and +27pp), with no failing cases. This high effective-
ness in vulnerability detection comes at the cost of a higher
execution time, which is however practically acceptable.
Compared with our previous work JoanAudit+CVC4+ACO-
Solver, JOACO detected more vulnerabilities, had much less
time-out cases, and was faster.

We also assessed the string constraint solving capability
of our approach, since string constraint solving is widely
recognized by the research community as a means to enable
vulnerability detection. More specifically, we compared the
constraint solving capabilities of JOACO when used in the
stand-alone solver mode (dubbed JOACO-CS) with three
state-of-the-art constraint solvers: CVC4 [13], Z3 [14], and
our previous work CVC4+ACO-Solver [7]. We used a bench-
mark collection comprising 672 constraints, obtained from
six different sources.
JOACO-CS performed similarly to or better (+7%–+14%
more correctly solved cases) than state-of-the-art string con-
straint solvers, including our previous work, depending on
the benchmark considered. It correctly solved the highest
number of constraints, without producing any incorrect
result, and was the one with the least number of time-
out/failing cases. In particularly, JOACO-CS fared best with
constraints derived from Web applications containing actual
injection vulnerabilities, which are the target of this work.
In terms of execution time, JOACO-CS was 1.7× slower
than the most effective, state-of-the-art constraint solver
(CVC4). However, since JOACO-CS can solve more cases
and constraint solving is typically an offline activity, with
no stringent time requirements, we consider this slowdown
as practically acceptable.

To sum up, the specific contributions of this paper are:
• An integrated analysis technique for injection vulner-

abilities, which leverages the synergistic combination of se-
curity slicing with hybrid constraint solving. This technique
is general and language-independent.
• The application of this technique to detect the five

most common types of injection vulnerabilities (XSS, SQLi,
XMLi, XPathi, LDAPi) in the context of Java applications.
• The implementation of the proposed technique in a

fully functional tool called JOACO, publicly available [15].
• An extensive empirical evaluation on automated vul-

nerability detection, which assesses two separate and com-
plementary aspects: 1) vulnerability detection effectiveness,
precision, and run-time performance, using a benchmark
comprising a set of diverse Web applications/services and
security benchmark applications; 2) the effectiveness and
run-time performance of the constraint solving part of our
overall solution, using a benchmark collection comprising
672 constraints.
As a separate contribution, we also make available the
artifacts used in the evaluation.

This paper can be considered an extension of our previ-
ous work [7]; the major differences are:

Hybrid constraint solving technique. The hybrid con-
straint solving technique described in this paper and im-
plemented in JOACO (and JOACO-CS) is a revised and im-

proved version of the one described in [7] (and implemented
in ACO-Solver) along the following lines:
• Constraint pre-processing. JOACO includes a pre-processing

step that applies: a) derived constraint generation, which
adds additional constraints to reduce the input domain
and solve the constraints more efficiently; b) constraint
refinement, to simplify the constraint network, detect triv-
ially inconsistent constraints, and avoid unnecessary and
expensive constraint solving.

• No dependency on an external solver. ACO-Solver, since it im-
plemented a fallback mechanism, first invoked an external
solver (i.e., the solver for which the fallback mechanism
was provided) to attempt to solve the input constraint.
When this invocation failed (e.g., because the external
solver could not solve a constraint with an unsupported
operation), ACO-Solver had to restart the constraint solv-
ing from scratch, since it could not reuse or benefits from
any intermediate result determined by the external solver
before the failure. In this work, JOACO does not depend
on any external solver, since it orchestrates the two-stage
process sketched above.

• Built-in support for a larger set of string operations. ACO-
Solver relied on the Sushi [3] constraint solver to compute
solution automata for string constraints, before calling the
search-based solving procedure. However, Sushi supports
very few string operations (concat, contains, equals, trim,
substring, replace, replaceAll, and matches). In this pa-
per, we built our automata-based and interval constraint
solver on top of Sushi and extended it with support
for 38 new operations, including 16 input sanitization
operations from the Apache Commons Lang 3 [9] and
OWASP [10] standard security libraries. By supporting
more operations in our built-in automata-based and in-
terval constraint solver, we are able to minimize the num-
ber of invocations to the search-based constraint solving
procedure.

• Unified treatment of integer and string constraints. In [7] we
did not describe how numeric constraints were solved
and focused only on string constraints. In this paper we
provide a unified treatment for string and integer con-
straints, by converting integer ranges into their automa-
ton representation; in this way, both types of constraints
can be handled by our search-based solving procedure
(which requires every variable domain to be represented
in the form of a solution automaton).
Empirical evaluation. This paper includes a much

larger and diverse empirical evaluation. First, we assess the
vulnerability detection capability of JOACO when analyzing
the source code of Web applications and compare it with
state-of-the-art vulnerability detection tools for Java Web ap-
plications; this analysis is completely new. Second, we assess
the constraint solving capability of our approach by running
an experimental study which extends the one from [7] by
comparing with different string constraint solvers and by
using a larger benchmark collection, which includes five
additional benchmarks, used in previous studies, as well
as an extended version of our home-grown benchmark.

The rest of the paper is organized as follows. Section 2
provides some background on the concepts and techniques
used in the paper. Section 3 discusses the motivations for
this work. Sections 4–7 illustrate our approach. Section 8
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outlines the implementation of our JOACO tool. Section 9
presents the evaluation of our approach; section 10 discusses
its limitations. Section 11 surveys related work. Section 12
concludes the paper and gives directions for future work.

2 BACKGROUND

In this section we present several background concepts
used in the rest of the paper. We first provide a short
introduction to constraints and constraint networks (§ 2.1)
and the Ant Colony Optimization meta-heuristic (§ 2.2).
Afterwards, we define the application scope of our work,
by giving an overview of injection vulnerabilities (§ 2.3) and
of the associated threat models (§ 2.4).

2.1 Constraints and Constraint Networks
The following definitions are based on the ones presented
in the constraint solving literature [16], [17].

Let Y = y1, . . . , yk, k > 0 be a finite sequence of vari-
ables andD1, . . . , Dk a sequence of domains, with each vari-
able yi ranging over the respective domain dom(yi) = Di. A
constraint c over Y is a relation over Y , i.e., c ⊆ D1×· · ·×Dk;
Y is also called the scope of the constraint and k is its arity.
Informally, a constraint c on some variables is a subset of the
cartesian product over the variable domains that contains
the combination of values that satisfy c.

A constraint network R is a triple (X,D,C), where X
is a finite sequence of variables x1, . . . , xn, each associated
with a domain D1, . . . , Dn, and C = {c1, . . . , ct} is a set of
constraints; the scope of each constraint ci, denoted by Si,
is a subsequence of X .

A constraint network R = (X,D,C) can be represented
as a hypergraph H = (V, S) where the set of nodes V
corresponds to the set of variables X of the network, and
S = Si, . . . , St is the set of hyperedges that group variables
belonging to the same scope.

The union (∪) and intersection (∩) operators for con-
straint networks return another constraint network and are
defined as follows: given two constraint networks R1 =
(X1, D1, C1) andR2 = (X2, D2, C2),R3 = R1⊕R2, where
⊕ ∈ {∪,∩}, R3 = (X3, D3, C3) with X3 = X1 ⊕ X2,
D3 = D1 ⊕D2, and C3 = C1 ⊕ C2.
R1 is a subgraph of R2, denoted by R1 ⊆ R2, if and only

if R1 ∩R2 = R1.
An instantiation of a constraint network R = (X,D,C)

assigns to each variable xi of X a value from dom(xi). A
solution σ of a constraint network R = (X,D,C) is an
instantiation of R that satisfies all the constraints in C ; we
say that σ satisfies R and that σ is a model of R. The tuple
of values assigned by σ to a set of variables I with I ⊆ X is
denoted by S(σ, I). WhenR possesses at least one model,R
is said to be satisfiable; otherwise,R is said to be unsatisfiable.

Two constraint networks R1 and R2 are equisatisfiable
(written as R1 ≡sat R2) if and only if R1 is satisfiable
whenever R2 is satisfiable. Equisatisfiability is a reflexive,
transitive, and symmetric relation.

Given a set of variables I , and two constraint networks
R1 = (X1, D1, C1) andR2 = (X2, D2, C2),R1 subsumesR2

modulo I (written as R1 |=I R2) if for all models σ1 of R1

there exists a model σ2 ofR2 such that S(σ1, I∩X1∩X2) ⊆
S(σ2, I ∩X2).

Given two constraint networks R1 and R2 and a set of
variables I ,R1 is equivalent toR2 modulo I (written asR1 ≡I
R2) iff R1 |=I R2 and R2 |=I R1.

Two constraint networks R1 and R2 are equivalent (de-
noted by R1 ≡ R2) if they are defined on the same set
of variables and express the same set of solutions. Two
equivalent constraint networks are also equisatifiable.

2.2 Ant Colony Optimization

Ant Colony Optimization (ACO) [8] is a widely used meta-
heuristic search techniques for solving combinatorial opti-
mization problems. It is inspired by the observation of the
behavior of real ants searching for food. Real ants start
seeking food randomly; when they find a source of food,
they leave a chemical substance (called pheromone) along
the path that goes from the food source back to the colony.
Other ants can detect the presence of this substance and
are likely to follow the same path. This path, populated
by many ants, is called pheromone trail and serves as a
guidance (e.g., positive feedback) for the other ants. In
ACO, these observations are translated into the world of
artificial ants, which can cooperate to find a good solution
to a given optimization problem. The optimization problem
is translated into the problem of finding the best path on
a weighted graph. Artificial pheromone trails are numeric
parameters that characterize the graph components (i.e.,
nodes and edges); they encode the “history” in approach-
ing the problem (and finding its solutions) by the whole
ant colony. ACO algorithms also implement a mechanism,
inspired by real pheromone evaporation, to modify the
pheromone information over time so that ants can forget the
(search) history and start exploring new search directions.
The artificial ants build their solutions by moving step-by-
step along the graph; at each step they make a stochastic
decision based on the pheromone trail.

2.3 Injection vulnerabilities

Injection vulnerabilities are program locations in which cer-
tain malicious input can be “injected” into the program to
alter its intended behavior or the one of another system. An
injection may occur when the user input is passed through
the program to an interpreter or to an external program (e.g.,
a shell interpreter, a database engine) and the input data
contain malicious commands or command modifiers (e.g., a
shell script, an additional constraint of an SQL query). An
injection vulnerability arises when the input is not properly
validated or sanitized in correspondence of a sink.

Injection vulnerabilities can cause serious damage to
a system and its users. For example, an attacker could
compromise the systems underlying the application or gain
access to a database containing sensitive information. The
“OWASP (Open Web Application Security Project) Top 10
2013” report [18] shows that injection vulnerabilities are
the most common application security risk for Web appli-
cations.

There are several types of injection vulnerabilities. In this
paper we focus on the following five types, for which we
give a short overview and an example based on the CWE
(Common Weakness Enumeration) dictionary [19].
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2.3.1 Cross-site scripting (XSS)
It is an attack technique that injects malicious scripts into a
trusted Web application. It can be accomplished by inserting
untrusted, browser-executable data (e.g., JavaScript code,
HTML tags) through a web request. When these data are
used to dynamically generate a page requested by an end-
user, the malicious script (injected through the untrusted
data) will be executed in the user’s browser, which is misled
to consider the script as coming from a trusted source (and
thus safe to execute). This untrusted code, once executed
in the browser, may access and transmit to the attacker
confidential information such as the user’s session cookies
(possibly leading to hijacking of the user’ session), or may
alter the presentation of the content (possibly leading to
phishing attacks).

As an example, consider the code snippet below:

1 String name = req.getParameter("user");
2 res.println("<div>Welcome␣"+name+"!</div>");

It dynamically generates an HTML element div based on
the input received (through a Web request) and stored in
the name variable. An attacker could perform an XSS attack
by providing as input the string <script language="Java-
Script">alert(’XSS’);</script>, which contains a snippet
of JavaScript code. This code will be executed by the
browser when it interprets the HTML code provided in the
HTTP response. While in this case the injected code just
displays a pop-up dialogue, in principle it could have much
more harmful effects, like the ones mentioned above.

2.3.2 SQL injection (SQLi)
It is an attack technique that injects an SQL query in the
input of a program, in order to read/write/admin a re-
lational database by affecting the execution of predefined
SQL statements. It can be accomplished by placing a meta-
character into the input string, which acts as a modifier of
the original SQL statement and allows the attacker to alter
its behavior.

As an example, consider the code snippet below:

1 String userid = req.getParameter("userid");
2 String query = "SELECT␣*␣FROM␣users␣WHERE␣user=’"
3 + userid + "’";
4 Statement st = conn.createStatement();
5 ResultSet rs = st.executeQuery(query);

It dynamically builds a query string based on the in-
put received (through a Web request) on the first line,
by concatenating a constant string with the user in-
put string. If a malicious user provides as input the
string name’ OR 1=1 --, the resulting query string will be
SELECT * FROM users WHERE user=’name’ OR 1=1 --’. Notice
that the malicious input string is built to correctly enclose
(with a single quote character) the first condition of the
WHERE clause and to add a second condition OR 1=1. The latter
represents a tautology and causes the WHERE clause to always
evaluate to true. The query becomes logically equivalent to
SELECT * FROM users, allowing the attacker to access all the
contents of the table users in the database.

2.3.3 XML injection (XMLi)
It is a technique that allows attackers to change the structure
or the contents of an XML document before it is processed

by the program. It can be accomplished by placing reserved
words or meta-characters into the input string. Such an
attack may yield various consequences, such as invalidating
the XML document, injecting malicious content in the docu-
ment, or forcing the XML parser to access external entities.

Consider, for example, the following XML document
named students.xml:

<students>
<student>
<sid>1</sid>
<email>wd@svv.lu</email>
<uid>wd003</uid>
<pwd>300wd</pwd>
</student>
<student>
<sid>2</sid>
<email>abf@svv.lu</email>
<uid>abf004</uid>
<pwd>400abf</pwd>
</student>
</students>

and the following Java snippet that updates the email ad-
dress of a student:

1 File db = new File("students.xml");
2 Document doc = DocumentBuilderFactory.newInstnce()
3 .newDocumentBuilder().parse(db);
4 String uid = req.getParameter("uid");
5 String pwd = req.getParameter("pwd");
6 String emailnew = req.getParameter("emailnew");
7 //code to find the right <student> element and
8 //its children
9 if (student-uid.equals(uid) &&

10 student-pwd.equals(pwd)) {
11 if ("email".equals(node.getNodeName())) {
12 node.setTextContent(emailnew);
13 }
14 }

A malicious user could invalidate the XML document by
entering an email address that contains a meta-character,
such as an angular parenthesis like <. For example, if
the attacker enters the email wd@svv.lu<, the correspond-
ing element updated by the snippet above will look like
<email>wd@svv.lu<</email> and will invalidate the docu-
ment, possibly leading to data integrity issues.

2.3.4 XPath injection (XPathi)
It is an attack technique that injects an XPath (XML Path
Language) query in the input of a program, in order to
query or navigate an XML document. This attack can be
accomplished by placing a meta-character into the input
string, which alters the behavior of the original query
by modifying the query logic or bypassing authentication.
XPathi can be exploited directly by an application to query
an XML document as part of a larger operation, such as
applying an XSLT transformation or an XQuery to an XML
document.

As an example, consider the aforementioned document
students.xml and the snippet of Java code below, which
retrieves the student identification number with an XPath
query:

1 File db = new File("students.xml");
2 Document doc = DocumentBuilderFactory.newInstance()
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3 .newDocumentBuilder().parse(db);
4 XPath xpath = XPathFactory.newInstance().newXPath();
5 String query = "//students/student[uid/text()=’"
6 + req.getParameter("uid")
7 + "’␣and␣pwd/text()␣=␣’"
8 + req.getParameter("pwd")
9 + "’]/sid");

10 NodeList nl = (NodeList) xpath.evaluate(query,doc);

The XPath query is built dynamically using the inputs
received through a Web request. An attacker could access
all the student identification numbers by simply entering
as user id the string foo’ or 1=1 or ’a’=’a and any ran-
dom password. In this way, the XPath query will look
like //students/student[uid.text()=’foo’ or 1=1 or ’a’=’a’
and pwd.text()=’nopwd’]/sid and the conditions of the selec-
tion will always evaluate to true, returning all the nodes and
thus possibly leaking confidential information.

2.3.5 LDAP injection (LDAPi)

It is an attack technique that targets programs that build
LDAP statements based on user input. The attack can be
accomplished by inserting meta-characters or crafted LDAP
filters that alter the logic of the query. As a consequence,
permissions can be granted for unauthorized queries or for
modifying the LDAP tree.

As an example, consider the code snippet below, ex-
tracted from an LDAP-based authentication system:

1 DirContext ctx = new InitialDirContext(env);
2 String userid = req.getParameter("userid");
3 String pwd = req.getParameter("pwd");
4 String base = "OU=snt,DC=uni,DC=lu";
5 String filter = "(&(sn=" + userid + ")(password="
6 + pwd + "))";
7 SearchControls ctls = new SearchControls();
8 NamingEnumeration<SearchResult> results =
9 ctx.search(base, filter, ctls);

where env is a HashTable object containing the environ-
ment properties for the LDAP connection. The filter object
is dynamically constructed using the user input strings
(userid and pwd) and then used for querying the LDAP
server. If an attacker knows a valid user id (e.g., "bri-
anli"), he can make an attack by entering a user id of the
form briandli)(&), and any value for the password (e.g.,
"nopwd"). This malicious string makes the filter string look
like (&(sn=briandli)(&))(password=nopwd)). Since an LDAP
server processes only the first filter, the query will return
true and will grant access to the attacker, even if he does not
know the password of user briandli.

2.4 Threat Models

A threat model describes possible attacks that can be con-
ducted through an input used in a sink. If an input can
potentially contain values that match a threat model, the
sink that uses such an input should be marked as vulner-
able. According to our definition of a threat model and
based on the types of vulnerabilities we focus on in this
paper, an attacker is not required to know the source code
of the application; we only assume that the attacker is
capable of providing input to the potentially vulnerable Web
application through an input source.

TAUTCSTR(input , ctxDel) =
TAUTCSTRNUM(input , ctxDel)∨ TAUTCSTRSTR(input , ctxDel)

TAUTCSTRNUM(input , ctxDel) =
∨

nrel∈{>,<,≤,≥,=,6=}(

input.matches(".*".concat(ctxDel.concat(" +[Oo][Rr] "))
.concat(N1.toString()).concat(nrel.toString())
.concat(N2.toString()).concat(".*") ∧N1 nrel N2)

TAUTCSTRSTR(input , ctxDel) =
∨

cstr∈{=,6=}
∨

d∈{’,"}(

input.matches(".*".concat(ctxDel.concat(" +[Oo][Rr] "))
.concat(d).concat(S1).concat(d).concat(cstr.toString())
.concat(d.concat(S2).concat(d)).concat(".*")) ∧ S1 cstr S2)

Figure 1. Tautology constraint template TAUTCSTR

In our approach we support the threat models listed in
Table 1, which are based on various attack patterns defined
as part of the OWASP security project [18]; for each model
we indicate the corresponding constraint on the input. They
are grouped by the type of sink (i.e., the type of vulnerability
they exploit), and for each sink type we indicate also various
contexts, which denote the possible ways in which inputs
can be used in a sink. Each threat model is indicated for a
specific context of a specific sink type, to reflect the special-
ization of an attack to exploit a certain vulnerability with a
particular input. Notice that a precise characterization of the
threat models is a fundamental step required to minimize
the number of false positive and false negative results
yielded by a vulnerability analysis technique. This list of
threat models is not exhaustive but new attack patterns can
be supported by modeling them with their corresponding
constraint.

Threat models 1, 12, and 13 are applicable to the in-
put used in element contents of HTML and XML docu-
ments. They reflect the attacks containing meta-characters
such as < and >, which can be used to inject ad-
ditional (malicious) elements into a document. For ex-
ample, the constraint corresponding to the first threat
model input.matches(".*[<>/].*") matches attacks like
<script>alert();</script>.

Threat models 2, 3, and 17 are applicable to the input
used as value of event handlers, for source attributes in
HTML documents, and for external entities in XML docu-
ments. No input should be allowed in these contexts, since
an attack can be conducted by simply providing URLs
pointing to malicious hosts, by injecting JavaScript code
such as javascript:alert(), or by using the value /etc in an
external entity of an XML document (to gain unauthorized
access to local files). Moreover, input sanitization would not
help in this case, since these attacks do not need to use meta-
characters to be effective. Hence, these threat models are
expressed with the constraint input.matches(".+"), which
enforces input to match any character except the empty
string.

Threat models 4–7, 14–16, and 21 are applicable to
the input used as the value of HTML, XML, and LDAP
attributes. The difference among these models lies in the
different type of quotation used for the attribute values.
For example, if an input is enclosed with single quotes
(as in <div attr=’input’), an attack could be conducted
by providing as input the single quote character ’ fol-
lowed by an attack payload (e.g., a payload string like
’ onmouseover=javascript:alert(), which would inject an
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Table 1
Constraints corresponding to threat models

No. Sink
type Context Constraint

1

XSS

Element content: <tag>input</tag> input.matches(".*[<>/].*")
2 Event handler value: <... onclick="input"> input.matches(".+")
3 Source value: <iframe src="input"> input.matches(".+")
4 Attribute value with single quotes: <div attr=’input’> input.matches(".*’.*")
5 Attribute value with double quotes: <div attr="input"> input.matches(".*\".*")
6 Attribute value without quotes: <div attr=input> input.matches(".*[=<>/,;+-%\*\[\]].*")
7 URL parameter value: <a href="http://...?param=input"> input.matches(".*[’\"=<>/,;+-&\*\[\] ].*")

8

SQLi

Attribute value with single quotes:
SELECT column From table WHERE row=’input’ TAUTCSTR(input , "’")

9 Attribute value with double quotes:
SELECT column From table WHERE row="input" TAUTCSTR(input , "\"")

10 Attribute value with date delimiters:
SELECT column From table WHERE row=#input# TAUTCSTR(input , "#")

11 Attribute value without quotes or delimiters:
SELECT column From table WHERE row=input

TAUTCSTR(input , "")

12

XMLi

Element content: <node>input</node> input.matches(".*[<>].*")
13 CDATA content: <![CDATA[input]]> input.matches(".*\]\]>.*")
14 Attribute value with single quotes: <node attr=’input’/> input.matches(".*’.*")
15 Attribute value with double quotes: <node attr="input"/> input.matches(".*\".*")
16 Attribute value without quotes: <node attr=input/> input.matches(".*[’\"<>].*")
17 External entity: <!ENTITY xxe SYSTEM "input">]> input.matches(".+")
18

XPathi
Attribute value with single quotes: //table[column=’input’] TAUTCSTR(input , "’")

19 Attribute value with double quotes: //table[column="input"] TAUTCSTR(input , "\"")
20 Attribute value without quotes or delimiters: //table[column=input] TAUTCSTR(input , "")
21 LDAPi LDAP search: search="(attr=input)" input.matches(".*[()|\*&].*")

additional JavaScript event). Such an attack is matched
by the .∗’.∗ regular expression. A similar threat model is
defined for inputs with double quotes. If the input is not
enclosed by any type of quote, various meta-characters (e.g.,
=, *, and ;) may be used to conduct an attack like the one
above. This type of attack is matched by threat models 6, 7,
and 16, where the list of meta-characters is specific to the
context in which they can be applied.

Threat models 8–11 and 18–20 are applicable to the input
used as attribute value in SQL and XPath queries. These
models reflect the various patterns of tautology attacks
discussed in § 2.3, which cause the selection clause of an SQL
or XPath query to always evaluate to true. We express them
using the parameterized constraint template TAUTCSTR,
whose definition is shown in Figure 1. This template has
two parameters: input is a string variable representing the
input to be matched against the tautology pattern; ctxDel
represents the string delimiter used for enclosing the context
of input (as shown in threat models 8–10 and 18–19). The
template is defined as a disjunction of two constraints, each
of them expressed through a sub-template: TAUTCSTRNUM,
expressing numeric tautology attacks of the form x’ or
N1 nrel N2, where N1 and N2 are integer variables and
nrel ∈ {>,<,≤,≥,=, 6=}; TAUTCSTRSTR, expressing string
tautology attacks of the form x’ or S1 cstr S2, where S1

and S2 are string variables and cstr ∈ {=, 6=}. Template
TAUTCSTRNUM is defined as a disjunction of constraints
over nrel ; each disjunct consists of two conjuncts:

1) The first conjunct generates a pattern against which
the user input variable input has to be matched. The con-
catenation of string ".*" with the context delimiter ctxDel
encloses the context of input . Afterwards, the actual attack
pattern is generated by concatenating the string " +[Oo][Rr]

" with the string representation of N1, together with the
string representation of nrel , which is then concatenated
with the string representation of N2 and the string ".*".

2) The second conjunct N1 nrelN2 enforces the numeric
constraint defined by nrel on N1 and N2 to ensure that only
satisfiable tautologies are accepted.
TAUTCSTRSTR is defined as a disjunction of constraints
over cstr ; each disjunct consists of two conjuncts, which
are structurally similar to those used in the definition of
TAUTCSTRNUM. The main difference is that string variables
S1 and S2, when used in a string concatenation, are always
enclosed by a pair of delimited characters represented by
the variable d, which ranges (through the inner disjunction)
over the set {’, "}.

3 MOTIVATION

In this section we present a motivating example that high-
lights the challenges in adopting an approach based on
symbolic execution and constraint solving in the context of
vulnerability detection. Although we crafted this example
for illustrative purposes, it can be considered realistic since
it contains typical operations that are commonly found in
modern Web applications. Moreover, it contains vulnerabil-
ities that embody the patterns tracked in the CWE dictio-
nary [19].

The program, shown in Figure 2, contains two sinks.
The first sink is at line 29 and corresponds to an XSS
vulnerability within an HTML output operation; the second
one is at line 38 and corresponds to an XPATHi vulnerability
within an XPath query.

The sink at line 29 is vulnerable to XSS because of the
inadequate sanitization procedure applied to variable sid,
which contains a user input. More specifically, it is sanitized
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1 protected void doPost(HttpServletRequest req,
2 HttpServletResponse res) {
3 res.setContentType("text/html;charset=UTF-8");
4 PrinterWriter out = res.getWriter();
5 Document doc = DocumentBuilderFactory
6 .newInstance()
7 .newDocumentBuilder().parse("./students.xml");
8 XPath xpath=XPathFactory.newInstance()
9 .newXPath();

10 out.println("<html><head><title>"
11 + "Student␣Services" +
12 + "</title></head><body>...");
13 String op = req.getParameter("option");
14 String sid = req.getParameter("id");
15 int max = Integer.parseInt(req.
16 getParameter("max"));
17 String subj = req.getParameter("subjid");
18 if(subj.trim().toLowerCase()
19 .indexOf("code", 4) <= 10) {
20 subj="*";
21 }
22 if(max>20)
23 max=20;
24 if(op.trim().equalsIgnoreCase("GradeQuery")) {
25 if(sid.length()>max) {
26 sid=customSanit(sid); //remove chars <,>,/
27 out.println("<a␣href=\"foo.com?id="
28 + sid + "\">Invalid␣ID:␣"
29 + sid + "</a>"); //XSS sink
30 // ... other statements
31 } else {
32 sid=ESAPI.encoder().encodeForXPath(sid);
33 subj=ESAPI.encoder().encodeForXPath(subj);
34 String query = "//students/grade[sid="
35 + sid + "␣and␣subjid=’"
36 + subj +"’]/mark";
37 NodeList nl=(NodeList)xpath.
38 evaluate(query, doc); //XPath sink
39 //... other statements
40 }
41 }
42 }

Figure 2. A Java servlet program vulnerable to XPathi and XSS

by applying a custom function customSanit() (line 26),
which removes the meta-characters <, >, and / from the in-
put string variable sid. However, in this operation variable
sid is used in two different contexts: as an URL parameter
value (...com?id=sid) and as the content of an HTML ele-
ment <a href>...sid</a>. The sanitization procedure used
is appropriate for the second context since it prevents the
injection of additional HTML tags like <script>. However,
it is not appropriate for the first one, which would have
required URL encoding (also called percent-encoding).

The sink at line 38 is vulnerable to XPathi be-
cause the variable sid, containing a user input, is
not sanitized properly before using it in the XPath
query. Indeed, the standard sanitization procedure ESAPI.
encoder().encodeForXPath() from OWASP [10] applied to
variable sid only escapes meta-characters such as ’ and
’’. Assuming that the element sid is defined as a numeric
data type in the schema of the document students.xml (the
same presented in Section 2.3), one could still perform a
successful attack without using those meta-characters, for
example using the input 1 or 0<1. This example shows

that sanitization, even when achieved by applying widely
used and well-tested sanitization libraries, does not always
work. Indeed, sanitization libraries often provide operations
that filter user input only based on a certain context (an
XPath attribute in the example above), without necessarily
considering all possible cases.

The two vulnerabilities in the example can be discov-
ered by using symbolic execution and constraint solving,
combined in a three-step procedure:

1) Path conditions generation through symbolic execution. For
example, one of the path conditions generated by sym-
bolically executing a path leading to the execution of
the XSS sink at line 29 is:

PC ≡SUBJ .trim().toLowerCase()

indexOf("code", 4) > 10∧
Integer.parseInt(MAX ) > 20 ∧
OP.trim().equalsIgnoreCase("GradeQuery") ∧
SID.length() > 20

where OP ,SID ,MAX ,SUBJ are symbolic values for
the variables initialized with the Web request inputs
(lines 13–17).

2) Definition of the attack specification. In this step, usually
performed by a security expert2, the attack specification
is defined in a way that properly characterizes security
threats. It can be done by writing attacks that match any
of the attack patterns listed in § 2.4. For example, the
security attack &javascript:alert(’XSS’) is a match for
the regular expression of threat model #7 in Table 1. The
attack specification can then be represented as follows:

ATTK ≡customSanit(SID).contains(

"&javascript:alert(’XSS’)")

where customSanit(SID) is the symbolic expression
over the symbolic value SID representing the values
of variable sid at the XSS sink.

3) Constraint solving. The third step requires to solve the
attack condition, defined as the constraint obtained by
conjoining the path condition with the attack specifica-
tion; this step is performed using a constraint solver.
If the solver yields SAT, showing the satisfiability of
the constraint, it means that the attack is feasible and
that the analyzed path is vulnerable to the attack. In the
example, the constraint SEC1 ≡ PC ∧ ATTK is satis-
fiable, confirming the presence of the XSS vulnerability.

However, executing this procedure faces two main chal-
lenges:

CH1: Integrated approach. Performing the three steps il-
lustrated above requires the integration of program analysis
techniques (to identify input sources and sinks, to analyze
paths between input sources and sinks, etc.), symbolic exe-
cution, definition of security threat models, and constraint
solving. This integration is not trivial since it has to be
realized keeping in mind that the output of each step has
to become the input of the next step. This often requires
to pre-process the output of each step, before feeding it
to the next one. For example, to avoid the path explosion

2. This step needs to be done once for each type of vulnerability, and
possibly refined over time if needed.
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problem, the symbolic execution step should not explore all
the paths of the program, but only those traversing security-
sensitive locations (i.e., sources and sinks). Therefore, sym-
bolic execution has to be complemented by techniques such
as security slicing [6]. Similarly, the attack conditions could
benefit from a simplification step, to speed-up the constraint
solving phase.
Furthermore, the majority of existing approaches focus only
on one of these steps. For instance, CVC4 and Z3 only
focus on constraint solving and assume that constraints
(including those corresponding to attack specifications) are
already available; vulnerability detection approaches such
as Andromeda [20], Taj [21], and SFlow [11] only perform
static analysis, and do not apply symbolic execution and
constraint solving.

CH2: Support for complex string operations. The execution
of the first step above assumes that symbolic execution uses
a constraint solver that is able to handle string operations
like trim, toLowerCase, indexOf, parseInt, equalsIgnore-
Case, and length. However, state-of-the-art solvers such as
Hampi [22], Kaluza [2], CVC4 [13], Z3-str2 [23] and Z3 [14]
do not support at least one of these non-basic, complex
operations. When a string operation is not supported by
the solver, symbolic execution typically has to analyze the
implementation of the operation, to transform it into an
equivalent set of basic constraints containing only primitive
operations, i.e., operations supported by the solver. This
approach may lead to the path explosion problem and, more
generally, scalability issues [5], [24], especially when the
implementations of unsupported operations contain many
paths.
In principle, one could modify or enhance an existing solver
in order to provide native support for complex operations,
and avoid the path explosion problem in symbolic exe-
cution. However, this task is non-trivial and requires a
deep understanding of string manipulating functions and
constraint solving; moreover, it is not scalable to the size of
a sanitization library like OWASP ESAPI or of a complete
string function library of a modern programming language.
Alternatively, instead of modifying the solvers, one could
re-express complex operations with their equivalent set of
basic constraints that can be solved by the solver. Although
relatively easier, this alternative still requires non-trivial
effort and usually results in complex constraints that may
still lead to scalability issues for constraint solvers [3]. For
example, consider one of the clauses in the above path
condition: OP.trim().equalsIgnoreCase("GradeQuery"); as-
suming that the solver handles length, charAt, equals, and
substring, one could re-express this clause as:

∃c1, c2, 0 ≤ c1 ≤ c2 ≤ OP.length(), such that
OP.substring(c1,c2).equals("gradequery")

∨ · · · ∨ . . . equals("gRadeQueRy") . . . ∨ · · · ∨
OP.substring(c1,c2).equals("GRADEQUERY"))

∧ ∀i, 0 ≤ i < c1,OP.charAt(i) = ‘ ’

∧ ∀j, c2 < j ≤ OP.length(),OP.charAt(j) = ‘ ’

which uses equivalent constraints for equalsIgnoreCase and
trim. Notice how the equalsIgnoreCase operation is ex-
panded into a disjunction of constraints with the equals
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Figure 3. Overview of the approach

operation, which cover all the possible combinations of the
characters denoting a case-insensitive representation of the
string “GradeQuery”; also, modeling the trim operation
requires to add several auxiliary variables and predicates.
This simple example shows that transforming complex con-
straints into a set of equivalent constraints with only prim-
itive operations increases the complexity of the generated
constraints, potentially leading to scalability issues [5], [24].
Another approach [1] to deal with complex string operations
relies on dynamic symbolic (concolic) execution [25], and
treats complex operations by replacing symbolic values
of the inputs involved in those operations with concrete
values. However, this approach reduces precision since it
can only reason about the paths that are exercised by the
concrete values.
To work around this issue, the current solution in practice is
to have the constraint solver fail (i.e., it crashes or returns
an error) when it encounters an unsupported operation.
Our experiments show that this is the case for state-of-the-
art solvers like CVC4 [13] and Z3 [14]. However, in the
context of vulnerability analysis, such a behavior could yield
false negatives (i.e., it misses some vulnerabilities) when the
attack conditions are actually feasible.

To recap, the two challenges discussed above show that
in order to use symbolic execution and constraint solving as
effective and scalable techniques for vulnerability detection,
there is a need for an end-to-end approach that seamlessly
incorporates scalable program analysis techniques, mod-
eling of security threats, and complex (string) constraints
solving techniques.

4 OVERVIEW OF THE APPROACH

Our approach is outlined in Figure 3, where dotted
rounded rectangles correspond to global inputs/outputs,
solid rounded rectangles correspond to intermediate input-
s/outputs, solid rectangles correspond to operations, and
dashed rectangles correspond to macro-steps.

The approach takes as input the bytecode of a Web
application written in Java, a catalogue of vulnerabilities,
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and a list of threat models; it yields a vulnerability report.
The catalogue of vulnerabilities contains a characterization
of the criteria for identifying input sources and sinks related to
specific vulnerabilities; for more details, we refer the reader
to our previous work [6]. The vulnerability report lists the
vulnerabilities found in the Web application, and for each
of them indicates the type and the corresponding sink. Our
approach is composed of two macro-steps:

Security slicing & Attack conditions generation. This
step first performs security slicing [6], i.e., given the bytecode
of the Web application to analyze and the catalogue of
vulnerabilities, it identifies sinks in the program and for
each sink computes the path condition leading to it and the
associated context information. The path condition and the
context information of each sink are then used, together
with the list of threat models, to generate attack conditions,
i.e., conditions that could trigger a security attack over
a security slice. This step is based on our previous work
on security slicing [6]; we provide a brief summary of it
in section 5.

Constraint solving. This step takes as input the attack
conditions generated in the previous macro-step, in the
form of a constraint. This constraint is first pre-processed to
simplify it through the constraint pre-processing step (detailed
in section 6). The resulting constraint, represented as a con-
straint network, is then given as input to a hybrid constraint
solver, which orchestrates a constraint solving procedure
for string and integer constraints with our search-based
constraint solving procedure [7]; more details of this step
are presented in section 7. The results yielded by the hybrid
constraint solver are used to create the vulnerability report.

5 SECURITY SLICING AND ATTACK CONDITIONS
GENERATION

In previous work we proposed security slicing [6], which
is a technique that extracts all the program statements
required for auditing the security of a given sink. It is similar
to interprocedural program slicing [26], which extracts all
statements across procedures that affect a given statement of
interest. However, interprocedural program slices typically
contain large amounts of information that is irrelevant to
security, which lead to scalability issues in security audits.
A security slice is more concise and contains the minimal
sequence of program statements necessary to determine the
vulnerability of a sink.

The main idea of security slicing is to prune: 1) library
code that is known to be correct or irrelevant to secu-
rity analysis; 2) secure program paths that apply proper,
standard sanitization on the input variables that are used
in a sink; 3) vulnerable program paths that can be fixed
automatically because user input is directly used in the
sink. Notice that for cases where the data-flow and control-
flow between sources and sinks are more complex, it would
not be possible to automatically fix the user input without
affecting the integrity of the input data, possibly resulting
in a malformed fix, changing the semantics of the original
program, or even introducing a new security vulnerability.

To identify sources and sinks in the Web application
under test, security slicing relies on a vulnerability cata-
logue, i.e., a predefined set of sink and source signatures,

1 protected void doPost(HttpServletRequest req,
2 HttpServletResponse res) {
3 res.setContentType("text/html;charset=UTF-8");
4 PrinterWriter out = res.getWriter();
5 String op = req.getParameter("option");
6 String sid = req.getParameter("id");
7 int max = Integer.parseInt(req.
8 getParameter("max"));
9 if(max>20)

10 max=20;
11 if(op.trim().equalsIgnoreCase("GradeQuery")) {
12 if(sid.length()>max) {
13 sid=customSanit(sid); //remove chars <,>,/
14 out.println("<a␣href=\"foo.com?id="
15 + sid + "\">Invalid␣ID:␣"
16 + sid + "</a>"); //XSS sink
17 }
18 }
19 }

Figure 4. The security slice of the XSS sink at line 29 in Figure 2

which can be easily extended by adding new signatures. As
part of our previous work [6], we preconfigured a default
vulnerability catalogue that contains a rich set of commonly
used API signatures.

Security slicing performs symbolic execution on each
path in a security slice to extract the path condition(s)
characterizing the path. However, from a security auditing
standpoint it is also necessary to understand the context of a
sink, i.e., how the input data is used in a sink. Examples of
possible contexts are the content or an attribute of an HTML
tag, as well as a quoted value of an SQL query. This informa-
tion can be computed through context analysis, a lightweight
technique for identifying the context (within a sink) in
which the data of an input source is used. More specifically,
context analysis3 is a backward data flow analysis which
traces the values of the variables used in the sink along
the path, to reconstruct the query (e.g., SQL/XPath/LDAP
query) or the document part (e.g., HTML/XML fragment)
that is being generated at the sink. Context information is
computed by matching the reconstructed query or docu-
ment part against some predefined patterns (shown in the
“Context” column of Table 1).

We give a bird’s eye view of security slicing through the
example in Figure 4, which shows the security slice for the
(XSS) sink at line 29 in Figure 2. The security slicing proce-
dure filtered out library code from the Document, HttpServle-
tRequest, HttpServletResponse, and PrinterWriter classes,
since they can be considered as irrelevant to security [6]. It
also filtered out two of the four program paths leading to
the XSS sink in Figure 2; the two pruned paths correspond
to those including the predicate at line 19 in Figure 2, which
does not affect the sink. As a result, the security slice shown
in Figure 4 contains only two paths leading to the sink.
The first path is characterized by path condition PC1, which
corresponds to the path that follows the true branch of the

3. Context analysis attempts to detect the appropriate threat model,
and is thus different from the path exploration method presented
in [27], which aims at improving the scalability of symbolic execution
by grouping program paths that are equivalent with respect to the
produced output.
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selection statement at line 9 in Figure 4 and leads to the
execution of the sink; this path condition is:

PC1 ≡ Integer.parseInt(MAX ) > 20 ∧
OP.trim().equalsIgnoreCase("GradeQuery")

∧ SID.length() > 20

The second path is characterized by path condition PC2,
which corresponds to the path that follows the false branch
of the selection statement at line 9 in Figure 4 and leads to
the execution of the sink; this path condition is:

PC2 ≡ ¬(Integer.parseInt(MAX ) > 20) ∧
OP.trim().equalsIgnoreCase("GradeQuery")

∧ SID.length() > Integer.parseInt(MAX )

For both paths, our context analysis procedure [6] identifies
the following two contexts: CTX1, in which the symbolic
expression customSanit(SID) is used as a URL parameter
value in an XSS sink; CTX2, in which the symbolic ex-
pression customSanit(SID) is used as an element content
in an XSS sink. Note that the symbolic expression custom-
Sanit(SID) represents the values of variable sid used at the
sink.

The output of security slicing—path conditions and
context information—is used to generate attack conditions,
represented as constraints. A new constraint is generated
for each context identified for each path, based on the threat
model characterizing the security threat in that specific con-
text. The attack condition generation (ACG) process follows
three steps:

ACG1) Since different contexts require different threat
models, the procedure determines the appropriate threat
model for a given context by looking up the list of threat
models provided as input. The identification of the threat
model is a fully automated procedure that matches the
context returned by security slicing with one of the entries
in the threat models list. The predefined version of this list
has been presented in § 2.4; though not showed in Table 1,
the predefined list also contains catch-all entries4 for each
type of vulnerability, which are used as fallback mechanism
when there is no context matching pattern. Furthermore, the
structure of the list guarantees that there is always only one
applicable threat model for a given context. For example,
the threat model for context CTX1 is #7 in Table 1; likewise,
the threat model for CTX2 is #1.

ACG2) In the constraint corresponding to each iden-
tified threat model, the symbol input is replaced with
the actual symbolic expression of the input. This re-
sults in a constraint that checks if an input used at
the sink contains a security attack. For example, the
constraint input.matches(".*[’\"=<>/,;+-&\*\[\] ].*") —
corresponding to threat model #7 (see Table 1)— results in
the following constraint ATTK1, related to context CTX1:

ATTK1 ≡ customSanit(SID)

.matches(".*[’\"=<>/,;+-&\*\[\] ].*")

Likewise, the constraint ATTK2 related to CTX2 is:

ATTK2 ≡ customSanit(SID).matches(".*[<>/].*")

4. The catch-all entries for threat models are more generic and might
lead to false positives in terms of vulnerability detection.

ACG3) For each constraint generated in the previous
step and a given path condition, the attack conditions are
generated by simply conjoining the path condition with the
constraint. For example, the attack condition SEC1 is the
constraint conjoining PC1 and ATTK1:

SEC1 ≡ Integer.parseInt(MAX ) > 20 ∧
OP.trim().equalsIgnoreCase("GradeQuery") ∧
SID.length() > 20 ∧
customSanit(SID)

.matches(".*[’\"=<>/,;+-&\*\[\] ].*")

Likewise, attack condition SEC4 conjoins PC2 and ATTK2:

SEC4 ≡ ¬(Integer.parseInt(MAX ) > 20) ∧
OP.trim().equalsIgnoreCase("GradeQuery") ∧
SID.length() > Integer.parseInt(MAX ) ∧
customSanit(SID).matches(".*[<>/].*")

Similar attack conditions (omitted for space reasons) are
computed by conjoining PC1 and ATTK2, as well as PC2
and ATTK1.

More details on security slicing and context analysis are
available in our previous work [6].

6 CONSTRAINT PREPROCESSING

Constraints corresponding to attack conditions generated
from the previous steps are represented as constraint net-
works, which are a common representation of instances of a
constraint satisfaction problem [28].

We build the hypergraph of the constraint network rep-
resenting an attack condition similarly to how string graphs
are constructed in [29]. The nodes of the graphs are either
constant values or string/integer variables appearing in the
constraints of the network. Each operation (e.g., method
calls like trim() or comparison operators like >) in an
attack condition corresponds to exactly one hyperedge in
the constraint network graph. Notice that boolean operators
are represented as hyperedges labeled with the operator
itself. Transformational operations (which return a value of
type different from boolean) require to add a node to the
graph, representing an auxiliary variable that corresponds
to the result of the operation; the transformational operation
is then added as a hyperedge that connects the nodes of the
initial constants/variables and the new auxiliary variable.
The latter is denoted with a name ending with a prime
(′) symbol, except when the transformational operation is
length, in which case we use a name of the form lVAR, where
VAR is the original variable.

For example, the constraint network corresponding to
attack condition SEC1 is shown in Figure 5. Rounded
nodes represent variables, squared nodes represent constant
values, hyperedges are denoted by lines that meet at a black
dot. A hyperedge is labeled with the name of the corre-
sponding operation and with numbers that indicate the role
of its component nodes in the corresponding operation (i.e.,
order of function arguments, return variable). For instance,
the node labeled MAX′ corresponds to the auxiliary vari-
able resulting from the application of the transformational
operation parseInt() to variable MAX; the node labeled
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Figure 5. Constraint network equivalent to the attack condition SEC1

lSID is the auxiliary variable that represents the length of
variable SID. Notice that, to keep figures readable, we omit
the representation of hyperedges labeled with a boolean
AND.

Once a constraint network is constructed, we preprocess
it to apply some rules that simplify the solving procedure;
these rules are captured by two preprocessing procedures:
1) derived constraint generation and 2) constraint refinement,
executed in this order and applied through a work-list algo-
rithm. Both procedures have been already described in [29];
here we propose new derived constraints and new rules
to deal with additional operations. As described in § 6.3,
both procedures preserve the equisatisfiability between the
original and modified versions of the constraint network.

Note that when some of the variables or the constraints
of a constraint network are independent, the underlying
hypergraph is disconnected; in such a case, we apply the
preprocessing procedures to each of the maximal connected
components (i.e., hypersubgraphs) of the hypergraph. For
example, in Figure 5, there are three hypersubgraphs, en-
closed in dashed rectangles and denoted as H1, H2, and H3.

6.1 Derived Constraint Generation

For some operations, additional constraints are derived to
reduce the input domain or to solve the constraints more ef-
ficiently. For example, given the constraint X.contains(Y ),
one can generate the derived constraint lX ≥ lY on the
length ofX and Y . The addition of these derived constraints
reduces the size of the variable domains and may lead to
unsatisfiability results faster, since some of the new derived
constraints may be easier to solve (e.g., because they use a
smaller number of variables).

Table 2 shows the derived constraints corresponding to
string/mixed operations; the derived constraints marked
with a star are introduced for the first time in this paper,
while the others have been taken from [29], [30]. Notice that
some operations in Table 2 may return a specific value to
indicate an error: for example, indexOf returns a negative
value when the search string is not found; we model this
semantics using logical implications.

The derived constraints are then included in the con-
straint network accordingly. For example, Figure 6 shows
the constraint network obtained after generating the derived
constraints for the network in Figure 5; the new constraints
are derived from the trim, equalsIgnoreCase, and length
operations.

6.2 Constraint Refinement

In this step, some rules are used to simplify the constraint
network and to detect trivially inconsistent constraints, to
avoid unnecessary and expensive constraint solving. For
example, if there is a constraint of the form X.equals(Y ),
the hyperedge corresponding to the equality constraint and
one of the nodes (either X or Y ) can be removed, and its
connected hyperedges can be redirected to the remaining
node.

Table 4 shows the constraint refinement rules for specific
types of hyperedges (or pair of hyperedges), as well as
a pictorial representation of them; all the rules have been
already described in the literature [29], [31], [32], [33].

Rule 1 corresponds to the evaluation of a transforma-
tional operation involving only constants. The operation
is actually executed to determine its result; the node cor-
responding to the auxiliary variable is replaced by a sin-
gle constant node corresponding to the computed result.
The hyperedge labeled with the transformational operation
is removed from the hypergraph, and also its associated
constant nodes, if they are not connected to any other
hyperedge.

Rule 2 is similar to the previous; it corresponds to the
case in which a hyperedge is labeled with a relational or
boolean operation involving only constants. The operation
is evaluated; either it evaluates to true, and thus the hyper-
edge is removed from the hypergraph, or to false, and thus it
determines the unsatisfiability of entire constraint network.

Rule 3 corresponds to the case in which there is a pair of
hyperedges representing integer constraints, which matches
one of the patterns shown in the left column of Table 3. This
pair is replaced by a hyperedge representing the equivalent
constraint, as indicated in the right side of Table 3. This
table is based on well-known equivalences between numeric
constraints. For example, the pair of hyperedges equivalent
to a constraint of the form X ≥ Y ∧X = Y , is replaced by
one hyperedge corresponding to the constraint X = Y .

Rules 4 and 5 are applicable to a hyperedge that corre-
sponds to an equality constraint between two variables and,
respectively, to an equality constraint between a variable
and a constant. In both cases, the hyperedge corresponding
to the equality constraint is removed, as well as one of the
component nodes (the node corresponding to the variable in
rule 5); the hyperedges that were connected to the removed
node are reconnected to the other.

Rule 6 captures pairs of hyperdeges corresponding to
inconsistent constraints (imposed on the same variables)
of the form RelOp(v1, . . . ,vK) ∧ ¬RelOp(v1, . . . ,vK); this
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Figure 6. The constraint network in Figure 5 augmented with the derived constraints

Table 2
String/mixed operations and their corresponding derived constraints (X and Y are string variables, X′ is an auxiliary string variable, i and j are

integer variables, I′ is an auxiliary integer variable, lT represents the length of string T )

String/mixed operation Derived constraint(s) Source

X.contains(Y ) lX ≥ lY [29]
X.startsWith(Y ) lX ≥ lY [29]
X.endsWith(Y ) lX ≥ lY [29]
X.isEmpty() lX = 0 ?

X.concat(Y )
lX′ = lX + lY

[29], [30]
X + Y [29], [30]
X.append(Y ) ?

X.equals(Y )
lX = lY

[29], [30]
X.equalsIgnoreCase(Y ) ?
X.contentEquals(Y ) ?

String.copyValueOf(X)
lX = lX′

?
valueOf(X) ?
X.toString() ?

X.trim() lX ≥ lX′ [29], [30]
X.length() lX ≥ 0 [29], [30]
X.indexOf(Y ) (I′ ≥ 0→ ¬(X.substring(0, I′).contains(Y ))∧X.substring(I′,lX).startsWith(Y )∧ lX ≥ lY )∧

(I′ < 0→ ¬(X.contains(Y )))
?

X.lastIndexOf(Y ) (I′ ≥ 0 → ¬(X.substring(I′ + 1, lX).contains(Y )) ∧X.substring(I′,lX).startsWith(Y ) ∧ lX ≥
lY ) ∧
(I′ < 0→ ¬(X.contains(Y )))

?

X.charAt(i) lX′ = 1 ∧X.contains(X′) ?
X.toLowerCase() lX = lX′ ?
X.toUpperCase() lX = lX′ ?
X.isEmpty() lX = 0 ?
X.substring(i) 0 ≤ i < lX ∧ lX′ = lX − i ∧X.contains(X′) ?
X.substring(i,j) 0 ≤ i < lX ∧ i ≤ j ≤ lX ∧ lX′ = j − i ∧X.contains(X′) ?

Table 3
Patterns for the refinement of integer constraints used in rule 3

of Table 4

pattern equivalent constraint

X ≥ Y ∧X > Y X > Y
X ≥ Y ∧X = Y X = Y
X ≥ Y ∧X 6= Y X > Y
X ≤ Y ∧X < Y X < Y
X ≤ Y ∧X = Y X = Y
X ≤ Y ∧X 6= Y X < Y
X ≤ Y ∧X ≥ Y X = Y

rule determines the unsatisfiability of the entire constraint
network.

Rule 7 is applicable to pairs of hyperedges that are
labeled with the same operation and whose parameters
are connected through equality constraints; this means that
the two hyperedges are semantically equivalent. They are

merged into a single hyperedge and the component nodes
are processed according to rules 4 and 5.

Rules 4–7 use the theory of Equality of Uninterpreted
Functions (EUF) [33], a widely used theory in constraint
solving, to identify and merge semantically equivalent
nodes and hyperedges.

As an example, the constraint network in Figure 6 is
refined into the constraint network shown in Figure 7. More
specifically, since the constraint 10 ≥ 0 in H2 trivially evalu-
ates to true, according to rule 2 the hyperedge labeled with
≥ and the constant node 0 are removed from the network;
also, according to rule 5, inH2 the hyperedge corresponding
to constraint lOP ′ = 10 as well as the variable node for lOP ′

are removed and the hyperedges that were connected to
the latter are now connected to the node for constant 10;
since one of the resulting hyperedges corresponds to the
constraint 10 ≥ 0, rule 2 can be applied again as above, to
remove the hyperedge.
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Table 4
Hyperedges and their corresponding refinement rules. (X, Y , X1, XK , Y1, YK are variables, X′ and Y ′ are auxiliary variables,

c1, . . . cK , 1 ≤ i ≤ K and c are constants)

ID Hyperedge(s) Refinement Rule Source

1 TransOp(c1, . . . ,cK) where TransOp is any transforma-
tional operation that involves only constants

c1

ci

cK

TransOp
X ′

1

i

K

K + 1

The operation TransOp is executed to determine its result c. The node
corresponding to the auxiliary variable is replaced with the constant
c. The hyperedge and the component nodes ci, 1 ≤ i ≤ K, not con-
nected to any other hyperedge, are removed from the hypergraph.

ci c

[31]

2 RelOp(c1, . . . ,cK), where RelOp is any relational or
boolean operation that involves only constants

c1

ci

cK

RelOp

1

i

K

If the operation RelOp returns true, the hyperedge and the compo-
nent nodes ci, 1 ≤ i ≤ K, not connected to any other hyperedge, are
removed from the hypergraph. Otherwise, constraint unsatisfiability
is detected. (The figure below corresponds to the case in which RelOp
returns true)

ci

[31]

3 A pair of hyperedges corresponding to a pair of integer
constraints that matches one of the patterns shown in
the left column of Table 3.

NumOp0

NumOp1
X Y

The two hyperedges are replaced by the hyperedge representing
the equivalent constraint NumOpE indicated in the right column of
Table 3.

NumOpE
X Y

[32]

4 X.equals(Y ), X = Y
=

X Y

The hyperedge and one of the component nodes (X or Y ) are
removed. The hyperedges that were connected to the removed node
are reconnected to the other.

X

[29]

5 X.equals(c), X = c
=

X c

Same as above, except that the variable X , not the constant c, is
removed.

c
[29]

6 A pair of hyperedges corresponding to incon-
sistent constraints between the same nodes, e.g.,
X.contains(Y ) and ¬X.contains(Y )

RelOp

¬RelOp
X Y

Constraint unsatisfiability is detected.
[29]

7 A pair of hyperedges that are labeled with the same
operation and whose parameters are connected through
equality constraints

Y1

YK

Y ′ X1

XK X ′
Op

Op ==

==

1

K

K + 1

1

K K + 1

The two hyperedges are merged into a single hyperedge and the
component nodes are processed according to rules 4 and 5.

Y1

YK

Y′
Op

1

K

K + 1

[33]

6.3 Constraint Preprocessing and Equisatisfiability

Both derived constraint generation (§ 6.1) and constraint re-
finement (§ 6.2) procedures apply changes to the constraint
network. A change (addition, removal, or replacement of a
hyperedge) applied to the original constraint network R0 =
(X0, D0, C0) results in a new network R1 = (X1, D1, C1),
followed by the application of k − 1 further changes by
the worklist algorithm and resulting in the final network
Rk = (Xk, Dk, Ck).

The sole purpose of constraint preprocessing is to sim-
plify the solving procedure and, hence, the equisatisfiability
between R0 and Rk has to be preserved. In the rest of this
section we show how the application of any of the proposed
constraint preprocessing rules to a constraint network Rt,
resulting in a new network Rt+1, preserves the equisatis-
fiability between Rt and Rt+1, for 0 ≤ t < k. Since the
equisatisfiability relation is transitive, we can conclude, by
induction, that R0 ≡sat Rk.
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Figure 7. Constraint network resulting from the application of the constraint refinement rules to the network in Figure 6.

Derived constraint generation

This procedure adds constraint(s) to a constraint network
Rt, yielding a new network Rt+1 with Rt ⊆ Rt+1. Note
that during this procedure, besides new constraints, also
new auxiliary variables may be added to the network.

For a generic rule in Table 2, we call RO =
(XO, DO, CO) the constraint network representing only the
string/mixed operation in the first column of the table, and
RD = (XD, DD, CD) the constraint network representing
the derived constraint added by the rule, as indicated in
the second column of the table. To apply a preprocessing
rule in Table 2 to a constraint network Rt, RO has to be a
subgraph of Rt. After the application of the rule, the graph
union of RO and RD, denoted by ROD = RO ∪ RD, has
to be a subgraph of Rt+1, because the derived constraint
is always added to the hyperedge corresponding to the
string/mixed operation. One can see that, for each rule
in Table 2, RO |=XO RD ; we conclude that ROD ≡XO RO
and, hence, they have to be equisatisfiable. The same reason-
ing can be applied when considering Rt and Rt+1, because
RO ⊆ Rt, ROD ⊆ Rt+1 and Rt+1 = Rt ∪RD .

Let us consider the first rule in Table 2 as an exam-
ple. RO is the network representing the constraint cO ≡
A.contains(B); RD is the network corresponding to the
derived constraint cD ≡ lA ≥ lB . In this case, we have that
RO |=I RD , with I = {A,B}. In other words, for a string
B to be contained in A, it is necessary but not sufficient
that lA ≥ lB ; hence, all solutions for cO also satisfy cD
with respect to the variables in I . Therefore, the network
ROD that corresponds to the conjunction cO ∧ cD has to be
equivalent to RO with respect to the variables in I ; thus,
ROD has to be equisatisfiable to RO.

Constraint refinement

This procedure replaces or removes hyperedges/nodes in a
constraint network Rt, yielding a new network Rt+1. All
the rules in Table 4 apply change that preserves the relation
Rt ≡I Rt+1, with I = Xt ∩ Xt+1 being the set of non-
redundant variables, i.e., the remaining set of variables not
affected by the application of a refinement rule.

In the following, we show how each rule preserves the
equisatisfiability between Rt and Rt+1.

Rule 1 and 2 in Table 4 replace hyperedges that involve
only constant parameters, with a constant node representing
the output of the operation that corresponds to the replaced
hyperedge. Since the parameters of these operations are

constant, the output of the transformational/relational oper-
ation is also constant; hence its replacement does not affect
the equisatisfiability between Rt and Rt+1.

Rule 3 performs only hyperedge replacement without
affecting the variables. The application of this rule to Rt
results in an equivalent network Rt+1 because no vari-
able is added or removed, and because both the replaced
hyperedges and their replacement hyperedge are logically
equivalent. For example, let Rt represent the constraint
ct ≡ X ≥ Y ∧ X > Y , and Rt+1 represent the refined
constraint ct+1 ≡ X > Y ; Rt is equivalent (and thus
equisatisfiable) to Rt+1 because ct and ct+1 are logically
equivalent and defined over the same set of variables.

Rules 4, 5 and 7 are only applied to equality constraints
inRt in order to collapse equivalent nodes and hyperedges.
Because equality is an equivalence relation, the application
of these rules preserves equisatisfiability between Rt and
Rt+1.

Rule 6 is a simple inconsistency check for detecting
trivially inconsistent constraints and does not perform any
change on the constraint network Rt.

7 HYBRID CONSTRAINT SOLVING

The constraint network resulting from the previous pre-
processing step is then solved by our hybrid constraint
solver. Our solver is hybrid because it orchestrates a con-
straint solving procedure for string/mixed and integer con-
straints with our search-based constraint solving proce-
dure [7].

The idea behind this hybrid solving strategy is to solve
a constraint network through a two-stage process: in the
first stage, our solving procedure solves all the constraints
with supported operations, providing a unified treatment
for string and integer constraints. In the second stage, we
use our search-driven solving procedure based on the Ant
Colony Optimization meta-heuristic to solve the remain-
ing constraints which contain unsupported operations. The
solver in the first stage is used to reduce (possibly in a
significant way) the search space, i.e., the domains of the
string and integer variables, for the search-driven solving
procedure; hence, it makes the search in the second stage
more scalable and effective.

The pseudocode of our string constraint solving algo-
rithm CSTRSOLVE is shown in Figure 8. It takes as input
a hypergraph H corresponding to the constraint network
to solve and returns whether it is satisfiable, unsatisfiable,
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or whether it timed out; when it returns satisfiable, it also
returns the set of solutions found, which are used to build
the vulnerability report.

First, it computes (line 4) the set HS of connected hyper-
subgraphs of H by means of function GETMCHYPERSUB-
GRAPHS. Then, it iterates through all the elements Hi ∈ HS
to perform the following steps (lines 5–13).

Function SOLVESUPPORTEDOPS (line 6) solves the con-
straints in Hi containing supported operations and returns
the set Sol , which contains the solutions for all the string
and integer variables in Hi; the details of SOLVESUPPORTE-
DOPS are presented in § 7.1.

Subsequently, if Hi contains any constraints contain-
ing unsupported operations, the algorithm invokes the
SEARCHSOLVE function, which implements a meta-heuristic
search algorithm (detailed in § 7.2). SEARCHSOLVE tries to
find a solution for the constraints which could not be solved
by SOLVESUPPORTEDOPS due to the presence of unsup-
ported string or integer operations and, thus, provides a
general mechanism for solving them. SEARCHSOLVE returns
a flag solved and an updated set of solutions Sol (line 8). If
the flag solved is true, it means that the constraints in Hi

have been solved and the algorithm can proceed to pro-
cess the hypersubgraph Hi+1; otherwise, it means that the
SEARCHSOLVE function timed out and, thus, the algorithm
returns TIMEOUT, terminating the entire constraint solving
procedure. A time-out can indicate either that a solution
exists for the constraint but the solver could not find it, or
that the constraint is actually unsatisfiable.

The algorithm returns SAT and the set of solutions Sol
(line 14) only when the loop over H has been completely
executed, meaning that the attack condition corresponding
to the constraint network given as input is satisfiable.

Representation of the solutions. The search-based constraint
solving step requires every variable domain to be repre-
sented in the form of a solution automaton. A solution
automaton is an FSM accepting the language determined
by the constraints imposed on the variable; in our case, a
solution automaton for a variable accepts only the language
corresponding to the set of values (for the variable) that
satisfy the constraints the solver has solved so far. Hence, the set
Sol computed at lines 6 and 8 contains solution automata.
Notice that we provide a unified treatment of integer and
string constraints by converting integer ranges into their
automaton representation. For example, the solution au-
tomaton for a string variable s involved in a constraint
s.matches("abc*") would be "abc*"; the solution automaton
for an integer variable i involved in the constraint i > 2 is
[3-9] | [1-9] [0-9]+, corresponding to the range [3,∞). For a
variable involved only in constraints with unsupported op-
erations, its corresponding solution automaton is the default
one, accepting any value (i.e., the automaton accepting the
regular language 0|

(
−? [1-9] [0-9]∗

)
for an integer variable

and .∗ for a string variable).

7.1 Solving Supported Operations

Our solving procedure leverages automata-based solving
for solving string/mixed constraints, and linear interval

1: function CSTRSOLVE(Hypergraph H)
2: Boolean solved ← false
3: Set of Solution Sol ← ∅
4: Set of Hypergraph HS ← GETMCHYPERSUBGRAPHS(H)
5: for all Hi ∈ HS do
6: Sol ← SOLVESUPPORTEOPS(Hi,Sol)
7: if CONTAINSUNSUPPORTEDOPS(Hi) then
8: 〈solved,Sol〉 ← SEARCHSOLVE(Hi,Sol)
9: if ¬solved then

10: return TIMEOUT
11: end if
12: end if
13: end for
14: return 〈SAT ,Sol〉
15: end function

16: function SOLVESUPPORTEDOPS(Hypergraph H , Set of Solution Sol)
17: Sol ← INITIALIZE(Sol)
18: Set of Hyperedge Worg ← W ← GETSUPPORTEDEDGES(H)
19: repeat
20: Hyperedge e← SELECTEDGE(W )
21: Set of Solution newSol ← APPLYRECIPE(e,Sol)
22: Sol ← UPDATE(newSol,Sol)
23: W ← UPDATEWORKLIST(newSol ,Worg ,W )
24: W ← W \ {e}
25: until ISEMPTY(W )
26: return Sol
27: end function

Figure 8. Hybrid Constraint solving algorithm

arithmetic for solving integer constraints5. In both cases,
constraint solving rules are expressed using recipes that
model the semantics of the operations.

We specifically use automata-based solving and lin-
ear interval arithmetic (vs. bit-vector-based or word-based
methods) because both methods return, when successful, a
solution range for each variable occurring in the constraints
they could solve, based on the operations they support.

The pseudocode of our SOLVESUPPORTEDOPS algorithm
for solving constraints with supported operations is shown
in Figure 8; it takes as input a hypergraph H and set of
solutions Sol . First, the algorithm initializes each variable in
set Sol with a default solution automaton, which is .∗ for
string variables and 0|

(
−? [1-9] [0-9]∗

)
for integer variables

(line 17), and extracts from H the set of hyperedges W
(and its copy Worg) labeled with supported operations
(line 18). Next, the constraints are solved using a worklist
procedure (lines 19–25). First, a hyperedge e is selected from
W (line 20). Then the APPLYRECIPE procedure (line 21) pro-
cesses the domains of the variables in the component nodes
of e according to the recipe that models the semantics of the
operation labeling e. We provide recipes (see Table 5 and
Table 6) for both string and integer variables: string/mixed
constraints are solved by means of automaton-operations
(such as union, intersection, concatenation), and integer
constraints are solved through linear interval arithmetic
(where integer domains are represented by intervals).

As a result, SOLVESUPPORTEDOPS returns the set newSol
(line 21), in which the solution automata of the variables in
the component nodes of e accept the languages correspond-
ing to the sets of values that satisfy the string/mixed or
integer constraints represented by e. The set Sol is then up-
dated with the solutions in newSol (line 22). If the solution
automaton of a variable v is affected by this update, it needs

5. Integer constraints that cannot be solved with linear interval
arithmetic are treated as constraints with unsupported operations.
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to be checked for satisfiability with other constraints that
involve v; in this case, the function UPDATEWORKLIST puts
back into W all the previously-removed hyperedges (de-
termined from the original list Worg) which are connected
to the node for variable v (line 23). Finally, the algorithm
removes the hyperedge e from the set W . This worklist
procedure is repeated until the set W is empty, i.e., until
all the constraints with supported operations have been
successfully solved. Notice that when a recipe results in an
automaton that accepts the empty language, meaning that
there is no solution to satisfy a constraint, the entire con-
straint solving procedure terminates internally and returns
UNSAT.

The above worklist procedure implements the fixpoint
iteration based on an arc-consistency algorithm [34]. A hy-
peredge is added back to the worklist (through the UPDATE-
WORKLIST operation) only if the domains of its variables
could be further restricted through the application of a
recipe. Since all the recipes in Table 5 and Table 6 are of
the form A := A ∩ B, i.e., they only restrict the domains of
the involved variables, the worklist procedure is guaranteed
to converge and to terminate with two possible results: (1)
one variable domain becomes empty or (2) the constraint
network stabilizes because none of the variable domains can
be further restricted.

In the following subsections, we discuss the constraints
that are supported by our automata-based+linear interval
arithmetic solver and illustrate the worklist procedure with
an application to the running example.

7.1.1 Supported String and Mixed Constraints
Our automata-based solver supports many operations from
the java.lang.String class, except methods like format
and hashCode that cannot be expressed in terms of FSMs.
The solver also supports the matches, parseInt, parseLong,
toString, valueOf, append, and length operations from other
Java classes that are commonly found in Java applica-
tions [35]. In addition, the solver supports 16 input sani-
tization operations from the Apache Commons Lang 3 [9]
and OWASP [10] standard security libraries; we remark that
in the context of security analysis it is important to support
such operations for achieving precise and efficient analysis.

Table 5 shows a subset of operations supported by our
automata-based solver and the corresponding recipes6; the
operations marked with a star are proposed for the first time
in this paper, while the others have been taken from [3],
[29]. In the table we adopt the following notation: MX

denotes the automaton accepting the language LX = {X},
containing only the string X ; Mε denotes the automaton
that accepts the empty string; .i denotes the automaton
that accepts i number of any characters; ∗ denotes the
Kleene-star operator; ¬ denotes the complement operation;
⊕ denotes concatenation; MX ∩ := MY is a short-hand
for MX := MX ∩ MY ; [c0c1. . .cn] is a short-hand for
c0 ∪ c1 ∪ . . . cn where c stands for a character or a character
range. In addition, we use a number of auxiliary operations
that work on automata: Prefix (M) and Suffix (M) return
the prefixes and suffixes of the words accepted by M , re-
spectively; Substring(M) returns an automaton that accepts

6. The full list of supported operation is available online [15].

the substrings of the words accepted by M ; Substring(M, i)
returns an automaton that accepts the substrings starting
from the index i of the words accepted by M ; Trim(M)
returns an automaton that accepts all words of M without
leading and trailing blanks; CharAt(M, i) returns an au-
tomaton that accepts the characters at the index i of the
words accepted by M ; LowerCase(M) and UpperCase(M)
return an automaton that accepts the lowercase (respec-
tively, uppercase) words of the words accepted by M ;
Replace(MX , c1, c2,MX′), ReplaceFirst(MX , c1, c2,MX′),
and ReplaceAll(MX , c1, c2,MX′) are functions defined
in [3], [36] modeling the homonymous replacement string
operations, which return a tuple of solution automata MX

and MX′ , where MX′ accepts the words resulting from
the semantics of the corresponding replacement operation;
ApacheSanitizeHTML3 (MX ,MX′) returns a tuple of so-
lution automata MX and MX′ where MX′ accepts the
words resulting after replacing all occurrences of HTML
meta-characters in the words accepted by MX with their
corresponding escape characters. The latter models the se-
mantics of a standard sanitization function from Apache [9],
through a series of Replace functions for 〈meta-character,
escape character〉 pairs; we model the remaining 15 standard
sanitization functions we support in a similar way.

7.1.2 Supported Integer Constraints

Integer constraints are solved by means of linear interval
arithmetic. When successful, this method returns a range
of solutions for each integer variable involved in the con-
straints.

Our solver supports basic operations of the form I op K ,
where I,K are integer variables and op ∈ {=, >,<,≥,≤
,+,−}. From our experience with the test subjects in our
experiments7 this set of supported operations is enough,
since most of the constraints encountered when analyzing
the injection vulnerabilities of Web applications are linear
integer constraints; more details are provided in section 9.

Table 6 shows the recipes for various integer operators
op; in this case, a recipe is a sequence of operations that are
executed to compute a range of solutions for each integer
variable according to the semantics of op. These recipes have
been taken from the sources ( [37], [38], [39]) indicated in the
last column of Table 6. In the table, we adopt the following
notation: IV denotes the interval of variable V with vmin

and vmax being its lower and upper bounds, respectively;
IK ∩ := IN is a short-hand for IK := IK ∩ IN , i.e., the
intersection of the two intervals IK and IN .

As discussed above, we convert integer ranges into their
automaton representation. More specifically, for each inte-
ger variable V , we generate an automaton representing its
interval IV with IV := [vmin, vmax], i.e., the automaton that
accepts only the string representation of numbers within
IV . We convert intervals by intersecting the automata for
[vmin,∞) and (−∞, vmax]. For example, the integer interval
IV = [3, 45] can be represented as [3-9] | [1-9] [0-9]+ ∩ 0| −
[1-9] [0-9]∗ |4 [0-5] | [1-3] [0-9] | [0-9].

7. All of the numeric constraints that appeared in our test subjects
could be solved by means of the recipes listed in Table 6.
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Table 5
Automata operations (recipes) corresponding to string/mixed operations. (X and Y are string variables, X′ is an auxiliary variable, c, c1 and c2 are

string constants, i, i1 and i2 are integer constants)

Operation Recipe Source

X.charAt(i) MX ∩ := .i ⊕MX′ ⊕ .∗

MX′ ∩ := CharAt(MX , i)
[29]

X.concat(Y )
X.append(Y )
X+Y

MX ∩ := Prefix(MX′ )
MY ∩ := Suffix(MX′ )
MX′ ∩ :=MX ⊕MY

[29]
[29]
?

X.contains(Y ) MX ∩ := .∗ ⊕MY ⊕ .∗

MY ∩ := Substring(MX)
[29]

copyValueOfX)
valueOf(X)
X.toString()

MX ∩ :=MX′

MX′ ∩ :=MX
?

X.endsWith(Y ) MX ∩ := .∗ ⊕MY

MY ∩ := Suffix(MX)
[29]

X.equals(Y )
X.contentEquals(Y )

MX ∩ :=MY

MY ∩ :=MX
[29]

X.equalsIgnoreCase(Y ) MX ∩ := LowerCase(MY ) ∪UpperCase(MY )
MY ∩ := LowerCase(MX) ∪UpperCase(MX)

?

escapeHtml3(X) 〈MX ,MX′ 〉 := ApacheSanitizeHTML3 (MX ,MX′ ) ?

X.indexOf(Y ) MX ∩ := {.i ∩ ¬MY } ⊕MY ⊕ .∗

MY ∩ := Substring(MX , i)
[29]

X.isEmpty() MX ∩ :=Mε ?

X.lastIndexOf(Y ) MX ∩ := (.∗ ⊕MY ⊕ .∗) ∩ {.i+1 ⊕ (.∗ ∩ ¬MY )}
MY ∩ := Substring(MX , i)

[29]

X.length()

MX ∩ := .{i1, i2}
where i1 and i2 are equal to the lower limit and the upper limit, respectively, of the length of X .
If the upper limit is ∞, i2 is removed from the expression, i.e., .{i1, }. If X has a fixed length,
the expression is .{i1}.

?

X.matches(c) MX ∩ :=Mc [3]

parseInt(X)
parseLong(X) MX ∩ :=MX′ ∩ (0 ∪ (-{0, 1}[1-9][0-9]∗)) ?

X.replace(c1, c2) 〈MX ,MX′ 〉 := Replace(MX , c1, c2,MX′ ) [3]

X.replaceAll(c1, c2) 〈MX ,MX′ 〉 := ReplaceAll(MX , c1, c2,MX′ ) [3]

X.replaceFirst(c1, c2) 〈MX ,MX′ 〉 := ReplaceFirst(MX , c1, c2,MX′ ) [3]

X.startsWith(Y ) MX ∩ :=MY ⊕ .∗

MY ∩ := Prefix(MX)
[29]

X.substring(i) MX ∩ := .i−1 ⊕MX′

MX′ ∩ := Substring(MX , i)
[3], [29]

X.substring(i1, i2)
MX ∩ := .i1 ⊕MX′ ⊕ .∗

MX′ ∩ := Substring(MX , i1, i2)
[3], [29]

X.toLowerCase() MX′ ∩ := LowerCase(MX)
MX ∩ :=MX′ ∪UpperCase(MX′ )

?

X.toUpperCase() MX′ ∩ := UpperCase(MX)
MX ∩ :=MX′ ∪ LowerCase(MX′ )

?

X.trim() MX ∩ := [ ]∗ ⊕MX′ ⊕ [ ]∗

MX′ ∩ := Trim(MX)
[29]

7.1.3 Application to the Running Example

We now show an example of the execution of SOLVESUP-
PORTEDOPS when solving the hypersubgraph H3 in Fig-
ure 7, which contains string/mixed, and integer constraints.
The solution automata for the two string variables SID and
SID ′ are initialized with .∗; the solution automaton for the
integer variable lSID is initialized with 0|

(
−? [1-9] [0-9]∗

)
.

First, the procedure GETSUPPORTEDEDGES returns W (fur-

ther assigned also to Worg ), which contains four hyper-
edges, labeled with >, ≥, length() and matches().

Let us assume that in the first iteration of the worklist
loop, function SELECTEDGE selects the hyperedge labeled
with ≥. This hyperedge has two component nodes: the
integer variable node lSID and the constant node 0. The
solution for lSID is solved by applying the recipe given
in row 4 of Table 6, which yields lSID := [0,∞). The



19

Table 6
Interval operations (recipes) corresponding to integer constraints (L, N and K are integer variables, IV stands for the interval of variable V with

IV := [vmin, vmax] where vmin and vmax denote lower and upper bounds, respectively).

Operation Recipe Source

K = N
IK ∩ := IN
IN ∩ := IK

[37], [38]

K > N

I>N := [nmin + 1,∞) is the interval that captures all numbers greater than nmin

I<K := (−∞, kmax − 1] is the interval that captures all numbers smaller than kmax

IN ∩ := I<K

IK ∩ := I>N

[38]

K ≥ N

I≥N := [nmin,∞) is the interval that captures all numbers greater than or equals to
nmin

I≤K := (−∞, kmax] is the interval that captures all numbers smaller than or equals to
kmax

IN ∩ := I≤K

IK ∩ := I≥N

[38]

L = K +N
IL ∩ := [kmin + nmin, kmax + nmax]
IK ∩ := [lmin − nmax, lmax − nmin]
IN ∩ := [lmin − kmax, lmax − kmin]

[37], [38], [39]

L = K −N
IL ∩ := [kmin − nmax, kmax − nmin]
IK ∩ := [lmin + nmin, lmax + nmax]
IN ∩ := [kmin − lmax, kmax − lmin]

[37], [38], [39]

hyperedge ≥ is then removed from the worklist W and
the worklist loop will continue to the next iteration; let us
assume that the hyperedge labeled with > is selected in the
latter. Similarly to the previous iteration, the new solution
for lSID is obtained by applying the recipe given in row 3
of Table 6, which yields lSID := [21,∞). Since this results
in a change to the existing solution automaton of lSID in
Sol , the previously-removed edge ≥, which is connected
to the variable node lSID , is put back into the worklist W ;
the hyperedge > is also removed from W . Let us assume
that the hyperedge labeled with ≥ is selected in the next
iteration; by applying the recipe given in row 4 of Table 6,
the solution for lSID is lSID := [21,∞) which is converted to
the automaton 2 [1-9] | [3-9] [0-9]+ | [1-9] [0-9] [0-9]+. Since this
results in no change to any existing solution automaton in
Sol , no previously-removed edge is put back into W ; the
hyperedge ≥ is then removed from W . Subsequently, let
us assume that the hyperedge labeled with matches() is se-
lected. This hyperedge has two component nodes: the string
variable node SID ′ and the constant node ".*[’\"=<>/,;+-
&\*\[\] ].*", which is equivalent to the regular expression
.∗[’"=<>/,;+-&*[] ].∗. The solution automaton MSID′ for the
variable SID ′ is computed according to the recipe for the
operation matches in Table 5:

MSID′ :=MSID′ ∩ .∗[’"=<>/,;+-&*[] ].∗ ↔
MSID′ :=.∗ ∩ .∗[’"=<>/,;+-&*[] ].∗ ↔
MSID′ :=.∗[’"=<>/,;+-&*[] ].∗

This means that the language accepted by MSID′ is now
restricted to the values matching the regular expression
.∗[’"=<>/,;+-&*[] ].∗. This results in a change to the exist-
ing solution automaton of SID ′ in Sol (recall that it was
initialized with .∗). The procedure is supposed to put back
any previously-removed hyperedge that is connected to
node SID ′; however, in this case there is no such edge.
The hyperedge matches() is then removed from W and
the worklist loop continues to the next iteration, in which

the remaining hyperedge length() is selected. The solution
automaton MSID is then updated according to the recipe for
operation length in Table 5, with i1 = 21, i2 =∞:

MSID :=MSID ∩ .{21, } ↔ MSID := .∗ ∩ .{21, } ↔
MSID :=.{21, }

This means that the language accepted by MSID is now
restricted to the strings with a length greater than or equal
to 21. This results in a change to the existing solution
automaton of MSID in Sol . Again, there is no previously-
removed hyperedge connected to MSID that has to be put
back in W . After this iteration, the worklist is empty and the
algorithm returns the set Sol = {lSID ,MSID ,MSID′}, where
lSID := 2 [1-9] | [3-9] [0-9]+ | [1-9] [0-9] [0-9]+, MSID := .{21, },
and MSID′ := .∗[’"=<>/,;+-&*[] ].∗

Notice that the hyperedge labeled with customSanit() is
not in the worklist since it reflects an unsupported opera-
tion.

7.2 Solving Unsupported Operations
We use the Ant Colony Optimization (ACO) meta-heuristic
search for solving constraints that involve unsupported
operations. We chose ACO over other well-known meta-
heuristic search techniques (such as hill climbing, simulated
annealing, and genetic algorithms [40]) because:
• It is typically used for finding good solutions (i.e.,

paths that return good fitness values) in graphs [41]. Hence,
it can be easily adapted to our problem where the search
space is defined in a graph form, i.e., an automaton.
• Differently from other search algorithms, in ACO,

defining a new candidate solution is straightforward, since
it only requires having an ant exploring a new path in the
solution automaton.
• It has inherent parallelism in which multiple candidate

solutions can be searched in parallel for efficiency.
• It is stochastic in nature, which prevents the search

from getting stuck in local optima.
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Several algorithms that implement the ACO meta-
heuristic have been proposed in the literature. In this paper
we will useMAX−MIN Ant System [42] with 2-opt local
search [43], in which the pheromone values are bounded
by maximum and minimum values, which are dynamically
computed after every search iteration. We use this algorithm
because the bounding of the pheromone values prevents
their relative difference from becoming too extreme during
the run of the algorithm and, therefore, mitigates the search
stagnation problem in which ants traverse the same trails
and construct the same solutions over and over again.

Below, we first present the fitness functions used within
the algorithm and then the algorithm itself.

7.2.1 Fitness Functions

Any search-based procedure requires defining one or more
fitness functions to assess the quality of the potential solu-
tions, i.e., their distance from the best solution. A low(er)
value for the fitness of a solution implies a high(er) quality
for the solution itself. Since in the context of this work we
deal with both integer and string constraints, we use fitness
functions specific to these domains.

For integer constraints we use the Korel function [44],
which is a standard fitness function for this domain. We
consider constraints of the form C ≡ E1 ./ E2, where
./ ∈ {=, <,≤, >,≥} and E1, E2 are integer expressions
that can be integer variables, integer constants, or any other
expression whose evaluation results in an integer value (e.g.,
the length operation for strings); notice that we treat boolean
expressions also as integer expressions. Let s = [s1, . . . , sn]
be the vector of candidate solutions for the integer variables
x1, . . . , xn inC , and a(s), b(s) be the integer values resulting
from the evaluations of E1 and E2 respectively, after replac-
ing the variables in them with the corresponding solutions
in s. The fitness of s is defined as:

f(s) =

{
0, a(s) ./ b(s) is true;
|a(s)− b(s)|+ k, a(s) ./ b(s) is false;

(7.1)

where k = 0 when ./ ∈ {=,≤,≥} and k = 1 otherwise.
For string constraints we use two different functions,

depending on the operations in which string variables are
involved: the Levenshtein (edit) distance function [45] and
the equality cost function for regular expression match-
ing [46]; both functions have been shown to be useful for
search-based generation of string values [46]. The Leven-
shtein distance between two strings a and b is defined as
the minimum number of insert, delete, and substitute oper-
ations (of characters) needed to convert a into b. The regular
expression matching function between a string a and a
regular expression b is defined as the minimum Levenshtein
distance among a and the strings belonging to the regular
language defined by b. We consider string constraints of the
form C ≡ E1 ./ E2, where ./ is a string operation returning
a boolean result, and E1, E2 are string expressions that can
be string variables, string literals, or any other expression
whose evaluation results in a string value (e.g., the concat
operation for two strings). Let s = [s1, . . . , sn] be the vector
of candidate solutions for the string variables x1, . . . , xn in
C , and a(s), b(s) be the string values resulting from the
evaluations of E1 and E2 respectively, after replacing the

variables in them with the corresponding solutions in s. The
fitness of s is defined as:

f(s) =

{
0, a(s) ./ b(s) is true;
ψ (a(s), b(s)) , a(s) ./ b(s) is false;

(7.2)

where ψ is:

• the equality cost function for regular expression match-
ing, when ./ is a regular expression-based string match-
ing operation (e.g., the matches operation for strings in
Java);

• the Levenshtein distance, in all other cases for ./.

We assume to have a list of operations classified as regular
expression-based string matching operations; if there is an
unknown regular expression-based matching operation, it
will be treated as a generic case, using the Levenshtein
distance function. For both types of constraints, the fitness
of a candidate solution is set to an arbitrarily selected large
value (such as 1000) when the solution leads to an exception
during the evaluation of the expressions in which it is used.

We now show the application of these fitness
functions in the context of solving the constraints
used in the attack condition SEC1 from our running
example (see section 5). SEC1 contains two integer
constraints, Integer.parseInt(MAX ) > 20 and
SID.length() > 20, one string constraint with a
regular expression-based string matching operation,
customSanit(SID).matches(".*[’\"=<>/,;+-&\*\[\] ].*"),
and one constraint with a generic string operation,
OP.trim().equalsIgnoreCase("GradeQuery").

Let us consider the case in which the search algorithm
has returned the following candidate solutions for the
variables involved in SEC1: MAX := 10, OP := Grade,
and SID := aRXxQ1zCVmaetowbnZv0t; the fitness function for
these solutions is computed as follows. For constraint
Integer.parseInt(MAX ) > 20, we apply Eq. 7.1;
since the evaluation of the constraint after replacing
the variable with the candidate solution is false,
we get f(MAX := 10) = |10 − 20| + 1 = 11.
For constraint SID.length() > 20, we get
f(SID := aRXxQ1zCVmaetowbnZv0t) = 0 because the
solution for SID satisfies the constraint. For constraint
customSanit(SID).matches(".*[’\"=<>/,;+-&\*\[\] ].*"),
we apply Eq. 7.2; since the evaluation of the constraint
after replacing the variable with the candidate solution
is false (because the string aRXxQ1zCVmaetowbnZv0t
does not match the regular expression .*[’\"=<>/,;+-
&\*\[\]].*), we get f(SID := aRXxQ1zCVmaetowbnZv0t) =
ψ(aRXxQ1zCVmaetowbnZv0t, .*[’\"=<>/,;+-&\*\[\]].*) = 1.
In this case, ψ is the equality cost function for regular
expression matching; a fitness value equal to 1 means
that at least one character operation is needed to
convert the candidate solution to a string belonging
to the regular language defined by the given regular
expression. Following a similar process, the fitness
of the candidate solution for OP in the constraint
OP.trim().equalsIgnoreCase("GradeQuery") is computed
as f(OP := Grade) = ψ(Grade, GradeQuery) = 5, where ψ is
the Levenshtein distance function.
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1: function SEARCHSOLVE(Hypergraph H , Set of Solution Sol)
2: Set of Solution-automaton K ← GETSOLAUTOMATA(Sol)
3: Tuning-parameters 〈α, β, ρ, ξmax , ξmin〉 ← SETTUNINGPARAMS()
4: Population-size A← SETNUMBERANTS()
5: Set of Desirability-value ∆← SETDESIRABILITYVAL(K)
6: Set of Pheromone Ξ← SETPHEROMONES(K)
7: Set of Solution-component TBest ← ∅
8: Fitness FBest ← 1; Fitness FpBest ← 1
9: Array of Fitness tempF ← ∅

10: Array of Set of Solution-component tempT ← ∅
11: repeat
12: loop A times
13: Set of Solution-component T ← CONSTRUCTSOLUTIONS(K,∆,Ξ)
14: Fitness F ← COMPUTEFITNESS(T,H)
15: tempF ← APPEND(tempF , F ); tempT ← APPEND(tempT , T )
16: end loop
17: 〈FBest , TBest〉 ← BESTSOLUTION(tempF , tempT)
18: if FBest < FpBest then
19: 〈FBest , TBest〉 ← 2OPTLOCALSEARCH(K,TBest )
20: end if
21: UPDATEPHEROMONES(K,Ξ, FBest , TBest )
22: FpBest ← FBest

23: until FBest = 0 or timeout
24: if timeout then
25: return ∅
26: end if
27: Sol ← UPDATESOL(TBest )
28: return Sol
29: end function

30: function CONSTRUCTSOLUTIONS(Set of Solution-automaton K,
Set of Desirability-value ∆,
Set of Pheromone Ξ)

31: Set of Solution-component S ← ∅
32: repeat
33: Automaton k ← RANDOMSELECT(K)
34: FSMState v ← GETSTARTSTATE(k)
35: repeat
36: Set of FSMTransition E ← GETOUTTRANSITIONS(v)
37: FSMTransition e← SELECTTRANSITION(E,∆,Ξ)
38: S ← S ∪ {e}
39: v ← GETNEXTSTATE(e)
40: until ISACCEPTSTATE(v)
41: MARKASVISITED(k,K)
42: until all the automata in K have been traversed
43: return S
44: end function

45: function COMPUTEFITNESS(Hypergraph H ,
Set of Solution-component T )

46: Set of Constraint Θ← GETCONSTRAINTS(H)
47: i← 0
48: for all Constraint θ in Θ do
49: i← i+ 1
50: Fitness fi ← EVALUATE(θ, T )
51: Fitness f̂i ← NORMALIZE(fi)
52: end for
53: return Fitness F ← AVERAGE(f̂1, f̂2, . . . , f̂i)
54: end function

Figure 9. Ant colony search for string constraint solving

7.2.2 Search Algorithm

The ACO meta-heuristic for solving constraints contain-
ing unsupported operations is implemented in function
SEARCHSOLVE, whose pseudocode is shown in Figure 9.
The function takes as input a hypergraph H and a set
of solutions Sol (as determined by the call to function
SOLVESUPPORTEDOP).

First, the function retrieves from Sol the set of solution
automata K for the string input variables (line 2); notice
that auxiliary string variables are excluded because the
search procedure needs to find solutions only for the input
variables. The next steps of function SEARCHSOLVE (lines 3–
6) initialize the tuning and search parameters as follows (the
initialization value is indicated next to each parameter):
• Tuning parameters: α = 1 and β = 1 determine the

relative importance of the pheromone trail and the heuristic-

based desirability information; ρ = 0.01 is the evaporation
rate used to prevent the pheromone values from piling up;
ξmax = 5 and ξmin = 0 determine the bounds of pheromone
values.
• Search parameters: the number of ants A = 20; the set

∆ of desirability values δe = 1 for each transition e of each
automaton in K ; the set Ξ of pheromone values ξe = ξmax

for each transition e of each automaton in K .
In ACO, these parameters have to be defined specifically for
the target problem; we chose them based on the guidelines
provided in [42] and on our own preliminary experiments.
Notice that for each transition e, the parameter ξe is ini-
tialized to the value ξmax ; as discussed in [42], this allows
for diverse explorations of the solutions during the first
iterations of the algorithm, because of the small, relative
differences between the pheromone values of the explored
transitions and of the ones not-yet explored.

The algorithm then loops through the three main steps
(construction of candidate solutions, application of local
search, update of pheromone values) until the termination
conditions are met (lines 11–23). We illustrate these steps
through the example shown in Figure 10. In this example,
the variable V is involved in three constraints (shown
in Figure 10(a)): cstr1 ≡ V .matches("ab*|ca") contains
one supported operation; cstr2 ≡ V.length() ≤ 3 con-
tains two supported operations length() and ≤; cstr3 ≡
custom(V ).equals("bba") contains one supported operation
equals() and one unsupported operation custom().

Construction of candidate solutions. This step (lines
12–17) consists of three sub-steps:
1) Building the set of solution components. This step is rep-
resented by the call to function CONSTRUCTSOLUTIONS,
which takes as input the set of solution automata K , the set
of desirability values ∆, and the set of pheromones values
Ξ. It outputs a set of solution components; a solution com-
ponent is a sequence of transitions in a solution automaton
as traversed by the procedure.
This function goes through (lines 32–42) the set of automata
K , and at each iteration it randomly selects an automaton
k ∈ K . Starting from the start state of k, it traverses the
outgoing transitions of the states in k8.
Upon reaching a state where there are multiple outgoing
transitions, it selects (line 37) one of them (say transition
e) based on the probability Pe =

ξαe δ
β
e∑

t∈E ξ
α
t δ
β
t

, computed
using the pheromone value ξe and the desirability δe of the
transition.
The selected transition is added to the local set of solution
components S (line 38) and its reaching state is retrieved
(line 39). The traversal/selection of the transitions of an
automaton is repeated until the final state is found9, which
means that a solution for the variable associated with the
current automaton k has been found. In this case the outer
loop moves to explore the next automaton in K , and contin-
ues until all automata in K have been traversed. At the end,

8. In our automaton representation, a transition reflects a Unicode
character; each transition is updated with a new pheromone value
during the search iterations to reflect the fitness of the solution that
contains the corresponding character.

9. Internally we represent solution automata as generalized non-
deterministic finite automata, which have only one final state.
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V .matches("ab*|ca")

∧V .length() ≤ 3

∧custom(V ).equals("bba")

(a) Three constraints in which
variable V is involved

s0start

s1 s2 s3

s4 s5 s6

a

b b

c

a

ε ε
ε

ε

(b) The solution automaton of V for the first two constraints,
representing the regular language (ab∗|ca) ∩ .{0, 3}

Figure 10. Example to illustrate the search algorithm

the function returns a set of solution components, with one
candidate solution for each string variable.

Let us execute this step through the example shown in Fig-
ure 10, by assuming that the automaton k extracted at
line 33 is the one shown in Figure 10(b). This is the solution
automaton of the input variable V , as determined after solv-
ing the first two constraints with the procedure described
in § 7.1; each transition is associated with a character or
the empty string ε. We assume that the transition (s0, s1)
has the pheromone value ξ(s0,s1) = 2, while the other
transitions have the pheromone value ξ = 1; also recall that
the desirability value for all the transitions is set to a fixed
value of δ = 1.

To construct a solution, the procedure starts from the initial
state s0 and then selects one of its outgoing transitions based
on the probability Pe. In this case, the probability of select-
ing transition (s0, s4) is P(s0,s4) = (1 ∗ 1)/(1 + 2) = 0.33;
the probability of selecting transition (s0, s1) is P(s0,s1) =
(2 ∗ 1)/(1 + 2) = 0.67. Let us assume that the transition
(s0, s1) is selected and traversed: the procedure reaches state
s1. It then traverses one of the two outgoing transitions
of s1; the probability of selecting transition (s1, s6) is 0.5
and the probability of selecting transition (s1, s2) is 0.5.
Assuming that the procedure selects (s1, s2), it reaches state
s2. Afterwards, assuming that the procedure selects transi-
tion (s2, s6), it reaches the final state s6. This generates the
sequence of transitions {(s0, s1), (s1, s2), (s2, s6)}, which
represents the candidate solution V ="ab".

2) Determining the fitness of solution components. This step
computes the fitness for the solution components identified
in the previous step. Function COMPUTEFITNESS (line 14)
takes as input the hypersubgraph H and the set of solution
components T , which contains a candidate solution for each
input variable in H . It first obtains the set of constraints
Θ represented by H . Then, for each constraint θ in Θ it

invokes10 function EVALUATE (line 50), which evaluates
the expressions in θ with the solutions given in T . More
specifically, each unsupported operation in θ is invoked
with parameters that are retrieved from T ; the return value
is then used to compute the fitness f , using one of the
aforementioned fitness functions (Eq. 7.1 or Eq. 7.2) depend-
ing on the type of constraint, as explained in § 7.2.1. To
ensure that the search process is not biased towards solving
the constraints with larger-scale fitness values, each fitness
value f is normalized (line 51) using the normalization
function proposed in [47], resulting in a normalized fitness
value f̂ = f /(f + 1). We use this normalization function
since it has been proven to be useful in the similar domain of
search-based test input generation of string data types [48].
After computing the fitness for all the constraints in H , the
overall fitness F of T is computed by taking the average of
individual, normalized fitness values f̂ (line 53).
The execution of this step through the example in Fig-
ure 10 works as follows. Recall that the solution identified
in the previous step is V = "ab". For each constraint,
the corresponding expression is evaluated and the fitness
of the solution is computed accordingly. For cstr1, we
apply Eq. 7.2 with the equality cost function for regular
expression matching; since the evaluation of the constraint
after replacing the variable with the candidate solution is
true, we get fcstr1

= 0. For cstr2, we apply the Korel
function (Eq. 7.1); since the evaluation of the constraint after
replacing the variable with the candidate solution is true,
we get fcstr2

= 0. For constraint cstr3, let us assume that
the resulting value after executing the operation custom()
with the input V = "ab" is "ba"; the fitness, computed
by applying the Levenshtein (edit) distance function, is
fcstr3

= 111. By applying the normalization we get:

f̂cstr1
= fcstr1

/(fcstr1
+ 1) = 0

f̂cstr2
= fcstr2

/(fcstr2
+ 1) = 0

f̂cstr3 = fcstr3/(fcstr3 + 1) = 1/(1 + 1) = 0.5

Finally, the overall fitness F of the solution V ="ab" is
computed as F = avg(f̂cstr1 , f̂cstr2 , f̂cstr3) = 0.16.
3) Selecting the best solution components. The two steps above
are repeated A times, with the values computed at each iter-
ation stored as elements of the auxiliary variables tempT , an
array containing sets of solution components, and tempF ,
an array containing the fitness values for the corresponding
elements in tempT . Function BESTSOLUTION determines
among them the solution components that have the mini-
mum (i.e., best) fitness, and assign them to variable TBest ,
representing the best solution of the current iteration of the
outer loop.

Application of local search. This step (lines 18–20) is
used to refine the set of candidate solutions built in the
step above, to locally optimize them. More precisely, if
the best solution of the current iteration (TBest ) is better

10. To invoke unsupported operations, we assume that the corre-
sponding bytecode is accessible through the classpath; we use the Java
reflection methods to load and execute the code of the unsupported
operation. Notice that this execution is subject to the timeout defined
in function CSTRSOLVE.

11. This means that the insertion, modification, or deletion of one
character is required in order to satisfy this constraint (see Section 7.2.1).
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than (i.e., its fitness is lower than the fitness of) the best
solution of the previous iteration, we perform a local search
procedure to see whether further improvements can be
made with other solutions that are in the neighborhood of
TBest . The local search is performed using the 2-opt local
search algorithm [49], which finds in each automaton in K
other paths (or sequence of transitions) that reach the final
state. This algorithm replaces at most two transitions of the
current path with one or more transitions; if it finds a set
of solution components with a better fitness value, this set
becomes the new TBest .
To illustrate this step through the example in Figure 10,
let us assume that the current best solution TBest is the
sequence of transitions {(s0, s1), (s1, s2), (s2, s6)}, which
represents the solution V ="ab". The application of 2-opt
local search algorithm might result in replacing the second
transition (s1, s2) with a different transition (s1, s6). This
produces a new sequence of transitions {(s0, s1), (s1, s6)},
which represents a new candidate solution V ="a". The
fitness of this new solution is lower than the one of the
current best solution and, hence, the current TBest is not
changed. This example shows that a local search procedure
may not always find a better solution; nevertheless it is
useful when there is a better solution in the neighborhood
of the current search space.

Update of pheromone values. This step (line 21) up-
dates the pheromone values ξe ∈ Ξ, for each transition e
of each automaton in K . It first computes ξmax = 1

1−ρ
1

FBest

and ξmin = ξmax

2n , where n denotes the cumulative total
number of states of all the automata in K ; then, it sets
ξe = (1− ρ)ξe +4ξe , where 4ξe = 1

FBest
if the transition e

is part of the solution components in TBest , 0 otherwise. If
ξe > ξmax , then it sets ξe = ξmax ; dually, if ξe < ξmin , then
it sets ξe = ξmin .
In the case of the example in Figure 10, recall that the
current best solution TBest is the sequence of transi-
tions {(s0, s1), (s1, s2), (s2, s6)}, with FBest = 0.16. The
pheromone values of the transitions of the solution automa-
ton are updated as follows:

ξmax =
1

1− ρ
1

FBest
=

1

1− 0.01

1

0.16
= 6.31

ξmin =
ξmax

2n
= 6.31/(2 ∗ 7) = 0.45

ξ(s0 ,s1 ) = (1− ρ)ξ(s0 ,s1 ) +4ξ(s0 ,s1 )

= (1− 0.01) ∗ 2 + 1/0.16 = 8.23→ 6.31

ξ(s1 ,s2 ) = (1− 0.01) ∗ 1 + 1/0.16 = 7.24→ 6.31

ξ(s2 ,s6 ) = (1− 0.01) ∗ 1 + 1/0.16 = 7.24→ 6.31

ξ(s0 ,s4 ) = (1− 0.01) ∗ 1 + 0 = 0.99

ξ(s4 ,s5 ) = (1− 0.01) ∗ 1 + 0 = 0.99

ξ(s5 ,s6 ) = (1− 0.01) ∗ 1 + 0 = 0.99

ξ(s1 ,s6 ) = (1− 0.01) ∗ 1 + 0 = 0.99

ξ(s2 ,s3 ) = (1− 0.01) ∗ 1 + 0 = 0.99

ξ(s3 ,s6 ) = (1− 0.01) ∗ 1 + 0 = 0.99

Regarding the transitions (s0, s1), (s1, s2), and
(s2, s6), their pheromones values are set to
ξmax since their originally computed values are
larger than ξmax . Note that, for the transitions

TBest = {SID := aRXxQ1zCVmaetowbnZv0t}
fcstr1 = 0

fcstr2 = ψ(aRXxQ1zCVmaetowbnZv0t , .∗[’"=<>/,;+-&*[] ].∗) = 1

f̂cstr1 = 0; f̂cstr2 = 0.5

FBest = avg(f̂cstr1 , f̂cstr2) = 0.25

(a) Iteration #100

TBest = {SID := $Qaa.&@erp!t’TmoopEn=}
fcstr1 = 0

fcstr2 = ψ($Qaa.&@erp!t’TmoopEn= , .∗[’"=<>/,;+-&*[] ].∗) = 0

f̂cstr1 = 0; f̂cstr2 = 0

FBest = avg(f̂cstr1 , f̂cstr2) = 0

(b) Iteration #1000

Figure 11. Results after 100 and 1000 iterations of the SEARCHSOLVE
procedure

(s0, s4), (s4, s5), (s5, s6), (s1, s6), (s2, s3), (s3, s6), 4ξ = 0
since these transitions are not part of TBest .

The termination conditions of the loop at line 23 in Fig-
ure 9 correspond either to a time-out or to the finding of
a solution that satisfies all the constraints in H , for which
the fitness FBest is zero. If there is a timeout, the function
returns an empty set of solutions. Otherwise, it updates Sol
with TBest (line 27); i.e., the solution automata in Sol are
replaced with the solutions represented by TBest for the
corresponding variables, and it returns Sol .

7.2.3 Application to the Running Example
We now show the application of SEARCHSOLVE to our
running example. We recall that hypersubgraph H3 in Fig-
ure 7 was only partially solved through the application of
function SOLVESUPPORTEDOPS in § 7.1.3 since it contains an
unsupported operation customSanit.

Procedure SEARCHSOLVE will attempt to find a
value from the solution automata MSID := .{21, }
(determined by the automata-based solver) for
the string variable SID that satisfies the two
constraints cstr1 ≡ SID.length() > 20; cstr2 ≡
customSanit(SID).matches(".*[’\"=<>/,;+-&\*\[\] ].*"))
in H3. Figure 11 shows the best results (TBest , f , f̂ , and
FBest ) obtained after 100 and 1000 iterations; fcstr1

is
computed by evaluating the constraint cstr1 with the
value in TBest and by using the Korel function; fcstr2

is
computed by evaluating the constraint cstr2 with the value
in TBest and by using the equality cost function for regular
expression matching. At iteration 1000, the search converges
towards the desired solution for SID , which satisfies the
constraints in H3.

8 IMPLEMENTATION

We have implemented our approach in a tool called JOACO
(available online [15]). It consists of two major compo-
nents, the security slicer and the constraint solver; both are
implemented in Java, comprising approximately 34 kLOC
excluding library code, spaces and comments.

The security slicer is derived from our previous work [6]
and is built on top of Wala [50] and Joana [51], which
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provide interprocedural program slicing and static analysis
of paths in the slice, respectively. Given the bytecode of
a Web program, the security slicer first extracts a security
slice for each sink. It then explores the paths in the slice
that lead to the sink in a depth-first manner, extracting the
path conditions and the context information. The latter is
used to generate the attack condition, by conjoining the path
condition with the appropriate threat model. For scalability
reasons, when encountering loops and recursive function
calls, the slices iterates through them only once.

The constraint solver comprises three modules: constraint
preprocessor, an automata-based and interval constraint
solver and a search-based constraint solver. The constraint
preprocessor makes use of the JGraphT library [52], a
Java class library that provides mathematical graph-theory
objects and algorithms, in order to generate a constraint
network from the attack condition, as explained in section 6.
The constraint network is then passed to the constraint
solver to prove the presence/absence of a vulnerability.

Our automata-based and interval constraint solver han-
dles string and integer constraints with supported opera-
tions, as described in § 7.1. It is built on top of JSA [36] and
Sushi [3]. JSA models a set of Java string/mixed operations
using finite state automata; Sushi adds supports for string
replacement and regular expression replacement operations
using finite state automaton and transducer operations. In
this component, we also defined the recipes for additional
string operations (see Table 5), such as the security APIs
provided by two popular security libraries (OWASP [10]
and Apache [9]). The search-driven constraint solver is in-
voked when a constraint contains unsupported operations,
as described in § 7.2.

9 EVALUATION

In this section we report on the evaluation of JOACO, in
terms of 1) vulnerability detection capability when analyz-
ing the source code of a Web application; 2) capability of
solving string constraints derived from potential vulnera-
bilities in realistic systems. The first task corresponds to the
normal usage scenario of JOACO for detecting vulnerabili-
ties in Web applications. We also included the second usage
scenario because many research efforts (see related work
in section 11) focus (only) on string constraint solving, as
a means to enable vulnerability detection; indeed, in such
a context, JOACO can be also used as a stand-alone string
constraint solver (we call it JOACO-CS when used in this
mode).

We assess the effectiveness of JOACO in performing
these two tasks by answering the following research ques-
tions:

RQ1: What is the effectiveness of JOACO in detecting XSS,
SQLi, XMLi, XPathi, and LDAPi vulnerabilities and how does it
compare with state-of-the-art vulnerability detection tools, includ-
ing our previous work [6], [7]? (§ 9.2.1)

RQ2: What is the effectiveness of JOACO-CS in solving
string constraints characterizing potential vulnerabilities in repre-
sentative and widely used systems and benchmarks and how does
it compare with state-of-the-art, general-purpose string constraint
solvers, including our previous work [7]? (§ 9.2.2)

RQ3: How does the constraint preprocessing described in sec-
tion 6 affect the execution time of JOACO? (§ 9.2.3)

9.1 Benchmarks and Evaluation Settings

We use six different benchmarks, obtained from different
sources, to evaluate JOACO: JOACO-Suite, StrangerJ-Suite,
Pisa-Suite, AppScan-Suite, Kausler-Suite, and Cashew-Suite.

JOACO-Suite is our homegrown benchmark, composed
of 11 open-source Java Web applications/services and se-
curity benchmark applications that have been used in the
literature, with known XSS, XMLi, XPathi, LDAPi, and SQLi
vulnerabilities. It is an extended version of the benchmark
used in our previous work [6], [7], enriched with two new
applications: Bodgeit and OMRS-LUI.
WebGoat [53] and Bodgeit [54] are deliberately insecure
Web applications developed for the purpose of teaching
security vulnerabilities in Web applications. Roller [55] and
Pebble [56] are blogging applications that also expose Web
service APIs. WebGoat, Roller and Pebble have been already
used as benchmarks in the vulnerability detection litera-
ture [20], [21], [57], [58], [59], [60]. openmrs-module-legacyui
(shortened as OMRS-LUI) [61] is the user interface pack-
age of OpenMRS [62], a widely used, open-source medical
record system that manages highly sensitive medical data.
Regain [63] is a search engine, known to be used in a
production-grade system by one of the biggest drugstore
chains in Europe. The pubsubhubbub-java (shortened as PSH)
tool [64] is the most popular Java project related to the
PubSubHubbub protocol in the Google Code archive. The
rest-auth-proxy (shortened as RAP) microservice [65] is one
of the most popular LDAP-based Web service Java projects
returned by a query on Github.com with the search string
ldap rest. TPC-APP, TPC-C, and TPC-W are the standard
benchmarks provided by [66] for evaluating vulnerability
detection tools for Web services; the set of Web services
they provide has been accepted as representative of real
environments by the Transactions processing Performance
Council (http://www.tpc.org). As shown in the top part
of Table 7, this benchmark contains in total 129 paths to
sinks (and as many constraints): 86 paths vulnerable to
XMLi, XPathi, XSS, LDAPi, or SQLi, and 43 non-vulnerable
ones. Note that a vulnerable path corresponds to a single
vulnerability.

StrangerJ-Suite is a security benchmark distilled from five
real-world PHP web applications (MyEasyMarket, proMan-
ager, PBLguestbook, aphpkb, and BloggIT). It has been used
for assessing the effectiveness of the Stranger tool [67] in the
context of automatically detecting and sanitizing security
vulnerabilities in PHP Web applications. We have manually
translated every program of this benchmark from PHP to
Java so that we could use it in our evaluation. As shown in
the bottom part of Table 7, this benchmark contains in total
9 paths which are all vulnerable to XSS.

Pisa-Suite contains 12 constraints generated from sanitiz-
ers detected by PISA [68]; these constraints have been used
in the experimental evaluation reported in [23].

AppScan-Suite contains 8 constraints derived from the
security warnings emitted by IBM Security AppScan [69],
a commercial vulnerability scanner tool, when executing on
a set of popular websites. The generated warnings contain

http://www.tpc.org
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traces of program statements that reflect potentially vulnera-
ble information flows. Also these constraints have been used
in the experimental evaluation reported in [23].

Kausler-Suite contains 120 constraints obtained from
eight Java programs via dynamic symbolic execution. A
superset of this benchmark (with 175 constraints) has been
used for evaluating four string constraint solvers in the
context of symbolic execution [70]; the subset used in this
paper contains the constraints that were successfully trans-
lated into the SMT-LIB format by the tool provided in the
replication package of [70].

Cashew-Suite contains 394 distinct constraints obtained
through the normalization of the constraints of the
SMC/Kaluza benchmark by means of the Cashew tool [71].
The SMC/Kaluza benchmark [72] contains the 18896 satis-
fiable 12 constraints of the Kaluza benchmark, converted to
the input format of the SMC solver [72]; the Kaluza bench-
mark contains constraints corresponding to path conditions
generated from a set of JavaScript programs by a symbolic
execution engine [2]. Although the Kaluza benchmark has
been widely used for evaluating string constraint solvers
in the past, its high degree of redundancy (high number
of constraints equivalent in terms of satisfiability, as high-
lighted by the recent work on constraint normalization [71])
led us to rely on Cashew-Suite instead. This was meant to
prevent biasing the overall results with an extremely large
and redundant benchmark, without any loss of information.

Since JOACO-Suite and StrangerJ-Suite are the only
benchmarks containing the source code of Java Web appli-
cations, they were the only ones used for answering RQ1.
All six benchmarks were however used for answering RQ2
and RQ3. Notice that JOACO-Suite, StrangerJ-Suite, Pisa-
Suite, and AppScan-Suite contain constraints derived from
potentially vulnerable Web applications, whereas Kausler-
Suite and Cashew-Suite have been used to evaluate string
constraint solvers from a general standpoint (not necessarily
related to security analysis).

We established the ground truth (i.e., whether a path
is vulnerable or not) of the constraints in JOACO-Suite in
the following way. WebGoat and Bodgeit are deliberately
in-secured applications for teaching security vulnerabilities
and, hence, they already provided the ground truth. How-
ever, as explained in § 9.2.1, JOACO was able to detect
four previously unknown vulnerabilities in Bodgeit. Since
TPC-APP, TPC-C and TPC-W are standard benchmarks for
testing vulnerability detection tools for Web services, their
ground truth was available. Although Pebble and Roller
have been already used as benchmarks for vulnerability
detection, no ground truth was available; therefore, we con-
sulted the US National Vulnerability Database (NVD) [73]
and confirmed the reported vulnerabilities, by exploiting
them in the deployed applications and by locating their
corresponding paths in the source code. RAP, PSH, Regain
and OMRS-LUI did not have any recent entries in NVD;
therefore, we established the ground truth by manually
inspecting their source code and verified potential vulner-
abilities by exploiting them in the deployed applications.

12. Notice that the SMC paper [72] reports a total of 18901 satisfiable
constraints, but the evaluation artifacts include only 18896 constraints.

Table 7
Vulnerable and non-vulnerable paths in the applications contained in

the JOACO-Suite and StrangerJ-Suite benchmarks. A vulnerable path
corresponds to a single vulnerability.

Application LOC # Paths Vulnerable Non-Vulnerable

XML XPATH XSS LDAP SQL XML XPATH XSS LDAP SQL

JOACO-Suite
WebGoat 24,608 15 1 2 0 0 8 0 1 0 0 3
Roller 52,433 13 0 0 3 0 0 7 0 3 0 0
Pebble 36,592 13 2 0 4 0 0 1 0 6 0 0
Regain 23,182 6 0 0 3 0 0 0 0 3 0 0
PSH 1,964 4 1 0 0 0 0 1 0 2 0 0
TPC-APP 2,082 12 0 0 0 0 6 0 0 0 0 6
TPC-C 9,184 34 0 0 0 0 30 0 0 0 0 4
TPC-W 2,470 6 0 0 0 0 3 0 0 0 0 3
RAP 442 1 0 0 0 1 0 0 0 0 0 0
Bodgeit 3,376 21 0 0 9 0 9 0 0 2 0 1
OMRS-LUI 34,074 4 0 0 4 0 0 0 0 0 0 0

4 2 23 1 56 9 1 16 0 17

Subtotal 190,407 129 86 43

StrangerJ-Suite
MyEasyMarket 14 1 0 0 1 0 0 0 0 0 0 0
proManager 68 3 0 0 3 0 0 0 0 0 0 0
PBLguestbook 64 3 0 0 3 0 0 0 0 0 0 0
aphpkb 19 1 0 0 1 0 0 0 0 0 0 0
BloggIT 55 1 0 0 1 0 0 0 0 0 0 0

0 0 9 0 0 0 0 0 0 0

Subtotal 220 9 9 0

Total 190,627 138 95 43

The ground truth for StrangerJ-Suite was available on the
Stranger tool website [74].

The ground truth of Pisa-Suite and AppScan-Suite was
established in [23]. As for Kausler-Suite, its constraints are all
satisfiable since they were generated by dynamic symbolic
execution. The ground truth of Cashew-Suite was established
by running Cashew [71], which counts the number of models
for every constraint: a model count greater zero indicates
satisfiability.

We ran the experiments on a machine equipped with
an Intel i7 2.4 GHz processor, 8 GB memory, running Apple
Mac OS X 10.13.

The applications and the constraints included in the
benchmark used for the evaluation are available on the tool
web site [15].

9.2 Experimental Results
9.2.1 Effectiveness of Vulnerability Detection
To answer RQ1, we executed JOACO on the JOACO-Suite
and StrangerJ-Suite benchmarks and compared it with two
state-of-the-art vulnerability detection tools for Java Web
applications: LAPSE+ [12] and SFlow [11]13. Similarly to
JOACO, LAPSE+ and SFlow provide an end-to-end solution
to detect vulnerabilities, since they take as input the source
code of an application and produce a vulnerability report.
Both tools are based on taint analysis and thus require to
specify sources, sinks, and sanitization procedures. More

13. SFlow has been shown [11] to perform better than An-
dromeda [20], a commercial product from IBM.
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Table 8
Comparison of the effectiveness in vulnerability detection on the JOACO-Suite and StrangerJ-Suite benchmarks among LAPSE+, SFlow , and
JOACO (tp: true positives, tn: true negatives, fp: false positives, fn: false negatives, pd : recall, pr : precision, E: failing cases, �: timeout cases,

t(s): execution time with constraint preprocessing switched on (+Opt) and switched off (−Opt)

Application LAPSE+ SFlow JoanAudit+CVC4+ACO-Solver JOACO

tp tn fp fn pd pr E t(s) tp tn fp fn pd pr E t(s) tp tn fp fn pd pr E � t(s) tp tn fp fn pd pr E � t(s)

−Opt +Opt

JOACO-Suite
WebGoat 5 3 1 6 45 83 6 7.4 9 4 0 2 82 100 0 26.4 11 4 0 0 100 100 0 0 224.0 11 4 0 0 100 100 0 0 389.9 362.2
Roller 0 10 0 3 0 – 7 4.9 1 3 7 2 33 13 0 8.3 3 10 0 0 100 100 0 10 1228.1 3 10 0 0 100 100 0 0 244.0 210.7
Pebble 1 6 1 5 17 50 8 13.9 6 1 6 0 100 50 0 4.8 6 7 0 0 100 100 0 5 660.1 6 7 0 0 100 100 0 5 708.1 689.6
Regain 0 3 0 3 0 – 6 0.8 0 3 0 3 0 – 0 7.5 3 3 0 0 100 100 0 0 14.6 3 3 0 0 100 100 0 0 87.5 74.3
PSH 0 3 0 1 0 – 4 0.4 0 3 0 1 0 – 0 2.5 1 3 0 0 100 100 0 2 264.4 1 3 0 0 100 100 0 2 288.7 286.4
TPC-APP 2 6 0 4 33 100 7 4.2 5 5 1 1 83 83 0 7.7 5 6 0 1 83 100 0 3 387.0 5 6 0 1 83 100 0 0 171.7 151.9
TPC-C 0 4 0 30 0 – 0 8.8 0 4 0 30 0 – 0 7.9 30 4 0 0 100 100 0 1 152.5 30 4 0 0 100 100 0 0 661.9 566.4
TPC-W 0 3 0 3 0 – 1 2.8 3 3 0 0 100 100 0 4.8 3 3 0 0 100 100 0 0 12.7 3 3 0 0 100 100 0 0 27.3 71.9
RAP 0 0 0 1 0 – 1 0.2 0 0 0 1 0 – 0 1.3 1 0 0 0 100 100 0 0 37.7 1 0 0 0 100 100 0 0 36.8 51.2
Bodgeit 14 0 3 4 78 82 0 14.8 0 3 0 18 0 – 21 7.4 14 3 0 4 78 100 0 3 446.6 17 3 0 1 94 100 0 0 337.3 297.5
OMRS-LUI 0 0 0 4 0 – 0 4.8 0 0 0 4 0 – 4 1.4 4 0 0 0 100 100 0 0 23.3 4 0 0 0 100 100 0 0 42.1 36.6

StrangerJ-Suite
MyEasyMarket 1 0 0 0 100 100 0 0.5 0 0 0 1 0 – 1 0.5 0 0 0 1 0 – 0 1 124.2 1 0 0 0 100 100 0 0 12.0 9.7
proManager 3 0 0 0 100 100 0 1.8 0 0 0 3 0 – 3 1.3 3 0 0 0 100 100 0 0 61.3 3 0 0 0 100 100 0 0 71.6 64.6
PBLguestbook 0 0 0 3 0 – 0 1.7 0 0 0 3 0 – 3 1.3 3 0 0 0 100 100 0 0 10.8 3 0 0 0 100 100 0 0 49.4 45.2
aphpkb 1 0 0 0 100 100 0 0.7 0 0 0 1 0 – 1 0.5 1 0 0 0 100 100 0 1 122.8 1 0 0 0 100 100 0 0 36.7 34.2
BloggIT 0 0 0 1 0 – 0 0.4 0 0 0 1 0 – 1 0.5 1 0 0 0 100 100 0 0 3.4 1 0 0 0 100 100 0 0 29.9 29.1

Total 27 38 5 68 28 84 40 68.0 24 29 14 71 25 63 34 84.0 89 43 0 6 94 100 0 26 3773.4 93 43 0 2 98 100 0 7 3194.9 2981.4

specifically, LAPSE+ requires users to specify (similarly to
JOACO) the bytecode signatures of sources, sinks, and san-
itization functions in a library file; SFlow requires users to
manually annotate the functions in code corresponding to
sources and sinks14. Hence, before executing these tools on
the JOACO-Suite and the StrangerJ-Suite benchmarks, one
of the authors specified/annotated all the functions of the
applications in the benchmark so that all the tools were con-
figured to consider the same source/sink and sanitization
signatures. The input for all tools was the complete source code
of all the (Web) applications contained in the JOACO-Suite
and StrangerJ-Suite benchmarks.

We also compared JOACO with our previous work
JoanAudit+CVC4+ACO-Solver, i.e., the combination of our
security slicing tool JoanAudit [6] with CVC4+ACO-
Solver [7]. CVC4+ACO-Solver is the combination of the CVC4
solver with ACO-Solver, which was shown [7] to be the best
performing constraint solver (in the context of vulnerability
detection) when compared with CVC4, Z3-str2, and Z3-
str2+ACO-Solver. ACO-Solver can be seen as the predecessor
of JOACO-CS: it does not include any constraint prepro-
cessing and its automata-based solving module supports a
limited set of string operations; furthermore, unlike JOACO-
CS, ACO-Solver relies on an external constraint solver. We
set the time-out for ACO-Solver in CVC4+ACO-Solver and
for JOACO-CS in JOACO to 120 s.

Table 8 shows the evaluation results. Columns tp, tn , fp,
and fn denote, respectively, true positives (number of vul-
nerable cases correctly identified), true negatives (number
of non-vulnerable cases correctly identified), false positives
(number of non-vulnerable cases reported as vulnerable),
false negatives (number of vulnerable cases not detected).

14. In the case of SFlow, we could not annotate sanitization oper-
ations because, different from what is reported in the corresponding
paper [11], the implementation of SFlow does not support “untaint”
annotations for sanitization functions.

Column pd reports the recall, i.e., the percentage of vulner-
able cases detected among the total vulnerable cases, and is
computed as pd = tp/(tp + fn)∗100. Column pr reports the
precision, i.e., the percentage of correctly identified vulnera-
ble cases among the total, reported vulnerable cases, and is
computed as pr = tp/(tp + fp) ∗ 100. Column E indicates
the number of failing cases, i.e., the number of paths for
which the analysis resulted in a run-time error, and column
� indicates the number of time-out cases, i.e., the number
of cases that took longer than 120 s to analyze.

Notice that, in the context of vulnerability detection,
when there is a failing or time-out case, the tool neither
detects a vulnerability nor produces a false alarm. Hence,
failing and time-out cases may result either in a false nega-
tive or in a true negative, depending on whether the path is
actually vulnerable.

We answer RQ1 by examining the recall, the precision,
and the number of failing cases in Table 8. LAPSE+ de-
tected 27 vulnerabilities (true positives) and did not detect
(i.e., produced false negatives for) 68 vulnerabilities; SFlow
detected 24 vulnerabilities and did not detect 71 vulnera-
bilities. These values translates into a recall value of 28%
for LAPSE+ and 25% for SFlow. Upon manual inspection
we noticed that the false-negative cases were mainly due
to improper input propagation across functions. SFlow also
failed to analyze all web programs included in Bodgeit,
OMRS-LUI, and the five applications from StrangerJ-Suite
because of compilation errors. JoanAudit+CVC4+ACO-Solver
detected 89 vulnerabilities and missed 6 vulnerable cases,
achieving a recall of 94%. JOACO achieved a high recall of
98%, detecting 93 vulnerabilities and missing only 2 vul-
nerable cases in TPC-APP and Bodgeit. JOACO missed one
vulnerability for TPC-APP because it was unable to generate
the attack condition due to the presence of constraints on
Java collections, which are not supported in the current
version of JOACO. For Bodgeit, JOACO did not report an
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SQL injection because the threat model 11 of Table 1 does
not consider as vulnerable a user input sanitized through
the parseInt() method.

In terms of precision, LAPSE+ reported 5 false positives
and failed to analyze 40 cases, resulting in a precision of
84%; SFlow reported 14 false positives and failed in 34
cases, resulting in a precision of 63%. In both cases, the
false positives were mainly due to the lack of constraint
solving capabilities in these tools. JoanAudit+CVC4+ACO-
Solver achieved a precision of 100%, with no false positives
and failing cases; however, it timed-out in 26 cases, out of
which 21 were non-vulnerable and 5 were vulnerable.

JOACO achieved 100% precision, with no failing cases
and only 7 time-out cases, which are all UNSAT cases
and hence could not be solved by the search-based solver.
Compared to JoanAudit+CVC4+ACO-Solver, JOACO could
handle 18 more cases without running into time-outs.

We remark that JOACO-Suite is an extended version
of the benchmark used in our previous work [6], [7]. For
the two new applications added to the benchmark (Bodgeit
and OMRS-LUI), JOACO was able to detect 4 previously
unknown vulnerabilities (1 XSS and 3 SQLi vulnerabilities)
for Bodgeit and 4 previously unknown XSS vulnerabilities
for OMRS-LUI. LAPSE+ detected only 3 of the new vul-
nerabilities for Bodgeit and could not detect any of the
new vulnerabilities for OMRS-LUI; as mentioned above,
SFlow could not analyze any program included in Bodgeit,
OMRS-LUI, and Stranger. The new vulnerabilities found in
Bodgeit have been reported on the project web site15; the
new vulnerabilities for OMRS-LUI have been reported and
confirmed by the OpenMRS developers.

We also compared the four tools in terms of execu-
tion time; the detailed results are shown in columns t(s)
of Table 8. LAPSE+ took 68 s; SFlow took 84 s; JoanAu-
dit+CVC4+ACO-Solver took 3773.4 s; JOACO, with con-
straint preprocessing enabled (+Opt), took 2981.4 s. The ex-
ecution time of JOACO is much larger than that of LAPSE+
and SFlow, since it includes several steps such as security
slicing and constraint solving; nevertheless, such a large
time is not practically relevant for the purpose of vulner-
ability detection since such analysis is performed when new
code is committed and is not required to provide immediate
feedback. Furthermore, JOACO is about 21% faster than
JoanAudit+CVC4+ACO-Solver.

The answer to RQ1 is that the proposed approach im-
plemented in JOACO is highly effective (achieving 98%
recall, 100% precision) in detecting injection vulnerabilities;
it performs much better than state-of-the-art vulnerability
detection tools, yielding a higher recall (between +70pp and
+73pp, with pp=percentage points) and precision (between
+16pp and +27pp), with no failing cases. This high effective-
ness in vulnerability detection comes at the cost of a higher
execution time, which is however practically acceptable.
Compared with our previous work JoanAudit+CVC4+ACO-
Solver, JOACO detected more vulnerabilities, had much less
time-out cases, and was faster.

9.2.2 Effectiveness of String Constraint Solving
To answer RQ2, we compared the constraint solving capa-
bilities of JOACO when used in the stand-alone solver mode
(dubbed JOACO-CS) with three state-of-the-art constraint
solvers: CVC4 (version 1.4) [13], the latest stable release of
Z3 (version 4.6.0) [14], and our previous work CVC4+ACO-
Solver [7].

For the comparison, we used the constraints contained
in all six benchmark suites, for a total of 672 constraints. We
set the time-out for solving each constraint to 600 s.

Table 9 shows the evaluation results. For each solver,
we indicate the number of correct (column X) and incorrect
(column X) answers returned by the tool, grouped by the
cases “SAT” and “UNSAT”, as well as the total; column ?
indicates the number of cases for which the solver returned
“UNKNOWN”; column E indicates the number of cases
for which the solver execution failed, due to a run-time
error or crash; column � indicates the number of cases in
which the solver timed out; column S indicates the number
of constraints for which the search-based solver had to be
invoked.

We answer RQ2 by examining the number of correct and
incorrect results, and the number of unknown/failing/time-
out cases in Table 9.

For JOACO-Suite, JOACO-CS was the most effective
solver, with 122 correct results (out of 129) and no un-
known/failing cases. The 7 time-out cases are the ones
discussed above for the same benchmark in the answer to
RQ1: they are UNSAT cases and therefore, the search-based
solver could not find satisfying solutions for them.

Z3 yielded 34 correct with 52 unknown cases, 35 failing
cases, and 8 time-outs; CVC4 yielded 92 correct results and
2 incorrect ones, with 35 failing cases; CVC4+ACO-Solver
yielded 103 correct results and 2 incorrect ones, with 24
time-out cases. The failing cases of CVC4 and Z3 were due
to unsupported operations.

For StrangerJ-Suite, JOACO-CS was the only solver that
could solve all 9 cases correctly; in particular, five of them
contained unsupported operations that could be solved only
thanks to the search-based solver of JOACO-CS. These un-
supported operations are incomplete sanitization operations
that only partially filter attack patterns from user inputs.

Both Z3 and CVC4 had 5 failing cases because of unsup-
ported operations and 1 timeout. CVC4+ACO-Solver yielded
7 correct results and two timeouts.

For Pisa-Suite, Z3 and JOACO-CS were the most effective
solvers, solving all constraints correctly; by contrast, both
CVC4 and CVC4+ACO-Solver had six timeouts.
AppScan-Suite was correctly solved by both JOACO-CS and
Z3, whereas both CVC4 and CVC4+ACO-Solver had 5 time-
outs.
For Kausler-Suite, JOACO-CS was the most effective solver as
well, solving all the 120 constraints correctly. On the other
hand, CVC4 and CVC4+ACO-Solver yielded 117 correct re-
sults and 3 time-out cases; Z3 yielded 118 correct results,
one unknown and one failing case.
For Cashew-Suite, CVC4+ACO-Solver and JOACO-CS solved
all the constraints correctly. CVC4 reported one unknown
case; Z3 had one failing case.

15. Issues #17–#20 on https://github.com/psiinon/bodgeit/.

https://github.com/psiinon/bodgeit/
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Table 9
Comparison of the effectiveness in constraint solving among JOACO-CS (with constraint preprocessing switched on and off), Z3, CVC4 and

CVC4+ACO-Solver (X: correct answers, X: incorrect answers, ?: unknown cases, E: failing cases, �: time-outs, S: search-based solver invocation)

Suite Z3 CVC4 CVC4+ACO-Solver JOACO-CS

SAT UNSAT TOTAL ? E � SAT UNSAT TOTAL ? E � SAT UNSAT TOTAL ? E � S SAT UNSAT TOTAL ? E � S

X X X X X X X X X X X X X X X X X X X X X X X X

JOACO 0 14 0 20 0 34 52 35 8 1 72 1 20 2 92 0 35 0 1 81 1 22 2 103 0 0 24 33 0 85 0 37 0 122 0 0 7 7
StrangerJ 0 3 0 0 0 3 0 5 1 0 3 0 0 0 3 0 5 1 0 7 0 0 0 7 0 0 2 5 0 9 0 0 0 9 0 0 0 5
Pisa 0 8 0 4 0 12 0 0 0 0 6 0 0 0 6 0 0 6 0 6 0 0 0 6 0 0 6 0 0 8 0 4 0 12 0 0 0 0
AppScan 0 8 0 0 0 8 0 0 0 0 3 0 0 0 3 0 0 5 0 3 0 0 0 3 0 0 5 0 0 8 0 0 0 8 0 0 0 0
Kausler 0 118 0 0 0 118 1 1 0 0 117 0 0 0 117 0 0 3 0 117 0 0 0 117 0 0 3 0 0 120 0 0 0 120 0 0 0 0
Cashew 0 381 0 12 0 393 0 1 0 0 381 0 12 0 393 1 0 0 0 382 0 12 0 394 0 0 0 0 0 382 0 12 0 394 0 0 0 0

Total 0 532 0 36 0 568 53 42 9 1 582 1 32 2 614 1 40 15 1 596 1 34 2 630 0 0 40 38 0 612 0 53 0 665 0 0 7 12

To sum up, even if we disregard the JOACO-Suite and
StrangerJ-Suite benchmarks (which are the only ones con-
taining unsupported operations) and consider only the re-
maining four benchmarks (which contain only supported
operations), CVC4 correctly solved 519 constraints and had
14 time-outs (and also one unknown case); Z3 correctly
solved 531 constraints and had two failing cases (and also
one unknown case). Our previous work CVC4+ACO-Solver
correctly solved 520 constraints and had 14 time-outs. By
contrast, JOACO-CS correctly solved all the 534 constraints
with no time-outs, no unknown cases, and no failing cases.

We also compared the constraint solving time of the four
tools; the results are shown in Table 10, together with the
number of constraints in each benchmark. In total, Z3 took
6840.6 s (≈2 h) and correctly solved 568 cases; CVC4 took
9735.9 s (≈3 h) and correctly solved 614 cases; CVC4+ACO-
Solver took 32 061.7 s (≈9 h) and correctly solved 630 cases;
JOACO-CS took 16 879.4 s (≈5 h) with constraint prepro-
cessing enabled (+Opt) and correctly solved 665 cases. The
average execution time for solving one constraint (com-
puted as Total time

#constraints ) is 10.2 s for Z3, 14.5 s for CVC4,
47.7 s for CVC4+ACO-Solver, 25.1 s for JOACO-CS (+Opt).
On average, our approach is 1.7× slower than the most
effective, state-of-the-art solver (CVC4), and about 2.4×
slower than Z3. Note that Z3 is faster but less effective than
CVC4 since it solved only 568 cases correctly, whereas CVC4
was able to solve 614 cases. JOACO-CS is about 1.9× faster
than our previous work CVC4+ACO-Solver; this is due to the
larger number of string operations supported by JOACO-
CS, which reduces the number of constraints (from 33 to 7)
for which it is necessary to invoke the search-based solver.
Nevertheless, JOACO-CS could solve the highest number of
constraints in our benchmarks.

The answer to RQ2 is that the proposed constraint solv-
ing approach implemented by JOACO-CS is highly effective
in string constraint solving and performs similarly to or
better (7%–14% more correctly solved cases) than state-
of-the-art string constraint solvers, including our previous
work, depending on the benchmark considered. In terms
of execution time, JOACO-CS is 1.7× slower than the most
effective, state-of-the-art constraint solver (CVC4). However,
since JOACO-CS can solve more cases and constraint solving
is typically an offline activity, with no stringent time require-
ments, we consider this slowdown as practically acceptable.

Table 10
Execution time (in seconds) for Z3, CVC4, CVC4+ACO-Solver and
JOACO-CS with constraint preprocessing switched off (−Opt) and

constraint preprocessing switched on (+Opt)

Suite #Constraints Z3 CVC4 CVC4+ACO-
Solver

JOACO-CS
(−Opt)

JOACO-CS
(+Opt)

JOACO 129 5156.8 69.1 14505.4 5999.4 5707.9
StrangerJ 9 671.7 610.8 1264.3 174.4 162.9
Pisa 12 4.5 3964.8 4006.8 212.9 178.3
AppScan 8 10.5 3002.2 3026.4 168.2 144.0
Kausler 120 945.8 2043.5 8804.3 6079.7 5031.3
Cashew 394 51.4 45.6 454.5 6827.9 5654.9

Total 672 6840.6 9735.9 32061.7 19462.6 16879.4
Avg. Time 10.2 14.5 47.7 29.0 25.1

9.2.3 The Role of Constraint Preprocessing

To answer RQ3, we re-ran all the experiments conducted
for answering RQ1 and RQ2 by using JOACO and JOACO-
CS with preprocessing disabled (denoted by −Opt); we then
compared the resulting values for the execution time with
the ones obtained with the preprocessing enabled (denoted
by +Opt).

For the use case of vulnerability detection, columns
−Opt and +Opt in Table 8 show that enabling the constraint
preprocessing led to reduction of about 200 s in execu-
tion time (from 3194.9 s down to 2981.4 s) corresponding
to a relative reduction of about 7%. For the use case of
string constraint solving, columns JOACO-CS (−Opt) and
JOACO-CS (+Opt) in Table 10 show that JOACO-CS with
constraint preprocessing disabled took 19 460.2 s, whereas it
took only 16 879.4 s with constraint preprocessing enabled,
corresponding to an execution time reduction of about 15%.

Since constraint preprocessing only impacts the effi-
ciency of constraint solving, it has a higher impact on the
execution time of JOACO-CS for string constraint solving
(see Table 10) than for the case of vulnerability detection
with JOACO, which also includes the security slicing step
(see Table 8).

The answer to RQ3 is that constraint preprocessing has a
positive impact on the execution time of our approach, with
reductions ranging between 7% and 15% depending on the
use case.



29

10 LIMITATIONS

The results presented above have shown the effectiveness
of our approach in detecting injection vulnerabilities and
solving string constraints. However, it suffers from the
following main limitations.

Since our approach is mainly based on static analysis
(for determining attack conditions), it inherits one of the
intrinsic weaknesses of the latter: it cannot deal with calls
to system and library functions for which the source code is
not available. To solve constraints containing calls to these
functions, we consider the latter as unsupported operations
and rely on our search-driven technique, effectively invok-
ing the functions in isolation. This strategy may generate
false positives when the functions have side-effects (e.g.,
they modify the global heap memory) that affect some
constraints, because the path conditions previously collected
may not reflect the actual execution. Furthermore, the invo-
cation of some library functions may not always be possible,
e.g., for functions that require complex data structures as
arguments. In such a situation, our approach heuristically
determines that the constraints involving those functions are
satisfiable, which may also produce false positives.

Another limitation is that the threat models we defined
may not be complete. Our approach can miss vulnerabilities
(i.e., yielding false negatives) due to unknown or new type
of attack patterns. To mitigate this, JOACO supports the
inclusion of additional threat models that reflect new attack
patterns through a configuration file.

Search-based solving has limitations in the presence of
non-deterministic operations: for solving random opera-
tions (e.g., random hash functions), search-based solving
is as (in-)effective as random search. However, since these
cases are relatively rare, we consider the practical conse-
quences to be negligible.

Our approach may also miss vulnerabilities when the
solver times out, even though the attack condition is sat-
isfiable. We expect such time-out cases to be rare since
our hybrid constraint solving technique has experimentally
shown to be very effective; indeed, in our experiments all
the time-out cases of JOACO were due only to unsatisfiable
constraints.

Finally, JOACO is designed to work only on the (Java)
source-code of a Web application/service; hence it cannot
be used to analyze Web applications exposing business
processes implemented using workflow languages such as
BPMN [75] or WS-BPEL [76]. Furthermore, the current ver-
sion of JOACO does not support the analysis of applica-
tions written using Java Web frameworks (e.g., Spring [77]);
adding this support is planned for the next major version
(see also the discussion of future work in section 12).

11 RELATED WORK

Our approach is related to work done in the areas of code-
based security analysis, automated prevention of injection
vulnerabilities, penetration testing, (string) constraint solv-
ing, constraint solving through heuristic search, and search-
based test input generation for string data types.

Code-based security analysis. This category includes two
types of approaches: taint analysis and symbolic execution.
Approaches based on taint analysis (such as [11], [20],

[21], [57], [78], [79]) check whether application inputs are
used in sinks without passing through known sanitiza-
tion functions. However, these approaches tend to gener-
ate many false alarms [66], [80] since they cannot reason
about the implementation of sanitization functions. Some
approaches [81], [82] incorporate string analysis into taint
analysis, improving the precision in the analysis of SQLi
and XSS vulnerabilities. Other approaches [80], [83], [84]
reason about the adequacy of input sanitization code by
combining taint analysis and string constraint solving using
finite state automata operations. However, these approaches
usually support only a limited set of string operations,
are targeted towards XSS and SQLi, and lack support for
complex constraints that involve string/mixed and numeric
operations.
Approaches based on symbolic execution [1], [2], [4] per-
form (dynamic) symbolic execution on programs and gen-
erate path conditions. They then use a constraint solver
to check these conditions and determine whether inputs
used in sinks may contain security attack values. These ap-
proaches, which rely on (string) constraint solving, exhibit
the same limitations (e.g., limited support for complex string
operations) as constraint solvers, which are discussed fur-
ther below. In addition, these approaches switch to dynamic
symbolic execution for scalability when encountering the
path explosion problem; however, such a strategy may lead
to omitting the analysis of certain program parts and thus,
missing vulnerabilities. By contrast, our approach applies
security slicing to extract only program parts relevant to
security; this greatly improves scalability without sacrificing
vulnerability detection effectiveness.

Automated prevention of injection vulnerabilities. There
are approaches that automatically prevent code injection
vulnerabilities by sanitizing potentially malicious user in-
puts [85], [86] or by inserting run-time mechanisms that
check against security policies [87], [88]. CSAS [86] automat-
ically inserts sanitization routines into the code generated
by Web templating frameworks. ScriptGuard [85] learns
which sanitizers to use for certain program paths during
a training phase, infers incorrect sanitizations, and fixes
them by applying the correct sequences of sanitizers. Syn-
ode [88] statically computes templates of the values passed
to Node.js APIs and synthesizes a security policy from these
templates, which is then used to detect potential attacks at
run time. XSS-Guard [87] retrofits a Web application with
the capability of learning (through the analysis of HTTP
responses) the scripts it intends to create; at run time,
the instrumented application is then able to remove any
unintended, potentially malicious script.
JOACO also applies a lightweight automatic sanitization
during the security slicing step. However, by contrast, our
approach does not require the use of dynamic analysis
or run time checks; it is only based on static analysis.
Furthermore, the aforementioned approaches focus only on
XSS vulnerabilities whereas JOACO can deal with several
injection vulnerability types (XSS, SQLi, XMLi, XPathi, and
LDAPi).

Penetration testing. Penetration testing tools like
Acunetix [89], BurpSuite [90], and AppScan [69] are useful
for detecting the presence of vulnerabilities in Web pro-
grams. Antunes and Vieira [66] evaluated these tools and
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observed that penetration testing approaches miss vulnera-
bilities and are in generally less accurate than taint analysis
approaches. More specifically, penetration testing cannot
detect vulnerabilities that require to craft the corresponding
attack values in order to exploit the weaknesses of input
sanitization functions. On the other hand, our approach,
being based on constraint solving, returns a concrete attack
value for the input (i.e., a solution) when it identifies a
vulnerability.

(String) constraint solving. There are many constraint
solvers that provide, to a certain degree, support for
strings: bit-vector-based solvers like Hampi [22], Kaluza [2],
and Utopia [91]; automata-based solvers like Violist [92],
Stranger [67], [93], ABC [94], StrSolve [95], Pass [96], String-
Graph [29], and JST [30]; word-based solvers like Norn [97],
S3 [98], and the aforementioned Sushi, CVC4, Z3-str2 and
Z3. Among them, Stranger, JST, StringGraph, S3, CVC4, Z3-
str2 and Z3 support the highest number of string operations
(e.g., startsWith, endsWith, replace, replaceAll, length, and
matches) that are essential in the context of vulnerability
detection; they also support numeric constraints. Although
Hampi and Kaluza have been widely used as benchmarks
for evaluating other solvers (see [13], [23], [97], [98]), they
actually support only a smaller set of string operations
than the solvers listed above; also, Hampi does not support
numeric constraints. Support for regular expressions (which
are usually used in attack specifications) is only provided
— often in a limited form — by Sushi, Stranger, ABC,
Kaluza, S3, Z3-str2, Z3 and CVC4. Nevertheless, none of
them provides full support for a complete string function
library of a modern programming language or for saniti-
zation libraries like OWASP ESAPI and Apache Commons
Lang. This means that they fail when they encounter an
unsupported operation in an input constraint; in turn, this
may lead to missing vulnerabilities. By contrast, in our
approach we use a search-based meta-heuristic algorithm
to handle unsupported operations.

Constraint solving through heuristic search. Heuristic search
has been already proposed [99] for solving non-linear arith-
metic constraints with operations from unsupported nu-
meric libraries; the heuristics is optimized to explore an
n-dimensional space over real numbers. In our approach
we focus on solving constraints with string/mixed and
integer operations; the search heuristics is optimized, in
terms of search strategy and fitness functions, for these kind
of constraints. Further, the approach in [99] is evaluated in
terms of coverage of test generators, while we evaluated our
approach in the context of vulnerability detection.

Search-based test input generation for string data types. There
are a few proposals [46], [48], [100] that apply a search-based
approach (typically genetic algorithms) for generating test
cases in the form of string input values, in the context of sat-
isfaction of branch coverage criteria. Their goal is to improve
coverage by driving the search for string values, either with
useful seed values [46], [48] or by hybridizing global search
and local search [100]. In our case, attack conditions (which
include full path conditions and attack specifications) are
much more complex than branch conditions and thus we
need to reduce the search space. Since we rely on automata-
based solvers for search space reduction, our search algo-
rithm works on automata and, as a result, we had to devise

a search strategy that is effective on graph representations.
This was the main reason to select Ant Colony Optimization,
which resulted in a significantly different search strategy
than the ones proposed in the above-mentioned approaches.

12 CONCLUSION

This work addresses the challenge of analyzing the source
code of a Java Web application for detecting injection
vulnerabilities in a scalable and effective way. We have
proposed an integrated approach that seamlessly combines
static analysis-based security slicing with hybrid constraint
solving, that is constraint solving based on a combination
of automata-based solving and meta-heuristic search (Ant
Colony Optimization). We use static analysis to extract min-
imal program slices from Web programs relevant to security
and to generate the attack conditions, i.e., conditions neces-
sary for the slices to be vulnerable. We then apply a hybrid
constraint solving procedure to determine the satisfiability
of attack conditions and thus detect vulnerabilities.

The experimental results, using a benchmark comprising
a set of diverse and representative Web applications/ser-
vices as well as security benchmark applications, show
that our approach (implemented in the JOACO tool) is
significantly more effective at detecting injection vulnerabil-
ities than state-of-the-art approaches, achieving 98% recall,
without producing any false alarm. We also compared the
constraint solving module of our approach with state-of-the-
art constraint solvers, using six different benchmarks; our
approach correctly solved the highest number of constraints
(665 out of 672), without producing any incorrect result, and
was the one with the least number of time-out/failing cases.
In both scenarios, the execution time was practically accept-
able, given the offline nature of vulnerability detection.

As part of future work, we plan to extend our integrated
vulnerability detection approach with support for widely
used Java Web frameworks such as Spring [77]. We also
plan to incorporate dynamic symbolic execution to further
enhance our approach.
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