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Motivation
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Worldwide electric utilities 
lose $96 billion USD (*) 
annually to fraud/theft

(*) Electricity Theft and Non-Technical Losses: Global Market, Solutions and Vendors
May 2017 | Northeast group, llc
www.northeast-group.com
(*) World Bank data

http://www.northeast-group.com/


Motivation
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Example of NTL: Two 
assumed occurrences of 
NTL due to significant 
consumption drops 
followed by inspections 
(visualized by vertical 
bars).



Project Overview

• Joint university-industry research 
project on detection of NTL

• Started in late 2015

• Goal: applied R&D focused on 
both publishing papers and 
deploying features in Choice 
products
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• Published results in:
– 1 journal paper (survey)

– 1 paper at ISGT 2016

– 1 paper at Power and Energy 
Conference at Illinois (PECI) 2016

– 1 paper at International Conference 
on Intelligent System Applications 
to Power Systems (ISAP) 2017

– 1 paper at IEEE/ACM International 
Conference on Big Data Computing 
Applications and Technologies 
(BDCAT) 2016
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Goals of this tutorial

• Introducing the problem of NTL

• Providing a short introduction to machine 
learning

• Reviewing the state of the art of NTL 
detection using machine learning methods

• Discussing the challenges of NTL detection

• Presenting a selection of our works

• Providing a forum for discussions
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Interested in NTL?

Join our mailing list:

https://groups.goog
le.com/d/forum/ntl-
community
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https://groups.google.com/d/forum/ntl-community
https://groups.google.com/d/forum/ntl-community
https://groups.google.com/d/forum/ntl-community
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Introduction to NTL
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Non-technical losses are mainly caused by fraud 
activities deliberately performed by the 

consumers.
 Besides the financial issues due to non-revenue 

energy, these frauds lead to a series of additional 
losses, including damage to grid infrastructure, 
reduction of grid reliability and may be cause of 

accidents.



Conceptualization
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Theft is described as 
connecting directly to 
energy sources bypassing 
the metering process. 



Conceptualization
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Fraud can be defined as altering the 

measurement registered by the meter, 

i.e. tampering the meter. 
It is easier with the 
conventional meters but 
it is now also performed 
with electronic, said 
smart meters.



Infrastructure
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NTL will require reinforced 
infrastructure to support the 
additional load from unmetered 
consumption. Some grid devices 
not designed for the actual load 
will deteriorate faster and result in 
supply interruptions, degrading 
the quality of service. 



Economics
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Tariffs paid by customers are 
designed to correspond to their 
consumption and remunerate Utilities 
for their investments and operational 
costs. When the metered consumption 
is adulterated, all the economics of the 
process are impacted.
(*) More to read on Article “Non-technical Losses in Utility Business – What it is and why it 
does matter to all of us”.
Rui Mano, 2017 – Metering International magazine, edition 4/2017



Security
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Insecure manipulation by 
non-authorized personnel may 
be the cause for damaged 
appliances and accidents 
(short circuits, disconnections, 
electrocution, and fire). 



Regulation
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Regulators define penalties for 
fraud/theft perpetrators, from fines 
all the way to criminal 
prosecution. 
Stealing energy is, in some 
countries, defined as a crime. 



Fighting NTL
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First step is to discover who 
is doing a fraud, then Utility 
needs to inspect and make 
legal evidence of the fraud.
Inspection is a key issue.



Fighting NTL
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Field audits are the only 
way to make due evidence 
of a fraud or theft. Analytical 
methods are not accepted 
as evidence.



Inspections
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Inspections require getting 
into client premises. This is 
a) costly and b) not friendly, 
mostly to honest customers.
Accuracy of the detection is 
key to avoid false positives.



Analytics
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Analytics can provide very 
effective results with short 
time paybacks. Choice has 
conducted very successful 
projects.



The infrastructure scenario
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• Distribution Automation

• Substation Automation

• Metering data

• Systems 
•Corporate, Administrative, Finance

•Technical (Operation, Maintenance, etc.)
•Different Protocols, Standards, Data models

•Data silos

• Transmission, Processing and Storage

DATA

Telecom



The NEW infrastructure scenario
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•Smart Grid implementation – the new, smarter 
grid

• Distribution Automation

• Substation Automation

• Distributed Energy Resources, Micro Grids

• Smart Metering – AMR / AMI

• Systems (corporate and technical)
•Common Standards (ex. 61850)

•INTEGRATION

BIG 
DATA

ANALYTICS

Telecom



New Data Scenario
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•Technical data (currents, voltages, device 
status, etc.

– Operation, Engineering, Maintenance...

•Metering Data (Consumption, faults, etc.)
–Finance, Administrative, Commercial, Customers...

•Terabytes/month – a data Tsunami!

•Data Transmission, Processing, Disclosure and 
Storage                    ANALYTICS



New Applications for Utilities
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• Better Client Support

• Technical: Planning, Engineering, Operation and 
Maintenance

• Energy Efficiency, Intelligent Consumption, Hourly 
Tariffs

• Information and NEW services to the clients

• Techniques and tools for decision support based on 
knowledge
• Artificial (Computation) Intelligence – Neural networks, Fuzzy 

logic, Neuro-Fuzzy, Signal Processing (Wavelets, etc), 
Clusterization, Machine Learning, Evolutionary Algorithms, 
etc…



Data Intelligence
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Acquiring data to store and 
accumulate? Or... Data intelligence?

Data Analytics allow to better 
understand the behavior of 

consumers, of the load and of the 
grid, and render better services, with 

better results for the utility.



Data Analytics Revenue Protection 
Projects
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Choice project for Light, 
Brazilian 4.5 million 
customers utility resulted in 
recovering 4 times more 
energy per inspection



Data Analytics Revenue Protection 
Projects
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The chart below summarizes the evolution 
of the Productivity (= Total Recovered 
Energy (kWh) / Inspection) at Light.



Data Analytics Revenue Protection 
Projects
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Choice project for EPM (*) – 
Colombian multi-country, 
multi-utility covering 7.5 million 
electricity, water, and gas 
customers more than doubled the 
recovery of energy in 6 months 
after go-live.

(*) http://choiceholding.com/media/   - MEET JUAN CARLOS DUQUE

http://choiceholding.com/media/


Data Analytics Revenue Protection 
Projects
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(*) https://www.youtube.com/channel/UC-azzVfbGngqmqWMvAfOGYA - Proyecto 
gestión control pérdidas

Energy 
Recovered in 
2016

https://www.youtube.com/channel/UC-azzVfbGngqmqWMvAfOGYA


Conclusion
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Data is not the problem, anymore. But 
data is not enough. To make the best 
from data, Analytics is the very 
effective technology that opens room 
to a myriad of new applications, 
impacting and helping optimize every 
sector of the utility.



Conclusion
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Energy diversion and fraud impacts 
customers and taxpayers and helps to 
damage the environment. This is a 
very high cost to the utility, to their 
customers and to the whole society 
Utilities have the responsibility to fight 
non-technical losses with the best 
tools and methodology (*).
(*) More to read on “Electricity Theft and Non-Technical Losses : Global Market, 
Solutions and Vendors” - May 2017 – Northeast Group. Llc

www.northeast-group.com



Conclusion
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“Big data is not about the data. The 
value of big data is in the 
analytics.”                  

Harvard Professor Gary King



Machine Learning
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Machine Learning
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“Machine Learning is a subset of Artificial Intelligence 
techniques which use statistical models to enable 

machines to improve with experiences”*

Use cases: data mining, autonomous cars, recommendation... 

*https://rapidminer.com/artificial-intelligence-machine-learning-deep-learning/



Definition
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Arthur Samuel (1959): “field of study that gives computers the ability to 
learn without being explicitly programmed”.

Tom Mitchell (1998): "A computer program is said to learn from 
experience E with respect to some class of tasks T and performance 
measure P if its performance at tasks in T, as measured by P, improves 
with experience E."



History
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1950 — Alan Turing creates the “Turing Test” to determine if a computer has real intelligence. 
1952 — Arthur Samuel wrote the first computer learning program. 
1957 — Frank Rosenblatt designed the first neural network for computers (the perceptron).
1979 — Students at Stanford University invent the “Stanford Cart” which can navigate obstacles in a 
room.
1981 — Gerald Dejong introduces the concept of Explanation Based Learning (EBL), in which a 
computer analyses training data and creates a general rule it can follow by discarding unimportant 
data.
1985 — Terry Sejnowski invents NetTalk, which learns to pronounce words the same way a baby 
does.
1990s — Work on machine learning shifts from a knowledge-driven approach to a data-driven 
approach. 
1997 — IBM’s Deep Blue beats the world champion at chess.
2006 — Geoffrey Hinton coins the term “deep learning” to explain new algorithms that let computers 
“see” and distinguish objects and text in images and videos.
2010 — The Microsoft Kinect can track 20 human features at a rate of 30 times per second, allowing 
people to interact with the computer via movements and gestures.
...

source: https://www.forbes.com



Machine Learning
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Raw Data

Features

Models



Algorithms
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● Supervised learning
○  find a function that describes labeled training 

data. 

● Unsupervised learning
○ find correlation between "unlabeled" data.

● Reinforced learning
○ reward approach.



Supervised

41

Regression vs Classification



Supervised
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Regression vs Classification
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Regression vs Classification



Supervised
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Regression vs Classification

Continuous values Discrete values (labels, categories)



Supervised
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Use cases:
- Diagnosis of disease, anomaly detection, forecasting  ...



Unsupervised
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Supervised 

Known labels



Unsupervised
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Unknown labels

Supervised Unsupervised

Known labels



Unsupervised
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Supervised Unsupervised

Unknown labelsKnown labels



Unsupervised
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Supervised Unsupervised

Unknown labelsKnown labels
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Use cases:
- Market segmentation, social media analysis (behavior), 

organize computing clusters  ...

Unsupervised
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Reinforced

Agent

Environment 
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Reinforced

Agent

Environment 

Action
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Reinforced

Agent

Environment 

Observation  

Action

Result
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Reinforced

Agent

Environment 

Observation  

Action

Result

Reward
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Use cases:
- Trading strategy, manufacturing, game playing ...

Reinforced



Workflow
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x y

Training 
set

Learning
algorithm

features prediction
h

hypothesis



Regression
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How to represent ‘h’ (hypothesis)

Regression
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hᵐ(x) = ᵐ0   + ᵐ1x

How to represent ‘h’ (hypothesis)

Regression
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hᵐ(x) = ᵐ0   + ᵐ1x
y = ax + b

How to represent ‘h’ (hypothesis)

Regression

For example, housing price.
2014 2015 2016 2017 2018

~180k ~182k ~184k ~186k ???
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hᵐ (x) = 1.5   + 0 x hᵐ (x) = 0.5x hᵐ (x) = 1   + 0.5x

1

2

1

2

1

2

1 2 1 21 2

How to represent ‘h’ (hypothesis)

Regression
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Choose ᵐ0ᵐ1 so that hᵐ(x) is close to 
y for our training set

hᵐ(x) = ᵐ0   + ᵐ1x

How to represent ‘h’ (hypothesis)

Regression
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The idea is to minimize ᵐ0ᵐ1, so that hᵐ(x)-y tends to decrease.

Thus, we can define the cost function J(ᵐ0ᵐ1) aiming to minimize ᵐ0ᵐ1:

J(ᵐ) =  ⅟2� (hᵐ(x) - y)²

square difference

Choose ᵐ0ᵐ1 so that hᵐ(x) is close to 
y for our training set

hᵐ(x) = ᵐ0   + ᵐ1x

How to represent ‘h’ (hypothesis)

Regression
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Classification



Classification
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● Decision Tree
○ The target is to separate the dataset into classes, 

for example, ‘yes’ or ‘no’.



Decision Tree
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no

no

yes

no

yes
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Weather

Sunny

Rain

Cloudy

For example, play or not play football?

Decision Tree
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Weather

Sunny

Rain

Cloudy

no

For example, play or not play football?

Decision Tree
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Weather

Sunny

Rain

Cloudy

no

Strong Wind

Weak Wind

Normal Humidity

High Humidity

For example, play or not play football?

Decision Tree
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Weather

Sunny

Rain

Cloudy

no

Strong Wind

Weak Wind

Normal Humidity

High Humidity

no

yes

no

yes

For example, play or not play football?

Decision Tree



Unsupervised (clustering)
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K-means algorithm

1: Define K centroids randomly.



Clustering
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K-means algorithm

1: Define K centroids randomly.
2: Associate every observation according to the nearest 

centroid.
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K-means algorithm

1: Define K centroids randomly.
2: Associate every observation according to the nearest 

centroid.

Clustering
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K-means algorithm

1: Define K centroids randomly.
2: Associate every observation according to the nearest 

centroid.
3: Define new centroids according to the mean of the 

clusters.

Clustering
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K-means algorithm

1: Define K centroids randomly.
2: Associate every observation according to the nearest 

centroid.
3: Define new centroids according to the mean of the 

clusters.
4: Repeat step 2 and 3 to converge.

Clustering
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Reinforced

● Markov decision process
○ In short, the target is to maximize the rewards:

E(r|π,s), where:

● Set of states, S

● Set of actions, A

● Reward function, R

● Policy, π 

● Value, V
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Reinforced

1. The agent observes an input state
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Reinforced

1. The agent observes an input state

2. An action is determined by a decision making function (policy)
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Reinforced

1. The agent observes an input state

2. An action is determined by a decision making function (policy)

3. The action is performed
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Reinforced

1. The agent observes an input state

2. An action is determined by a decision making function (policy)

3. The action is performed

4. The agent receives a scalar reward or reinforcement from the 

environment

10
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Reinforced

1. The agent observes an input state

2. An action is determined by a decision making function (policy)

3. The action is performed

4. The agent receives a scalar reward or reinforcement from the 

environment

5. Information about the reward given for that action pair is recorded

10
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Reinforced

10
-10

50

45

5
-5

10



State of the art
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Published in:

International Journal of Computational Intelligence Systems 
(IJCIS), vol. 10, issue 1, pp. 760-775, 2017.



State of the art

• Features

• Models

• Comparison
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State of the art: features

• Monthly consumption:
– Daily averages:

– Monthly consumption before the inspection

– Consumption in the same month in the year 
before

– Consumption in the past three months
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State of the art: features

• Monthly consumption:
– The customer’s consumption over the past 24 

months

– Average consumption

– Maximum consumption

– Standard deviation

– Number of inspections

– Average consumption of the residential area
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State of the art: features

• Smart meter consumption:
– Consumption features from intervals of 15 or 30 

minutes

– The maximum consumption in any 15-minute 
window

– Load factor is computed by dividing the demand 
contracted by the maximum consumption

– Shape factors are derived from the consumption 
time series including the impact of lunch times, 
nights and weekends
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State of the art: features

• Smart meter consumption:
– 4 × 24 = 96 measurements are encoded to a 

32-dimensional space:
• Each measurement is 0 or positive

• Next, it is then mapped to 0 or 1, respectively

• Last, the 32 features are computed

• A feature is the weighted sum of three subsequent 
values, in which the first value is multiplied by 4, the 
second by 2 and the third by 1
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State of the art: features

• Master data:
– Location (city and neighborhood)

– Business class (e.g. residential or industrial)

– Activity type (e.g. residence or drugstore)

– Voltage

– Number of phases (1, 2 or 3)

– Meter type
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State of the art: features

• Master data:
– Demand contracted, i.e. the number of kW of 

continuous availability requested from the energy 
company and the total demand in kW of installed 
equipment of the customer

– Information about the power transformer to 
which the customer is connected to

– Town or customer in which the customer is 
located

– Type of voltage (low, median or high)
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State of the art: features

• Master data:
– Electricity tariff

– Contracted power

– Number of phases

– Type of customer

– Location

– Voltage level

– Type of climate (rainy or hot)

– Weather conditions
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State of the art: features

• Credit worthiness ranking (CWR):
– Computed from the electricity provider’s billing 

system

– Reflects if a customer delays or avoids payments 
of bills

– CWR ranges from 0 to 5 where 5 represents the 
maximum score

– It reflects different information about a customer 
such as payment performance, income and 
prosperity of the neighborhood in a single feature
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State of the art: models

• Expert systems and fuzzy systems

• Neural networks

• Support vector machines

• Genetic algorithms

• Rough sets

• Various other methods: optimum path forest, 
linear regression, etc.
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State of the art: comparison

• Accuracy:

• Precision:

• Recall:

• F1:
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State of the art: comparison
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State of the art: comparison
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Challenges

• Class imbalance and evaluation metric

• Feature description

• Data quality

• Covariate shift

• Scalability

• Comparison of different methods
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Class imbalance, evaluation metric

• Imbalanced classes appear frequently in 
machine learning, which also affects the 
choice of evaluation metrics.

• Most NTL detection research do not address 
this property.
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Class imbalance, evaluation metric

• In many papers, high accuracies or high recalls 
are reported:

• The following examples demonstrate why 
those performance measures are not suitable 
for NTL detection in imbalanced data sets.
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Class imbalance, evaluation metric

• For a test set containing 1K customers of 
which 999 have regular use,
– A classifier always predicting non-NTL has an 

accuracy of 99.9%

– While this classifier has a very high accuracy and 
intuitively seems to perform very well, it will 
never predict any NTL.
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Class imbalance, evaluation metric

• For a test set containing 1K customers of 
which 999 have regular use,
– A classifier always predicting NTL has a recall of 

100%.

– While this classifier will find all NTL, it triggers 
many costly and unnecessary physical inspections 
by inspecting all customers.
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Class imbalance, evaluation metric

• This topic is addressed rarely in NTL literature.

• For NTL detection, the goal is to reduce the 
false positive rate (FPR) to decrease the 
number of costly inspections, while increasing 
the true positive rate (TPR) to find as many 
NTL occurrences as possible.
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Class imbalance, evaluation metric

• We propose to use a receiver operating 
characteristic (ROC) curve, which plots the 
TPR against the FPR.

• The area under the curve (AUC) is a 
performance measure between 0 and 1, 
where any binary classifier with an AUC > 0.5 
performs better than chance
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Class imbalance, evaluation metric
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Published in:

Proceedings of the Seventh IEEE Conference on Innovative Smart 
Grid Technologies (ISGT 2016), Minneapolis, USA, 2016.



Class imbalance, evaluation metric
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Class imbalance, evaluation metric
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Class imbalance, evaluation metric
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Feature description

• Generally, hand-crafting features from raw 
data is a long-standing issue in machine 
learning having significant impact on the 
performance of a classifier.

• Different feature description methods have 
been reviewed in the previous section.
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Feature description

• They fall into two main categories:
– Features computed from the consumption profile 

of customers which are from:
• Monthly meter readings

• Or smart meter readings

– And features from the customer master data.
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Feature description

• The features computed from the time series 
are very different for monthly meter readings 
and smart meter readings.

• The results of those works are not easily 
interchangeable. While electricity providers 
continuously upgrade their infrastructure to 
smart metering, there will be many remaining 
traditional meters. In particular, this applies to 
emerging countries.
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Feature description

• There are only few works on assessing the 
statistical usefulness of features for NTL 
detection.

• Almost all works on NTL detection define 
features and subsequently report improved 
models that were mostly found experiment 
ally without having a strong theoretical 
foundation.
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Data quality

• We noticed that the inspection result labels in 
the training set are not always correct and 
that some fraudsters may be labelled as 
non-fraudulent.

• The reasons for this may include bribing, 
blackmailing or threatening of the technician 
performing the inspection.

• Also, the fraud may be done too well and is 
therefore not observable by technicians. 
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Data quality

• Another reason may be incorrect processing 
of the data. It must be noted that the latter 
reason may, however, also label non- 
fraudulent behavior as fraudulent.

• Most NTL detection research use supervised 
methods. This shortcoming of the training 
data and potential wrong labels in particular 
are only rarely reported in the literature.
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Covariate shift

• Covariate shift refers to the problem of 
training data (i.e. the set of inspection results) 
and production data (i.e. the set of customers 
to generate inspections for) having different 
distributions.
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Covariate shift
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Covariate shift
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Covariate shift
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The large city is close to the sea, whereas the 
small city is located in the interior of the 
country. The weather in the small city 
undergoes stronger changes during the year. 
The subsequent change of electricity 
consumption during the year triggers many 
inspections. As a consequence, most 
inspections are carried out in the small city. 
Therefore, the sample of customers inspected 
does not represent the overall population of 
customers.



Covariate shift
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• This fact leads to unreliable NTL predictors 
when learning from this training data.

• Historically, covariate shift has been a 
long-standing issue in statistics



Covariate shift
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• The Literary Digest sent 
out 10M questionnaires 
in order to predict the 
outcome of the 1936 US 
Presidential election.

• They received 2.4M 
returns.

• Predicted Alfred Landon 
to win.



Covariate shift
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• Nonetheless, the predicted result proved to 
be wrong.

• The reason for this was that they used car 
registrations and phone directories to compile 
a list of recipients.

• In that time, the households that had a phone 
or a car represented a biased sample of the 
overall population.



Covariate shift
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• In contrast, George Gallup only interviewed 3K 
handpicked people, which were an unbiased 
sample of the population.

• As a consequence, Gallup could predict the 
outcome of the election very well.



Covariate shift
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Published in:

Proceedings of the 19th International Conference on Intelligent 
System Applications to Power Systems (ISAP 2017), San Antonio, 
USA, 2017.



Covariate shift
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We propose a robust 
algorithm for 
measuring covariate 
shift in data sets.



Covariate shift
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Covariate shift
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Covariate shift
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Covariate shift
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Regional level:



Covariate shift
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Municipal level:



Covariate shift
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Local level:



Covariate shift
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• We are currently working on reducing 
covariate shift.

• We aim at detecting NTL more reliably.



Scalability

• The number of customers used throughout 
the research reviewed significantly varies.

• Some papers use less than a few hundred 
customers in the training.

• Some papers use SVMs with a Gaussian 
kernels. In that setting, training is only feasible 
in a realistic amount of time for up to a couple 
of tens of thousands of customers in current 
implementations.
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Scalability

• Another paper uses the Moore-Penrose 
pseudoinverse. This model is also only able to 
scale to up to a couple of tens of thousands of 
customers.
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Scalability

• A few papers use up to hundreds of thousands 
or millions of customers.

• An important property of NTL detection 
methods is that their computational time 
should scale to large data sets of hundreds of 
thousands or millions of customers. Most 
works reported in the literature do not satisfy 
this requirement.
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Comparison of different methods

• Comparing the different methods reviewed in 
this paper is challenging because they are 
tested on different data sets.

• In many cases, the description of the data 
lacks fundamental properties such as the 
number of meter readings per customer, NTL 
proportion, etc.
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Comparison of different methods

• In order to increase the reliability of a 
comparison, joint efforts of different research 
groups are necessary.

• These efforts need to address the 
benchmarking and comparability of NTL 
detection systems based on a comprehensive 
freely available data set.
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Comparison of different methods

• Carlos López, Universidad 
ORT Uruguay, is planning 
a NTL detection challenge 

• Project title: Objective 
comparison among NTL 
detection methods in 
houses
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Comparison of different methods

• Goal: Create a simulation environment in 
which competitors can objectively test and 
compare their NTL detection methods to the 
ones of others

• Currently looking for researchers interested in 
realizing the competition

• Carlos will apply for funding at Agencia 
Nacional de Investigación e Innovación (ANII)
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Comparison of different methods

• Have a look at our mailing list: 
https://groups.google.com/d/forum/ntl-com
munity

• Details:
– The comparison will be through a Monte Carlo 

simulation

– Unlike typical competitions platforms (e.g. 
kaggle.com) which just require one classification, 
the algorithms should be run many times

138

https://groups.google.com/d/forum/ntl-community
https://groups.google.com/d/forum/ntl-community


Comparison of different methods

• Challenges:
– Derive suitable metrics to assess models

– Get a sufficiently large dataset that can be put in 
the public domain
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Locality vs Similarity 
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Is it possible to provide an accurate detection of 
non-technical losses by using features only derived 
from provider-independent data?



Locality vs Similarity 

141

Published in:

2017 IEEE Power and Energy Conference at Illinois (PECI 2017), 
Urbana, USA, 2017.



Features
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Based on the following categories:
● Temporal: Seasonal, Monthly, Semiannual, 

Quarterly, Intra Year;
● Locality: Geographical Neighbourhoods;
● Similarity: k-means clustering using 

consumption profile
● Infrastructure: Transformers;



Features
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m (current month)m-3m-6m-12

avg
avg

avg

Monthly 
consumption

difference

● The temporal features are calculated individually and for each of the three 

subsequent categories: Locality, Similarity and Infrastructure



Locality vs Similarity 
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Consumption Profile (code_Neig)Neighbourhood (code_Neig) vs

Cluster 1
Cluster 2
Cluster 3



Locality vs Similarity 
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Locality vs Similarity 
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Conclusion
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● Several sets of features computed using four criteria: 

temporal, locality, similarity and infrastructure. 

● The experimental results show that sets of features 

supported only by raw consumption data can achieve 

satisfactory performance when compared with sets 

composed of ”providers’ dependent features”.



Challenge
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A 100% automatic tool



Mixed reality
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● How to improve targets selection by taking advantage of 
the domain expert experience?



Mixed reality
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Published in:

Proceedings of the 17th IEEE International Conference on Data 
Mining Workshops (ICDMW 2017), New Orleans, USA, 2017.



Mixed reality
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HoloLens

● How to improve targets selection by taking advantage of 
the domain expert experience?



Mixed reality
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● In 1994, the paper "A Taxonomy of Mixed Reality Visual 
Displays" introduced the term Mixed Reality. 

“... a particular subset of Virtual Reality (VR) related 

technologies that involve the merging of real and virtual worlds 

somewhere along the "virtuality continuum" which connects 

completely real environments to completely virtual ones.”



Mixed reality
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source: 
https://developer.microsoft.com/en-us/windows/mixed-reality/mixed_reality

● In short, MR is the result of blending the physical world with 
the digital world.



Mixed reality
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● A novel approach to support to visualize the prediction 
results in a 3D hologram that contains information about 
customers and their spatial neighborhood.



Mixed reality

155



Mixed reality
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Mixed reality
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https://docs.google.com/file/d/0ByGExlw5LQMqQ244WXZQc3FQQzg/preview


Conclusions

• Non-technical losses (NTL) cause major 
financial losses to electricity suppliers

• Detecting NTL thrives significant economic 
value

• Different approaches reported in the 
literature, superior performance of machine 
learning approaches compared to expert 
system

• Many open challenges
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Interested in NTL?

Join our mailing list:

https://groups.goog
le.com/d/forum/ntl-
community
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https://groups.google.com/d/forum/ntl-community
https://groups.google.com/d/forum/ntl-community
https://groups.google.com/d/forum/ntl-community
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