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Abstract

Nuclear factor-kappa B (NF-κB) is a key modulator of inflammation and secondary injury responses in neurodegenerative disease, including spinal 
cord injury (SCI). Inhibition of astroglial NF-κB reduces inflammation, enhances oligodendrogenesis and improves functional recovery after SCI, however the 
contribution of neuronal NF-κB to secondary inflammatory responses following SCI has yet to be investigated. We demonstrate that conditional ablation 
of IKK2 in Synapsin 1-expressing neurons in mice (Syn1creIKK2fl/fl) reduces activation of the classical NF-κB signaling pathway, resulting in impaired motor 
function and altered memory retention under naïve conditions. Following induction of a moderate SCI phosphorylated NF-κB levels decreased in the spinal 
cord of Syn1creIKK2fl/fl mice compared to controls, resulting in improvement in functional recovery. Histologically, Syn1creIKK2fl/fl mice exhibited reduced lesion 
volume but comparable microglial/leukocyte responses after SCI. In parallel, interleukin (IL)-1β expression was significantly decreased within the lesioned 
spinal cord, whereas IL-5, IL-6, IL-10, tumor necrosis factor (TNF) and chemokine (C-X-C motif) ligand 1 were unchanged compared to control mice. We 
conclude that conditional ablation of IKK2 in neurons, resulting in reduced neuronal NF-B signaling, and lead to protective effects after SCI and propose the 
neuronal classical NF-κB pathway as a potential target for the development of new therapeutic, neuroprotective strategies for SCI. 

ABBREVIATIONS
ASF: Area Sampling Fraction; BMS: Basso Mouse Scale; 

DAB: Diaminobenzidine; EAE: Experimental Autoimmune 
Encephalomyelitis; EM: Electron Microscopy; EPM: Elevated 
Plus Maze; EtOH: Ethanol; FBS: Foetal Bovine Serum; GFAP: Glial 
Fibrillary Acidic Protein; H&E: Hematoxylin and Eosin; HRP: 
Horse-Radish Peroxidase; IKK: IκB kinase; iNOS: Inducible Nitric 
Oxide Synthase; IL: Interleukin; IL-1Ra: Interleukin-1 Receptor 
Antagonist; LFB: Luxol Fast Blue; NF-κB: Nuclear Factor-Kappa 
B; PBS: Phosphate-Buffered Saline; PFA: Paraformaldehyde; RM: 
Repeated Measures; SCI: Spinal Cord Injury; SAB: Spontaneous 
Alternation Behavior; SDU: University of Southern Denmark; SSF: 
Sampling Section Fraction; Syn1: Synapsin 1; TB: Toluidine Blue; 
TBS: Tris-Buffered Saline; TBS+T: TBS Containing 0.1% Triton; 
TEG: Triethylene Glycol; TNF: Tumor Necrosis Factor; TSF: 
Thickness Sampling Fraction; UM: University of Miami

INTRODUCTION
The nuclear factor-kappa B (NF-κB) transcription factor plays 

an important role in regulation of the immune and inflammatory 
processes. Neuronal and glial activation of NF-κB has been 
implicated in the pathophysiological changes following traumatic 
spinal cord injury (SCI) [1-5]. NF-κB is known to regulate the 
synthesis of numerous genes involved in secondary injury 
mechanisms, such as glial- and neuronal-derived chemokines 
(e.g. CCL2, CCL5, CXCL1) and cytokines (e.g. tumor necrosis 
factor (TNF), interleukin (IL)-1) [6,7]. Furthermore, inhibition of 
NF-κB results in reduced infiltration of inflammatory cells [8,9] 
and increased oligodendrogenesis after SCI [3], which have been 
linked to Neuroprotection. 

In non-stimulated cells, NF-κB dimers are maintained in the 
cytosol through binding with the inhibitory proteins IBs (e.g. IκB,, 
and). In response to cell stimulation (e.g. cytokines, glutamate, 
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oxidative damage), the IκB kinase (IKK) complex consisting of 
the IKK1 and IKK2 catalytic subunits and the NEMO regulatory 
protein [10], is rapidly activated resulting in phosphorylation of 
the regulatory domain of the IκBs. This signals to the degradation 
of IB, releasing activated NF-κB to translocate to the nucleus 
and initiate transcription. IKK2 and NEMO are required for 
NF-κB activation through the “canonical” pathway involving 
degradation of IκBα, while IKK1 mediates NF-κB activation 
through the “alternative” pathway [11].

NF-κB, IKK2 and NEMO deficient mice in all neuroectodermal 
cells have shown suppressed or ameliorated disease following 
experimental autoimmune encephalomyelitis (EAE) [12,13], 
suggesting that targeting of the IKK-NF-κB pathway could be 
therapeutic. However, as NF-κB activity was inhibited in all 
neuroectodermal cells in these studies, these experimental 
settings do not allow evaluation of the function of NF-κB in 
specific cells of the CNS. In addition, Brambilla et al., have shown 
that astroglial NF-κB inhibition is therapeutic in EAE [9,14]. 
Studies based on the use of mice where NF-κB was functionally 
inactivated selectively in astrocytes have shown that these 
transgenic mice display improved functional recovery compared 
to littermates following SCI [2,5] and that oligodendrogenesis 
is improved when astroglial NF-κB is inhibited [3]. In 
comparison, selective neuronal inhibition of NF-κB, was shown 
to reduce infarct size in a model of focal cerebral ischemia [15], 
demonstrating that neuronal NF-κB activation can contribute to 
brain damage. In the present study, we investigated the effect of 
conditional IKK2 ablation in Synapsin 1-expressing neurons on 
behavior under naïve conditions and functional outcome, lesion 
volume and neuroinflammation after moderate SCI. 

MATERIALS AND METHODS
Mice

Experiments were performed according to protocols 
approved by The Danish Animal Inspectorate under the Ministry 
of Food and Agriculture (J. No. 2008-561-1523 and 2013-15-
2934-00924) and according to guidelines approved by the 
Institutional Animal Care and Use Committee of the University 
of Miami. Syn1CreIKK2fl/fl transgenic breeders were transferred 
from UM to the Biomedical Laboratory, SDU, where they were 
maintained as a breeding colony. These mice were originally 
generated by crossing Synapsin 1 promoter driven Cre (Syn1cre) 
transgenic mice [16] with IKK2fl/fl mice [17]. All mice were 2-4 
months old females and littermate (IKK2fl/fl) mice were used as 
controls. Animals were housed under diurnal lightning conditions 
in a virus/antigen free facility free access to water and food.

Genotyping

DNA was extracted from tail biopsies from 3-4 weeks old 
mice using the NucleoSpin Tissue kit (Macherey-Nagel) accord-
ing to the manufacturer’s protocol. Syn1cre primers: forward 
5’-GCGGTCTGGCAGTAAAAACTATC and reverse 5’GTGAAACAG-
CATTGCTGTCACTT. IKK2 primers: forward 5’-CCTTGTCCTAT-
AGAAGCACAA and reverse 5’-GTCATTTCCACAGCCCTG (DNA 
Technology). PCR products were visualized using the FlashGel 
system (Lonza). 

Tissue processing

Mice were deeply anaesthetized using an overdose of 
pentobarbital (200 mg/ml) containing lidocaine (20 mg/
ml) and perfused through the left ventricle with cold 4% 
paraformaldehyde (PFA) in phosphate-buffered saline (PBS). 

Toluidine blue (TB) staining and electron microscopy 
(EM) analyses: For EM and TB analyses of axons and myelin, 1 
mm segments of the thoracic spinal cords were processed as 
previously described [9]. One µm thick sections were obtained 
with a Leica Ultracut E microtome and stained with 1% TB 
solution. 

Paraffin histopathology and immunohistochemical analysis: 
Spinal cords were removed and tissue segments containing the 
lesion area were paraffin-embedded and cut into 10 parallel 
series of 15µm thick microtome sections. Furthermore, in naïve 
mice lung, heart, liver, diaphragm, spleen, the anterior tibialis 
muscle and small intestine biopsies were imbedded in paraffin 
and cut into 5µm thick sections. Sections were then stained using 
Hematoxylin and Eosin (H&E) [3]. For stereological analysis of 
the total number of astrocytes in the hilus of the hippocampus, 
brains were processed as previously described [18] and cut 
horizontally into six 60µm-thick parallel series of free floating 
vibratome sections and cryo-protected in de Olmo’s solution.

Estimation of myelinated axons

The number of TB-stained myelinated axons was estimated at 
60X magnification using the VisioMorph software (VisioPharm) 
applying a 200x200μm sampling grid and a 25x25μm counting 
frame. From the same specimens, ultra-thin sections (60-90 nm-
thick) were cut for EM assessments (see below). 

Quantification of g-ratios

For evaluation of the g-ratio (axonal diameter/fiber diameter) 
of axons in the thoracic spinal cord, EM micrographs were taken 
at a magnification of 5.2K (Phillips CM-10 transmission electron 
microscope). A grid was placed over the section and pictures 
taken randomly from each quadrant corresponding to the lateral 
columns of the cord. One picture per quadrant was evaluated 
for a minimum of 12 images/mouse. On each micrograph, fiber 
diameter and axon diameter of each axon were measured with 
the aid of Image J software, as previously described [9]. 

Behavioral tests 

Barnes maze: Barnes maze was administered to assess 
cognitive function in learning and memory of naïve Syn1creIKK2fl/

fl and IKK2fl/fl mice using a modified protocol described by Attar 
et al. [19]. All sessions were recorded using a SONY HDR-CX240E 
camera.

Mice interacted with the Barnes maze in three phases: 
habituation (1 day), training (3 days), and probe (1 day). They 
were housed in the behavior room during the whole experiment. 
Before starting each experiment, mice were placed in individual 
holding cages where they remained until the end of their testing 
sessions. 

On the habituation day, mice were placed in the center of 
the maze inside a transparent starting cylinder (diameter: 8 
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cm; height: 12.5 cm) for 30 sec. Then mice were guided slowly 
by moving the cylinder towards the target hole that lead to the 
escape box while loud heavy metal music was played. After 10-
15 sec the cylinder was removed and mice were given 3 min to 
independently enter through the target hole into the escape box. 
If they did not enter on their own during that time, they were 
gently guided. Mice were allowed to stay in the escape box for 
1 min with the music turned off before being returned to the 
holding cage. 

In the training phase, mice were placed inside a non-
transparent starting cylinder placed in the center of the maze for 
15 sec. At the end of the holding period, the music was started, 
a buzzer turned on, and they were allowed to explore the maze 
for 3 min. If a mouse found the escape box and entered it during 
that time, it was allowed to stay there for 1 min. If it did not find 
the escape box, it was gently guided towards it. The buzzer was 
turned off once the mouse entered the escape box and the music 
was stopped. This was done with 6 mice at a time, providing 20-
30 min inter-trial interval. The total number of trials each day 
was 5. 

On the probe day, the escape box was removed and the mice 
were placed inside the starting cylinder placed in the center of 
the maze for 15 sec, the buzzer and the music were turned on, and 
the cylinder removed. Each mouse was given 2 min to explore the 
maze, at the end the buzzer and the music were turned off and 
the mouse was returned to its holding cage. After the first 4 trials, 
external cues were exchanged 180° and the test was repeated, in 
order to test whether the mouse used external clues to navigate 
after. Measures of time spent in the quadrant where the escape 
box used to be (target quadrant) were recorded, along with time 
spent in the positive, negative and opposite quadrants. For these 
analyses, the maze was divided into quadrants of 5 holes. 

Y-maze test

Spontaneous alternation behavior (SAB) and hence working 
memory was tested using the Y-maze test in naïve mice as 
previously described [20]. Each mouse was placed in the arm 
designated (A). Except for the first two, the number of entries 
into each arm (A-C) was recorded manually over an 8 min period 
and spontaneous alternation calculated based on these numbers.

Open field test

The open field test was performed as previously described 
[21]. The distance travelled (m), speed (cm/sec) and the entries 
into the three zones (wall, inter periphery and center of the 
box) were recorded automatically. Rearing, grooming, digging, 
urination and droppings were recorded manually and are 
presented as number (n) of events.

Elevated plus maze test

To further examine anxiety-like behavior, naïve mice were 
subjected to the elevated plus maze. The elevated plus maze 
(EPM) apparatus consisted of two open arms and two closed 
arms (30cm x 5cm). The entire maze was elevated 40cm from the 
floor. Each mouse was placed in the center of the maze with the 
head facing towards the open arm. During a 5 min test, the time 
spent in the closed and open arms and the total distance moved 
were recorded using the SMART video tracking software. 

Grip strength

The grip strength meter (BIO-GT-3, BIOSEB) was used to 
study neuromuscular function in naïve mice as previously 
described [22].

Rotarod performance

In order to evaluate motor coordination/performance and 
balance in naïve conditions, we performed the rotarod test as 
previously described [18,22]. 

Basso Mouse Scale

Functional recovery of loco motor function after SCI was 
determined by scoring of the hindlimb performance in the open 
field using the Basso Mouse Scale (BMS) system, a 0 to 9 rating 
system designed specifically for the mouse [21,23]. Only mice 
with a score below 2 on day 1 were included. 

Thermal hyperalgesia

Thermal hyperalgesia was tested with a Hargreave’s heat 
source by using the Plantar Test apparatus (Ugo Basile), as 
previously described [21]. The behavioral test was performed 
before SCI and once a week on each animal if and when they 
reached a BMS score of 5.

Rung Walk

In order to test stepping, interlimb coordination and balance, 
mice were tested on the rung walk if and when they reached a 
BMS score of 5, as previously described [21].

INDUCTION OF SPINAL CORD INJURY
Mice were anaesthetized using a ketamine (100 mg/

kg, VEDCO Inc)/xylazine (10 mg/kg, VEDCO Inc) cocktail, 
laminectomized between vertebrae T8 and T10, and the 
impactor induced an approximate displacement of 500 µm 
(moderate injury) [21]. Following SCI mice were injected with 
saline to prevent dehydration and buprenorphine hydrochloride 
(0.001 mg/20 g Temgesic) four times at eight-hour intervals, 
starting immediately after surgery. Mice were housed separately 
in a recovery room, where their post-surgical health status was 
monitored during a 24-48 hour. Manual bladder expression was 
performed twice a day. Body weight was monitored weekly. In 
addition, mice received s.c. prophylactic injections of antibiotic 
gentamicin (40 mg/kg) for 7 days to prevent urinary tract 
infections. 

HISTOLOGY

Klüver-Barrera Luxol Fast Blue (LFB) staining for 
myelinated fibers

For evaluation of lesion pathology, sections were stained in 
0.1% LFB at 60°C overnight as previously described [24].

H&E staining

Muscle (heart and anterior tibialis), spleen, liver, small 
intestine and lung tissue was stained with H&E according to 
standard protocols at the Department of Pathology, Odense 
University Hospital [25].
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Immunohistochemistry and immunofluorescence 
staining

7.3.1. CD45 and F4/80 immunohistochemical staining: 
Staining for CD45 (1:100; 30-F11 (Ly 5), BD Pharmingen) or 
F4/80 (1:100; AbDSerotec) for microglia/macrophages was 
performed on spinal cord tissue from mice with 35 days survival 
after SCI (CD45 and F4/80) and on heart, tibialis, and diaphragm 
musculature from naïve mice (CD45) as previously described 
[24]. 

NeuN staining for estimation of the number of neurons 
in the spinal cord in naïve conditions: Sections were 
deparaffinized and rehydrated in xylene, 99% EtOH, 96% EtOH, 
70% EtOH, followed by running tap water. The sections were 
demasked in triethylene glycol (TEG)-buffer using a steamer, 
cooled at room temperature before rinsing in running tap 
water, followed by dH2O. Next, sections were rinsed in TBS, 
blocked in methanol containing H2O2 and briefly rinsed in TBS, 
followed by TBS containing 0.1 % triton (TBS+T). Next, sections 
were pre-incubated with 10% fetal bovine serum (FBS) in TBS 
and incubated with biotinylated anti-NeuN antibody (1:500; 
Millipore) overnight at 4°C. The sections were hereafter 
incubated with HRP-conjugated Streptavidin (1:200; Amersham) 
and developed using diaminobenzidin (DAB) dissolved in TBS 
containing hydrogen peroxide. Sections were counter stained 
with TB and mounted with Depex. 

Glial fibrillary acidic protein (GFAP) staining for 
estimation of the number of astrocytes: Free-floating brain 
sections was blocked for endogenous peroxidase activity using 
methanol and peroxide in TBS, then incubated with 10% FBS 
in 0.05M TBS+T. Sections were incubated with anti-GFAP 
primary antibody (1:1,200; DakoCytomation) at 4°C, followed 
by biotinylated anti-rabbit secondary antibody (GE Healthcare) 
diluted 1:200 in TBS+T at room temperature. Sections were 
rinsed with TBS+T, incubated with HRP-conjugated streptavidin 
(1:200; GE Healthcare) and developed using DAB and hydrogen 
peroxide diluted in TBS. Finally, sections were transferred to 
gelatin-coated glass slides, counter-stained with TB, dehydrated 
and mounted with Depex [18].

Quantification of neurons and astrocytes

Estimation of the number of NeuN+ neurons in the 
spinal cord in naïve conditions: The number of neurons was 
counted in the grey matter in the thoracic part of the spinal cord 
by systematic uniform random sampling with the following 
parameters: x-step = 200 µm and y-step = 200, and stepping 
area = 5,625 µm2 on the VisioMorph platform (VisioPharm). 
Every tenth section was counted in a 480 µm long piece of the 
thoracic spinal cord. The total number of NeuN+ neurons (N) 
was estimated as using the formula: Estimate of N = ∑Q Ŋ  (1/
ssf ) Ŋ (1/asf ) Ŋ (1/tsf ), where 1/tsf was the thickness sampling 
fraction (1/tsf = 1), 1/ssf is the sampling section fraction (1/ssf 
= 10), and 1/asf is the area sampling fraction (40,000/5,625) as 
previously described [21]. Estimates are presented as number of 
NeuN+ neurons/480 µm of spinal cord.

Estimation of the number of GFAP+ astrocytes in naïve 
conditions: The total number of GFAP+ astrocytes was estimated 

in the hilus of the dentate gyrus in the hippocampus using a 
x-step of 65.94 µm and a y-step of 65.94 µm, and a stepping area 
of 5,000 µm2 on the VisioMorph platform [18]. Estimates are 
presented as total number of GFAP+ astrocytes/mm2.

Lesion volume estimation

The volume of the injury was determined from the area of 
every tenth section sampled by systematic uniform random 
sampling. The area of the lesion site was estimated as previously 
described [21,24,25] using the VisioMorph software and 
Cavalieri’s principle for volume estimation.

Protein purification

Cytosolic and nuclear protein extracts from naïve mice and 
mice exposed to SCI and allowed to survive for 3 days were 
purified from 1 cm thoracic spinal cord tissue (naïve conditions) 
or 1 cm spinal cord tissue centered on the lesion, respectively. 
The samples were lysed in Complete Mesoscale Lysis Buffer and 
tip-sonicated, followed by centrifugation at 1,000 g at 4°C. The 
supernatants were collected and centrifuged at 5,500 g at 4°C. 
Supernatants, containing the cytosolic and smaller membrane 
fragments, were collected and stored at -80°C. Pellets were 
washed twice with Complete Mesoscale Lysis Buffer, including 
centrifugations at 1,000 g at 4°C. Finally, the nuclear fraction, 
were dissolved in Completed Mesoscale Lysis Buffer and stored 
at -80°C. Protein concentrations were determined using the 
Pierce BCA Protein Assay Kit (Thermo Scientific) according to the 
manufacturer’s protocol.

Nuclear factor-kappa B (NF-κB) analysis

Quantitative determination of nuclear and cytoplasmic 
phosphorylated NF-κB (Ser536) was investigated in mice with 3 
days survival after SCI using the phospho-NFκB (Ser536) whole 
cell lysate kit from Mesoscale, according to the manufacturer’s 
instructions. Data was analyzed using MSD Discovery Workbench 
software [26,27].

Multiplex analysis

Cytokine expression was estimated in naïve mice and 
in mice with 3 days survival after SCI using the MSD Mouse 
Proinflammatory V-Plex Plus Kit from Mesoscale and a SECTOR 
Imager 6000 (Mesoscale Discovery) Plate Reader according to 
the manufacturer’s instructions [18,27]. Data was analyzed using 
MSD Discovery Workbench software. 

ELISA

IL-1Ra expression was estimated in naïve mice and mice with 
3 days survival after SCI using ELISA (MRA00, R&D) as previously 
described [28]. Measurements were normalized to the total 
protein content of the sample as measured using the method by 
Bradford [29]. 

Statistical analysis

Comparisons were performed using repeated measures (RM) 
two-way ANOVA followed by multiple t-test analysis, by two-way 
ANOVA followed by the appropriate post-hoc test or by Student’s 
t-test. Linear correlation analysis between cytokines 3 days after 
SCI was performed using Pearson correlation test. The g-ratio 
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data were analyzed by linear regression, and slope and elevation 
parameters were used to compare groups. Analyses were 
performed using Prism 4.0b software for Macintosh, (GraphPad 
Software). Data are presented as mean ± SEM. Statistical 
significance was established for p<0.05.

RESULTS

Phenotypic characterization of Syn1creIKK2fl/fl mice

Prior to addressing the effect of neuronal ablation of IKK2 on 
lesion size and functional recovery after SCI, we characterized 
the Syn1creIKK2fl/fl mice along with their littermates (IKK2fl/fl) 
under naïve conditions. 

Syn1creIKK2fl/fl mice bred normally and had a normal 
physical appearance (Supplemental Figure 1A, B). However, 
body weight of adult Syn1creIKK2fl/fl mice (21.37 ± 0.36 g, n=15) 

was significantly increased compared to littermates (20.17 ± 
0.39 g, n=19) (p<0.05). This, together with previous findings of 
shifted muscle fiber distribution and improved muscle force in 
mice with muscle-restricted NF-κB signaling in creatine kinase+ 
cells [30] led us to investigate whether there was any abnormal 
muscle phenotype in Syn1creIKK2fl/fl mice. When examining the 
anterior tibialis and the diaphragm muscles using H&E staining 
(Supplemental Figure 1C) and anti-CD45 for infiltrating immune 
cells (Supplemental Figure 1D), we did not observe any abnormal 
phenotype in Syn1creIKK2fl/fl mice compared to littermates, 
indicating no difference in the inflammatory states. Heart, spleen, 
liver, small intestine and lungs did not show any morphological 
abnormality as well (Supplemental Figure 1C,D,E). 

Neuronal ablation of IKK2 affects g-ratio

Lack of neuronal NF-κB signaling did not result in changes 

Figure 1 The impact of conditional ablation of neuronal IKK2 on neurons, axons and astrocytes. (A) Photomicrographs of NeuN+ neurons located 
in the thoracic part of the spinal cord in naïve IKK2fl/fl and Syn1CreIKK2fl/fl mice. Scale bar=100µm. The number of NeuN+ neurons/480µm was 
comparable between genotypes (student’s t-test), n=3 mice/group. (B) Representative electron micrographs of lateral columns of the thoracic spinal 
cord comparing naïve IKK2fl/fl and Syn1creIKK2fl/fl mice. Red arrows show the average thickness of the myelin sheets in representative myelinated 
axons. Scale bar=1µm. Representation of the g-ratio vs. the corresponding axon diameter in naïve conditions (scatter plot), n=5 mice/group. (C) 
Representative photomicrographs of toluidine blue stained ultrathin sections of the thoracic spinal cord of naïve IKK2fl/fl and Syn1creIKK2fl/fl mice. 
Scale bars=50m. Quantification of toluidine blue-stained myelinated axons showed comparable numbers of myelinated axons/mm2 between IKK2fl/

fl and Syn1creIKK2fl/fl mice (student’s t-test), n=5 mice/group. (D) Representative photomicrographs of hippocampal GFAP+ astrocytes from IKK2fl/

fl and Syn1creIKK2fl/fl mice. Scale bars=40µm, insert 30µm. Quantification of the number of GFAP+ astrocytes/mm2 showed comparable numbers of 
astrocytes between IKK2fl/fl and Syn1creIKK2fl/fl mice (student’s t-test), n=7-8 mice/group. All data are presented as mean±SEM. 
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in number of neurons in the spinal cord under naïve conditions 
(Figure 1A). Evaluation of myelin thickness by measurement of 
the g-ratio (Figure 1B) showed no difference except for axons 
<1.5-2.0 µm, where the g-ratio was mildly reduced (p<0.05), 
which could be reflective of more compact myelin. We plotted 
the g-ratio against the corresponding axon diameter and found 
by linear regression analysis that the slopes differed significantly 
(Syn1creIKK2fl/fl = 0.734 ± 0.002 vs IKK2fl/fl = 0.729 ± 0.002, 
p<0.0001, student’s t-test) (Fig. 1B, scatter plot). Syn1creIKK2fl/fl 
mice showed lower g-ratios than littermates with increasing axon 
diameter, shown by reduced elevation of the linear regression 
with increasing axon diameters. Because the slopes differed so 
much, it was not possible to test whether the intercepts differed 
significantly. However, the total number of myelinated axons/
mm2 was comparable between IKK2fl/fl and Syn1creIKK2fl/fl mice 
(Figure 1C). Also, the total number of GFAP+ astrocytes/mm2 in 
the hippocampus was comparable between Syn1creIKK2fl/fl mice 

and littermates (Figure 1D).

Memory retention is impaired in Syn1creIKK2fl/fl mice

In order to investigate whether neuronal ablation of IKK2 
was associated with any alterations in learning and memory, 
we performed the Barnes maze test. We found that IKK2fl/fl and 
Syn1creIKK2fl/fl mice performed similarly during the habituation 
phase and training trials demonstrating similar abilities to learn 
where the hidden goal box was placed (Figure 2A). No differences 
in learning abilities between the two genotypes were found 
(Figure 2B). On the probe day (day 5), when the goal box was 
removed, IKK2fl/fl mice spent significantly less time in the target 
quadrant during the last two trials compared to the first trial and 
significantly less time in the opposite quadrant during the first 
four trials compared to the last trial, suggesting that memory 
retention was intact in IKK2fl/fl mice. Syn1creIKK2fl/fl mice did 
not significantly change the time spent in the target or opposite 

Figure 2 Neuronal ablation of IKK2 affects memory retention under naïve conditions. (A) Primary latency of habituation and training trails in the 
Barnes maze test. IKK2fl/fl and Syn1creIKK2fl/fl mice both decreased their latency time to find the hidden goal box over the 4 trial days with 5 trials 
each day (T1-5) (one-way RM ANOVA, Tukey’s post hoc) (B) Comparison of average latency times to find the hidden goal box between IKK2fl/fl and 
Syn1creIKK2fl/fl mice. Both genotypes decreased their average latency time to find the hidden goal box (two-way RM ANOVA time F3,27 = 37.63; 
genotype F1,9 = 0.55; time:genotype F3,27 = 0.70, followed by Tukey’s post hoc), with no difference between genotypes. (C) Total time searched 
for the hidden goal box, on probe day, in each of the four quadrants as a measure of memory retention. Syn1creIKK2fl/fl mice displayed impaired 
memory retention (5 trials on probe day, T1-5) (one-way RM ANOVA, followed by Tukey’s post hoc). (D, E) Total number of Y-maze entries (D) and 
spontaneous alternation behavior (%) (E) Under naïve conditions. No difference was observed between genotypes. n=6 mice/group. All data are 
presented as mean±SEM. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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quadrant (Figure 2C), suggesting that memory retention was 
impaired in Syn1creIKK2fl/fl mice. 

To test whether short-term memory was affected, we used 
the Y-maze test (Figure 2D,E). We found no differences in the 
total number of Y maze entries (Figure 2D) or in alternation 
behavior (Figure 2E) between the two genotypes, suggesting that 
short-term memory is not affected in Syn1creIKK2fl/fl mice.

Syn1CreIKK2fl/fl mice display impaired motor function 
under naïve conditions 

Next, we tested for changes in loco motor function and 
anxiety-related behavior under naïve conditions. The rotarod 
performance test was used to evaluate endurance, balance 
and motor coordination (Figure 3A, B). Both IKK2fl/fl and 

Syn1creIKK2fl/fl mice were capable of learning how to walk on 
the rotarod (T1-T4), however motor function was significantly 
impaired in Syn1creIKK2fl/fl mice compared to IKK2fl/fl mice, since 
they spent significantly less time on the rotarod, both during 
each trial (Figure 3A) and in total (Figure 3B). Nociception was 
tested using the Hargreave’s test for thermal hyperalgesia. No 
difference was found in the latency to remove the paws between 
IKK2fl/fl and Syn1creIKK2fl/fl mice (Figure 3C). Also, no difference 
was observed in neuromuscular function, since the strength was 
comparable between the two genotypes (Figure 3D). Finally, the 
mice were tested for anxiety-related behavior and locomotion 
using the EPM (Figure 3E-G) and the open field tests (Figure 3H-
K). In the EPM, we found no difference in the time spent in the open 
arm (Figure 3E), closed arm (Figure 3F), or in the total distance 
travelled (Figure 3G). However, in the open field test, we found 

Figure 3 Baseline behavioral analysis of naïve Syn1creIKK2fl/fl and IKK2fl/fl mice. (A, B) Rotarod performance under naïve conditions. A learning 
component is observed in both genotypes (two-way RM ANOVA), but Syn1creIKK2fl/fl mice spent significantly less time on the rod than littermates 
during each trial (T1-4) (two-way ANOVA, post hoc multiple t-test) (A) and in total (student’s t-test) (B) demonstrating impaired motor coordination 
(n=6 mice/group). (C) Hargreaves test showing comparable latency to remove paws between IKK2fl/fl and Syn1creIKK2fl/fl mice under naïve 
conditions (n=6 mice/group). (D) Grip strength (g, gram) analysis showed comparable neuromuscular function in naïve IKK2fl/fl and Syn1creIKK2fl/

fl mice (n=16 mice/group). (E-G) Elevated plus maze test showed that IKK2fl/fl and Syn1creIKK2fl/fl mice spent comparable amounts of time in 
the open (E) and closed (F) arms and travelled a similar total distance during the trial (G) (n=12-13 mice/group). (I-K) Open field test showed 
that Syn1creIKK2fl/fl mice travelled a significantly longer distance than IKK2fl/fl mice in the open field (student’s t-test) (H), whereas number of 
zone changes (I), center/perimeter ratio (J)were comparable between genotypes,and number of wall rearing (K) was significantly decreased for 
Syn1creIKK2fl/fl mice compared to IKK2fl/fl mice, n=6 mice/group. All data are presented as mean±SEM. *p<0.05, **p<0.01, ###p<0.001 ****p<0.0001.
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that Syn1creIKK2fl/fl mice travelled a significantly longer distance 
(Figure 3H) and displayed increased wall rearing compared to 
littermates (Figure 3K). No differences were observed in number 
of zone changes (Figure 3I), center/perimeter ratio (Figure 3J), 
latency to first rear, grooming, center rear, urination, droppings, 
diggings or latency to first rear (Table 1). 

Neuronal IKK2 ablation improves the functional 
outcome after SCI

Following moderate contusive SCI, both IKK2fl/fl and 
Syn1CreIKK2fl/fl mice showed improvement in the loco motor 

behavior. BMS scores were significantly different between the 
two genotypes at day 21 and 35, with IKK2fl/fl mice performing 
worse than Syn1creIKK2fl/fl (Figure 4A). BMS subscores were 
significantly reduced in IKK2fl/fl mice at day 14, 21, 28 and 35, 
compared to Syn1creIKK2fl/fl mice (Figure 4B). Using the rung 
walk test, we found that both groups significantly increased the 
number of miss steps after SCI compared but with no differences 
between genotypes (Figure 4C). At day 28 and 35 after SCI, both 
IKK2fl/fl and Syn1creIKK2fl/fl decreased the number of missteps 
compared to 21 days after SCI (Figure 4C). No differences were 
observed in latency to remove paws in the Hargreave’s test, even 

Figure 4 Neuronal ablation of IKK2 improves functional outcome and decreases lesion size after SCI. (A) Analysis of BMS scores in IKK2fl/fl and 
Syn1creIKK2fl/fl mice 35 days after SCI showed that conditional ablation of IKK2 in neurons significantly improved BMS after SCI (two-way ANOVA, 
post hoc multiple t-test). Both groups of mice significantly improved their BMS score over time (two-way RM ANOVA F7,224 = 465.9). (B) Analysis of 
BMS subscore in IKK2fl/fl and Syn1creIKK2fl/fl mice 35 days after SCI showed that conditional ablation of IKK2 in neurons significantly improved BMS 
(two-way ANOVA, post hoc multiple t-test) (C) Rung walk analysis showed that both groups of mice increased their number of mistakes after SCI 
(two-way RM ANOVA, ****p<0.0001, time F3,57 = 213.5, followed by Tukey’s post hoc), n=10-11 mice/group, no differences between genotypes were 
observed. Both genotypes decreased the number of mistakes on the rung walk at day 28 and 35 compared to day 21 (Syn1creIKK2fl/fl: §<0.05, §§<0.01, 
and IKK2fl/fl: ###p<0.001). (D) Thermal stimulation using the Hargreave’s test showed no differences in latency time to withdraw paws between 
genotypes. Both groups decreased latency to remove their hind paws over time after SCI (two-way RM ANOVA, time F3,54 = 19.87), n=10 mice/group. 
(E) Representative luxol fast blue (LFB) stained thoracic spinal cord sections from IKK2fl/fl and Syn1creIKK2fl/fl miceallowed 35 days survival after 
SCI. Scale bar=200µm. (F) Analysis of lesion volumes in LFB stained sections 35 days after SCI showed that conditional ablation of neuronal IKK2 
significantly decreased lesion size(student’s t-test), n=6-7 mice/group. (G) Quantitative analysis of cytoplasmic and nuclear phosphorylated NF-κB 
(ser536) 3 days after SCI, n=5 mice/group. All results are expressed as mean±SEM. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.



Central

Lambertsen et al. (2017)
Email: 

JSM Neurosurg Spine 5(3): 1090 (2017) 9/14

Table 1: Baseline behavior in naïve IKK2fl/fl and Syn1creIKK2fl/fl mice.

Open Field test IKK2fl/fl (n = 6) Syn1creIKK2fl/fl (n = 6) p-value

Grooming 4.67 ± 1.05 3.67 ± 0.92 0.49

Center rear 7.33 ± 3.69 16.17 ± 4.42 0.16

Urination 0.17 ± 0.17 0.67 ± 0.33 0.21

Droppings 4.00 ± 2.19 3.00 ± 0.26 0.31

Diggings 2.17 ± 0.75 3.17 ± 4.26 0.61

Time of first rear 59.20 ± 34.13 28.12 ± 3,84 0.39

Data are presented as mean number of events ± SEM. Student’s t-test. ****p<0.0001

though both groups of mice significantly decreased latency times 
following SCI (Figure 4D). Lesion volume analysis at 35 days 
after SCI (Figure 4E) showed that lesion size was significantly 
decreased in Syn1creIKK2fl/fl mice compared to littermates 
(Figure 4F). Together these data indicate that ablation of neuronal 
IKK2 is protective following SCI (Table 2). 

Conditional ablation of IKK2 in neurons reduces 
cytosolic phospho-NF-κB

We observed a decrease in NF-κB activation, measured 
by probing for cytoplasmic phospho-NF-κB, 3 days after 
SCI in Syn1creIKK2fl/fl compared to littermates (Figure 4G), 
demonstrating successful ablation of IKK2 in our Syn1creIKK2fl/fl 
mice. We observed no significant difference in nuclear phospho-
NF-κB (Figure 4G) or in non-injured mice (data not shown). 

Conditional deletion of neuronal IKK2 decreases IL-
1β 3 days after SCI

In order to investigate whether decreased cytoplasmic 
phospho-NF-κB resulted in an altered inflammatory response 
within the lesioned spinal cord, we performed protein analysis 
for a number of inflammatory cytokines (Figure 5). We found 
that IL-1β was increased in both genotypes 3 days after SCI 
(Figure 5A), but to a significant lower extent in Syn1creIKK2fl/fl 

mice (Figure 5A). Also IL-1Ra increased significantly 3 days after 
SCI in both IKK2fl/fl and Syn1creIKK2fl/fl mice, but no difference 
was observed between genotypes (Figure 5B). We found a 
significant correlation between IL-1β and IL-1Ra 3 days after 
SCI (Figure 5C) and IL-1β/IL-1Ra ratios were found to be 1:17 
in naïve IKK2fl/fl, 1:20 in naïve Syn1creIKK2fl/fl mice, and 1:19 and 
1:21, respectively 3 days after SCI. TNF (Figure 5D), IL-6 (Figure 
5E), IL-10 (Figure 5F), IL-5 (Figure 5G) and CXCL1 (Figure 5H) 

were all up regulated 3 days after SCI, but with no differences 
between genotypes. At 3 days, IL-10 and TNF levels (Figure 5I) 
and IL-10 and CXCL1 levels (Figure 5J) were found to correlate 
significantly. 

Microglial/leukocyte F4/80 and CD45 expression is 
comparable between IKK2fl/fl and Syn1creIKK2fl/fl 
mice 35 days after SCI

Microscopic evaluation of F4/80+ (Figure 6A) and CD45+ 
(Figure 6B) microglial/leukocyte activation patterns revealed 
that cells located near the epicenter displayed a macrophage-like 
morphology with large round cell bodies, whereas F4/80+ and 
CD45+ cells located further away from the epicenter displayed 
a more microglial-like morphology with small cell bodies and 
numerous branched processes, similarly to what we have 
previously observed at this time point [24]. No difference in the 
distribution or the density of the cells was observed between 
IKK2fl/fl and Syn1creIKK2fl/fl mice. 

DISCUSSION
As consolidation of explicit long-term memory requires 

a series of hippocampus-dependent molecular processes, 
including gene transcription, and NF-κB, which consists of p50, 
p65 and c-Rel subunits [10], is known to be specifically involved 
in the regulation of neuronal plasticity and memory formation 
[31,32], we tested Syn1creIKK2fl/fl mice for memory deficits and 
found impairment in memory consolidation. This is in line with 
previous findings demonstrating involvement of NF-κB in long-
term synaptic plasticity and memory formation [33-38]. p50-/- 
mice exhibit learning deficits in the active avoidance test [35], 
but enhanced learning in aversive tests, such as the water maze 
test, and increased levels of basal anxiety in the open field and 

Table 2: Open field test 35 days after SCI in IKK2fl/fl and Syn1creIKK2fl/fl mice.

Open Field test IKK2fl/fl (n = 4-7) Syn1creIKK2fl/fl (n = 9) p-value

Total distance (cm) 3,531 ± 125.2 4,624 ± 656.1 0.30

Total entries (n) 32.0 ± 6.8 22.6 ± 6.0 0.37

Total resting time (sec) 83.9 ± 13.4 71.1 ± 12.5 0.55

Center/perimeter ratio 0.054 ± 0.013 0.027 ± 0.008 0.09

Grooming 1.43 ± 0.30 2.00 ± 0.44 0.33

Droppings 2.00 ± 0.31 1.44 ± 0.38 0.29

Urination 0.86 ± 0.40 0.89 ± 0.35 0.95

Data are presented as mean  ± SEM. Student’s t-test.
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Figure 5 Cytokine expression profiling after SCI. (A-K) IL-1β (time: F1,16 = 77.88; genotype F1,16 = 5.16; time: genotype F1,16 = 2.06)  (A), IL-1Ra (time: 
F1,15= 90.23) (B), IL-1β versus IL-1Ra correlation 3 days after SCI (C), TNF (time: F1,16 = 78.79) (D), IL-6 (time: F1,16 = 70.66) (E), IL-10 (time: F1,16 
= 77.15) (F), IL-5 (time: F1,16 = 35.55) (G), and CXCL1 (time: F1,16 = 143.0) (H) protein levels were quantified in naïve conditions and 3 days after 
SCI in IKK2fl/fl and Syn1creIKK2fl/fl mice. For each protein, results are expressed as mean±SEM, n=5mice/group (two-way ANOVA with Bonferroni 
post hoc test). *p<0.05, ***p<0.001 and ****p<0.0001. (I,J) Correlation analyses of IL-10 versus TNF (I) and IL-10 versus CXCL1 (J) 3 days after SCI. 
*p<0.05, **p<0.01, ***p<0.001, Pearson correlation test. Data are normalized to a-actin protein expression n=4 mice/group (two-way ANOVA with 
Bonferroni post hoc test). **p<0.01.

Figure 6 Microglial and leukocyte immunoreactivity 35 days after SCI. (A,B) Immunohistochemical staining for F4/80 (A) and CD45 (B) were 
comparable between IKK2fl/fl and Syn1creIKK2fl/fl mice 35 days after SCI. Analysis was based on 5 sections from each animal, n=5 mice/group. Scale 
bars: low magnification = 200µm and high magnification = 100µm.
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light/dark box tests, all of which seemed to be accompanied by 
activation of the stress (hypothalamic-pituitary-adrenal) axis 
and increased corticosterone levels [36]. In the Barnes maze test, 
spatial learning was not affected in p50-/- mice [36], whereas, 
mice with deleted p65 gene and simultaneous ablation of TNFR1 
(TNFR-/-p65-/-) display spatial learning deficits in the radial arm 
maze [34] and c-Rel-/- mice also display impaired hippocampus-
dependent memory formation using the novel recognition test 
[39]. The finding, that conditional ablation of IKK2 in neurons 
lead to impaired memory retention in Syn1creIKK2fl/fl mice 
suggests that the neuronal, classical NF-B pathway is important 
for memory retention in naïve conditions. 

Previous studies have indicated NF-κB as an important 
regulator of energy metabolism, as p50-/- mice showed 
significantly longer total running time on the rotarod and an 
anti-obesity phenotype compared to control mice [40]. This is in 
contrast to findings in the present study, as we observed increased 
body weight and an impaired motor function phenotype in the 
rotarod test in our Syn1creIKK2fl/fl mice. Targeted ablation of 
IKK2 in muscle creatine kinase+ cells leads to improved muscle 
strength and appears to be an important modulator of muscle 
homeostasis [30], whereas targeted ablation of IKK2 in neurons 
in the present study was not associated with altered skeletal 
muscle strength, as assessed by the grip strength test. 

The Synapsin 1 promoter driven cre expression has 
previously been shown to be effective in ablating neuronal 
genes for studying specific functions of neurons [16,41]. In the 
present study, we observed a significant decrease in phospho-
NF-κB in the cytosplasmic cell compartment of Syn1creIKK2fl/

fl mice 3 days after SCI compared to littermates, suggesting that 
we also achieved efficient ablation of IKK2 in neurons. Neuronal 
cytoplasmic p65 levels are known to peak at later time points 
(after 24 hours) than neuronal nuclear p65 levels (6 hours) 
[4], which may explain why we only observed a significant 
increase in cytoplasmic and not in nuclear phospho-NF-κB 
levels. The decrease in cytoplasmic phospho-NF-κB (ser536) 
in Syn1creIKK2fl/fl compared to IKK2fl/fl mice 3 days after SCI 
is consistent with expectation that neuronal ablation of IKK2 
decreases NF-κB activation after SCI, and validates the use of this 
mouse model. 

The decrease in NF-κB activation in the Syn1creIKK2fl/fl mice 
subsequently lead to improved functional recovery and reduced 
lesion size 35 days after SCI. These findings are in accordance 
with previous suggestions that IKK inhibitors may be useful 
in the therapy of SCI [8, 42]. The IKK2 selective inhibitor BMS-
345541 (4-(2’-aminoethyl) amino-1,8-dimethylimidazol(1,2-a) 
quinoxaline) [8] and butein (3,4,2’,4’-tetrahydroxychalcone), and 
IKK/NF-κB inhibitor [42], have been shown to be protective in 
rats after SCI by reducing the infiltration of neutrophils and by 
inhibiting caspase-3 activation. Furthermore, in LysMcreIKK2fl/fl 
mice, conditional ablation of myeloid IKK2 resulted in decreased 
CXCL1 expression, decreased neutrophil and macrophage 
infiltration, decreased pro-inflammatory gene expression (IL-
6, IL-1β, TNF, iNOS, and COX2) and neuronal cell death and 
improved BMS score compared to IKK2+/+ wild type mice [43]. 
In the present study, we did not observe any changes in CXCL1, 
a chemokine known to preferentially attract neutrophils, 

between IKK2fl/fl and Syn1creIKK2fl/fl mice after SCI. We also did 
not observe any apparent differences in microglial/leukocyte 
responses between genotypes 35 days after SCI. However, we did 
find significant differences in IL-1β expression within the lesioned 
cord, with levels being significantly decreased in Syn1creIKK2fl/fl 
compared to littermates 3 days after SCI. IL-1β is known to induce 
a prolonged stimulation of NF-κB/Rel factors by inducing both 
IB and IB degradation and by activating the NF-κB p50, p65 and 
c-Rel subunits, of which the p65 is involved glutamate-mediated 
cell death and c-Rel in IL-1β-preserved cell survival [44]. In 
addition, the heterodimeric p65/p50 NF-κB protein complex 
selectively binds inflammatory gene promoter sites, resulting 
in especially increased IL-1β levels, which can be antagonized 
by administration of IL-1 receptor antagonist (IL-1Ra) [44,45]. 
It is therefore possible that decreased neuronal IKK2 results in 
decreased NF-κB activation, followed by decreased transcription 
of the IL-1 gene and a subsequent decrease in IL-1β expression. 
An imbalance between IL-1 (IL-1β + IL-1α) and IL-1Ra, which is a 
neuroprotective anti-inflammatory cytokine [28], has been shown 
to determine the degree of cardiac remodeling after myocardial 
infarction [46], and a high IL-1RA/IL-1β ratio is associated with 
a better outcome in patients after traumatic brain injury [47] and 
in mice after experimental stroke [28]. In the present study, we 
did, however, not observe any difference in IL-1Ra, which could 
account for the neuroprotection we observed after SCI in our 
Syn1creIKK2fl/fl mice. In addition, the IL-1RA/IL-1β ratios were 
comparable between genotypes. However, as intracellular IL-1Ra 
could regulate the action of intracellular IL-1α[48], it is possible 
that also IL-1α levels are decreased in our Syn1creIKK2fl/fl mice 
shifting the IL-1Ra/IL-1 towards neuroprotection.

AsIL-1 stimulation of NF-κB activity also stimulates 
transcription of iNOS [49], it is possible that conditional ablation 
of neuronal IKK2 may have caused a decrease in iNOS levels 
followed by subsequent decrease in reactive oxygen species 
and neuroprotection. Indeed, iNOS immunoreactivity has been 
detected in neurons following SCI [49] and inhibition of NF-κB 
activation using pyrrolidine dithiocarbamate has been shown to 
attenuate inflammation and oxidative stress following SCI in rats 
[50]. 

NF-κB is constitutively activated in neurons of the 
developing and, at least in part, of the mature CNS [51].There 
is accumulating evidence that p65 is crucial for axon formation 
during embryonic neural development [52] and that p65 and 
p50 can either promote or inhibit axogenesis during postnatal 
development [53,54].Indeed, cell-type specific deletion of p65 
in neurons and/or microglia has been shown to stimulate axonal 
regeneration after axonal injury in adult mice [55]. It is possible 
that conditional ablation of neuronal IKK2 leads to a functional 
shift from neurite-inhibiting to neurite-promoting signaling in 
our Syn1creIKK2fl/fl mice resulting in increased axoneogenesis 
and improved functional outcome 35 days after SCI. A rationale 
for this positive effect of inhibiting the canonical NF-κB signaling 
is its activation in transected nerve fibers and associated cell 
soma, as activated NF-κB may trigger a cell death program inside 
axotomized neurons [56]. As functional recovery following SCI 
ideally relies on the presence of a large number of surviving 
neurons, reducing cell death by diminished activation of NF-κB 
is an advantage for promoting axonal regeneration and network 
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restoration. It remains to be explored whether axoneogenesis is 
improved following SCI in our Syn1creIKK2fl/fl mice.

CONCLUSION
We conclude that NF-κB-dependent processes initiated in 

neurons are important for the development of damage after SCI 
and that inhibition of such processes by conditional ablation of 
neuronal IKK2 leads to functional improvement after SCI. Given 
the very few pharmacological tools available, our study identifies 
a new potential target for development of treatments for SCI. 
We are aware that NF-κB is an important ubiquitous molecule 
necessary for a variety of vital functions, including inhibition 
of apoptotic cell death [57], and as such inhibiting NF-κB may 
cause serious side effects. However, inhibiting NF-κB activation 
at the very early time points after SCI, where maximal NF-κB is 
observed [1], may prevent subsequent activation of deleterious 
inflammatory cascades, thereby favoring an environment more 
suitable for axonal preservation and functional recovery.
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Supplemental Figure 1 Characterization of Syn1creIKK2fl/fl and IKK2fl/fl mice. (A) Representative image of female IKK2fl/fl and Syn1creIKK2fl/fl 
mice. (B) RT-PCR analysis of cre (left) and IKK2fl/fl (right) gene expression. (C) Representative photomicrographs of haematoxylin and eosin (H&E) 
stained tissue sections from heart and tibialis musculature showing comparable muscle phenotypes in IKK2fl/fl and Syn1creIKK2fl/fl mice (n=3 mice/
group). (D) Representative photomicrographs of anti-CD45 stained tissue sections derived from heart, tibialis and diaphragm musculature showing 
similar muscle phenotypes in IKK2fl/fl and Syn1creIKK2fl/fl mice (n=3 mice/group). (E) Representative photomicrographs of H&E stained spleen, 
liver, small intestine and lung tissue sections from IKK2fl/fl and Syn1creIKK2fl/fl (n=3 mice/group). Scale bars: C, D =40µm; E =200µm for spleen and 
40µm for liver, small intestine and lung.
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