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I am grateful to the Århus Mathematics Department who funded my visit to Den-

mark and especially to Eva Vedel Jensen, Ute Hahn and Markus Kiderlen, for the

collaborative discussions and their kind hospitality.

I would also like to thank all the friends I have made throughout my PhD for keep-

ing me sane and making the years enjoyable. Special thanks go to Kat Abrahams,

Mouna Akacha, Leo Bastos, Maria Costa, Thais da Fonseca, Flaávio Gonçalves,
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Abstract

This thesis introduces a new approach to analysing spatial point data clustered along

or around a system of curves or fibres with additional background noise. Such data

arise in catalogues of galaxy locations, recorded locations of earthquakes, aerial

images of minefields, and pore patterns on fingerprints. Finding the underlying

curvilinear structure of these point-pattern data sets may not only facilitate a better

understanding of how they arise but also aid reconstruction of missing data.

We base the space of fibres on the set of integral lines of an orientation field. Using

an empirical Bayes approach, we estimate the field of orientations from anisotropic

features of the data. The orientation field estimation draws on ideas from tensor

field theory (an area recently motivated by the study of magnetic resonance imaging

scans), using symmetric positive-definite matrices to estimate local anisotropies in

the point pattern through the tensor method. We also propose a new measure of

anisotropy, the modified square Fractional Anisotropy, whose statistical properties

are estimated for tensors calculated via the tensor method.

A continuous-time Markov chain Monte Carlo algorithm is used to draw samples

from the posterior distribution of fibres, exploring models with different numbers

of clusters, and fitting fibres to the clusters as it proceeds. The Bayesian approach

permits inference on various properties of the clusters and associated fibres, and the

resulting algorithm performs well on a number of very different curvilinear struc-

tures.
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Chapter 1

Introduction

Spatial point patterns arise throughout nature as the locations of apparently random

objects or events. In statistical analysis, these data are commonly modelled as an

instance of a random point process, i.e. a random and locally finite collection of

points. There is substantial literature on the statistical analysis of such point data,

however most research focuses on rotationally invariant or isotropic point processes.

The work presented here is concerned with anisotropic point processes, in particular

spatial point data clustered around a collection of curves or fibres.

The motivation for this thesis is the identification of systems of fibres generating

noisy point processes. Identification of curvilinear elements (i.e. point clusters re-

sembling curves) and elucidation of their relationship with the point data is both an

interesting theoretical problem and a useful tool for gaining insight into the origins

of the data.

Point patterns exhibiting a filamentary structure often arise in nature when events

occur near some latent curvilinear generating feature. For example, earthquakes

occur around seismic faults which lie on the boundaries of tectonic plates and hence

are naturally curvilinear. Similarly, sweat pores in fingerprints lie on the fingertip

ridges lines which have a curvilinear structure. Estimation of ridge lines from the

pore pattern could be used to develop a process for reconstructing smudged or

patchy fingerprints. Figure 1 presents examples of these data together with two

simulated examples of point patterns clustered around underlying families of curves

with additional background noise. Our approach is flexible to the features of fibres,

producing consistently strong results when applied to each of the four examples in

Figure 1; these results are presented in Chapter 6.

Other data exhibiting a curvilinear structure include land mines located on thin

strips of minefield amongst background clutter; cenotes (or sinkholes) clustered

1



(a) Simulated point pattern. (b) Simulated point pattern from
Stanford and Raftery [2000].

(c) Earthquake epicentres in the New
Madrid region. Data are taken from
the earthquake catalogue at CERI
(Center for Earthquake Research and
Information).

(d) Pores along ridges of a sec-
tion of fingerprint a002-05 from
the NIST (National Institute of
Standards and Technology) Special
Database 30 [Watson, 2001].

Figure 1.1: Four examples of point patterns clustered around latent curvilinear
features with background noise.

around the edge of the Chicxulub crater on the Yucatán Peninsula; and galaxies

that cluster in filaments around huge voids creating a 3-dimensional web-like struc-

ture. The detection of minefields is a high priority for defence forces, which has

prompted investment from the United States Navy into project COBRA, the de-

velopment of purpose-built, unmanned reconnaissance aircraft (Witherspoon et al.,

1995). Estimation of the radius of the Chicxulub crater may clarify the extent to

which the asteroid impact affected prehistoric life (Hildebrand et al., 2002). Anal-

ysis of the large-scale distribution of matter and identification of the 3-dimensional

cosmic web is a subject of great scientific interest, see Mart́ınez and Saar [2002] for

further details. These data are described in further detail in Section 2.2.1.

The majority of the current approaches to estimating curvilinear features from noisy

point patterns (see Section 2.2.2) provide only a point estimate of the fibres or the

2



associated point clustering. We show how properties of the underlying distribution

of fibres can be estimated using Monte Carlo techniques applied to the spatial point

data. This approach has the significant advantage that it can be used to quantify

uncertainty on a range of parameters and does so effectively for different types

of curvilinear structure. The use of a field of orientations to identify fibres leads

to a strong performance on data such as the fingerprint pore pattern shown in

Figure 1.1(d), despite the difficulty of there being noticeable alignment of points

perpendicular to the fibres.

The data in consideration typically arise from multiple fibres. Simultaneous esti-

mation of the number and location of the generating fibres is a difficult problem;

existing approaches to estimating the number of isotropic clusters in a point pat-

tern are generally not-well suited to the long curvilinear clusters. Our approach uses

trans-dimensional Monte Carlo methods to explore the full posterior distribution of

the set of fibres, thus models with different numbers of fibres can be compared

directly.

An important consideration in modelling fibre-generated point processes is the choice

of state space for the random fibre process. There is no single natural choice for this

state space, although it is generally assumed that the random fibres are smooth and

continuous. A common approach is to approximate the smooth fibre by a piece-wise

linear curve, however this results in the loss of the curvilinear details of the fibres.

The model introduced here describes families of non-intersecting curves via a field

of orientations (a map from the window of observation W to [0, π) assigning an

undirected orientation to each point in the window). The curves are identified by

segments of streamlines integrating the field of orientations. We say that a curve

integrates the field of orientations if the curve is continuous and its tangent agrees

with the field of orientations at each point. The term streamline is used to describe a

curve which integrates the field of orientations and has no end points in the interior of

the window W\∂W . This novel approach to modelling the generating fibre process

permits, in principle, any smooth collection of non-intersecting fibres.

Note that we work with an orientation field rather than a vector field (a map from

the window of observation W to [0, 2π)). The distinction is drawn between the two

in fingerprint analysis where a field of orientations is used to model the ridge lines,

see for example Ratha et al. [1995], and in engineering when studying the orientation

of fibres forming in compressed fluids (Lee et al., 1997).

We choose to use a variant on an empirical Bayes approach to estimate the field

of orientations, since a fully Bayesian approach would involve infinite dimensional

distributions and be computationally very intensive. The empirical Bayes compo-

nent consists of estimating the field of orientations from the data via a tensor field
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as detailed in Chapter 4. In this work, a tensor field is represented by the assig-

nation of a symmetric positive definite matrix to each point of the planar window.

Tensor fields of this kind play an important role in diffusion tensor imaging (DTI),

as reviewed in Chanraud et al. [2010]. The field of orientations is constructed by

simply calculating the orientations of the representative matrices’ principal eigen-

vectors; singularities in the field of orientations correspond to points where there is

equality of the two eigenvalues. This empirical Bayes approach enables the reliable

estimation of orientation fields (estimates are integrated by fibres producing high

likelihoods), through the extension of previous work on tensors by Su et al. [2008],

Su [2009] and in diffusion tensor imaging (Dryden et al., 2009). Essentially, ten-

sors that estimate the local orientation of alignments in the point pattern data are

smoothly interpolated to create a field of tensors; the orientation field is determined

from this tensor field.

The following chapter provides a background in the relevant areas of statistical

analysis, together with an overview of existing approaches to solving the problem of

identifying filamentary structure in point pattern data. The original contributions of

this thesis begin in Chapter 3 with a full description of the proposed Bayesian model;

details and justification of the empirical Bayes approach to estimating the field of

orientations are given in Chapter 4. Chapter 5 specifies the associated rates and

acceptance probabilities of a birth-death Markov chain Monte Carlo process (BDM-

CMC) algorithm, which is used to draw samples from the posterior distribution of

fibres given a particular instance of the point process. Results of the implementa-

tion of our approach on the four data sets depicted in Figure 1 are presented in

Chapter 6.

In Chapter 7 we return our focus to the positive-definite symmetric tensor, a math-

ematical object used in the orientation field estimation of Chapter 4 to summarise

directional information in point patterns. This penultimate chapter describes how

tensors can be used to measure anisotropy, the extent to which a point process de-

viates from isotropy. Here we propose a new measure of anisotropy, motivated by

our choice of tensor estimator, the tensor method (Su et al., 2008 and Su, 2009).

An analysis of the robustness of the tensor method is presented, and we propose

some potential applications of anisotropy measures in fibre-generated point pro-

cesses. Possible areas for further research are suggested in Chapter 8, together with

a discussion summarising the work of this thesis. Much of this work is reported on

in Hill et al. [2011].

4



Chapter 2

Background and Related

Work

This thesis is primarily concerned with anisotropy (a lack of directional invariance) in

spatial point patterns. More specifically, it focuses on point processes that exhibit

curvilinear structure, with the aim of making inferences on the generating fibre

process given an instance of the point process. This chapter presents an overview of

the relevant statistical theory for this thesis, together with a summary of existing

approaches to the analysis of fibre-generated point processes.

Section 2.1 provides some examples of how anisotropy can appear in point pattern

data together with some of the known approaches to analysing this data. Anisotropic

point processes in which points are clustered around a number of curvilinear features

or fibres are described in Section 2.2. The aim of this thesis is to infer properties of

the fibres given an instance of such a point process. We appraise existing approaches

to solving this problem, and briefly discuss their strengths and limitations.

The treatment advocated in this thesis is based on the formulation of a general

Bayesian model for families of curves and the point patterns clustered around them.

Samples are drawn from the posterior distribution of fibres using a birth-death

Markov chain Monte Carlo (BDMCMC) process. Section 2.3 gives an introduction

to fully Bayesian and empirical Bayes techniques, together with an overview of

relevant work in Markov chain Monte Carlo methods.

An important consideration in the formulation of the model is how to define the

random fibre process. We choose to model fibres as segments of streamlines that

integrate a smooth field of orientations υFO : W → [0, π) where [0, π) represents the

space of planar directions (with 0 and π identified); orientation fields are discussed

in Section 2.4.
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This thesis builds on the initial exploratory work of Su et al. [2008] (see also the ear-

lier PhD thesis Su, 2009), which is motivated by the fingerprint pore data. Positive-

definite symmetric matrices or tensors are used to produce local estimates of point

pattern orientations. These tensors form the basis of an empirical Bayes estimation

of the field of orientations. Tensors of this form, discussed in 2.5, are used in a

range of disciplines to summarise directional information. We describe the uses of

tensors in diffusion tensor imaging, a technique in magnetic resonance imaging that

has recently stimulated research into tensor analysis, with similar aims to our own.

Particular reference is made to current work on the different metrics prescribed for

tensors.

2.1 Anisotropy in Spatial Point Processes

We briefly describe the notion of a point process, provide a few examples of anisotropic

point processes, and list some available approaches for analysing anisotropic point

patterns. The focus of this thesis is on anisotropic point patterns that exhibit curvi-

linear structure, which are discussed in Section 2.2.

A spatial point process is defined in Stoyan et al. [1995] as a random collection of

points in Rn, which is locally finite (each bounded subset contains a finite number

of points) and contains no repeated points. We focus primarily on planar point

processes over R2, but many ideas extend naturally to higher dimensions.

Inter-point distances and the local density of spatial point processes have been

studied in some detail; Ripley [1981] and Diggle [1983] describe a number of the

statistics typically used. The hypothesis that a point pattern is an instance of a

homogeneous Poisson point process can be tested using such statistics. They are

also helpful for identifying other structures in the point pattern, such as clustering

or regularity. However, discussions are usually restricted to stationary (invariant

under translation) and isotropic (invariant under rotation) point processes.

A point processes is said to exhibit anisotropy if it is not invariant under rotation.

Anisotropy may appear in different forms including the local alignment of points,

and global structures, such as anisotropic clusters of points. The focus of this thesis

is on the second of these two types of anisotropic point processes, specifically those

that exhibit clusters in the form of curvilinear features. This type of point process

is described in Section 2.2.

First, we provide a few examples of where such point patterns can be found in

nature, followed by an overview of existing approaches to studying anisotropy in

point processes.
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Figure 2.1: A simulated example of a Glass pattern using an exponential transfor-
mation.

2.1.1 Examples from Nature

It is suggested (Guan et al., 2006) that the locations of certain shrubs in the North

American Mojave desert are directionally associated. Surviving seedlings tend to lie

on the north side of existing shrubs where shadow keeps the soil from drying.

Illian et al. [2008] provide two further examples of anisotropy. The first is of 573

carbide particles in rolled steel that tend to cluster in bands parallel to the direction

of the rolling. The second example is of two proteins on the surface of a cell that

appear to be aligned in pairs of proteins, one of each type, with pairs similarly

oriented across the cell.

2.1.2 A Simulated Example - Glass Patterns

Glass patterns, named after the physiologist Leon Glass (see Glass, 1969), consist

of a random set of points, superimposed with a geometrically transformed copy. An

example is displayed in Figure 2.1. By looking at the point pattern the brain can

easily visualise the underlying pattern. These patterns are predominantly used for

investigations into psychophysical study of how the brain perceives form. However,

they also provide an interesting example of anisotropy in point patterns, and are

of particular note as they have a locally parallel structure, similar to the pores on

fingerprint ridge lines (see Section 2.2).
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Section 2.1.3 describes how Stevens [1978] proposed to identify local orientations in

Glass patterns.

2.1.3 Testing for Anisotropy and Estimating Orientation

This section briefly describes some of the existing approaches to analysing anisotropic

point patterns.

Nearest neighbour methods, the analysis of second-order orientations and the rose

of directions provide the basis for tests of anisotropy and the determination of the

global dominant orientation of a point pattern. Steven’s method supports the esti-

mation of local orientation within a point pattern.

This thesis uses methodology based on the tensor method, an extension of kernel

principal components analysis (kPCA), to estimate local orientations of a point

pattern.

Nearest Neighbour and Second-Order Orientation Analysis

Illian et al. [2008] suggest exploring the distribution of the orientations of line seg-

ments that connect each point to its nearest neighbour. This is appropriate for

identifying local anisotropy (and its direction) where the direction of anisotropy

is constant throughout. However, if the direction of anisotropy varies (e.g. in the

Glass pattern of Figure 2.1), or arises from anisotropic clusters, this approach is less

effective.

A second-order orientation analysis, also described in Illian et al. [2008], is used to

explore the distribution of orientations of line segments connecting pairs of points

with an inter-point distance lying in some interval [r1, r2]. The values r1 and r2

are usually found by experimentation. This approach is rather more suitable for

investigating anisotropic clusters which exhibit anisotropy on a larger scale, such

as the 573 carbide particles in rolled steel described previously. However, a global

estimate of the orientation of line segments is less informative when the data exhibits

anisotropy that varies in orientation.

The distribution of these orientations is equivalent to the rose of directions (Stoyan

et al., 1995) of the line process given by the collection of lines between pairs of points

whose lengths lie in the interval [r1, r2], as described in Su et al. [2008]. The rose

of directions was primarily developed for use in hypothesis testing and is therefore

not well suited to estimating any dominant orientation.
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Steven’s Method

Stevens [1978] is concerned with the visual processing of point patterns in artificial

intelligence, and makes the following hypothesis about Glass patterns.

One perceives in these patterns a structure that is locally parallel. Our

ability to perceive this structure is shown [...] to be limited by the local

geometry of the pattern, independent of the overall structure [...]

This idea relates to our approach where the local relative orientation of points is

considered first, then interpolated to estimate the global structure.

Steven’s method, an extension of the second-order orientation analysis that produces

local estimates of dominant orientation in a Glass pattern, proceeds as follows.

A histogram approach is used to produce local estimates of the rose of directions

for the lines connecting pairs of points. Each local estimate is based on the lines

connecting all pairs of points within a disc (of predetermined fixed radius) centred

at a point. The dominant orientation is estimated by smoothing the histogram and

choosing the peak of the resulting distribution.

The algorithm presented in this paper produces an effective estimator for the local

orientations in Glass patterns, however this approach was not designed for mak-

ing more general inferences on the properties of an underlying random point pro-

cess.

Kernel Principal Components Analysis and the Tensor Method

A principal components analysis or PCA (see, for example, Marriott, 1974) is a

technique for reducing the dimensionality of a data set by transforming the data to

a new coordinate system. Under the new coordinate system, the first coordinate

(or first principal component) indicates the direction that maximises the variance of

the data projected onto the equivalent axis. Each subsequent principal component

is orthogonal to all previous components, but similarly maximises the variance of

the projected data. A subset, usually the first k principal components for some

k < n (n being the dimensionality of the data) are proposed as a new basis for the

data.

The principal components are found by identifying the eigen-decomposition of the

empirical covariance matrix calculated from the mean-centred data. Specifically,

the first coordinate is indicated by the principal eigenvector (with the largest corre-

sponding eigenvalue), and further principal components are given by the eigenvectors

corresponding to successively decreasing eigenvalues.
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Kernel principal components analysis or kPCA (Schölkopf et al., 1997) is the ex-

tension of principal components analysis where the data is first projected on to a

different coordinate system, usually of a higher dimension. This permits the detec-

tion of nonlinear trends in the data.

The data y1, ..., ym ∈ RN are mapped into feature space F by the function Φ :

RN → F . In principle, the analysis proceeds following the linear PCA approach

on the transformed data Φ(y1), ...,Φ(ym), i.e. eigenvectors v and eigenvalues λ are

found satisfying

Cv = λv (2.1)

where C =
1

m

m∑
i=1

Φ(yi)
TΦ(yi). (2.2)

The dimension of covariance matrix C could be arbitrarily large, depending only

on the dimension of feature space F . For this reason the problem is restated as the

eigen-decomposition of an N -dimensional matrix, specifically the ‘kernel’ matrix,

defined in terms of a kernel function k(·, ·),

Ki,j = k(yi, yj) := Φ(yi) · Φ(yj) (2.3)

(recall N is the dimensionality of the data). We briefly describe the motivation

for using the kernel matrix and how the corresponding eigenvectors and eigenvalues

relate to the data.

First note that any eigenvector v solving Equations (2.1) and (2.2) must be spanned

by the vectors Φ(y1), ...,Φ(ym), i.e.

v =
m∑
i=1

αiΦ(yi). (2.4)

Therefore, consider instead the following system of equations:

Φ(yk) ·Cv = Φ(yk) · λv for all k = 1, ...,m. (2.5)

Substituting Equations (2.4) and (2.2) into Equation (2.5) we see that, for k =
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1, ...,m

Φ(yk) ·
1

m

m∑
j=1

Φ(yj)
TΦ(yj)

m∑
i=1

αiΦ(yi) = Φ(yk) · λ
m∑
i=1

αiΦ(yi)

1

m

m∑
j=1

m∑
i=1

(Φ(yk) · Φ(yj)) (Φ(yj) · Φ(yi))αi = λ
m∑
i=1

Φ(yk) · Φ(yi)αi. (2.6)

Alternatively, this can be written in matrix form using the kernel matrix K defined

in Equation (2.3) and writing the vector (α1, ..., αm)T as α:

1

m
K2α = λKα. (2.7)

Solutions of Equation (2.7) can be found by solving

1

m
Kα = λα, (2.8)

for α. The projection (Φ(x)) of the image of a point x onto the k−th eigenvector

vk is given by
m∑
i=1

αki Φ(yi) · Φ(x) (2.9)

where αki is the i-th element in the k-th eigenvector. Hence the projection Φ(yi)

need not be directly calculated, just the kernel function, k(x, y) = Φ(x) ·Φ(y).

Examples of typical kernel functions include

k(x, y) = (x · y)d (polynomial kernels), (2.10)

k(x, y) = exp(||x− y||2/2σ2) (radial basis functions), (2.11)

and k(x, y) = tanh(a(x · y) + b) (sigmoid kernels). (2.12)

The advantage of posing the problem as the eigen-decomposition of kernel matrix

K rather than the covariance matrix C is that we can choose a high-dimensional

feature space with little impact on the computing time required. If the size of the

dataset is very large, the data may be de-noised as in Minier and Csató [2007], or

by partitioned into smaller subsets (see for example Shi et al., 2009) to reduce the

dimensionality of kernel matrix K.

This approach to principal components analysis allows the extraction of nonlinear

features from data. The drawbacks are that it is generally not possible to calculate

the principal components in the original space making interpretation of the results
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non-trivial, and that the dimension of the matrix to be eigen-decomposed grows

with the number of data. It is also worth noting that kPCA requires some prior

knowledge of the nonlinear features to be extracted, although the scope of this class

of features is controlled only by the dimensions of the feature space which may be

arbitrarily high at a low computational cost.

In this thesis, we build on the work of Su [2009] and Su et al. [2008], where the

tensor method, a variant on kPCA, is used to estimate the local orientations of a

point pattern. The term tensor is used to describe the sum of the outer product of

each vector representing a data point with itself. An overview of tensors is given at

the end of this chapter.

The tensor method proceeds as follows. Let P1, ..., Pn denote the points in an in-

stance of a point process. A tensor is created at point Pj by applying a non-linear

transformation to the vectors vi = (vi1, v
i
2) =

−−→
PjPi for i 6= j. Specifically,

ṽi = (ṽi1, ṽ
i
2) =

exp
(
−
(
(vi1)2 + (vi2)2

)
/2σ2

)√
(vi1)2 + (vi2)2

(vi1, v
i
2) (2.13)

where σ is a scaling parameter. The Gaussian transformation was chosen because it

is continuous, decreases with distance, and the properties of the Gaussian function

are well understood.

The tensor at Pj is then calculated by

T (Pj) = 2
∑
i 6=j

(ṽi1, ṽ
i
2)T(ṽi1, ṽ

i
2). (2.14)

The multiple of 2 arises because all vectors ṽi are copied and rotated 180 degrees

about Pj to centre the mean of the transformed vectors.

Two main differences between the tensor method and kPCA are: (1) - in kPCA

the equivalent to the sum in Equation (2.14) is over the vectors between all pairs of

points rather than just those including the point Pj ; (2) - the tensor method omits

the normalising constant 1/(n− 1), therefore as the number of points increases, so

does the ‘size’ of the tensor.

As with kPCA, the tensor’s principal eigenvector gives the principal axis along which

the variance of the transformed points are maximised. Hence if the untransformed

vectors vi were projected onto the principal axis, their endpoints (the locations of

Pi) would lie relatively close to the initial point Pj suggesting that the principal axis

is a good estimate of the fibre orientation.
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2.2 Curvilinear Features in Point Processes

We now focus our attention on a particular class of anisotropic point process, those

containing long, thin, curved clusters.

A fibre process is a random collection of curvilinear geometric objects; it is a natural

generalisation of a line process (see Stoyan et al., 1995). Interest in the literature

focuses on the stationarity of fibre processes and the number of intersections with

lines or other objects. Stationary fibre processes are often described in terms of

their intensity (mean length per unit area) and the rose of orientations given by the

orientations of the tangents to the fibres.

A fibre-process generated Cox process is a Poisson point process whose driving in-

tensity measure relates to a random fibre process. The name originates from Illian

et al. [2008] who present the example of a Poisson point process along an instance

of a random fibre process, with intensity λf points per unit length of fibre.

In this thesis we consider the more general fibre-process generated Cox process

where points are distributed around fibres rather than along them. This type of

point process is further generalised to fibre-process generated point processes, that

depend on a fibre process without the restriction of being Poisson-distributed.

2.2.1 Example Data Sets

Point patterns with a filamentary structure exist in many different areas of study

and at greatly varying scales. Some examples are provided below.

Earthquake Epicentres

Earthquake epicentres are typically clustered around an underlying curve structure

defined by seismic fault lines. An illustration of the clustering of earthquake epi-

centres around the world is can be found at http://pubs.usgs.gov/gip/earthq4/

severitygip.html. There is some interest in using statistical methods to describe

the underlying structure, particularly in the principal curve analysis described in

Stanford and Raftery [2000].

Minefields

The need to locate minefields before and during assaults makes minefield detection a

high priority for armed forces. Reconnaissance aircraft provide images that identify
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mines as well as a number of miscellaneous objects or artefacts of a region of interest.

This is studied in papers such as Cressie and Collins [2001] and Fraley and Raftery

[1998], although currently most published work is only applied to simulated data.

The simulated data typically consists of homogeneous Poisson processes on multiple

wide strips superimposed on background noise. An example is presented in Figure

2.2. As such, approaches to identifying the minefields generally take no account of

the anisotropy or filamentary nature of the point process, partly because it is not

evident on a local scale.

Figure 2.2: A simulated example of minefield data. Dots indicate objects detected
through reconnaissance imagery; the dense region of points is suggestive of a mine-
field.

Pores in Fingerprints

Fingerprints are widely used in forensics, biometric identification and security sys-

tems. They have benefits over other forms of biometric identifier (e.g. iris scanning,

DNA testing, voice recognition) of being unobtrusive, highly distinctive, relatively

permanent and easily collectable (Maltoni et al., 2003). As a result, there has been

a large amount of research into the investigation of claims of individuality of fin-

gerprints, creating new recognition and classification systems, and building high

resolution fingerprint scanners that capture all the fingerprint details.

Sweat pores are tiny holes along the ridge on a fingertip where the ducts of the

sweat glands open. The underlying fibre structure is the dense set of approximately

locally-parallel ridge lines (which form the fingerprint) along which pores are located,
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usually close to the centre of the ridge (see Figure 2.3).

Ridges on fingertips usually form concentric patterns with loops and/or arches,

which help to resist slipping in all directions (particularly concentric patterns). The

ridges are constructed from ridge units, each having one sweat gland and one pore

opening at some point on its surface. Consequently the distance between adjacent

pores on a ridge appears to be proportional to the width of the ridge (see Ashbaugh,

1999).

Figure 2.3: Top: Fingerprint a002-05 from the NIST Special Database 30 (Watson,
2001). The sweat pores appear as small light-coloured circles along the ridges.
Bottom: The pore pattern of fingerprint a002-05, identified using empirical image
analysis techniques (see Su et al., 2008).

An example of a fingerprint and the pattern of pores extracted from it are presented

in Figure 2.3. The curved structure of the fingerprint ridge lines is clearly discernible

from the pattern of sweat pores shown in the second figure.

An inference of the ridge-line structure from the pore pattern, which is robust to
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noise, has potential for aiding reconstruction of patchy fingerprints and may also

allow for more efficient storage of fingerprints in huge databases.

Cenotes

A third geographical example is of cenotes (surface connections to underground

water bodies), typically found in the Yucatán Peninsula where they are clustered

along the circumference of the Chicxulub crater. The cenotes are clustered around

just one curve, with non-uniform background noise.

Galaxies

A final application, extending the problem to 3 dimensions, is that of the locations

of galaxies in the universe. Galaxies tend to cluster along filaments forming a

3-dimensional web-like structure with large voids between the filaments. In this

application the points are clustered around a large number of intersecting curves.

Mart́ınez and Saar [2002] describe a number of the statistical methods used to

analyse the large-scale structures; however the focus of this thesis is on 2-dimensional

data.

A simulation of the web-like cosmic structure can be found at http://cosmicweb.

uchicago.edu/filaments.html.

Varying Features of Data

The above examples exemplify the variety of features that can be found in this type

of data. They have different numbers of curvilinear features, which, in turn, are of

varying curvature and thickness. Where multiple curvilinear features exist they may

be densely packed or sparsely located, and they can be locally parallel (as in the

fingerprint pore data) or connect in the web-like structure of the galaxy data. There

are also different types of background noise (e.g. homogeneous, clustered).

The approach described in this thesis is flexible enough to draw inferences on most

of these types of data, although it is restricted to fibres that do not cross.

2.2.2 Existing Approaches

Of the existing approaches to identifying curvilinear clusters in background noise,

some take no account of the curvilinear nature of the point clusters.
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One such approach involves finding the Voronoi tessellation of the point pattern.

This is the set of regions that partitions the window of observation (or R2) such

that any point in the space is in the same region as the nearest data point, and no

two data points are in the same region. These regions are called Voronoi polygons

as they are necessarily polygons for a finite point pattern.

Allard and Fraley [1997] propose a method for detecting the support domain of a

uniformly distributed point pattern within a second uniformly distributed point pat-

tern with a larger support domain. They simply take the union of Voronoi polygons

that maximises the likelihood of their model. This approach has the advantage that

it can be adapted for any shape of point cluster. However, if geometrical constraints

such as the number of clusters are made then the maximum likelihood estimator

can only be approximated. Also, as with most of these approaches, only a point

estimate of the underlying structure is obtained.

Byers and Raftery [1998] propose a method for detecting features in noisy point

pattern data, using the distance to the K-th nearest neighbour to separate dense

point clusters from the background noise. This produces similar results to the

Voronoi tessellation approach of Allard and Fraley [1997], but leads to a classification

of points to noise or signal rather than identifying a union of regions in which

the feature is expected to lie. While this approach is easily extended to higher

dimensions, it is based on the assumption that the signal point pattern is an instance

of a Poisson process. Byers and Raftery [1998] also note that the parameter K needs

to be chosen with some care.

The following approaches to analysing anisotropic point patterns put a greater focus

on identifying the curvilinear structure.

Density-Comparison Approaches

A piecewise linear Candy Model is used by Stoica et al. [2005] to model filaments

in galaxy data, and extended to the 3-dimensional Bisous Model in Stoica et al.

[2007]. The Candy Model comprises of random linear objects or network segments

that ‘link’ under certain conditions (such as proximity and relative orientation) to

form a collection of networks, with connected filamentary structure.

To fit the model to the data, the empirical densities of galaxies in two disjoint

regions are compared. The first region is the interior volume of the linear object,

and the second is a region surrounding the linear object. Linear objects are more

likely to be accepted as part of the filamentary structure if the density is higher

in the first region than the second. In three dimensions this extends to comparing
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the densities of points in concentric cylinders. An energy function is defined for

a network of segments, and a simulated annealing approach is used to determine

the network that minimises this energy. This approach is restricted to piecewise

linear fibre models, the lengths of the linear segments being limited by the density

of points.

A similar approach to the Candy Model is proposed in Arias-Castro et al. [2005] who

consider the detection of filamentary structures in point patterns over the [0, 1]×[0, 1]

square. In particular they test whether the point pattern, consisting mainly of points

distributed uniformly at random over the unit square, also contains a set of points

sampled from a continuous curve. Note that in this instance the signal points are

assumed to lie directly on the curve or fibre.

They proceed by counting the number of data points that lie in thin regions or

strips and accepting each strip if it contains more than a certain number of points.

Accepted strips are connected if they satisfy certain continuity properties. The null

hypothesis that the unit square contains no fibre-dependent points is rejected if

the total length of the accepted strips exceeds a predetermined threshold. As is

mentioned, this approach does not consider the estimation of the fibre, only the

detection to see if one actually exists.

The strips are defined as functions y = f(x) under a Cartesian coordinate system

(x, y). Hence, as it stands, the currently proposed method is not rotationally in-

variant and will not detect some curvilinear structures, although Arias-Castro et al.

[2005] have suggested an extension to solve this problem.

Path-Density Approach

A density estimator of the point pattern can be obtained using techniques such

as kernel smoothing. Kernel smoothing is a statistical methodology for describing

point data by a curve or surface, and is commonly used to estimate the density

function given a data sample. The kernel density estimator at a point x is given

by

f̂(x;h) =
1

nh

n∑
i=1

K

(
(x− yi)

h

)
, (2.15)

where y1, ..., yn are a data sample, and K(·) is a kernel, typically a positive function

of the distance between two points that decreases with increasing distance, with

bandwidth parameter h. See Wand and Jones [1995] for further details.

Fibres can be directly estimated from this density; an example of this can be seen

in Genovese et al. [2009] where steepest ascent paths along the density estimate are
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constructed and the density of these paths is considered an estimator for the density

of an underlying fibre process.

The data are modelled as an inhomogeneous Poisson process with density described

by a mixture of three components: curves, clusters and background noise. The

component arising from fibres is modelled as the convolution of a Gaussian kernel

with the fibre; clusters are the equivalent of zero-length fibres. They proceed to show

that the paths of steepest ascent (of the empirical estimate of the point process

density) concentrate near the fibres of the model. A second kernel smoothing is

applied to the paths providing an estimator of the underlying fibre process.

While this technique is an improvement over other approaches that only provide a

point estimate of the curvilinear features, it has the shortcoming that it does not

implicitly classify points into noise and signal components or support inference of

the properties of individual fibres (such as lengths, curvature, etc.). Examples show

that the main curvilinear clusters are identified, however, the approach leads to

density estimates that require trimming or choosing high level sets. It is also rather

sensitive, in that it often identifies artefacts from the background noise as potential

clusters.

Minimal Spanning Trees and the Skeleton Model

A further approach discussed in Barrow et al. [1985] is based on the construction of

the minimal spanning tree of the point pattern. A spanning tree is a set of points

and edges (lines between pairs of points), such that all points are included and con-

nected (through paths of edges), and no loops (closed paths) occur. The minimum

spanning tree is the spanning tree with minimal total edge length. Reducing the

minimum spanning tree, by ‘pruning’ or removing edges if they fail to meet certain

requirements, leaves a simple tree describing the filamentary structure of the point

data. It is particularly useful in three dimensions, where it provides a useful insight

into the overall characteristics of the filamentary structure. However, it does not

provide the means for much further inference and relies on an appropriate choice

of the level of pruning. It is also unsuited to walls of galaxies (points aligned in

2-dimensional surfaces in 3-dimensional space).

An alternative to the minimal spanning tree is proposed in Novikov et al. [2008],

where a skeleton model is used to describe the structure of a density estimate of a

point process. A smooth density estimate is found by applying a kernel smoothing

to an instance of the point process. The skeleton is formed by considering curves

perpendicular to the iso-contours of the smooth density field, originating from local

maxima. The length of the skeleton can be used as a test for Gaussianity of the
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random field.

Both of the above approaches are well adapted for identifying branching or bifurca-

tion of fibres, an important aspect of galaxy data, and an aspect that is ignored in

our approach.

Principal Curves

An existing method for estimating the curves in the underlying structure of a point

process is Stanford and Raftery [2000]’s use of principal curves (Hastie and Stuetzle,

1989), a nonlinear generalisation of the first principal component line. Specifically,

a principal curve of a density h is defined as a curve f , parameterized by arc-length

λ, such that

E [X|fλ(X) = λ] = λ (2.16)

for almost all λ, where X is a random vector with density h, and fλ(X) is the value

of λ such that f(λ) is the orthogonal projection of X onto f . The principal curve

is fit to the data by iteratively applying this definition.

The approach is based on the assumptions that the background noise arises as a

homogeneous Poisson process and features in the point pattern are modelled by nor-

mally distributed orthogonal perturbations from points uniformly distributed along

unknown curves (identified as cubic B-splines). The features are then combined in

a mixture model.

For each combination of number of components and degree of smoothness an opti-

mal clustering of points is estimated. A classification version of the Expectation-

Maximisation algorithm is used to cluster the data into features that maximises the

likelihood of the model, and simultaneously fit principal curves. An optimal choice

of smoothness and number of components is then selected using Bayes factors.

This technique generally performs very well; however it is sensitive to the initial

clustering of the data in the Expectation-Maximisation algorithm, and also has

difficulties reconstructing fibres where signal points are sparse (for example the

fingerprint pore data - Figure 2.3). The authors also mention that a lower bound

on the variance of the perturbation of points from curves must be chosen, otherwise

the principal curves may be over-fitted.

The remainder of this chapter describes some of the statistical theory and methodol-

ogy drawn upon within the thesis. Brief explanations are provided here; for a more

comprehensive review the reader is referred to the relevant references.
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2.3 Bayes, Empirical Bayes and Markov Chain Monte

Carlo

The approach proposed in this thesis involves modelling the point process using

a Bayesian hierarchical model as formulated in Chapter 3. An empirical Bayes

approach is used to estimate the prior of the field of orientations (used to describe

fibres) from the data. Properties of the posterior distribution of fibres, conditional

on the data, are then estimated using Markov chain Monte Carlo methods.

This section briefly describes how such Bayesian inference proceeds.

2.3.1 Bayesian Inference

Bayesian inference involves estimating features of the posterior distribution deter-

mined by Bayes’ Theorem (Bayes, 1763) as

f(θ|y) =
f(θ)L(θ|y)∫
f(θ)L(θ|y) dθ

, (2.17)

where θ are the parameters of interest, y is the observed data, f(θ) is the prior

on θ and L(θ|y) is the likelihood function. By sequentially using Bayes theorem,

a hierarchical model of priors and hyperparameters is created. This permits great

flexibility and allows the propagation of uncertainty throughout the model. Ad-

vances in computing over the last 20 years have made it easier to study complex

Bayesian models.

Through Bayes’ Theorem, point estimates and confidence (or credible) intervals of

the posterior distribution of parameters given the data can be found.

2.3.2 Empirical Bayes

Empirical Bayes, a term coined by Robbins [1964], means that the prior distribution

(or a Bayes decision rule) is estimated directly from the data. It is argued that all

Bayesian methods are empirical as, when postulating the prior, the data is almost

always taken into consideration. However, the term empirical Bayes methods is

used to describe a more rigorous framework in which these empirical estimates are

made.

As described in Maritz and Lwin [1989], an empirical Bayes approach is typically

implemented when the same experiment is executed repeatedly generating a series

of data components. Bayes theorem is then adapted so that the historical data of
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previous components can be used in the calculation of the posterior distribution for

the current component. The data are used to estimate the prior distribution, or

alternatively the Bayes decision rule is directly estimated from the data. Empirical

Bayes is an approximation to the fully Bayesian approach described in the previous

section.

Criticisms of the empirical Bayes methodology include that it uses the data twice,

contradicting the Bayesian philosophy (Gelman, 2008). It also assumes exchange-

ability of the data components, which is not always reasonable.

It is usually assumed that a hyperparameter η is unknown but can be estimated

from the data. The empirical Bayes approach involves estimating this parameter

using the marginal distribution of the data,∫
L(θ|y)f(θ|η) dθ. (2.18)

Here y is the data, and θ denotes all other unknown parameters with joint prior den-

sity function f(θ|η), conditional on hyperparameter η, and likelihood L(θ|y).

In parametric empirical Bayes methods (see Carlin and Louis, 2008) it is assumed

that there is a family of prior distributions F (θ|η) indexed by η. The parameter

η is then estimated (for example, as a maximum likelihood estimator) and plugged

back into Equation (2.18) to estimate the posterior distribution.

Empirical Bayes methods reduce the bias in the posterior density associated with

choosing hyperparameters. However, it should be noted that empirical Bayes con-

fidence intervals such as highest posterior density intervals often have insufficient

coverage, or are too short. This is because they do not account for the uncertainty

in the posterior distribution induced by estimating the hyperparameter.

2.3.3 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods, which have been used extensively

over the past 50 years in statistical physics, are now commonly used in statistics for

estimating properties of posterior distributions in Bayesian models.

MCMC methods allow us to draw samples from the posterior distribution without

the need to fully evaluate the normalising constant,∫
f(θ)L(y|θ) dθ. (2.19)

Properties of the posterior density are estimated by consideration of the properties
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of these samples.

The idea behind MCMC sampling is that a Markov chain can be constructed, that

will explore the state space, and has stationary distribution equal to the target

distribution - in this case, the posterior distribution. The Markov chain is typically

constructed by proposing moves and accepting or rejecting them according to some

calculated probability.

A popular choice of move is the Metropolis-Hastings update. An update θ′, of one

or more variables θ, is proposed from the proposal density Q(θ′|θ) and accepted

with probability

α = min

{
1,
π(θ′)Q(θ|θ′)
π(θ)Q(θ′|θ)

}
, (2.20)

where π(·) is the target distribution. If the proposal density is symmetric, i.e.

Q(θ′|θ) = Q(θ|θ′), then the terms cancel leaving a Metropolis update, with accep-

tance probability

α = min

{
1,
π(θ′)

π(θ)

}
. (2.21)

Brooks et al. [2011] provides a recent overview of MCMC methods.

In Chapter 5, MCMC methods are used to sample from the posterior distribution of

parameters (including fibres) given the data points. As already identified, our model

has the flexibility of not fixing the number of fibres (or point clusters), and so we

require a type of MCMC method that enables the exploration of states with different

numbers of fibres. This is referred to as a variable dimension problem, and the two

main solutions are Reversible-Jump MCMC and Birth-Death MCMC (collectively

termed trans-dimensional MCMC, see Roeder and Wasserman, 1997).

Reversible-Jump MCMC or RJMCMC is proposed in Green [1995] and extends the

Metropolis-Hastings update to a move that varies the number of parameters in the

model. Birth-Death MCMC or BDMCMC is a continuous-time approach to the

variable dimension problem, and is an extension of the more general birth-death

process (see Preston, 1977). RJMCMC and BDMCMC are very similar, indeed a

sequence of RJMCMC samplers can be shown to converge to a BDMCMC under an

appropriate rescaling of time; see Cappé et al. [2003] for further details.

Reversible-Jump MCMC

In RJMCMC, a move from a k-component state with parameters θ to a proposed

state with k′ components with associated parameters θ′ is accepted with probabil-
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ity

α = min

{
1,
π(k′, θ′)Q(k|k′)Q(u′)

π(k, θ)Q(k′|k)Q(u)

∣∣∣∣∂g(θk, u)

∂(θk, u)

∣∣∣∣} , (2.22)

where Q(·) denotes a proposal density and u, u′ are the vectors of random variables

such that a bijective function (θ′, u′) = g(θ, u) maps the current state to the proposed

state see Green [1995] for further details.

The bijective function and random variables can be chosen to create pairs of moves

such as birth and death, where a component is created or destroyed without directly

affecting the other components, or split and join, where one component is replaced by

two similar components, or two components replaced by one, described in Richard-

son and Green [1997]. These dimension-jump moves, together with moves within a

fixed dimension (e.g. Metropolis Hastings updates), form a RJMCMC.

Birth-Death MCMC

The BDMCMC as described in Stephens [2000a] is an extension of the spatial Birth-

Death process described in Ripley [1979]. As with the RJMCMC, it is used to draw

samples from a posterior distribution with an unknown number of components,

however, here the time scale is continuous and events occur at a predetermined or

calculated rate. As is evident from the name, the two main types of event are birth

and death moves.

During a birth move a component is proposed from some birth density, and during

a death move a component is deleted. This is similar to RJMCMC, the main differ-

ence being that rather than proposing and then accepting or rejecting moves, the

events are proposed at varying rates and always accepted. Hence, the rates of birth

moves and the death rates of components are chosen so that detailed balance holds

and the limiting distribution of the chain will therefore be the target distribution.

Rejection sampling is sometimes incorporated into the birth proposal where it is not

feasible to draw samples directly from the birth density. Other moves, can also be

proposed at some rate using Metropolis-Hastings probabilities to accept or reject

them, for example, split and combine (join) moves are implemented in Cappé et al.

[2003].

There is an issue with processing the output of RJMCMC and BDMCMC, known

as the label switching problem (see Jasra et al., 2005), in that it is not trivial to

identify components across samples. Hence, the marginal distribution of parameters

of individual components are often unidentifiable. One approach to solving this

problem is to put artificial identifying constraints on the components as described in

McLachlan and Peel [2000]. This can have the undesirable effect of causing a bias on
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output statistics. Suppose each component is identified by some parameter µi with

the constraint µ1 < µ2 < ... < µi < ..., then estimates of µi calculated from a series

of MCMC output samples would be ‘pushed apart’. This is because, in estimating

µ1 for example, we are estimating the random variable taking the minimum value of

all component means, rather than the mean value of the component believed to have

the lowest mean. Stephens [2000b] provides a brief overview of existing solutions to

this problem.

There is particular difficulty in choosing convergence diagnostics for RJMCMC and

BDMCMC as most parameters, on which convergence diagnostics are typically

based, are non-identifiable across samples. The approach described in Richard-

son and Green [1997] is to test the number of components k for convergence, and

then test the convergence across samples with fixed k. This has the disadvantage

that models with a particular number of components may be so infrequently sam-

pled that it is difficult to determine whether they have converged. Both Brooks and

Giudici [1998] and Castelloe and Zimmerman [2002] suggest alternative convergence

diagnostics suitable for RJMCMC, based on the work of Gelman and Rubin [1992],

that compare the variation of a random variable between chains, within chains, and

between models.

Full details of the BDMCMC algorithm are provided in Chapter 5.

The two final sections of this chapter describe two mathematical objects - the field of

orientations which is instrumental in our construction of a random fibre process; and

the tensor, used in the empirical Bayes estimation of the field of orientations.

2.4 Field of Orientations

We define a field of orientations (or simply an orientation field) as a map νFO

from the window of observation W to the interval of orientations [0, π), where 0

is associated with π. The interval of orientations corresponds to the collection of

points on a circle of unit radius where antipodal points are equivalent. Thus, the

field of orientations can be thought of as the scalar field obtained by projecting a

vector field onto the half unit circle.

The integral curve of a field of orientations is defined as a map γ : I → W where

I is a real interval, and
∣∣∣∂γ(t)
∂t

∣∣∣ = |υFO(γ(t))|. Theory from dynamical systems (see,

for example, Irwin, 1980) tells us that if the field of orientations is Cr (has an r-th

derivative that is continuous), then the integral curves are also Cr.

Orientation fields are commonly used in fingerprint analysis (see, for example, Mar-
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dia et al., 1997 and Ratha et al., 1998), where integral curves of the field of orien-

tations provide a reasonable model for fingerprint ridge lines. Singular points (or

singularities) in the field of orientations, where the orientation is undefined, define

the overall pattern of the fingerprint.

Like vector fields, fields of orientations are often visualised by evaluating the field

over a grid of points and representing each orientation by a fixed length correspond-

ingly oriented. An alternative approach is to integrate the field of orientations and

plot the resulting streamlines. Zhang and Deng [2009] describe a method for placing

streamlines in a vector field while keeping them as evenly spaced as possible.

2.5 Tensors

A tensor, frequently used in physics, is the term used for a geometric object that

describes a linear relationship between scalars, vectors, or even other tensors. Al-

though a tensor is basis-independent, it is often represented by a multidimensional

array. The number of indices of such an array is given by the dimension of the

tensor. Depending on the order (or rank) of the tensor it will be represented by a

scalar, a vector, a matrix, or some higher dimensional array.

The work presented in this thesis uses only order 2 positive-definite symmetric ten-

sors, which identify with positive-definite symmetric matrices.

2.5.1 The Tensor Method

As described in Section 2.1.3 this thesis uses the tensor method as described by Su

[2009] and Su et al. [2008], where a variant on kPCA, is used to estimate the local

orientations of a point pattern. The equivalent of the empirical covariance matrix

calculated from the kPCA determines a tensor at each point in the pattern that

estimates the local orientation.

2.5.2 Diffusion Tensor Imaging

Tensors are similarly used in diffusion tensor imaging, or DTI (Basser et al., 1994),

to understand brain pathologies such as multiple sclerosis, schizophrenia and strokes.

DTI is used to analyse images of the brain collected from magnetic resonance imag-

ing (MRI) machines. The MRI scan detects diffusion of water molecules in the

brain and uses the data to infer the tissue structure that limits water flow. It also
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helps to identify axons (or nerve fibres) as diffusion is considerably faster parallel to

axons.

A 3-dimensional diffusion tensor is used to describe the orientation dependence of the

diffusion. The eigenvalues, roughly-speaking, indicate a measure of the proportion

of water molecules flowing in the associated eigenvector direction.

Diffusion tensors are constructed at points on a grid (called voxels). The tissues in

the brain are then identified using fibre tracking techniques (Basser et al., 2000) by

assuming that the direction of fibres is co-linear with the principal eigenvector. Fibre

tracking can often fail where the voxels are spaced far apart, and so interpolation of

the grid of tensors to a smooth tensor field has been proposed. Interpolation requires

the notion of a mean tensor and hence raises the question of which metric should

be used when dealing with tensors and has motivated recent research developments

in tensor metrics. A selection of possible tensor metrics are briefly reviewed and

compared in Dryden et al. [2009].

Fletcher and Joshi [2007] consider a general statistical analysis on diffusion tensors

with the aim of quantifying the variability of the structure of brain matter across

patients.

2.6 Conclusions

This chapter lists and briefly describes the main areas of research relevant to this

thesis, along with some examples of the type of data in consideration. Over the next

five chapters, we present our solution to the problem of identifying curvilinear fea-

tures in point patterns. The approach is flexible, providing a structure for Bayesian

inference on a variety of ‘types’ of curvilinear structure.

In the following chapter we define our Bayesian hierarchical model for fibre-generated

point processes; the empirical Bayesian estimation of the field of orientations is

described in Chapter 4. The details of the birth-death MCMC are provided in

Chapter 5, and results of this Bayesian inference on simulated and real data are

presented in Chapter 6. Chapter 7 further investigates the statistical analysis of

tensors, with a focus on anisotropy measures, which describe the extent of the

deviation from isotropy, and can be directly calculated from a tensor.
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Chapter 3

Bayesian Model for

Fibre-Generated Point

Processes

xThis chapter describes and details our Bayesian hierarchical model for fibre-process

generated point processes. We begin with a statement of the main problem addressed

by this thesis.

3.1 Problem and Outline of Solution

The objective is to model, and make inference on, a random point process Π viewed

in a planar window W ⊂ R2; we write the observed part of the point process as

W ∩ Π = {y1, ..., ym} for some arbitrary ordering of points. The point process

arises from a mixture of homogeneous background noise and an unknown number

of point clusters, each clustered along a curve, henceforth called a fibre. A fibre is

defined as a one-dimensional object embedded in a higher dimensional space (the

space containing the point process). Random sets of fibres or fibre processes are

discussed in Stoyan et al. [1995] and Illian et al. [2008].

Figure 3.1 presents an example of the type of point pattern under consideration.

We proceed by specifying details of both the structural and probabilistic model,

and mention some model variations that have also been considered. A method for

analysing the posterior distribution of fibres given an instance of the spatial point

process is described in Chapter 5. Chapter 6 provides illustrative examples of our
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Figure 3.1: Simulated example of a point pattern arising from a fibre-process gen-
erated point process.

approach.

See Appendix A for a full table of the notation used in this model summary.

3.2 Hierarchical Bayes Model for Fibre-Generated Cox

Process

The system of points and fibres is described using a Bayesian hierarchical model:

Bayes rule is repeatedly applied to describe the relation between points, fibres and

other parameters. An advantage of using this approach is that inferences can then

be made on all parameters in the model. Of the frequentist and Bayesian approaches

to inference, the Bayesian is preferred due to its flexibility for working with complex

models. A discussion of the advantages of Bayesian inference over frequentist is

found in Carlin and Louis [2008], along with a description of Bayesian hierarchical

models. An argument against Bayesian statistics is that it is not objective, as two

statisticians with different prior beliefs would get different results. However it is

often argued by Bayesian statisticians that this is can be an advantage, see for

example Goldstein [2006] or Howson and Urbach [1991]. Among the advantages of
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Bayesian analysis are that it allows propagation of uncertainty through the model,

and that analysis follows directly from the posterior distribution, removing the need

for the formulation of further analysis techniques.

The hierarchical model is built sequentially by describing the relations between the

model parameters.

The next section outlines the structural model for the points and fibres, and is

followed by the full probability model given in Section 3.2.2.

3.2.1 Structural Model

Points

A natural, yet somewhat restrictive, choice is to model the spatial point process as

a mixed Poisson process or Cox process driven by a random fibre process. However,

this model is based on the assumption that points are independently located given

the random collection of fibres, a property that does not correspond, for example,

with the fingerprint pores which are evenly spaced along ridge lines. Such a point

process is called a fibre-process generated Cox process, see Illian et al. [2008].

In our model we do associate points with particular fibres but we remove the Pois-

sonian character of the distribution of points along fibres, replacing this by a renewal

process based on Gamma distributions for inter-point distances. This allows us to

model a tendency to regularity in the way in which points are distributed along a

fibre. Extending the model to include the possibility of dependence between points

allows us to analyse varying types of data exhibiting curvilinear structure.

Fibres

In this work we use the novel approach of defining fibres as integral curves (or partial

streamlines) of a field of orientations. This means that at any point on a fibre, the

tangent to the fibre agrees with the field of orientations at that point. Note that a

field of orientations is equivalent to a vector field except that each point in the field

is assigned a directionless orientation. An instance of a random field of orientations

ΥFO is written as υFO : W → [0, π) where [0, π) represents the space of planar

orientations (with 0 and π identified). A geometric interpretation of the space of

planar orientations is that of a unit circle with antipodal points identified.

The simplest way to determine a fibre F is to choose a reference point ω on the

fibre and specify the arc lengths of F\{ω}. Here we assume that F integrates the
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field of orientations. For a fixed field of orientations this will characterise a fibre,

although the parametrisation by reference point and length is evidently not unique.

We model the fibres in terms of these parameters (the reference points, arc lengths

and field of orientations). Consequently, a random fibre is identified by sampling

a random reference point and integrating the orientation field in both directions

from the reference point to distances respectively determined by the two random

lengths.

We note that taking the reference points to be uniformly distributed over the window

W will lead to a non-stationary distribution of fibres in that the intensity measure

(mean fibre length per unit area) is not constant across W . This issue has been

considered and a solution involving modelling the random fibre process via a birth

death process with ‘time’ running tangential to the field of orientations is described

in Section 3.3.2.

The field of orientations is a useful intermediary in modelling fibres as it decomposes

the construction problem. In practice we seek to identify a suitable field of orienta-

tions through analysis of properties of the data; this is the focus of Chapter 4.

Noise

Finally we include background noise in the form of an independent homogeneous

Poisson process superimposed onto the fibre-generated signal point process.

3.2.2 Probability Model

A Directed Acyclic Graph (or DAG) showing the conditional dependencies for the

model is shown in Figure 3.2. The DAG, alternatively called a Bayesian network,

provides an effective way to represent the structure of a model; specifically, nodes

indicate random variables and directed edges (or arrows) indicate the direction of

dependence. See Pearl [1988] for further details.

Here we provide the details of the priors that, together with a likelihood and hyper-

priors, form the hierarchical model.

Fibres

Henceforth let F = {F1, ..., Fk} denote a set of k random fibres. As outlined

earlier, the fibre Fj is determined by a reference point ωj and arc lengths lj,1, lj,2.

It is also written Fj = Fj(ωj , lj , υFO) (where lj = (lj,1, lj,2) and υFO is a field of

orientations) to indicate that it is a deterministic function of ωj and lj once υFO is

31



Figure 3.2: Directed Acyclic Graph (DAG) of model: arrows indicate conditional de-
pendencies, elements in squares are deterministically calculated or constant, whilst
those in circles are random variables. For simplicity we have not included hyperpa-
rameters λ, κ, η, αsignal and βsignal.

given. This construction is depicted in Figure 3.3. For the list of reference points

we write ω = {ω1, ..., ωk}, and the arc length vectors are l = {l1, .., lk}. We use

lj,T = lj,1 + lj,2 as a shorthand for the total arc length of the jth fibre.

Note that in general the orientation field υFO may possess singularities (where the

orientation is undefined), which would constrain the choice of the lengths lj =

(lj,1, lj,2). However, it is assumed that the field of orientations contains only finitely

many singularities and that the probability of reaching one through integration from

a random reference point is 0.

There is an issue with the fibre process that, when a portion of the fibre process

over R2 is viewed through the window W , the reference points of visible fibres

crossing the boundary may not lie within W . This is a similar issue to that of
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Figure 3.3: The construction of fibre Fj with reference point ωj and pair of lengths
lj,1, lj,2. The field of orientations is indicated by the orientations of short lines
evaluated over a grid of points.

drawing samples from a cluster point process where daughter points are clustered

around unobserved parent points, which may lie outside the window of observation.

Approaches to correcting these edge effects have been suggested, see for example

Brix and Kendall [2002] and Stoyan et al. [1995]. However we choose to use a

minus-sampling approach (see, for example Miles, 1974) and stipulate that each

fibre should lie entirely within the window Fj ⊂ W . Assigning a prior probability

of 0 to fibres that do not lie completely within W reduces edge effects arising from

the unavailability of information on reference points outside the window.

Field of Orientations

We must of course determine the field of orientations to be integrated by these fibres,

whether it be a distribution of fields or a single instance. It is computationally

advantageous to estimate a single field of orientations which is likely to generate

(be integrated by) fibres that fit the data well (produce a high likelihood). The

most natural way to do this is to base the calculation of the field of orientations

on the data, using an empirical Bayes technique. Full details and justification of

the empirical Bayes approach to constructing a field of orientations are given in

Chapter 4.
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Signal Points

The points are typically clustered around fibres. We use a model that assigns an

anchor point pi on some fibre to each data point yi. The data point is then displaced

from pi by an isotropic bivariate normal distribution (i.e. yi ∼ MVN(pi, σ
2
dispI2)

where I2 is a 2× 2 identity matrix).

The fibre on which anchor point pi is located is determined by an auxiliary variable

Xi, so Xi = j if and only if pi ∈ Fj . The anchor points on the jth fibre are spaced

such that the vector of arc-length distances between adjacent points is proportional

to a Dirichlet distributed random variable. This follows directly from modelling

the arc-length distances between adjacent anchor points as independently Gamma-

distributed random variables, as described in Section 3.2.1. Setting an appropriate

parameter for the Dirichlet distribution will encourage points to be either evenly

spread, clustered, or placed independently at random along the fibre.

A priori, the probability that point yi is allocated to the jth fibre (Xi = j) is

proportional to the total length of fibre Fj . This ensures that the mean number of

points per unit streamline remains approximately constant.

Noise Points

Noise is then added as a homogeneous Poisson process. This is included in the model

by allocating each point yi to noise or signal (stored in auxiliary variable Zi = 1

or 0 for signal or noise respectively). Point yi is allocated to signal independently

of the allocations of all other points. The probability that yi is allocated to signal

is given by εi. If the point is signal then its location is distributed as outlined in

the previous subsection. Otherwise, if the point is noise, it is distributed uniformly

across the window W .

Total Number of Points

A Poisson distributed random variable is used to model the total number of points

m. The mean total number of points µtotal is defined to be equal to some function of

µsignal the mean number of signal points, and ρ, a parameter governing the number

of noise points. For simplicity we set ρ to be an estimate of the proportion of the

total points that are noise points and define µtotal = µsignal/(1 − ρ). The assump-

tion that the mean number of noise points is proportional to the mean number of

signal points is suited to the fingerprint pore data (see Figure 1) where the fibres

are evenly distributed across the window, and noise points arise as artefacts of the
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pore detection process. It is less appropriate for the earthquake data (also in Figure

1), where noise points (earthquake epicentres far from the main features) are inde-

pendent of the signal points. The mean number of signal points µsignal is assumed

to be proportional to the total sum of the fibre arc lengths. Hence m is assumed to

be Poisson distributed with mean

µtotal =

 k∑
j=1

lj,T

 η

1− ρ
(3.1)

where ρ = βsignal/(αsignal + βsignal) is the prior estimate of the proportion of points

that are signal and η is a density parameter.

Priors

We use the following independent priors:

P (k|κ) ∼ Poisson(κ) (3.2)

P (l|k, λ) =
k∏
j=1

P (lj,1|λ)P (lj,2|λ) where lj,· ∼ Exp(1/λ) (3.3)

P (ω|k) =
k∏
j=1

P (ωj) where ωj ∼ Uniform(W ) (3.4)

P (F|ω, l, υFO) =

k∏
j=1

P (Fj |ωj , lj , υFO) (3.5)

where P (Fj |ωj , lj , υFO) = 1[Fj(ωj ,lj ,υFO)⊂W ]

The function determining the fibres Fj(ωj , lj , υFO) is described in Section 3.2.2, and

depicted in Figure 3.3.

P (ε|αsignal, βsignal) =
m∏
i=1

P (εi|αsignal, βsignal) (3.6)

where εi ∼ Beta(αsignal, βsignal)
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P (Z|ε) =
m∏
i=1

P (Zi|εi) (3.7)

where Zi ∼ Bernoulli(εi).

Herem is the total number of points in {y1, ..., ym}, and 1[...] is the indicator function.

The prior for the field of orientations P (υFO) is defined as part of an empirical Bayes

step, see Chapter 4.

The prior distribution of the anchor points requires careful construction.

For each fibre in Fj ∈ F identify the set of anchor points that lie on Fj as pj = {pi :

Xi = j}, and write nj = |pj | for the number of points in this set. The distances

between adjacent points on the ridge, qj = qj0, ..., q
j
nj

are proportional to a Dirichlet

distributed random variable. Here, qj0 and qj
nj

are the distances from each end of

the fibre to the nearest point in pj . We choose a constant vector of length nj + 1

for the parameter of the Dirichlet distribution (αDir, ..., αDir).

Hence, the prior for the anchor points is

P (p|F,X, αDir) =
k∏
j=1

P (pj |Fj , αDir) (3.8)

=
k∏
j=1

P (qj |αDir)
1

nj !(lj,T )nj
(3.9)

=
k∏
j=1

1

B((αDir, ..., αDir))

nj∏
i=0

(qji )
αDir−1 1

nj !(lj,T )nj
(3.10)

where B((αDir, ..., αDir)) is the Beta function. The factor 1/(nj !(lj,T )nj ) arises from

the number of orderings of pj and the change of variables from pj to qj . Taking

α > 1 promotes regularity on the spacing of points along the fibre.

For ease of presentation we write

D(q(p), αDir) :=

k∏
j=1

P (pj |Fj , αDir)l
nj
j,T . (3.11)
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Posterior

We are interested in the posterior distribution of fibres (and other parameters) given

a particular instance of the point process. This posterior is given by

π(F, l,ω, k, υFO, ε,Z,X,p) (3.12)

= P (F, l,ω, k, υFO, ε,Z,X,p|y)

∝ P (F, l,ω, k, υFO, ε,Z,X,p)

×L(F, l,ω, k, υFO, ε,Z,X,p|y)

= P (l|k)P (ω|k)P (k)P (υFO)P (F|l,ω, υFO)P (ε)P (Z|ε)

×P (X|Z, l)P (p|F,X)L(F, l,ω, k, υFO, ε,Z,X,p|y).

Here P (·) indicates a prior distribution.

Chapter 5 describes how to sample from this posterior distribution using Markov

chain Monte Carlo techniques.

Likelihood

The likelihood in Equation (3.12) is given by

L(F, l,ω, k, υFO, ε,Z,p,X|y)

= L(p,Z, σ2
disp|y) (3.13)

=
m∏
i=1

(
1

2πσ2
disp

exp

(
−dist(yi, pi)

2

2σ2
disp

)
1[Zi=1] +

1[Zi=0]

|W |

)
, (3.14)

where dist(yi, pi) denotes the Euclidean distance between points yi and pi, and |W | is
the Lebesgue measure of window W . From the prior distributions and likelihood we

can calculate the necessary death rates, acceptance probabilities and full conditionals

required in a birth-death process such that detailed balance holds.

Computational Simplifications

Computer implementation makes it necessary to approximate the field of orienta-

tions by a discrete structure. We adopt the simple approach of estimating the field

of orientations at a dense regular grid of points over W . Integral curves are calcu-
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lated stepwise by estimating the orientation at a point by its value at the nearest

evaluated grid point and extending the curve a small distance in that direction.

Note that the choice of direction (from the two available for each orientation) is

made so that the angle between adjacent linear segments is greater than π/2. If

the angle between adjacent linear segments is precisely equal to π/2, then a further

rule for the choice of direction must be specified, however in practical applications

with noisy data, this will happen with probability 0. Similarly, the probability of

there being a singularity in the field of orientations at one of the finite grid points

over which it is estimated is also 0 (assuming the field of orientations contains only

finitely many singularities).

Consequently fibres are stored as piecewise-linear curves and further calculations are

performed on these approximations. Of course this discretisation can be arbitrarily

reduced (at a correspondingly large computational cost) to improve the accuracy of

the approximation.

3.3 Alternative Models

The model, as outlined in this chapter, is deemed an appropriate and sufficiently

flexible model for the type of data we are considering. Two of the possible variations

on the model which were considered are outlined in this section.

3.3.1 A Fibre-Process Generated Cox Process

In Section 3.2.1 it was suggested that points could be modelled as a Cox process

generated by a fibre process. In a Cox process, points are Poisson distributed with in-

tensity function given by a random field over W which, in turn, depends on the fibre

process. Such a model gives rise to an independent point process unlike our model

where points are perturbed from anchor points, which are Dirichlet-distributed along

a fibre.

If, in the construction of our model, we choose a Dirichlet parameter αDir = 1,

so that anchor points are uniformly distributed along the fibres, then the resulting

point process is a Cox process. Variations on this Cox process are found by choosing

an alternative likelihood function L(pi|yi, Zi = 1), or indeed, dropping the auxiliary

variables and anchor points, and determining a likelihood L(F |yi).

For example, the likelihood could be a function of the distance from yi to the nearest

fibre. The intensity function of the resulting Cox process is not quite the same as that

of the Cox process derived from our construction, where the intensity is determined
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by integrating a kernel along each fibre. However for a field of orientations with

low curvature, these intensity measures can be nearly equal. The advantage of

using anchor points in the Cox process construction is that the model can be easily

extended to control the regularity of points along fibres.

3.3.2 Towards an Unbiased Fibre Process

As described in Section 3.2.1, fibres are identified by partial integral curves of a

field of orientations. We have chosen a prior distribution for the fibre process based

on the sampling mechanism of drawing a reference point uniformly at random from

the window W and integrating the field of orientations to a random length in each

direction. However, this prior fibre distribution is biased, in that some regions of the

window are more likely to contain a random fibre than others due to the inherent

curvature of the field of orientations. The bias is depicted in Figure 3.4, where a

large number of fibres have been drawn from the prior distribution. There is clearly

a long region from (140, 143) to (170, 129) that is integrated by a greater density of

fibres than other areas of the window.

Figure 3.4: A cropped window showing a large sample of fibres drawn from the
prior fibre distribution with a diverging field of orientations. There is clearly a bias
on the number of fibres we would expect the curve S, orthogonal to the field of
orientations, to intersect.

We can quantify the biasing effect by considering the mean number of fibres, m(S),
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that intersect the curve segment S which runs perpendicular to the field of orienta-

tions. A natural condition to impose, in order to reduce the bias on the density of

fibres, is to require that m(S) is proportional to the length of S. However, we need

to construct a fibre process model satisfying this condition.

One approach is to model the number of fibres intersecting S as a time-homogeneous

birth-death process by setting St to be the curve perpendicular to the field of orienta-

tions, conditioned on two streamlines on which its end points are located, and meet-

ing one of these streamlines at point t, measured in arc length along the streamline

(see Figure 3.5). By taking the two streamlines to be very close, we can arbitrarily

choose either streamline to measure the arc length along.

Figure 3.5: A section of Figure 3.4 motivating the construction of a birth-death pro-
cess. The number of fibres integrating curve St will vary as t increases or decreases
from t0. The two thick streamlines that St connects are assumed fixed.

The birth-death process describes the number of fibres Xt intersecting St as t varies

(from −∞ to ∞ in principle). This means that Xt → Xt + 1 at rate bt, the birth

rate, and Xt → Xt − 1 at rate dtXt, where dt is the death rate, and both bt and

dt are functions of time. It is possible to estimate birth and death rates which

ensure that the mean number of fibres intersecting St is proportional to the length

of St, for a chosen pair of streamlines. By considering the birth and death rates

for an arbitrarily close pair of streamlines we can draw samples from an unbiased

distribution of fibres - where ‘unbiased’ is defined as ‘the mean number of fibres
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intersecting St is proportional to the length of St.

In practice, the prior fibre distribution described in Section 3.2.1 leads to simple

calculations, and generally there is sufficient data largely to eliminate this bias from

the posterior. However, finding an unbiased fibre-process prior is both of theoretical

interest and informative as to how unbiased and biased priors differ.

3.4 Conclusions

In this chapter we presented a Bayesian hierarchical model for a general point pro-

cess exhibiting clustering around an unknown number of curvilinear features. The

Bayesian approach is motivated by the inherent complexity of the data clustering

and the prior belief that there exists a random fibre process with random points

clustered about each fibre. In Chapter 5 we will show how Markov chain Monte

Carlo (MCMC) methods can be used to draw samples from the posterior distribu-

tion of fibres and other parameters (e.g. signal/noise allocations and fibre lengths),

given an instance of the random point process. Examples and statistics of samples

drawn from the MCMC methods are given in Chapter 6.

Fibres are identified as partial integral curves of a field of orientations. This is

a relatively novel characterisation of fibres in the study of fibre-generated point

processes, yet integral curves have been used in other areas such as image analysis

(Kass and Witkin, 1987), diffusion tensor imaging (Mori et al., 2001) and fingerprint

topology (Sherlock and Monro, 1993). An important consideration is how the field

of orientations should be estimated so that integral curves produce high likelihoods,

this is the focus of the following chapter.
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Chapter 4

Estimation of the Orientation

Field

The model, as described in the previous section relies on an appropriate choice

of prior for the field of orientations. It is highly desirable to generate a field of

orientations which is likely to contain (be integrated by) fibres that fit the data well

(produce a high likelihood), as sets of integral fibres sampled conditional on the field

of orientations will potentially produce high posterior densities. A natural way to

achieve this is to base the calculation of the field of orientations on the data, using

an empirical Bayes technique. The use of empirical Bayes to find the prior for the

field of orientations distribution means that aspects of the prior, or parameters of

the prior, are estimated from the data. This is fully motivated in Section 4.1, and

an overview of the construction of the field of orientations estimator is presented in

Section 4.2.

Tensors, in particular 2 × 2 positive-definite symmetric matrices, are instrumental

in the construction of the field of orientations estimator. Section 4.3 provides a full

description on how we define tensors, and explains how the data are used to make

local orientation estimates which are smoothly interpolated to produce a field of

orientations estimator. The estimator, based on orientation estimates arising from

signal data, is extended to include noise data by weighting the contribution of each

point to the field of orientations estimator by how likely it is to be noise or signal.

This is described in Section 4.4. The second of these estimators defines the empirical

Bayes prior on the field of orientations used in the examples of Chapter 6.

The smooth interpolation induces a bias on the field of orientations in regions of

high curvature, defined as the areas where integral curves exhibit high curvature.

The extent of the smoothing-induced bias is estimated in Section 4.5, and in Section
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4.6 three possible corrections to the bias are described.

First, we justify the use of an empirical Bayes approach, explaining why our prior

distribution of the field of orientations depends on the data.

4.1 Empirical Bayes

An empirical Bayes approach (see Robbins, 1956) is used to estimate the field of

orientations; the data are directly used in the computation of its prior.

The empirical Bayes approach involves estimating the field of orientations using the

marginal distribution of the data,∫
L(θ|y)f(θ|υFO) dθ. (4.1)

Here y is the data, and θ denotes all other unknown parameters with prior density

function f(θ|υFO), conditional on the field of orientations, ΥFO = υFO, and likeli-

hood L(θ|y). The set of fibres F is the only parameter that directly depends on the

field of orientations.

An empirical Bayes approach would usually be implemented by substituting a point

estimate υ̂FO (for example the maximum likelihood estimator) into the posterior

distribution:

p(θ|y, υ̂FO) ∝ L(θ|y)f(θ|υ̂FO), (4.2)

see, for example Maritz and Lwin [1989]. If the distribution f(θ|υFO) is fully known

then a parametric empirical Bayes approach can be implemented, estimating υ̂FO

directly from the marginal distribution in Equation (4.1). Point estimates like max-

imum likelihood estimators are often estimated using Expectation Maximisation

algorithms (see for example Dempster et al., 1977). However, due to the high di-

mensionality of the field of orientations and the high complexity of the marginal

distribution of the data given the field of orientations, Expectation Maximisation

algorithms are unsuitable. Hence we have not attempted to directly estimate the

field or orientations from the marginal distribution, but rather we use prior assump-

tions, such as the smoothness of the field of orientations, to create an estimator

based on estimates of the local orientation of the point clusters.

An alternative approach would be to use a fully Bayesian model, where the field of

orientations is modelled as an independent random variable ΥFO. A suitable state-

space and a corresponding σ-algebra, transition kernel and prior on this state space

would all need to be identified. These could be derived from random field theory

(see, for example Adler and Taylor, 2007), using an appropriate covariance function
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to maintain smoothness in the field of orientations, however there are a number of

issues with this approach. In practice sampling a random field of orientations can

be computationally expensive, particularly if the covariance function does not have

a simple form (as is likely in this model). Calculations relating to the conditional

distribution of the field of orientations given the fibres are likely to lead to unfeasible

computational complexity. A further issue is that this approach leads to a huge

space of possible fibres. It becomes very difficult to ensure that the Markov chain

Monte Carlo (MCMC) methodology, designed to draw samples from the posterior

distribution of fibres and outlined in the following chapter, adequately explores this

space. Using information given in the data helps to limit this space to a more easily

explorable restricted class of suitable fields of orientations.

It should be noted that empirical Bayes confidence intervals such as the highest

posterior density intervals obtained in Chapter 6 often have insufficient coverage

(intervals are too short) as they do not account for the uncertainty induced by

estimating the field of orientations (see Morris, 1983). This bias, induced by the

field of orientations, is particularly evident in the two simulated examples of Chapter

6.

We refer the reader to Carlin and Louis [2008] for further details of empirical Bayes

techniques.

4.2 Overview

We now give an overview of the construction of the field of orientations estima-

tor.

The tensor method described in Su et al. [2008] (and further discussed in Su, 2009)

is applied to the point pattern to construct a tensor (identified by a 2×2 symmetric

positive-definite matrix) at each point, which summarises the directions and dis-

tances of nearby points. To this set of tensors we apply a 2-dimensional Gaussian

kernel smoothing in the log-Euclidean metric to produce a field of tensors. The

tensor field is represented by an assignation to each point of a 2× 2 symmetric pos-

itive definite matrix whose principal eigenvector indicates the dominant orientation

at that point; the relative magnitude of the eigenvalues indicates the strength of

the dominant orientation. The field of orientations assigns the orientation of this

principal eigenvector to each respective point. If, at a certain point the principal

eigenvector is not unique (the eigenvalues are equal), the field of orientations will

not be defined creating a singularity.

Images illustrating the main steps in the estimator calculation are presented in

44



Sections 4.3.3 and 4.4.

First, we introduce the notion of a tensor.

4.3 Tensors

The tensor is an abstract concept used in a range of disciplines, particularly physics

and engineering, and is simply defined as the generalisation of a vector (or matrix).

We follow the approach of Su et al. [2008] and identify tensors with positive-definite

symmetric matrices. Hence, when we describe properties of a tensor, we are referring

to the properties of a symmetric positive-definite matrix. A tensor field is simply

the assignation of a tensor to each point in the window W . This is also the definition

of a tensor used in diffusion tensor imaging (DTI), we refer the reader to Section

2.5.2 for further details.

4.3.1 Decomposition of Tensors

A tensor of order 2 is represented by an n × n matrix. The size n of the matrix

corresponds to the dimensionality of the data; we work with n = 2 as W ⊂ R2, but

in the extension to 3 dimensions (see for example the galaxy data in Section 6.3.2)

3× 3 tensors are used.

A 2× 2 tensor T is written

T =

(
A B

B C

)
, (4.3)

where AC > B2 and A,C > 0. The tensor represented by this matrix is used to

summarise directional information. The principal eigenvector of T indicates the

dominant direction, while the ratio of the eigenvalues describes ‘how dominant’ this

direction is. This ratio is a measure of anisotropy, see Chapter 7 for some other

measures of anisotropy. Equal eigenvalues indicate isotropy - a lack of a dominant

direction. The eigenvalues are both positive as T is identified with a positive-definite

matrix.

4.3.2 The Tensor Method

Tensors summarising directional information are commonly used in diffusion tensor

imaging, where a tensor is calculated at each voxel (3-dimensional pixel) by esti-

mating the diffusion of water molecules in three directions. From this information

the dominant orientation of the flow of water molecules can be estimated.
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To construct a tensor for a point pattern we follow the tensor method described

in Su et al. [2008]. At each point a tensor is created which summarises the local

orientation of the cluster in which it lies. This orientation is estimated by considering

the distance and direction of other points.

Let y1, ..., ym denote the spatial data points. A tensor is constructed at a point yj

using a non-linear transformation applied to the vectors vi = (vi1, v
i
2) = −−→yjyi for

i 6= j (Su et al., 2008; Su, 2009). Specifically,

ṽi = (ṽi1, ṽ
i
2) =

exp
(
−
(
(vi1)2 + (vi2)2

)
/4σ2

FO

)√
(vi1)2 + (vi2)2

(vi1, v
i
2) (4.4)

where σFO is a scaling parameter.

The initial tensor at yj is then represented by

T0(yj) =
∑
i 6=j

(ṽi1, ṽ
i
2)T(ṽi1, ṽ

i
2). (4.5)

Note that the parameter σFO in Equation (4.4) has been rescaled, as Su et al. [2008]

and Su [2009] use transformed vectors

ṽi = (ṽi1, ṽ
i
2) =

exp
(
−
(
(vi1)2 + (vi2)2

)
/2σ2

FO

)√
(vi1)2 + (vi2)2

(vi1, v
i
2). (4.6)

The factor is changed so that the contribution of each unit vector

(vi1, v
i
2)√

(vi1)2 + (vi2)2
(4.7)

to the tensor is weighted by a Gaussian function with variance σ2
FO.

Also, Su et al. [2008] and Su [2009] append the collection of transformed vectors

ṽ1, ..., ṽm with the same collection rotated by π, i.e. −ṽ1, ...,−ṽm. While this is the-

oretically appealing as it creates a mean-centred collection of vectors, corresponding

to the mean-centred data in a principal components analysis, it has no effect on the

orientation or anisotropy of the tensor, merely doubling every component, for that

reason we choose to omit this step.

The tensor calculated in Equation (4.5) will have a zero-eigenvalue if the points are

collinear (lie on a single straight line), and therefore not be positive definite. If all

points are truly collinear then our approach breaks down as it is not intended for such

noise-free data sets. The more common situation is that one vector ṽi dominates the

46



Figure 4.1: Fingerprint a002-05 from the NIST database, (Watson, 2001).

tensor as calculated in Equation (4.5) due to the relative distances between points.

Typically this occurs if two points are close while other points are far from the pair.

Due to rounding errors, the contribution of other points to the matrix becomes zero,

and the two remaining points are collinear by definition. In order to avoid errors in

further calculations we set tensors with at least one zero-eigenvalue to the identity

matrix, suggesting a lack of directional information.

We leave an analysis of the robustness of this orientation estimate to Chapter 7,

where we also propose a new measure of anisotropy suited to the tensor method

construction.

4.3.3 Example of Tensor Calculation

Before continuing, we provide an example of the tensor calculation by applying it

to the fingerprint pore data. We use fingerprint a002-05 from the NIST (National

Institute of Standards and Technology) Special Database 30 (Watson, 2001). Pores

were extracted from the fingerprint image following the procedure described in Su

et al. [2008]. The full fingerprint is shown in Figure 4.1.

Figure 4.2 shows the extracted pore locations, a pictographic summary of the cal-
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culation is provided in Figure 4.3, and Figure 4.4 shows the principal eigenvector

orientations of the initial tensors. In Figure 4.3 we use the popular approach of

visualising tensors as ellipses. The lengths of the axes of the ellipse are proportional

to eigenvalues of the tensor and the major axis is parallel to the major eigenvec-

tor.

Figure 4.2: Pore data (represented by ×) extracted from fingerprint a002-05 from
the NIST database (Watson, 2001).

Figure 4.4 shows the orientations of the principal eigenvectors of the tensors created

in Section 4.3.2.

Like the sample covariance matrix, the principal eigenvector of the tensor indicates

the axis along which the variance of the data is maximised (compare with Principal

Components Analysis). This implies that the end points of vectors vi (see Equation

(4.4)) are more dispersed along this axis than any other. Hence if the un-transformed

pores yi were projected onto this axis, they would lie relatively close to the initial

pore yj . This illustrates the merit of taking the eigenvector as an estimator for the

local orientation at yi.

4.3.4 Interpolation

The tensor method allows us to construct an estimate, represented by a tensor, at

each point yi of the orientation of the cluster in which it lies. By the interpolation of
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(a) Point pattern with point yj and
3 other points y1, y2, y3 labelled.

(b) End points of
transformed vectors
ṽi, with start points
at y′j .

(c) The tensor at P
is shown in ellipse
form.

(d) The tensor in relation to the ini-
tial pore pattern.

Figure 4.3: Four stages of the tensor method: From the initial point data in (a),
vectors yi−yj are transformed, the transformed end points are shown in (b). Notice
that all but the three nearest points have been transformed very close to yj and
therefore have little effect on the tensor calculated at yj , represented by an ellipse
with the transformed end points in (c) and the original data in (d). The major
axis of the ellipse is oriented in the principal eigenvector direction. The ratio of
the lengths of the ellipse’s axes corresponds to the ratio of the eigenvalues. Crosses
indicate end points of transformed vectors ṽi, with start points at y′j .

these tensors, a field of orientations is created providing a field of local orientation

estimates. An alternative way to estimate the field of orientations is to interpo-

late the principal eigenvectors of the initial tensors, for example using barycentric,

bilinear or bicubic interpolation. However, this approach takes no account of the

anisotropy measure - of how dominant the orientation estimate is in each tensor.

We desire a smooth prior estimate of the field of orientations to ensure that integral

curves are also smooth, and direct interpolation of the principal eigenvectors does

not generally have this property. Therefore it is beneficial to impose a smoothness

constraint on the field of tensors. We propose a kernel smoothing approach, where
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Figure 4.4: Principal eigenvectors of the tensors created by the tensor method (with
σFO = 3). Lines through each data point indicate the orientation of the principal
eigenvector.

weighted average tensors are calculated which vary smoothly across W .

4.3.5 Tensor Metrics

The tensor metric defines the distance between two tensors and is necessary to

calculate any form of mean tensor, used for interpolation. Choosing an appropriate

tensor metric is a problem that has been encountered in diffusion tensor imaging

(Fletcher and Joshi, 2007). For this reason there has been increased interest in

developing tensor metrics in recent years. We elect to work in the log-Euclidean

metric (see Arsigny et al., 2006) as it satisfies a number of invariance properties and

is convenient to work with, providing quick calculations.

We briefly discuss a few other metrics which have been proposed (primarily for use

in DTI applications), for a more extensive account of tensor metrics see Dryden

et al. [2009].

Euclidean Metric

The standard metric used when working with general matrices is the Euclidean
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metric where the distance between two matrices M1,M2 is

distE(M1,M2) =
√

tr ((M1 −M2)2), (4.8)

effectively each element of the matrix is operated on independently. This is not an

appropriate metric for tensor calculations as Euclidean calculations can have strange

effects on the properties of eigenvalues. For example, Euclidean extrapolation of

two positive definite matrices can create matrices with negative eigenvalues. Also,

Euclidean interpolation can lead to a ‘ballooning’ effect of the determinant: instead

of increasing (or decreasing) as one interpolates between two tensors it may reach

a maximum for some intermediate tensor. See Pennec et al. [2006, pg 16, Figure 3]

for a visual depiction of this effect.

Affine-Invariant Riemannian Metric

An alternative to the Euclidean metric is the affine-invariant Riemannian metric

proposed in Pennec et al. [2006]. The strong theoretical properties of this metric

make it ideal for working with tensors, however multilinear interpolation, such as

weighted averages, can be computationally expensive. In general, the Fréchet mean

(which minimises the least square distances) does not have an explicit solution,

hence these weighted averages are approximated through a Newton gradient descent

method.

Log-Euclidean Metric

Arsigny et al. [2006] propose an alternative metric without the complexity of in-

terpolation associated with the affine-invariant Riemannian metric, named the log-

Euclidean metric. Log-Euclidean calculations are simply Euclidean calculations on

the tensor logarithms which are transformed back to tensor space by taking the

exponential. The tensors arising in this study can all be represented by positive def-

inite matrices. Tensor logarithms are therefore well defined as logarithms of these

matrices.

The distance between two tensors T1, T2 in the log-Euclidean metric is defined

by

distLE(T1, T2) =
√

tr ((log(M1)− log(M2))2). (4.9)

The log-Euclidean Fréchet mean of m tensors T0(y1), T0(y2), . . . , T0(ym) with asso-

ciated weights w1, w2 . . . , wm, i.e. the tensor T that minimises

m∑
i=1

widistLE(T, T0(yi))
2 (4.10)
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where distLE is the log-Euclidean distance, is given by

T = exp

{∑m
i=1wi log(T0(yi))∑m

i=1wi

}
. (4.11)

The log-Euclidean metric is not fully affine-invariant but it is similarity invariant,

and is therefore invariant to orthogonal transformations and scaling, making it ac-

ceptable as a tensor metric. The actual results of log-Euclidean interpolation are a

significant improvement on the undesirable effects of Euclidean interpolation, and

very similar to the results of interpolation in the affine-invariant Riemannian metric

- the only difference being that Log-Euclidean means are, in general, slightly more

anisotropic. See Arsigny et al. [2006] for further details.

4.3.6 Kernel Smoothing

The field of tensors is calculated as the weighted log-Euclidean average of all initial

tensors T0(yi) at data points yi. The weights are a function of the Euclidean distance

from yi, i.e. the tensor field evaluated at x ∈W is

ThFO
(x) = exp

(∑
i fhFO

(dist(x, yi)) log(T0(yi))∑
i fhFO

(dist(x, yi))

)
, (4.12)

where hFO is a smoothing parameter.

The function fhFO
is chosen to be a multivariate Gaussian function centred at

0,

fhFO
(dist(x, yi)) = exp

(
−dist(x, yi)

2

2h2
FO

)
. (4.13)

We choose a Gaussian kernel as it is infinitely continuous, assigning large weights to

points within a certain radius of x and thereafter weights decrease very quickly, how-

ever, as discussed in Wand and Jones [1995], the smoothing is robust to the choice

of function. This type of interpolation is based on ideas from kernel smoothing,

hence we call it kernel smoothing interpolation.

Kernel smoothing interpolation has the advantages over barycentric interpolation

(used in Su, 2009) that, for sufficiently large hFO, it produces a smooth field of

orientations with fewer undesirable artefacts.

A field of orientations is estimated by assigning to each point x ∈W the orientation

of the principal eigenvector of tensor ThFO
(x).

In most instances this procedure will give a good estimation of a suitable field of

orientations for modelling the point process with integral fibres. By this we mean
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that the field of orientations is integrated by fibres with high likelihoods for the

observed point pattern. The smoothing method has the drawback that it can create

a bias around areas of high curvature (rapidly varying orientation) in the field of

orientations. The magnitude of the bias appears to be proportional to the smoothing

parameter hFO, see Section 4.5. Three possible corrections to this curvature bias

are described in Section 4.6.

4.4 Construction of the Field of Orientations Estima-

tor

We now summarise how a field of orientations is estimated under the assumption

that the data y1, ..., ym are all part of the signal point process. The estimation is

then extended for more general data to include the probabilities that each point is

signal, ε.

4.4.1 Estimation for all Signal Points

The result of the tensor method described in Section 4.3.2 is a set of tensors located

over a sparse set of locations. This sparse set of tensors is interpolated as described

in the previous section and the orientation of the principal eigenvector, where defined

in the field of tensors, determines a field of orientations.

We calculate the interpolated tensor field ThFO
(x) for (x ∈W ) as a kernel smoothing

procedure, using a Gaussian kernel with variance parameter h2
FO in the log-Euclidean

metric. Hence for hFO > 0,

ThFO
(x) = exp

(∫
W f(dist(x, z)) log(T0(z)) dz∫

W f(dist(x, z)) dz

)

= exp

(∑
yi∈{y1,...,ym} f(dist(x, yi)) log(T0(yi))∑

yi∈{y1,...,ym} f(dist(x, yi))

)
(4.14)

as we set log(T0(z)) = 02 (the zero matrix) for z /∈ {y1, ..., ym}.

The field of orientations υFO(x) for x ∈ W is defined to be tan−1(v1(x)/v2(x))

where (v1(x), v2(x)) is the principal eigenvector of the matrix representation of

ThFO
(x).
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4.4.2 Estimation using Signal Probabilities

We extend this orientation field estimation to take account of the vector of prob-

abilities (ε1, ε2, ..., εm) that points are signal by weighting the construction of the

initial tensor and also weighting the contribution of each initial tensor to the kernel

smoothing.

Specifically, the initial tensors (equivalent to those calculated in Equation (4.5)) are

represented by

T0(yi) =
∑
j 6=i

εj(ṽ
j
1, ṽ

j
2)T(ṽj1, ṽ

j
2) (4.15)

for each point yi, and the tensor field becomes

ThFO
(x) = exp

(∑
yi∈{y1,...,ym} f(dist(x, yi)) log(εiT0(yi))∑

yi∈{y1,...,ym} f(dist(x, yi))

)
. (4.16)

The field of orientations υFO(y,ε,hFO,σFO) is calculated from the tensor field in Equa-

tion (4.16) by taking the orientation of the principal eigenvectors. This weighting

allows points that are more likely to arise from the signal component to have a

greater effect on the field of orientations estimation. As εi → 0 the effect of the

point yi on the field of orientations tends to zero, whereas if εi = 1 for all i we would

be performing the calculation described in Section 4.4.1.

In Chapters 5 and 6 the empirical Bayes prior distribution of the field of orientations

is:

P (ΥFO = υFO(y,ε,hFO,σFO)|y, ε, hFO, σFO) = 1. (4.17)

4.4.3 Example of Tensor Field Estimation

The above method is applied to the fingerprint pore data shown in Figure 4.2.

Generally the tensor method performs very well in identifying local orientations,

however there is still a substantial amount of noise, justifying a combined smoothing

and interpolation step.

Figure 4.5 shows the resultant field of orientations corresponding to the tensor

field estimated by Equation (4.16). It is evident from this example that the ker-

nel smoothing approach is effective in interpolating over areas with missing pores.

The smoothing effect is particularly beneficial in this application as the ridgelines of

fingerprints are locally parallel, so we expect the field of orientations to be smooth

(have a low variation over a local neighbourhood).

The interpolated field of orientations fails to follow the underlying ridges around
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Figure 4.5: Principal eigenvector field of the tensor field empirically estimated from
the pore data extracted from fingerprint a005-05 (from the NIST database, Watson,
2001) calculated with hFO = 30, σFO = 3, εi = 1 for all i. Lines indicate the
orientations of principal eigenvectors over a regular grid.

the edges of the window where pores are very sparse and also in the central region

near the loop of the fingerprint. The central loop feature has been pushed upwards

in the field of orientations due to the effect of smoothing on areas of high curvature.

This bias is directly related to the smoothing parameter hFO as described in Section

4.5; three possible corrections are outlined in Section 4.6.

In the following sections we focus on fingerprint pore data. The bias is most evident

in the pore data because the fibres (ridge-lines) are long and lie approximately

parallel to one another, with points located almost centrally and evenly spaced

apart. In comparison, the bias appears to have only a small effect on data where

clusters are thicker (points are more dispersed), and the distance between clusters

is greater.

For the remainder of this chapter we write the smoothing parameter hFO as h for

clarity.
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Figure 4.6: The approximate orientations of the underlying fingerprint ridge-lines,
around a circle centred at the loop of fingerprint a002-05 (from the NIST database,
Watson, 2001). A large proportion of the orientations appear to be near-vertical.
The large central arrows indicate the average of these orientations.

4.5 Curvature Bias

At the centre of Figure 4.5 there is evidence that smoothing can affect the field

of orientations around an area of high curvature. The term high curvature is used

to describe an orientation field integrated by curves that have high curvature. We

assume that the initial tensors calculated at each point give a reasonable indication

of the cluster orientation at those points.

If a set of tensors have principal eigenvectors that are mostly oriented in the same

direction then the principal eigenvector of the log-Euclidean mean of the set will

be similarly oriented. This is conditional on the set of tensors having similar eigen-

values. Figure 4.6 shows the approximate orientations of the ridge-lines around a

circle centred at the loop of the fingerprint. A large proportion of the orientations

along the circle are near-vertical (the average orientation is indicated by the large

arrows in the centre). If the initial tensors are good estimators of the underlying

ridge orientation it is expected that the principal eigenvector of the interpolated

tensor at the centre of the loop has a near-vertical orientation too. See Figure 4.5

where the orientation field at the central loop of the fingerprint follows this average

orientation.

In the following section the effect of this bias is estimated by considering the location

of the singularity (or loop) of the interpolated field compared with its true location

in the fingerprint.
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Figure 4.7: Principal eigenvector field of the tensor field empirically estimated from
the extracted pore data from fingerprint a005-05 (from the NIST database Watson,
2001) calculated with h = 10. Lines indicate the orientations of principal eigenvec-
tors over a regular grid. Circled points denote singularities in the tensor field.

4.5.1 Singularities in a Tensor Field

Singularities in a tensor field are locations where the tensor has equal eigenvalues.

Equivalently, singularities in a field of orientations are the points where the orien-

tation is undefined.

If the smoothing parameter h is sufficiently small, many singularities appear due

to the variation in initial tensor estimates of the local orientations. Compare Fig-

ure 4.7 and Figure 4.8, the fields of orientations from tensor fields with smoothing

parameters 10 and 60 respectively. The first has many singularities whereas the

larger smoothing parameter of Figure 4.8 has ‘smoothed out’ the anomalous singu-

larities, leaving the key singularity which defines the overall shape of the field of

orientations.

Assume for now that there exists an underlying field of orientations that follows

the true ridge-line orientation and which we are trying to estimate. The underlying

orientation field may have singularities; in the case of the fingerprint in Figure 4.1,

there appears to be one central singularity at the loop of the fingerprint. Applying a

57



Figure 4.8: Principal eigenvector field of the tensor field empirically estimated from
the extracted pore data from fingerprint a005-05 (from the NIST database Watson,
2001) calculated with h = 60. Lines indicate the orientations of principal eigen-
vectors over a regular grid. The circled point denotes a singularity in the tensor
field.

kernel smoothing to the initial tensors causes a bias on the location of the singular-

ities. This bias is evident in Figure 4.8 where the central singularity is significantly

displaced.

Through comparison with the application of kernel smoothing to a tensor field over

the window W , we estimate the extent of the bias arising from applying kernel

smoothing to a set of tensors sparsely located across the window W .

We begin with an arch-model tensor field based on fingerprint a002-05 (Watson,

2001) in Figure 4.1, and show in the subsequent section how a similar model, the

parabola, gives very different results.

Estimation of Singularity Location Bias: Basic Arch Model

Theorem 1 (Singularity Location Bias: Arch Model). Let T arch
0 : R2 → [0, π) be

a tensor field with constant eigenvalues λ1 > λ2 > 0, and principal eigenvectors

that agree with the arch model pictured in Figure 4.9. Explicitly, using a Cartesian
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Figure 4.9: A basic fingerprint structure of concentric arches (not to be confused
with the arch fingerprint pattern). The singularity is located at the origin with
concentric circles above the horizontal axis and parallel vertical lines below.

coordinate system (x1, x2) ∈ R2 with origin (0, 0) at the singularity, eigenvectors are

tangent to a circle centred at (0, 0) if x2 > 0 and equal to (0, 1) if x2 ≤ 0. Denote

by T arch
h the result of applying a kernel smoothing in the log-Euclidean metric to

T arch
0 , using a Gaussian kernel with parameter h. Then T arch

h has a singularity at

(x1, x2) = (0, hc). The constant c is the solution of

∫ c

0

∫ 3π
2
−cos−1

(
c
r′x

)
cos−1

(
c
r′x

)
−π

2

cos2 θ0 − sin2 θ0 dθx

+ 2 cos−1

(
c

r′x

))
exp(−(r′x)2/2)

2π
dr′x

+

∫ ∞
c

∫ 2π

0
cos2 θ0 − sin2 θ0 dθx

exp(−(r′x)2/2)

2π
dr′x = 0 (4.18)

where

θ0 = θ0(rx, θx) = tan−1

(
tan θx +

β

r cos θx

)
. (4.19)

The proof of this theorem is given in Appendix B.1.

The equality in Equation (4.18) must be solved computationally. An estimation
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based on Riemann integrals gives c ≈ 0.772 to 3 decimal places. This implies that

the result of smoothing the tensor field is that the singularity is displaced vertically

upwards to a distance of 0.772× h.

Theorem 1 describes the extent of the singularity location bias arising from the

application of kernel smoothing to a tensor field. In our tensor field construction,

the same kernel smoothing is applied but to a discrete set of tensors sparsely located

over W , rather than an infinite tensor field. Approximating the sparse set of tensors

by an infinite tensor field is necessary to simplify calculations. Noise, or variation

from the arch model orientation, in the point estimates of the tensor field will likely

affect the extent of the bias, but with no further information on the nature of the

noise it is assumed that the infinite tensor field provides a reasonable approximation

to the discrete collection of tensors. The effect of noise on the initial tensors is

discussed in Section 7.3, in order not to distract from the current discussion.

Approximating the tensor calculation by integrating over the whole of R2, rather

than just W , will only affect the estimation of the extent of the bias if the distance

from the singularity to the boundary of W is small in comparison to h. Heuristic

evidence shows that singularities are ‘pulled’ to the boundary of W as the smoothing

parameter is increased beyond a certain threshold. This is believed to be a result of

edge effects in kernel smoothing.

The assumption that eigenvalues are constant and therefore that tensors are all equal

except for orientation is unlikely to be true in practice as variations in the point

pattern intensity and local anisotropy directly affect the eigenvalues. However, it is

a reasonable approximation, particularly as the variation in eigenvalues across the

set of tensors is not easily predictable.

Applying the result of Theorem 1 to the example of Figure 4.5, we find that increas-

ing h from 30 to 60 displaces the singularity by a further 36 length units which is of

the same order as the estimate 0.772× 30 = 23.2. The difference is likely due to the

inaccurate assumptions, in particular the fingerprint seems to have higher curvature

than the arch model. Increasing h to 90 displaces the singularity by a further 41

length units in approximately the same direction. This appears to support the claim

that the displacement is approximately linear in h.

Estimation of Singularity Location Bias: Parabolic Model

In the previous section it was shown that smoothing an arch-shaped field of tensors

will displace the singularity by a distance proportional to the smoothing param-

eter h. We now consider a second model based on parabolas which, although it
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Figure 4.10: The parabolic tensor field, illustrated by integral fibres of the associated
field of orientations.

appears similar in shape to the arch model gives quite different results. For the

parabolic model, the smoothing causes no bias on the location of the singularity of

the parabolic tensor field.

Let (x1, x2) denote a Cartestian coordinate system over R2. The parabolic tensor

field T para
0 (x1, x2) is defined at (x1, x2) to be the tensor with constant eigenvalues

λ1 > λ2 > 0 and principal eigenvector tangent to the parabola x2 = 1
4a − ax2

1

for x1 6= 0, where a > 0 takes different values depending on x1, x2. For x1 = 0,

the principal eigenvector is proportional to (1, 0) if x2 > 0 and (0, 1) if x2 < 0.

The corresponding orientation field of the parabolic tensor field is continuous over

R2\{(0, 0)} ( verified by considering the derivatives dx1
dx2

and dx2
dx1

) and has a single

singularity located at the origin (0, 0). Any integral curve of the associated field of

orientations is a parabola with a focus at (0, 0) and directrix given by x2 = c for

some c > 0, hence the term, parabolic tensor field. These parabolic integral curves

are illustrated in Figure 4.10.

Theorem 2 (Singularity Location Bias: Parabolic Model). Let T para
0 (x1, x2) be a

parabolic tensor field with constant eigenvalues λ1 > λ2, and let T para
h (x1, x2) be

the result of applying a convolution in the log-Euclidean metric to this tensor field

with a Gaussian kernel and smoothing parameter h. Then T para
h (x1, x2) contains a

singularity located at the origin (0, 0).

The proof of this result is a consequence of the following lemma

Lemma 1. Let e(x1, x2) = (e1(x1, x2), e2(x1, x2)) denote the principal eigenvector

of the tensor T para
0 (x1, x2). Then e(x1, x2) is perpendicular to e(−x1,−x2) for all

(x1, x2) 6= (0, 0).
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The proofs of both lemma and theorem are given in Appendix B.2.

These two plausible models - the arch and parabola, make it clear that when estimat-

ing the bias on the location of the singularity, choosing an appropriate approximation

is crucial.

4.5.2 The 3 Stages of Singularity Displacement due to Smooth-

ing

The previous two sections describe the biasing effect of kernel smoothing by consid-

ering the displacement of the singularity. However, when applying kernel smoothing

to a discrete set of tensors located sparsely over W the bias resulting from the

curvature of the tensor field only accounts for one of three stages of singularity

displacement, that occur with increasing h.

For small h, the tensor interpolation smooths out the noise of the initial tensors.

During this stage the singularity will be moved in a random manner which is not

easily predictable.

Once h is larger than some first threshold th0 , the Gaussian kernel will assign suf-

ficient weights to enough initial tensors that the tensor field will become locally

stable. At this stage the bias outlined in the previous section is apparent; areas of

high curvature induce a bias in the kernel smoothed tensor field.

When h is higher than a second threshold th1 this bias is dominated by another

effect. As h increases pairs of singularities attract one other and eventually cancel

each other out. Pairs of singularities can only cancel if their Poincaré indices sum to

0. The Poincaré index of a singularity (described in Maltoni et al., 2003) is calculated

by choosing a small closed curve C around the singularity and moving once clockwise

around the closed curve. The Poincaré index is the sum of the gradient differences

(in degrees) between consecutive points on the curve. Poincaré indices take one of

5 values: ±π radians, ±2π radians or 0 radians if there is no singularity within the

curve. Two singularities with Poincaré indices that sum to 0 may cancel each other

out as h passes some threshold. As h increases the two singularities move closer until

they meet and both disappear from the tensor field. It is not clear which singularities

will cancel but this opens up an interesting area of research on the topology of kernel-

smoothed tensor fields. If there is no complementary singularity to cancel with, a

singularity will usually move towards the edges of the window. It is not entirely clear

why this happens but it is believed to be due to the fact that as h→∞ the weights

assigned to each tensor in the kernel smoothing approach equality. Hence the tensor

field approaches uniformity, and as the location of singularities is continuous with
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Figure 4.11: The main singularity of the interpolated tensor field for h = 1 (Ö),
2, . . . , 69, 70 (+).
1st Stage (×): singularities are displaced in a random manner due to the noise of
the initial tensors.
2nd Stage (·): Singularities are displaced approximately linearly in h due to the high
curvature bias of subsection 4.5.1.
3rd Stage (+): A third effect dominates the high curvature bias causing the singu-
larity to be displaced towards the edge of the image.

respect to h, the singularity will usually leave W .

Figure 4.11 gives an example of these 3 stages, showing the path of the central

singularity as h increases. It appears that the threshold values for these data are

th0 = 15 and th1 = 33, although there seems to be an overlap between the stages.

4.6 Bias Correction

In this section, 3 separate approaches to correcting the curvature bias, based on

the dependency of the bias on h are proposed. The first is based on a Taylor series
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expansion, the second follows from describing the bias correction as an extrapolation

problem, and finally we propose a technique using adaptive smoothing - varying the

smoothing parameter h across the window W .

4.6.1 Taylor Series Expansion of log(Th(x))

As mentioned in Section 4.5, the extent of the bias on the tensor field appears to

increase as h increases, therefore we propose correcting the bias by estimating the

tensor field with h = 0, namely T0(x). One way to estimate T0(x) is to use a Taylor

series expansion.

Rather than calculate the Taylor series expansion that approximates T0(x), we work

with log(T0(x)) which can be written as a weighted sum of tensors. The partial

derivative ∂
∂h log Th(x) empirically estimated from data y1, ..., ym is

∂

∂h
log Th(x) =

∂

∂h

(∑
i fh(dist(x, yi)) log T0(yi)∑

i fh(dist(x, yi))

)
. (4.20)

By the quotient rule and substituting for log Th(x) this evaluates to∑
i
∂
∂hfh(dist(x, yi)) log T0(yi)∑

i fh(dist(x, yi))
−
∑

i
∂
∂hfh(dist(x, yi))∑
i fh(dist(x, yi))

log Th(x)

=

∑
i dist(x, yi)

2fh(dist(x, yi))(log T0(yi)− log Th(x))∑
i fh(dist(x, yi))h3

(4.21)

Recall that fh(dist(x, yi)) is a Gaussian function without normalising constant, and

T0(yi) is the initial tensor evaluated at data point yi defined in Equation (4.5).

The theoretically unbiased tensor field T0(x) for x ∈ W is estimated using a first

order Taylor series approximation,

̂log T0(x) = log Th(x)−
∑

i dist(x, yi)
2fh(dist(x, yi))(log T0(yi)− log Th(x))∑

i fh(dist(x, yi))h2
(4.22)

=

∑
i fh(dist(x, yi))

((
1 + dist(x,yi)

2

h2

)
log T0(yi)− dist(x,yi)

2

h2
log Th(x)

)
∑

i fh(dist(x, yi))
.

Effectively, the initial tensor T0(yi) in Equation (4.14) has been replaced by the

extrapolated tensor exp ((1 + t) log T0(yi)− t log Th(x)) where t = dist(x,yi)
2

h2
. This

approximation is improved by adding more terms to the Taylor series approxima-

tion.

Figures 4.12 and 4.13 show the principal eigenvector fields of the tensor fields calcu-

lated by the original method on fingerprint a005-05 from the NIST database (Wat-
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Figure 4.12: The original principal eigenvector field of the tensor field empirically
estimated from the extracted pore data from fingerprint a005-05 from the NIST
database (Watson, 2001) calculated with h = 30. Lines indicate the orientations of
principal eigenvectors over a regular grid.

son, 2001) with h = 30, and bias corrected with a 2nd order Taylor series expansion.

The 1st order Taylor series expansion produces similar results.

The Taylor series approximation appears to reduce the high curvature bias as there is

less displacement of the central singularity. Unfortunately artefacts appear around

the edges of the window where the point intensity is low and the initial tensor

estimates inadequately reflect the ridge-line orientations; these are the areas where

smoothing is necessary. These artefacts appear because, by estimating T0(x) we not

only reduce the bias, but also the smoothness of the tensor field.

4.6.2 Extrapolation from Two Instances of the Tensor Field

An alternative approach to estimating the tensor field T0 is to evaluate the tensor

field for two values of h, say h2 > h1 and extrapolate back to h = 0.

Tensors are extrapolated using the log-Euclidean metric. Thus, log Th0(x), the log-

arithm of the tensor field evaluated at x ∈ W with smoothing parameter h = h0 is

estimated by:

t(h0) log Th1(x) + (1− t(h0)) log Th2(x), (4.23)
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Figure 4.13: The principal eigenvector field of the bias-corrected tensor field calcu-
lated by estimating T0 from Th with a Taylor series of order 2. Lines indicate the
orientations of principal eigenvectors over a regular grid.

where t(h0) is some function of the target smoothing parameter value, h0. By

rewriting Equation (4.23) in terms of weighted sums of the tensor T0(yi) it is possible

to estimate the function t(h0) satisfying

log Th0(x) =

∑
i fh0(dist(x, yi)) log(T0(yi))∑

i fh0(dist(x, yi))
(4.24)

= t(h0)

∑
i fh1(dist(x, yi)) log(T0(yi))∑

i fh1(dist(x, yi))

+ (1− t(h0))

∑
i fh2(dist(x, yi)) log(T0(yi))∑

i fh2(dist(x, yi))
. (4.25)

The denominator
∑

i fhj (dist(x, yi)) (for j = 0, 1, 2) can be approximated by the

integral

∑
i

fhj (dist(x, yi)) ≈
∫
R2

ρ exp

(
−(x− z)2

2h2
j

)
dz

= 2πρh2
j (4.26)

where ρ is an estimate of the density of points yi.

66



Substituting the approximation of the denominator into Equation (4.25) gives:∑
i fh0(dist(x, yi)) log(T0(yi))

h2
0

≈ t(h0)

∑
i fh1(dist(x, yi)) log(T0(yi))

h2
1

+ (1− t(h0))

∑
i fh2(dist(x, yi)) log(T0(yi))

h2
2

. (4.27)

Ideally, we want to find a function t(h0) which is independent of the point process

and the tensor fields. For this reason, we approximate the sum by∑
i

fhj (dist(x, yi)) log(T0(yi)) ≈ fhj (dist(x, yk)) log(Tk) (4.28)

where yk is the closest data point to x. We also approximate fhj (dist(x, yi)) by the

upper bound 1. Hence Equation (4.27) becomes

log(Tk)

h2
0

≈ t(h0)
log(Tk)

h2
1

+ (1− t(h0))
log(Tk)

h2
2

. (4.29)

Solving this equation for th0 suggests the function

t(h0) =
(h2

2 − h2
0)h2

1

(h2
2 − h2

1)h2
0

(4.30)

is appropriate for the extrapolation parameter. Now, as h0 → 0, t(h0) → ∞, so to

estimate the unbiased tensor field T0(x) a large value of th0 should be chosen.

Examples are shown in Figures 4.14 and 4.15: two tensor fields with different

smoothing parameters, shown in Figure 4.8 (h=60) and Figure 4.12 (h=30), are

extrapolated with parameters t = 3 in Figure 4.14 and t = 10 in Figure 4.15. Like

the Taylor series expansion in the previous section, the extrapolation appears to re-

duce the high curvature bias at the expense of introducing artefacts into the tensor

field.

4.6.3 Adaptive Smoothing

Both of the previous approaches to bias correction reduce the smoothness of the

tensor field. This can lead to the appearance of artefacts such as the singularities

around the edges of Figure 4.14 and generally give a poorer estimation of the field of

orientations around the edge of the window. This is undesirable as it can completely

change the integral curves of the field of orientations, markedly affecting further

analysis based on the orientation field estimate.
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Figure 4.14: The principal eigenvector field of the extrapolated tensor field with
parameters h1 = 30, h2 = 60, and t = 3. Lines indicate the orientations of principal
eigenvectors over a regular grid. There is a noticeable improvement in the tensor
field estimation around the central loop feature. However the extrapolation has had
an undesirable effect in the top corners.

In this section we propose a method that allows the smoothness of the tensor field to

vary across the window. The new approach is based on the intuition that in regions

of W with high point density the point estimates of the local anisotropy (through the

initial tensor) are more robust, and therefore less smoothing is necessary in these

regions. A higher smoothing parameter h is used in areas of low point intensity

so that the tensor estimate is based on information (initial tensor estimates) from

a greater number of distant points. Conversely, the smoothing bias is reduced in

areas of high point intensity by using a low smoothing parameter. This is achieved

by replacing the fixed parameter h in Equation (4.13) by a function h(x) where

describes the sparsity of points in a neighbourhood of x ∈W .

For example, in Figure 4.16 the map h(x) is the Euclidean distance from the 10th

nearest pore to x.

Choosing an appropriate function h(x) is obviously important and likely to depend

on the precise details of the point process. In another application an entirely dif-

ferent map h may be preferred. So despite the fairly good resultant tensor field,

this method has the drawback that it requires prior knowledge of the relationship

between points and fibres.
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Figure 4.15: The principal eigenvector field of the extrapolated tensor field with
parameters h1 = 30, h2 = 60, and t = 10. Lines indicate the orientations of
principal eigenvectors over a regular grid. The tensor field shows some improvement
on the extrapolated field with t = 3 around the loop structure, but outside the
central region the gradient field has mostly lost its original structure.

While the examples focus on the fingerprint data, these three approaches to bias cor-

rection are equally applicable to any other fibre-generated point process exhibiting

curvature bias.

4.7 Conclusions

In this chapter we described how an empirical Bayes technique can be used to

construct a field of orientations estimator which is integrated by fibres that pro-

duce high likelihoods. Tensors (specifically, positive-definite symmetric matrices)

are fundamental to the construction as they provide a convenient way to summarise

directional data. An initial tensor is constructed at each data point summarising

the local orientation of the cluster in which it lies. The tensors are then interpolated

with a combined smoothing step, producing a field of tensors that assigns to each

point a tensor estimator of the local cluster orientation. By choosing the dominant

direction of these tensors - indicated by the principal eigenvector, an estimator for

the field of orientations is constructed.

We have noted that the smoothing step introduces a bias into the tensor field.
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Figure 4.16: Field of orientations estimated using adaptive smoothing and evaluated
over a finite grid. Specifically, the field of orientations is identified by the principal
eigenvectors of the tensor field estimated using adaptive smoothing. The smoothing
function h(x) is equal to the distance from x of the 10th nearest pore. The bias
around the central loop feature has significantly decreased and the orientation esti-
mates at the edges of the image (particularly the top corners) benefit from increased
smoothing.

The extent of this bias has been analysed by applying the smoothing step to two

specific tensor fields. It appears that the bias-induced movement of a singularity is

proportional to smoothing parameter h. To correct this bias three approaches have

been suggested, although the field of orientations prior used in Chapters 5 and 6 is

determined by the original tensor field of Equation (4.16).

There is plenty of scope for extending or adapting this estimator. A few ideas are

suggested here.

An alternative transformation could be used in the calculation of initial tensors (see

Equation (4.5)), indeed a different construction altogether could be implemented.

Stevens [1978] estimates the local orientation of a point pattern by creating a his-

togram of orientations, rather like the empirical rose of directions (see Stoyan et al.,

1995), of vectors connecting all combinations of pairs of points within a neighbour-

hood. This could provide the starting point for the construction of a smoother

collection of sparsely located tensors.

Different kernels may be used for the kernel smoothing although, as already men-
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tioned, this is unlikely to have a large effect on the resulting field of orienta-

tions.

Rather than find a point estimator for the field of orientations, we could construct

a complete prior distribution. It is possible to create a distribution of fields of ori-

entations directly from a tensor field by taking into consideration the anisotropy of

the tensors rather than just the eigenvectors. However, sufficient care would be nec-

essary to ensure that the smoothness of the field of orientations is controlled.

These ideas on extending the field of orientations estimate are further discussed in

Chapter 8.

We proceed to the next chapter where details are given of a Markov chain Monte

Carlo process designed to produce samples from the posterior distribution of fi-

bres.
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Chapter 5

Inference via Birth-Death

Markov Chain Monte Carlo

In the previous two chapters we introduced a hierarchical Bayes model for point

patterns exhibiting a filamentary structure, and gave details of the empirical Bayes

estimation of the field of orientations. We would now like to make inferences on

aspects of the fibre process given an instance of the point process. Typical attributes

of interest include: the number of fibres, where they are located/orientated, which

points arose from which fibre and which points arose from background noise.

Here we provide the details of a Markov chain Monte Carlo algorithm that draws

samples from the posterior distribution of fibres. From these samples, quantities of

interest can be calculated providing the basis of a Bayesian inference on the fibre

process.

The mixing of a simple birth-death process of fibres is improved by including ad-

ditional moves: updating signal probabilities; moving a fibre; adjusting the length

of a fibre; updating the allocations of points to the noise and signal components;

splitting and joining fibres; and updating the reference point of a fibre. These moves

are summarised in Table 5.1. Other considerations relating to the implementation

of this algorithm are outlined in Section 5.6.

5.1 Continuous-Time MCMC and Birth-Death MCMC

Direct inference from the model is hindered by the complexity of the hierarchical

structure. Hence we choose to draw samples from the posterior distribution of

the fibres and other variables using Markov chain Monte Carlo (MCMC) methods.

Characteristics of interest can be estimated from these samples.
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Table 5.1: Summary of moves in birth-death MCMC

Event Variables
Updated

Acceptance
Probability

Frequency of
Event (Rate)

birth k,F, l,ω,Z,X,p 1 β

death k,F, l,ω,Z,X,p 1 δ1, ..., δk
Equation (5.4)

update ε k, υFO,F, ε,X,p Equation (5.29) rε(≈ 0.1)

update l F, l,Z,X,p Equation (5.35) rl(≈ 1)

move fibre F,ω,X,p Equation (5.31) rω(≈ 1)

update Z Z,X,p Equation (5.38) rZ(≈ 1)

split fibre k,F, l,ω,X,p Equation (5.82) rS(≈ 2)

join fibres k,F, l,ω,X,p Equation (5.83) rJ(≈ 2)

obtain sample - - ro(< 0.01)

A basic knowledge of Markov chain Monte Carlo methodology is assumed, particu-

larly the Metropolis-Hastings algorithm. Extensive background reading on MCMC’s

can be found in Gilks et al. [1995] and Brooks et al. [2011].

The starting point for our algorithm is a continuous time birth-death Markov chain

Monte Carlo (BDMCMC) in which fibres are created and die at random times

controlled by predetermined or calculated rates. This enables exploration of a wide

range of models with different numbers of fibres; the question of how to compare

and make inferences on models with different numbers of variables such as this, is

called the variable dimension problem. See Møller and Waagepetersen [2004] (and

also Preston, 1977) for an introduction to spatial Birth-Death processes for point

processes and Stephens [2000a] for an application of BDMCMC to the mixture model

context.

BDMCMC is a specific type of MCMC process where birth and death events occur

at random times, with rates chosen to ensure that detailed balance holds. This type

of MCMC, where events occur at random times rather than sequentially, is called

continuous-time MCMC or CTMCMC - a term introduced by Cappé et al. [2003].

CTMCMC algorithms and examples of their implementation are presented in Huber

[2011].

5.2 Details of the Birth-Death Markov Chain Monte

Carlo

We choose to fix the birth rate, β, and calculate an appropriate death rate to

maintain detailed balance; details of the calculation are given in Section 5.2.2. The
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alternative is to propose births at a variable rate, depending on the current state

of the chain. In principle, a birth rate may be defined so that the death rate is

constant. However, this is difficult to achieve in practice with the complex model

described here.

A variable t, initiated at 0, determines the algorithmic time of the BDMCMC; once

it has passed a predetermined threshold, the algorithm is halted. At any stage in

the BDMCMC, the waiting time until the next birth is exponentially distributed

with rate equal to the birth rate, similarly, the waiting time until the death of the

j-th fibre is exponentially distributed with rate δj . Any proposed move - birth or

death, is automatically accepted.

The algorithm for this BDMCMC is as follows. Let (F,θ) denote the current state

of k fibres and associated parameters. The following steps are repeated until time t

passes the predetermined threshold.

1. Calculate death rates δ1, ..., δk of the respective fibres.

2. Simulate u1, u2 ∼ Uniform(0, 1).

3. Set t = t− log (u1) / (β + δ1 + ...+ δk) (where β is the birth rate).

4. If u2 <
β

β+δ1+...+δk
, a birth occurs, otherwise a death occurs.

� Birth: Draw new fibre and parameters from birth density b(F, θ) and

append F to F, θ to θ. Return to step 1.

� Death: Draw a fibre Fj from F1, ..., Fk with probabilities δ1, ..., δk respec-

tively and remove fibre Fj from F, leaving {F1, ..., Fj−1, Fj+1, ..., Fk}.
Similarly, remove θj from θ. Return to step 1.

5.2.1 Birth Density

The birth density b(Fk+1, ωk+1, lk+1,Z
′,X′,p′) is constructed as follows. Recall that

the parametrisation of fibres is described in Section 3.2.1.

Birth events occur randomly at rate β. Upon the occurrence of a birth, the number

of fibres is updated from k to k + 1, and a new fibre is introduced by sampling a

reference point ωk+1 and lengths lk+1,1, lk+1,2 from the prior distributions P (ω), P (l)

respectively. Recall that the prior for the reference point is

P (ω) =
1

|W |
, (5.1)
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and the prior for the lengths is

P (lk+1|k + 1, λ) = P (lk+1,1|λ)P (lk+1,2|λ) where lk+1,· ∼ Exp(1/λ). (5.2)

The new fibre Fk+1 is then calculated by integrating the field of orientations ac-

cording to these parameters, and the set of fibres F = {F1, ..., Fk} is updated to

F′ = {F1, ..., Fk, Fk+1}. To ensure that the distribution of the lengths lk+1,1, lk+1,2

is independent of the respective directions in which the field of orientations is inte-

grated, lk+1,1 and lk+1,2 are independently and identically distributed.

If Fk+1 6⊆ W , which is to say the proposed fibre does not lie completely within W ,

then the fibre is re-sampled until Fk+1 ⊂W . This reduces edge effects as explained

in Section 3.2.2.

Data points are assigned to the new fibre and anchor points p′ are proposed with

proposal densities Qsig,birth(Z′|·) and Qaux,birth(X′,p′|·).

First, the signal/noise allocation (Z) is updated conditional on the new set of fibres

and the current allocation of the points to fibres, then the other auxiliary vari-

ables X and p are resampled depending also on the updated signal/noise allocation

(Z′).

In full, the birth density of fibre Fk+1 is proportional to

b(Fk+1, ωk+1, lk+1,Z
′,X′,p′) (5.3)

= P (ωk+1)P (lk+1)Qsig,birth(Z′|F′, l′, ε,Z,X,y, σdisp)

×Qaux,birth(X′,p′|F′,Z′,X,p,y, σdisp)1[Fk+1⊂W ]

where P (ωk+1) and P (lk+1) are prior densities of reference point ωk+1 and lengths

lk+1 respectively, and 1[·] is the indicator function.

5.2.2 Death Rates

A death rate δj is calculated for each fibre to ensure detailed balance holds and the

target distribution is the posterior density.
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When the death of fibre Fj occurs, the following variables are updated :

F 7→ F\Fj

l 7→ l\lj

ω 7→ ω\ωj

k 7→ k − 1

Z 7→ Z′

X 7→ X′

p 7→ p′.

The auxiliary variables Z,X, and p are proposed from densities Qsig,death(·) and

Qaux,death(·), details of which are given in Section 5.2.3.

To maintain detailed balance the death rates δj of fibre Fj must satisfy

δj =
β

k

π(F\Fj , l\lj ,ω\ωj , k − 1, υFO, ε,Z
′,X′,p′)

π(F, l,ω, k, υFO, ε,Z,X,p)

× b(Fj , ωj , lj ,X,p)

Qsig,death(Z′|F′, l′, ε,Z,X,y, σdisp)Qaux,death(X′,p′|F′,Z′,X,p,y, σdisp)
(5.4)

where π(·) is the posterior density.

Evaluation of the components gives

δj =
β

k

P (l\lj |k − 1, λ)

P (l|k, λ)

P (ω\ωj |k − 1)

P (ω|k)

P (k − 1|κ)

P (k|κ)

×
P (m|l\lj , η, αsignal, βsignal)

P (m|l, η, αsignal, βsignal)

P (X′|Z, l\lj)
P (X|Z, l)

P (Z′|ε)
P (Z|ε)

× P (p′|F\Fj ,X′, αDir)
P (p|F,X, αDir)

L(p′|σ2
disp,y)

L(p|σ2
disp,y)

(5.5)

× b(Fj , ωj , lj ,X,p)

Qsig,death(Z′|F′, l′, ε,Z,X,y, σdisp)Qaux,death(X′,p′|F′,Z′,X,p,y, σdisp)
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=
β

κ
exp

(
η
αsignal + βsignal

αsignal
lj,T

)
D(q′(p′), αDir)

D(q(p), αDir)

∏
i s.t. Z′i=0 l

′
T∏

i s.t. Zi=0 lT

×
∏

i s.t. Xi=j,Z′i=1

(
exp(−dist(p′i, yi)

2/(2σ2
disp))

exp(−dist(pi, yi)2/(2σ2
disp))

)

×
∏

i s.t. Xi=j,Z′i=0

1− εi
εi

1/|W |
exp(−dist(p′i, yi)

2/(2σ2
disp)) 1

2πσ2
disp


×

Qsig,birth(Z|F, l, ε,Z′,X′,y, σdisp)Qaux,birth(X,p|F,Z,X′,p′,y, σdisp)

Qsig,death(Z′|F′, l′, ε,Z,X,y, σdisp)Qaux,death(X′,p′|F′,Z′,X,p,y, σdisp)
, (5.6)

where lT and l′T are the total lengths of all fibres in the current and proposed fibre

sets respectively. The proposal densities Qsig,·(·) and Qaux,·(·) are defined in the

following section.

5.2.3 Updating Auxiliary Variables

Following the birth or death of a fibre we update auxiliary variables: Z to Z′, the

indicator of which component (signal/noise) each point is associated to; X to X′,

the indicator of which fibre each signal point is associated to; p to p′, the vector

(p1, ..., pm) where pi is the anchor point on the fibre that data point yi is associated

to.

First, the signal/noise indicator Z is drawn from proposal probabilityQsig,·(Z
′|F′, l, ε,

Z,X,y, σdisp), where the ‘·’ denotes ‘birth’ or ‘death’ depending on which move is

being proposed. This probability depends on the distance of each data point yi to

the fibres in F′ and the prior probability that yi is signal, denoted by εi.

Second, an anchor point is proposed for each signal point, drawing pi
′ and Xi

′ from

a density proportional to the likelihood L(p′i|yi, σ2
disp, Z

′
i = 1). The general proposal

density is

Qaux(p′i, X
′
i|F′, yi, σ2

disp, Z
′
i = 1) =

L(p′i|yi, σ2
disp, Z

′
i = 1)∑k

j=1

∫
F ′j
L(p|yi, σ2

disp, Z
′
i = 1)dp

. (5.7)
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The normalising constant is written

N(yi,F
′, σ2

disp, Z
′
i = 1) :=

k∑
j=1

∫
F ′j

L(p|yi, σ2
disp, Z

′
i = 1)dp (5.8)

=
L(p′i|yi, σ2

disp, Z
′
i = 1)

Qaux(p′i, X
′
i|F′, yi, σ2

disp, Z
′
i = 1)

, (5.9)

a term that is also used in proposal probabilities for Z. Note that this is not a

sample from the full conditional of p and X as the proposal density does not involve

the Dirichlet distribution of p or the prior probabilities of allocating points to fibres:

P (Xi = j|l, Zi = 1) ∝ lj,T .

This is the general construction for the proposal of Z′,X′ and p′. Alterations are

made for birth and death moves.

Updating p and X following a birth

Following a birth, the update of p and X is restricted, allowing only the reallocation

of points to the new fibre Fj . Noise or signal points that lie near the new fibre are

likely to be reallocated to it. If point yi is allocated to the new fibre, its anchor

point pi is sampled from the set of all points on fibre Fj .

As before, the proposal density of p′i is proportional to the likelihood L(p′i|yi, σ2
disp, Z

′
i =

1), but the normalising constant is now

Nj(yi, F
′
j , σ

2
disp, X

′
i = j) :=

∫
F ′j

L(p|yi, σ2
disp, Z

′
i = 1)dp. (5.10)

Once a new fibre Fj has been proposed, pi, Xi and Zi are updated according to the

following rules:

1. If Zi = 0, then Z ′i = 1 and X ′i = j with probability

Qsig,birth(Z ′i = 1|F′, l, ε, Zi = 0, σdisp) (5.11)

=
Nj(yi, F

′
j , σ

2
disp, X

′
i = j)εi/lj,T

Nj(yi, F ′j , σ
2
disp, X

′
i = j)εi/lj,T + (1− εi)/|W |

,

otherwise Z ′i = 0.

2. If Zi = 1, then Z ′i = 1 (Qsig,birth(Z ′i = 1|F′, l, ε, Zi = 1, σdisp) = 1) and X ′i = j
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with probability

Nj(yi, F
′
j , σ

2
disp, X

′
i = j)/lj,T

Nj(yi, F ′j , σ
2
disp, X

′
i = j)/lj,T +NXi(yi, F

′
Xi
, σ2

disp, X
′
i = Xi)/lXi,T

, (5.12)

otherwise X ′i = Xi.

3. If the data point has been assigned to the new fibre (X ′i = j), the anchor point

pi is sampled from the density

L(p′i|yi, σ2
disp, Z

′
i = 1)

Nj(yi, F ′j , σ
2
disp, X

′
i = j)

. (5.13)

The combined proposal density for the auxiliary variables following a birth is

Qsig,birth(Z′|F′, l′, ε,Z,X,y, σdisp)Qaux,birth(X′,p′|F′,Z′,X,p,y, σdisp) = (5.14)

m∏
i=1

(
1[Z′i=0]

1[Zi=1]L(p′i|yi, σ2
disp, Z

′
i = 1)εi/lj,T + 1[Zi=0](1− εi)/|W |

Nj(yi, F ′j , σ
2
disp, X

′
i = j)εi/lj,T + (1− εi)/|W |

+ 1[Z′i=1]

(5.15)

×
1[Xi=j]L(p′i|yi, σ2

disp, Z
′
i = 1)/lj,T + 1[Xi 6=j]NXi(yi|FXi , σ2

disp, X
′
i = Xi)/lXi,T

Nj(yi, F ′j , σ
2
disp, X

′
i = j)/lj,T +NXi(yi, FXi , σ

2
disp, X

′
i = Xi)/lXi,T

)
.

Updating p and X following a death

If a fibre dies then any points allocated to that fibre must be reallocated. Each

point is either allocated to another fibre or to the noise component.

In full, auxiliary variables Z′, X′ and p′ are updated according to the following

rules:

1. If Zi = 0 then Z ′i = Zi:

Qsig,death(Z ′i|F′, l′, ε, Zi = 0,X,y, σdisp) = 1[Z′i=0]. (5.16)

2. If Zi = 1 and Xi 6= j then Z ′i = Zi, X
′
i = Xi and p′i = pi:

Qsig,death(Z ′i|F′, l′, ε, Zi = 1, Xi 6= j,y, σdisp) = 1[Z′i=1] (5.17)

and

Qaux,death(X ′i = Xi, p
′
i = pi|F′, Zi = 1, Xi 6= j,p,y, σdisp) = 1[Z′i=1]. (5.18)
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3. If Xi = j the point remains in the signal component with probability

Qsig,death(Z ′i = 1|F′, l′, ε, Zi = 1, Xi = j,y, σdisp) (5.19)

=
N(yi,F

′, σ2
disp, Z

′
i = 1)εi

N(yi,F′, σ2
disp, Z

′
i = 1)εi + (1− εi)/|W |

,

otherwise Z ′i = 0, the point is allocated to noise.

4. If Xi = j and the point remains in the signal component (Z ′i = 1), then it

is reallocated to another fibre by sampling p′i and X ′i from Qaux(p′i, X
′
i|·) as

defined in Equation (5.7).

The combined proposal density of the auxiliary variables following the death of a

fibre is

Qsig,death(Z′|F′, l′, ε,Z,X,y, σdisp) (5.20)

×Qaux,death(X′,p′|F′,Z′,X,p,y, σdisp)

=
m∏
i=1

(
1[Xi=j]

1[Z′i=1]L(p′i, |yi, σ2
disp, Z

′
i = 1)εi + 1[Z′i=0](1− εi)/|W |

N(yi,F′, σ2
disp, Z

′
i = 1)εi + (1− εi)/|W |

)
.

The primary motivation for not reallocating all points following a birth or death is

to localise the move. The consequence is that the birth or death of one fibre has

little effect on the death rates of other fibres.

Practical Implementation of Updating Auxiliary Variables

When drawing Xi, pi from Qaux(·), the fibre Xi is sampled first, then the anchor

point pi.

Following from Equation (5.7), point yi is allocated to fibre Fj with probability∫
F ′j
L(p|yi, σ2

disp, Z
′
i = 1)dp

N(yi,F′, σ2
disp, Z

′
i = 1)

. (5.21)

The integral is estimated by summing over a discrete set of points, Ξj = {ξj,1, ξj,2...}
regularly spaced at unit-lengths along the fibre Fj :∫

F ′j

L(p|yi, σ2
disp, Z

′
i = 1)dp ≈

∑
l=1,...

L(pi = ξj,l|yi, σ2
disp, Z

′
i = 1). (5.22)

Storing fibres as a sequence of piece-wise linear segments of unit-length provides
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a natural choice for the ξj,l: the midpoint of each segment. It also reduces the

computational time required to recalculate fibres.

Anchor point pi is proposed by drawing ξj,l with probability

L(pi = ξj,l|yi, σ2
disp, Z

′
i = 1)∑

l=1,... L(pi = ξj,l|yi, σ2
disp, Z

′
i = 1)

, (5.23)

and sampling pi from the density proportional to L(pi = ξj,l|yi, σ2
disp, Z

′
i = 1) condi-

tional that it lies on the linear segment with midpoint ξj,l.

5.3 Additional Moves

It is highly desirable to add extra moves to the BDMCMC process to improve

mixing. Some possible moves which were all utilised in the examples in Section 6

include

� Moving a fibre by a small amount (by perturbing the reference point),

� Resampling the lengths of a fibre (while keeping the reference point fixed),

Each of these events occur at some predefined rate, whence they are proposed and

either accepted or rejected according to the Metropolis Hastings probability.

We may also wish to update other model variables, giving more flexibility and

improving the algorithm’s exploration of the sample space. The additional variable

updates used in the examples in Section 6 include

� Proposing new signal-noise allocations of the data (Z),

� Proposing new signal probabilities (ε) - this move leads to an update in the

prior for the field of orientations due to the empirical Bayes step, hence all

fibres are resampled.

Hyperprior parameters, such as the constant of proportionality η in the prior for

the Poisson-distributed number of points or σdisp governing the deviation of points

from fibres may also be updated. We have chosen not to update any hyperprior

parameters in order to reduce complexity of the model.

Generally it is not feasible to draw from full conditional distributions, so we use

Metropolis-Hastings updates.

Details of these moves are given in the following sections.
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5.3.1 Updating Signal Probabilities

Updating the probability εi that point yi is signal necessarily requires the recalcu-

lation of the field of orientations. This is because the empirical Bayes relationship

between y, ε and υFO is deterministic. Indeed, this provides a convenient means of

updating the field of orientations.

The proposed update is accepted or rejected according to the Metropolis-Hastings

acceptance probability.

Proposal Density

An update of ε is proposed from the conditional distribution P (ε|Z, αsignal, βsignal,m).

For i = 1, ...,m,

ε′i ∼ Beta(αsignal + 1[Zi=1], βsignal + 1[Zi=0]) (5.24)

where 1[Zi=·] is the indicator function.

Given ε′ the field of orientations υ′FO is proposed deterministically through the

empirical Bayes prior,

υFO(y,ε,hFO,σFO) 7→ υ′FO = υ′FO(y,ε′,hFO,σFO), (5.25)

where υFO(y,ε,hFO,σFO) indicates the orientation field as estimated in Section 4.4.2.

The set of fibres is also deterministically updated without altering reference points

ω or lengths l:

F(ω, l, υFO(y,ε,hFO,σFO)) 7→ F′ = F′(ω, l, υ′FO(y,ε′,hFO,σFO)). (5.26)

The notation corresponds with that of Section 3.2.2, so that each fibre in the set

F(ω, l, υFO(y,ε,hFO,σFO)) is determined by Fj(ωj , lj , υFO(y,ε,hFO,σFO)). If any fibre in

F′ does not completely lie within W the proposed move is rejected, as discussed in

Section 3.2.2.

Auxiliary variables X′ and p′ are proposed from densityQaux(p′i, X
′
i|F′, yi, σ2

disp, Z
′
i =

1), as given in section 5.2.3. Note that we do not update Z, the allocation of points

to signal or noise, so Z ′i = Zi.

82



Hence the proposal density is

Qε(ε
′, υ′FO,F

′,P′,X′)

=

m∏
i=1

(ε′i)
αsignal+1[Zi=1]−1(1− ε′i)

βsignal+1[Zi=0]−1

B(αsignal + 1[Zi=1], βsignal + 1[Zi=0])
(5.27)

×
∏

i s.t. Z′i=1

Qaux(p′i, X
′
i|F′, yi, σ2

disp, Z
′
i = 1)

k∏
j=1

1[Fj⊂W ]

where B(·, ·) is the Beta function.

Acceptance Probability

The proposed state is accepted with probability

min

{
1,
π(F′, l,ω, k, υ′FO, ε

′,Z,X′,p′)

π(F, l,ω, k, υFO, ε,Z,X,p)

Qε(ε, υFO,F,P,X)

Qε(ε′, υ′FO,F
′,P′,X′)

}
. (5.28)

The product of density ratios evaluates to

P (F′|ω, l, υ′FO)

P (F|ω, l, υFO)

P (ε′|m,αsignal, βsignal)

P (ε|m,αsignal, βsignal)

P (Z|ε′)
P (Z|ε)

P (X′|Z, l)
P (X|Z, l)

P (p′|F′,X′, αDir)
P (p|F,X, αDir)

×
L(p′|σ2

disp,y)

L(p|σ2
disp,y)

m∏
i=1

1[Zi=Z′i]
ε
αsignal+1[Zi=1]−1

i (1− εi)βsignal+1[Zi=0]−1

B(αsignal + 1[Zi=1], βsignal + 1[Zi=0])

×
m∏
i=1

B(αsignal + 1[Zi=1], βsignal + 1[Zi=0])

(ε′i)
αsignal+1[Zi=1]−1(1− ε′i)

βsignal+1[Zi=0]−1

×
∏

i s.t. Zi=1

L(p′i|yi, σ2
disp, Z

′
i = 1)

N(yi,F′, σ2
disp, Z

′
i = 1)

N(yi,F, σ
2
disp, Zi = 1)

L(pi|yi, σ2
disp, Zi = 1)

k∏
j=1

1[Fj⊂W ]

=
D(q′(p′), αDir)

D(q(p), αDir)

∏
i s.t. Zi=1

1[Zi=Z′i]

N(yi,F, σ
2
disp, Zi = 1)

N(yi,F′, σ2
disp, Z

′
i = 1)

. (5.29)

The term N(yi,F, σ
2
disp, Zi = 1) is defined in Equation (5.8), and D(q(p), αDir) is

given in Section 3.2.2.

This move can be adapted to optimise the acceptance rate. Each εi is updated

with probability ρε, otherwise it keeps its value ε′i = εi. Tests show that choosing

ρε = min{1/2, 10/m}, where m is the expected number of data points, gives a

reasonable acceptance rate.
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Updating the field of orientations is one of the computationally slowest steps in the

algorithm. This is due in part to the Fast-Fourier Transform calculation on large

matrices (used to evaluate the kernel-smoothed tensor field), and also because every

tensor must be eigen-decomposed. Therefore a trade-off is made between infrequent

proposals which ensure that the BDMCMC is not too slow, and proposing the move

sufficiently often that the chain mixes well. In the examples of Chapter 6, a proposal

rate of 10% of the birth rate was used.

5.3.2 Moving a Fibre: Perturbation of the Reference Point

Making small adjustments to the location of a fibre allows faster movement between

similar fibres than a pure birth-death process. This move is an extension of the

shift move described in Huber [2011], where an element of a Poisson point process

is chosen at random and replaced by a new element.

A single fibre Fj is moved by proposing a perturbation of the reference point ωj

while preserving the lengths lj . The new fibre, together with the remaining k − 1

fibres are accepted with the appropriate Metropolis-Hastings probability.

Proposal Density

The fibre to be moved is picked uniformly at random from the set of fibres {F1, ..., Fk}.
The proposed reference point ω′j , is drawn from an isotropic bivariate normal distri-

bution centred at the current reference point ωj with variance σ2
move. The auxiliary

variables X′ and p′ are proposed from proposal density Qaux(p′i, X
′
i|F′, yi, σ2

disp, Z
′
i =

1) as given in Section 5.2.3. We choose not to update Z, the allocation of points to

signal or noise.

In summary, changes to variables are proposed as follows:

ωj 7→ ω′j ∼ MVN(ωj , σ
2
moveI2)

ω 7→ ω′ = {ω1, ..., ωj−1, ω
′
j , ωj+1, ..., ωk}

F 7→ F′ = F′(υFO, l,ω
′)

X 7→ X′

p 7→ p′.

If ω′j /∈W or if Fj 6⊂W the proposed move is automatically rejected. We make the

approximation that the normalising constant in the forward proposal (of proposing
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F ′) is equal to the normalising constant of the backwards proposal (or proposing

F ). The slight error, arising from the edge effects induced by rejecting fibres and

reference points that lie outside W is moderated by proposing small changes in the

reference point, i.e. using a small value of σmove. Implementation of the BDMCMC

has shown no evidence of this approximation affecting the chain’s convergence or

target density.

Acceptance Probability

The Metropolis-Hastings acceptance probability of this move is given by the mini-

mum of 1 and

π(F′, l,ω′, k, υFO, ε,Z,X
′,p′)

π(F, l,ω, k, υFO, ε,Z,X,p)

Qmove(ω,F,p,X)

Qmove(ω′,F′,p′,X′)

=
P (F′|ω′, l, υFO)P (ω′|k)P (X′|Z, l)P (p′|F′,X′, αDir)L(p′|σ2

disp,y)

P (F|ω, l, υFO)P (ω|k)P (X|Z, l)P (p|F,X, αDir)L(p|σ2
disp,y)

(5.30)

× k

k

φωj ,σ2
moveI2

(ω′j)

φω′j ,σ2
moveI2

(ωj)

∏
i s.t. Zi=1

L(pi|yi, σ2
disp, Zi = 1)

L(p′i|yi, σ2
disp, Z

′
i = 1)

N(yi,F
′, σ2

disp, Zi = 1)

N(yi,F, σ2
disp, Zi = 1)

1[Fj⊂W ]

=
D(q′(p′), αDir)

D(q(p), αDir)

∏
i s.t. Zi=1

N(yi,F
′, σ2

disp, Zi = 1)

N(yi,F, σ2
disp, Zi = 1)

(5.31)

where φµ,σ2I2 is the bivariate normal density function with mean µ and covariance

matrix σ2I2, andN(yi, . . .) is the normalising constant given in Equation (5.8).

The acceptance rate can be controlled by changing the variance σ2
move in the proposal

of ωj . Tests indicate that a value of σmove ≈
σdisp

2 performs well.

5.3.3 Updating Fibre Lengths

Like the previous move, updating the length of a fibre allows the chain to explore

a number of possible fibres without waiting for the birth of a fibre in the same

location.

Proposal Density

An update to the lengths lj = (lj,1, lj,2) is proposed by choosing either lj,1 or lj,2

and adding a normally distributed perturbation. The choices of which fibre to

update and which of lj,1 or lj,2 to perturb are drawn uniformly at random. In
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summary,

j ∼ Uniform({1, ..., k})

u ∼ Norm(0, σ2
length)

lj 7→ lj
′ =

{
(lj,1 + u, lj,2) with probability 1/2

(lj,1, lj,2 + u) with probability 1/2.

If either l′j,1 or l′j,2 are negative, the move is immediately rejected. Otherwise, we

propose a new fibre Fj
′

Fj 7→ Fj
′ = Fj

′(υFO, l
′
j , ωj).

If the change in length has resulted in F ′j 6⊂W the proposed move is rejected.

All points are reallocated to either noise or signal. The proposal probability mass

function for Z is

Qsig,length(Z′|F′, ε,y, σ2
disp), (5.32)

where the probability a point is allocated to signal, regardless of its current state

and independent of other points, is

εiN(yi,F
′, σ2

disp, Z
′
i = 1)/lT

εiN(yi,F′, σ2
disp, Z

′
i = 1)/lT + (1− εi)/|W |

. (5.33)

The term N(yi,F
′, σ2

disp, Z
′
i = 1) is defined in Equation (5.8), and lT is the total

length of all fibres. Otherwise the point is allocated to noise.

Finally Xi and pi are updated for all data points in the signal component by drawing

them from Qaux(p′i, X
′
i|F′, yi, σ2

disp, Z
′
i = 1) given in Equation (5.7).
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Acceptance Probability

Without loss of generality assume lj,1 is the length updated. The acceptance prob-

ability is given by

min

{
1,
π(F′, l′,ω, k, υFO, ε,Z,X

′,p′)

π(F, l,ω, k, υFO, ε,Z,X,p)

Ql,F,p,X

Ql′,F′,p′,X′

}
(5.34)

=
P (l′|k, λ)P (F′|ω, l′, υFO)P (m|l′, η)P (Z′|ε)P (X′|Z, l′)P (p′|F′,X′, αDir)
P (l|k, λ)P (F|ω, l, υFO)P (m|l, η)P (Z|ε)P (X|Z, l)P (p|F,X, αDir)

×
L(p′|y, σ2

disp)

L(p|y, σ2
disp)

φl′j,1,σ2
length

(lj,1)

φlj,1,σ2
length

(l′j,1)

2k

2k

Qsig,length(Z|F, ε,y, σ2
disp)

Qsig,length(Z′|F′, ε,y, σ2
disp)

×
m∏

i s.t. Z′i=1

N(yi,F
′, σ2

disp, Z
′
i = 1)

L(p′i, |yi, σ2
disp, Z

′
i = 1)

m∏
i s.t. Zi=1

L(pi, |yi, σ2
disp, Zi = 1)

N(yi,F, σ2
disp, Zi = 1)

1[F⊂W ]

= exp

(
(lj,T − l′j,T )

(
1/λ+ η

αsignal + βsignal

αsignal

))
D(q′(p′), αDir)

D(q(p), αDir)

×
m∏
i=1

εiN(yi,F
′, σ2

disp, Z
′
i = 1) + (1− εi)l′T /|W |

εiN(yi,F, σ2
disp, Zi = 1) + (1− εi)lT /|W |

(5.35)

where φµ,σ2 is a univariate normal density function with mean µ and variance

σ2.

The rate of acceptance is controlled by varying σ2
length. Tests indicate that σlength ≈

λ/20 gives a reasonable acceptance rate.

5.3.4 Updating Allocation of Points to Noise/Signal

It is beneficial to the mixing of the BDMCMC to include a move which updates the

noise and signal allocations without also changing properties of the fibres.

Proposal Density

Each point yi is allocated to the signal or noise component independent of its current

state Zi. Auxiliary variables Xi and pi are then updated for points that have been

allocated to signal.

The allocation of points to noise (Zi = 0) or signal (Zi = 1) is updated as fol-
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lows,

Zi 7→ Z ′i =

 1 with prob.
εiN(yi,F,σ

2
disp,Zi=1)/lT

εiN(yi,F,σ2
disp,Zi=1)/lT+(1−εi)/|W |

0 with prob. (1−εi)/|W |
εiN(yi,F,σ2

disp,Zi=1)/lT+(1−εi)/|W |

(5.36)

where lT =
∑k

j=1 lj,T is the total length of all fibres and N(yi,F, σ
2
disp, Zi = 1) is

defined in Equation (5.8).

Auxiliary variables pi
′ and X ′i are drawn from Qaux(p′i, X

′
i|F′, yi, σ2

disp, Z
′
i = 1) given

in Equation (5.7).

Acceptance Probability

The Metropolis-Hastings acceptance probability is equal to the minimum of 1 and

π(F, l,ω, k, υFO, ε,Z
′,X′,p′)

π(F, l,ω, k, υFO, ε,Z,X,p)

QZ(Z,X,p)

QZ(Z′,X′,p′)

=
∏
i

(
P (Z ′i|εi)P (X ′i|Z ′i,L)P (p′i|X ′i,F)L(p′i|yi, σ2

disp)

P (Zi|εi)P (Xi|Zi,L)P (pi|Xi,F)L(pi|yi, σ2
disp)

×
εiN(yi,F, σ

2
disp, Zi = 1)1[Zi=1]/lT + 1−εi

|W | 1[Zi=0]

εiN(yi,F, σ2
disp, Z

′
i = 1)1[Z′i=1]/lT + 1−εi

|W | 1[Z′i=0]

)
(5.37)

×
∏

i s.t. Zi=1

L(pi, |yi, σ2
disp, Zi = 1)

N(yi,F, σ2
disp, Zi = 1)

∏
i s.t. Z′i=1

N(yi,F, σ
2
disp, Z

′
i = 1)

L(p′i, |yi, σ2
disp, Z

′
i = 1)

=
D(q′(p′), αDir)

D(q(p), αDir)
. (5.38)

This choice of proposal density produces a reasonable acceptance rate if αDir is not

too large.

5.3.5 Split and Join Moves

To improve the mixing of the MCMC, a second pair of reversible moves - splits

and joins, are implemented. A split move is proposed by selecting a fibre from

{F1, ..., Fk}, splitting the fibre at a random point along its length, and perturbing

the resultant fibres so that they do not touch. The reverse (a join move) is also

introduced in order to maintain the reversibility of the BDMCMC.
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Proposal Density for a Split Move

Henceforth, we simplify the notation of this section to help clarify the acceptance

probability calculations. In particular, we consider the case of a single fibre splitting

to two fibres, although the work in this section applies to any general set of fibres.

The initial fibre F has lengths l1, l2 and reference point ω. The proposed fibres F1

and F2 have lengths l1,1, l1,2 (resp. l2,1, l2,2) and reference point ω1 (resp. ω2). The

total length of fibre F is denoted lF = l1 + l2 and similarly for l1,F (the length of

F1) and l2,F (the length of F2). Underlined variables such as ω indicate locations

in the window W . As the field of orientations is fixed for join and split moves, it is

omitted from the notation; the fibre F is now written F = F (ω, l1, l2).

The field of orientations maps each point in W to an orientation (or undirected

direction); for each orientation there are two possible directions of integration. The

assumption is made that the field of orientations is locally smooth so that a direction

of ‘positive’ orientation which is continuous in a neighbourhood of F can be iden-

tified. We choose the direction of integration corresponding to the length l2 from

reference point ω as the positive direction (the direction corresponding to length l1

is thus the negative direction).

Hereafter, for j = 1, 2, F (ωj , lj,1, lj,2) defines the fibre obtained by integrating the

field of orientations from ωj to a length lj,2 in the positive direction, and a length lj,1

in the negative direction. The matter of choosing a positive direction of orientation

is not encountered in birth or death moves as the lengths lj,1 and lj,2 are identically

and independently distributed.

We introduce a function ϕ : W × (−∞,∞) 7→ R2 where ϕ(x, d) is the point reached

after integrating the field of orientations in the positive direction from x to a distance

d. For example ϕ(x, 0) = x, and ϕ(ω,−l1) and ϕ(ω, l2) identify the end points of

fibre F = F (ω, l1, l2). The fibre F can now be written F (ω, l1, l2) = {ϕ(ω, d) : −l1 ≤
d ≤ l2}.

In the general case, where there is more than one fibre in the initial state, fibre

Fj ∈ F is chosen by drawing j from a proposal distribution over {1, ..., k}. For

simplicity we use a uniform distribution over the discrete set; each fibre is chosen

with probability 1/k.

A random number usplit ∼ Beta(αsplit,p, βsplit,p) is generated, and the point at which

the fibre splits is given by

p
split

= ϕ(ω,−l1 + usplitlF ). (5.39)

Fibres are independent of the choice of positive direction of orientation; to enforce
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symmetry in the proposal distribution we choose αsplit,p = βsplit,p.

Two new end points e1, e2 are proposed, both independently perturbed from p
split

.

They are drawn from a bivariate normal distribution with covariance matrix σ2
splitI2,

centred at p
split

. The proposed fibres are

F1 = F (e1, lFusplit, 0) (5.40)

F2 = F (e2, 0, lF (1− usplit)). (5.41)

Reference points ω1 and ω2 are sampled for the two new fibres: random numbers u1,1

and u2,1 are generated from a Beta(αsplit,ω, βsplit,ω) distribution and the proposed

reference points are

ω1 := ϕ(e1,−(1− u1,1)usplitlF ) (5.42)

ω2 := ϕ(e2, u2,1(1− usplit)lF ). (5.43)

The values of ω1, ω2 and fibres F1, F2 determine the proposed lengths l1,1, l1,2, l2,1, l2,2.

We choose αsplit,ω = βsplit,ω for symmetry. If either F1 6⊂W or F2 6⊂W the proposed

split move is rejected.

Finally, auxiliary variables Xi and pi are drawn from Qaux(p′i, X
′
i|F′, yi, σ2

disp, Z
′
i = 1)

as defined in Equation (5.7) for all signal points yi. Note that we do not reallocate

points to noise or signal, hence Z remains fixed.

In summary, the changes in variables are proposed as follows:

k 7→ k + 1 (5.44)

usplit ∼ Beta(αsplit,p, βsplit,p) (5.45)

u1,1, u2,1 ∼ Beta(αsplit,ω, βsplit,ω) (5.46)

l1,1 := u1,1usplitlF (5.47)

l1,2 := (1− u1,1)usplitlF (5.48)

l2,1 := u2,1(1− usplit)lF (5.49)

l2,2 := (1− u2,1)(1− usplit)lF (5.50)
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p
split

:= ϕ(ω,−l1 + usplitlF ) (5.51)

e1 ∼ MVN(p
split

, σ2
splitI2) (5.52)

e2 ∼ MVN(p
split

, σ2
splitI2) (5.53)

F1 := F (e1, usplitlF , 0) (5.54)

F2 := F (e2, 0, (1− usplit)lF ) (5.55)

ω1 := ϕ(e1,−(1− u1,1)usplitlF ) (5.56)

ω2 := ϕ(e2, u2,1(1− usplit)lF ) (5.57)

X 7→ X′ (5.58)

p 7→ p′. (5.59)

Proposal Density for Join Move

The join move is simply the reverse of a split move. From an initial state with fibres

F1, F2 a new fibre F is proposed with the same associated lengths and reference

points as the corresponding fibres in the split move.

For an initial state containing k fibres, there are 4k(k − 1) possible pairs of end

points of different fibres. Most of these pairs are too far apart to result from a split

so we identify a set of plausible pairs of end points, and choose a pair from this

set. This reduces the number of rejected proposals. If the distance between a pair

of fibre end-points is small enough that they could have arisen from a split move

with non-negligible probability, they are considered a possible join-pair. Explicitly,

a threshold td on the maximum distance between end points is chosen, and all pairs

closer than this threshold are added to the set of possible join-pairs.

The implication is that a proposed split move will be rejected if the end points e1

and e2 are further apart than td.

This approximation results in a small error in the normalising constants of the

proposal distribution of e1, e2 and p
split

. However, by choosing a sufficiently large

value of td, we can make this error arbitrarily small. For example, with a variance

parameter of σ2
split = 1 and a threshold of td = 3, the error in the normalising

constant, approximated by 1, is around 0.0018. In order to control the low error,

the threshold must be increased proportionally to σsplit.

From the list of possible join-pairs, one is selected uniformly at random, represented
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by a pair of end points e1 and e2. The split point p
split

is drawn from a bivariate

normal distribution centred at the Euclidean mean of these end points.

The proposed fibre is F := F (p
split

, l1,F , l2,F ), and the new reference point is ω =

ϕ(p
split

,−(l1,F )+v(l1,F + l2,F )) where v ∼ Beta(αsplit,ω, βsplit,ω). Auxiliary variables

Xi and pi are updated from the proposal density Qaux(pi, Xi|F, yi, σ2
disp, Zi = 1),

given in Section 5.2.3. Noise and signal allocations are not resampled.

The proposed state is summarised as follows

p
split
∼ MVN((e1 + e2)/2,

σ2
split

4
I2) (5.60)

v ∼ Beta(αjoin,ω, βjoin,ω) (5.61)

l1 := v(l1,F + l2,F ) (5.62)

l2 := (1− v)(l1,F + l2,F ) (5.63)

F := F (p
split

, l1,F , l2,F ) (5.64)

ω = ϕ(p
split

,−(l1,F ) + v(l1,F + l2,F )) (5.65)

X′ 7→ X (5.66)

p′ 7→ p. (5.67)

The two states, initial and proposed, for the reversible pair of moves, splits and

joins, are depicted graphically in Figure 5.3.5.

Acceptance Probability of a Split Move

Join and split moves, like birth and death moves, change the dimension of the model.

Details of the calculation of acceptance probabilities for such moves are outlined in

Green [1995].

The dimensionality of each move is equal to the sum of the total dimension of the

variables in the initial state and the total dimension of the random variables gener-

ated in the proposal step. The split and join moves must have equal dimensionality

for reversibility to hold.

Excluding the variables that do not change from the initial state and the proposed
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Figure 5.1: The two states involved in a split/join move, with end points and refer-
ence points indicated.

state, we have:

(θ; u)
split−−→ (θ′; u′) (5.68)

(ω, l1, l2,p,X;usplit, u1,1, u2,1, e1, e2,up′,X′) (5.69)

split−−→ (ω1, ω2, l1,1, l1,2, l2,1, l2,2,p,
′X′; p

split
, v,vp,X)

where vp,X and up′,X′ are the random numbers generated during the proposals of

p,X and p′,X′ respectively.

The acceptance probability of the split move is

min

{
1,
π(F′, (l1,1, l1,2), (l2,1, l2,2),ω′, k + 1,X′,p′)Qjoin(p

split
, v)

π(F, (l1, l2),ω, k,X,p)Qsplit(usplit, u1,1, u2,1, e1, e2)

∣∣∣∣∂(θ′; u′)

∂(θ; u)

∣∣∣∣
}
(5.70)

where Qsplit(·) and Qjoin(·) are proposal densities and
∣∣∣∂(θ′;u′)
∂(θ;u)

∣∣∣ is the Jacobian de-

terminant of the bijective function mapping (θ; u) to (θ′; u′).

Let ne be the number of possible end point configurations for a join move in the

proposed resultant state. The split move acceptance probability is the minimum of
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1 and

π(F′, (l1,1, l1,2), (l2,1, l2,2),ω′, k + 1,X′,p′)

π(F, (l1, l2),ω, k,X,p)

Q(p
split

, v)

Q(usplit, u1,1, u2,1, e1, e2)

×
Qaux(pi, Xi|F, yi, σ2

disp, Zi = 1)

Qaux(p′i, X
′
i|F′, yi, σ2

disp, Z
′
i = 1)

∣∣∣∣∂(θ′; u′)

∂(θ; u)

∣∣∣∣
=

κ

k + 1

1

|W |λ2

D(q′(p′), αDir)

D(q(p), αDir)

rJ
rS

k

ne

∏
i s.t. Zi=1

(
lX′i,F

lXi,F

N(yi,F, σ
2
disp, Zi = 1)

N(yi,F′, σ2
disp, Z

′
i = 1)

)

× 8πσ2
split exp

(
(e1 − psplit

)2 + (e1 − psplit
)2 − 4((e1 + e2)/2− p

split
)2

2σ2
split

)

× fBeta(v, αjoin,ω, βjoin,ω)

fBeta(usplit, αsplit,p, βsplit,p)fBeta(u1,1, αsplit,ω, βsplit,ω)fBeta(u2,1, αsplit,ω, βsplit,ω)

×
∣∣∣∣∂(θ′; u′)

∂(θ; u)

∣∣∣∣ (5.71)

where rJ , rS are respectively the rates of proposals of join and split moves, fBeta(·, α, β)

is the Beta density function with parameters α and β, and N(yi,F, σ
2
disp, Zi = 1) is

defined in Equation (5.8). The variable v, used in the reverse (join) move to sample

the location of start point ω along the initial fibre, is calculated directly from ω and

F . Similarly psplit is determined from fibre F and usplit.

The Jacobian matrix under this parametrisation,∣∣∣∣∣∂(ω1, ω2, l1,1, l1,2, l2,1, l2,2,p
′,X′; p

split
, v,v′p,X)

∂(ω, l1, l2,p,X;usplit, u1,1, u2,1, e1, e2,up′,X′)

∣∣∣∣∣ (5.72)

is very large. It is not written in full here. Most partial derivatives are calculated

directly from the split move summary in equation (5.44). The non-trivial partial

derivatives are given below.

The following partial derivatives involve ϕ:

∂(ωj)

∂(l1)
,
∂(ωj)

∂(l2)
,
∂(ωj)

∂(usplit)
and

∂(ωj)

∂(u·,1)
(5.73)

for j = 1, 2. These terms disappear in the Jacobian determinant so no further

evaluation is necessary.

The partial derivatives
∂(ω1)

∂(e1)
=
∂ϕ(e1, usplitlFu1,1)

∂(e1)
(5.74)
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and
∂(ω2)

∂(e2)
=
∂ϕ(e2, (1− usplit)(lF )u2,1)

∂(e2)
(5.75)

do not cancel in the calculation of the Jacobian determinant. For a field of constant

orientation, a translation in e1 (respectively e2) will directly result in a translation

the location of ω1 (respectively ω2), and these partial derivatives are identity ma-

trices. However, for a general field of orientations the effect of e1 on ω1 is not so

trivially calculated.

By definition, ϕ(x, l) is the solution f = ϕ to the differential equation

∂f(x, l)

∂l
= υFO(f(x, l)) (5.76)

for x ∈ W , f : W × (−∞,∞) 7→ W . Hence ϕ(x, l) can be approximated using the

Euler method: ϕ(x, l) ≈ xn where xn is iteratively defined by

x0 := x (5.77)

xi = g(xi−1) := xi−1 +
l

n
υFO(xi−1) for i ∈ {1, ..., n}

for some choice of n > 0. By the chain rule, the Jacobian ∂ϕ(x,l)
∂x is

Jx(ϕ) ≈ Jxn−1
(g)Jxn−2

(g) . . . Jx0(g) (5.78)

where Jxi(g) is the Jacobian ∂g(x,l)
∂x evaluated at xi. The Jacobian matrices evaluate

to

Jxi(g) = I2 +
l

n

∂

∂x
υFO(xi). (5.79)

The derivative of the field of orientations can be estimated directly.

Partial derivatives
∂(ω2)
∂(e2) and

∂(p
split

)

∂(ω) are evaluated similarly.

In practice, for most smooth fields of orientations, the contribution of
∂(ω1)
∂(e1) is negligi-

ble, in spite of the additional computational time required for its evaluation. For this

reason we choose to omit these terms in the implementation of the algorithm.

The other non-trivial terms are the partial derivatives involving vp,X, up′,X′ , p and

X. The remaining variables in θ′ and u′ are independent of vp,X, up′,X′ , p and X

and, as variables Xi and pi are drawn identically and independently of Xj , pj for

i 6= j it suffices to calculate
∂(Xi,pi,up′,X′,i)

∂(X′i,p
′
i,vp,X,i)

. The terms vp,X,i and , up′,X′,i are the

random numbers used in the proposals of pi, Xi and p′i, X
′
i respectively.
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The partial derivatives ∂(Xi,pi)
∂(X′i,p

′
i)

and
∂(up′,X′,i)

∂(vp,X,i)
are both zero, and

∂(Xi, pi)

∂(vp,X,i)
=

∂(X ′i, p
′
i)

∂(up′,X′,i)
(5.80)

so the absolute value of the determinant of
∂(Xi,pi,up′,X′,i)

∂(X′i,p
′
i,vp,X,i)

is 1.

In the calculation of the determinant of this Jacobian matrix, most terms cancel,

leaving ∣∣∣∣∂(θ′u′)

∂(θ; u)

∣∣∣∣ =

∣∣∣∣∣l1l2∂ω1

∂e1

∂ω2

∂e2

∂p
split

∂ω

∣∣∣∣∣ . (5.81)

Following the notation of previous sections, the acceptance probability in Equation

(5.71) is the minimum of 1 and

κ

k + 1

1

|W |λ2

∏
i s.t. Zi=1

lX′i,T

lXi,T

D(q′(p′), αDir)

D(q(p), αDir)

rJ
rS

k

ne

P (yi|F′, σ2
disp, Z

′
i = 1)

P (yi|F, σ2
disp, Zi = 1)

× 8πσ2
split exp

(
(e1 − psplit

)2 + (e1 − psplit
)2 − 4((e1 + e2)/2− p

split
)2

2σ2
split

)

× fBeta(v, αjoin,ω, βjoin,ω)

fBeta(usplit, αsplit,p, βsplit,p)fBeta(u1,1, αsplit,ω, βsplit,ω)fBeta(u2,1, αsplit,ω, βsplit,ω)

× l1l2

∣∣∣∣∣∂ω1

∂e1

∂ω2

∂e2

∂p
split

∂ω

∣∣∣∣∣ . (5.82)

Acceptance Probability of a Join Move

The acceptance probability of the join move from F1, F2 to F , is the minimum of

1 and the reciprocal of the split acceptance probability in Equation (5.82). If the

variables are re-labeled so that the starting state is the fibre set F containing k

fibres, with lengths l, etc. and the proposed state consists of fibre set F′ with k − 1
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fibres, the acceptance probability is the minimum of 1 and

k

κ
|W |λ2

∏
i s.t. Zi=1

lX′i,T

lXi,T

D(q′(p′), αDir)

D(q(p), αDir)

rS
rJ

ne
k − 1

P (yi|F′, σ2
disp, Z

′
i = 1)

P (yi|F, σ2
disp, Zi = 1)

× 1

8πσ2
split

exp

(
−(e1 − psplit

)2 − (e1 − psplit
)2 + 4((e1 + e2)/2− p

split
)2

2σ2
split

)

×
fBeta(usplit, αsplit,p, βsplit,p)fBeta(u1,1, αsplit,ω, βsplit,ω)fBeta(u2,1, αsplit,ω, βsplit,ω)

fBeta(v, αjoin,ω, βjoin,ω)

× l1l2

∣∣∣∣∣∂ω1

∂e1

∂ω2

∂e2

∂p
split

∂ω

∣∣∣∣∣
−1

. (5.83)

The acceptance rates of split and join moves can be adjusted by varying σsplit.

Trans-dimensional moves, such as the split and join, generally have low acceptance

probabilities (compared with fixed-dimension Metropolis Hastings) so we aim to

choose the value for σsplit that maximises the number of accepted splits and joins.

Tests indicate that a values of σsplit ∈ [σdisp/2, σdisp] perform well. For example,

acceptance rates of around 9.5% were recorded when the MCMC was applied to the

fingerprint data (see Section 6.2.4), where σdisp = 2 and σsplit = 1. See Brooks et al.

[2003] for a further discussion on acceptance rates of trans-dimensional moves.

5.3.6 Updating the Reference Point of a Fibre

The final move is the update of the reference point of a fibre.

We have already introduced a move which resamples the lengths of fibres while fixing

the reference point ωj , therefore it is useful to include a complementary move that

resamples ωj without changing the fibre. No variables other than ωj and lj need to

be updated as the total length and location of fibre Fj are not altered. Reference

point ωj is sampled from its full conditional distribution.

Having chosen a fibre Fj , reference point ωj is proposed by sampling a random

number u from the conditional density P (lj,1/lj,T |lj,T ). As lj,1 and lj,2 are both ex-

ponentially distributed with equal mean, this density has a Beta(1, 1) density.
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Variables are updates as follows

u ∼ Beta(1, 1)

lj,1 7→ l′j,1 = ulj,T

lj,2 7→ l′j,2 = (1− u)lj,T

ωj 7→ ω′j = ϕ(ωj , u(lj,1 + lj,2)− lj,1).

As ωj is drawn from the full conditional distribution the acceptance probability is

1.

5.4 Implementation of Additional Moves

The implemented algorithm runs on a continuous time scale. Additional moves are

proposed at random times governed by fixed rates. Relative values for the rates

of each move are suggested in Table 5.1. The units for the rate of an event are

‘per unit of algorithm time’. The BDMCMC is then allowed to run for a large

number of time units and samples are taken at random times (at some fixed rate).

In section 5.6 an appropriate burn-in and sampling interval are suggested. Of course

the relationship of algorithm time to actual processing time depends on hardware

and implementation details.

Death rates are recalculated following any accepted move.

5.5 Algorithm Validation: A Simple Data-Independent

Model

The implementation of a BDMCMC with all the additional moves suggested here

will lead to a computer program that is long and intricate, and therefore prone to

errors. To fully understand the BDMCMC and check it is drawing samples from

the posterior distribution as expected, it is essential to validate the algorithm. This

is achieved by limiting the number of moves with non-zero rates, and by using

simplified data sets with predictable output.

It is particularly interesting to monitor how the reversible pairs of moves: birth-

death and split-join, interact. Here, a simplified model for the fibre process is

designed and the dependency of the data on the fibres is removed, leading to easily

interpreted death rates and acceptance rates.
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A substantial simplification of the model is obtained by omitting the dependency of

the data on the fibres. The posterior distribution of the fibres is then independent

of the data and the likelihood is constant. Effectively the BDMCMC produces

samples from the prior distribution of fibres. Auxiliary variables Z, X and p are

now superfluous, as are the signal probabilities ε and the number of data points

m.

The only parameters remaining in the model are the fibres F, lengths l, reference

points ω, field of orientations ΥFO, and associated hyperparameters.

The model is further simplified by choosing W = R2, and ignoring the spatial

distribution of the fibres, i.e. each fibre is described only in terms of its length,

without a reference point.

The new model consists of a vector of lengths l1,T , ..., lk,T , where k ∼ Poisson(κ) and

lj,T ∼ Gamma(n, 1/λ). Taking n = 2 allows a direct comparison with the full model,

but it is also interesting to see the effect of using a general length distribution.

The equivalent birth density for this model is the inclusion of a new ‘fibre’ lk+1,T

with length proposed from the prior distribution (lk+1,T ∼ Gamma(n, 1/λ)). Births

are proposed at a rate β. In a state consisting of a set of k fibres, the total death rate

satisfying detailed balance is simply βk/κ. Each fibre is equally likely to die with

individual death rate β/κ, compare with Equation (5.6). At equilibrium, the number

of fibres k is Poisson distributed with mean κ and each length lj,T is Gamma(n, 1/λ)

distributed.

Split and join moves are now introduced. A split is proposed by first sampling a

random vector (j1, j2, u) where j1 is a random integer from {1, ..., k}, j2 is a random

integer from {1, ..., k+1}, and u ∼ Beta(αu, βu). A bijective mapping of the current

state and this random vector determines the resulting family of fibres: fibre Fj1 is

split into two fibres, F ′j1 and F ′j,2 of lengths ulj1,T and (1− u)lj1,T respectively. The

second fibre is then inserted into position j2 in the vector of fibres with the index of

subsequent fibres is incremented:

F′ = {F ′1, ..., F ′k+1} = {F1, ..., Fj2−1, F
′
j2 , Fj2 , Fj2+1, ..., Fj1−1, F

′
j1 , Fj1+1, ..., Fk}.

(5.84)

The join move is the reverse of the split move: a random integer i1 is randomly sam-

pled from Uniform({1, ..., k+1}) and then a second, i2, is drawn from Uniform({1, ...,
k+1}\{i1}). The i1-th fibre is replaced by a fibre of length li1,T + li2,T and the i2-th

fibre is removed. Fibre indices greater than i2 are decremented.

For a set F of k fibres splitting to a set F′ of k + 1 fibres the Metropolis-Hastings

acceptance probability, corresponding to the full model acceptance probability in
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Equation (5.82), is

min

{
1,
π(F′)

π(F)

Qjoin(F)

Qsplit(F′)

} ∣∣∣∣∂(θ′,u′)

∂(θ,u)

∣∣∣∣
= min

{
1,
rJκ

rSk

(u(1− u)lj1,T )n−1

Γ(n)λn
1

fBeta(u, αu, βu)
lj1,T

}

= min

{
1,
rJκ

rSk

(
lj1,T
λ

)n (u(1− u))n−1

fBeta(u, αu, βu)

1

Γ(n)

}
(5.85)

where rJ and rS are the proposal rates of joins and splits, Γ(·) is the gamma function,

and fBeta(·, αu, βu) is the Beta density function with parameters αu and βu. Here∣∣∣∂(θ′,u′)
∂(θ,u)

∣∣∣ is the Jacobian determinant corresponding to the Jacobian determinant of

the full model, given in Equation (5.70).

In the case n = 2, if αu = βu = 1 the acceptance probabilities become

min

{
1,
rJκ

rSk

(
lj1,T
λ

)2
}

(5.86)

for a split move, and

min

{
1,
rSk

rJκ

(
λ

lj1,T

)2
}

(5.87)

for a join move.

Note the similarity between the acceptance probability of a join move and the indi-

vidual death rate of a fibre βk/κ when β = rJ = rS = 1. As expected, if k > κ then

a death or a join is preferred over a birth or a death, but if the length of a typical

fibre is larger than λ, a split move is more likely to be accepted than a join.

Calculation of the acceptance probabilities for a simplified model such as this, is

both informative and highly beneficial when testing computer code for errors. This

is particularly true here, as our model contains a large number of variables and

can lead to complicated acceptance probabilities. This analysis could potentially

be extended to fibre processes which lie entirely within a window W , providing a

foundation for further investigations into the full implications of edge effects.

5.6 Output Analysis

The samples collected from the BDMCMC are summarised by estimating proper-

ties of the marginal distributions of variables, for example: the number of fibres, the

number of noise points, or the lengths of fibres. As a large range of models is ex-
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plored, it is usually more informative to consider conditional empirical distributions,

for example the number of noise points conditional on there being k fibres.

It would be interesting to investigate properties of the individual fibres. In general,

however, it is not possible to identify corresponding fibres across samples as typically

fibres will die and be replaced between samples. This is known as the label-switching

problem, briefly discussed in Section 2.3.3 and also in Stephens [2000b], with pos-

sible solutions suggested in Richardson and Green [1997], Celeux et al. [1995] and

Stephens [1997]. In principle, fibre categorisation could be achieved by construct-

ing a distance function between fibres, and distinguishing two fibres if the distance

between them is sufficiently large. It may then be possible to classify fibres across

samples, and measure how each fibre varies as the chain progresses. Such a distance

function would also identify a variance statistic for fibres. This notion of comparing

two curves is not a trivial problem, and careful consideration of the type of variation

of interest (e.g. curvature, length, location) is necessary.

In this thesis, output analysis is generally restricted to summary statistics of marginal

and conditional empirical distributions of the model variables. However, through

an empirical estimate of the signal point density, we can visually discern general

characteristics of the fibres.

5.6.1 Burn-In Time

A heuristic lower bound on a suitable burn-in time is motivated by considering

aspects of the priors derived after inspection of the data (e.g. σdisp, λ, κ - see Section

6.1.1), and estimating the number of fibre births that must occur before a fibre has

been created around each potential fibre cluster. We approximate the lower bound

by considering only the number of fibre births required for a fibre to be born around

the smallest fibre cluster.

A lower bound on half the length of the shortest fibre cluster is derived from the

10% quantile of an exponentially distributed random variable of rate κ/λ. Then the

probability a point chosen at random from W lies in a region corresponding to an

actual fibre of this length (up to 2σdisp from the fibre) is approximated by

8λ log(10/9)σdisp

κ|W |
. (5.88)

It follows that, with probability 0.99, a fibre will be proposed in the region corre-
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sponding to the shortest fibre within the first

log(0.01)

log
(

1− 8λ log(10/9)σdisp
κ|W |

) (5.89)

births. Hence we choose a minimum burn-in time of

Tburn = max

1500,
log(0.01)

β log
(

1− 8λ log(10/9)σdisp
κ|W |

)
 . (5.90)

The lower bound 1500 is chosen to ensure the burn-in time remains substantial,

and yet the algorithm can run to 1500 algorithmic time units in reasonable time on

most modern computers (the specifications of the computers used are detailed in

the following chapter). Note that this is a minimum burn-in time as inspection of

output variables may suggest a longer burn-in is required.

5.6.2 Thinning/Sampling Rate

Outputs of different variables are sampled at random times at some constant rate.

The rate of this sampling (effectively the reciprocal of the thinning of the Monte

Carlo process) is chosen such that there is a low probability that any of the fibres

remain unchanged between samples. The inclusion of the extra moves designed to

improve mixing also helps to decrease the thinning required. The thinning is chosen

approximately proportional to the number of fibres (estimated based on aspects of

priors derived following inspection of the data).

5.6.3 Number of Iterations

Following the burn-in time, the BDMCMC is run until sufficiently many samples

have been taken. Clearly, a greater number of samples will reduce the error in the

estimation of summary statistics such as quantiles or means. However, even with

a high specification machine (full details are given in Chapter 6), 30, 000 units of

BDMCMC algorithm time, run on a 200 point dataset clustered around 5 fibres, on

a window of size |W | ≈ 1000, may take up to 2 days to run as the algorithm has not

been expertly optimised. There is certainly scope for a more efficient implementa-

tion of the algorithm; Section 6.1.2 lists some steps taken towards a more efficient

implementation, further improvements are suggested in Section 8.2.4. Experiments

indicate that a minimum of around 150 − 200 samples are required for analysis of

the posterior distribution.
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5.6.4 Convergence Diagnostics

Convergence is assessed by considering variables such as the number of fibres k, the

number of noise points, or the log of the posterior (calculable up to normalising

constant) and using Geweke’s spectral density diagnostic, see Geweke [1991]. Con-

vergence of a sequence of n samples is rejected if the mean value of the variable in

the first n/10 samples is not sufficiently similar to the mean value over the last n/2

samples.

An alternative approach to identifying whether the BDMCMC has converged is to

run multiple chains from dispersed starting points and use Gelman and Rubin’s

statistic (Gelman and Rubin, 1992), which compares variation within and between

chains. Brooks and Giudici [1998] and Castelloe and Zimmerman [2002] show how

this can be extended to the variable dimension problem by considering the variation

between models as well as between chains. Over-dispersed initial states can be

constructed by varying ε and subsequently the field of orientations, or simply by

starting one chain with a large number of fibres and a second chain with one fibre

or none at all. While neither form of Gelman and Rubin’s statistic have been used

formally, multiple simulations from varying initial states are run to check the chains

mix sufficiently.

5.7 Conclusions

In this chapter we have provided the full details of a BDMCMC algorithm, including

a number additional moves which are designed to improve the chain’s mixing prop-

erties. The BDMCMC allows us to draw samples from the posterior distribution

of fibres given an instance of a fibre-process generated point process. Examples of

samples of fibre sets, along with summary statistics of the posterior distribution for

some example data sets are presented in the following chapter.
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Chapter 6

Examples: Earthquakes,

Fingerprints (and briefly

Galaxies)

This chapter illustrates the application of the BDMCMC described in Chapter 5 to

four different data sets. The first data set is our own simulated example, which is

followed by a simulated data set from Stanford and Raftery [2000], and finally two

real data sets: earthquake epicentres and fingerprint pores. Preliminary results on

two 3-dimensional data sets are also presented.

First, we briefly discuss some implementation considerations including how hyper-

parameters should be chosen and how to improve the efficiency of the implemented

algorithm.

6.1 Implementation Considerations

6.1.1 Hyperparameters

As a rough guideline, hyperparameters can be chosen as follows.

The prior mean number of fibres κ and the prior mean length of fibres λ can be

estimated from any prior knowledge or expectations of the fibres. The deviation of

points from fibres σ2
disp can be estimated using prior knowledge of fibre widths (for

example, the average width of a ridge in the fingerprint data) and the approximation

that 95% of points should lie within 2σdisp of the centre of a fibre. The density of

signal points per unit length of fibre η can be estimated similarly.
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Parameters for the field of orientation, hFO and σFO, should be chosen to ensure

the field of orientations is smooth. These can be estimated by evaluating the field

of orientations for different selections of hFO, σFO and choosing from this set. If the

proportion of noise points is approximately known then the hyperparameters αSignal

and βSignal can be suitably estimated, however we suggest choosing the parameters

such that αSignal, βSignal > 1 to ensure good mixing properties of the Markov chain

Monte Carlo sampling algorithm. Otherwise the noise hyperparameters can be set

equal to 1 indicating no prior knowledge.

Alternatively, if little prior information is known about the nature of the latent

curvilinear structure, then it is feasible to extend the empirical Bayes step to include

the estimation of further prior parameters.

In the examples of this chapter, hyperparameters were all chosen as suggested

here.

6.1.2 Efficiency and Run-Times

All four 2-dimensional examples were run on the cluster owned by the Statistics

Department in the University of Warwick using a Dell PowerEdge 1950 server with

a 3.16GHz Intel Xeon Harpertown (X5460) processor, 2GB fully-buffered RAM.

The algorithm was implemented in Octave version 3.2.4. The total run-times on

the cluster ranged from 39.6 hours for the fingerprint pore data (40000 units of

algorithm time) to 83.6 hours for the earthquake data set (60000 units of algorithm

time).

As the BDMCMC explores a multi-dimensional model over a large window, a com-

putationally slow algorithm is anticipated. For the implementation of the algorithm,

the following considerations were made, and assisted in reducing the overall run-time

of the BDMCMC:

� Fibres are approximated by piecewise-linear curves.

� Variables that require calculation, such as distances, are saved in order to

avoid recalculation.

� The additional moves implemented vastly improve the chain’s mixing prop-

erties, reducing the length of chain required to draw a reasonable number of

samples with low auto-correlation.

� Death rates are updated only after the acceptance of a move that may cause

the death rates to change.
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� Updates which involve resampling the field of orientations are proposed infre-

quently, as the calculations involved are slow.

� Fast-Fourier Transforms are used in the calculation of the field of orientations.

Further optimisation is possible, both in the implementation of the algorithm, and

through carefully constructing proposal densities (or birth densities) which are less

likely to be rejected. The latter is discussed in Section 8.2.4.

Implementing the algorithm in a more powerful language, such as C++, would

likely result in much faster run times although it is not yet possible to quantify

the expected increase in speed. A further improvement would likely be found by

implementing the code on parallel processors, however due to the limitations of

the current version of Octave, the benefits of true parallelism have not yet been

explored.

More immediate improvements could be made by fully vectorising all calculations

and investigating ideas from morphology (Vincent, 1999) to reduce the time required

for distance calculations. Alternatively choices of data structures may also improve

algorithmic speeds; here we used a combination of matrices and cell arrays.

6.1.3 Other Considerations

The field of orientations is estimated over a square grid of points, each one unit

length from its four nearest neighbours. The total size of this grid is given by the

dimensions of the window W .

Burn-in times were chosen by consideration of output graphs and the heuristic lower

bound calculated in Section 5.6.1. Geweke’s spectral density diagnostic (Geweke,

1991) was applied to both the number of fibres k, the total number of signal points,∑
i Zi, and also to summary statistics such as the total length of the fibres, in order

to test for a lack of convergence in the chain.

6.2 Two-Dimensional Examples

In each of the following examples births are proposed at unit rate, as are the following

moves: moving a fibre, adjusting the lengths of a fibre and updating signal-noise

allocation. Split and join moves are proposed at twice the unit rate to account

for the typically low acceptance probabilities. Signal probability (ε) updates are

proposed at a rate of 0.1 per unit of time. The rate at which samples are taken

varies for different data sets.
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6.2.1 Simulated Example

Figure 6.1(a) shows a simulated data set of clusters of points around three fibres

with additional background noise. The signal data was generated by perturbing

117 points that were randomly distributed along 3 fibres. A further 63 points of

homogeneous background noise were superimposed on the signal points.

On the above timescale the BDMCMC was run for 40,000 units of algorithm time,

the first 21,500 of which were discarded. Samples were taken at a rate of 0.025

per unit of algorithm time. The initial state was a set of κ = 3 fibres drawn

from the prior distribution of fibres. Other hyperparameters were chosen as follows:

dispersion parameter σdisp = 4; signal probability hyperparameters αsignal = 2 and

βsignal = 1; density parameter η = 0.3; mean half-fibre length λ = 55; and the

Dirichlet parameter αDir = 1.

Figure 6.1(b) shows a typical sample from the output. It is evident that the main

clusters of signal points have been correctly identified, however the long cluster is

split into 3 fibres clusters rather than one. This subdivision of the long cluster is

also discernible in Figure 6.1(c), which depicts an empirical estimate of the density

of the signal point process estimated from the samples of fibres. As mentioned at

the end of Section 4.5, the orientation field can suffer from a bias in areas of high

curvature. This leads to a tendency for the fitted fibres to be less curved than the

original fibres (due to the smoothness of the field of orientations). A consequence is

that a curvilinear cluster may often be approximated by several shorter fibres rather

than a single long fibre. The bias should be borne in mind when considering the

real data examples.

Figure 6.1(d) displays the clustering of points estimated by assigning any two points

to the same cluster if they are associated with the same fibre in more than 50% of

samples. In cluster analysis terms, we use an agglomerative hierarchical algorithm

to determine the clusters, calculating the distance between a pair of clusters by

the nearest neighbour method. The measure of similarity between two points is the

proportion of samples with both points in the same fibre cluster. This is a very basic

approach to data clustering, and is used only as a summary of the clustering across

the samples. The book by Everitt et al. [2011] provides a thorough background in

cluster analysis including a number of alternative approaches.

Table 6.1 gives the posterior probabilities of the number of fibres and the means

and highest posterior density intervals of a variety of properties conditional on the

number of fibres.

The number of fibres is simply a count of the fibres present in each sample; in this
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(a) Simulated data clustered around 3 fibres. (b) A random sample from the BDMCMC
output. Fibres are represented by curves,
pluses indicate points allocated to signal and
crosses indicate points allocated to noise in
this sample.

(c) Estimate of the clustering of the signal
points - different clusters are distinguished by
varying symbol, crosses indicate noise. Esti-
mated by considering how often pairs of points
are associated with the same fibre across a
number of samples.

(d) Estimate of the clustering of the signal
points - different symbols indicate different
clusters, crosses indicate noise. Estimated by
considering how often pairs of points are as-
sociated with the same fibre across a number
of samples.

Figure 6.1: Simulated Example.
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Posterior Probabilities for Number of Fibres

Number of Fibres 5 6 7 8

Posterior Probability 0.20 0.44 0.33 0.03

Other Properties Conditioned on the Number of Fibres

Number
of Fibres

Posterior
Mean

50% HPD
Interval

95% HPD
Interval

Number of Noise Points
5 65.32 [63,65] [62,70]
6 67.60 [65,68] [62,72]
7 67.07 [66,69] [60,72]

95th Percentile of the
Distances from Signal
Points to Fibres

5 9.94 [10.07,10.83] [9.17,10.83]
6 9.95 [9.60,10.44] [8.82,11.15]
7 9.78 [9.38,10.27] [8.60,11.18]

Total Length of Fibres
5 404.71 [379,403] [365,435]
6 391.51 [376,395] [362,438]
7 412.24 [402,429] [379,453]

Table 6.1: Results for Simulated Example: First sub-table gives posterior proba-
bilities on the number of fibres, while the second gives posterior means and 50%
and 95% HPD (highest posterior density) intervals for a selection of properties of
the posterior distribution conditional on the number of fibres. The simulated data
consists of 117 signal points and 63 noise points on a 300× 300 window, based on a
family of three fibres and using a dispersion parameter of σdisp = 4 and with prior
mean probability that a point is noise equal to 0.33. Posterior probabilities only
given if non-zero to rounding error.

example we expect it to be around 3, however as the long cluster is split into a

number of components, the posterior number of fibres is somewhat higher.

We might expect the number of points assigned to the noise component to be neg-

atively correlated with the number of fibres, as with more fibres comes a greater

chance of there being a fibre close to a given point and hence a greater chance that

it is a signal point. However, it appears that the number of noise points is not closely

correlated with the number of fibres, supporting the hypothesis that increases in the

number of fibres arise from splitting a single fibre into two. In the construction of

this simulated data set 63 noise points were superimposed on 117 signal points. The

evidence in Table 6.1 is that our approach models the allocation of points to noise

and signal well.

We take the 95th percentile of the distances of signal points to anchor points for each

sample. This summarises the dispersion of points from the fibres and is comparable

to 2.45σdisp; the dispersion parameter σdisp is set to 4 in this example. We note that

this value of 9.8 tends to lie comfortably within the HPD intervals, confirming that

the model for the relationship between points and fibres fits the data well in this

instance.
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6.2.2 Stanford and Raftery’s Simulated Example

A simulated data set used in Stanford and Raftery [2000] is shown in Figure 6.2(a).

We include it here to facilitate comparison with the methods proposed by Stanford

and Raftery. The data consist of 200 signal points and 200 noise points and is based

on a family of two fibres each of length 157. The original data set, consisting of

points over a [−1.5, 2.5]× [−1.5, 1.5] window, were scaled and translated to lie in a

200× 150 window.

The BDMCMC was run for 60,000 units of algorithm time, the first 30,000 of which

(a) Simulated data. (b) A random sample from the BDMCMC
output. Fibres are represented by curves,
pluses indicate points allocated to signal and
crosses indicate points allocated to noise in
this sample.

(c) Estimate of the density of signal points
found by smoothing a series of samples of fi-
bres (darker areas indicate higher densities).
Pluses indicate points allocated to signal and
crosses indicate points allocated to noise in at
least 50% of samples. The size of points repre-
senting the data has been reduced to enhance
the clarity of the density estimate.

(d) Estimate of the clustering of the signal
points - different clusters are distinguished by
varying symbol, crosses indicate noise. Esti-
mated by considering how often pairs of points
are associated with the same fibre across a
number of samples.

Figure 6.2: Simulated Example from Stanford and Raftery [2000].
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Figure 6.3: Trace plot of the number of fibres against algorithmic time. Following
consideration of this plot it was decided that the first 30,000 algorithmic seconds
should be discarded.

were discarded. This rather long burn-in was chosen following consideration of the

trace plot of the number of fibres, see Figure 6.3. This plot may suggest that

insufficient mixing is occurring as the chain appears to traverse a region of the

posterior distribution with 3-4 fibres, and then after 25,000 algorithmic seconds,

move to a region favouring 2-3 fibres. However, from consideration of fibre samples

and also of the posterior density, we have concluded that the chain, if run for longer,

would not return to the original region favouring 3-4 fibres. Trace plots of other

statistics such as the total length of the fibres and the total number of noise points

show no evidence of a lack of convergence or poor mixing.

Samples were taken at a rate of 0.033 per unit of time. The initial state was a

randomly sampled set of κ = 2 fibres. Other hyperparameters were chosen as follows:

dispersion parameter σdisp = 3; signal probability hyperparameters αsignal = 1 and

βsignal = 1; density parameter η = 0.64; mean half-fibre length λ = 78.5; and the

Dirichlet parameter αDir = 1.

Figures 6.2(b) to 6.2(d) show that our model fits the data very well. The two fibres

in the sample in Figure 6.2(b) compare favourably with the principal curves fitted

in Stanford and Raftery [2000].

Naturally, noise points that lie near a fibre will frequently be associated with the

signal component during the course of the BDMCMC. Most points sufficiently close

to a fibre are associated to signal in at least 50% of samples as is evident in Figure

6.2(c). However, in an individual sample a random subset of these points will be

noise (see Figure 6.2(b)), reflecting how noise is included in the model - as the

superposition of a homogeneous Poisson process. This is in contrast to the work of

Stanford and Raftery [2000] where the emphasis is on fitting a principal curve to

the points, for this reason they use the approximation that all points that belong to

a dense cluster are signal points.

As in the previous example, we estimate properties of the posterior distribution.

Posterior means and highest posterior density intervals are given in Table 6.2.
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Posterior Probabilities for Number of Fibres

Number of Fibres 2 3

Posterior Probability 0.78 0.22

Other Properties Conditioned on the Number of Fibres

Number
of Fibres

Posterior
Mean

50% HPD
Interval

95% HPD
Interval

Number of Noise Points
2 195.81 [194,202] [181,209]
3 195.09 [191,199] [180,206]

95th Percentile of Point
to Fibre Distances

2 7.46 [7.11,7.65] [6.60,8.47]
3 7.48 [7.08,7.53] [6.80,8.22]

Total Length of Fibres
2 317.44 [312,320] [306,331]
3 319.02 [309,318] [305,337]

Table 6.2: Results for Stanford and Raftery’s Simulated Example: First sub-table
gives posterior probabilities on the number of fibres, while the second gives posterior
means and 50% and 95% HPD (highest posterior density) intervals for a selection
of properties of the posterior distribution conditional on the number of fibres. The
simulated data consists of 200 signal points and 200 noise points over a 200 × 150
window, and is based on a family of two fibres each of length 157. The dispersion
parameter σdisp is set to 3 and the prior mean probability that a point is noise is
0.5. Posterior probabilities only given if non-zero to rounding error.

In this example, more points are associated to signal than expected. This is partly

due to the high intensity of noise points, and also explained by a slight bias in the

length of the fibres. The posterior statistics on the lengths of the fibres arguably

suggest that the extension of fibres beyond their known length (of 157) is supported

by the high intensity of noise points. This extrapolation is sometimes beneficial,

particularly for fibre reconstruction in areas of missing data. Here the extrapola-

tion is less desirable as it suggests there is evidence for fibres in the background

noise.

The extrapolation of fibres into less dense regions of points can be reduced by

choosing a higher Dirichlet parameter αDir for the distribution of anchor points

along the fibres. This decreases the posterior density of fibres lying through point

clusters of non-constant intensity. The drawback of increasing αDir is that proposed

moves are more frequently rejected. This is because (A) no proposals account for

the distribution of anchor points along fibres, and (B) a large value of αDir leads

to a multimodal anchor point distribution with most of the probability weighted

around the modes. Hence, the proposal of a state with low posterior density is more

likely.
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6.2.3 Application: Earthquakes on the New Madrid Fault-line

The epicentres of earthquakes along seismic faults are a good example of point data

clustered around a system of fibres with additional background noise. Here the fibres

are the unknown fault-lines. Stanford and Raftery [2000] consider the structure of

the data set of earthquakes around the New Madrid fault line in central USA. We use

data on earthquakes in the New Madrid region between 1st Jan 2006 and 3rd Aug

2008 (inclusive) taken from the full earthquake catalogue found at CERI (Center for

Earthquake Research and Information), http://www.ceri.memphis.edu/seismic/

catalogs/cat_nm.html.

The BDMCMC was run for 40,000 units of algorithm time, the first 10,000 of which

were discarded. The burn in time was chosen following consideration of trace plots

of various statistics of the output samples. In particular, the trace plot of the

total length of fibres, shown in Figure 6.5, suggested that a burn in of 10, 000 was

sufficient. Samples were taken at a rate of 0.0167 per unit of time. The initial state

was a randomly sampled set of κ = 4 fibres. Other hyperparameters were chosen as

follows: dispersion parameter σdisp = 2; signal probability hyperparameters αsignal =

4 and βsignal = 1; density parameter η = 1.06; mean half-fibre length λ = 30; and

the Dirichlet parameter αDir = 1.

Our method has the advantage over Stanford and Raftery [2000], in that it does not

try to over fit the fibres where there is less data. Rather it uses information from

surrounding data to extrapolate fibres as required.

Table 6.3 gives some numerical properties of the posterior distribution of fibres.

A limitation of our model is that every fibre is assumed to share a number of

properties. In particular the displacement of points from fibres (effectively the width

of influence of a fibre) and the intensity of signal points per unit length of fibre

are assumed to be constant, independent of the fibre. These assumptions are not

reasonable for this data as the ‘thickness’ and density of points varies considerably.

This is apparent in Figure 6.4(b) where the central dense cluster is described by

multiple parallel fibres. The dispersion parameter σdisp was chosen by considering

the apparent ‘width’ of the longer thinner fibre, hence points around the shorter,

wider fibre effectively increase the 95th percentile of the point to fibre distances, as

given in Table 6.3. The solution to this problem is to extend the model to allow

different hyperparameters for each fibre.

While multiple fibres in the central cluster is a common feature in samples from

this BDMCMC, Figure 6.4(d) indicates that the agglomerative clustering algorithm

identifies the points as arising from the same cluster.
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(a) Earthquake data (b) A random sample from the BDMCMC
output. Fibres are represented by curves,
pluses indicate points allocated to signal and
crosses indicate points allocated to noise in
this sample.

(c) Estimate of the density of signal points
found by smoothing a series of samples of fi-
bres (darker areas indicate higher densities).
Pluses indicate points allocated to signal in at
least 50% of samples. The size of points repre-
senting the data has been reduced to enhance
the clarity of the density estimate.

(d) Estimate of the clustering of the signal
points - different clusters are distinguished by
varying symbol, crosses indicate noise. Esti-
mated by considering how often pairs of points
are associated with the same fibre across a
number of samples.

Figure 6.4: New Madrid Fault Earthquake Data.
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Posterior Probabilities for Number of Fibres

Number of Fibres 6 7 8

Posterior Probability 0.52 0.37 0.10

Other Properties Conditioned on the Number of Fibres

Number
of Fibres

Posterior
Mean

50% HPD
Interval

95% HPD
Interval

Number of Noise Points
6 43.07 [41,43] [40,47]
7 42.25 [40,42] [36,46]
8 41.80 [39,41] [39,45]

95th Percentile of the
Distances from Signal
Points to Fibres

6 4.94 [4.84,5.10] [4.56,5.30]
7 4.90 [4.75,4.98] [4.55,5.27]
8 4.97 [4.80,5.06] [4.61,5.78]

Total Length of Fibres
6 293.56 [275,302] [264,332]
7 292.82 [292,315] [258,321]
8 296.15 [292,305] [266,315]

Table 6.3: Results for Earthquake Data: First sub-table gives posterior probabilities
on the number of fibres, while the second gives posterior means and 50% and 95%
HPD (highest posterior density) intervals for a selection of properties of the poste-
rior distribution conditional on the number of fibres. The data are all the recorded
earthquakes in the New Madrid region between 1st Jan 2006 and 3rd Aug 2008; the
data were acquired from the CERI (Center for Earthquake Research and Informa-
tion) found at http://www.ceri.memphis.edu/seismic/catalogs/cat_nm.html.
In total there are 317 points in a 300× 300 window, the dispersion parameter σdisp

is set to 2 and the prior mean probability that a point is noise is 0.2. Posterior
probabilities only given if non-zero to rounding error.
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Figure 6.5: Trace plot of the total length of fibres in samples from the BDMCMC.
Following consideration of this plot it was decided that the first 10,000 algorithmic
seconds should be discarded.

Interestingly the total length of fibres does not appear to be positively correlated

to the number of fibres, suggesting that the additional fibres arise from splitting a

fibre into multiple parts while preserving the total fibre length.

6.2.4 Application: Fingerprint Data

The second application we consider is that of pores aligned along ridge lines in

fingerprints. Fingerprint pore data is considered in some depth in Su et al. [2008]

and Su [2009].

We use a portion of the data set extracted from fingerprint a002-05 from the NIST

(National Institute of Standards and Technology) Special Database 30 (Watson,

2001). The procedure for extracting the pore locations from the fingerprint im-

age is described in Su et al. [2008].

The BDMCMC was run for 40,000 units of algorithm time, the first 8,000 of which

were discarded. Samples were taken at a rate of 0.007 per unit of time. The initial

state was a randomly sampled set of κ = 10 fibres. Other hyperparameters were

chosen as follows: dispersion parameter σdisp = 1.5; signal probability hyperparam-

eters αsignal = 15 and βsignal = 1; density parameter η = 0.13; mean half-fibre length

λ = 45; and the Dirichlet parameter αDir = 1.5.

The fingerprint pore data will typically cause nearest neighbour clustering methods

to breakdown. This is because, whilst the filamentary structure of the point pattern

is clear when viewing the global picture, it is not so apparent on a small scale. This

phenomenon is partly due to the apparent inter-ridge alignment of points (from left

to right in Figure 6.2(a)). By way of contrast, our field of orientations model takes

any information available on a small scale and uses it across the window thanks to

the smoothing step in the field of orientations estimation.

As Figure 6.6 shows, our model succeeds in fitting many of the fibres (or fingerprint
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(a) Pore data (b) A random sample from the BDMCMC
output. Fibres are represented by curves,
pluses indicate points allocated to signal and
crosses indicate points allocated to noise in
this sample.

(c) Estimate of the density of signal points
found by smoothing a series of samples of fi-
bres (darker areas indicate higher densities).

(d) Estimate of the clustering of the signal
points - different clusters are distinguished by
varying symbol, crosses indicate noise. Esti-
mated by considering how often pairs of points
are associated with the same fibre across a
number of samples.

Figure 6.6: Pores from portion of fingerprint a002-05 from the NIST Special
Database 30 (Watson, 2001).
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Posterior Probabilities for Number of Fibres

Number of Fibres 17 18 19 20 21 22 23

Posterior Probability 0.07 0.10 0.13 0.16 0.15 0.13 0.09

Other Properties Conditioned on the Number of Fibres

Number
of Fibres

k

Posterior
Mean

50%
HPD

Interval

95%
HPD

Interval

Number of Noise Points

19 17.00 [14,18] [11,22]
20 15.86 [15,17] [12,19]
21 15.25 [15,17] [10,19]
22 15.95 [13,15] [9,21]

95th Percentile of the
Distances from Signal
Points to Fibres

19 3.54 [3.42,3.63] [3.07,4.14]
20 3.65 [3.50,3.56] [3.50,3.93]
21 3.70 [3.71,3.95] [3.34,4.10]
22 3.64 [3.56,3.84] [3.16,3.93]

Total Length of Fibres

19 989.65 [891,974] [891,1079]
20 966.14 [945,969] [913,1043]
21 969.81 [983,1027] [840,1062]
22 985.95 [956,1008] [927,1089]

Table 6.4: Fingerprint Pore Data Set: Posterior means and 50% and 95% credible
intervals of a selection of properties of the posterior distribution conditional on the
number of fibres. The data was extracted from a portion of fingerprint a002-05
from the NIST (National Institute of Standards and Technology) Special Database
30 (Watson, 2001). It consists of 123 points on a 100 × 100 window. A dispersion
parameter of σdisp = 1.5 is used, and the mean prior probability a point is noise is
0.091. Posterior probabilities only given if non-zero to rounding error.

ridges) to the pore data. Figure 6.6(c) indicates a few areas of doubt in the fibre

locations where the shading is lighter near the edges of the window, showing that

fibre samples were more dispersed.

This data set is an ideal candidate for the reconstruction of missing data. We

work under the assumptions that pores lie at fairly regularly intervals along ridges,

but some are not identified during the pore extraction process. Our method uses

information from nearby ridges to complete fibres where data is missing. In this

example the missing data is particularly evident in the region below the centre of

the window. Knowledge of the posterior distribution of fibres could lead to a ‘filling

in the gaps’ approach to reconstructing the missing pore data.

Table 6.4 gives some numerical properties of the posterior distribution of fibres.
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6.3 Three-Dimensional Examples

This section presents some preliminary results for 3-dimensional data. Most of the

model extends easily to 3 dimensions; naturally the distribution of the displace-

ment of data point yi from anchor point pi is now a 3-dimensional multivariate

normal distribution. However, the increase in the total run-time of a BDMCMC on

a 3-dimensional data set is quite substantial. The actual execution time taken to

calculate the field of orientations is of order |W |. Calculation of the field of orienta-

tion over a 100× 100 grid in 2 dimensions takes takes approximately the same time

as the same calculation over a 20 × 20 × 25 cube in 3 dimensions. It is therefore

necessary to reduce the resolution of the grid over which we approximate of the field

of orientations.

As Baddeley et al. [1993] discuss, edge effects are increasingly apparent in higher

dimensions. Indeed, for a 2-dimensional square of area A, the ratio of edges to area

is 4/A1/2, while for the equivalent cube of volume V , the ratio of edges (or faces)

to volume is 6/V 1/3, indicating that a larger increase in volume (than in area) is

required to reduce the relative edge effects.

There are also visualisation issues with 3-dimensional data. Both on screen, and in

print, any image of the data is a projection onto a 2-dimensional surface, therefore

depth is imperceptible. The problem is heightened when viewing a point pattern,

as it is more difficult for the brain to perceive the pattern’s structure and therefore

it cannot ‘guess’ the depth. On the screen the problem can be solved by creating

a video or an interactive plot of points and fibres which allows 3-dimensional rota-

tions. In the first simulated example, all figures include plots viewed from 3 slightly

different angles to clarify the 3-dimensional structure. The data in the second exam-

ple are sparser, and as the window of observation is a thin slice of the total volume

additional plots are not deemed necessary.

In the following two examples births are proposed at unit rate. Additionally, moves

that adjust lengths or alter the location of a fibre by perturbing the reference point,

are proposed at unit rate. No other moves have been implemented. Omission of these

additional moves slows the mixing of the BDMCMC. The result of not including the

signal probability ε update is that samples are drawn from the posterior distribution

of fibres conditional on a single estimate of the field of orientations as described in

Section 4.4.1.

119



Figure 6.7: Simulated helix data, viewed from 3 different angles.

6.3.1 Simulated Example: Helix

The first 3-dimensional example is a simulated data set consisting of 97 signal points

clustered around a circular helix of radius 7.5 and arc length 80.8. A further 20 noise

points uniformly distributed across the 20×20×40 window are superimposed on the

signal points. The variance of the multivariate normal perturbation of the points

from anchor points regularly spaced along the helix, is 1. Figure 6.7 shows this data.

Plots for this data set include views from 3 different angles to clarify the structure

of the 3-dimensional data.

The BDMCMC was run for 33,000 units of algorithm time, the first 10,000 of which

were discarded. Samples were taken at a rate of 0.05 per unit of algorithm time.

The initial state was a randomly sampled set of κ = 1 fibre. Other hyperparameters

were chosen as follows: dispersion parameter σdisp = 1; signal probability hyperpa-

rameters αsignal = 10 and βsignal = 1; density parameter η = 1.55; mean half-fibre

length λ = 30; and the Dirichlet parameter αDir = 1.

A sample from the posterior distribution of fibres is displayed in Figure 6.8, different

symbols indicate different clusters. It is clear that the model fits the data reasonably

well as the fibres approximately lie along the helix . However, it is rather striking

that there are 7 fibres, rather than 1. This segmentation of the helix into shorter

fibres is also seen in Figure 6.9, which depicts an empirical estimate of the density

of the signal point process. A single fibre along the helix would produce a higher

posterior density than multiple short fibres, as the prior distribution for the number

of fibres is Poisson with mean 1. This suggests that not implementing split and join

moves has resulted in a BDMCMC with poor mixing properties.
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Figure 6.8: Three different views (the same angles as in Figure 6.7) of a sample from
the posterior distribution of fibres. Curves represent fibres, and the clustering of
points to fibres is highlighted by marking them with different symbols. Noise points
in this sample are represented by crosses.

The samples are drawn from the conditional distribution of fibres given the field of

orientations. However, the estimate of the orientation field does not consistently

agree with the line tangent to the helix. This is exemplified by the short fibre

located at a height of 15 in Figure 6.8; the fibre is nearly vertical in orientation

- approximately perpendicular to the orientation of the true helix at that point.

Integral curves are sensitive to errors in the orientation field estimate. The sensitivity

is heightened by the relatively high curvature (rapidly varying orientation) of the

field of orientations compared to the resolution of the grid over which the orientation

field is evaluated, and the discretisation of the fibres into linear segments. Where it

is not possible to sample a fibre, conditional on the field of orientations, that fits the

data (produces a high likelihood) the Bayesian hierarchical model supports splitting

the data into smaller fibre clusters.

Numerical statistics of samples from the BDMCMC are given in Table 6.5. A

low prior mean for the probability that each point is noise is reflected by the low

posterior mean number of noise points. Despite the segmentation of the cluster into

short clusters, the posterior total length (an estimate of the arc length of the helix)

is very similar to the known length, 80.8.

6.3.2 Application: Galaxies

The second 3-dimensional data set is the locations of galaxies as analysed in Stoica

et al. [2007]. The original data set is mapped in the 2dF Galaxy Redshift Survey
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Figure 6.9: Empirical estimate of the signal point process density viewed from 3
angles. Points associated with noise in more than 50% of samples are indicated by
×, other points are denoted by +.

Posterior Probabilities for Number of Fibres

Number of Fibres 7

Posterior Probability 0.99

Other Properties Conditioned on the Number of Fibres

Number
of Fibres

Posterior
Mean

50% HPD
Interval

95% HPD
Interval

Number of Noise Points 7 13.97 [13,14] [13,15]

95th Percentile of the
Distances from Signal
Points to Fibres

7 2.56 [2.43,2.65] [2.25,2.90]

Total Length of Fibres 7 88.66 [80,86] [72,113]

Table 6.5: Results for Simulated Helix Data: First sub-table gives posterior prob-
abilities on the number of fibres, while the second gives posterior means and 50%
and 95% HPD (highest posterior density) intervals for a selection of properties of
the posterior distribution conditional on the number of fibres. The data consists of
97 points perturbed by a multivariate normal distribution with variance 1, from a
helix of length 80.8. Twenty noise points, uniformly distributed over the 20×20×40
window, were superimposed on the signal point pattern. The dispersion parame-
ter σdisp is set to 1 and the prior mean probability that a point is noise is 0.091.
Posterior probabilities only given if non-zero to rounding error.
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(Colless et al., 2001), a 3-dimensional map of 221,000 galaxies. However, the analysis

here is restricted to a subset (124 galaxies) of the scope of galaxies in the database.

This is because running a BDMCMC on the full data set would take a long time - an

estimated 40 weeks for the same 40,000 units of algorithm time. Stoica et al. [2007]

identified three cuboidal samples or ‘bricks’ in the 2dF Galaxy Redshift Survey, each

with an approximately constant intensity of galaxies. We use a portion of the first

brick (NGP150), specifically W = [0, 40] × [30, 60] × [0, 10], where galaxy positions

are given in respect to the lower left corner of the brick. One reason for choosing

this particular subset of the data is that it does not exhibit 2-dimensional walls

of galaxies, or dense spherical cluster of galaxies. These structures do appear in

maps of galaxies, but such objects are not included in our model. It is anticipated

that cosmic walls, or 2-dimensional surfaces embedded in the 3-dimensional space,

would be challenging mathematical objects to model. It is unclear exactly how to

identify a random surface from a field of orientations, or a field of vectors normal

to a random surface, as linear integration techniques (used to identify fibres) do not

naturally extend to 2-dimensional surfaces. For more information on the various

cosmic structures see Mart́ınez and Saar [2002].

The first 13,000 units of algorithm time (of a total 40,000) were discarded. Samples

were taken at a rate of 0.013 units of algorithm time. The initial state was a

randomly sampled set of κ = 6 fibres. Other hyperparameters were chosen as follows:

dispersion parameter σdisp = 2; signal probability hyperparameters αsignal = 3 and

βsignal = 1; density parameter η = 1.88; mean half-fibre length λ = 10; and the

Dirichlet parameter αDir = 1.

The data are presented in Figure 6.10.

An example of the clustering of points based on one sample is shown in Figure

6.11. It is evident that the data are located over approximately 6 clusters of points.

However, from the empirical estimate of the density of signal points (see Figure

6.12) the relative proximity of these fibre clusters is clearer, and it appears that 5

is a better estimate for the number of fibres.

Implementation of all the additional moves described in Section 5.3 in 3 dimensions

would improve the mixing properties of the BDMCMC. However these early results

indicate that our model extends well to 3 dimensions.

6.4 Conclusions

This chapter demonstrates our approach to making inferences on the underlying

curvilinear structure of point patterns through application to four planar data sets.
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Figure 6.10: Subset of galaxy data taken from the 2dF Galaxy Redshift Survey
(Colless et al., 2001). Specifically galaxies located in the window [0, 40]× [30, 60]×
[0, 10] of the brick of galaxies NGP150, identified by Stoica et al. [2007].

Figure 6.11: Clustering of points in one sample. Curves represent fibres and different
symbols represent different clusters
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Figure 6.12: Empirical estimate of the density of signal points, darker areas indi-
cate higher densities. Points allocated to noise in more than 50% of samples are
represented by ×, while other points are represented by +.

Posterior Probabilities for Number of Fibres

Number of Fibres 4 5 6 7

Posterior Probability 0.01 0.32 0.57 0.10

Other Properties Conditioned on the Number of Fibres

Number
of Fibres

Posterior
Mean

50% HPD
Interval

95% HPD
Interval

Number of Noise Points
5 8.05 [7,8] [6,15]
6 7.32 [6,7] [5,9]
7 6.09 [5,6] [4,9]

95th Percentile of the
Distances from Signal
Points to Fibres

5 5.39 [5.06,5.50] [4.69,6.15]
6 5.07 [4.87,5.29] [4.43,5.94]
7 5.12 [4.81,5.25] [4.67,6.04]

Total Length of Fibres
5 51.20 [45,51] [45,59]
6 54.62 [50,56] [46,62]
7 56.37 [55,60] [48,65]

Table 6.6: Results for Galaxy Data: The first sub-table gives posterior probabilities
on the number of fibres, while the second gives posterior means and 50% and 95%
HPD (highest posterior density) intervals for a selection of properties of the posterior
distribution conditional on the number of fibres. The data are the galaxies located
in the window [0, 40] × [30, 60] × [0, 10] of the brick of galaxies NGP150, identified
by Stoica et al. [2007]. There are 124 points in a 40×30×10 window, the dispersion
parameter σdisp is set to 2 and the prior mean probability that a point is noise is
0.25. Posterior probabilities are only given if non-zero to rounding error.
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Also presented are preliminary results on two 3-dimensional data sets.

Following consideration of these examples, it is apparent that the curvature bias in

the field of orientations on fibre samples can affect the number of fibres by causing the

model to favour short fibre segments over a long single fibre. This is most apparent

in the first simulated example. In order to estimate the number of fibres generating

a point pattern from the posterior distribution, a bias-corrected estimator, weighted

towards the lower end of the posterior distribution of the number of fibres, may be

appropriate.

The examples in this chapter provide evidence that our approach can be applied to

data exhibiting various types of fibre structure. For example, fingerprint pores lie

close to the centre of ridge lines which, in turn, lie almost parallel to each other on

the fingertip, yet the flexible model can be fitted to both this data and the densely

clustered data of earthquake epicentres.

In the following chapter, we return to the discussion of tensors, analysing the ro-

bustness of the local orientation estimate provided by the tensor method, and in-

troducing a new measure of anisotropy (the degree to which a tensor deviates from

isotropy).

126



Chapter 7

Measures of Anisotropy and

Tensor Robustness

This chapter presents a collection of analyses on the tensor method, used to estimate

local orientations in a point pattern (see Section 4.3.2), together with some more

general remarks on the properties of tensors. The tensor is fundamental to the

estimation of the field of orientations, and it is therefore important to gain some

understanding of when the tensor method provides a good orientation estimate, and

when it is less reliable.

The first section considers the result of applying the tensor method to a homogeneous

Poisson process, providing an isotropic model for comparison. We also identify

the mean tensor calculated on two other point processes - a homogeneous Poisson

process conditional on a specific point, and a Poisson process with a cosine intensity

function. These basic point process models provide a reference point for further

analysis.

Section 7.2 describes how the tensor can be summarised in terms of three meaning-

ful quantities: orientation, magnitude and anisotropy. While the relation between a

tensor and its dominant orientation is clear (indicated by the principal eigenvector),

the measures of magnitude and anisotropy have no single definition. A number of dif-

ferent examples from the literature are mentioned, and a new measure of anisotropy,

motivated by the tensor method construction, is proposed. Their comparative be-

haviour for the mean tensor of a homogeneous Poisson process conditional on a

single point is presented.

A robustness analysis of the tensor method is presented in Section 7.3, the effect of

noise on tensors is estimated by approximating the fibre-generated point process by

three basic models. Finally, Section 7.4 describes how knowledge of the anisotropy
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of a point pattern could be used to extend the model described in Chapter 3.

Throughout this chapter, the parameter of the tensor method σFO will be written

as σ for the purpose of clarity.

7.1 The Tensor Method Applied to Specific Point Pro-

cesses

It is not possible to derive simple formulae for the result of the tensor method on a

general point process. However the mean tensor can be calculated for some Poisson

processes. This section presents the mean tensors for three Poisson processes: an

isotropic homogeneous Poisson process, a homogeneous Poisson process conditional

on there being a point at a specific location, and an inhomogeneous Poisson process

with a cosine-intensity. The first two are useful for understanding the effect of

homogeneous background noise on the tensor, the last provides an example of an

anisotropic point process.

7.1.1 Homogeneous Poisson Process

In order to study the tensor method and understand what the constructed tensors

represent, it is useful to work with a very simple point pattern. While the homoge-

neous Poisson process is not a definitive benchmark for an isotropic point process

it proves a useful starting point, and is extended in the following section by condi-

tioning on a single point. Considering the results of the tensor method on a Poisson

process could potentially aid the classification of point patterns into those with

underlying directional properties (anisotropic) and those without (isotropic).

We define Π to be a Poisson process on R2 with constant intensity ρ > 0. Without

loss of generality we choose to evaluate the tensor created at point q, and use polar

coordinates (r, θ) centred at q, with an arbitrary but fixed choice of orientation for

θ = 0, to identify the remaining points in Π.

Let T denote the tensor evaluated at q under these Poisson process assumptions,

T =
∑

(r,θ)∈Π

exp

(
− r2

2σ2

)
(cos θ, sin θ)T(cos θ, sin θ) (7.1)

for some σ ∈ R+ (see Section 4.3.2, Su, 2009 or Su et al., 2008 for further de-

tails).
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Now let A ⊂ R2 be a Borel set, and define T (A) to be the tensor calculated over

points in A ∩Π:

T (A) =
∑

(r,θ)∈A∩Π

exp

(
− r2

2σ2

)
(cos θ, sin θ)T(cos θ, sin θ). (7.2)

Consider an increasing sequence of Borel sets A1 ⊆ A2 ⊆ ... ⊆ An ⊆ ... ⊂ R2,

such that limn→∞An = R2. We will show that T (An) → T and hence calculate

E(T ).

Theorem 3. Let A1 ⊆ A2 ⊆ ... ⊆ An ⊆ ... ⊂ R2 be an increasing sequence of Borel

sets such that limn→∞An = R2. Then

� limn→∞ T (An) = T

� limn→∞ E(T (An)) = E(T ) = πρσ2I2

where I2 is the 2× 2 identity matrix.

Proof. The first result follows from dominated convergence, as∣∣∣∣∣exp

(
−r2

2σ2

)(
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)∣∣∣∣∣ < exp

(
−r2

2σ2

)(
1 1

1 1

)
. (7.3)

The sum
∑

(r,θ)∈Π exp
(
−r2
2σ2

)
can be shown to have finite expectation for Poisson

process Π. Hence T (An) converges almost surely to T .

For the second result we see that, by the monotone convergence theorem,

E

 ∑
(r,θ)∈Π∩An

exp

(
−r2

2σ2

)(
1 1

1 1

) (7.4)

converges, and hence by the dominated convergence theorem, limn→∞ E(T (An)) =

E(T ).

By the isotropy (directional invariance) of the Poisson process, we know that the off-

diagonal elements of E[T ] are 0, and the diagonal elements are equal. So it suffices

to consider

E

 ∑
(r,θ)∈Π

exp

(
− r2

2σ2

)
cos2 θ

 . (7.5)

As the expectation is calculated with respect to the intensity of the Poisson process,
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this is written

E[T ] = ρ

∫ ∞
0

∫ 2π

0
r exp

(
− r2

2σ2

)
cos2 θ dθ dr (7.6)

= ρπσ2, (7.7)

hence E[T ] = ρπσ2I2.

In fact, if we choose At := B(q, t), a series of discs centred at q of radius t > 0,

then

Mt :=


T (At)

1−exp
(
−t2
2σ2

) for t > 0

ρπσ2I2 for t = 0
(7.8)

is a martingale, i.e. a sequence of random variables such that E[|Mt|] < ∞, and

E[Mt+1|Mt, ...,M1] = Mt, see Brémaud [1981] for further details. Correspondingly,

we can write

E [T (At)] =

(
1− exp

(
−t2

2σ2

))
ρπσ2I2. (7.9)

So, if it is believed that a point process is approximately distributed as a Poisson

process outside a given radius t of point q, then this provides an estimate of the error

in calculating the tensor at q omitting all points outside the radius t. As t → ∞,

the error reduces rapidly to 0.

7.1.2 Homogeneous Poisson Process Conditional on a Point

Having identified the tensor on a homogeneous Poisson process, we now condition

on there being a point at a given location and consider the Palm distribution of

the tensor conditional on this point. A Palm distribution is simply a distribution

conditional on the occurrence of a specific event; in a point process this is often taken

to be the event that there is a point lying at a specific location (see Stoyan et al.,

1995). As the events in the Poisson process occur independently, conditioning on a

single point does not affect the distribution of the remaining points. This conditional

point process is used to compare measures of anisotropy in Section 7.2.4.

The mean tensor E[T ] was calculated at an arbitrary point in a homogeneous Poisson

process with rate ρ in the previous section. Now consider E[T |Π ∩ (r0, θ0) 6= ∅], the

conditional expectation of the tensor given there is a point at (r0, θ0). As a Poisson

process conditional on a point is still a Poisson process with the same rate, we
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have

E[T |Π ∩ (r0, θ0) 6= ∅] = ρπσ2I2 + exp

(
−r2

0

2σ2

)(
cos2(θ0) cos(θ0) sin(θ0)

cos(θ0) sin(θ0) sin2(θ0)

)
.

(7.10)

Without loss of generality we can set (θ0 = 0) to get

E[T |Π ∩ (r0, θ0) 6= ∅] =

(
ρπσ2 + exp

(
−r20
2σ2

)
0

0 ρπσ2

)
, (7.11)

giving a tensor of the form

(
α+ β 0

0 α

)
, for α, β > 0. As exp

(
−r20
2σ2

)
< 1, the

knowledge of the location of one point in the Poisson process does not have a large

effect on the mean tensor, unless the intensity ρ is particularly small.

7.1.3 Cosine Poisson Process

As an alternative to the homogeneous Poisson process, this section considers the

behaviour of the tensor over a Poisson process which is anisotropic around the

location the tensor is evaluated at. The Poisson process described here is loosely

based on the fingerprint data where sweat pores lie along fibres that are reasonably

approximated by a collection of parallel lines.

Specifically, we consider the mean tensor evaluated at (0, 0) of the Poisson pro-

cess with intensity τ(x, y) = γ
2π (1 + cos(x)), for some constant γ, using cartesian

coordinates (x, y) ∈ R2. The mean tensor calculated by the tensor method is

E[T ] =

∫ 2π

0

∫ ∞
0

γ

2π
(1 + cos(r cos θ)) exp

(
− r2

2σ2

)
r

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
dr dθ

(7.12)

= γ

σ2

2
I2 +

 (1 + σ2) exp
(
−σ2

2

)
− 1 0

0 1− exp
(
−σ2

2

)  .

7.2 Tensor Decomposition

Recall the construction of the initial tensor at data point q, calculated from data

y1, ..., ym, as given in Chapter 4, Section 4.3.2. The vector vi = (vi1, v
i
2) from point
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q to point yi is transformed to

ṽi = (ṽi1, ṽ
i
2) =

exp
(
−
(
(vi1)2 + (vi2)2

)
/4σ2

)√
(vi1)2 + (vi2)2

(vi1, v
i
2) (7.13)

where σ is a scaling parameter. If we use polar coordinates centred at q, vi =

(ri cos θi, ri sin θi) (as in the previous section), then the initial tensor at point q

is ∑
i

exp
(
−r2

i /2σ
2
)

r2
i

(ri cos θi, ri sin θi)
T(ri cos θi, ri sin θi). (7.14)

This tensor

T =

(
A B

B C

)
=
∑
i

exp

(
− r2

i

2σ2

)(
cos2 θi cos θi sin θi

cos θi sin θi sin2 θi

)
, (7.15)

where AC > B2, is a 3-dimensional structure, but the meaning of the values A,B

and C is not intuitive. This section is concerned with how these three variables can

be transformed to variables that are more informative about the properties of the

tensor.

7.2.1 Orientation

The natural variable to consider is the orientation of the tensor. This is expressed

as

φ = arctan
(√

1 +G2 −G
)

(7.16)

where

G =
C −A

2B
=

∑
i exp

(
− r2i

2σ2

)
sin(2θi)∑

i exp
(
− r2i

2σ2

)
cos(2θi)

(7.17)

for B 6= 0. If B = 0, then the orientation is φ = π/2 if C > A and φ = −π/2 if

A > C. If A = C and B = 0 then T is isotropic - a multiple of the identity matrix,

and has no dominant orientation.

7.2.2 Magnitude

There are two remaining components of the tensor. They can be used to describe

the magnitude and anisotropy of the tensor. The magnitude relates to how much
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‘information’ has contributed to the tensor - under the tensor method this cor-

responds to a combination of the number of points and the size of their weights

wi = exp(−r2
i /2σ

2). In particular, it is independent of the tensor orientation φ and

also the direction of the individual point-to-point vectors vi.

A natural choice for a measure of the magnitude of our tensor is the trace, tr(T ). For

the tensor T in Equation (7.15) this quantity is simply
∑

i exp
(
− r2i

2σ2

)
, a weighted

sum of the number of points in the pattern, quantifying the amount of information

contributing to the tensor.

An alternative measure of magnitude, based on the correspondence between ellipses

and tensors is mentioned in the following section.

7.2.3 Measure of Anisotropy

The anisotropy of a tensor describes the extent to which the weighted vectors ṽi are

concentrated around the dominant orientation. This is a measure of how much the

tensor deviates from an isotropic tensor exhibiting no determinable orientation; it

literally means ‘not the same in all directions’.

Various measures of anisotropy have been suggested for tensors, mostly in literature

focusing on diffusion tensor imaging where they are also called diffusion anisotropy

indices. For the analysis of the robustness of tensors in Section 7.3, we will use

a modified version of the squared Fractional Anisotropy, but first we shall con-

sider other alternatives. The focus of the section is on anisotropy measures for

2-dimensional tensors, but n-dimensional extensions are also given where appropri-

ate.

Note that if the model is extended to n dimensions, more components are introduced.

In particular, there are n orthogonal orientations (eigenvectors), each of which has an

associated eigenvalue indicating the amount of evidence supporting that orientation

as the dominant orientation. For example, in the tensor method the magnitude of

the eigenvalue describes the number of data points near to the point q (at which

the tensor is calculated) in the corresponding direction. The measure of anisotropy,

typically a scalar variable, summarises the extent to which k of these n eigenvalues

dominate the others in magnitude, for some k, where 0 < k < n. In two dimensions

we are restricted to k = 1, but for higher dimensions there is a decision as to which

value of k to use.

Consider the 3-dimensional example, if k = 1 a high anisotropy indicates that most

of the orientations are aligned in the same direction, whereas a high anisotropy mea-

sure using k = 2 tells us that most of the local orientations fall within a planar surface
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in 3-dimensional space. In this application we are studying point patterns gener-

ated from fibres (1-dimensional curves), so anisotropy measures should summarise

the extent to which the first eigenvalue dominates the others (i.e. k = 1).

The measures of anisotropy described here are split into three categories - those

based on ellipses (or ellipsoids in higher dimensions), measures described by the

ratios of various measures of magnitude, and measures equal to the distance from

the tensor in question to the nearest isotropic tensor for a given choice of dis-

tance metric. Finally we propose a new measure of anisotropy adapted from the

Fractional Anisotropy for easier calculations on tensors calculated from the tensor

method.

Measures Based on Ellipsoids

There is a bijective relationship between n-dimensional tensors and n-dimensional

ellipsoids (or ellipses in two dimensions) centred at the origin, which is why ellipsoids

are often used to depict tensors graphically. The bijection most commonly used maps

the tensor T to an ellipsoid with orthogonal axes in the directions of the eigenvectors.

The lengths of the semi-axes (half the lengths of the axes) are then related to the

eigenvalues, λ1, λ2, ..., of the tensor. Here we take the length of the semi-axes to

be equal to the eigenvalues, although it is also common to use the square roots of

the eigenvalues (e.g. Dryden et al., 2009). Properties of an ellipsoid can be used to

describe measures of magnitude and anisotropy of the associated tensor.

In two dimensions, the natural quantities to measure are the shape and size of the

ellipse. The size of an ellipse could be represented by its area, given by πλ1λ2. As

a measure of the magnitude of a tensor the elliptical area has the drawback that it

is not independent of angles θi. However, the elliptical area is proportional to the

determinant of the corresponding tensor πλ1λ2 = πdet(T ), and therefore it shares

a useful property: when calculating the mean of m tensors in the log-Euclidean

metric, the determinant of the mean tensor, is equal to the scalar geometric mean

of the determinants of the m original tensors. This property naturally extends to

higher dimensions.

The shape of an ellipsoid relates to the anisotropy of the tensor. Pierpaoli and

Basser [1996] mention the volume ratio as a possible anisotropy measure in three

dimensions. It is defined as the ratio of the volumes of the ellipsoid and a sphere

with radius equal to the average length of the ellipsoids axes (i.e. the isotropic

equivalent). For a general n-dimensional tensor with eigenvalues λi (i = 1, ..., n) it

is given by

Volume Ratio =

∏n
i=1 λi

λ̄n
where λ̄ =

∑n
i=1 λi
n

(7.18)
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The area ratio, the equivalent measure of anisotropy for a 2-dimensional tensor with

eigenvalues λ1, λ2 is

Area Ratio =
4λ1λ2

(λ1 + λ2)2
. (7.19)

Another measure based on the geometry of ellipses is the eccentricity (also called

the first eccentricity), given in two dimensions by√
1− λ2

2

λ2
1

, (7.20)

where λ1 > λ2.

Ratio-Based Anisotropy Measures

A very simple measure in two dimensions is the ratio of the eigenvalues λ1/λ2

(λ1 > λ2), given in Basser et al. [1994] which gives a value ≥ 1; a measure of 1

indicates isotropy. However this measure is unbounded, has little intuitive meaning,

and in higher dimensions there is no standard way to extend it.

Bahn [1999] suggests taking the ratio of different measures of tensor magnitude.

Three such magnitude measures applicable to two dimensions are:

A =
λ1 + λ2

2
(arithmetic mean)

J =
√
λ1λ2 (geometric mean)

K =
2λ1λ2

λ1 + λ2
(harmonic mean).

From these we calculate two more measures of anisotropy,

J/A =2

√
λ1λ2

λ1 + λ2
(7.21)

K/A =
4λ1λ2

(λ1 + λ2)2
. (7.22)

Note that K/A is equal to the area ratio, see Equation (7.18), and is also the square

of J/A. Both these measures of anisotropy decrease from 1 to 0 as the anisotropy

increases.
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The three magnitude measures are easily extended to n dimensions:

An =

∑
i λi
n

(arithmetic mean)

Jn = n

√∏
i

λi (geometric mean)

Kn =
n∑
i λ
−1
i

(harmonic mean).

The two measures of anisotropy become

Jn/An =n
n
√∏

i λi∑
i λi

(7.23)

Kn/An =
n2(∑

i λ
−1
i

)
(
∑

i λi)
. (7.24)

Distance-Based Anisotropy Measures

The measure of anisotropy most commonly used in diffusion tensor imaging is the

Fractional Anisotropy (or FA) index (Basser and Pierpaoli, 1996), which in 2 di-

mensions is given by

FA =
|λ1 − λ2|√
λ2

1 + λ2
2

. (7.25)

The FA is defined as the distance from the tensor to the nearest isotropic tensor,

where the Euclidean metric is used to calculate distances. In n dimensions, the

Fractional Anisotropy generalises to

FA =

√
n

n− 1

∑n
i=1(λi − λ)2∑n

i=1 λ
2
i

, (7.26)

where λ is the mean of the eigenvalues. This is equal to the ratio of the standard

deviation of the eigenvalues and
√
E(λ2) up to a normalising constant.

The geodesic anisotropy or GA (Batchelor et al., 2005) is an alternative to the FA

based on the log-Euclidean metric rather than the Euclidean metric. It is given in

2 dimensions by

GA =
1√
2

∣∣∣∣log

(
λ1

λ2

)∣∣∣∣ , (7.27)
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and extends to n dimensions as

GA =

√√√√ n∑
i=1

(log λi − log λ)2, (7.28)

where log λ is the mean logarithm of the eigenvalues, 1
n

∑n
i=1 log λi. The geodesic

anisotropy is not bounded above, but has a minimum value of 1 which, when at-

tained, indicates complete isotropy.

An alternative extension of the Fractional Anisotropy is the Procrustes Anisotropy

(PA) given in Dryden et al. [2009]. This has a similar form to the FA, except that

it uses the full Procrustes shape distance rather than the Euclidean distance, so that

the eigenvalues λi are replaced by
√
λi. In 2 dimensions this becomes

√
λ1−
√
λ2√

λ1+λ2
. The

n-dimensional generalisation is

PA =

√√√√ n

n− 1

n∑
i=1

(√
λi −

√
λ
)2
/

n∑
i=1

λi (7.29)

where
√
λ = 1

n

∑
i

√
λi.

Modified Square Fractional Anisotropy

A final measure that we propose here is a modification of the squared Fractional

Anisotropy given by

msFA =
n

n− 1

∑n
i=1(λi − λ)2

(
∑n

i=1 λi)
2 . (7.30)

Like the Fractional Anisotropy, this measure lies in the interval [0, 1] with 0 indi-

cating isotropy and a value of 1 indicating anisotropy, reached if only one eigenvalue

is non-zero. Compare this with the Fractional Anisotropy given in Equation (7.26).

Note that, as
∑
λ2
i < (

∑
λi)

2 and the Fractional Anisotropy is bounded above by

one, the modified square Fractional Anisotropy is always less than the Fractional

Anisotropy. It can also be considered as the variance of the normalised eigenval-

ues,

msFA =
n

n− 1
Var(Xi) where Xi =

λi∑n
i=1 λi

. (7.31)

What makes the modified Fractional Anisotropy appealing is that properties such

as its mean and variance can be estimated for tensors created by the tensor method.
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In two dimensions it reduces to

msFA =

(
λ1 − λ2

λ1 + λ2

)2

. (7.32)

In terms of the tensor components of Equation (7.15), the new modified Fractional

Anisotropy is written

msFA =
(A− C)2 + 4B2

(A+ C)2
(7.33)

=
(
∑n

i=1wi cos(2θi))
2 + (

∑n
i=1wi sin(2θi))

2

(
∑n

i=1wi)
2 ,

where wi = exp(−r2
i /2σ

2).

Under the assumption that the point pattern is isotropic and hence the angles θi are

identically and independently Uniformly distributed over [0, 2π), we can calculate

the expected msFA of tensor

T =
∞∑
i=1

Wi

(
cos2 θi cos θi sin θi

cos θi sin θi sin2 θi

)
, (7.34)

conditional on weights Wi = wi for i = 1, ..., n:

E [msFA|W1 = w1, ...,Wn = wn] (7.35)

= E

 1

(
∑n

i=1wi)
2

( n∑
i=1

wi cos(2θi)

)2

+

(
n∑
i=1

wi sin(2θi)

)2
∣∣∣∣∣∣W1 = w1, ...,Wn = wn



= E

 1

(
∑n

i=1wi)
2


(

n∑
i=1

wi

)2

− 2

n∑
i=1

n∑
j=1
j 6=i

wiwj sin2(θi − θj)


∣∣∣∣∣∣∣∣W1 = w1, ...,Wn = wn



=
1

(
∑n

i=1wi)
2


(

n∑
i=1

wi

)2

−
n∑
i=1

n∑
j=1
j 6=i

wiwj


=

∑n
i=1w

2
i

(
∑n

i=1wi)
2 .

The second equality can be seen by expanding the two squared terms involving θ,

and comparing with (
∑n

i=1wi)
2.
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Furthermore, the second moment can also be calculated:

E
[
msFA2|W1 = w1, ...,Wn = wn

]
(7.36)

= E

 1

(
∑n

i=1wi)
4


(

n∑
i=1

wi

)2

− 2
∑

i,j=1,...,n
j 6=i

wiwj sin2(θi − θj)


2∣∣∣∣∣∣∣∣W1 = w1, ...,Wn = wn



=
1

(
∑n

i=1wi)
4
E


(

n∑
i=1

wi

)4

− 4

(
n∑
i=1

wi

)2

 ∑
i,j=1,...,n

j 6=i

wiwj sin2(θi − θj)



+ 4

 ∑
i,j=1,...,n

j 6=i

wiwj sin2(θi − θj)


2∣∣∣∣∣∣∣∣W1 = w1, ...,Wn = wn
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Thus the conditional variance is

Var(msFA|W1 = w1, ...,Wn = wn) =
1

(
∑n

i=1wi)
4

∑
i,j=1,...,n

j 6=i

w2
iw

2
j (7.37)

These theoretical properties can be used to test if a point pattern is isotropic at

different scales by varying σ.

7.2.4 Comparison of Anisotropy Measures

The anisotropy measures are compared by applying them to the mean tensor calcu-

lated at a point q in a homogeneous Poisson process, conditional on there being a

second point at (r0, θ0 = 0) (in polar coordinates centred at q). The mean tensor,

derived in Section 7.1.2, is (
α+ β 0

0 α

)
, (7.38)

where α = ρπσ2 and β = exp
(
−r2

0/2σ
2
)
. Parameters are fixed: σ = 1 and ρ =

1/(4π) so that α = 1/4, and β is varied from near zero to 1, (ranging over all the

possible distances r0), and plots are generated for different measures of anisotropy.

These plots are shown in Figure 7.1.

It is particularly evident from these plots that there are very few rules governing

how a measure of anisotropy should behave as the eigenvalues vary. While they are

all monotonic for β ∈ [0,∞), two decrease from 1 to 0 (J/A and the area ratio),

the nearest eigenvector anisotropy increases from 0.5 to 1, the geodesic anisotropy

increases from 0 but is unbounded, and the remaining four increase from 0 to 1.

7.3 Robustness of the Tensor Method

This section investigates how different types of noise in the point pattern can effect

the tensor created in Equation (4.5), page 46, in particular how well it estimates

the local fibre orientation. There are three common types of noise that can occur

in signal point data:

(A) Additional noise: random noise points are superimposed on the signal point

pattern,

(B) Subtractive noise: random thinning where points are removed from the signal

point pattern,
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Figure 7.1: Plot of various measures of anisotropy based on a tensor with eigenvalues
α and α + β. The smaller eigenvalue, α, is fixed at 0.25, and β ranges from 0 to
1. The measures of anisotropy shown are: the ellipse area ratio (Equation (7.19),
also equal to K/A in Equation (7.22)); the ellipticity (Equation (7.20)); the ratio
of magnitude measures J/A (Equation (7.21), also equal to the square of the ellipse
area ratio); the Fractional Anisotropy (Equation (7.26)); the Geodesic Anisotropy
(Equation (7.27)); the Procrustes Anisotropy (Equation (7.29)); and the modified
square Fractional Anisotropy (Equation (7.32)).

(C) Random displacement: signal points are randomly perturbed.

The effects of the first two types of noise are analysed by applying them to basic fibre-

generated point process models and estimating properties of the tensor resulting

from the tensor method.

The focus in this section is primarily on the fingerprint pore data and for this reason

most of the fibre models are based on a structure of multiple parallel lines, each

equidistant from the neighbouring lines. Due to the close proximity of fingerprint

ridge lines, tensors calculated at signal points in the fingerprint data are generally

more isotropic as they include a rather high weighting of points from adjacent ridges.

This makes the tensor calculated at a point particularly susceptible to noise; in

general the more anisotropic a tensor, the more robust it is to noise.

However, we begin with a more general model, of points randomly located along a

single fibre.
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7.3.1 Linear Fibre Model

In the first basic model, the set of fibres is approximated by a single linear fibre of

infinite length. The tensor method is a local estimate of orientations and as such,

approximations made at a larger scale are unlikely to have a significant effect on the

tensor produced. The infinite length of the fibre allows us to ignore the possibility

that the point q (at which the tensor is calculated) is near an end point. Restricting

the type of fibre to a straight line is a reasonable approximation for smooth fibres.

The question of how robust the tensor method is around the end of a curvilinear

point cluster, or near a fibre with high curvature have not been addressed here.

The signal points are assumed to lie directly on the fibre; in the language of Chap-

ter 3, we let the dispersion parameter σFO governing the deviation of points from

fibres tend to 0. The points are then distributed along the fibre according to a

1-dimensional Poisson process of rate λ.

Background noise is superimposed as a 2-dimensional homogeneous Poisson process

of rate ρ, so that the mean tensor calculated at point q on the fibre is

E[T ] =

(
πρσ2 + λ

√
2πσ 0

0 πρσ2

)
(7.39)

where the coordinate system is chosen so that the fibre lies parallel to the first

axis.

The modified square Fractional Anisotropy for this model is

msFA =
1(

1 +
√

2πρσ/λ
)2 . (7.40)

This suggests, as we would expect, that increasing the intensity of the background

noise will make the tensor more isotropic. Similarly, thinning the signal point pro-

cess, equivalent to decreasing λ, will reduce the anisotropy of the tensor.

It is informative to compare the effects of subtractive and additive noise as, in

some types of data - most noticeably the fingerprint pore data, the data extraction

process requires a choice of parameters. Varying these parameters may lead to not

only an increase in the number of signal points identified, but also the number of

artefacts or background noise. It is clear that if the anisotropy measure msFA

is fixed, parameters λ and ρ are proportional. This suggests that if a change in

the extraction parameters halves both the number of background noise points and

signal points identified, then it will have little effect on the anisotropy of the resultant

tensor.
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An alternative approach to assessing the robustness of the tensor method is to study

the distribution of the orientation of the tensor calculated. Unfortunately, the for-

mula for the orientation of a tensor (Equation (7.17)) is not simple and therefore

calculations of the distribution of the orientation are unfeasibly complicated. For

this reason we estimate the orientation of a tensor calculated at point q by the

direction of the nearest point - signal or noise. While this does not relay much

information about the robustness of the tensor, it does provide an approach for

identifying what intensity of background noise will cause most methods for estimat-

ing local orientations to break down.

The probability that the nearest point to q is signal and lies on the fibre, rather

than being a background noise point is given by∫ ∞
0

∫ x

0
4λπρy exp

(
−πy2ρ− 2λx

)
dy dx (7.41)

= 1− exp

(
λ2

πρ

)
λ

ρ
erfc

(
λ
√
πρ

)
,

where erfc() is the complementary error function. A contour plot of this probability

for (λ, ρ) ∈ [0, 10]2 is shown in Figure 7.2. Note that if ρ ∝ λ2 this probability is

constant. In particular if λ2/ρ < 1.7 then the probability that the nearest point is

a signal point is greater than 0.5.

7.3.2 Parallel Linear Fibres Model: Poisson Distributed Points

The general linear model is extended to an infinite set of multiple linear fibres each

lying parallel and an equal distance d to each of its neighbouring fibres. Points

are distributed at random along the parallel fibres as independent and identically

distributed Poisson processes of rate λ.

With homogeneous background noise of intensity ρ, the mean tensor calculated at

an arbitrary point q on a fibre is

E[T ] = πρσ2I2 + λ
∞∑

i=−∞

∫ ∞
−∞

exp

(
− i

2d2 + x2

2σ2

)
1

i2d2 + x2

(
x2 idx

idx i2d2

)
dx

(7.42)

= πρσ2I2 +

∞∑
i=−∞

λ

 √2πσ exp
(
− i2d2

2σ2

)
− diπ erfc

(
|id|√

2σ

)
0

0 diπ erfc
(
|id|√

2σ

)  ,

where erfc() is the complementary error function and I2 denotes the 2× 2 identity
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Figure 7.2: Linear Fibre Model: Contour plot for the probability that the nearest
point to a signal point is also a signal point.

matrix. The modified square Fractional Anisotropy is then given by

msFA =

∑∞i=−∞√2πσ exp
(
− i2d2

2σ2

)
− 2diπ erfc

(
|id|√

2σ

)
2πρσ2/λ+

∑∞
i=−∞

√
2πσ exp

(
− i2d2

2σ2

)
2

. (7.43)

Due to the infinite summation the msFA can only be estimated computation-

ally.

It is clear from Equation (7.43) that for a fixed value of the msFA, the two in-

tensities (λ of the signal process and ρ of the background noise) are proportional.

A corresponding result was found for the single linear fibre model. However, the

relation between the inter-fibre distance d and the msFA is less clear. Figure 7.3

shows a contour plot of the msFA for different values of the ratio of intensities ρ/λ

and the distance between fibres, d. It appears that, once the distance d between

two fibres exceeds a threshold value, further changes in d have little effect. In this

case, where σ = 1, the threshold is around d = 3. Furthermore, if the distance d

falls below another threshold (around 1 in this case), the mean tensor appears to
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Figure 7.3: Contour plot of the msFA of the mean tensor based on the parallel lines
model, for a range of values of the inter-fibre distance d, and the ratio of the noise
and signal intensities ρ and λ. The parameter σ was fixed equal to 1.

be isotropic. This is because points on adjacent fibres are close enough to q that

their weighted contribution to the tensor cancels with the contributions of points on

the same fibre as q. As we would expect, increasing the intensity of the background

noise relative to the intensity of the Poisson process of points along fibres, decreases

the anisotropy.

The following section considers the cosine Poisson process defined by the intensity

function τ(x, y) = γ
2π (1 + cos(x)). For a direct comparison of the parallel lines

model with the cosine Poisson process model, the distance between the parallel

lines is now fixed at d = 2π. A plot of the msFA for varying intensity ratio ρ/λ,

and varying parameter σ is presented in Figure 7.4. Evidently the anisotropy will

be maximised by choosing parameter σ as small as possible, indeed as σ → 0 the

anisotropy msFA → 1, no matter how high the intensity of background noise. It

is suspected that the reason for the parameter σ → 0 optimising the anisotropy of

the tensor, is that the signal points in the parallel lines model all lie directly on the

fibre. This is not the case for the cosine Poisson process model, as we shall see in
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Figure 7.4: Contour plot of the msFA of the mean tensor based on the parallel
lines model. The msFA is calculated for a range of values of the parameter σ and
the ratio of the noise and signal intensities ρ and λ. The distance between adjacent
fibres is fixed equal to 2π.

the next section.

7.3.3 Cosine Poisson Process

Displacement noise can be included in the parallel linear fibres model as Gaussian

perturbations of the points. However, calculating the distribution of the distance a

point is perturbed by an isotopic kernel generally leads to complicated calculations.

As an alternative, we study the effects of noise through the calculation of a tensor on

the cosine Poisson process described in Section 7.1.3. This is both an approximation

for the point-fibre relationship where each signal point is displaced from an anchor

point on a fibre, and a model for displacement noise of points under the assumption

that signal points lie exactly on the fibres.

Recall that the intensity of the cosine Poisson process is τ(x, y) = γ
2π (1 + cos(x)),

for some constant γ > 0, using Cartesian coordinates (x, y) ∈ R2. With background
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noise modelled by a homogeneous Poisson process of rate ρ superimposed on the

cosine Poisson process, the mean tensor at the origin (0, 0) is given by

E[T ] =

(
γσ2

2
+ πρσ2

)
I2 + γ

 (1 + σ2) exp
(
−σ2

2

)
− 1 0

0 1− exp
(
−σ2

2

)  .

(7.44)

This has an modified square Fractional Anisotropy measure of

msFA =

 2− (1 + 2
σ2 ) exp

(
−σ2

2

)
1 + 2πρ/γ + exp

(
−σ2

2

)
2

. (7.45)

It is clear that if there is no background noise (ρ = 0) then the constant of propor-

tionality γ in the intensity of the signal process has no effect on the msFA.

For a fixed ratio of intensities γ/ρ, it is possible to find the parameter σ that

maximises the msFA. Figure 7.5 shows a contour plot of the msFA for values

of σ ∈ [0, 4] and γ/ρ ∈ [0, 20]. Evidently, a value of σ around 2 produces a relatively

high anisotropy for this model, where parallel fibres lie a distance of 2π apart. The

msFA is still very low, even for the optimum σ, indicating that the cosine Poisson

process is locally more isotropic than the parallel lines model. This suggests that

displacement noise can have a significant effect on the anisotropy of the tensor

calculated in the tensor method.

7.4 Applications of Anisotropy Measures

This chapter concludes with a discussion of some of the ways in which the anisotropy

could be used, both to enhance the inference of the fibre distribution given an

instance of a fibre-generated point process, and more generally for the identification

of anisotropy in point patterns.

The anisotropy of a point pattern can be estimated locally by using the tensor

method to construct a tensor at each point. This provides the basis of a simple

test of anisotropy in a point process. For example the null hypothesis that a point

pattern arises from an isotropic point process might be rejected if more than a

certain proportion of the tensors have a measure of anisotropy greater than c for

some c ∈ (0, 1). However, this requires careful consideration as correlation of the

tensors across the point process is expected. For example, if two tensors calculated

at nearby points both appear to indicate the point pattern is anisotropic, this should

not be considered twice the supporting evidence of a single anisotropic tensor in the
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Figure 7.5: The modified square Fractional Anisotropy for the cosine Poisson process
for a range of values of σ and the ratio γ/ρ

proposed rejection of the null hypothesis. This is a known problem in multiple

testing, see for example Miller [1980].

A high anisotropy of a tensor at a point suggests evidence of a filamentary cluster.

Therefore the empirical Bayes approach could be extended to include this informa-

tion into the prior for the signal probabilities ε.

An example of the local anisotropy of a point pattern estimated using the tensor

method is shown in Figure 7.6. There are collections of points in both of the two

main clusters that are surrounded by a highly anisotropic cluster of points. Compare

with the equivalent results on a homogeneous, isotropic point pattern in Figure 7.7.

It is perhaps more informative to calculate a field of anisotropy over the window

of observation, averaging point estimates of the anisotropy. The field of tensors

calculated as described in Chapter 4, by interpolating the initial tensors, gives rise

to a field of anisotropies as well as a field of orientations. Figure 7.8 shows a map

of the anisotropy field for Stanford and Raftery’s data set (Stanford and Raftery,

2000). It is clear that the two main semi-circular clusters have been identified as

areas of high anisotropy.

The empirical Bayes step could be extended to directly use the field of anisotropies.
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Figure 7.6: Anisotropy plot of data points based on the initial tensors calculated us-
ing the tensor method at each point. The data are from Stanford and Raftery [2000]
and consist of 200 signal points and 200 homogeneous noise points. Darker points
indicate more anisotropic tensors. The measure of anisotropy used was the modified
square Fractional Anisotropy, normalised by subtracting the theoretical mean and
dividing by theoretical standard deviation (both mean and standard deviation are
conditional on the distance-dependent weights). The parameter σ = 13 was used.

One possible extension is to adapt the prior density function of fibres such that fibres

that lie through regions of high anisotropy are favoured over those that lie in regions

of low anisotropy. This has the additional benefit of reducing the number of fibres

that pass near singularities; such fibres tend to have undesirable ‘kinks’ where the

orientation changes rapidly. Singularities in the tensor field, where the orientation

is undefined correspond to zeros in the field of anisotropies. Due to the continuity

of the field of anisotropies, the anisotropy in a neighbourhood of a singularity will

be near zero, and so fibres in this neighbourhood would be less probable. Also,

adapting the birth density, possibly to the new prior density, may be beneficial in

increasing the number of fibres proposed in regions of high anisotropy.

7.5 Conclusions

In this chapter we have shown that a tensor can provide more information than just

an orientation. Most notably it also describes the anisotropy - a measure of how

much variation there is from the dominant orientation. Using the tensor method to

construct tensors enables us to measure the anisotropy of a point pattern.
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Figure 7.7: Anisotropy plot of data points based on the initial tensors calculated
using the tensor method at each point. The data are 400 points uniformly dis-
tributed across a 200×150 window. Darker points indicate more anisotropic tensors.
The measure of anisotropy used was the modified square Fractional Anisotropy,
normalised by subtracting the theoretical mean and dividing by theoretical stan-
dard deviation (both mean and standard deviation are conditional on the distance-
dependent weights). The parameter σ = 13 was used.

A new measure of anisotropy has been introduced, the modified square Fractional

Anisotropy (msFA), adapted from the Fractional Anisotropy (FA) for easier cal-

culations on tensors resulting from the tensor method.

The robustness of the tensor method has been analysed by considering its application

to some basic models and calculating the mean tensor. By finding the msFA of the

mean tensor we have begun to identify the conditions under which the tensor method

breaks down, i.e. fails to provide a reliable estimate of the dominant orientation. We

have also briefly described how parameters such as σ can be chosen so as to optimise

the anisotropy measured by the msFA.

Finally, a few possible ways in which the anisotropy could be used to enhance the

fibre-generated point process model of Chapter 3 have been suggested. There is

plenty of scope in this area for further work, as is evident from the final section on

applications of the measure of anisotropy.

150



Figure 7.8: Anisotropy field for Stanford and Raftery data. The data are from Stan-
ford and Raftery [2000] and consist of 200 signal points and 200 homogeneous noise
points. Lighter areas indicate a higher estimate of local anisotropy. The anisotropy
is measured using the unnormalised modified square Fractional Anisotropy over the
tensor field. The tensor field was calculated by interpolating tensors created by the
tensor method. The log-Euclidean metric was used for interpolation and parameters
were chosen at σ = 13 and h = 10. Crosses indicate data points.
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Chapter 8

Conclusions

8.1 Discussion

In this thesis we have presented a new model for fibre processes and for point

processes generated from a fibre process. Further, we have shown how Monte Carlo

methods can be used to sample from the posterior distribution of a fibre process

that is instrumental in generating a point process. A methodology such as this,

that allows distributional inferences on both the fibres and other parameters to be

made, is new to this area of research. Our approach is particularly novel as it

produces informative statistics on the generating fibre process for a variety of types

of curvilinear clustering. Most notably, we can now reliably estimate the locations

of fingerprint ridges from sweat pore data, an achievement which is not reasonably

possible with existing methods, and may lead to the reconstruction of fingerprints

given pore locations.

As well as fingerprint pore data and earthquake epicentres that cluster around fault-

lines, we have proved that our approach can produce informative results on galaxy

data, estimating the cosmic structure of the universe. Other data sets for which

this model would be suitable include the locations of land mines found in reconnais-

sance imagery of minefields. Reconnaissance images identify land mines, typically

deployed in linear strips, as well as a number of miscellaneous objects. Being able

to locate minefields before and during assaults is a matter of great importance to

the armed forces, and has led to the USA government’s investment in the Coastal

Battlefield Reconnaissance and Analysis program or COBRA (Witherspoon et al.,

1995).

This process fits non-parametric curves to point patterns with just two limitations

on the nature of the curves: curves must not intersect, and must also be ‘sufficiently’

152



smooth (indeed, all curves are C∞). The two restrictions, which arise as the curves

are identified as integral curves of a field of orientations, lead to a very flexible

state space of fibres and are generally appropriate for the data considered. The

non-intersection property may be less desirable but, at some computational cost,

the model could be generalised to allow each fibre to integrate a different field of

orientations, see Section 8.2.2 for further details. Certainly, our approach hugely

benefits from being formulated around a Bayesian hierarchical model which makes

extensions and adaptations readily feasible. For example, extending the model to

allow the fibres to vary in ‘width’ by varying the parameter σdisp (governing the

displacement of points from fibres) between fibres could be implemented easily.

The main limitations of our model arise from the issue of non-intersecting fibres,

and the constraints on the similarity of fibres. Fibres are assumed to be of the same

width (the displacement of points from the fibres is independent of the fibre), and

have the same mean points per unit fibre length. These are not always reasonable

assumptions, as is evidenced by the earthquake data set. Possible extensions to the

model that eliminate this issue are suggested in Section 8.2.2.

It is crucial that the field of orientations is integrated by fibres that produce high like-

lihoods given the point pattern data, as otherwise the MCMC will not traverse the

peaks of the posterior distribution. Through an empirical Bayes approach, calculat-

ing point estimates of local orientations within the point pattern and interpolating

these estimates, we have shown how to produce such orientation fields. Again, our

approach produces good estimates of the field of orientations (i.e. satisfying the cri-

terion that they are integrated by fibres that produce high likelihoods), for a variety

of clustered data types: dense or sparse clusters, clusters of varying curvature, the

parallel and very sparse clusters of the fingerprint pore data, etc. Our approach

even extends to 3 dimensions with the single issue of the scaling problems that are

inherent problem in higher dimensional analysis.

A further strength of our model is that it fits the noise-signal and cluster allocations

implicitly, in contrast to other work where the clustering must often be predeter-

mined. The advantage is that we can produce reliability estimates for these cluster-

ing and noise allocations and explore more potential clustering configurations, and

hence more fibre structures.

The complexity of the model, considering the infinite dimensionality of the field

of orientations, raises the question of whether or not the Markov chain adequately

explores the sample space. Our examples indicate that, whilst the sample space of

fields of orientations is not explored particularly well, the space of fibre configura-

tions is well explored and the field of orientations varies enough to explore a wide

space of fibre configurations. However, as the density of fibres increases, so the

153



BDMCMC algorithm requires a longer runtime to overcome these issues.

Our approach performs consistently well, both accurately estimating properties of

simulated data and providing an explanatory summary of unknown properties of

the earthquake and fingerprint data. It is most notable that it does significantly

better than other available techniques on the fingerprint data where a large number

of densely-packed fibre clusters account for most of the data.

The remainder of this chapter describes some of the main issues with this approach

and, where applicable, suggested solutions to the problems. Also proposed are a

number of areas of work that could benefit from further analysis, and may open up

new fields of interesting research.

8.2 Issues and Further Work

8.2.1 Edge Effects

It is necessary to bear in mind the ramifications of edge effects in the model and

subsequently the BDMCMC algorithm. As we are sampling from a bounded subset

W ⊆ R2 the omission of potential points and fibres just outside W induces a bias

on distance-related measures. These edge effects appear in multiple stages of the

process, for example:

� The field of orientations will have a bias at the edge favouring orientations

parallel to the sides of a rectangular window W . There is slight evidence of this

bias in the orientation of the initial tensors of the full fingerprint data, shown

in Figure 4.4, page 50. Much of this bias is reduced through the smoothing

step in the orientation field estimation.

� Fibres are created by sampling a random reference point from the field and

integrating the field of orientations from that point. However the reference

point cannot be sampled from outside W , and fibres that extend past the

boundary of W are ill-defined as the field of orientations is only defined over

the window. We have reduced this edge bias by assigning a probability of 0 to

the collection of fibres that do not lie completely within W .

� The model for the displacement of points from fibres does not account for

edge effects. There is little evidence of this having a significant effect in the

examples of Chapter 6, but it should be borne in mind that there will be a

biasing effect on fibres that lie near the boundary of W .
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Most of these biases would be significantly decreased by creating a wide border

around W and completing the analysis over the whole area. However this would

come at a large computational cost.

8.2.2 The Fibre and Point Model

As the model is hierarchical, is it extremely easy to introduce further complex-

ity.

A few extensions of the model are suggested here.

Signal Point Process

As described in Chapter 3, signal points are modelled as normally dispersed points

from random anchor points which lie on the fibres. However, other distributions

may be preferable.

In certain data, such as minefield locations, it may be believed that the points are

uniformly dispersed. This can be included by modelling signal points associated

to the fibre F as a uniformly distributed point process over the region {x ∈ W :

‖x − y‖ < d for some y ∈ F}. The maximum distance d of points from the fibre

determines the dispersion parameter. This is similar to the Candy model (Stoica

et al., 2005) which models points as being uniformly distributed across a collection

of connected cylinders.

Sensitivity of Parameters

In Section 6.1.1 we suggested how hyperparameters could be chosen given some prior

knowledge of the fibre process. Our experience is that the model is reasonably robust

to changes in hyperparameters. For example, our experiments have found that the

hyperparameters κ governing the number of fibres, and λ governing the lengths of

fibres, can be doubled (or halved) with little effect on the posterior distribution. The

model is also fairly robust to changes in the density parameter η, although a very low

value can lead to a bias on the fibres, favouring a higher total fibre length, and often

leading to extrapolation of fibres into areas of noise. Similarly, a poor choice of the

parameter αDir, which determines the amount of regularity in the prior distribution

of the anchor points, will not greatly affect posterior statistics, but higher values

can hamper the mixing properties. This is because the prior distribution becomes

highly modal with large αDir, and yet no distributional qualities of this prior are
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included in the proposal distributions for the anchor points, leading to proposed

moves that are frequently rejected.

The model is somewhat more sensitive to σdisp which governs the deviation (or

dispersion) of points from the fibres. If chosen too large the resulting posterior

distribution will favour too few fibres with a sizeable error in their locations. If

chosen too small, fibre clusters may be split into multiple parallel smaller clusters.

However, our experience suggests that small changes in σdisp, i.e. ±30%, will have

no significant effect on the main characteristics of the posterior distribution of fi-

bres.

Extending the Fibre Process

Two restrictions that we have imposed on the fibres are that the fibres do not in-

tersect, and that they share similar properties; fibres are assumed to be of the same

width (the displacement of points from the fibres is independent of the fibre), and

have the same mean points per unit fibre length. Following the analysis of the earth-

quake data set in Section 6.2.3, where the curvilinear point clusters vary in width

and density, we suggested the extension of the model, allowing hyperparameters of

fibres to vary.

The model can be easily adapted by replacing hyperparameters such as λ (half the

mean length), and σdisp (the parameter governing the dispersion of points from fi-

bres) by indexed parameters λ1, .., λk and σ1,disp, ..., σk,disp. A hyperprior on these

parameters should be introduced, and they may be updated as part of the BDM-

CMC. Otherwise, with different fixed hyperparameters (or different hyperpriors) for

each cluster, a fixed labelling would be imposed on the fibre process. Hyperparam-

eters or hyperpriors would need to be identified for any possible number of fibres k,

which would rather complicate the process.

The model could conceivably be extended to assign a different orientation field to

each fibre. This would permit fibre processes containing meeting or crossing fibres.

For each fibre, a field of orientations must be estimated which is integrated by

fibres that produce a high likelihood. A natural extension to the empirical Bayes

estimation of the field of orientations for a single fibre cluster is to restrict the data

sets to the points associated to the fibre. However, it is likely that this approach

would be sensitive to the initial clustering, similar to the principal curves approach

of Stanford and Raftery [2000]. An additional issue with this approach is that

any move that reassigns points to fibres would require the orientation fields to be

recalculated, and hence also the fibres. It is possible that the auxiliary (signal

probability) variable ε could also be extended to include the probability that each
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point belongs to a particular fibre cluster, and orientation field estimates could be

based on these weightings. Further investigation is required to prove whether such

an approach would be successful and whether sufficiently mixing BDMCMC chains

could be constructed.

The question of how to include the crossing fibres that integrate a principal eigenvec-

tor orientation field, is one that has been given substantial consideration in the dif-

fusion tensor imaging literature. One proposed solutions is tensor deflection (Lazar

et al., 2003) where the entire tensor determines the direction of integration, rather

than the principal eigenvector orientation. A second solution is regularisation, repos-

ing the problem as the minimisation of some functional, see for example Deriche and

Descoteaux [2007]. With this approach the orientation of integration in regions of

the tensor field which exhibit low anisotropy are effectively adjusted in favour of fi-

bres with particular features (e.g. continuous smooth fibres). Based on these ideas,

we could adapt the notion of integration of the field of orientations, so that rather

than forcing the fibre tangent to agree with the field of orientations, the two orienta-

tions may simply need to be close. The measure of how close these two orientations

are, could be determined by the field of anisotropies. Hence areas of low anisotropy

(e.g. regions near singularities), are more likely to contain fibres which intersect or

cross.

Another extension that could be made to the fibre process is to impose restrictions

on where fibres may lie relative to each other. For example we may have a prior

belief that there is a threshold on the minimum distance between pairs of fibres, or

that they roughly lie in parallel, for example the ridge lines on a fingerprint. The

fibre process could also be varied by imposing restrictions on the locations of fibres

in W by extending the empirical Bayes approach and favouring fibres in areas of

high point density or high anisotropy, as estimated from the data.

A further extension would be to include isotropic point clusters. Isotropic features

appear in the galaxy data, see for example the large cluster on the left-most corner

in Figure 6.10, 124. These could be easily included, for example as a Poisson cluster

process (Neyman and Scott, 1958) producing a richer collection of models.

Noise Points

Lund et al. [1999] describe three types of noise that may occur in spatial point pat-

terns: superposition of ‘ghost points’ (or additive noise), thinning (or subtractive

noise) and random displacement (or perturbation noise). In the model, we include

noise as an additive background homogeneous Poisson process. This could be ex-

tended by permitting variability in the background noise, by modelling it simply
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as an inhomogeneous Poisson process. We briefly suggest how perturbation and

thinning noise may also be included the model.

Perturbation noise, is included, to an extent, in the dispersion of points from their

anchor points. If perturbation noise is believed to have an additional effect on the

model, for example by inaccuracies in the data collection, then this could be included

in the model by choosing a different distribution for the location of a signal point

given the corresponding anchor point. For example, one could take the convolution

of the Gaussian kernel with a second kernel describing the perturbation due to

noise.

A rather more challenging problem is to model subtractive or thinning noise, where

some data were unobserved. Note that the aim is not to reconstruct the data given

a sample of fibres and associated variables, but to directly include subtractive noise

in the model. If the anchor points are modelled as a Poisson point process along

the fibres (i.e. the Dirichlet parameter αDir = 1), then subtractive noise is included

by scaling the density parameter η. However, in our approach the distance between

adjacent anchor points on a fibre is modelled by a general Gamma distribution

(as described in Section 3.2.1), rather than an exponential distribution. Subtrac-

tive noise is often modelled as the thinning of a point process whereby every point

is independently removed from the complete (noise-free) point pattern with some

small probability ρ ∈ (0, 1). The distances between adjacent anchor points in a

point process that has undergone independent thinning, are conditionally Gamma

distributed with size parameter determined by a geometric distribution. Before sub-

tractive noise in the signal process may be implemented, further investigation into

how this distribution behaves and how it effects acceptance probability calculations

in the BDMCMC is required.

8.2.3 Estimation of the Orientation Field

Our approach relies on the estimation of a field of orientations that is well suited to

the data. By this we mean the field of orientations should be integrated by curves

that produce high likelihoods. The calculation of an orientation field estimate must

be reasonably efficient despite the substantial size of the field of orientations, as the

BDMCMC methods require repeated estimations of the orientation field. Bearing

in mind both of these issues, we have chosen to estimate the field of orientations

using tensors as described in Chapter 4.

Some possible extensions are suggested below.
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The Tensor Method

The tensor method, as described in Section 4.3.2 estimates effectively the local

orientations in a pattern, however there is still potential for further analysis and

possibly some improvement. For example, the Gaussian transformation applied to

the point-to-point vectors in Equation (4.4) on page 46 in the first stage of the

calculation of the initial tensor, was chosen because it happens to be smooth and

decreases with distance, and is based on a well understood function. Alternatives

have been suggested such as a transformation based on the functional version of the

Cauchy density. Further investigation may tell if an alternative transformation is

preferable, although it is believed that (rather like kernel choice in kernel smoothing)

the choice of transformation has little effect on the orientation estimation.

Another extension that has been considered, is whether to allow σFO to vary across

the data. If a tensor is calculated at a point yj with the nearest point yi situated

at a distance greater than 2σFO then this point will usually dominate the tensor

calculation, regardless of the perceived isotropy of the point pattern. It can prove

informative to allow σFO to increase when the empirical density of the point pat-

tern around yj is low. This is particularly effective when using tensors to measure

anisotropy, as described in Chapter 7, because different scales of anisotropy can be

measured corresponding to the varying density of the point pattern. Experiments

using a Delaunay triangulation to estimate the local density appear to perform

well.

Extending Steven’s Method

Ideas from the tensor method described in Section 4.3.2 and Steven’s method (Sec-

tion 2.1.3), could be combined to provide an alternative tensor estimation of the

local orientation. In Steven’s method, for each point y, all arcs connecting pairs of

points in a neighbourhood of y (a disc of radius r centred at y) are collected. Rather

than following Steven’s method to create a histogram of the orientations of these

arcs, a tensor could be constructed from the orientations, with the contribution of

each arc weighted by a function of its length. There is also potential to dispense with

the cutoff radius r used in Steven’s method and replace it with a smooth weighting

function.

By considering the arcs connecting any pair of points in a radius of y, rather than

just those with an end point at y, Steven’s method induces more smoothing than

the tensor method. This means that it is more likely that estimations within a

close proximity will have similar orientations. This is natural for an algorithm
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which was designed to mimic human visualisation, but it is unknown whether the

additional smoothing would improve the orientation estimation or just increase the

smoothing bias. Indeed, it is likely that it would only be well suited to certain types

of data.

Curvature Bias

The phenomenon of curvature bias, caused by the interpolation and smoothing step

in the field of orientations estimation, is described in Section 4.5 and its effects on the

estimation of parameters has been commented on in Chapter 6. Possible corrections

to the bias are suggested in Section 4.6. The consequence of the curvature bias is

that sampled fibres may not fit the data well (may not produce high likelihoods).

While this bias has had little significant effect on the examples of Chapter 6, it

is much more evident in the full fingerprint data set, where small discrepancies in

the field of orientations have a greater effect on the long fibres. This is noted as a

fruitful area for future research.

Comparison of Orientation Fields

It can be convenient to measure the discrepancy between the estimated field of ori-

entations and a known field of orientations (where it exists). For example, the field

of orientations estimated over the fingerprint pore data can be compared to a direct

estimate of ridge line orientations found using gradient-based approaches over the

original fingerprint image. This provides an alternative quantification of the curva-

ture bias, when measuring the displacement of singularities is not possible.

Experiments show that as a measure, the mean squared difference in orientation cal-

culated over the windowW , highlights the central region in the fingerprint exhibiting

curvature bias, and the areas at the edges where there is insufficient information to

accurately estimate the ridge orientation. Further investigation and inclusion of

ideas from directional statistics (see Mardia and Jupp, 1999) may provide a more

suitable measure of discrepancy between orientation fields.

Full Orientation Field Density

In the model described in this thesis, an empirical Bayes approach is used to esti-

mate an instance of the field of orientations dependent on the data and an auxiliary

variable, ε, denoting the signal probabilities. Rather than using a point estimate
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of the field of orientations, the model could be extended to include a prior distri-

bution of orientation fields with parameters estimated through an empirical Bayes

step.

A simple extension would be to use a Gaussian random field (Adler and Taylor,

2007), modulo π, with a mean orientation field estimated by the current empirical

Bayes method, described in Chapter 4. This would decrease the bias of the orien-

tation field on the fibre set at the expense of an increase in variance, necessitating

the exploration of a larger state space. However, the run-time of the BDMCMC

could be reduced if the mean orientation field were calculated only once, reducing

the number of tensor calculations.

This orientation field density could be extended by using other properties of the

field of tensors such as the field of anisotropies (mentioned in Section 7.4) to model

the variance of the field of orientations at that point.

An alternative approach is to use a random field of tensors, with mean estimated

through the empirical Bayes step. One approach may be developed from taking

the exponential of the symmetric 2 × 2 matrix whose three elements are Gaussian

random fields. However, some careful consideration is required to ensure that the

field of orientations corresponding to an instance of a tensor field from this density

satisfies the desired properties, such as smoothness, a finite number of singularities,

and that the corresponding orientation field is generally integrated by fibres with

high likelihoods.

Singularities in the Field of Orientations

Singularities define the overall shape of the field of orientations and have potential

uses in identifying bifurcating or crossing fibres. However integration of the field

of orientations can be unreliable around a singularity, as briefly mentioned Chapter

2. Integration of a field of orientations is ill-defined at a singularity as there is no

dominant orientation. In itself this is a minor issue as, by estimating the orientation

field discretely, we ensure that the probability of evaluating the field at a singularity

is 0. However, orientations can vary rapidly around singularities and therefore the

discretisation required to integrate the orientation field is subject to large errors. It

may prove informative to further study the effect of the singularity on the integration

of an orientation field.
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Correspondence with Other Mathematical Objects

The subject of the mathematical object that we have termed a field of orientations

has not been given much attention in the literature. However, there is substantial

literature on other mathematical objects that may provide further insight into these

orientation fields.

By construction, the orientation field calculated in Chapter 4 corresponds to a tensor

field. There is substantial literature on tensor fields due to their frequent usage in

engineering, physics, image reconstruction and diffusion tensor imaging.

There is also an obvious similarity between vector fields and orientation fields: any

continuous vector field can be transformed into a continuous orientation field by

taking the direction of each vector, modulo π. However, the converse is not neces-

sarily true as, for example, if the field of orientations determined by the arch model

described in Theorem 1 (page 58), were transformed to a unit vector field by in-

cluding a direction of orientation, there would be infinitely many singularities. An

alternative mapping from a field of orientations υFO : W → [0, π) to a vector field

υVF : W → [0, 2π) is to simply double the angles υVF(x) = 2υFO(x). Further inves-

tigation into the correspondence between vector fields and orientation fields could

prove beneficial to further research. In particular, it may prove informative to study

how the theory of stationary flows and dynamical systems (see for example Irwin,

1980) relates to properties of the field of orientations such as the effect of noise on

integration and singularities. For example, there is a dynamical systems theorem

that states sufficient conditions for the integral curve of a slightly perturbed vector

field to be continuous. We can also determine properties of integral curves, such as

how many times they may be differentiated, given similar properties of the vector

field.

An alternative approach is to consider a scalar field with the property that if a

point x can be reached by integrating the field of orientations from a point y, then

the scalar field evaluates to equal values at x and y. A continuous scalar field that

satisfies this property should exist if the orientation field has no singularities. The

gradient and other properties of the scalar field may assist in the understanding

and reduction of length-biased fibre processes. The scalar field could also provide

a neat alternative to identifying fibres, removing the discretisation error that arises

when integrating the field of orientations. Indeed, if each streamline of the field of

orientations corresponds to a unique value in the scalar field, then the iso-contours

of the scalar field identify the streamlines of the orientation field.
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8.2.4 Birth-Death Markov Chain Monte Carlo

The birth-death MCMC as described in Chapter 5, provides a method for sampling

from the posterior distribution of fibres given an instance of a fibre process. However,

there exist alternatives to continuous-time birth death Markov chain Monte Carlo

methods. One such alternative, as mentioned at the beginning of Chapter 5, is the

random jump Markov chain Monte Carlo.

The two main issues of the BDMCMC: the long run-times and the question of

sufficient mixing are discussed here.

Computational Issues

The run-times on the 2-dimensional data sets presented in Chapter 6 range from

under 2 to 3.5 days, using an execution node with 3.16GHz processors and 2GB

RAM. While this is long in data analysis terms it is not an unworkable length of

time. Indeed similar uses of MCMC algorithms, such as in the reconstruction of a

Voronoi tessellation from a point process (Skare et al., 2007) can take over 4 days

to run. We remind the reader that, as this work is in the developmental stage, the

algorithm and implementation have not yet been fully optimised.

One way in which the BDMCMC could be improved is to adapt the birth proposal

density (given in Section 5.2.1) so that fibres which produce high likelihoods are

more likely to be proposed. For example, the density could be changed so that

fibres are only proposed if they pass near a data point. A natural extension to

the current proposal density is to favour reference points that lie near data points.

Such a proposal density for the reference points could be found by applying a kernel

smoothing to the point data.

The other principal way to change the proposal density of fibres given a field of

orientations is to vary the lengths of fibres. This could be achieved by imposing a

location-dependent stopping probability on the integration of the field of orienta-

tions. For example, this could depend on the density of data points, or the associated

anisotropy field of the field of orientations. However these adaptations result in a

fibre process that is increasingly difficult to describe, and discussion of edge effects

becomes equally complicated.

The run-time of the BDMCMC may also be reduced by implementing a more efficient

algorithm. Some of steps taken to improve the efficiency were described in Section

6.1.2. Implementing the code in a more powerful language such as C would likely

also decrease the run times.
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Some consideration has been given as to whether the code could be implemented in

parallel, possibly by running separate chains for each disjoint section of the window,

and using the approximation that most calculations are based on distances and are

therefore local. Alternatively, moves could be proposed simultaneously on different

processors. This would only be beneficial with moves that are frequently rejected

as moves must be accepted sequentially, and death rates consequently updated.

Parallel chains could also be used to improve mixing as described in the following

section.

Mixing Issues

A general issue with MCMC algorithms is that it is difficult to confirm whether they

are mixing sufficiently well. Sufficient mixing of the chain is necessary in order to

reliably draw representative samples from the target distribution. Experience of the

implementation of the BDMCMC described in Chapter 5 suggests that data arising

from larger sets of fibres produce slower mixing chains.

Generally, sufficient moves have been introduced (such as adjusting the location and

length of fibres) to allow each fibre to move about explore nearby clusters. Births,

deaths, splits and joins provide frequent moves between different numbers of fibres.

Together these moves improve the mixing of the BDMCMC.

A further improvement to the mixing properties of the chain may be found by using

a Metropolis-coupled approach. Multiple chains are run with different stationary

distributions, one of which is the posterior distribution. Swaps can be proposed be-

tween two chains and are accepted according to a Metropolis-Hastings probability,

see Gilks and Roberts [1995]. In our model, this could be implemented by gradually

varying the dispersion parameter σdisp across chains. When σdisp is larger, there is

less restriction on the location of fibres given points, and therefore fibres can move

and switch places more frequently. With Metropolis-coupled MCMC the strong mix-

ing properties of the chains with large dispersion parameter σdisp are transferred, to

an extent, to the chain with the appropriate target distribution. Simulated temper-

ing, also described in Gilks and Roberts [1995], provides a single chain alternative to

this approach, but this requires a longer chain, and therefore longer run-times.

8.2.5 Other Data

We have focused on data sampled over a subset of the 2-dimensional plane, and

suggested how this could be extended to 3-dimensional point patterns. Further

research possibilities include the fitting of 2 dimensional surfaces in 3 dimensions.
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Then new geometric issues need to be taken into account; for example it is not

the case that a generic field of tangent planes can be developed into a fibration by

surfaces. This would likely provide a challenging area of research.

The model could alternatively be extended to cope with different types of data.

One such type of data is a point pattern sampled over some non-Euclidean manifold

such as a sphere or a torus. This would provide an interesting technical challenge,

taking care to ensure that distances are well-defined, and introducing an alternative

to the log-Euclidean tensor metric.

An alternative extension is to allow marked point processes. The mark may be a

magnitude such as the strength of an earthquake or the estimated size of a galaxy,

or a confidence probability, for example the prior probability that a data point has

been correctly identified as a pore in the pore extraction process of a fingerprint

image. Alternatively, the mark may be categorical, such as the shape of a galaxy:

elliptical, spiral or irregular.

Confidence probabilities could naturally be included in the auxiliary variable ε which

indicates the probability that each data point is signal.

Similarly, a magnitude could be incorporated into the prior probability that each

point is signal, so as to favour fibres that ‘generate large points’. Alternatively,

the prior for the allocation of points to fibres could be extended so that all points

associated with a particular fibre must be of a similar magnitude. Depending on

the choice of model, this may require the extension of the fibre process to a marked

fibre process. If the magnitude describes a height and is comparable to the planar

dimensions then the point pattern could simply be treated as a 3-dimensional point

pattern, and a 3-dimensional fibre process fitted correspondingly. Another approach

is to transform the magnitude so that it is comparable to the planar dimensions and

treat the data as a 3-dimensional point pattern.

Similarly, if the marks indicate categories for the data then a marked fibre process

could be used, or the data could be split into smaller sets, by category, which would

then analysed separately.

8.2.6 Minutiae in Fingerprint Data

In fingerprint identification and verification, the features that are most prominently

used for comparison and identification are minutiae: ridge endings, bifurcations,

etc. It would be of interest to study whether the minutiae can be determined from

pore data. Bifurcations are equivalent to the meeting point of two fibres and are

therefore not possible in our fibre model. Evidence of the location of a potential
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bifurcation may be suggested by areas of low anisotropy, or by comparison of two

independent samples of fibre sets, however they can be indistinguishable from ridge

endings.

8.2.7 Reconstruction of Missing Data

Reconstruction of missing data has been briefly mentioned already in Section 6.2.4.

If point pattern data is missing over a sub-region of W , then in principle the gener-

ating fibre process and other parameters could be estimated, from which the missing

data could be reconstructed. This idea of reconstructing data is particularly relevant

in the fingerprint pore data, where a smudge on the fingerprint often results in unde-

tected pores. Estimation of the location of missing pores may assist in comparison

or identification of fingerprints.

8.2.8 Direct Clustering from Field of Orientations

A rather quick, though less informative way to estimate the fibre process conditional

on a field of orientations, is to compare the collection of fibres found by integrating

the orientation field from each data point. Depending on prior knowledge of the

fibre process, either full integral curves (streamlines) may be chosen or the field

could be integrated to a length λ in each direction. This results in a collection of

non-intersecting integral curves. An appropriate clustering approach may facilitate

the partitioning of this set into clusters of integral curves, each corresponding to

a single fibre of the fibre process. This approach ignores the hierarchical Bayesian

structure of the model and provides limited inference, however, it may be useful in

identifying an appropriate initial state for slow-mixing MCMC algorithms.

8.3 Summary

In conclusion, this thesis has introduced a new model for fibre-generated point pro-

cesses. Fibres are modelled as integral curves of a field of orientations, and as such

any smooth, non-intersecting collection of fibres may arise from the random fibre

process. A birth-death MCMC algorithm has been designed, allowing samples to be

drawn from the posterior distribution of fibres given an instance of the point pro-

cess. From these samples, numerous properties of the fibres and other parameters

can be estimated. Furthermore, our approach is flexible to different types of fibre-

generated point processes, as well as being readily extended to higher dimensions.
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As discussed in this final chapter, this work opens up a number of interesting and

challenging areas for further research.
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Appendix A

Table of Notation

Table A.1: Table of notation used throughout thesis

Symbol Usage Page

Π Random point process. 28

W Planar window. 28

R2 Two-dimensional Euclidean space. 28

y = y1, ..., ym Data (locations of points in W ). 28

m Number of data points. 28

ΥFO Random field of orientations. 30

υFO Instance of a random field of orientations. 30, 5

F or Fj = Fj(ωj , lj , υFO) Instance of a random fibre. 30

ω = {ω1, ..., ωk} Reference points of fibres. 30

F = {F1, ..., Fk} Set of fibres. 31

k Number of fibres. 31

lj = (lj,1, lj,2) Arc lengths from the 2 end points of a 31
fibre to its reference point.

l = l1, ..., lk Set of fibre length pairs. 32

lj,T = lj,1 + lj,2 Total length of a fibre. 32

Fj ⊂W Fibre that lies completely within the 33
window.

p = p1, ..., pm Anchor points. 34
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Symbol Usage Page

σdisp Parameter governing the perturbation of 34
data points from anchor points.

In n× n identity matrix. 34

MVN(µ, σ2In) Multivariate normal distribution with 34
mean µ and covariance matrix σ2In.

X = X1, ..., Xm Indicator variable of which fibre a point 34
is allocated to.

x ∈ F Point x lies on fibre F . 34

Z = Z1, ..., Zm Indicator variable for noise/signal 34
allocation of points.

ε = ε1, ..., εm Probability a point is signal. 34

µtotal Mean total number of points. 34

µsignal Mean number of signal points. 34

ρ Hyperparameter indicating proportion of 34
points that are noise points (also used as
general intensity parameter).

η Density of signal points (per unit 35
length of fibre).

κ Poisson parameter for prior on number of 36
fibres, k.

λ Exponential rate for prior on fibre lengths 36
l1,j , l2,j .

1[...] Indicator function. 36

αsignal, βsignal Hyperparameters of the probability a 36
point is signal, εi.

αDir Parameter for Dirichlet distribution of 36
of proportion of fibre arc length between
anchor points.

D(q(p), αDir) Component of Dirichlet prior on anchor 36
points.

L(. . . |y) Likelihood function. 37

dist(x, y) Euclidean distance between point 37
locations x and y.
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Symbol Usage Page

|W | Lebesgue measure of window W . 37

vi = (vi1, v
i
2) The Euclidean vector from initial point 46

yj to terminal point yi.

ṽi = (ṽi1, ṽ
i
2) The resultant vector of a Gaussian 46

transformation on the length of vi.

σFO or σ Scaling parameter in Gaussian 46
transformation of the length of vi.

T0(yj) Initial tensor calculated at point yj using 46
the tensor method.

ThFO
(x) Tensor field calculated at x ∈W by 52

applying Gaussian kernel smoothing with
parameter hFO to initial tensors.

hFO or h Tensor field smoothing parameter. 52

fhFO
(t) Gaussian kernel in tensor smoothing. 52

rε, rl, rω, rZ, rS, rJ, ro Rates of moves. 73

β Birth rate of fibres. 73

δ = δ1, ..., δk Death rates of k fibres. 74

t Algorithmic time. 74

b(Fj , ωj , lj ,Z,X,p) Birth density. 74

Qsig,birth(Z′|·), Proposal density of signal/noise 75
Qsig,death(Z′|·) allocations following a birth or death.

Qaux,birth(X′,p′|·), Proposal density of auxiliary variables X′ 75
Qaux,death(X′,p′|·) and p′ following a birth of death.

lT Total length of all fibres. 77

Qaux(Xi
′,pi

′|·) Proposal density of auxiliary variables X ′i 78
and p′i following a general move.

N(yi,F
′, σ2

disp, Z
′
i = 1) Normalising constant in proposal of X, p. 78

φµ,σ2 or φµ,σ2I2 Univariate or bivariate normal density 85
function with mean µ and variance σ2.

τ(x, y) Intensity of cosine Poisson process. 131

T Tensor calculated through the tensor 132
method.
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Symbol Usage Page

φ Orientation of tensor. 132

wi Weight of contribution of the i-th data 133
point to tensor method calculation.

λ1, λ2, ... Eigenvalues of a tensor. 134

msFA Modified square Fractional Anisotropy 137
measure.
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Appendix B

Proofs of Theorems on the

Extent of Curvature Bias

B.1 Bias Calculation - Arch Model

Theorem 1 (Singularity Location Bias: Arch Model). Let T arch
0 : R2 → [0, π) be

a tensor field with constant eigenvalues λ1 > λ2 > 0, and principal eigenvectors

that agree with the arch model pictured in Figure 4.9. Explicitly, using a Cartesian

coordinate system (x1, x2) ∈ R2 with origin (0, 0) at the singularity, eigenvectors are

tangent to a circle centred at (0, 0) if x2 > 0 and equal to (0, 1) if x2 ≤ 0. Denote

by T arch
h the result of applying a kernel smoothing in the log-Euclidean metric to

T arch
0 , using a Gaussian kernel with parameter h. Then T arch

h has a singularity at

(x1, x2) = (0, hc). The constant c is the solution of

∫ c

0

∫ 3π
2
−cos−1

(
c
r′x

)
cos−1

(
c
r′x

)
−π

2

cos2 θ0 − sin2 θ0 dθx

+ 2 cos−1

(
c

r′x

))
exp(−(r′x)2/2)

2π
dr′x

+

∫ ∞
c

∫ 2π

0
cos2 θ0 − sin2 θ0 dθx

exp(−(r′x)2/2)

2π
dr′x = 0 (B.1)

where

θ0 = θ0(rx, θx) = tan−1

(
tan θx +

β

r cos θx

)
. (B.2)

Proof. A singularity in tensor field T arch
h is defined to be a point x ∈ R2 such

that the two eigenvalues of T arch
h (x) are equal, or equivalently the two eigenvalues
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of log(T arch
h (x)) are equal. As the tensor field has constant eigenvalues and the

principal eigenvector field is symmetric about x1 = 0 the location of the singularity

must lie on the line x1 = 0, therefore we need only evaluate the tensor field for

(0, x2).

In polar coordinates (rx, θx) centred at x = (0, x2), the tensor field evaluated at x,

T arch
h (x), is defined by

log(T arch
h (x)) (B.3)

=

∫ ∞
0

(∫ 2π

0
log
(
T arch

0 (rx cos θx, x2 + rx sin θx)
)

dθx

)
rx

exp(−r2
x/2h

2)

2πh2
drx.

Note that the inner integral over a circle of radius rx centred at x = (0, x2) is

independent of the Gaussian weights.

Consider a second polar coordinate representation, (r0, θ0) = (r0(rx, θx), θ0(rx, θx)),

the polar coordinates centred at the origin. The two polar coordinate systems are

related by the following pair of simultaneous equations,

rx cos θx = r0 cos θ0

rx sin θx + x2 = r0 sin θ0.

Then the initial tensor field T arch
0 (r0, θ0) is written

T arch
0 (r0, θ0) =

(
λ2 cos2 θ0 + λ1 sin2 θ0 (λ2 − λ1) sin θ0 cos θ0

(λ2 − λ1) sin θ0 cos θ0 λ2 sin2 θ0 + λ1 cos2 θ0

)
for θ0 ∈ [0, π]

(B.4)

and

T arch
0 (r0, θ0) =

(
λ2 0

0 λ1

)
for θ0 ∈ [π, 2π]. (B.5)

Writing r0 and θ0 in terms of rx and θx we have

r0(rx, θx) =
√
r2
x + 2rxx2 sin θx + x2

2 and (B.6)

θ0(rx, θx) = tan−1

(
tan θx +

x2

r cos θx

)
. (B.7)

Recall that to calculate the logarithm of a tensor we preserve the eigenvectors, but

take the logarithm of the eigenvalues. Expanding the inner (bracketed) integral of
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equation (B.3) we get∫ 2π

0
log
(
T arch

0 (rx cos θx, x2 + rx sin θx)
)

dθx =

∫ 3π
2
−cos−1

(
x2
rx

)
cos−1

(
x2
rx

)
−π

2

 log λ2 cos2 θ0 + log λ1 sin2 θ0 log
(
λ2
λ1

)
sin θ0 cos θ0

log
(
λ2
λ1

)
sin θ0 cos θ0 log λ2 sin2 θ0 + log λ1 cos2 θ0

 dθx

+

∫ 3π
2

+cos−1
(
x2
rx

)
3π
2
−cos−1

(
x2
rx

)
(

log λ2 0

0 log λ1

)
dθx (B.8)

if rx ≥ x2 (i.e. the circle of radius rx centred at (0, x2) intersects the horizontal

axis), and∫ 2π

0
log
(
T arch

0 (rx cos θx, x2 + rx sin θx)
)

dθx =

∫ 2π

0

 log λ2 cos2 θ0 + log λ1 sin2 θ0 log
(
λ2
λ1

)
sin θ0 cos θ0

log
(
λ2
λ1

)
sin θ0 cos θ0 log λ2 sin2 θ0 + log λ1 cos2 θ0

 dθx (B.9)

if rx < x2.

The second term of equation (B.8) is easily integrated:

∫ 3π
2

+cos−1
(
x2
rx

)
3π
2
−cos−1

(
x2
rx

)
(

log λ2 0

0 log λ1

)
dθx = 2 cos−1

(
x2

rx

)(
log λ2 0

0 log λ1

)
.

(B.10)

A singularity at (0, x2) corresponds to a tensor T arch
h (0, x2) with equal eigenvalues.

By consideration of the eigendecomposition of a 2 × 2 positive definite matrix it is

clear that the tensor has equal eigenvalues if and only the diagonal elements are

equal and the off-diagonal elements are 0.

The off-diagonal elements evaluate to 0 for all points x = (0, x2). Equating the
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difference of the diagonal elements of T arch
h (x) to 0 implies that x2 must satisfy

0 =

∫ x2

0

(∫ 3π
2
−cos−1

(
x2
rx

)
cos−1

(
x2
rx

)
−π

2

log

(
λ2

λ1

)
cos2θ0 + log

(
λ1

λ2

)
sin2 θ0 dθx

+ 2 cos−1

(
x2

rx

)
log

(
λ2

λ1

))
rx

exp(−r2
x/2h

2)

2πh2
drx

+

∫ ∞
x2

(∫ 2π

0
log

λ2

λ1
cos2 θ0 + log

λ1

λ2
sin2 θ0 dθx

)
rx

exp(−r2
x/2h

2)

2πh2
drx. (B.11)

Finally, dividing Equation (B.11) by log λ2
λ1

, substituting r′x = rx/h and setting

c = x2/h gives

0 =

∫ c

0

∫ 3π
2
−cos−1

(
c
r′x

)
cos−1

(
c
r′x

)
−π

2

cos2 θ0 − sin2 θ0 dθx + 2 cos−1

(
c

r′x

) exp(−(r′x)2/2)

2π
dr′x

+

∫ ∞
c

(∫ 2π

0
cos2 θ0 − sin2 θ0 dθx

)
exp(−(r′x)2/2)

2π
dr′x. (B.12)

B.2 Bias Calculation - Parabolic Model

The proof of the lemma follows from the definition of a parabolic field.

Lemma 1. Let e(x1, x2) = (e1(x1, x2), e2(x1, x2)) denote the principal eigenvector

of the tensor T para
0 (x1, x2). Then e(x1, x2) is perpendicular to e(−x1,−x2) for all

(x1, x2) 6= (0, 0).

Proof. We begin by noting that, by construction, for x1 = 0 the desired property

holds.

Otherwise, for x1 6= 0, it suffices to show that e2(x1, x2)/e1(x1, x2) is equal to

−e1(−x1,−x2)/e2(−x1,−x2). Recall that (e1(x1, x2), e2(x1, x2)) is tangent to the

parabola x2 = 1
4a − ax

2
1, and is therefore proportional to (1,−2ax1). The constant

a is determined by

a =
−x2 +

√
x2

1 + x2
2

2x2
1

, (B.13)
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so the result follows:

e2(x1, x2)/e1(x1, x2) =
x2 −

√
x2

2 + x2
1

x1

=
−x1

(
x2 −

√
x2

2 + x2
1

)
−x2

1

=
−x1

x2 +
√
x2

2 + x2
1

= −

(
−x2 −

√
x2

2 + x2
1

−x1

)−1

= −e1(−x1,−x2)/e2(−x1,−x2). (B.14)

Equality of the second and third lines can be seen by multiplying both numerator

and denominator by
(
x2 +

√
x2

2 + x2
1

)
.

Theorem 2 (Singularity Location Bias: Parabolic Model). Let T para
0 (x1, x2) be a

parabolic tensor field with constant eigenvalues λ1 > λ2, and let T para
h (x1, x2) be

the result of applying a convolution in the log-Euclidean metric to this tensor field

with a Gaussian kernel and smoothing parameter h. Then T para
h (x1, x2) contains a

singularity located at the origin (0, 0).

Proof. Consider the convolution of this tensor field in the log-Euclidean metric eval-

uated at the origin in polar coordinates (centred at the origin),

log(T para
h (x1, x2)) =

∫ ∞
0

(∫ 2π

0
log (T para

0 (r cos θ, r sin θ)) dθ

)
r

exp(−r2/2h2)

2πh2
dr.

(B.15)

The inner integral, over a circle of radius r, evaluates to a multiple of the identity

matrix. We show this by considering the tensor field T para
0 evaluated at antipo-

dal points on the circle and proving that, as the eigenvectors of these tensors are

perpendicular, the terms will cancel in the integration.

The inner integral is∫ 2π

0
log (T para

0 (r cos θ, r sin θ)) dθ (B.16)

=

∫ π

0
log (T para

0 (r cos θ, r sin θ)) + log (T para
0 (r cos(θ + π), r sin(θ + π))) dθ.
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Suppose the tensor T (r cos θ, r sin θ) has principal eigenvector (cosφ, sinφ), then

log(T (r cos θ, r sin θ)) (B.17)

=

(
cosφ sinφ

− sinφ cosφ

)(
log(λ1) 0

0 log(λ2)

)(
cosφ − sinφ

sinφ cosφ

)

=

(
log(λ1) cos2 φ+ log(λ2) sin2 φ (log(λ2)− log(λ1)) cosφ sinφ

(log(λ2)− log(λ1)) cosφ sinφ log(λ1) sin2 φ+ log(λ2) cos2 φ

)
. (B.18)

By Lemma 1, the principal eigenvector of T (r cos(θ+π), r sin(θ+π)) is perpendicular

to (cosφ, sinφ) and hence is equal to (− sinφ, cosφ). So

log(T (r cos(θ + π), r sin(θ + π)))

=

(
log(λ1) sin2 φ+ log(λ2) cos2 φ (log(λ1)− log(λ2)) cosφ sin2 φ

(log(λ1)− log(λ2)) cosφ sinφ log(λ1) cosφ+ log(λ2) sin2 φ

)
(B.19)

Substituting the tensor logarithms of Equations (B.18) and (B.19) into Equation

(B.16), we get ∫ π

0
(log(λ1) + log(λ2))12 dθ = π(log(λ1) + log(λ2))12 (B.20)

where 12 is the identity matrix. This is independent of r so Equation (B.15) evalu-

ates to

log(S̃0) = cπ(log(λ1) + log(λ2))12 (B.21)

for some constant c. The eigenvalues of log(T para
0 (0, 0)) are equal and therefore the

eigenvalues of (T para
0 (0, 0)) are equal, indicating that there is a singularity at (0, 0)

in the tensor field T para
h .
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