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First Order Feynman-Kac Formula

Xue-Mei Li and James Thompson

Abstract

We study the parabolic integral kernel associated with the weighted Laplacian
and the Feynman-Kac kernels. For manifold with a pole we deduce formulas
and estimates for them and for their derivatives, given in terms of a Gaussian
term and the semi-classical bridge. Assumptions are on the Riemannian data.

AMS Mathematics Subject Classification : 60Gxx, 60Hxx, 58J65, 58J70

1 Introduction

LetM be a complete connected smooth Riemannian manifold of dimensionn and∆ the
Laplace-Beltrami operator with the sign convention that∆ is negative definite. Leth be
a smooth real valued function onM , define∆h = ∆ + 2L∇h. We study the solutions
of the parabolic equation∂∂tf = (12∆

h − V )f wheret > 0, V a real valued bounded
Hölder continuous function onM , andlimt↓0 f (t, x) = f (x). Without loss of generality

we may assume thatV ≥ 0. Denote byP h,V
t f its solution, which is also denoted by

P V
t if h = 0, by P h

t if V = 0, and byPtf if both h andV vanish. Their corresponding
integral kernels are denoted by the lower case functions:ph,Vt , pVt , pht , andpt. Also, if
Z is an additionalC1 vector field the notationsph,Z,Vt etc. will be used. All stochastic
processes are assumed to have infinite life time.

SetVt = E
[
e−

∫ t

0
V (xs)ds

]
where (xt) is the canonical h-Brownian motion, by an h-

Brownian motion we mean a strong Markov processes with generator 1
2∆

h. We deduce
the following first order Feynman-Kac formula

d(P h,V
T f )(v) =

1

t
E
[
VT f (xT )

(∫ t

0
〈Ws(v), usdBs〉 −

∫ t

0

∫ r

0
dV (Ws(v)) ds dr

)]
,

whereus andWs are respectively the stochastic parallel and stochastic damped parallel
translations along its sample paths, under the assumption that Ric−2Hess(h) ≥ K where
K is a constant. This formula can be obtained by filtering out redundant noise from the
equation in [19, section 2]. However it is fairly easy to deduce it directly, avoiding some
assumptions made in [19]. From this formula, it is clear thatdP h,V

t f is uniformly close to
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dP h
t f . We will in fact show that, for explicit constantsC1(t,K) andC2(t,K) depending

on t andK,

|∇P h,V
t f |x0

≤ 1√
t

(
2C1E

[
(f (xt)Vt log(f (xt)Vt))

+
] ) 1

2

+ t|∇V |∞C2.

Choosingf to be the Feynman-Kac kernel leads to the following estimates:

|∇ log ph,Vt |x0
≤

√
2C1√
t

(
sup
y∈M

log
pht (y, y0)

ph2t(x0, y0)
+ 2t(supV − inf V )

) 1

2

+ t|∇V |∞C2.

Together with estimates onsupy∈M log pt(y,y0)
p2t(x0,y0) , this leads to the estimate of S.-J. Sheu

[41]. Sheu’s estimates and extensions can be found in [28, 44, 20], all for the caseV =
0 andh = 0. Feynman-Kac formula is a popular subject see [21, 42, 45, 26, 5, 37,
34, 14]. Differentiating Feynman-Kac semigroups has been studied in connection with
Hamiltonian-Jacobian equation, see [15, 12, 11].

If M is a manifold with a poley0, by which we mean that the exponential mapexpy0 is
a diffeomorphism, it makes sense to compare the Feynman-Kackernel and its derivatives
with the ‘Gaussian kernel’. We do not make assumptions on uniform ellipticity of the
operator; all assumptions will be on Riemmannian data. LetJy0 denote the Jacobian

determinant of the exponential map aty0 andΦ(y) = 1
2J

1

2
y0(y)∆J

− 1

2
y0 (y). The subscripty0

will be omitted from time to time. ForT > 0 fixed, a semi-classical bridgẽxs is a time
dependent diffusion with generator12△+∇ log kT−s(·, y0) where, ford the Riemannian
distance function,

kt(x0, y0) := (2πt)−
n
2 e−

d2(x0,y0)
2t J− 1

2 (x0).

OnRn, the semi-classical bridge agrees with the conditioned Brownian motion. Moreover
the processrt = d(x̃t, y0) is then-dimensional Bessel bridge. In [15], K. D. Elworthy
and A. Truman proved the following formula, whose consideration comes from classical
mechanics and semi-classical limits,

pVT (x0, y0) = kT (x0, y0)E
[
e
∫ T

0
(Φ−V )(x̃s) ds

]
. (1.1)

We give a simple proof for the following formula, see [49] , for all x0 ∈M ,

ph,VT (x0, y0) = eh(y0)−h(x0)kT (x0, y0)EβhT ,

βhT = exp

(∫ t

0

(
Φ− V − 1

2
|∇h|2 − 1

2
∆h

)
(x̃s)ds

)
,

The methods in [49] are similar to that in [15, 17, 16]. Here weuse a different method,
which allows us to deduce a first order formula. The functionΦ is bounded on manifolds
of constant negative curvature. If−1

2 |∇h|2 − 1
2∆h is bounded, the formula leads easily

to a Gaussian upper bound for the integral kernelpht . In this formula, an additional non-
gradient type driftZ is also allowed for which we follow a beautiful idea of Watling [49].
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The semi-classical bridge will be replaced by the semi-classical Riemannian bridge whose
Markov generator is12△+∇ log kT−s(·, y0) +∇S, where

S(x) =
∫ 1

0
〈γ̇(u), Z(γ(u))〉du,

for γ : [0, 1] →M the unique geodesic fromx to y0, representing the path average of the
radial part ofZ.

Let ũt denote the solution to the stochastic differential equation (2.2) on the orthonor-
mal frame bundle with̃u0 ∈ π−1(x0) and setx̃t = π(ũt). We often need the condi-
tion that Ric−2Hess(h) is bounded from below. Following the notation in [30, 31], set
ρh = inf |v|=1{Ric(v, v) − 2Hessh(v, v)}.

Theorem Assumey0 is a pole,V ∈ C1,α ∩BC1, Φ andf ∈ L∞ andρh ≥ K. Then

dph,VT (·, y0) =
1

T
eh(y0)−h(x0)kT (x0, y0)E

[
βhT

∫ T

0
〈W̃r(·), ũrdB̃r − (t− r)∇V dr〉

]

wheredB̃r = dBr + ũ−1
r ∇ log(e−hkT−r)(x̃r) dr andW̃ is the solution to (2.4).

From this theorem we immediately see that, for an explicit constantC(K,h, |∇ log J |∞),
depending only onK, h, and|∇ log J |∞, the following estimate holds,

|∇ph,VT (·, y0)|x0

≤ Ceh(y0)−h(x0) (2πt)−
n
2 e−

d2(x0,y0)
2t J

− 1

2
y0 (x0)|βhT |∞

(
d(x0, y0)

T
+ 1 + |∇h|∞ +

1√
T

+ T |dV |∞
)
.

LettingZT =
βh
T

E(βh
T

)
, we also have:

∣∣∣∇ log ph,VT (·, y0)
∣∣∣
x0

≤ C(K, |∇ log J |∞) |ZT |L2(Ω)

(
d(x0, y0)

T
+ 1 + |∇h|∞ +

1√
T

+ T |dV |∞
)
.

There is also a version of the above formula and estimates forHölder continuous potential
V , which however involves alnT |V |∞ term. Note that precise Gaussian estimates for
heat kernels and their derivatives using semi-classical bridge were obtained by S. Aida
[1] for asymptotically flat Riemannian manifolds with a polewhere the derivaties oflog J
up to order 4, the Riemmanina curvature and the derivative ofthe Ricci curvature are
assumed to be bounded. Heat kernel formula for Schrödingertype operator acting on
sections of vector bundles can be found in M. Ndumu [38] and M.Braverman [8]. The
study of the probability measure induced by the semi-classical bridge has been followed
up in [32].
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2 Preliminaries and First Order Feynman-Kac Formula

In this section we introduce the notation and the preliminary results. Denote byBCr

the space of boundedCr functions onM with bounded derivatives,Cr
K its subspace of

functions with compact supports andC1,α the space of functions whose first derivatives
are locally Hölder continuous.

The h-Brownian motion we use will be given by the canonical construction below. Let
{Bi

t} be a family of independent one-dimensional Brownian motions on a filtered prob-
ability space{Ω,F ,Ft,P}, setBt = (B1

t , . . . , B
n
t ). Let {Hi} be canonical horizontal

vector fields on the orthonormal frame bundleOM of M , associated to an orthonormal
basis ofRn. The tilde sign over a vector field onM indicates its horizontal lift toOM .
If the h-Brownian motion is complete, which holds if Ric−2Hess(h) is bounded from
below, then the following stochastic differential equation (SDE) is complete,

dut =
n∑

i=1

Hi(ut) ◦ dBi
t + ∇̃h(ut)dt. (2.1)

Furthermore ifπ is the projection fromOM toM , xt := π(ut) is a h-Brownian motion on
M starting atx0 := π(u0). If h vanishes it is sufficient to assume that Ricx ≥ −α(r(x))
whereα grows at most quadratically and Ricx is the Ricci curvature atx ∈ M and
Ric = infv∈TxM :|v|=1{Ricx(v, v)}. The corresponding equation,

dũt =

n∑

i=1

Hi(ũt) ◦ dBi
t + ∇̃h(ũt)dt+ ˜∇ log kT−t(ũt)dt, t < T, (2.2)

gives rise to the semi-classical bridge in the same way,x̃t = π(ũt).
Let Ric♯x : TxM → TxM be the linear map defined by〈Ric♯xu, v〉 = Ricx(u, v).

Denote by (Wt) and (W̃t) respectively the solutions to the following two equations, the
first, along (xt), being

D

dt
Wt = −1

2
Ric#xt

(Wt) + Hess(h)(Wt), W0 = idTx0
M (2.3)

and the second, along (x̃t), being

D

dt
W̃t = −1

2
Ric#x̃t

(W̃t) + Hess(h)(W̃t), W̃0 = idTx0
M . (2.4)

HereD
dtWt = ut

d
dtu

−1
t Wt andD

dtW̃t = ũt
d
dt ũ

−1
t W̃t, and so the first equation, for example,

is interpreted as follows:u−1
t Wt solves the equation

d

dt
wt = −1

2
(u−1

t Ric♯xt
ut)wt + ut

−1 Hess(h)(utwt), w0 = idRn .

Throughout this section we assume that theh-Brownian motions do not explode.
If h is a smooth real valued function onM then∆h = (d + d∗)2 whered∗ is the

L2 adjoint of the exterior differential operatord with respect to the measuree2hdvol and
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the initial domain of∆h consists of smooth and compactly supported differential forms.
Thend + d∗ and all its powers are essentially self-adjoint, [30, ch.2], and we denote by
the same notation their closures. Suppose thatV is bounded, then the operatorf → V f is
∆h bounded and by the Kato-Rellich theorem,1

2∆
h − V is self-adjoint on the domain of

∆h and essentially self-adjoint onC∞
K . By functional calculuse−t( 1

2
∆h−V ) is a strongly

continuous contraction semi-group onL2 ∩ Bb, where theL2 space is defined by the
weighted measuree2hdx. Furthermore iff ∈ L2(M ; e2hdx) thene−t( 1

2
∆h−V )f belongs

to the domain of∆h. By direct computationE (f (xt)Vt), whereVt = e−
∫ t

0
V (xr)dr, is

also a strongly continuous contraction semi-group onL2 ∩ L∞ with generator12∆
h − V

and coreC∞
K . Consequently

e−t( 1
2
∆h−V )f = E (f (xt)Vt) , f ∈ L2 ∩ L∞.

Furthermore they solve the variation of constant formula:

gt = P h
t f +

∫ t

0
P h
t−s(V gs) ds,

and consequently they areC1,2 functions and solve the parabolic equation. The solution
measure has a densityph,Vt with respect to the volume measure. We need the following
formulation for the Feynman-Kac formula.

Lemma 2.1 If P h,V
t f is aC1,2 solution to the parabolic equation, then

VsP
h,V
t−s f (xs) = P h,V

t f (x0) +
∫ s

0
VrdP

h,V
t−r f (urdBr), 0 ≤ s ≤ t. (2.5)

Proof By the assumption on theh-Brownian motion,us exists for all time. We may
therefore apply Itô’s formula toVsP

h,V
t−s f (xs), usingdVs = −V (xs)Vsds anddxs =

us ◦ dBs +∇h(xs)ds to obtain (2.5). �

Fork ∈ 0, 1, · · · denote byHk the completion ofHk
0 , where

Hk
0 =

{
f ∈ C∞ : |f |2Hk

=

k∑

j=0

|∇(j)f |2L2 <∞
}
,

under the norm| · |Hk . Denote byC∞
K

Hk the closure ofC∞
K under | · |Hk . Denote

also byd⋆ the dual ofd in L2(M ; dx), taking h = 0, the latter having initial domain
C∞
K . Then the Laplace-Beltrami operator on functions is the closure of−d⋆d and for any

complete Riemannian manifold Dom(d) = C∞
K

H1

= H1. For higher order derivatives
the corresponding statements hold for manifolds with bounded geometry, see [4]. For

k = 2, C∞
K

H2

= H2 if the injectivity radius ofM is positive and if the Ricci curvature is
bounded below, see E. Hebey [27]. We avoid these assumptions.

Recall thatρh(x) = infv∈STxM{Ric(v, v) − 2Hess(h)(v, v)}.



PRELIMINARIES AND FIRST ORDER FEYNMAN -KAC FORMULA 6

Lemma 2.2 Fix T > 0. Assume thatV is bounded withV ∈ C1,α. If f ∈ L2 ∩ BC1

then for all0 ≤ t < T andv ∈ Tx0
M we have

Vt ·
(
dP h,V

T−tf
)

(Wt(v)) = dP h,V
T f (v) +

∫ t

0
Vs ·

(
∇dP h,V

T−sf
)

(usdBs,Ws(v))

+

∫ t

0
Vs · dV (Ws(v)) · P h,V

T−sf (xs) ds.

(2.6)

If furthermore|dV | is bounded andρh is bounded from below, then for allt ∈ [0, T ),

E
[
Vt(dP

h,V
T−tf )(Wt(v))

]
= d(P h,V

T f )(v) + E
[∫ t

0
VsdV (Ws(v))P h,V

T−sf (xs) ds

]
. (2.7)

Proof SinceV ∈ C1,α, the solutionP h,V
t f is three times differentiable in space and we

may differentiate both sides of the parabolic equation. SinceP h,V
t f ∈ Dom(d), it follows

thatd∆(P h,V
t f ) = ∆1,hd(P h,V

t f ), see [30, Chapter 2] or [22] forh = 0 case. Consider
the function (t, α, (x, v)) ∈ [0, T ]×R+×TM 7→ (α, dP h,V

T−tf (v)) and apply Itô’s formula
to it and to the process (t,Vt,Wt(v)) to obtain

VtdP
h,V
T−tf (Wt(v)) − dP h,V

T f (v)

=

∫ t

0
Vs∇(dP h,V

T−sf )(usdBs,Ws(v)) +
∫ t

0
∇Vs(dP

h,V
T−sf )(∇h(xs),Ws(v))ds

+

∫ t

0
Vs

(
∂

∂s
dP h,V

T−sf

)
(Ws(v)) ds +

1

2

∫ t

0
Vs tr∇2(dP h,V

T−sf )(Ws(v)) ds

+

∫ t

0
VsdP

h,V
T−sf

(
D

ds
Ws(v)

)
ds−

∫ t

0
V (xs)VsdP

h,V
T−sf (Ws(v)) ds.

(2.8)

Using Bochner’s formula,∆1,h = trace∇2 + 2L∇h − Ric♯ for the Laplace-Beltrami
operator∆1 on differential1-forms, the definition of the Lie derivative and equation (2.3),
we thus have

VtdP
h,V
T−tf (Wt(v)) − dP h,V

T f (v)

=

∫ t

0
Vs∇(dP h,V

T−sf )(usdBs,Ws(v)) −
∫ t

0
V (xs)VsdP

h,V
T−sf (Ws(v)) ds

+

∫ t

0
Vs

(
∂

∂s
dP h,V

T−sf

)
(Ws(v)) ds +

1

2

∫ t

0
Vs∆

1,h(dP h,V
T−sf )(Ws(v)) ds.

We can commute the time and space derivatives and also commute∆h with d to obtain

∂

∂s
d(P h,V

T−sf ) +
1

2
∆1,h(dP h,V

T−sf ) = V d(P h,V
T−sf ) + (dV )P h,V

s f.

By substituting into equation (2.8) we then obtain, after some cancellation, the required
formula. �
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Lemma 2.3 Assume thatρh is bounded from below andV is a bounded Ḧolder continu-
ous function. Then for allf ∈ L∞ andv ∈ Tx0

M ,

(dP h,V
t f )(v) =

1

t
E
[
f (xt)

∫ t

0
〈Ws(v), usdBs〉

]

+ E
[
f (xt)

(∫ t

0
e−

∫ t

t−s
V (xu)duV (xt−s)

t− s

∫ t−s

0
〈Wr(v), urdBr〉

)
ds

]
.

Proof Let f ∈ BC1∩L2 and we first assume thatV belongs also toBC1. We differenti-
ate both sides of the variation of constants formulaP h,V

t f = P h
t f+

∫ t
0 P

h
t−s(V P

h,V
s f ) ds

to obtain forv ∈ Tx0
M ,

dP h,V
t f (v) =dP h

t f (v) +
∫ t

0
dP h

t−s(V P
h,V
s f )(v) ds

=dP h
t f (v) +

∫ t

0

1

t− s
E
[
(V P h,V

s f )(xt−s)
∫ t−s

0
〈Wr(v), urdBr〉

]
ds.

Since the first two terms in the equation make sense, so does the last term, which by the
standard Feynman-Kac formula, Lemma 2.1, and the Markov property, has the following
expression:

E
[
(V P h,V

s f )(xt−s)
∫ t−s

0
〈Wr(·), urdBr〉

]

= E
[
V (xt−s)f (xt)e

−
∫ t

t−s
V (xu)du

∫ t−s

0
〈Wr(·), urdBr〉

]
.

The formula follows from the corresponding formula forP h
t fwhich is well known and

can be easily seen by multiply both sides of (2.5) by the martingale
∫ t
0 〈usdBs,Ws(v)〉:

E
(∫ t

0
〈usdBw,Ws(v)〉P h

T−tf (xt)

)
= E

(∫ t

0
dP h

T−rf (urdBr)
∫ t

0
〈usdBs,Ws(v)〉

)

= E
∫ t

0
dP h

T−rf (Wr(v))dr = t dP h
T f (v),

The last identity follows from the second formula in Lemma 2.2. Then using the nor-
malised geodesicσ : [0, 1] → M connecting two pointsx andy in M so thatf (x) −
f (y) =

∫ 1
0

d
ds [f (σ(s))]ds and by the formula above, and the fact thatV is bounded,

|Wt| is bounded to see that|dP h,V
t f (x) − dP h,V

t f (y)| ≤ C|f |∞d(x, y). In particular if
Qh,V

t (x, ·) denotes the probability measure associated withDP h,V
t f , then|Qh,V

t (x,M )−
Qh,V

t (y,M )| ≤ Cd(x, y). Thus the total variation norm of|Qh,V
t (x, ·) − Qh,V

t (y, ·)| ≤
Cd(x, y) which means that the required formula holds for a bounded measurable func-
tion f . For a bounded Hölder continuousV it is sufficient to approximate with regular
functions. �
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Proposition 2.4 Suppose thatRic−2Hess(h) ≥ K and thatV ∈ C1,α ∩BC1. Then for
all 0 ≤ t < T , v ∈ Tx0

M andf ∈ L∞, (2.7) holds.

Proof We prove the formula using equation (2.6). By the boundedness ofV , dV andf
it is clear that

∫ t
0 VsdV (Ws(v))P h,V

T−sf (xs) ds is bounded. Since|Wt(v)| is bounded, we

use Lemma 2.3 to conclude that|d(P h,V
T−tf | ∈ L2, and so doesVtd(P h,V

T−tf )(Wt(v)) which
means that the stochastic integral appearing in equation (2.6) isL2-bounded and therefore
a true martingale with vanishing expectation. �

Theorem 2.5 Assume thatV ∈ C1,α∩BC1 andf ∈ L∞. Suppose thatRic−2Hess(h) ≥
K. Then for all0 < t ≤ T andv ∈ Tx0

M we have

dP h,V
T f (v) =

1

t
E
[
VT f (xT )

∫ t

0
〈Ws(v), usdBs〉

]

− 1

t
E
[
VTf (xT )

∫ t

0

∫ r

0
dV (Ws(v)) ds dr

]
.

Proof By Lemma 2.1 we have

VtP
h,V
T−tf (xt) = P h,V

T f (x0) +
∫ t

0
Vrd(P h,V

T−rf )(urdBr). (2.9)

Next we multiply the above equation by theL2 martingale
∫ t
0 〈usdBs,Ws(v)〉 and use

Itô’s isometry to obtain

E
[
VtP

h,V
T−tf (xt)

∫ t

0
〈usdBs,Ws(v)〉

]
= E

[∫ t

0
Vrd(P h,V

T−rf )(Wr(v)) dr

]

using the fact that the last term in equation (2.9) is anL2 martingale. We now apply
equation (2.7) to deduce that for any0 < t ≤ T ,

dP h,V
T f (v) =

1

t
E
[
VtP

h,V
T−tf (xt)

∫ t

0
〈urdBr,Wr(v)〉

]

− 1

t
E
[∫ t

0

∫ r

0
VsdV (Ws(v))P h,V

T−sf (xs) ds dr

] (2.10)

and the rest follows from the Markov property. �

This extends the formula in [7] for the logarithmic derivative of the heat kernel (on
a compact manifold) proved using Malliavin calculus, the latter was extended to non-
compact manifolds in [30, 19] by an elementary stochastic calculus. For manifolds whose
second fundamental form of an isometric embedding satisfiessuitable conditions, the
formula can be deduced from that in [19] using the techniquesof filtering our redundant
noise. Here we do not make any assumptions on the second fundamental form. See also
[18] and [33] for reaction-diffusion equation onRn and [46].

For estimations we need the following lemma, which is [43, Lemma 6.45].
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Lemma 2.6 Suppose(Ω,F ,P) is a probability space andφ ≥ 0 is a measurable function
onΩ. If Ψ is a measurable function onΩ such thatφΨ is integrable then

E [φΨ] ≤ E [φ log φ] + logE [exp(Ψ)] .

Proposition 2.7 Suppose thatRic−2Hess(h) ≥ K andV ∈ C1,α ∩ BC1. Then for a
non-negative bounded measurable functionf we have

|∇P h,V
t f |x0

≤ 1√
t

(
2C1(t,K)E

[
(f (xt)Vt log(f (xt)Vt))

+
] ) 1

2

+ t|∇V |∞C2(t,K)

for all t > 0 where

C1(t,K) :=
1− e−Kt

Kt
, C2(t,K) :=

2

Kt

(
1 +

(
e−Kt/2 − 1

Kt/2

))
.

Proof Forγ ∈ R set

φ := f (xt)Vt, ψt := γ

∫ t

0
〈Ws(v0), usdBs − (t− s)∇V (xs) ds〉

to see, by Theorem 2.5, Fubini’s theorem and Lemma 2.6, that for v0 ∈ Tx0
M ,

γtd(P h,V
t f )(v0) ≤ E [φ log φ] + logE

[
exp

[
γ

∫ t

0
〈Ws(v0), usdBs − (t− s)∇V (xs) ds〉

]]
.

SinceD
dsWs = −1

2Ric♯(Ws) +∇2h(Ws, ·)♯ we have|Ws| ≤ e−
Ks
2 so,

logE

[
exp

[
γ

∫ t

0
〈Ws(v), usdBs − (t− s)∇V (xs)ds〉

]]

≤ logE

[
exp

(
|γ|
∫ t

0
〈Ws(v0), usdBs〉+ | γ|

∣∣∣∣
∫ t

0
(t− s)〈−∇V (ξs),Ws(v0)〉ds

∣∣∣∣
)]

≤ γ2
∫ t

0
e−Ks|v0|ds+ |γ||∇V |∞

∫ t

0
(t− s)e−

Ks
2 |v0|ds

≤ γ2tC1(t,K)|v0|+ |γ||∇V |∞t2C2(t,K)|v0|.

Thus we obtain

γtd(P h,V
t f )(v0) ≤ E

[
(φ log φ)+

]
+ γ2tC1(t,K)|v0|+ |γ||∇V |∞t2C2(t,K)

which after minimizing overγ yields

t|∇P h,V
t f |x0

≤
(
2tC1(t,K)E

[
(φ log φ)+

]) 1

2 + t2|∇V |∞C2(t,K),

as claimed. �
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If P h,V
t f (x0) > 0 we define the non-negative quantity

Ht(f, x0) := E

[
f (xt)Vt

P h,V
t f (x0)

log

(
f (xt)Vt

P h,V
t f (x0)

)]
,

and replacing the non-negative functionf in Proposition 2.7 by f

Ph,V
t f (x0)

, we deduce the

following corollary.

Corollary 2.8 Suppose thatRic−2Hess(h) ≥ K andV ∈ C1,α ∩ BC1. Then for any
bounded measurable functionf ≥ 0 we have

|∇ logP h,V
t f |x0

≤ 1√
t

(
2C1(t,K)Ht(f, x0)

) 1

2

+ t|∇V |∞C2(t,K), t > 0.

and

|∇ log ph,Vt |x0
≤ 1√

t

√
2C1(t,K)

(
sup
y∈M

log
pht (y, y0)

ph2t(x0, y0)
+2t(supV−inf V )

) 1

2

+t|∇V |∞C2(t,K).

Indeed, choosingf (·) = ph,Vt (·, y0), the Feynman-Kac kernel associated toP h,V
t , we have

Ht(f, x0) ≤ sup
y∈M

log
f (y)E

[
e−

∫ t

0
V (xs)ds|xt = y

]

P h,V
t f (x0)

E

[
f (xt)Vt

P h,V
t f (x0)

]

≤ sup
y∈M

log
ph,Vt (y, y0)e−t inf V

ph,V2t (x0, y0)

= sup
y∈M

log
pht (y, y0)E

[
e−

∫ t

0
V (b

t,y,y0
s )ds

]
e−t inf V

ph2t(x0, y0)E
[
e−

∫ 2t

0
V (b

t,x0,y0
s )ds

]

≤ sup
y∈M

log
pht (y, y0)

ph2t(x0, y0)
+ 2t(supV − inf V )

wherebt,x,ys is the process obtained by conditioning theh-Brownian motion byxt = y
andx0 = x. Given suitable heat kernel upper and lower bounds, or more generally a
Harnack inequality forpht , we would have an estimate on the logarithmic derivative of
ph,Vt . These two types of assumptions are naturally related. For the first see [10, 29, 9,
25, 13, 39], [29, Corollary 3.1], and [24, Thms 7.4, 7.5, 7.9]. If the Sobolev inequality
|f |22n/(n−2) ≤ C

∫
M |∇f |2 dx holds forf ∈ C∞

K then the heat kernel satisfies the on-

diagonal estimatept(x, x) ≤ Ct−
n
2 (leading to off-diagonal estimates). In fact, N. Th.

Varopoulos proved that the Sobolev inequality is also necessary for the on-diagonal upper
bound, [23, Lemma 5.1, Thm 6.1]. See also [24, 40] for a clear account on the relation
between various functional inequalities and the on diagonal Gaussian upper bounds of the

type vol(B(x,
√
t))−1e−

d(x,y)2

t . For the caseh = 0 and Ric≥ −K, K ≥ 0, a global
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Harnack inequality exists, [29, Thm. 2.2], for positive solutions of the heat equation. For
example, [6, Corollary 2],

ft(x)
ft+s(y)

≤
(
t+ s

t

)n
2

exp

[
(d(x, y) +

√
nKs)2

4s

+

√
nK

2
min{(

√
2− 1)d(x, y),

√
nK

2
s}
]
.

From this can be deduced the following theorem,

Theorem 2.9 Suppose that the Ricci curvature is bounded from below andV ∈ C1,α ∩
BC1. Then for allT > 0 there exists a positive constantC(T ) such that

|∇ log pVt (·, y0)(x0)| ≤ C(T )

(
1

t
+
d2(x0, y0)

t2
+ |V |∞

) 1

2

+ C(T )t|∇V |∞

for all t ∈ (0, T ] andx0, y0 ∈M .

WhenV = 0, this recovers the estimates in J. Sheu [41], see also [28, 35, 44]. For brevity
we do not write down the estimate involvingh it is however worth noticing that gradient
formula forP h

t f would lead to a parabolic Harnack inequality forpht , see [3] for such an
estimate.

3 On Manifolds with a Pole

Let n ≥ 2. Assume thaty0 is a pole forM . That is, we assume that the exponential map
expy0 is a diffeomorphism betweenTy0M andM . If the JacobianJ :M → R defined by

J(y) ≡ Jy0(y) = |detDexp−1
y0

(y) expy0 |

is non-singular, then we denote byJ−1 the reciprocal ofJ and fort > 0 define

Φ(y) =
1

2
J

1

2 (y)∆J− 1

2 (y), kt(y) = (2πt)−
n
2 e−

r2(y)
2t J− 1

2 (y)

for y ∈ M , wherer denotes the distance to the poley0. The functionJ
1

2 is called Ruse’s
invariant (see for example A. G. Walker [48]). The objectiveis to obtain probabilistic
representation for the kernelpV and its derivatives, involving the distance function,J and
Φ. On the standardn-dimensional hyperbolic space, the heat kernelpt(x, y) depends on
x andy throughr = d(x, y) and is given by iterative formulas:

pt(x, y) =C(m)
1√
t

(
1

sinh r

∂

∂r

)m

e−m2t− r2

4t , n = 2m+ 1,

pt(x, y) =C(m)t−
3

2 e−
(2m+1)2

4
t

(
1

sinh r

∂

∂r

)m ∫ ∞

ρ

se−
s2

4t

cosh s− cosh r
ds, n = 2m+ 2.
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If its sectional curvature is−R−2, then [17],

J =

(
R

r
sinh

r

R

)n−1

Φ = − (n− 1)2

8R2
+

(n− 1)(n − 3)
8

(
r−2 −

(
R2 sinh2

( r
R

))−1
)
.

In particularΦ is bounded above.
If M is a model space, i.e.M is a manifold with a polep such that for every linear

isometryφ : TpM → TpM there exists an isometryΦ : M → M such thatφ(p) = p
anddΦp = φ. In the geodesic polar coordinates, (r, θ) ∈ (0,∞) × Sn−1, the pull back
metric in (0,∞) × Sn−1 can be written asdr2 + f (r)2dθ2. The functionf is C∞ and
satisfiesf (0) = 0, f ′(0) = 1, f (r) > 0 for r > 0 and f ′′(r) = −R(r)f (r) where
R(r) is the sectional curvature in a plane containing the radialdirection∂r at a pointx
with d(x, p) = r. Then log Jp(x) = (n − 1) log f (r)

r . If R(r) = R, a constant, then

f (r) = sinh(
√
Rr)√

R
andlog f has bounded derivatives of all order. In general,

|∇ log J | = (n− 1)

∣∣∣∣(log f )′(r) − 1

r

∣∣∣∣ , ∆r = (n − 1)(log f )′(r),

∆(log J) = (n− 1)2(log f )′(r)

(
(log f )′(r) − 1

r

)
+ (n− 1)

(
(log f )′′(r) +

1

r2

)
,

Φ =
1

4
(n− 1)

[
n− 2

r2
− n− 1

r
(log f )′(r) − (log f )′′(r)

]
.

For general manifolds, volume comparison theorem has seen studied in [50]. But we are
not aware of any comparison theorems for∇ log J andΦ.

3.1 Girsanov Transform and Zeroth Order Formula

Let T be a positive number andx0, y0 ∈ M . The semi-classical bridge process, between
x0 andy0 in timeT , is the diffusion process starting atx0 with generator12∆+∇ log kT−s

wherekt(x0, y0) := (2πt)−
n
2 e−

d2(x0,y0)
2t J− 1

2 (x0). If ũs satisfies

dũs =
∑

Hi(ũs) ◦ dBi
s + ˜∇ log kT−s(ũs) ds

with ũ0 = u0 andÃs the horizontal lift ofAs thenx̃s = π(ũs) is a semi-classical bridge.
Since|∇r| = 1 away fromy0, Itô’s formula implies for0 ≤ t < T that

r(x̃t) − r(x0) = βt +

∫ t

0

1

2
∆r(x̃s)ds −

∫ t

0

r(x̃s)
T − s

ds− 1

2

∫ t

0
dr (∇ log J(x̃s)) ds

whereβt is a standard one-dimensional Brownian motion. It is clear from this and the
formula

∆r =
n− 1

r
+ dr(∇ log J) (3.1)
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that r(x̃t) is distributed as a Bessel bridge, starting atr(x0) and ending at0 at timeT ,
from which it follows thatlimt↑T x̃t = y0, almost surely.

We follow a beautiful idea of Watling [49] and use a modification of the construction
by Elworthy-Truman to define the semi-classical Riemannianbridge for a given vector
fieldZ. Forγ : [0, 1] →M the unique geodesic fromx to y0,

S(x) =
∫ 1

0
〈γ̇(u), Z(γ(u))〉du,

and naturallyS(y0) = 0.

Lemma 3.1 [Watling] Let xt be a 1
2∆ + Z + ∇S + ∇(log(kT−s)) diffusion (the semi-

classical Riemannian bridge). Thend(y0, x̃t) is then-dimensional Bessel bridge process.

In the formula forrt := d(x̃t, y0), the additional driftZ + ∇S appears in the form of
〈∇d, Z+∇S〉 and this vanishes. Indeed,S(γx(t)) =

∫ 1
t 〈γ̇(u), Z(γ(u))〉du so d

dt |t=0S(γx(t)) =
−〈γ̇x(0), Z(x)〉 on one hand, andddt |t=0S(γx(t)) = 〈∇S, γ̇x(0)〉 on the other hand.

The following basic lemma will be used repeatedly, in which we denote byP the
probability distribution of the Brownian motion with drift∇h + Z and byQ the proba-
bility distribution of a semi-classical Riemannian bridge. Note thatΦ = 1

2J
1

2∆(J− 1

2 ) =
1
2 |∇ log J |2 − 1

4∆(log J). Define

Φh = −1

2
|∇h|2 − 1

2
∆h+Φ, Ψ =

1

2
|∇S|2 + 1

2
∆S + 〈Z,∇S +∇h〉.

Lemma 3.2 Suppose thath ∈ C2(M ;R) andZ is aC1 vector field. Suppose that the
1
2∆

h + Z diffusionxt is complete. Fixt ∈ [0, T ). ThenP andQ are equivalent onFt

with Radon-Nikodym derivative

Mt :=
kT (x0)e(h−S)(x0)

kT−t(x̃t)e(h−S)(x̃t)
exp

[∫ t

0
(Φh +Ψ)(x̃s) ds

]
. (3.2)

Proof For anyu0 ∈ OM with π(u0) = x0, let ũs be the solution of the following equation
with initial valueu0:

dus =
∑

Hi(us) ◦ dBi
s + (Z̃ + ∇̃h)(us) ds. (3.3)

Then (ut) exists for all time andxt = π(ut). Let ũt be the solution to

dũs =
∑

Hi(ũs) ◦ dBi
s + ( ˜∇ log kT−s + Z̃ + ∇̃S)(ũs) ds, ũ0 = u0 (3.4)

Thenx̃s = π(ũs) is a semi-classical Riemannian bridge. It has generator1
2∆+Z+∇S+

∇(log(kT−s)). One crucial observation is that

1

2
∆h + Z +∇ log(kT−se

Se−h) =
1

2
∆ +∇S + Z +∇ log kT−s(·, y0),
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and it is possible to treat̃xt as the (xt) process by adding the additional drift∇ log(kT−se
S−h).

Since both processes are well defined before timeT , they are equivalent onFt for any
t < T .

Let {ei}ni=1 be an orthonormal basis ofRn and let

B̃i
t := Bi

t +

∫ t

0
d log(kT−se

S−h)(ũsei) ds.

By the Girsanov-Cameron-Martin theorem we obtain,

Mt = exp

[
−

m∑

i=1

∫ t

0
〈∇ log(kT−se

S−h)(x̃s), ũsei〉dBi
s −

1

2

∫ t

0
|∇ log(kT−se

S−h)|2(x̃s)ds

]
.

Now Itô’s formula implies

log (eS−hkT−t)(x̃t) = log (eS−hkT )(x0) +
m∑

i=1

∫ t

0
〈∇ log(kT−se

S−h)(x̃s), ũsei〉dBi
s

+

∫ t

0
|∇ log(kT−se

S−h)(x̃s)|2 ds+
∫ t

0

(
∂

∂s
+

1

2
∆h + Z

)
log(kT−se

S−h)(x̃s) ds

so the stochastic integral appearing in the formula forMt can be eliminated. Then, by the
relation (3.1) we see that

∂

∂s
log kT−s =

n

2(T − s)
− r2

2(T − s)2
,

|∇ log(kT−se
−h)|2 =

r2

(T − s)2
+

1

4
|∇ log J |2 + rdr(∇ log J)

T − s
− 2〈∇h,∇ log(kT−s)〉+ |∇h|2,

∆ log(kT−se
−h) = − n

T − s
− rdr(∇ log J)

T − s
− 1

2
∆(log J) −∆h.

ForS = 0, we have,

1

2
|∇ log(kT−se

−h)|2 +
(
∂

∂s
+

1

2
∆h + Z

)
log(kT−se

−h)

=
1

8
|∇ log J |2 − 1

4
∆(log J) +

1

2
|∇h|2 − 1

2
∆h− |∇h|2

=
1

8
|∇ log J |2 − 1

4
∆(log J) − 1

2
∆h− 1

2
|∇h|2,

from which we deduce the formula with non-vanishingS ,

1

2
|∇ log(kT−se

−h+S)|2 +
(
∂

∂s
+

1

2
∆h + Z

)
log(kT−se

−h+S)

=
1

2
|∇S|2 + 〈∇S,∇ log(kT−se

−h)〉+ 1

2
∆hS + 〈Z,∇S〉 + 〈Z,∇ log(kT−se

−h)〉

+
1

8
|∇ log J |2 − 1

4
∆(log J) − 1

2
∆h− 1

2
|∇h|2.
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Since∇S+Z vanishes on radial directions, see the proof for Lemma 3.1, the first line on
the right hand side of the equation is

1

2
|∇S|2 − 〈∇S + Z,∇h〉 + 1

2
∆S + 〈∇h,∇S〉+ 〈Z,∇S〉

=
1

2
|∇S|2 + 1

2
∆S + 〈Z,∇S +∇h〉.

Finally we see that

log (eS−hkT−t)(x̃t) = log (eS−hkT )(x0) +
m∑

i=1

∫ t

0
〈∇ log(kT−se

S−h)(x̃s), ũsei〉dBi
s

+
1

2

∫ t

0
|∇ log(kT−se

S−h)(x̃s)|2 ds+
∫ t

0
(Φh +Ψ)(x̃s) ds.

and the required identity follows. �

In particular, iff ∈ Bb then Lemma 3.2 implies that for0 ≤ t < T ,
∫

M
f (y)ph,Z,Vt (x0, y) dy = E[Vtf (xt)] = kT (x0, y0)e

(S−h)(x0)E

[
f (x̃t)e(h−S)(x̃t)

kT−t(x̃t)
βh,Zt

]
,

(3.5)
where

βh,Zt = exp

(∫ t

0
(Φh +Ψ− V )(x̃s)ds

)
. (3.6)

Elworthy and Truman’s proof of the following theorem, for the caseh = 0, was
inspired by semiclassical mechanics. They used a semiclassical bridge which arrives aty0
at timeT + λ and took the limit asλ ↓ 0. We give a slightly modified proof, generalising
their result for∆h, the method of which will later be used to derive a derivativeformula.
The following generalises a formula by Elworthy-Truman, [17]. Watling [49] treated
Brownian motion with a general driftZ.

Theorem 3.3 [15, 49] LetV ∈ C0,α ∩ L∞ and suppose that the Brownian motion with
drift ∇h + Z does not explode. Suppose thatΦh + Ψ − V is bounded above, or more
generally the following convergencelimt→T

∣∣βht − βhT
∣∣ = 0. Then

ph,Z,VT (x0, y0) = e(h−S)(y0)−(h−S)(x0)kT (x0, y0)E
[
exp

(∫ T

0
(Φh +Ψ− V )(x̃s)ds

)]
.

(3.7)

Proof Let φ be a smooth function with compact support withφ(y0) = 1. Denote byEt

the standard Gaussian kernel in the tangent spaceTy0M . Then, by a change of variables,
we see that

lim
t↑T

lim
r↑t

ph,Z,Vt (φkT−r)(x0) = lim
t↑T

lim
r↑t

∫

M
ph,Z,Vt (x0, y)φ(y)kT−r(y) dy

= lim
t↑T

lim
r↑t

∫

Ty0
M

(ph,Z,Vt (x0, ·) · φ · J1/2)(expy0 v)ET−r(v) dv

= (ph,Z,VT (x0, ·) · φ · J1/2)(expy0 0y0) = ph,Z,VT (x0, y0)
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where0y0 denotes the origin of the tangent spaceTy0M , using the fact thatph,Z,Vt (x0, ·) ·
φ·J1/2 has compact support withJ(expy0 0y0) = J(y0) = 1. Thus, by takingf = φ·kT−r

in equation (3.5) forr < t, we observe, sincẽxt converges toy0 a.s., that

ph,Z,VT (x0, y0) =e(S−h)(x0)kT (x0, y0) lim
t↑T

lim
r↑t

E
[
φ(x̃t)

kT−r(x̃t)e(S−h)(x̃t)

kT−t(x̃t)
exp

(∫ t

0
(Φh +Ψ− V )(x̃s)ds

)]

= e(h−S)(y0)−(h−S)(x0)kT (x0, y0)E
[
exp

(∫ T

0
(Φh +Ψ− V )(x̃s)ds

)]
,

Sinceφ has compact support the limitr → t is trivial to justify. The second follows from
the assumption. The proof is complete. �

At this point we compare formula (3.7), valid for all timet ≤ T , with S. R. S. Varad-
han’s asymptotic relation [47] and the asymptotic expansion of S. Minakshisundaram and
A. Pleijel [36] for small time. The first states thatlimt↓0 2t log pt → −d2, uniformly on
compact sets. This was proved in [47] for operators of the form

∑
i,j ai,j∂

2∂xi∂xj in Rn.
The latter states that there are smooth functionsHi defined onM×M \Cut(M ) such that

pt(x, y) ∼ (2πt)−
n
2 e−

d2(x,y)
2t

∞∑

i=0

Hi(x, y)ti

with H0(x, y) = J
− 1

2
x (y), ast → 0. Both converge uniformly on compact subsets of

M ×M \ Cut(M ), where Cut(M ) denotes the cut locus ofM . See also [2].

3.2 First Order Formula

We return theh-Brownian motion whose generator is12∆+∇h. Setβht = exp
(∫ t

0 (Φh − V )(x̃s)ds
)

.

Theorem 3.4 Assumey0 is a pole,V ∈ C1,α∩BC1, Φh−V is bounded above,f ∈ L∞
andRic− 2Hessh ≥ K. Then

dph,VT (·, y0) =
1

T
eh(y0)−h(x0)kT (x0, y0)E

[
βhT

(∫ T

0
〈W̃r(·), ũrdB̃r〉 −

∫ T

0
(t− r)dV (W̃r(v))dr

)]

whereW̃ is the solution to (2.4) and forr ∈ [0, T )

dB̃r = dBr + ũ−1
r ∇(log(kT−re

−h))(x̃r) dr.

Proof For all0 < t ≤ T andv ∈ Tx0
M we have, by Theorem 2.5 and Fubini’s theorem,

that

dP h,V
t f (v) =

1

t
E
[
Vtf (xt)

∫ t

0
〈Ws(v), usdBs〉 − (t− s)dV (Ws(v)) ds

]

=
1

t
E
[
Vtf (xt)

∫ t

0
〈Ws(v), usdBs − (t− s)∇V ds〉

]
.
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Therefore, it follows that, for all0 < t < T ,

dP h,V
t (φkT−t)(v) =

1

t
E
[
Vt(φkT−t)(xt)

∫ t

0
〈Wr(v), urdBr − (t− r)∇V dr〉

]
,

whereφ is a smooth function with compact support andφ(y0) = 1, as in the proof of
Theorem 3.3. By Lemma 3.2 this yields

dP h,V
t (φkT−t)(v) =

1

t
e−h(x0)kT (x0, y0)E

[
φ(x̃t)β

h
t e

h(x̃t)
∫ t

0
〈W̃r(v), ũrdB̃r − (t− r)∇V dr〉

]
.

We now take limits. For the left-hand side of the previous equation we see that

lim
t↑T

dP h,V
t (φkT−t)(v) = lim

t↑T
d

(∫

M
P h,V
t (·, y)φ(y)kT−t(y) dy

)
(v)

= lim
t↑T

∫

M
dP h,V

t (·, y)(v)φ(y)kT−t(y) dy = dP h,V
T (·, y)(v)

where the final equality follows from the compactness of the support ofφ and the fact that
J(y0) = 1. For the right-hand side, we uselimt→T x̃t = y0, apply the dominated con-
vergence theorem, using upper and lower bounds onΦh and Ric−2Hessh, respectively,
obtaining the result as claimed. �

Immediate applications of Theorems 3.3 and 3.4 are:

Corollary 3.5 Under the assumptions of Theorem 3.4 we have,

d log ph,VT (·, y0)(v) =
1

T
E
[
Zh

∫ T

0
〈W̃r(v), ũrdB̃r − (t− r)∇V dr〉

]
,

whereZh
T =

βh
T

E(βh
T

)
=

exp(
∫ t

0
(Φh−V )(x̃s)ds)

E exp(
∫ t

0
(Φh−V )(x̃s)ds)

.

ForV bounded Hölder continuous, the above argument and Lemma 2.3 lead to:

Corollary 3.6 Assume thaty0 is a pole forM , Ric−2Hess(h) is bounded below andΦh

is bounded above withV Hölder continuous and bounded. Then

dlog ph,VT (·, y0)x0
=

1

T
E
[
Zh
T

∫ T

0
〈W̃s(·), ũsdB̃s〉

]

+ E
[
Zh
T

∫ T

0
V (x̃T−s) e

−
∫ T

T−s
V (x̃u)du 1

T − s

∫ T−s

0
〈W̃r(·), ũrdB̃r〉

]
.

In [10, Thm.6], an estimate of the following form

∇pt(x0, y0) ≤ Cδ−α(n)(x0)t−(n+ 1

2
)e−

α(n)d2(x0,y0)
t

is given for Riemannian manifold of bounded curvature. We have the following corre-
sponding estimates.
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Corollary 3.7 Assumey0 is a pole,Φh − V is bounded above,Ric − 2Hess(h) ≥ K,
and∇h, and∇ log J are bounded. Suppose thatV ∈ C1,α ∩ BC1. Then for an explicit
constantC depending only onn,K and |∇ log J |∞, the following estimate holds,

|∇ph,VT (·, y0)|x0

kT (x0, y0)
≤ Ceh(y0)−h(x0)|βhT |∞

(
d(x0, y0)

T
+ |∇h|∞ +

1√
T

+ T |dV |∞
)
.

Proof Since|Wt(v)| ≤ e−
1

2
Kt|v|,

∣∣∣∣
∫ T

0
〈W̃r(v), ũrdB̃r〉 −

∫ T

0
(t− r)dV (W̃r(v))dr〉

∣∣∣∣

=

∣∣∣∣
∫ T

0
〈W̃r(v), ũrdBr〉+

∫ T

0

〈
W̃r(v),∇ log(e−hkT−r)(x̃r)

〉
dr −

∫ T

0
(t− r)dV (W̃r(v))dr〉

∣∣∣∣

≤
∣∣∣∣
∫ T

0
〈W̃r(v), ũrdBr〉

∣∣∣∣+ |v|
∫ T

0
e−Kr/2(|∇ log kT−r −∇h)(x̃r)|dr + |v| |dV |∞

∫ T

0
e−Kr/2(t− r)dr.

We apply Theorem 3.4 to see that

∣∣∣∣∣Te
h(x0)−h(y0)dp

h,V
T (·, y0)(v)

kT (x0)

∣∣∣∣∣ ≤|v| |βhT |∞
(∫ T

0
e−Krdr

) 1

2

+ |v| |βhT |∞|dV |∞
∫ T

0
e−Kr/2(t− r)dr

+|v| |βhT |∞E
[∫ T

0
e−Kr/2(|∇h|∞ + |∇ log kT−r(x̃r)|)dr

]
.

The first two terms on the right hand side are nicely bounded by|v| |βhT |∞(
√
C1(K,T ) +

|dV |∞C2(K,T ))|v| whereC1 andC2 are the obvious integrals of orderT andT 2 respec-
tively. Since∇ log kt(·, y0) = −∇r2

2t − 1
2∇ log J , the last term can be estimated using the

Euclidean bridge. Then

E
[∫ T

0
e−Kr/2|∇ log kT−r(x̃r)|dr

]

≤ 1

2

∫ T

0
e−Kr/2|∇ log J(x̃r)|L1

dr + E
[∫ T

0
e−Kr/2d(x̃r, y0)

(T − r)
dr

]

≤ 1

2

∫ t

0
e−Kr/2|∇ log J(x̃r)|L1

dr +

∫ T

0
e−Kr

√
Ed2(x̃r, y0)
(T − r)

dr.

Sincert = d(x̃ty0) is then-dimensional Bessel bridge,

Ed2(x̃r, y0) =

(
T − r

T

)2

d2(x0, y0) +
r

T
(T − r),

and consequently,

∫ t

0
e−Kr/2

√
Ed2((x̃r), y0)

(T − r)
dr ≤

∫ t

0
e−Kr/2

(
1

T
d(x0, y0) +

√
r

T

1√
T − r

)
dr,
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which is bounded byC(d(x0, y0) +
√
T ). This completes the proof. �

Together with Theorem 3.3 we easily have an estimate for the gradient of the loga-
rithmic Feynman-Kac kernel, which follows from a similar estimate as above:

∣∣∣∇ log ph,VT (·, y0)
∣∣∣
x0

≤ C|ZT |L2
C

(
d(x0, y0)

T
+ 1 + |∇h|∞ +

1√
T

+ |dV |∞T
)
,

whereC is a constant depending on|∇ log J |∞ and onK.
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