
Fleet readiness: stocking spare parts and high-tech assets

Abstract

We consider a maintenance shop that is responsible for the availability of a fleet of assets,

e.g., trains. Unavailability of assets may be due to active maintenance time or unavailability

of spare parts. Both spare assets and spare parts may be stocked in order to ensure a

certain fleet readiness, which is the probability of having sufficient assets available for the

primary process (e.g., running a train schedule) at any given moment. This is different

from guaranteeing a certain average availability, as is typically done in the literature on

spare parts inventories. We analyze the corresponding system, assuming continuous review

and base stock control. We propose an algorithm, based on a marginal analysis approach,

to solve the optimization problem of minimizing holding costs for spare assets and spare

parts. Since the problem is not item separable, even marginal analysis is time consuming,

but we show how to efficiently solve this. Using a numerical experiment, we show that our

algorithm generally leads to a solution that is close to optimal, and that it is much faster

than an existing algorithm for a closely related problem. We further show that the additional

costs that are incurred when the problem of stocking spare assets and spare parts is not

solved jointly, can be significant. A key managerial insight is that typically, the number of

spare assets to be acquired is very close to a lower bound that is determined only by the

active maintenance time on the assets. It is typically not cost effective to acquire more spare

assets to cover spare parts unavailability.

Keywords: Maintenance · Inventory · Fleet sizing · Spare parts

1 Introduction

Many important services and operations depend on the availability of a sufficiently large fleet

of assets. An airline, for example, depends on a fleet of aircraft to service all planned flights,

while a railway company depends on a fleet of rolling stock to make the train schedule work.

Other examples exist in the defense and maritime industries. In all such cases, the availability

of assets (the fraction of time that they are available to operate) is not the most appropriate

measure of fleet performance. For example, consider a train operator that requires 90 trains to

run its schedule as planned, while it owns 100 trains that achieve a 90% availability. The train

operator seems to do fine, but it could be that half of the time there are 95 trains available,

while the other half of the time there are 85 trains available: during the latter half of the time,

the train operator cannot run its schedule. Similarly, consider an air force that has brought a

number of airplanes to a war zone. To fly a relatively safe mission, it requires 40 airplanes to be

available. If the average availability of its 50 airplanes is 80%, the target seems to be achieved.

However, it may be that most of the time about 35 airplanes are available, while sometimes
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there are almost 50 available. Then very often, there are not enough airplanes available to fly

a safe mission. In both examples, a more accurate measure of performance is the fraction of

time that sufficient assets are available to fulfill the function of the fleet, i.e., the probability

that sufficient assets are available at an arbitrary moment in time. We refer to this performance

measure as fleet readiness.

When k assets are needed to fulfill the function of the fleet, then typically N > k assets

need to be acquired to achieve a high fleet readiness, since assets are subject to failures and

need maintenance. The maintenance time of an asset consists of two main parts: the active

maintenance time in which the actual maintenance operations occur (usually the replacement of

line replaceable units) and the maintenance delay time which is the waiting time for maintenance

resources to become available (some authors call this time to support). A major culprit for

maintenance delay is a lack of spare parts needed for replacement.

High fleet readiness can be achieved by a combination of the following: (1) Buying assets in

addition to what is necessary to run daily operations; (2) Reducing the maintenance delay time

by stocking spare parts; (3) Reducing the required number of maintenance actions by increasing

asset reliability; Or (4) improving the speed of maintenance/replacement operations. This paper

focuses on the first two options as these amount to investment decisions of a logistical nature.

The last two options can usually only be achieved by making asset engineering modifications

that are specific to the technology of the asset.

Buying as many assets as a given budget allows is a popular method to increase fleet readiness

but it is not always effective. The money needed to buy assets and spare parts usually comes

from the same budget. In the last decades of the previous century, the Dutch defense engaged

in what has come to be called ‘carcass politics’1. Under carcass politics, the available budget

to establish a fleet is spent as much as possible on buying complete assets, and the remainder

is spent on spare parts. Spare parts become short in supply soon after this and as a result,

technicians start using parts from complete assets leaving only a ‘carcass’ behind. This practice

is often referred to as cannibalization. Clearly, this practice does not necessarily lead to high

fleet readiness. There is a trade-off between investing in assets and spare parts to meet a certain

fleet readiness and this paper explores this trade-off, using a model of a single stock point with

continuous review, stochastic lead times, and base stock control.

The trade-off between investing in assets or spare parts to realize a certain fleet readiness

objective is non-trivial. In general, this problem is non-convex and the analysis cannot be

separated into an analysis per spare part type and asset: Its evaluation requires the convolution

of backorder distributions per spare part type. This is in stark contrast with many spare part

inventory problems in which the resulting optimization problems are convex and separable per

item (see, e.g., Sherbrooke, 2004; Muckstadt, 2005; Basten and Van Houtum, 2014). Assets and

spare parts achieve a certain fleet readiness jointly and so their analysis cannot be separated.

In fact, we will show that their joint analysis is mathematically a generalization of multi-

echelon inventory theory, even though we consider only a single stock point. Unfortunately,

1The Dutch word is ‘rompenpolitiek’, see, e.g., Tjepkema (2010)
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this generalization is not susceptible to standard tools such as Clark and Scarf decomposition

(Clark and Scarf, 1960) and METRIC type inventory models (Sherbrooke, 1968).

Our main contributions in this paper are the following: We consider the problem of deciding

on asset investment and spare part investment jointly, whereas previous work considers them

separately, see also Section 2, which we also often see in practice. However, both are sizeable

investments that serve a common purpose: achieving high fleet readiness. Fleet readiness is

usually not used as service measure in this setting because it is computationally demanding to

evaluate and difficult to optimize. We show that evaluation requires performing a large number

of convolutions, but we also show how the number of convolutions can be lowered exponentially.

We next develop a greedy heuristic for this problem that is computationally efficient. In a

numerical experiment, we compare our heuristic with enumeration on small instances and find

that our heuristic finds the optimal solution of 51% of our test instances and has an average

optimality gap on the other instances of 3.7%. Our algorithm is 50 times faster on medium size

instances than an existing algorithm that was developed for a related problem. (The existing

algorithm takes too much time to perform a comparison on large instances.) Our key managerial

insight is that spare assets should be acquired to cover active maintenance time on the assets;

it is typically not cost effective to acquire more spare assets to cover spare parts unavailability.

In other words, the use of ‘carcass politics’ is not cost effective.

The remainder of this paper is organized as follows. We discuss related literature in Section 2

and position our work with respect to previous work. In Section 3, we explain the model and

the optimization problem that we focus on. We analyze the model in Section 4; we show that

the problem is not convex and we prove some other properties. We use those to construct an

algorithm to solve the optimization problem in Section 5. In Section 6, we perform a numerical

experiment, and we conclude in Section 7.

2 Related literature

Since our main contributions are the combination of the fleet sizing and spare part investment

decisions subject to a service level constraint that is not often used, this literature review is

structured as follows: We discuss the fleet readiness measure in Section 2.1, fleet sizing in

Section 2.2 and spare parts optimization in Section 2.3. In Section 2.3, we specifically focus on

a closely related paper by De Smidt-Destombes et al. (2011).

2.1 Fleet readiness

Fleet readiness as a performance measure is not as common as availability. Some authors

however, already noted that in many instances readiness is a more appropriate performance

measure. Safaei et al. (2011), for instance, consider a deterministic maintenance scheduling

problem subject to a manpower constraint and a fleet readiness constraint. Jin and Wang

(2012) use the fleet readiness measure in the context of performance based contracting. They

approximate this measure by using the availability as the probability that a vehicle is available
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at an arbitrary moment in time and then use the binomial distribution to compute the fleet

readiness. This approximation is more tractable than actual fleet readiness but it assumes

that the availability of different vehicles is uncorrelated at any particular time point. A similar

approach has been followed by Costantino et al. (2013) in a multi-echelon, multi-indenture spare

parts inventory setting. Some authors use the term fleet readiness as the average number of

vehicles of a fleet that are available, e.g., Sherbrooke (1971) and Salman et al. (2007). That is,

these authors consider the availability times the size of the fleet rather than the fleet readiness

as we define it.

A closely related concept from the reliability engineering literature is the availability of a

k-out-of-N system (e.g., De Smidt-Destombes et al., 2004). In this setting, a system consists

of N components and only functions if at least k out of those N components are operational.

The availability is then defined as the probability that at least k out of the N components are

operational. In our setting, we would say that a fleet is ready if at least k out of N assets are

operational, or alternatively, if not more than N−k assets are unavailable. Thus these measures

are equivalent.

2.2 Fleet sizing

Fleet sizing for vehicles has been studied in different settings. Hoff et al. (2010) and Pantuso

et al. (2014) provide a review of these models in the general and maritime setting, respectively.

Most of these models are deterministic and are concerned with calculating the minimum fleet

size necessary to perform daily operations. Our model takes this minimum number of vehicles

needed as an input and supports the investment decision in additional vehicles (or other assets)

and spare parts to make sure that the fleet is operationally ready with a certain probability

at any moment in time. Hoff et al. (2010) already note that dealing with uncertainty is an

important aspect to incorporate when making the fleet sizing decision. Our work partially fills

this gap by providing a model that deals with the uncertainty in the number of vehicles down

for maintenance or lack of a spare part.

2.3 Spare parts optimization

The optimization of spare part inventory decisions has a long history that started with the

work of Feeney and Sherbrooke (1966) and Sherbrooke (1968). This line of research has led to

a large stream of literature that has been consolidated in the books by Sherbrooke (2004) and

Muckstadt (2005) and the review papers by Guide Jr. and Srivastava (1997), Kennedy et al.

(2002), and Basten and Van Houtum (2014). Here, we focus on the most closely related work,

which is the paper of De Smidt-Destombes et al. (2011). In that paper, the authors consider a

fleet that is taken on a mission with a package of spare parts. The objective is to minimize the

investment in this spare parts package subject to a constraint on the probability that the fleet

remains ready throughout the mission. We will show that that constraint is mathematically

equivalent to the fleet readiness constraint as used in this paper. We extend the model in two

ways: (1) We also consider the size of the fleet as a decision variable and (2) we account for
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Figure 1: Modeled system

the fact that maintenance itself requires time and renders an asset unavailable. We show that,

even for a fixed fleet size, optimizing the spare parts package is not a separable and convex

problem. Despite this, De Smidt-Destombes et al. (2011) use a marginal analysis approach and

we pursue a similar approach. As a new contribution, we benchmark this approach with respect

to the optimal solution found by enumeration. We find that our algorithm yields high quality

solutions. Furthermore, we provide results that make algorithms based on marginal analysis

more tractable by giving easy to compute bounds so that gradients do not need to be computed

for every direction of ascent. In addition, we provide an algorithm that computes the gradient

in O(log n) time instead of O(n) time, with n being the number of distinct spare part types.

3 Model description

The system that we analyze is shown in Figure 1. We consider a fleet of assets that are composed

of line replaceable units (LRUs). We let I denote the set of LRUs and we reserve the index 0

for the assets; we denote the set of LRUs and assets by I0 = I ∪ {0}. Assets fail randomly due

to a failure in exactly one LRU i ∈ I; such failures occur according to a Poisson process with

intensity λi and the total intensity over all LRUs is denoted by λ0 =
∑

i∈I λi. λi indicates the

failure rate of LRU i over the complete fleet and it is constant over time, i.e., it is not influenced

by the number of assets that is operational at any point in time. The assumption of a constant

failure intensity is regularly made in the spare parts inventory literature, see, e.g., Basten and

Van Houtum (2014, p.40). It is reasonable, since the required fleet readiness is typically high.

Furthermore, when there is a shortage of operational assets, which would lead to a slightly

lower failure intensity, then often some work load is routed to the operational assets so that

their failure intensity increases.

An asset is repaired by replacement of the failed part by a functioning spare part. In the
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remainder of this paper, if we refer to (spare) parts, components, or items of LRU type i, we

say parts of LRU i. We assume that disassembly of the failed part takes negligible time (i.e.,

is instantaneous); assembly of the functioning spare part into the asset takes exactly µi time

units for LRU i ∈ I if a spare part is available immediately from stock (i.e., µi is deterministic).

After being repaired, the asset is sent to the pool of stand-by assets. We also refer to this pool

as the stock of spare assets.

The failed part of LRU i ∈ I is sent to the repair shop; its repair lead time is generally

distributed with mean Ti time units. Repair times of parts of the same LRU are independent

and identically distributed (i.i.d.) and repair times of parts of different LRUs are independent

of each other. In other words, we assume that the repair shop has an infinite number of servers,

or that the repair shop is able to schedule repairs and hire capacity such that it can guarantee a

certain average repair time (we have made an analogous assumption for the maintenance shop).

After being repaired, a part is returned to stock. Repairs may be performed either at an internal

repair shop, or they may be outsourced to an external repair shop. In fact, the model can also

be used if parts are discarded and replaced by new parts. In that case, repair lead time should

be read as supply lead time or order-and-ship time.

All stock points are controlled using a continuous review (Si − 1, Si) base stock policy (i.e.,

one-for-one replenishment) with Si being the base stock level for LRU i ∈ I or the asset (i = 0).

(Notice that S0 does not indicate the fleet size; if, say, 100 assets are required in the primary

process of the user and the base stock level, S0, is equal to 10, then the fleet size is 110.)

Our assumptions mean that failed assets or parts are not batched, but immediately sent into

maintenance or repair. If the setup costs for a repair are low, this is a reasonable assumption.

As a result, this assumption is commonly made in the spare parts literature (see, e.g. Basten

and Van Houtum, 2014, p.40); we come back to this assumption in Remark 3.1.

Under this policy, the dynamics of the system can be described as follows: Let Di(t
′, t)

denote the demand for LRU i (or, equivalently, the number of failures in parts of LRU i)

between times t′ and t. Let Xi(t) denote the number of parts of LRU i ∈ I in repair, also

called the pipeline of LRU i, at time t. Then, if the repair lead time Ti is deterministic, the

pipeline at time t consists of all demands between times t− Ti and t, i.e., Xi(t) = Di(t− Ti, t).
Due to Palm’s theorem (Palm, 1938), this equality still holds in distribution if the repair lead

time is not deterministic. The number of backorders for LRU i ∈ I is denoted by Bi(t, Si) and

satisfies Bi(t, Si) = [Xi(t)− Si]+, with [x]+ = max{0, x}. In other words, there are backorders

if the number of parts in the pipeline is higher than the base stock level, with the number

of backorders being equal to the difference. We denote by Y0(t) the number of assets in the

maintenance shop that are actively being maintained at time t (i.e., the assets that are waiting

for a spare part are not included). Since the assembly time µi is assumed to be deterministic,

this is the summation over all LRUs of the demands for that LRU between times t − µi and

t, i.e., Y0(t) =
∑

i∈I Di(t − µi, t). For notational convenience, we introduce S as the vector of

all base stock levels Si for i ∈ I. The pipeline X0(t,S) of assets in the maintenance shop at

time t is equal to the number of assets that came in for maintenance after time t− µi, plus the
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number of assets that should have finished maintenance, but were delayed due to backordered

spare parts:

X0(t,S) = Y0(t)+
∑
i∈I

Bi(t−µi, Si) =
∑
i∈I

Di(t−µi, t)+
∑
i∈I

[Di(t− µi − Ti, t− µi)− Si]+ , (1)

while the number of assets short is denoted by B0(t,S0) = [X0(t,S)− S0]+, with S0 being the

vector of all base stock levels Si for i ∈ I0. (This can also be interpreted as the number of

backordered assets.) The readiness, R(S0), is the probability of not being any assets short in

steady state: R(S0) = limt→∞ P {B0(t,S0) = 0}. In other words, the readiness is the long-term

probability that the number of assets in maintenance (i.e., in the pipeline) does not exceed the

number of spare assets.

Remark 3.1. If the asset consists of one LRU only, our system simplifies to a two-echelon

serial inventory system, the Clark-Scarf model (Clark and Scarf, 1960). Specifically, when

|I| = 1, Y0(t) can be interpreted as the number of orders in transit from the upstream stock

point to the downstream stock point at time t, while B1(t− µ1, S1) represents the orders from

the downstream stock point that are backordered at the upstream stock point at time t − µ.

By allowing |I| > 1, we are dealing with a generalization of a two-echelon serial inventory

system under base stock control. Since base stock policies are optimal in the Clark-Scarf model

and many of its generalizations, including some convergent systems, (see for an overview Van

Houtum, 2006) our assumption of base stock control seems reasonable.

Remark 3.2. When µi = 0 and Ti = T for all i ∈ I, then R(S0) can also be interpreted as

the probability that the fleet remains ready during a mission of length T when a spare parts

package of size S is brought on the mission. (Note that Ti = T for all i ∈ I implies that spare

parts cannot be repaired during the mission.) For a fixed asset base stock level S0, this is the

setting that De Smidt-Destombes et al. (2011) consider.

The costs of holding spare assets and LRUs are linear in their base stock level: ci per unit

for asset or LRU i ∈ I0. Our goal is to find the base stock levels that minimize the total costs

C(S0) =
∑

i∈I0 ciSi, such that the target readiness Robj is achieved. Formally, our optimization

problem, Problem (P ), is:

(P ) min
S0∈N

|I0|
0

C(S0)

subject to R(S0) ≥ Robj,

with N0 = N ∪ {0} being the set of non-negative integers. We emphasize that Problem (P ) is

not separable per item because R(S0) cannot be written as a sum of terms that depend on one

Si only. Further note that the costs can also comprise initial investment costs instead of holding

costs.
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4 Analysis

In this section, we give results on the behavior of the fleet readiness as a function of the number

of spare parts and spare assets. We use these results to explain, in Section 5, why we make

certain choices in the algorithm that we use to solve Problem (P ). Since we consider the system

in steady state, we suppress the time parameter in the state variables from now on, and we show

their distributions in Lemma 1. The results in this lemma are very similar to the derivation of

results for the standard two-echelon model for spare parts (see, e.g., Graves, 1985; Basten and

Van Houtum, 2013).

Lemma 1. In steady state, the state variables are distributed as follows:

(i) For i ∈ I, the pipeline, Xi, is Poisson distributed with mean λiTi, i.e.:

P {Xi = x} =
(λiTi)

x

x!
e−λiTi , x ∈ N0.

(ii) For i ∈ I, the distribution of the number of backorders, Bi(Si), is given by:

P {Bi(Si) = b} =

P {Xi ≤ Si} , if b = 0;

P {Xi = Si + b} , if b ∈ N.

(iii) The number of assets that are actively being maintained, Y0, is Poisson distributed with

mean
∑

i∈I λiµi, i.e.:

P {Y0 = y} =

(∑
i∈I λiµi

)y
y!

e−
∑

i∈I λiµi , y ∈ N0.

(iv) The distribution of the asset pipeline, X0(S), is given by:

P {X0(S) = x} =

x∑
y=0

P {Y0 = y}P
{∑

i∈I Bi(Si) = x− y
}
, x ∈ N0.

(v) The distribution of the number of assets short, B0(S0), is given by:

P {B0(S0) = b} =

P {X0(S) ≤ S0} , if b = 0;

P {X0(S) = S0 + b} , if b ∈ N.

Proof. (i) Under a base stock policy, each demand for LRU i ∈ I triggers an order, and each

order is delivered after an i.i.d. amount of time with mean Ti. Therefore, the number of

outstanding orders of LRU i ∈ I behaves as the number of customers in an M/G/∞-queue

with arrival rate λi and processing time with mean Ti. By Palm’s Theorem (Palm, 1938),

the number of customers in such a queue in steady state is Poisson distributed with mean

λiTi.
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(ii) The number of backorders at time t is defined as Bi(t, Si) = [Xi(t) − Si]
+. There-

fore, we have P {Bi(Si) = 0} = P {[Xi − Si]+ = 0} = P {Xi ≤ Si}, and P {Bi(Si) = b} =

P {[Xi − Si]+ = b} = P {Xi = Si + b} for b ∈ N.

(iii) By definition, Y0(t) =
∑

i∈I Di(t − µi, t). Since µi is deterministic, Di(t − µi, t) denotes

the number of arrivals of a Poisson process with intensity λi in a time interval of length

µi. Therefore Di(t − µi, t) has a Poisson distribution with mean λiµi. Since the Pois-

son distribution is closed under convolution, Y0(t) has a Poisson distribution with mean∑
i∈I λiµi for each t and in particular as t→∞.

(iv) First observe that since µi is deterministic, [t− µi − Ti, t− µi) and [t− µi, t) are disjoint

intervals. By Equation (1) and the independent increments of the Poisson process, this im-

plies that Y0 and
∑

i∈I Bi(Si) are independent random variables. Now, using Equation (1)

and letting t→∞, we have:

P {X0(S) = x} = P
{
Y0 +

∑
i∈I Bi(Si) = x

}
=

x∑
y=0

P {Y0 = y}P
{
Y0 +

∑
i∈I Bi(Si) = x | Y0 = y

}
=

x∑
y=0

P {Y0 = y}P
{∑

i∈I Bi(Si) = x− y
}
,

where the final equality follows from the independence of Y0 and
∑

i∈I Bi(Si).

(v) This is analogous to part (ii).

We use additional notation in this section: Let ei be a vector of length |I0| with all zeros,

except at the location corresponding to the base stock level of spare assets (i = 0: S0) or spare

LRUs (i ∈ I: Si). Furthermore, notice that concavity of R(S0) in Si for i ∈ I0 is equivalent to

R(S0 + ei)−R(S0) ≥ R(S0 + 2ei)−R(S0 + ei) for S0 ∈ N|I0|0 , while joint concavity in i, j ∈ I0
is equivalent to R(S0 + ej)−R(S0) ≥ R(S0 + ei + ej)−R(S0 + ei) for S0 ∈ N|I0|0 .

R(S0) is not in general jointly concave in S0 and Si with i ∈ I. As a counter example,

consider an asset consisting of one LRU, indexed 1, with λ1 = 2 and µ1 = T1 = 1. Evaluating

R(S0) gives the following results: R(0, 0) ≈ 0.1353, R(1, 0) ≈ 0.4061, R(0, 1) ≈ 0.2707, and

R(1, 1) ≈ 0.6090. It is easily seen that if either S0 or S1 is increased, the readiness increases.

However, R(0, 1) − R(0, 0) ≈ 0.1353 < R(1, 1) − R(1, 0) ≈ 0.2030, and R(1, 0) − R(0, 0) ≈
0.2707 < R(1, 1) − R(0, 1) ≈ 0.3383. This means that R(S0) is not jointly concave. For larger

values of S0, the inequalities required for concavity do typically hold.

Because R(S0) is not jointly concave in general, our algorithm enumerates the number of

spare assets (see Section 5); Proposition 1 gives bounds on its optimal value. The lower bound,

SLB
0 , is the number of spare assets that are required to achieve the target readiness if there are

unlimited spare parts available. In Section 6, we show that this lower bound is usually tight,
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implying that spare assets are mainly stocked to cover the active maintenance time, while they

are not stocked to cover spare parts unavailability.

Proposition 1. The optimal number of spare assets for Problem (P ), denoted as S∗0 , is bounded

as follows:

(i) S∗0 ≥ SLB
0 , with SLB

0 being the smallest integer S that satisfies P {Y0 ≤ S} ≥ Robj.

(ii) S∗0 ≤ SUB
0 , with SUB

0 being the smallest integer S for which there exists S0
′ =

(
S′0, S

′
1, . . . , S

′
|I|

)
with SLB

0 ≤ S′0 ≤ S, C(S0
′) < c0(S + 1) and R(S0

′) ≥ Robj.

Proof. For part (i): Since X0(S)
d
=Y0 +

∑
i∈I Bi(Si) by definition (

d
= denotes equality in dis-

tribution), we have that P {X0(S) ≥ x} ≥ P {Y0 ≥ x} for all x ∈ N0 because Bi(Si) are non-

negative random variables. The readiness constraint in Problem (P ) requires P {X0(S) ≤ S0} ≥
Robj, so a feasible S0 must satisfy P {Y0 ≤ S0} ≥ Robj.

For part (ii): S0
′ represents a feasible solution, since R(S0

′) ≥ Robj, and the associated cost

of this solution is C(S0
′). Stocking S + 1 spare assets costs c0(S + 1). If c0(S + 1) > C(S0

′),

then the optimal solution cannot contain S+1 spare assets (or more), because there is a feasible

solution with cost lower than c0(S + 1). This means that S is an upper bound on the number

of spare assets in the optimal solution, S∗0 .

Problem (P ) is also not in general jointly concave in Si and Sj with i, j ∈ I and i 6= j. As

a counter example, consider an asset consisting of two LRUs, indexed 1 and 2, with S0 = µ1 =

µ2 = 0. Joint concavity is equivalent to R(0,S+e1)−R(0,S) ≥ R(0,S+e1 +e2)−R(0,S+e2)

for S0 ∈ N|I0|0 , which would mean that

(1− P {X1 ≤ S1 + 1}P {X2 ≤ S2})− (1− P {X1 ≤ S1}P {X2 ≤ S2})

≥ (1− P {X1 ≤ S1 + 1}P {X2 ≤ S2 + 1})− (1− P {X1 ≤ S1}P {X2 ≤ S2 + 1}),

P {X1 ≤ S1}P {X2 ≤ S2} − P {X1 ≤ S1 + 1}P {X2 ≤ S2}

≥ P {X1 ≤ S1}P {X2 ≤ S2 + 1} − P {X1 ≤ S1 + 1}P {X2 ≤ S2 + 1} ,

(P {X1 ≤ S1} − P {X1 ≤ S1 + 1})P {X2 ≤ S2}

≥ (P {X1 ≤ S1} − P {X1 ≤ S1 + 1})P {X2 ≤ S2 + 1} , and

P {X2 ≤ S2} ≥ P {X2 ≤ S2 + 1} .

However, P {X2 = S2 + 1} > 0 for all S2 ≥ 0, so that P {X2 ≤ S2 + 1} > P {X2 ≤ S2}, showing

that this problem is not jointly concave.

We show other convexity results in Proposition 2, which our algorithm uses to determine

lower bounds. The proof can be found in Appendix A; it uses properties of the shape of the

Poisson distribution.

Proposition 2. The second order difference function for the number of spare LRUs i ∈ I,

∆2
iR(S0) = ∆iR(S0 + ei)−∆iR(S0), behaves as follows:

(i) If S0 + Si < dλiTie − 2, then ∆2
iR(S0) > 0, that is, R(S0) is strictly convex in Si.

10



(ii) If Si ≥ dλiTie − 2, then ∆2
iR(S0) ≤ 0, that is, R(S0) is concave in Si.

Notice that:

• A similar result as part (ii) has been shown by Rustenburg (2000, p.41).

• The behavior of ∆2
iR(S0) is not clear beforehand in all cases that are not covered by

Proposition 2 (i.e., if both Si < dλiTie − 2 and S0 + Si ≥ dλiTie − 2).

Proposition 3 gives a result that allows our algorithm to avoid performing unnecessary

calculations: Our algorithm uses a marginal analysis approach. In each iteration, an additional

spare part is stocked of the LRU that gives the biggest ‘bang for the buck’. Proposition 3 gives

an upper bound on how much this ‘bang for the buck’ may have changed for a certain LRU

from one iteration to the next. Our algorithm can thus quickly check if the ‘bang for the buck’

of a certain LRU may be sufficiently high to perform time consuming exact calculations. Since

the proof is long and does not give insight into the problem, it is deferred to Appendix A.

Proposition 3. If Si ≥ dλiTie − 2 and Sj ≥ dλjTje − 2, with i, j ∈ I, then:

∆iR(S0 + ej)−∆iR(S0) < P {Xj = Sj + 1}P {Xi = Si + 1} .

5 Algorithm

We give the pseudo code of our algorithm in Figure 2 and we explain the complete algorithm in

Section 5.1. Next, we focus on how to compute the convolutions in Line 11 of our algorithm in

Section 5.2. This is a very time consuming step in the algorithm and we propose a novel way

to do this efficiently.

5.1 Overview

The algorithm functions as follows. It enumerates the asset base stock level between a lower

bound (Line 1) and an upper bound (Line 3), based on parts (i) and (ii) of Proposition 1,

respectively. Although those bounds are simple, we still find in our numerical experiment

(Table 7) that typically, the number of enumerated spare asset levels is small, i.e., the difference

between the lower and upper bounds is small.

For each asset base stock level, each LRU base stock level is initialized at a lower bound

based on part (ii) of Proposition 2 (Line 4). Notice that this lower bound guarantees that

the readiness is concave in each LRU base stock level. However, notice further that it is not

guaranteed that the optimal LRU base stock level is above this lower bound: Consider a system

in which all LRUs are inexpensive, but there is one very expensive LRU i with a failure rate λi

and repair time Ti such that λiTi = 2 + ε, with ε being a very small number. The lower bound

then ensures that Si = 1, while it may be optimal to have Si = 0. In practice, however, such

examples are seldom encountered and each optimal LRU base stock level will typically be above

the lower bound.

11



1: S0 ← min{S ∈ N0 | P {Y0 ≤ S} ≥ Robj}
2: Calculate the probability mass function of Y0
3: while c0S0 ≤ Cbest do
4: Si ← max{0, dλiTie − 2} for all i ∈ I
5: Calculate the probability mass functions of Bi for all i ∈ I, and of Y0 +

∑
i∈I Bi

6: Rcur ← R(S0); Γbest ← 0
7: ibest ← −1; P {X−1 = S−1} ← 1; Γi ← 1/ci for all i ∈ I
8: while Rcur < Robj do
9: for i ∈ I do

10: Γi ← Γi +
P{Xibest

=S
ibest}P{Xi=Si+1}
ci

11: if Γi ≥ Γbest or i = ibest then
12: Γi ← R(S0+ei)−Rcur

ci

13: Γbest ← max{Γi,Γbest}
14: end if
15: end for
16: ibest ← arg maxi∈I Γi; Sibest ← Sibest + 1; Rcur ← R(S0)
17: end while
18: if C(S0) < Cbest then
19: Cbest ← C(S0)
20: end if
21: S0 ← S0 + 1
22: end while

Figure 2: Greedy algorithm for Problem (P )

Then, the probability mass functions are computed of Bi for i ∈ I, and of Y0 +
∑

i∈I Bi

(Line 5). Using a smart way of ordering and storing these computations results in a reduction

of the computations that are performed per iteration of the marginal analysis approach that is

used to stock additional spare parts (Line 12). We explain this in detail in Section 5.2. Further

variables are initialized in Lines 6 and 7.

As long as the target readiness has not been reached (Line 8), for each LRU (Line 9) an

upper bound on the increase in readiness per additionally invested dollar is calculated (Line

10), using the result in Proposition 3. If the upper bound is such that the current LRU would

be the best option encountered thus far (Line 11), exact calculations are performed (Line 12)

and it is checked if it is really the best LRU encountered thus far (Line 13). In our numerical

experiment (Table 6), we find that using the upper bound for a first check, saves over 50% of

computation time for problem instances with 256 LRUs and that the relative savings increase

with an increasing problem size.

Notice that Line 7 ensures that in the first iteration of the while loop (Lines 8 to 17), the

first condition of the if-clause on Line 11 is always true. This means that the first LRU that is

checked, is by definition the best encountered thus far. The second condition of that if-clause

is required because Proposition 3, which is used in Line 10, applies only for i 6= j.

In Line 16, the base stock level of the right LRU is increased and the readiness is adapted.

As soon as the target readiness is reached for the current asset base stock level (Line 8), the

12



marginal analysis approach is stopped and it is checked if a new best solution is found (Line

18). Next, the asset base stock level is increased by one (Line 21) so that a new iteration can

start if the upper bound has not been reached yet (Line 3).

5.2 Convolutions

The computationally most demanding step in Algorithm 2 is the computation of Γi = (R(S0 +

ei) − Rcur)/ci (Line 12), specifically the evaluation of R(S0 + ei) = P {B0(S0 + ei) = 0} =

P {U(S + ei) ≤ S0}, with U(S) = Y0 +
∑

i∈I Bi(Si). This requires computing the probability

mass function of U(S + ei) by convolution; we provide an algorithm to compute that using

results that have already been computed for U(S).

We require some additional notation. Let Bi(Si) be a vector containing the probability mass

function of Bi(Si) = (Xi − Si)+ up to S0, i.e., Bi(Si) = (P {Bi(Si) = 0} , . . . ,P {Bi(Si) = S0}).
Similarly, let Y0 = (P {Y0 = 0} , . . . ,P {Y0 = S0}) and U(S) = (P {U(S) = 0} , . . . ,P {U(S) = S0}).
Furthermore, let a∗b denote the convolution of the vectors a and b of equal length: If c = a∗b,

then c has the same length as both a and b and the i-th element of c is given by ci =
∑i

j=0 ai−jbj .

(Note that we number elements in a vector starting from 0.) The convolution operator satisfies

commutativity (a ∗ b = b ∗ a) and associativity ((a ∗ b) ∗ c = a ∗ (b ∗ c)). Finally, we let

Ba,b(S) = Ba(Sa) ∗ · · · ∗Bb(Sb) for a ≤ b.
The complexity in computing U(S) lies in the computation of B1,|I|(S) and its complexity

increases with |I|. After computing Bi(Si) for all i ∈ I, the straightforward way to compute

B1,|I|(S) is to successively compute as follows: B1,2(S) = B1(S1) ∗B2(S2), B1,3(S) = B1,2(S) ∗
B3(S3), . . ., B1,|I|(S) = B1,|I|−1(S) ∗ B|I|(S|I|). This requires performing |I| − 1 convolutions

and this is what the algorithm of De Smidt-Destombes et al. (2011) does.

Instead, our algorithm builds up a tree starting from its leaves. An example for |I| = 8

is shown in Figure 3. Formally the procedure works as follows: Compute B1,2(S) = B1(S1) ∗
B2(S2), . . ., B|I|−1,|I|(S) = B|I|−1(S|I|−1) ∗ B|I|(S|I|). Then, compute B1,4(S) = B1,2(S) ∗
B3,4(S), . . ., B|I−3|,|I|(S) = B|I|−3,|I|−2(S)∗B|I|−1,|I|(S). Continue in this manner until arriving

at the root node of the tree: B1,|I|(S). This procedure also requires |I| − 1 convolutions.

However, computing B1,|I|(S + ei), for some i ∈ I, can now be done efficiently by reusing most

results in the tree: Ba,b(S + ei) = Ba,b(S) whenever i < a or b < i. This is easily seen when

we reconsider the example where |I| = 8: Figure 4 shows the tree that results when computing

B1,8(S + e3); if B1,8(S) is already evaluated, this only requires the evaluation of 4 nodes. Of

those 4 nodes, one concerns the determination of B3(S3 + 1) and 3 = log2(8) require taking a

convolution. The same reasoning can be applied for general |I| and yields the following result.

Proposition 4. After an initial evaluation of B1,|I|(S) which requires O(|I|) convolutions, all

subsequent evaluations of B1,|I|(S+ei) with i ∈ I require performing only O(log |I|) convolutions.

The only thing that we have not explained yet is when to perform the convolution with Y0.

It would be straightforward to do this at the end (i.e., at the root of the tree), but that would

require an additional convolution each time that an LRU stock level is increased. Therefore,
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Figure 3: Computation of B1,|I|(S) for |I| = 8 via a tree structure. Each non-leaf node in this
tree is obtained by convolution of its two children nodes.

Figure 4: Computation of B1,|I|(S + e3) for |I| = 8 via a tree structure. This tree is identical
to the tree for the computation of B1,|I|(S) except in the shaded nodes.

this convolution is performed in the beginning: First, B1,1(S) = Y0 ∗ B1(S1) is calculated,

which is used to calculate B1,2(S) = B1,1(S) ∗B2(S2).

6 Numerical experiment

We use the numerical experiment to answer four questions:

1. What is the quality of the solutions of our algorithm?

2. How should investments be divided between assets and spare parts?

3. What is the value of jointly optimizing spare assets and spare parts?

4. What is the computational effort required to run our algorithm?
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Set 1 Set 2

# LRUs |I| 2; 4; 8 16; 64; 256; 1,024

Set 1 & Set 2

Maximum assembly time µmax 0.001; 0.01
Maximum resupply lead time Tmax 0.01; 0.1
Average costs of an LRU cave 100; 1,000
Relative costs of an asset crel 0.5; 1; 2
Target readiness Robj 0.9; 0.95; 0.975

Table 1: Settings of the parameters that are varied in the numerical experiment

To this end, we generate two sets of problem instances. Set 1 consists of smaller problem

instances and is mainly used to answer Question 1, by comparing the solution of our algorithm

with the optimal solution, found by enumeration. Set 2 consists of larger problem instances and

is used for two reasons. First, it is used to get managerial insights, i.e., to answer Questions 2

and 3. Second, it is used to compare the computation times of our algorithm with that of De

Smidt-Destombes et al. (2011), thus answering Question 4. We explain how we generate both

sets of problem instances in Section 6.1. We answer Question 1 in Section 6.2, Question 2 and

3 in Section 6.3, and Question 4 in Section 6.4.2

6.1 Setup

Table 1 shows the settings for the parameters that are varied in our numerical experiment for

the two sets of problem instances. (When the number of LRUs is varied, also λi is varied; we

explain this below.) We use a full factorial design per set and we generate ten problem instances

per combination of parameters. As a result, Set 1 and Set 2 consist of 2,160 and 2,880 problem

instances, respectively. The way in which we generate problem instances leads to instances that

are realistic in practice, and to a wide range of combinations of parameter values in the sets.

There are |I| LRUs and a value µ is drawn from a uniform distribution on the range [0, µmax].

Then, for each LRU i ∈ I (see the explanation below):

• µi ← µ,

• Ti is drawn from a uniform distribution on the range [0, Tmax],

• λi ← 128
|I| in Set 1 and λi ← 1,024

|I| in Set 2, and

• ci is drawn from an exponential distribution with mean 1
cave , and 10 is added. This

effectively means that there are no LRUs with costs of less than 10, and the mean costs

are cave + 10.

2The experiment is implemented in Python 3.4 and performed on an Intel Xeon E5530 @ 2.4 GHz with 8 GB
RAM, running Windows Server 2008 R2 Enterprise Service Pack 1.
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# LRUs: |I| 2 4 8

% Problem instances with optimal solution 73% 55% 26%
Average additional costs in remaining instances 2.8% 3.8% 4.0%
Maximum additional costs in remaining instances 63% 40% 93%

Table 2: Set 1: Quality of solutions found by our algorithm

The same value µ can be used for all i ∈ I, since it influences only the number of assets in

active maintenance, Y0.

λi is relevant only for calculating the distribution of the number of parts in resupply, Xi for

i ∈ I, and the distribution of the number of assets in active maintenance, Y0. Since the average

number of parts in resupply is varied by varying Ti and since the average number of assets in

the maintenance shop is varied by varying µ, λi can be kept constant in each problem instance.

However, when the number of LRUs is varied, λi is also varied. Our aim is to get solutions in

which the optimal number of spare assets and spare parts is realistic and higher than zero. We

therefore show the average number of spare assets and spare parts in the solutions in the next

section. The largest problem instances of Set 2 are the most realistic ones, with 1,024 LRUs

and a demand rate per LRU of 1.

The costs of holding a spare asset are equal to crel times the summation of the costs of

holding one of each of the spare parts, i.e., c0 = crel
∑

i∈I ci. Finally, the target readiness, Robj,

is varied.

6.2 Quality of solutions

Whenever we give results for multiple parameter settings in any of the tables in this or the

next sections, then the numbers are the averages over all problem instances with one of those

settings. We sometimes additionally give a line with a maximum, which is then the maximum

over all problem instances with one of those settings. For example, in Table 3, the first value on

the top line gives the average number of spare assets in the solutions for the problem instances

with 16 LRUs, while the second value on that line gives the maximum number of spare assets

in any of the solutions to the problem instances with 16 LRUs.

We use Table 2 to answer Question 1: It shows for the problem instances in Set 1 how our

algorithm performs compared with the optimal solution. Many problem instances, 51%, are

solved to optimality by our marginal analysis approach, and the average difference with the

optimal solution on the other instances is small: 3.7% on average. (The values vary depending

on the problem size.) The maximum difference is large, 93%, but large differences for these

small instances can be caused by small mistakes. For example, for each of the three problem

instances on which our algorithm incurs more than 50% additional costs, the number of stocked

spare parts is correct, but one spare part is of the wrong LRU type. Furthermore, for all but

one of the fourteen problem instances on which our algorithm incurs more than 25% additional

costs, the achieved readiness is at least two percentage points higher, i.e., there is a large

overshoot (remember that the readiness target is at least 90% in our problem instances). The
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# LRUs: |I|

16 5.6 18 0.59 4 67 4.2 3.9 85
64 5.2 17 0.20 1 151 2.4 2.1 76
256 5.1 17 0.09 1 396 1.5 1.0 55

1,024 5.0 17 0.04 1 1,251 1.2 0.5 43

Relative costs of an asset: crel
0.5 5.6 18 0.55 4 445 2.1 4.4 85
1 5.1 17 0.12 1 470 2.4 1.1 46
2 5.0 17 0.02 1 483 2.5 0.2 24

Maximum assembly time: µmax 0.001 1.9 6 0.27 3 487 2.4 3.0 85
0.01 8.5 18 0.19 4 445 2.2 0.8 34

Maximum resupply lead time: Tmax 0.01 5.1 18 0.11 2 300 1.1 1.3 85
0.1 5.3 18 0.35 4 632 3.5 2.4 62

Average costs of an LRU: cave
100 5.2 18 0.23 3 461 2.3 1.9 85
1000 5.2 18 0.23 4 471 2.4 1.9 84

Target readiness: Robj
0.9 4.6 16 0.20 4 449 2.2 1.1 34
0.95 5.2 17 0.22 3 467 2.3 1.6 51
0.975 5.8 18 0.27 3 482 2.4 2.9 85

Table 3: Set 2: Key results for all parameters

only exception is one problem instance with four LRUs in which our algorithm stocks one asset

too many. If we look at the problem instances for which our algorithm achieves a lower readiness

than in the optimal solution, we see that the highest additional costs are 13% (the difference

in readiness is 0.2 percentage point). All in all, we believe that our algorithm typically finds

good solutions, especially considering that the overshoot typically decreases if the problem size

increases (see, e.g. Basten and Van Houtum, 2014, p.42).

6.3 Managerial insights

To answer Question 2, Table 3 gives insight into the solutions that our algorithm finds (we

explain the lower bound algorithm below). Recall that the lower bound (LB) in part (i) of

Proposition 1, the lower bound that our algorithm uses, is such that the spare assets cover
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# Spare assets above the lower bound 0 1 2 3 4 > 4

# Problem instances 2,349 424 83 23 1 0

Table 4: Set 2: Analysis of spare asset levels

# LRUs: |I| 2 4 8

# Spare assets in optimal solution 2.8 1.8 1.6
– maximum 12 6 5

# Spare assets above the lower bound 1.5 0.6 0.4
– maximum 11 5 3

# Spare parts in optimal solution 5.2 7.6 12.3
– divided by # LRUs 2.6 1.9 1.5

Table 5: Set 1: Analysis of optimal solutions

the active maintenance time. That means that if our algorithm stocks more spare assets, then

apparently, spare assets are also used to cover spare parts unavailability. However, this is not

the case in our numerical experiment: The number of spare assets in the solution is close to the

lower bound; it is the same for 82% of the problem instances, see Table 4. Furthermore, the

gap becomes smaller when the problem size increases, to 0.04 on average for problem instances

with 1,024 LRUs. In fact, for more than 16 LRUs, the gap is never more than 1. We further

see that a gap of more than 1 only occurs if assets are relatively inexpensive, i.e., crel = 0.5.

However, this value of crel will not be realistic in most practical settings. The other parameters

have a very limited influence on the number of additional spare assets to stock. Table 5 shows

that also in the optimal solution, on Set 1, the number of spare assets is typically close to the

lower bound.

This suggests that the lower bound is useful in practice to get an idea of the fleet size to

acquire, while it is easy to calculate. For that reason, we have also implemented what we call

the lower bound algorithm. Our algorithm, as defined in Section 5 and Figure 2, stocks spare

parts for a number of spare asset levels, starting at the lower bound in part (i) of Proposition 1.

To show the value of jointly optimizing the spare asset and spare parts stock levels, we need to

compare the solutions of our algorithm with those of an algorithm in which first the spare asset

level is determined and then the spare parts stock levels. For a fair comparison, the spare asset

level should be determined in a meaningful way. Since we have seen above that our algorithm

often finds a solution in which the lower bound on the asset stock level is used, this is the asset

stock level that the lower bound algorithm uses. So, the lower bound algorithm first sets the

number of spare assets to stock equal to the lower bound from part (i) of Proposition 1, and

then stocks spare parts in the same way as our algorithm does. By comparing solutions of our

algorithm with those of the lower bound algorithm, we answer Question 3.

Table 3 shows the additional costs that the lower bound algorithm incurs for the different

parameter settings. We see that the additional costs are sometimes large. Although the average
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# LRUs: |I| 16 64 256

(1) Computation time (seconds): using the bound 0.4 3.6 22.6
(2) Computation time (seconds): not using the bound 0.5 5.5 48.9
(3) Computation time (seconds): De Smidt-Destombes et al. 1.4 41.8 1,146.8

Relative computation time (2)/(1) 1.2 1.5 2.2
Relative computation time (3)/(1) 3.3 11.6 50.7
Relative computation time (3)/(2) 2.7 7.6 23.5

Table 6: Set 2: Computation times of our algorithms and that of De Smidt-Destombes et al.
(2011), with ‘bound’ referring to the use (or not) of the results in Proposition 3

additional costs decreases when the number of LRUs increases, there is still an instance with

1,024 LRUs where using the lower bound algorithm leads to 43% additional costs. The lowest

average additional costs are achieved when crel = 2. This makes sense intuitively since assets

are relatively expensive, so it is likely that it is more cost effective to invest in spare parts than

in spare assets. However, even when crel = 2, the maximum additional costs are 24%. This

clearly shows that joint optimization of spare asset levels and spare LRU levels is necessary in

practice, since it is never certain upfront that it is safe to use the lower bound on the asset stock

levels, i.e., the lower bound algorithm.

6.4 Computational effort

In this section, we answer Question 4. Table 6 shows the computation times for three algorithms:

our algorithm that uses the bound based on Proposition 3, our algorithm that does not use that

bound, and the algorithm by De Smidt-Destombes et al. (2011). Since the algorithm of De

Smidt-Destombes et al. requires more computation time than our algorithms, we have only run

the problem instances of up to 256 LRUs using their algorithm. Note that by construction, all

three algorithms find identical solutions.

Given the number of convolutions that both algorithms perform for each LRU in each

iteration of the marginal analysis approach, we would expect that, when not using the bound

based on Proposition 3, the algorithm of De Smidt-Destombes et al. would require for 16, 64,

and 256 LRUs 4, 10.67 and 32 times as much computation time, respectively, being |I|
log2 |I|

. We

find that the relative performance of our algorithm is about 70% of what we expected, i.e., their

algorithm requires 2.7, 7.6 and 23.5 times as much computation time on average, respectively.

This is probably due to our algorithm requiring more storage and overhead. We further see that

using the bound that is based on Proposition 3 saves a considerable amount of computation

time, with the savings increasing with an increasing problem size: For the instances with 256

LRUs, our algorithm that does not use the bound requires 2.2 times as much computation time

on average as our algorithm that does use the bound.

Table 7 shows the computation times on Set 2 for our algorithm that uses the bound. The

computation times increase if the number of LRUs or the maximum resupply lead time increases.

In both cases, this is due to the fact that more parts need to be stocked, so more iterations of
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# LRUs: |I| Rel. costs of Max. res.
an asset: crel lead t.: Tmax

16 64 256 1,024 0.5 1 2 0.01 0.1

Computation time (seconds) 0.4 3.6 22.6 229.9 95.4 61.5 35.5 5.2 123.1

# Spare asset levels enumerated 4.0 2.9 2.1 1.8 4.2 2.4 1.5 1.6 3.8
Maximum 12 8 5 4 12 7 4 4 12

Max. ass. Ave. costs of Target readiness:
time: µmax an LRU: cave Robj

0.001 0.01 100 1,000 0.9 0.95 0.975

Computation time (seconds) 68.2 60.1 63.0 65.3 61.6 63.9 66.9

# Spare asset levels enumerated 2.8 2.6 2.7 2.7 2.6 2.7 2.8
Maximum 12 11 12 12 10 11 12

Table 7: Set 2: Computation times for all parameters

the greedy algorithm need to be performed. In the former case, an additional reason is that

more LRUs need to be checked in each iteration, since Problem (P ) is not item-separable. If the

relative costs of an asset increase, then the computation times decrease. The key reason for this

is that fewer spare asset levels need to be enumerated. The influence of the other parameters

on the computation time is limited.

7 Conclusions and recommendations

We have considered the problem of jointly optimizing the number of spare LRUs and spare

assets, i.e., the spare parts inventories and fleet size. This is a problem that needs to be solved

by companies that use a fleet of assets, e.g., railway operators, shipping companies or defense

organizations. We have found that the optimization problem is challenging since it is not item-

separable, nor jointly concave. Despite this challenge, we have been able to construct an efficient

and effective algorithm. In a numerical experiment, we have shown that our algorithm typically

finds solutions that are close to optimal and that our algorithm is relatively fast, both due to

the order in which convolutions are performed and due to the bound based on Proposition 3

that is used to avoid performing unnecessary computations.

We have also shown that the asset stock level that our algorithm finds is often close to, or

even the same as, the easily computable lower bound in Proposition 1. In fact, in all instances

in our numerical experiment with more than 16 LRUs, our algorithm stocks exactly the lower

bound, or one more. Since the lower bound is the number of spare assets that are required

to achieve the target readiness if there are unlimited spare parts available, our findings imply

that spare assets should be acquired to cover the active maintenance time, while they should

not be acquired to cover spare parts unavailability. This is the exact opposite of the ‘carcass

politics’ that we mentioned in Section 1: the policy of spending as much of the available budget

on buying complete assets, and spending only the remainder on spare parts. Still, setting the
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asset stock level to the lower bound and then stocking spare parts can lead to large additional

costs. This means that joint optimization is necessary in practice.

It would be interesting to extend our work by modeling the maintenance processes more

realistically. We have now assumed that the repair shop that repairs failed parts has ample

servers. This may be realistic in many settings, since it can represent lead time agreements

with the repair shop, but in other settings it may not be. We have further assumed that assets

fail due to a failure in exactly one LRU and that only this LRU is replaced. In practice, often

multiple LRUs are replaced at the same time, for example since conditions of components are

monitored. It may be interesting to model this. It then becomes relevant to incorporate whether

these replacements need to be performed sequentially, or can be performed in parallel.

Another interesting extension would be to consider the optimization of the LRU level itself:

In case of a failure in a part of a certain LRU type, it may be possible to either exchange and

repair that part, or a module in which the part is contained. This influences the exchange times,

the required resources for the exchange, and the types and amounts of spare parts to stock.

Some first results on that problem, without considering spare LRUs and spare assets, can be

found in Parada Puig and Basten (2015).
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A Proofs

Proof of Proposition 2

We first derive the difference function for the number of spare LRUs i ∈ I. For notational

convenience, let Zi = Y0 +
∑

k∈I\{i}Bk. Then:

∆iR(S0) = R(S0 + ei)−R(S0)

=
(
1− P

{
Zi + [Xi − Si − 1]+ > S0

})
−
(
1− P

{
Zi + [Xi − Si]+ > S0

})
= P

{
Zi + [Xi − Si]+ > S0

}
− P

{
Zi + [Xi − Si − 1]+ > S0

}
=

∞∑
x=0

P
{
Zi + [Xi − Si]+ > S0 | Xi = x

}
P {Xi = x}

−
∞∑
x=0

P
{
Zi + [Xi − Si − 1]+ > S0 | Xi = x

}
P {Xi = x}

21



=

Si+S0+1∑
x=Si+1

P
{
Zi + [Xi − Si]+ > S0 | Xi = x

}
P {Xi = x}

−
Si+S0+1∑
x=Si+1

P
{
Zi + [Xi − Si − 1]+ > S0 | Xi = x

}
P {Xi = x}

=

S0+Si+1∑
x=Si+1

[P {Zi > S0 + Si − x} − P {Zi > S0 + Si + 1− x}]P {Xi = x}

=

S0+Si+1∑
x=Si+1

P {Zi = S0 + Si + 1− x}P {Xi = x}

=

S0+1∑
b=1

P {Xi = Si + b}P {Zi = S0 + 1− b} .

The fifth equation holds because if Xi < Si + 1, then [Xi − Si]+ = [Xi − Si − 1]+ = 0, and if

Xi > Si + S0 + 1, then P {Zi + [Xi − Si]+ > S0} = P {Zi + [Xi − Si − 1]+ > S0} = 1.

We next derive the second order difference function:

∆2
iR(S0) = ∆iR(S0 + ei)−∆iR(S0)

=

S0+1∑
b=1

P {Xi = Si + 1 + b}P

Y0 +
∑

k∈I\{i}

Bk = S0 + 1− b


−
S0+1∑
b=1

P {Xi = Si + b}P

Y0 +
∑

k∈I\{i}

Bk = S0 + 1− b


=

S0+1∑
b=1

[P {Xi = Si + 1 + b} − P {Xi = Si + b}]P

Y0 +
∑

k∈I\{i}

Bk = S0 + 1− b

 .

By Lemma 1, Xi is a Poisson distributed random variable with mean λiTi so that we may

express its probability mass function recursively as P {Xi = k} = λiTi
k P {Xi = k − 1}, for k > 0.

Now, for part (i): If S0 + Si < dλiTie − 2, then P {Xi = Si + 1 + b} > P {Xi = Si + b} for

b ∈ {1, . . . , S0 + 1}, so that ∆2
iR(S0) > 0.

For part (ii): If Si ≥ dλiTie − 2, then P {Xi = Si + 1 + b} ≤ P {Xi = Si + b} for b ∈
{1, . . . , S0 + 1}, so that ∆2

iR(S0) ≤ 0.

Proof of Proposition 3

For notational convenience, let Zij = Y0 +
∑

k∈I\{i,j}Bk. Then:

∆iR(S0 + ej)−∆iR(S0)

=

S0+1∑
b=1

P {Xi = Si + b}

22



[
P
{
Zij + [Xj − Sj − 1]+ = S0 + 1− b

}
− P

{
Zij + [Xj − Sj ]+ = S0 + 1− b

}]
=

S0+1∑
b=1

P {Xi = Si + b}
S0+1−b∑
z=0

P {Zij = z}

[
P
{

[Xj − Sj − 1]+ = S0 + 1− b− z
}
− P

{
[Xj − Sj ]+ = S0 + 1− b− z

}]
=

S0+1∑
b=1

P {Xi = Si + b}
S0−b∑
z=0

P {Zij = z}

[
P
{

[Xj − Sj − 1]+ = S0 + 1− b− z
}
− P

{
[Xj − Sj ]+ = S0 + 1− b− z

}]
+

S0+1∑
b=1

P {Xi = Si + b}P {Zij = S0 + 1− b}

[
P
{

[Xj − Sj − 1]+ = 0
}
− P

{
[Xj − Sj ]+ = 0

}]
=

S0+1∑
b=1

P {Xi = Si + b}
S0−b∑
z=0

P {Zij = z}

[P {Xj = S0 + Sj + 2− b− z} − P {Xj = S0 + Sj + 1− b− z}]

+ P {Xj = Sj + 1}
S0+1∑
b=1

P {Xi = Si + b}P {Zij = S0 + 1− b} . (2)

After the third equation, the case that z = S0 + 1 − b is considered separately. Furthermore,

we define
∑c

x=b ax = 0 if c < b.

We now require two results, which we prove below, that we combine to prove Proposition 3.

The first result is that the first of the two terms in Equation (2) is negative, while the second

result is that the second term in that equation is smaller than P {Xj = Sj + 1}P {Xi = Si + 1}.
The summation of the two terms is then also smaller than P {Xj = Sj + 1}P {Xi = Si + 1}.

1. Xj in P {Xj = S0 + Sj + 2− b− z} and P {Xj = S0 + Sj + 1− b− z} ranges from Sj + 1

and Sj , to Sj + S0 + 1 and Sj + S0, respectively. Since Sj ≥ dλjTje − 2, the first term in

Equation (2) must be negative (due to the properties of the Poisson distribution discussed

in the proof of Proposition 2).

2. Since Si ≥ dλiTie − 2, it holds that:

S0+1∑
b=1

P {Xi = Si + b}P

Y0 +
∑

k∈I\{i,j}

Bk = S0 + 1− b


< P {Xi = Si + 1}

S0+1∑
b=1

P

Y0 +
∑

k∈I\{i,j}

Bk = S0 + 1− b


< P {Xi = Si + 1} .

As a result, the second term in Equation (2) is smaller than P {Xj = Sj + 1}P {Xi = Si + 1}.
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