
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/49216

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap

Simulating the Kinesin Walk:
Towards a Definitive Theory

by

Richard John Wilson

A dissertation submitted in partial fulfilment of the requirements
for the degree of

Doctor of Philosophy

Molecular Organisation and Assembly in Cells Doctoral Training
Centre, University of Warwick

October 2011

ii

Table of Contents

List of Illustrations .. viii

List of Tables .. x

Acknowledgements.. xi

Declaration .. xiii

Abstract ..xiv

Abbreviations ... xv

Chapter 1 Starting a Fantastic Voyage .. 1

1.1 Introduction... 1

1.1.1 Nanomachines... 2

1.1.2 Dementia.. 2

1.1.3 The normal brain ... 4

1.1.4 Axonal transport and dementia.. 6

1.1.5 This study... 7

1.2 Axonal transport system ... 9

1.2.1 Microtubule track... 9

1.2.2 Kinesin motor...11

1.2.2.1 Nucleotide binding site..12

1.2.2.2 Microtubule binding site ..12

1.3 Kinesin procession...14

1.3.1 Speed ...15

1.3.2 Stall force ..16

1.3.3 Run length and detachment ...16

1.3.4 Can kinesin walk backwards? ...17

1.3.5 Kinesin puppet ...17

1.3.6 Impaired transport studies...18

1.4 Kinesin procession mechanism..18

iii

1.4.1 Inching or toeing?...19

1.4.2 Walking the line..20

1.4.3 Powering the motor ..21

1.4.3.1 Myosin..21

1.4.3.2 Kinesin ...22

1.4.3.3 Zippering ..24

1.4.3.4 Power stroke ...25

1.4.3.5 Rectified Brownian motion...27

1.4.4 Wait state configuration...27

1.4.4.1 Both heads bound ..28

1.4.4.2 Free head ...28

1.4.4.3 Parked head ..28

1.4.5 Head coordination...29

1.4.5.1 Gated rear head...29

1.4.5.2 Gated front head..30

1.4.5.3 ADP release gate..30

Chapter 2 Modelling kinesin.. 32

2.1 Why model kinesin?...32

2.2 Previous models of kinesin..33

2.2.1 Brownian ratchet ..33

2.2.2 Chemical-kinetic ...34

2.2.3 Molecular dynamics...35

2.3 The approach of this study ...36

2.3.1 Executable biology and agent-based modelling.....................36

2.3.2 Modelling the stepping mechanism......................................37

2.3.2.1 Brownian ratchet ...37

2.3.2.2 Rectified Brownian motion...38

2.3.2.3 Power stroke ...39

iv

2.4 The simulation ..39

2.4.1 Head simulation ...39

2.4.2 State transition (event) timings..41

2.4.3 Wait state..42

2.4.3.1 Linker strain and head binding.....................................42

2.4.4 Stepping..43

2.4.5 Load ...44

2.4.6 Gating...44

2.4.7 Obstacle ..45

2.4.8 Multimotor simulation..45

2.4.9 Visual interface...46

Chapter 3 Results – fixed ATP arrival.. 47

3.1 Published results ...47

3.2 Four part study ...48

3.2.1 Part one – PS vs RBM..48

3.2.1.1 Discussion – system phases and timings51

3.2.1.2 Discussion – procession and detachment.......................52

3.2.1.3 Discussion – explanation...53

3.2.1.4 Gated PS compared to RBM...54

3.2.2 Part two - gating hypothesis ..56

3.2.2.1 Does RBM require a gating mechanism?........................56

3.2.2.2 Discussion...57

3.2.3 Part three - behaviour under load59

3.2.3.1 Discussion...62

3.2.4 Part four - blockage behaviour ...64

3.2.4.1 Discussion...65

Chapter 4 Results – random ATP arrival 66

4.1 Single motor investigation ..66

v

4.1.1 Velocity and dwell times at no load67

4.1.1.1 Simulation results ..67

4.1.1.2 Experimental results...69

4.1.1.3 Discussion...70

4.1.2 Load ...70

4.1.2.1 High [ATP] ..71

4.1.2.2 Medium [ATP]..75

4.1.2.3 Low [ATP] ...78

4.1.2.4 Discussion...81

4.2 Two motor investigation...83

4.2.1 Multimotor simulation..83

4.2.2 Simulation results...83

4.2.3 Experimental results ...85

4.2.4 Discussion ...87

Chapter 5 Evaluation... 88

5.1 The study ...88

5.2 The simulation ..89

5.2.1 Simulation advantages ..90

5.2.2 Simulation limitations..90

5.3 The model ..90

5.4 Gated RBM model challenged..91

5.5 RBM stepping challenged..92

5.5.1 Power stroke revisited ...92

5.5.2 Wait state configuration...93

5.5.2.1 Both heads bound?...93

5.5.2.2 Parked head? ..94

5.5.3 ATP-binding gate necessary for procession?95

5.5.4 Stalling mutants ...95

vi

5.6 Model predictions ..96

5.6.1 Non-hydrolysable analogue..96

5.6.2 Backsteps at low load..97

5.6.3 Wandering mutants and unfuelled procession.......................98

5.6.3.1 Extended linkers ..98

5.6.3.2 Zero ATP walking ...99

5.6.3.3 Walking without zippering ...99

5.7 Experiments suggested by the model.......................................100

5.7.1 Gating...100

5.7.2 Non-hydrolysable analogue..100

Chapter 6 Summary and conclusions .. 101

6.1 Summary ...101

6.2 The study ...101

6.3 Simulation results..102

6.3.1 Fixed ATP arrival results ..102

6.3.2 Random ATP arrival results ..102

6.4 The model ..103

6.4.1 Explanatory power ..103

6.4.2 Challenges...104

6.5 Conclusions ..104

References.. 106

Appendix A Load data .. 113

Appendix B Program listing.. 118

B.1 Main listing – program for chapter 3 results..............................118

B.2 Main listing – single motor program for chapter 4 results125

B.3 Main listing – multimotor program...133

B.4 Update routines ..142

B.5 Brownian motion routines...146

vii

B.6 Analysis routines ...148

B.7 Display routines ..150

Appendix C Published papers... 154

viii

List of Illustrations

Figure 1.1 Brain section comparison © 2007 Alzheimer’s Association. All rights
reserved. Illustration by Stacy Janis. .. 3

Figure 1.2 Diagram of a neuron (Mariana Ruiz Villarreal, Wikimedia Commons,
public domain image). .. 5

Figure 1.3 Diagram of kinesin towing a vesicle along a microtubule. From Viel,
Lue and Liebler (2006).13 .. 8

Figure 1.4 Diagram of a neuron showing microtubule organisation and
organelles. From Conde and Cáceres (2009).2011

Figure 1.5 Diagram of kinesin. From Vale (2003).25...................................12

Figure 1.6 PDB 2wbe ribbon diagram of a kinesin head above a tubulin
dimer.29 ...14

Figure 1.7 Myosin-II mechanochemical cycle as 4 snapshots. From the top:
ATP has been hydrolysed and the head is diffusing; next, the head has
bound the filament and phosphate has been released; next, after the
head has pulled the filament to the right; lastly, ATP has bound and the
head has detached. From Vale and Milligan (2000)54.23

Figure 1.8 Diagram of kinesin processionary cycle. The letter above each head
indicates which nucleotide is bound: D for ADP, T for ATP, DP for
hydrolysed ATP, 0 for none...24

Figure 1.9 Myosin V motor domain with both heads bound to actin (left)
compared to kinesin motor domain bound to a microtubule (right) at the
same scale. (from Vale and Milligan 2000)54.25

Figure 2.1 Brownian ratchet mechanism. Top: particles firstly diffuse at
random in a flat potential; middle: the potential changes to a sawtooth
when more particles diffuse left than right; bottom: the result is that
particles accumulate in potential wells. ..34

Figure 2.2 Chemical-kinetic schema. The motor steps to the right by distance
d from MT binding site, l, to the next. The N chemical states leading to a
step are depicted as circles joined by an arc. At any state, j, the motor
moves to the next state or the previous state or detaches as determined
by rate constants uj, wj and δj respectively. Kolomeisky & Fisher (2007)

84
figure 5..35

Figure 2.3 Head state transition table..41

Figure 2.4 Program display screen snapshot. The MT is depicted in brown, the
motor heads in red and green, and the track of the motor in dark grey..46

Figure 3.1 Relationship between ungated stepping mechanisms and
procession under varying linker strain..50

ix

Figure 3.2 Relationship between stepping mechanisms and detachments
under varying linker strain. ..51

Figure 3.3 Relationship between stepping mechanisms and procession under
varying linker strain. ...54

Figure 3.4 Comparison of gated and ungated RBM procession.59

Figure 3.5 Load characteristics of RBM stepping without gating.62

Figure 3.6 Load characteristics of RBM stepping with gating.......................62

Figure 3.7 Nishiyama et al. (2002)105 figure 4a plotting the fraction of forward
steps (circles), backward steps (triangles) and detachments (squares) for
[ATP] of 1 mM (upper plot) and 10 µM (lower plot). The dashed lines sum
the backward steps and detachments. ...64

Figure 4.1 Relationship between velocity and [ATP].68

Figure 4.2 Relationship between dwell time and [ATP]...............................69

Figure 4.3 Yajima et al. (2002)106 figure 2c: plot of run length (central, in
red), dwell time (top left to bottom right in blue) and velocity (bottom left
to top right in green). ..70

Figure 4.4 High [ATP] ungated RBM step ratio to load relationship.73

Figure 4.5 High [ATP] gated RBM step ratio to load relationship..................74

Figure 4.6 High [ATP] gated PS step ratio to load relationship.74

Figure 4.7 Mid [ATP] ungated RBM step ratio to load relationship................77

Figure 4.8 Mid [ATP] gated RBM step ratio to load relationship.77

Figure 4.9 Mid [ATP] gated PS step ratio to load relationship......................78

Figure 4.10 Low [ATP] ungated RBM step ratio to load relationship.80

Figure 4.11 Low [ATP] gated RBM step ratio to load relationship.................80

Figure 4.12 Low [ATP] gated PS step ratio to load relationship.81

Figure 4.13 Simulated multiple motor comparison of velocity.84

Figure 4.14 Simulated multiple motor comparison of run length.85

Figure 4.15 Multiple motor comparison of velocity (Beeg et al. 2008107 figure
2b)..86

Figure 4.16 Multiple motor comparison of run length (Seitz and Surrey 200639
figure 1d)...86

x

List of Tables

Table 3.1 Timing combinations yielding interrupted procession – PS and RBM.
..49

Table 3.2 Detachments for each stepping mechanism.50

Table 3.3 Timing combinations yielding interrupted procession.55

Table 3.4 Gating comparison: procession data..58

Table 3.5 Gating comparison: average stepping ratios...............................60

Table 3.6 Gating comparison: minimum and maximum stepping ratios........61

Table 4.1 Velocity and dwell time comparison under no load.68

Table 4.2 High [ATP] ungated RBM step ratios..72

Table 4.3 High [ATP] gated RBM step ratios. ..72

Table 4.4 High [ATP] gated PS step ratios..73

Table 4.5 Mid [ATP] ungated RBM step ratios. ..75

Table 4.6 Mid [ATP] gated RBM step ratios...76

Table 4.7 Mid [ATP] gated PS step ratios. ..76

Table 4.8 Low [ATP] ungated RBM step ratios. ...78

Table 4.9 Low [ATP] gated RBM step ratios. ...79

Table 4.10 Low [ATP] gated PS step ratios...79

Table 4.11 Stall force comparison. ..82

Table 4.12 Multimotor results...84

Table A.1 Forward steps ..113

Table A.2 Backward steps ..114

Table A.3 Detachments ...115

Table A.4 Ungated step ratios ..116

Table A.5 Gated step ratios..117

xi

Acknowledgements

Before acknowledging the contribution of thoughtful and friendly individuals to

my research at Warwick, I would make an environmental observation. Though

the university has little in the way of architectural delights, there are natural

areas to walk and contemplate or feed the wildfowl. Such activities have

helped me to bounce back from the many and varied setbacks to which a

student is prone. I wish to thank the powers that be for preserving the

campus greenery, and the Woodland Trust for managing the arboreal

fragment separating the two University conurbations.

Central to my academic life has been MOAC: one hell of a DTC. The MOAC

community is characterised by mutual comradeship, multidisciplinary fun, and

bursts of intense debate (thank you Martin and Hugo, the flying Dutchman).

Then there are the learned picnic seminars, weird and wonderful training

sessions, and the amazing annual jamboree, all of which have contributed to

a positive research environment. The person I am fundamentally indebted to,

MOAC’s stalwart inspiration, head honcho, and prime mover, is the

redoubtable Alison Rodger. Having provided the opportunity for me to embark

on a momentous career change (I used to have a real job), she has followed

through as a true professional, unstinting in her commitment. Her admin

team - Dorothea Mengels and Monica Lucena – were beyond compare: the

veritable equivalents of Bodie and Doyle. I would like to embarrass Lahari,

Gemma and Joob by singling them out of all my MOAC colleagues as being

there for me (as I trust I was for them).

I must thank my supervisor, Jianfeng Feng, for the support he has provided

me, especially in times when I doubted the course of this project. Thanks are

xii

due to my advisory committee: Sara Kalvala, Matthew Hodgkin, and Matthew

Turner, who have helped to keep me on track.

My association with the Computational Biology group has proved beneficial, in

particular I want to thank Xuejuan Zhang for theoretical discussions about

Brownian motors and Sara Kalvala for reviewing draft papers. In the latter

regard, I am also grateful to Brent Kiernan of Systems Biology. A particular

vote of thanks is due to external peer reviewers for stimulating an

improvement in the quality of my publications and my work in general.

I wish to acknowledge the contribution of Teresa Pinheiro for formulating and

supervising a project to investigate α-synuclein neurotoxicity in vitro, and

Narinder Sanghera for laboratory skills training. Though this early research in

the Department of Biological Sciences has proved not to be within the scope

of this document, my exposure to the realities of experimental research has

lent perspective to my thesis.

The financial support of the Engineering and Physical Sciences Research

Council has not only kept the author off the streets, but has also funded the

laptop on which I’m writing this and on which I developed the simulation

software. My thanks to Jacob Navia for supplying a high quality compiler suite

(available at http://www.cs.virginia.edu/~lcc-win32/) which has enabled me

to build and run the program.

Finally, a very special mention goes to my dear mother and sister who have

plied me with tea, furnished newspaper articles on Alzheimer’s, and helped

me through Don Quixote moments.

xiii

Declaration

The work presented in this document is original (except where otherwise

stated). No portion of the work submitted in this thesis has been submitted in

support of an application for another degree or qualification at this or any

other University or institute of learning.

xiv

Abstract

Dementia is a set of incurable, fatal diseases characterised by irreversible

degeneration of the brain. One theory of its cause is the failure of intracellular

transport in the axons of the neurons that compose the brain. Kinesin is a key

motor transporting vital cargo along the axon. We know that this motor is a

bipedal engine stepping forward along a polypeptide track but it is too small

and fast for this motion to be observed using current experimental

techniques. The stepping detail is therefore open to debate. This study firstly

addresses the question of how kinesin steps and secondly pilots a possible

method for investigating transport disruption in silico.

To investigate the detail of stepping, a program has been designed and built

to simulate kinesin traversing its track along a section of axon. The motor is

modelled as simple, interacting agents obeying rules abstracted from known

chemical and binding properties of its components. The agent-based method

has proven useful and efficient on the small scale and has potential for

simulating the larger and more complex system of axonal transport. This

would enable investigation of transport failure in the context of finding a cure

for dementia.

A new model of kinesin stepping has been formulated as a consequence of

performing virtual experiments using the simulation. Analysis of in vivo and in

vitro experimental studies shows that the model accounts for a wide range of

published results, explaining many findings. New experiments are suggested

to test the model based on its falsifiable predictions. The principal conclusion

of this study is that kinesin stepping is rectified Brownian motion.

xv

Abbreviations

ADP The nucleotide adenosine diphosphate, a product of ATP hydrolysis

AMP-PNP Analogue of ATP, non hydrolysing

APP Amyloid precursor protein, produces amyloidß by proteolytic

cleavage

AT Axonal transport

ATP The nucleotide adenosine triphosphate, used extensively in

organisms to carry energy

AVEC-DIC Video-enhanced contrast differential interference contrast, an

experimental technique for indirectly observing motors in motion

CNB Cover neck bundle, a structure formed during kinesin stepping

FIONA Fluorescence imaging one-nanometer accuracy, an experimental

technique using averaging to obtain high spatial accuracy

FRET Fluorescence resonance excitation, an experimental technique for

measuring distances of a few nanometres

K0 Kinesin head with no nucleotide bound but bound to the

microtubule

KD Kinesin head bound to ADP and to the microtubule

KDP Kinesin head bound to hydrolysed ATP and to the microtubule

KDu Kinesin head bound to ADP but free of the microtubule

xvi

KT Kinesin head bound to ATP and to the microtubule

MD Molecular dynamics, a computer modelling system simulating

molecules at the atomic level

MT Microtubule, tubulin polypeptide tube along which kinesin moves

Ncd Non-claret disjunctional kinesin, a type of kinesin that moves

towards the minus-end of the microtubule

PDB Protein Data Bank, a repository of bio-molecular structures

(www.rscb.pdb)

PS Power stroke, a powered stepping mechanism

RBM Rectified Brownian motion, a diffusional stepping mechanism

 1

Chapter 1 Starting a Fantastic Voyage

“A biological system can be exceedingly small. Many of the cells
are very tiny, but they are very active; they manufacture various
substances; they walk around; they wiggle; and they do all kinds
of marvelous things, all on a very small scale. Also, they store
information. Consider the possibility that we too can make a thing
very small which does what we want, that we can manufacture an
object that maneuvers at that level!”

Richard P. Feynman 1959

1.1 Introduction

The work described here is inspired by the dream of nanomachines for

medical treatment and is motivated by the author’s desire to find a cure for

dementia. We know that dementia destroys the brain but the process is not

well understood. One theory of the cause of this destruction is that transport

inside brain cells breaks down. Kinesin is a nanomachine that transports vital

cargo from the central site of synthesis to the cell’s periphery to sustain

cellular communication and hence maintains brain functionality. This study is

an investigation into the mechanism of motion of kinesin. A better

understanding of kinesin function advances our understanding of cargo

transport and provides information useful for the design of motors for artificial

nanomachines. Both these paths have potential for leading to a cure for

dementia.

Material in this chapter has been peer-reviewed and published in the journal

Science Progress under the title, Towards a cure for dementia: the role of

axonal transport in Alzheimer’s disease (see appendix C).

 2

1.1.1 Nanomachines

Nanomachines are machines of nanometre dimensions. Eukaryote cells are

complex chemical factories dependent on several types of nanomachine from

pumps and polymerases to actuators and transporters. Many of these

machines are motors powered by the free energy released from the hydrolysis

of the nucleotide adenosine triphosphate (ATP). Most ATP is synthesised by

rotary motors (ATPsynthases) that reside in the cell’s mitochondria and are

driven by a proton gradient generated during respiration. Mitochondria are

micrometre-sized organelles transported about the cell by linear motors, the

type of nanomachine at the heart of this thesis. Powered by ATP hydrolysis,

linear motors traverse cytoskeletal protein polymers performing several

functions: muscle contraction, cilia movement, chromosome separation during

cell division and cargo transport.

The idea of fabricating artificial nanomachines was first put forward by Nobel

laureate physicist Richard Feynman in a lecture titled There's Plenty of Room

at the Bottom: An Invitation to Enter a New Field of Physics given at the

California Institute of Technology in 1959. This concept was illustrated in the

1966 film Fantastic Voyage which depicts a tiny craft that ferries miniaturised

people through a scientist’s blood vessels to fix a clot in his brain. Of course

miniaturising people is impossible but devising robots small enough to

navigate the body and perform medical procedures either autonomously or at

the direction of medical staff is one of the goals of nanotechnology. A recent

advance in this field is the Proteus piezoelectric nanomotor.1

1.1.2 Dementia

Our population is increasing and more of us are suffering disease and infirmity

in old age. One particularly distressing set of predominantly late-onset

 3

diseases is dementia. Not only is dementia horrific for the individual, their

family and friends, it is also very costly for society. An estimated 20 million

people suffer dementia worldwide, a figure expected to double every 20

years. In the UK, the current cost of care alone is calculated at over £17B per

annum while the yearly death toll is over 60,000.2 Alzheimer’s disease is the

most prevalent type of dementia. It is an incurable, fatal illness characterised

by years of progressive mental decline: victims survive an average of 8 years

from first diagnosis. Figure 1.1 graphically displays the dire effects of

Alzheimer’s on the brain.

Figure 1.1 Brain section comparison © 2007 Alzheimer’s Association.

All rights reserved. Illustration by Stacy Janis.

 4

The process of neurodegeneration and subsequent cell death is poorly

understood. If we understood how the damage occurs then we would be in a

position to develop a cure perhaps by engineering artificial nanomachines to

seek out and repair malfunctioning molecular machinery in the brain.

One possible common factor that intensive international research has

unearthed is disruption of a system of intracellular transport known as axonal

or axoplasmic transport (AT). Defective axonal transport is implicated in

several neurodegenerative conditions including Alzheimer’s disease, motor

neuron disease, amyotrophic lateral sclerosis, Huntington’s disease and

Parkinson’s disease.3; 4

1.1.3 The normal brain

The human brain contains some 100 billion neurons (or neurones), cells

specialised to process electrical signals, whose normal functioning is

responsible for our mental faculties.5 Figure 1.2 illustrates the main features

of a neuron. In common with other cell types, the neuron has a cell body that

contains the machinery that synthesises the wide range of components

necessary to maintain cellular structure and function. The distinguishing

morphological feature of a neuron is several branching projections (neurites)

which serve to interconnect neurons into the networks that comprise the

brain. The neurites comprise tapering, branching dendrites that receive

signals from other neurons and a single axon that sends signals to other

neurons. Axons are tubes of uniform diameter (ranging from 0.2 – 20 µm)

which can span brain regions, extending centimetres in length (though

peripheral neurons can extend over a metre: from the base of the spine to the

toes). An axon may be encircled by cylinders of myelin sheath provided by

oligodendrocytes (or, for peripheral neurons, Schwann cells as shown in the

 5

figure) which serve to speed up signal conduction. The axon branches out at

its terminal to synapse to the cell bodies and dendrites of post-synaptic

neurons.

Figure 1.2 Diagram of a neuron (Mariana Ruiz Villarreal, Wikimedia

Commons, public domain image).

The typical mode of signal transfer between neurons is chemical diffusion via

the synapses. The signal that triggers the chemical release is in the form of

an action potential (AP). The AP is generated when the input signal to the

neuron, spatially and temporally combined across the plasma membrane,

raises the potential at the axon hillock from a resting value of -70 mV to

above threshold (about -55 mV). The AP travels down the axon membrane to

the synapses as a wave of opening and closing of sodium then potassium

voltage-gated ion channels which cause a 1 ms pulse of depolarisation

peaking at about 40 mV. At the synapses it triggers calcium ion influx causing

 6

vesicles storing signalling chemicals called neurotransmitters to fuse with the

membrane and release their contents into the synaptic cleft. These molecules

diffuse across the 10 – 20 nm gap to pass on the signal by activating

membrane receptors in the post-synaptic neurons.

1.1.4 Axonal transport and dementia

Each time neurotransmitter is released, some is lost by diffusion from

receptors after activation. Without replenishment, the stock of

neurotransmitter at the synapse would diminish and, when exhausted, the

neuron would cease to communicate. The proteins and membrane

components necessary for neurotransmission must be manufactured in the

cell body and then actively transported to the synapse.

There is evidence that AT is disrupted by the misfolded proteins characteristic

of Alzheimer’s disease and it is thought that such disruption could be a

common factor in the neurodegeneration process leading to dementia.6 The

atrophied Alzheimer’s brain displays myriad characteristic inclusions of two

types: senile plaques and neurofibrillary tangles. Senile plaques are

extracellular aggregates consisting mainly of amyloid-ß protein while

neurofibrillary tangles are intracellular conglomerates composed largely of

hyper-phosphorylated tau protein. As we cannot invasively experiment on

human subjects, laboratory research is performed either on cells in vitro or on

transgenic animals engineered to produce neurological symptoms similar to

those of human disease. The findings of this research demonstrate a

connection between tau, amyloid-ß and AT disruption.

Amyloid-ß results from the sequential cleavage of amyloid precursor protein

(APP) by ß-secretase and γ-secretase; studies of murine neurons show that

APP binds to the light chain of kinesin7 and that kinesin transports vesicles

 7

containing APP, ß-secretase and presenilin-1 (a component of γ-secretase).8

Studies of mice expressing mutant human APP show a correlation between

amyloid-ß production and AT disruption, both occurring before the formation

of senile plaques.9; 10 Mice expressing mutant tau protein develop loss of

cognitive and motor function concomitant with impairment of AT and axonal

swellings which are also seen in the brains of former early-stage Alzheimer’s

patients.11 Oligomeric (as opposed to single molecule or fibrillar) forms of

amyloid-ß cause cargo to detach from kinesin and thus disrupt AT.12

Interaction between tau and amyloid was discovered in an in vitro study using

mouse hippocampal cells which confirmed the inhibition of AT by amyloid-ß

oligomers but also found that lowering tau levels prevented this effect.13

1.1.5 This study

Given the significance of AT malfunction to the neurodegenerative process,

improving our understanding of AT and its modes of failure is an important

task in the programme to conquer neurodegenerative disease. This study is

largely concerned with understanding the normal functioning of kinesin. A

start is made on the study of transport disruption, however, by modelling

kinesin’s behaviour at a blockage such as may result in axonal swelling.

This document reports on an in-depth theoretical study of the mechanism of

motion of the linear motor kinesin-1. Kinesin is vital to AT: the motor carries

cargo essential to sustaining neural communication (as described in section

1.1.3) from the body of the neuron to the synapses along cytoskeletal tracks

in the axon known as microtubules. Figure 1.3 illustrates the motor carrying a

vesicle along a microtubule.

 8

Figure 1.3 Diagram of kinesin towing a vesicle along a microtubule.

From Viel, Lue and Liebler (2006).14

The mechanism of kinesin’s motion is a controversial topic of current

research. Many ingenious laboratory experiments have been performed

revealing aspects of kinesin dynamics but the motor is too small and fast to

be observed directly and so the mechanism remains a matter of debate. The

author has devised a new hypothesis of kinesin stepping derived from existing

theory and has designed and implemented software to test it. The software is

an innovative use of agent-based modelling to simulate the motion of kinesin

along a section of microtubule. It is hoped in the future to extend the model

to encompass AT with the aim of investigating failure modes and so shed light

on the cause of dementia.

The layout of this document is intended to conduct the reader through the

research from motivation and background through methodology, results,

discussion and analysis to the conclusions. The experimental background to

the study is presented below. Chapter 2 motivates the choice of a fresh

modelling approach and describes the software. Chapters 3 and 4 present

virtual experiments and compare the results to existing experimental findings.

 9

Chapter 5 reviews the research, presents a new model of kinesin stepping and

discusses potential problems in relation to existing experimental findings,

suggesting experimental tests to falsify the model. Chapter 6 summarises the

document and concludes the study.

1.2 Axonal transport system

The molecular motors that transport axonal cargo along microtubules

(cytoskeletal tracks) are classified into two families: kinesins and dyneins.

Most kinesins perform anterograde transport, travelling towards the plus end

of microtubules i.e. toward the synapses; dyneins perform retrograde

transport, travelling in the opposite direction: towards the cell body.15 The

maximum velocity of anterograde transport is ~400 mm/d and of retrograde

transport is ~250 mm/d. These velocities refer to the transport of

membranous cargo; non-membranous cargo travels more slowly, at up to

~8 mm/d. It is thought that the transport mechanism is the same in both

cases but that slow transport is fast transport interrupted by prolonged

pauses.16 Most AT is unidirectional but mitochondria, the cell’s power plant

organelles, move bidirectionally utilising both kinesin and dynein in a

cooperative manner.17 Mitochondrial movement is intermittent, displaying a

range of velocities, as the organelle moves in response to energy

requirements.18 This study is focussed on the most well-studied motor,

kinesin.

1.2.1 Microtubule track

A microtubule (MT) is a hollow 25 nm diameter protein polymer tube

composed of laterally bound filaments. Filaments consist of tubulin

heterodimers (~8 nm long) that spontaneously assemble head-to-tail. Each

 10

heterodimer comprises a pair of similar tubulin proteins: α-tubulin and

β-tubulin. An MT is a polar polymer capped by a ring of α-tubulins at the

minus end and a ring of β-tubulins at the plus end.19 MTs undergo dynamic

instability whereby they cycle between growth and disassembly. This property

is used by the cell to alter shape during development and mitosis but would

threaten AT in mature cells which stabilise MTs with the microtubule-

associated protein tau.20

MTs in dendrites and axons do not radiate from the centre, as in other cell

types, but are bundled together. Figure 1.4 shows the microtubule structure

of a dendrite (stabilised with MAP2) and the axon (stabilised with tau).

Dendritic MTs have mixed orientation while axonal MTs are aligned in the

same direction with the minus end towards the cell body.15 Whereas the

dendrites contain ribosomes, rough endoplasmic reticulum and Golgi outpost,

the axon lacks this synthesis machinery.21

 11

Figure 1.4 Diagram of a neuron showing microtubule organisation and

organelles. From Conde and Cáceres (2009).21

1.2.2 Kinesin motor

Kinesin-1 (conventional kinesin) was initially identified in motility assays

conducted on the axons of chick brain22 and giant squid neurons.23 All

references to kinesin in this document are to kinesin-1 unless otherwise

specified.

Kinesin is a homodimeric protein comprising identical heavy and light chains.

Each heavy chain N-terminal region forms a globular, arrowhead-shaped

motor domain (head) measuring approximately 4.5 nm by 4.5 nm by 7 nm

which has a similar structure to the catalytic domain of myosin though does

not share peptide sequence.24 The head connects to the stalk by a short (~13

residue) single polypeptide neck linker. The stalk is a long (~60 nm), coiled-

 12

coil polypeptide which binds to a light chain in the C-terminal region. The

stalks intertwine to form the dimer with a fan-like tail.25 Figure 1.5 illustrates

the structure of the motor: the heads to the left of the picture are connected

by blue linkers to the grey stalk which leads to the tail on the right depicted in

green (light chains) and purple (C-terminals).

Figure 1.5 Diagram of kinesin. From Vale (2003).26

Kinesin’s binding sites are at each end of the motor. The tail binds to cargo

whereas each head has two interacting binding sites.

1.2.2.1 Nucleotide binding site

Each kinesin head has an active site that binds ADP in solution but releases

this nucleotide on binding an MT and then favours ATP binding.27 Kinesin is an

ATPase: the active site hydrolyses ATP to ADP and phosphate, a process that

liberates energy to power the motor.28

1.2.2.2 Microtubule binding site

The kinesin head binds mainly to ß-tubulin with the head’s tapered end facing

the plus-end of the MT and with αlpha-helix α4 close to the cleft between the

monomers composing the tubulin dimer.29 Figure 1.6 is a ribbon diagram of

PDB construct 2wbe: a head of kinesin-5 (similar to kinesin-1) docked to a

 13

tubulin dimer (bottom); the plus-end of the dimer is to the right.30 The cleft is

approximately in the centre of the picture with α4 above it, depicted as a

yellow coil facing into the page and angled downwards.

The strength and rigidity of binding are nucleotide dependent. The force

required to unbind a head from the MT measured by optical tweezers is ~3 pN

for an ADP-bound head but ~6 pN for a nucleotide-free or ATP-bound head.

Higher forces (~4 pN and ~9 pN respectively) are required to detach heads

when pulling kinesin backwards i.e. towards the MT minus-end, than when

pulling forwards (Uemura et al. 2002).31 Sosa et al. (2001) used a fluorescent

probe to determine the rigidity of the binding of a head to a MT.32 They found

that a head is rigidly bound to the MT when nucleotide-free or bound to

(analogues of) ATP or hydrolysed ATP, whereas an ADP-bound head is less

tightly bound, showing a rocking motion.

 14

Figure 1.6 PDB 2wbe ribbon diagram of a kinesin head above a tubulin

dimer.30

1.3 Kinesin procession

Kinesin is a processive motor: it takes successive 8 nm steps along the dimers

of the MT towards its plus-end for hundreds of steps and at a speed of up to

1 µms-1 that varies with load and ATP concentration.33

Three kinds of single-molecule experimental techniques have been developed

to investigate kinesin dynamics: the gliding assay, the bead assay and

fluorescent tagging. In the gliding assay, an MT glides over a kinesin molecule

immobilised heads-up to a cover slip (propelled by the heads). In the bead

assay, the MT is secured to the slide while a plastic bead hundreds of

nanometres in diameter is attached to the kinesin tail: the motor pulls the

 15

bead along the MT in ATP solution. The third technique is similar to the bead

assay but kinesin is tagged with a fluorophore rather than a bead.

Ideally, one would like to observe the heads in motion as kinesin transports

cargo. This is not possible because current experimental techniques do not

have the necessary resolution. Crystallography and electron microscopy have

the spatial resolution but they are static probes whose samples have to be

specially prepared and are viewed in artificial conditions. Light microscopy can

probe moving samples in solution but has insufficient spatial resolution

because of the diffraction limit of ~250 nm. Video-enhanced contrast

differential interference contrast (AVEC-DIC) allows observations an order of

magnitude smaller than the diffraction limit: transport of vesicles along the

giant squid axon was first observed using AVEC-DIC.34 Kinesin heads remain

invisible at this resolution but a refinement of the fluorescent tagging

technique has enabled head location to within about a nanometre.

Fluorescence imaging one-nanometre accuracy (FIONA) relies on taking

thousands of measurements of photons emitted from the fluorophore to build

a distribution from which the mean is calculated. Yildiz et al. (2004) used

FIONA to locate a tagged head to within 2 nm at a temporal resolution of

0.33 sec.35

1.3.1 Speed

The relationship between speed and hindering load has been measured using

bead assays where laser tweezers apply force to the bead with a force-

feedback system to stabilise this force at a constant value. A range of average

speeds is reported in the literature but most studies record a mean of 600–

700 nms-1 at low load (<1.5 pN) and saturation ATP concentration (1–2 mM).

 16

Above 1.5 pN, the speed reduces almost linearly with load until the motor

stalls while reducing the ATP concentration also slows the motor.25

1.3.2 Stall force

The load that prevents kinesin from moving forwards, the stall force, has been

determined in optical trap experiments. These are bead assays where the

bead is held stationary in a laser beam. The bead acts as a spring against

which kinesin pulls, slowing the motor progressively until it reaches a stall

plateau where it typically remains motionless for a second or more taking an

occasional single step forward or back before detaching and returning to the

start position. It then resumes its walk. Stall forces of between 5 pN and 7 pN

have been measured with most studies showing no relation between stall

force and ATP concentration.36; 37; 38

1.3.3 Run length and detachment

Measured with bead assays, kinesin’s run length (the distance covered

without detachment) averaged 1.5 microns with an approximately exponential

distribution which implies a constant probability of detachment estimated at

1%.39; 40; 41 Measured with gliding assays, however, run lengths were

~5 microns42 or the length of the MT43 i.e. no detachment was observed.

This discrepancy may be accounted for by the gliding assay being insensitive

to detachment events. The MT stays close to the cover slip in a gliding assay

and even if it rotates another binding site is close whereas bead rotation takes

detached kinesin away from the MT.39 Alternatively, perhaps optical tweezers

used in bead assays tend to pull the motor away from its track.25

One study may indicate that the bead assay is more lifelike. The progression

of kinesins labelled with quantum dot fluorophores along an MT was observed

 17

to be punctuated by diffusion events in vivo.44 This is not definitive evidence,

however, as it is not known whether the detachments were spontaneous or

caused by blockages or cargo snagging.

1.3.4 Can kinesin walk backwards?

Isolated backsteps have been noted in bead assays at a level of about two

percent38; 45; 46 but there is conflicting evidence as to whether kinesin can be

induced to walk backwards i.e. take successive backsteps.

Coppin et al. (1997) imposed a sudden rearward force of up to 13 pN and

observed that kinesin entered a stall plateau before detaching from the MT.36

Carter and Cross (2005) repeated this experiment and found that kinesin

tended to detach when subjected to a super-stall load of >10 pN, as

expected.37 In some cases, however, the motor stepped processively

backwards (towards the minus-end of the MT and towards the bead) until the

load reached stall force (~7 pN). They also found that reverse walking speed

was related to ATP concentration which implies that kinesin was performing

the normal hydrolysis cycle and so processing backwards.

1.3.5 Kinesin puppet

If the forward bias of the stepping mechanism is ATP-induced linker-zippering

(see section 1.4.3.3) then a suitable external load should substitute for

zippering, and so enable procession, in the absence of ATP. Yildiz et al. (2008)

applied a constant load in the absence of nucleotide and found that kinesin

does indeed process.38 Forward loads of 3 pN and 6 pN induced kinesin to

move processively at ~11 nms-1 and ~30 nms-1 respectively. Backward loads

(applied in the direction of the minus-end of the MT) also caused the motor to

process backwards though more slowly. Adding AMP-PNP raised the load

 18

threshold while adding ADP lowered it. These results are consistent with the

unbinding forces determined by Uemura et al. (2002) and give support to the

zippering model.31

1.3.6 Impaired transport studies

Experiments designed to discover what kinesin does when faced with an

obstacle have so far yielded inconsistent results.

Crevel et al. (2004) prevented kinesin from stepping by placing a barrier on

the MT and found that the motor quickly detached.47 They partially decorated

an MT with wild-type dimeric rat kinesins then saturated the MT with a mutant

monomeric kinesin that binds irreversibly to the MT and thus acts as a

permanent barrier. When ATP was added, the dimers detached at the rate of

42 s-1 i.e. kinesin waits at an obstacle for ~24 ms before detaching, the cycle

time for wild kinesin.

Seitz and Surrey (2006) found that the motor waited at a temporary barrier.40

Drosophila kinesins labelled with quantum dots were impeded by mutant

dimeric kinesins having a cycle time of ~200 ms i.e. an order of magnitude

slower than the wild-type. The effect of the mutants was to slow the wild-type

kinesins in proportion to the mutant concentration though there was little

effect on wild-type run length. They concluded that kinesin waits in a tightly

bound state at an obstacle for at least 200 ms.

1.4 Kinesin procession mechanism

Kinesin steps along the dimers of a MT hydrolysing a single ATP molecule per

step though the manner of this movement and the use that kinesin makes of

the free energy of ATP hydrolysis are a matter of debate.48; 49; 50

 19

1.4.1 Inching or toeing?

One controversy concerning stepping has been settled. Two incompatible

ways for kinesin to step have been proposed: inchworm and head-over-head

(HoH). Inchworm stepping is like the movement of the eponymous caterpillar:

the trailing head steps up to the leading head then the leading head steps

forward to the next binding site. Inchworm motion implies that the leading

head always stays in front and only one head hydrolyses ATP. The alternative

mode, HoH stepping, involves the trailing head passing around the leading

head to the next binding site. In HoH motion, the heads change places at

each step and both hydrolyse ATP.

Support for the inchworm hypothesis arises from a gliding assay performed by

Hua, Chung and Gelles (2002).51 They argued that, since kinesin is a

homodimer, movement would be expected to be symmetric. In the case of

HoH, the free head should pass the bound head on the same side at each

step. This would mean that HoH stepping would rotate the stalk whereas

inchworm would not. They immobilised a truncated Drosophila kinesin and

measured the orientation of MTs moved along by it. No overall rotation was

observed so they ruled out HoH motion in favour of the inchworm mechanism.

Further experiments using a different technique – fluorescent tagging – do not

support the inchworm model. Yildiz et al. (2004) tagged one head of a kinesin

molecule with a fluorescent probe and observed alternate step lengths of ~16

nm and 0 nm.35 This result supports HoH, not inchworm as the latter involves

equal-length steps. Taken together with the Hua et al. result, an asymmetric

HoH model is favoured.

Evidence that supports asymmetric HoH stepping comes from bead assays.

Block et al. (2003) showed that imposing sideways loads via a force-clamp

 20

results in asymmetric slowing of kinesin: leftward loading (facing direction of

motion) slowed kinesin more than rightward loading.52 Asbury et al. (2003)

engineered a set of mutant kinesins with truncated stalks.53 They used an

optical force-clamp to impose a constant rearward load of 4 pN and measured

the dwell time (the time between steps). They found that truncation caused

the motor to limp i.e. alternate dwell times increased, the shorter the mutant

the more pronounced the limp. These results are only compatible with

asymmetric movement since symmetric stepping (whether inchworm or HoH)

would show no difference between alternate dwell times.

The generally accepted conclusion is that stepping is asymmetric HoH

procession: kinesin walks in a similar manner to toeing a line (though, unlike

a human, its “feet” are identical). The movement asymmetry is presumed to

result from twisting of the stalk local to the heads. One step twists the base of

the stalk biasing the next step to pass the opposite side and thus release the

torsion energy. There is then no net twisting of the stalk in conformity with

the results of Hua, Chung and Gelles (2002).51

1.4.2 Walking the line

To determine the route kinesin takes along the MT, Ray et al. (1993)

conducted a gliding assay comparing the movement of MTs composed of

different numbers of filaments.54 A MT comprising 13 filaments is untwisted:

the filaments line up in parallel to form the tube. 12 or 14 filaments will form

MTs but have to twist to form a tube; a 12 filament MT spirals with opposite

handedness to a 14 filament MT. The assay showed that 13-mer MTs glide

along the bed of kinesins without rotating but 12-mers and 14-mers rotate as

they glide though in opposite directions as expected if the filaments are being

 21

followed by the kinesin heads. The conclusion is that kinesin walks along a

filament rather than stepping across filaments.

A recent study adds a caveat this rule: kinesin sometimes steps over to an

adjacent filament. Yildiz et al. (2008) labelled one head of a motor with a

quantum dot and confirmed the filament-following behaviour recorded above

except that 13% of stepping was sideways by ~6 nm with equal preference

for right and left side-steps.38

1.4.3 Powering the motor

The detail of how kinesin uses the free energy generated by ATP hydrolysis to

move forward is as yet unclear and so there are competing theories, one of

which proposes a similar mechanism to that of myosin. Though the peptide

sequence of myosin is radically different from that of kinesin, they both

hydrolyse ATP and share a similarity in structure of the catalytic core.55

1.4.3.1 Myosin

Myosin-II is the non-processive molecular motor responsible for muscle

contraction whose mechanochemical cycle is well understood. Muscle

contraction consists in bundles of myosin-II molecules pulling on bundles of

actin filaments in a cyclic, rowing-like motion. Figure 1.7 illustrates the

myosin cycle. In the quiescent state the heads are bound to ADP and

phosphate but prevented from binding actin as the binding sites are blocked

by tropomyosin. Contraction is initiated by calcium ion influx triggered by the

firing of the motor neuron that synapses to the muscle cell. Tropomyosin

releases from actin to which myosin heads bind and then release their

phosphate entering a rigor state: the motors are now tightly bound. The next

event is release of ADP when the motors act as lever arms pulling the actin

 22

filament in a power stroke. The cycle continues as ATP binds the empty head

causing it to detach from the filament. The free head hydrolyses the ATP

molecule causing the head to swing back thus completing the cycle.56; 57

1.4.3.2 Kinesin

The kinesin mechanochemical cycle has similarities to that of myosin but

differs in detail. Kinesin in solution encounters the MT when one head binds to

the MT. This causes the head to release its ADP while the other head remains

free.27 ATP binds the nucleotide-free head causing its neck linker to zipper to

the head which results in the ADP-bound head binding to the next MT binding

site.58 This in turn causes ADP release followed by ATP binding and hydrolysis.

Meanwhile the other head hydrolyses ATP, releases phosphate and

detaches.59; 60 This sequence repeats so that each head alternately steps

forward and hydrolyses ATP: kinesin walks along the MT. Figure 1.8 illustrates

the kinesin procession cycle as a series of states or snapshots.

As discussed below, there are two proposals for a stepping mechanism for

kinesin. One proposal is that kinesin, though working to a different hydrolysis

cycle, also uses a power stroke mechanism to advance along the microtubule.

The alternative proposal regards kinesin as a Brownian motor whereby the

free head is not pulled forward but follows a forward-biased diffusive path to

the next binding site. Fundamental to both proposals is the phenomenon

known as linker zippering.

 23

Figure 1.7 Myosin-II mechanochemical cycle as 4 snapshots. From the

top: ATP has been hydrolysed and the head is diffusing; next, the

head has bound the filament and phosphate has been released; next,

after the head has pulled the filament to the right; lastly, ATP has

bound and the head has detached. From Vale and Milligan (2000)55.

Actin filament

Myosin motor

ADP.Pi

ADP

empty

ATP

Power stroke

 24

Figure 1.8 Diagram of kinesin processionary cycle. The letter above

each head indicates which nucleotide is bound: D for ADP, T for ATP,

DP for hydrolysed ATP, 0 for none.

1.4.3.3 Zippering

Rice et al. (1999) observed that ATP binding causes a conformational change

in the normally flexible neck linker of monomeric kinesin: it becomes fixed

(zippered) to the head and aligned in the direction of motion i.e. pointing

towards the plus end of the MT.58 This change of state of the linker has been

confirmed in dimeric kinesin.61; 62; 63 The importance of zippering for normal

motion is demonstrated by a study showing that a non-zippering mutant

kinesin failed to move regardless of ATP concentration.38

 25

Figure 1.9 Myosin V motor domain with both heads bound to actin

(left) compared to kinesin motor domain bound to a microtubule

(right) at the same scale. (from Vale and Milligan 2000)55.

1.4.3.4 Power stroke

Myosin-V, like kinesin, is a processional motor but is much larger, having a

step of ~36 nm as opposed to kinesin’s 8 nm.64 Figure 1.9 illustrates the

motor domains of myosin-V and kinesin bound to their respective tracks at

the same scale. The linkers of myosin-V act as lever arms transmitting the

power stroke in a twisting action to traverse the actin filament.65 Though the

flexible linkers of kinesin do not perform a similar function, Vale and Milligan

(2000) proposed a power stroke mechanism for kinesin.55 In their model, ATP

binding causes linker zippering which in turn pulls the free head forwards via

Actin filament
Myosin

Kinesin

Microtubule

 26

its neck linker. The free head is then positioned close to the next binding site

to which it diffuses and binds.

Subsequent energy calculations threw doubt on this scenario. Given a stall

force of 6 pN together with a step of 8 nm, kinesin develops 48 pN.nm of

work per step (29 kJ/mol) but Rice et al. (2003) calculated that the free

energy of zippering is about 3 kJ/mol so the energy of zippering is insufficient

to power such a step.66

A recent molecular dynamics study has revealed an extra component to

zippering that may provide the necessary energy for a power stroke.67 The

neck linker is composed of two ß-strands (ß9 and ß10) connected by a hinge

region. According to their simulation, ATP-binding causes a cover strand (9

residues long) to form a ß-sheet, the cover neck bundle (CNB), with the

linker’s ß9 strand. The CNB binds to the head initiating zippering of the

remainder of the linker (the hinge region and ß10 strand latch) to the head.

Their calculations indicate that CNB formation “may be responsible for

generating the force for a walking stroke”. Khalil et al. (2008) lend

experimental support to this mechanism by showing that a mutant kinesin

without a cover strand has drastically impaired procession.68

A power stroke would be expected to show up as a sub-step: the free head is

first pulled forward by the power stroke and then diffuses to the binding

site.69 Analysis of noisy data from bead assays has proven inconclusive so the

existence of a diffusive sub-step remains an open question. Coppin et al.

(1996) found a substep of ~5 nm while Nishiyama et al. (2001) revealed 2

substeps of ~4 nm each, the first taking 25 microseconds followed by a

slower substep.70; 71 Carter and Cross (2005) used a more sensitive apparatus

and failed to detect any substeps lasting >30 microseconds.37

 27

1.4.3.5 Rectified Brownian motion

An alternative role for zippering has been proposed by Fox and Choi (2001).72

In their model, stepping is achieved by rectified Brownian motion (RBM) as

opposed to a power stroke. Rather than being a source of force, zippering

provides directionality by forward biasing the otherwise random motion of the

free head. The work done by kinesin in transporting its load is then powered

by binding of the free head to the next site on the MT: ATP provides the

energy to set the latch and not to drive the molecule forward. Rice et al.

(1999) discuss a similar model in which “…force generation does not occur by

a `power stroke' between two well ordered states, as is generally described

for myosin. Instead, movement involves a transition from a disordered to an

ordered state, with ATP binding providing the energy source for rectifying this

Brownian ratchet.”58

1.4.4 Wait state configuration

At normal physiological ATP concentration, stepping occurs in microseconds

i.e. faster than can be measured by current techniques. Experimenters

artificially slow kinesin down by reducing the ATP concentration to investigate

the walking process. Kinesin then enters a wait state before each hydrolysis

cycle: it has to wait for an ATP molecule to arrive at the empty head before

taking the next step. There is controversy about kinesin’s configuration in the

wait state because experimental measurements point to different

configurations. There is agreement that one head is bound to the MT, waiting

for an ATP molecule to diffuse to its empty nucleotide binding site. The other

head might be in any one of four possible positions: bound at the previous

binding site, free to diffuse, parked, or bound at the next binding site. There

is no conclusive evidence determining which configuration is correct.73

 28

1.4.4.1 Both heads bound

Asenjo et al. (2003) used fluorescence polarisation microscopy to determine

the orientation and mobility of labelled kinesin interacting with a MT

concluding that both heads are bound in the wait state.61 The same conclusion

was reached by Yildiz et al. (2004, 2008) who observed alternate stepping by

a fluorophore-tagged head of ~16 nm (two tubulin dimers) and 0 nm which

rules out an intermediate position for a mobile head.35; 38 These data are

compatible with stepping occurring either before or after the wait state but

both groups favour the latter whereby stepping forward of the trailing head

occurs after ATP binds the leading head thus utilising linker zippering that

results from ATP binding.

1.4.4.2 Free head

Bead assays provide evidence for the wait state being one head bound.

Kawaguchi and Ishiwata (2001) found that the force required to detach

kinesin from an MT in a nucleotide free solution is half that required when the

motor is in an ATP analogue solution.74 Uemura et al. (2002) found no

difference between the force required to detach one and two–headed kinesins

under no nucleotide conditions.31 Guydosh and Block (2006) used a variation

on the bead assay where the bead was attached to one head instead of the

stalk.75 All three studies indicate that kinesin waits with one head bound to

the MT (nucleotide free) while the other head (ADP-bound) is free of the MT.

The third study showed this result dynamically: the measurements were made

while the motor was walking.

1.4.4.3 Parked head

Two electron microscopy studies show the wait state as one head bound with

the other parked close to it.76; 77 It is possible that these are artefacts

 29

resulting from MT lattice saturation though there appears to be a

conformational change in the bound head on ADP release that may provide a

parking site.29

1.4.5 Head coordination

The question of head coordination was raised by the finding that less than

four single headed kinesins bound to a bead fail to process while native

kinesin processes yet has but two heads.42 Tomishige and Vale (2000)

chemically cross-linked the neck linkers and found that procession was

defeated; severing the link restored normal procession.78 Yildiz et al. (2008)

engineered a series of mutant kinesins with lengthened neck linkers.38 They

found that speed reduced in proportion to the linker length and concluded that

linker tension is an important factor in head coordination.

A factor generally regarded as necessary for coordination is a gating

mechanism. In order for kinesin to process along the MT, the heads must step

forward alternately with at least one head bound to the MT at all times. As the

heads are identical, procession entails that the hydrolysis cycles of the heads

are out of phase. Initial contact with the MT causes one head to release ADP

which means that it starts its hydrolysis cycle ahead of its partner.27 This

phase difference must be maintained for the long run lengths observed (see

section 1.3.3). Procession would be terminated if both heads detached at the

same time or remained bound, unable to step. Several gating mechanisms

have been proposed to account for head coordination.

1.4.5.1 Gated rear head

Hancock and Howard (1999) engineered a mutant kinesin lacking a head and

measured the rate of detachment from a MT.43 They found this was an order

 30

of magnitude slower than wild-type kinesin. A similar result was obtained

using fluorescence techniques by Crevel et al. (1999).79 Both groups infer that

linker strain generated by the leading head binding the MT accelerates the

release of the trailing head from the MT in wild-type kinesin: binding of the

leading head effectively gates release of the trailing head.

1.4.5.2 Gated front head

Rosenfeld et al. (2002, 2003) make an alternative proposal for coordination:

ATP is prevented from binding the leading head by the strain in the linkers

when the trailing head is bound.59; 80 Studies using mutant kinesins lend

support for this proposal. Farrell et al. (2002) engineered a mutant with a

defective head unable to hydrolyse ATP and Klumpp et al. (2004) conducted

experiments with a mutant that released phosphate without the head

detaching after ATP hydrolysis.60; 81 Both teams found that their motors failed

to move after one hydrolysis cycle, attributing this behaviour to the leading

head being unable to bind ATP. The implication is that, for wild-type kinesin,

detachment of the trailing head is necessary to enable ATP binding to the lead

head.

1.4.5.3 ADP release gate

Hackney (1994) found that kinesin releases only one ADP in contact with

MT.27 This implies gating of ADP release from one of the heads. The

mechanism for this gate is controversial and has a bearing on the wait state

discussion.

Asenjo et al. (2003) and Mori et al. (2007) propose that linker orientation

gates ADP release: only when the linker is bent backwards is ADP release

enabled.61; 82 This is the case when both heads are bound to the MT with the

ADP-bound head in the lead. This mechanism would explain Hackney’s finding

 31

as the trailing head would retain its ADP because its linker would be bent

forward. It could also serve to coordinate the heads during procession by

stopping the trailing head from prematurely releasing its ADP which would

initiate a futile hydrolysis cycle.

Alonso et al. (2007) argue that the ADP gate operates by way of a parking

mechanism and not as a result of linker orientation.83 They found that kinesin

released only one ADP even when unpolymerised tubulin dimers were

substituted for the MT; the second ADP was retained until ATP was

introduced. The linker is not bent backward in this situation because this only

happens when both heads bind the MT. They propose that, in the wait state,

the ADP-bound head is parked such that its MT-binding site is blocked and

cite electron microscopy evidence for this configuration. The gate is opened

by the arrival of ATP which binds to the partner head causing the release of

the parked head and allowing it to bind tubulin.

 32

Chapter 2 Modelling kinesin

 “… a good computational model–if one can be found–may explain
the mechanisms behind a biological system in more intuitive and
more easily analyzable terms than a mathematical model.”

Fisher and Henzinger 200784

This chapter motivates and describes the computational simulation developed

for the study. Laboratory experiments have revealed many aspects of kinesin

but not the detailed mechanism of motion. Mathematical modelling has been

employed in an attempt to improve our understanding of the motor: it has

been explored in terms of its chemical kinetics or as a Brownian ratchet. While

both approaches can generate realistic behaviour, the details of kinesin’s walk

remain moot. The methodology used here draws on aspects of this previous

research but takes a computational approach. A program has been designed

and built to simulate a section of microtubule (MT) traversed by linked kinesin

heads modelled as simple agents. The aim is not just to understand kinesin’s

walk but also to pilot a computational framework for modelling AT.

2.1 Why model kinesin?

As described in the previous chapter, a variety of experiments has revealed

aspects of how kinesin transports cargo along the axon but the movement has

yet to be observed in detail. Analysis of single-molecule experimental data

has provided the overall picture of kinesin motor domains (heads) stepping in

a head-over-head manner but there remain competing theories of how this is

achieved. Models of kinesin have been devised to formally investigate theory

and to complement experimental work in order to improve our understanding

of how the motor works.

 33

2.2 Previous models of kinesin

The two main approaches to modelling the dynamics of linear molecular

motors such as kinesin are Brownian (continuum or thermal) ratchet and

chemical-kinetic (discrete stochastic) theory.85 These are simplified

mathematical models consisting of systems of differential equations relating

measurable quantities and describing how they change over time. Parameter

fitting enables these models to generate results, such as load-velocity curves,

that are a good fit with those of experiment. A third approach, molecular

dynamics, could provide a much more detailed picture of kinesin but has had

limited application so far because of computational power limitations.

2.2.1 Brownian ratchet

Kinesin has been modelled as a twin-head chemically-driven Brownian

ratchet.86; 87; 88; 89 The basic principle of a Brownian ratchet is that a particle

diffusing according to a potential that changes from a symmetric to an

asymmetric form results in net directional movement of the particle towards

the base of the nearest potential well. Figure 2.1 illustrates how particles are

influenced by switching the potential from flat to sawtooth. In a chemically-

driven ratchet, the selection of the potential depends on the chemical changes

that occur during ATP hydrolysis; for kinesin, the binding of ATP causes the

potential to switch.

 34

Figure 2.1 Brownian ratchet mechanism. Top: particles firstly diffuse

at random in a flat potential; middle: the potential changes to a

sawtooth when more particles diffuse left than right; bottom: the

result is that particles accumulate in potential wells.

2.2.2 Chemical-kinetic

Kinesin steps along the dimers of the MT hydrolysing a single ATP molecule

per step. Discrete stochastic models approximate this processionary cycle by

a set of discrete states linked by rate constants. Each state represents a point

in the hydrolysis cycle and the corresponding position of kinesin. Figure 2.2

illustrates the basic scheme. Kinesin has been modelled as a whole90; 91 or as

separate heads92; 93; 94; 95 incorporating the influence of neck linkers or head

position on the rate constants. Some models incorporate physical constraints

on the heads, connecting them via springs96; 97 or a hinge98; 99.

 35

Figure 2.2 Chemical-kinetic schema. The motor steps to the right by

distance d from MT binding site, l, to the next. The N chemical states

leading to a step are depicted as circles joined by an arc. At any state,

j, the motor moves to the next state or the previous state or detaches

as determined by rate constants uj, wj and δj respectively. Kolomeisky

& Fisher (2007)85 figure 5.

2.2.3 Molecular dynamics

Molecular dynamics (MD) is a method that uses Newton’s laws to simulate

molecules at the atomic level and thus might seem to be a promising tool to

investigate kinesin in motion. Though it is possible to construct an MD model

of a kinesin motor traversing a section of MT, animating the model is

presently an insurmountable problem. This is because current computing

power and precision restrict MD simulations to nanoseconds but each step of

kinesin takes milliseconds. An additional difficulty is that ATP hydrolysis is a

chemical process of bond breaking which is not within the scope of MD. A

computationally intensive quantum-mechanical description of the hydrolysis

would be required.

MD has been useful on a much more modest scale. A series of simulations of

an isolated kinesin head67 has revealed changes associated with zippering of

 36

the neck linker involving a previously overlooked structure, the cover neck

bundle, for which experimental evidence has since been obtained68.

2.3 The approach of this study

The present approach to modelling kinesin differs from previous attempts

which assume procession and a mechanism of stepping. Procession is not built

into the program but emerges only if the heads coordinate. The model is

designed to compare the behaviour of the system under different stepping

mechanisms.

The long-range aim of this research is to investigate the failure modes of the

axonal transport system. The present work, in addition to studying kinesin

motion, pilots a methodology for a simulation of cargo transport along an

axon.

2.3.1 Executable biology and agent-based

modelling

The methodology used in this study can be described as executable biology.

Fisher and Henzinger (2007) contrast executable biology with mathematical

modelling.84 Mathematical models use equations to describe the relationship

between quantities that change in value over time whereas executable biology

uses executable computer algorithms to mimic biological phenomena.

To illustrate the rationale for making this distinction, Fisher and Henzinger

liken biological systems to complex digital electronic circuits. Differential

equations are used to describe the function of the transistors that comprise

electronic chips and to build mathematical models of biological systems.

Digital system designers do not work at the level of transistors but at the next

 37

level of abstraction – logic gates. Logic gates, consisting of several

transistors, are represented not by differential equations but truth tables of

inputs and outputs, each with a Boolean value (0 or 1). Just as engineers rely

on high-level simulation tools to design sophisticated digital systems so, the

authors argue, a similar toolset of biological models would greatly benefit our

ability to understand biological systems (see the quotation at the start of this

chapter).

It is intended that the work described in this dissertation will form the nucleus

for an executable biology of axonal transport. With a view to expansion, an

agent-based approach has been taken: further agents may be added to

extend the scope of the simulation. The approach is to model kinesin as a

system of simple, interacting components detailed enough to capture aspects

of the molecule important with respect to walking but simple enough to be

readily understandable by biologists and not require large amounts of

computer power to simulate.

2.3.2 Modelling the stepping mechanism

Previous models of kinesin assume the stepping mechanism to be a power

stroke or a Brownian ratchet or do not address stepping at all. The current

study explicitly models kinesin as a pair of coupled heads and enables the

comparison of stepping mechanisms.

2.3.2.1 Brownian ratchet

A Brownian ratchet was considered as a stepping mechanism but rejected

because there is a fundamental problem applying this mechanism to kinesin.

The directionality of a Brownian ratchet motor derives from the asymmetric

potential between the motor and the track and so motors with similar heads

 38

would be expected to move in the same direction along the same track. Ncd is

a minus-end directed kinesin motor yet shares highly conserved nucleotide-

and microtubule-binding motifs with plus-end directed kinesins.41 Further

evidence confounding the ratchet model is that experiments on mutant

motors show that the crucial element determining direction is the neck linker

and not the MT-binding sites. Ncd motors having a single mutation in the neck

linker became bidirectional100 while Ncd mutants whose heads were replaced

with those of kinesin-1 maintained their minus-end directionality101.

2.3.2.2 Rectified Brownian motion

A different diffusive mechanism, rectified Brownian motion (RBM), does not

suffer from the above difficulty as it is the linker that provides directionality

and not an asymmetric potential. In a chemically-driven ratchet (section

2.2.1), the energy from ATP hydrolysis is used to switch the potential

influencing the head from a symmetric to an asymmetric form such that the

head preferentially diffuses forwards. The RBM mechanism does not depend

on the shape of potential biasing free head diffusion, instead ATP binding

works through the linker to latch the head in the forward position. ATP binding

causes a conformational change in the head such that, when the free head

diffuses forward, the linker zippers to the head. Thus zippering biases the

diffusive motion of the free head towards the plus end of the MT. A second

advantage of RBM is that the force of the step does not depend on zippering

energy (as discussed in section 1.4.3) or Brownian motion but the binding

energy of the free head to the MT.102

 39

2.3.2.3 Power stroke

The power stroke theory envisages the motor using the energy of ATP

hydrolysis to pull the free head forwards. Though there are difficulties with

this model it remains a possible mechanism as discussed in section 1.4.3.

2.4 The simulation

The program is written in the C language and implements a discrete event-

driven simulation with a fixed-increment clock. The simulation space

represents a two-dimensional section of cytosol containing the motor and a

MT filament. The filament is modelled as a one-dimensional lattice of binding

points. The motor is modelled as twin kinesin heads. Each head is a finite

state machine whose states are the position, nucleotide- and MT- binding

possibilities. The state transitions are governed by simple rules. The detailed

physical relationships of and between the motor components are not

modelled.

A simulation run starts with both heads ADP-bound positioned close to the

minus end of the MT. Pseudo-random motion is applied to each head to

approximate diffusion until the motor engages with the MT. After the motor

engages the MT, the rules come into play and procession may result. If at any

point both heads detach, diffusion is resumed. The simulation run is

terminated when the motor reaches the plus end of the MT or becomes stuck

with both heads permanently bound. Results are output to file for spreadsheet

analysis.

2.4.1 Head simulation

The heads are treated as identical simple agents, following the same

hydrolysis and binding rules. Each head is modelled as a separate finite state

 40

machine having a position along the MT and one of five possible states of

nucleotide and MT binding at any one time. The five states are denoted by

KD, K0, KT, KDP and KDu which represent, respectively, a kinesin head bound

to ADP, to no nucleotide, to ATP, to hydrolysed ATP, (all bound to the MT) and

to the free ADP-bound head (the lower case ‘u’ is the initial of ‘unbound’ as

the head is not bound to the MT). During procession, each head performs a

cycle of transitions:

KDu → KD → K0 → KT → KDP → KDu..

These transitions are reversible but since the forward rates are estimated to

be at least 2 orders of magnitude greater than backward rates under normal

physiological conditions, reverse transitions are ignored in the simulation.103

The following series of rules embody the hydrolysis cycle and the interaction

between individual head and MT as described in section 1.4.3.2. Figure 2.3

shows the finite state machine corresponding to these rules.

1. If an ADP-bound head encounters the MT, it binds (KDu → KD)

2. Binding to the MT causes ADP release (KD → K0)

3. ATP binds the empty head (K0 → KT)

4. The bound head hydrolyses ATP (KT → KDP)

5. Head detachment occurs with phosphate release (KDP → KDu).

 41

Figure 2.3 Head state transition table.

Procession is not built in to these rules: only when the heads coordinate does

procession occur.

2.4.2 State transition (event) timings

In the first part of the study, as described in chapter 3, the simulation event

timings are variable rather than fitted to estimated timing data derived from

experiments. The relative amount of time a head remains in a particular

chemical state is varied and the simulation run to see under what range of

timings procession arises. One advantage of this strategy is that different

stepping mechanisms can be compared in terms of the range of timings under

which procession emerges regardless of whether the timings are realistic.

In the second part of the study, described in chapter 4, a more realistic

approach was taken to event timings including taking into account the fact

that the arrival of an ATP molecule is a random, diffusive event. The

 42

probability of arrival in a given time interval, which increases with the

concentration of ATP molecules, can be modelled by the Poisson distribution:

P(k, λ) = λk e-λ/k!

Where k is the number of times ATP arrives in the time interval when the

mean rate of arrival, the expected value, is λ. The ATP binding timings were

generated according to a Poisson distribution using Knuth’s algorithm.104 The

remaining event timings were fixed and increased from the baseline values

applied in previous virtual experiments in order to allow short ATP binding

timings i.e. the simulation of high [ATP]. Their ratio approximates those listed

in Rosenfeld et al. (2002).80

2.4.3 Wait state

There is a point in the processionary cycle when kinesin is said to be in a wait

state because the bound head is awaiting ATP binding (as discussed in section

1.4.4). The controversial assumption made here is that the wait state

comprises one head bound and one head free. This is the same state as

kinesin’s first encounter with the MT. During procession, the wait state occurs

after rule 2 has been applied to one head and rule 5 has been applied to the

other. One head is then nucleotide free and bound to the MT awaiting ATP and

the other is ADP bound and diffusing (subject to restraint by the neck linkers).

2.4.3.1 Linker strain and head binding

In the wait state, the movement of the free head is diffusive and simulated by

a pseudo-random number function such that there is an equal probability of

the head moving forwards or backwards. The neck linkers are assumed to

behave as entropic springs. Entropic strain is generated by thermal motion of

the single polypeptide strings composing the neck linkers in solution making

 43

them behave like elastic bands which results in the heads being unlikely to

reach either binding site when the motor is in the wait state. Rice et al.

(2003) suggest that entropic linker strain prevents the free head binding the

MT following detachment.66 Since occasional backstepping has been observed

during procession (see section 1.3.4), it is proposed here that linker strain in

native kinesin is not strong enough to prevent re-binding but does make it

unlikely.

The linkers are implicitly modelled here through their effects on binding. The

linker strain parameter is allowed to take unrealistic values in order to explore

the relation between strain and kinesin’s behaviour. Linker strain is assumed

to influence the likelihood of the free head binding the MT in the wait state.

The probability of binding varies with the strain according to the formula:

P(binding) = 1 – strain / maximum strain

Thus, at maximum strain, P(binding) is 0 i.e. the free head cannot reach

either binding site. This linear relationship is not to be confused with the

physical relationship between head distance and entropic linker strain, which

is exponential.102

2.4.4 Stepping

Kinesin traverses the MT by “walking” along a filament: one head steps

forward while the other is fixed to the MT (the head-over-head

mechanism).105 Since this motion has yet to be observed, there are differing

opinions as to how this stepping is accomplished. Two proposed mechanisms

are compared in this study: rectified Brownian motion (RBM) and power

stroke (PS).

 44

Stepping happens after rule 3 is applied to one head if the partner head is

free. The behaviour of the simulation differs depending on the stepping option

used. The RBM option is implemented with a zippering switch. The switch is

set when rule 3 is applied (ATP binds) and reset when rule 5 is applied

(phosphate is released). Thus activation of the switch simulates the setting up

of zippering of the neck linker to the bound head and resetting the switch

simulates the linker unzippering. If the free head diffuses forwards while the

zippering switch is set then a step is taken. The power stroke option forces a

step on application of rule 3 unless the partner head is bound. The

assumption is that the power stroke is not sufficient to pull forward an MT-

bound trailing head.

2.4.5 Load

The effect of hindering load is simulated by altering the operation of the

zippering switch. Loads less than 4 pN are assumed to have no effect on

zippering, the probability of zippering is progressively reduced as the load is

increased from 4 pN to 7 pN, and loads above 7 pN prevent zippering. A small

random variation is applied to simulate dynamic load variation expected

through stalk springiness. Loading only affects zippering: there is no attempt

to simulate any effect load may have on head binding.

2.4.6 Gating

Gating may be applied to investigate the difference between gated and

ungated models. It is implemented differently depending on which model is

being used.

For the RBM model, the gating changes the action of rule 4 (see section

2.4.1). The gate is implemented by slowing ATP hydrolysis tenfold unless the

 45

partner head is bound to the forward binding site. This mirrors the

experimental finding that single-headed kinesin hydrolyses ATP ten times

slower than native kinesin.43 The idea is that linker strain speeds up

hydrolysis during normal procession as both heads are bound to the MT when

ATP is bound and, in this configuration, the linkers are fully extended. If the

free head is prevented from binding then this strain is missing and kinesin

behaves as if it were single-headed.

For the PS model, gating affects rule 3 (see section 2.4.1). The gate is

implemented by preventing ATP binding the leading empty head while both

heads are bound to the MT. This modification implements the proposed

mechanism described in section 1.4.5.2 which is also based on linker strain.

2.4.7 Obstacle

In order to investigate the behaviour of the motor on encountering an

obstacle, a blockage can be placed on the MT for a given time interval. This

obstacle prevents the motor from reaching the next binding site on the MT.

2.4.8 Multimotor simulation

The last part of the study (see section 4.2) concerns linked motors simulating

the case where more than one motor is bound to the same cargo. A flexible

linkage between two motors was implemented using the existing loading

mechanism (section 2.4.5). Loading was applied if the processing motors

deviated from the initial separation distance. If the motors moved apart then

a load was placed on the leading motor in proportion to the increased

distance. If the inter-motor distance decreased below the initial separation, a

proportional load was placed on the trailing motor. Thus the two loadings

 46

operated to maintain the initial distance between the motors throughout the

run.

2.4.9 Visual interface

The state of the system is displayed in a graphic window so that the

experimenter can keep a visual check on the system’s behaviour. Figure 2.4

shows a snapshot of the display. The heads are shown as blobs coloured

according to nucleotide binding: red represents KT, green represents KD.

These are contained within a two dimensional box representing an area of

cytosol (pale grey) containing a length of MT filament laid out laterally as

alternate α and β tubulins (brown blobs) along the base of the box. Previous

positions of the heads are shown in dark grey to give a trace of the path of

the motor.

Figure 2.4 Program display screen snapshot. The MT is depicted in

brown, the motor heads in red and green, and the track of the motor

in dark grey.

 47

Chapter 3 Results – fixed ATP arrival

Virtual experiments were conducted to investigate the mechanism of stepping

of kinesin using computational simulation described in the previous chapter.

Two stepping theories were compared for robustness in terms of their ability

to generate procession (continuous stepping) under differing timing conditions

and variable linker strain. Rectified Brownian motion (RBM) was found to be a

more robust stepping mechanism than power stroke (PS). Gating of the

chemical cycle has hitherto been thought necessary to coordinate the heads

and so prevent detachment of kinesin from the MT. The simulated motor

achieved procession without gating, however, and showed realistic behaviour

in response to load.

3.1 Published results

Results described here have been peer-reviewed and published in the IEEE

Proceedings of the 2008 European Modelling and Simulation Symposium and

in the journal BioSystems (see appendix C). The first paper introduces the

simulation and its use in comparing stepping models and in investigating the

behaviour of kinesin at a blockage. An ungated RBM model is proposed but a

possible role for an ATP hydrolysis gate is also suggested as serving to make

the motor wait at an obstruction. The second paper describes the effect of

hindering load on the motor using RBM stepping in silico and compares this

behaviour to in vitro experiments with and without an ATP hydrolysis gate.

The argument is made that kinesin both employs ungated RBM stepping and

does not wait at an obstacle.

 48

3.2 Four part study

A computer simulation was designed and built to investigate how kinesin

walks. The main program is listed in appendix B.1, supporting functions are

listed in appendices B.4, B.5, B.6, and B.7. The motor is modelled as a

system of two motor domains (heads) restrained by linkers and interacting

with the microtubule (MT) and nucleotides according to a set of rules as

described in section 2.4. Linker strain is treated as a variable when examining

its effect on kinesin’s behaviour (parts one and two of this study), but is

otherwise fixed at an operational value of 9.5 which gives a level of

backstepping matching that observed in vitro (see section 1.3.4). The arrival

time of ATP is treated simplistically (as a fixed value per run) here but is

modelled more realistically in the subsequent work described in the next

chapter.

This part of the study may be divided into four parts:

1. Determination of the conditions for procession, comparing stepping

models

2. Investigation of the hypothesis that gating is not necessary for

procession

3. Exploration of the effect of hindering load on stepping characteristics

4. Investigation of the effect on kinesin of a blockage placed on the MT.

3.2.1 Part one – PS vs RBM

The protocol for the simulation runs for part one is summarised in the

following pseudo-code:

 49

Initialise program:

Select power stroke stepping rule

Zero counters.

For linker_strain = 0 to 10 do

For all timing combinations do

If motor fails to process then increment pf_counter

If motor detaches then increment d_counter

Output counter values to file and reset counters to 0.

Repeat above but with RBM stepping rule selected.

The procession results (pf_counter values) from 5 runs for each stepping

mechanism over linker strain range are listed in table 3.1. The average values

are plotted in figure 3.1 as diamonds for RBM values and squares for PS

values. A linear trend line fits the PS data while an exponential trend line fits

the RBM data.

Table 3.1 Timing combinations yielding interrupted procession – PS

and RBM.

 PS RBM

Linker
strain

1 2 3 4 5 1 2 3 4 5 PS
Av.

RBM
Av.

0 15 16 13 14 14 15 15 15 16 15 14.4 15.2

1 11 12 14 10 13 9 8 9 8 7 12 8.2

2 13 9 10 10 12 5 2 5 2 2 10.8 3.2

3 10 8 12 9 5 2 0 0 2 2 8.8 1.2

4 6 10 10 6 10 0 1 3 2 0 8.4 1.2

5 8 5 6 9 7 0 0 2 2 0 7 0.8

6 7 6 6 8 6 0 0 0 0 0 6.6 0

7 6 5 4 4 2 0 1 0 0 0 4.2 0.2

8 3 2 5 5 6 0 0 0 0 0 4.2 0

9 2 3 2 2 1 0 0 0 0 0 2 0

10 1 1 1 1 1 0 0 0 0 0 1 0

 50

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10

Linker strain

In
te
rr
u
p
ti
o
n
s
 t
o
 p
ro
c
e
s
s
io
n

PS RBM Linear (PS) Expon. (RBM)

Figure 3.1 Relationship between ungated stepping mechanisms and

procession under varying linker strain.

The detachment results (d_counter values) from 5 runs for each linker strain

are listed in table 3.2. The average values are plotted in figure 3.2 where

diamonds are RBM values and squares are PS values.

Table 3.2 Detachments for each stepping mechanism.

 RBM PS

Linker
strain

1 2 3 4 5 1 2 3 4 5 RBM
Av.

PS
Av.

0 7 8 5 6 4 8 8 4 3 5 6 5.6

1 1 1 1 0 1 2 2 4 2 5 0.8 3

2 0 0 0 0 0 1 2 2 2 2 0 1.8

3 0 0 0 0 0 1 1 2 1 1 0 1.2

4 0 0 0 0 0 1 1 1 0 2 0 1

5 0 0 0 0 0 1 0 0 2 1 0 0.8

6 0 0 0 0 0 1 1 1 1 1 0 1

7 0 0 0 0 0 1 2 1 1 0 0 1

8 0 0 0 0 0 2 2 2 2 1 0 1.8

9 0 0 0 0 0 3 2 2 1 1 0 1.8

10 0 0 0 0 0 1 2 4 3 2 0 2.4

 51

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10

Linker strain

D
e
ta
c
h
m
e
n
ts

RBM PS

Figure 3.2 Relationship between stepping mechanisms and

detachments under varying linker strain.

The overall result was that procession emerged with both PS and RBM

stepping mechanisms but RBM gave rise to procession under a wider range of

timings and linker strains than PS.

3.2.1.1 Discussion – system phases and timings

Procession occurs when the heads take it in turns to detach and step forward.

This requires that at least one head is bound to the microtubule at all times

and that the trailing head is free to step forwards when the stepping

mechanism comes into force. If the first condition were not met then kinesin

would diffuse away from the microtubule. If the second condition were not

met then the motor would stall on the MT. Viewed as a system, a motor can

have three phases corresponding respectively to the three types of

behaviour: procession, diffusion and stalled.

 52

Varying the timings of head binding and hydrolysis events with the PS

stepping mechanism resulted in the system displaying all three phases.

Procession arose under a specific ratio of timings described by the formula

T1 + T2 = T3 + T4 + T5.

Where T1 is the time taken for ATP hydrolysis (KT → KDP), T2 is the head

detachment time (KDP → KDu), T3 is the time for head docking (KDu → KD),

T4 the time for ADP release (KD → K0) and T5 the time for ATP binding

(K0 → KT). Note that the stepping time is not included in this equation as a

step is completed in microseconds while dwell time is measured in

milliseconds.

The RBM stepping mechanism displayed only two phases: procession and

diffusion.

3.2.1.2 Discussion – procession and detachment

The RBM mechanism was found to be more likely to produce procession than

the PS at any non-zero linker strain. The results of comparing mechanisms

are plotted in terms of the timing conditions under which the motor processed

(figure 3.1) and the number of detachments recorded per run (figure 3.2)

over a range of linker strain.

Figure 3.1 plots the number of timing combinations that did not result in

procession against linker strain. This orientation matches that of the

detachment plot as, in both cases, the lower the plotted value the better the

motor is performing. With RBM stepping, procession occurred under all timing

combinations for high linker strain (values above 7) while with PS, the motor

failed to process under some timing combinations at any strain value. The

data trends show a linear relationship with linker strain for the PS and an

 53

exponential relation for RBM, reinforcing the marked difference between the

two types of stepping. Both sets of data indicate that linker strain assists head

coordination (as discussed in the next section).

Figure 3.2 plots the average number of detachments recorded for each timing

combination that produced some procession (at least a second step) against

linker strain. Again, RBM stepping shows a consistently lower incidence of

detachments than PS, none below a strain value of 2. This is despite the plot

over-estimating the performance of the PS since some of its timings resulted

in a stalled motor.

3.2.1.3 Discussion – explanation

These results can be explained by considering the nature of the mechanisms.

In both, ATP binding results in the neck linker zippering to the MT-bound

head; the free head is then positioned close to the next MT binding site thus

facilitating the next step. PS achieves this in a different way from RBM.

It has been assumed here that the PS is impulsive: when ATP binds the lead

head, the rear head is pulled forward as described by Vale and Milligan

(2000)55. RBM operates differently: ATP binding sets up zippering but the

trailing head diffuses forwards rather than being pulled by the linker. Thus PS

stepping occurs when ATP binds whereas RBM stepping can occur any time

between ATP binding and phosphate release, after which zippering does not

occur58. The time window for potential stepping is thus much wider with RBM

than PS so RBM stepping occurs over a wider range of timing conditions than

PS stepping. In view of this relative advantage, further experiments were

conducted to compare gated PS with RBM, the results of which are described

in the next section.

 54

3.2.1.4 Gated PS compared to RBM

The experiments performed above were re-run to compare both gated and

ungated PS with ungated RBM. Figure 3.3 shows the average values of the

results, as listed in table 3.3, plotted as squares for PS data, lozenges for RBM

data, and circles for gated PS data.

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10

Linker strain

T
im

in
g

s
 g

iv
in

g
 i

n
te

rr
u

p
te

d
 p

o
c
e

s
s
io

n

RBM PS PS gated Expon. (RBM) Linear (PS) Linear (PS gated)

Figure 3.3 Relationship between stepping mechanisms and procession

under varying linker strain.

Gating brings the PS model up to the performance of the RBM model at

maximum linker strain, and makes for better performance at very low values

(under 2), RBM remains on top for most of the range.

The primary reason for the interrupted procession recorded for gated PS is the

effect gating has when the motor steps back (which it cannot do at maximum

strain): the motor freezes on the MT. As soon as a backstep is taken ATP

cannot bind the leading head as this is prevented by the gate. The trailing

 55

head, on engaging the MT, ejects its ADP and both heads remain bound to the

MT.

Table 3.3 Timing combinations yielding interrupted procession.

 Run Averages

Linker
strain 1 2 3 4 5 PS gated

0 4 4 3 3 4 3.6

1 6 5 5 5 6 5.4

2 7 5 7 6 6 6.2

3 5 5 7 5 5 5.4

4 5 6 5 5 4 5

5 5 5 5 5 5 5

6 5 6 6 6 5 5.6

7 6 5 6 5 5 5.4

8 5 6 5 5 5 5.2

9 4 5 4 4 5 4.4

10 0 0 0 0 0 0

 PS

0 15 13 13 14 14 13.8

1 12 15 15 15 13 14

2 14 15 15 14 13 14.2

3 12 15 11 12 11 12.2

4 13 15 11 12 9 12

5 10 14 14 13 11 12.4

6 8 7 10 12 11 9.6

7 10 10 10 8 6 8.8

8 4 7 7 5 5 5.6

9 2 6 3 4 2 3.4

10 1 1 1 1 1 1

 RBM

0 14 16 13 15 14 14.4

1 10 7 9 8 12 9.2

2 3 3 7 2 4 3.8

3 3 2 4 3 2 2.8

4 2 1 1 2 0 1.2

5 1 0 0 1 4 1.2

6 1 0 0 1 0 0.4

7 2 1 0 0 1 0.8

8 0 0 0 0 0 0

9 0 0 0 0 0 0

10 0 0 0 0 0 0

 56

Since it has been found in the laboratory that kinesin takes an occasional

backstep but doesn’t then get stuck38; 45; 46, these data indicate that kinesin

does not use a gated PS stepping mechanism.

3.2.2 Part two - gating hypothesis

As described in section 1.4.5, it is thought that gating at one or more points

in the hydrolysis cycle is required to achieve head coordination and prevent

premature detachment of kinesin from the MT.

3.2.2.1 Does RBM require a gating mechanism?

The hypothesis proposed here is that entropic linker strain (see section

2.4.3.1) is sufficient to coordinate the heads: that gating is not required for

procession to occur in the RBM model. This hypothesis is analysed and further

discussed below (section 5.5.3) in terms of the evidence for gating.

In order to test the hypothesis, the simulation was used to assess the effect

of varying linker strain on the processivity of the RBM model with and without

gating. The gating rule delays ATP hydrolysis by a factor of 10 (see section

2.4.6).

The simulation runs were first performed without gating then repeated with

gating. Linker strain is modelled as the probability of head binding in the wait

state (section 2.4.3.1) where 0 represents no strain while 10 represents

enough strain to prevent binding (in the absence of zippering). The protocol is

summarised in the following pseudo-code.

Initialise program:

Select RBM stepping rule

Set counter to number of timing combinations.

 57

For linker_strain = 0 to 10 do

For all timing combinations do

If motor processes to end of MT then decrement counter

Output counter value to file and reset counter.

Repeat above but with ATP gating rule selected.

The results are listed in table 3.4. The percentage of timing combinations for

which the motor processed with and without gating (columns headed

“success”) is calculated by subtracting the average procession failures over 5

runs (columns headed “failed”) from the total number of timing combinations.

These percentages are plotted in figure 3.4 as a histogram where hollow bars

show values for the model without the ATP gate, filled bars show values for

the model with the ATP gate.

3.2.2.2 Discussion

Without the gate, all the timing combinations applied to the system resulted

in procession at high linker strain (values above 7). Reducing linker strain

resulted in an increase in the number of timing combinations failing to give

continuous procession. With the gate, only maximum strain resulted in all the

timing combinations yielding procession. The gate significantly increased the

likelihood of procession at no strain.

These results support the hypothesis. High linker strain is sufficient to

coordinate the heads regardless of the timing conditions. If linker strain is key

to procession then a positive correlation would be expected with the likelihood

of procession and gating would be expected to compensate for lack of strain.

Both these predictions are born out by the results.

 58

Table 3.4 Gating comparison: procession data.

 Procession failure - no gate Av. Success
Linker
strain 1 2 3 4 5

- no
gate

% no
gate

0 24 26 26 24 25 25 7.4

1 9 9 11 7 13 9.8 63.7

2 4 6 8 7 6 6.2 77.0

3 1 5 3 3 4 3.2 88.2

4 1 2 2 2 1 1.6 94.1

5 1 2 0 1 0 0.8 97.1

6 0 0 1 1 1 0.6 97.8

7 0 0 1 1 0 0.4 98.5

8 0 0 0 0 0 0 100

9 0 0 0 0 0 0 100

10 0 0 0 0 0 0 100

 Procession failure - ATP gate Av. Success
Linker
strain 1 2 3 4 5

- ATP
gate

% ATP
gate

0 6 6 7 7 6 6.4 76.3

1 6 10 8 11 6 8.2 69.6

2 7 6 10 6 6 7 74.1

3 8 6 5 7 6 6.4 76.3

4 5 4 5 5 5 4.8 82.2

5 6 2 4 3 4 3.8 85.9

6 3 4 4 2 3 3.2 88.2

7 3 1 2 2 3 2.2 91.9

8 3 1 0 1 1 1.2 95.6

9 0 0 1 0 1 0.4 98.5

10 0 0 0 0 0 0 100

 59

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

Linker strain

P
ro
c
e
s
s
io
n
a
ry
 t
im
in
g

c
o
m
b
in
a
ti
o
n
s
 (
%
)

RBM - no gate RBM - ATP gate

Figure 3.4 Comparison of gated and ungated RBM procession.

3.2.3 Part three - behaviour under load

A hindering load on the motor was implemented as a counterbalance to

zippering (see section 2.4.5). The effect of applying increasing load to the

motor was measured by counting forward steps, backward steps and

detachments for a range of loads. A forward step is a step towards the plus-

end of the MT, a backstep is a step towards the minus-end, a detachment is

both heads releasing from the MT at the same time. The experiment was

repeated under the same conditions except for the addition of the ATP gate.

The protocol for the simulation runs is summarised in the following pseudo-

code.

Initialise program:

Select RBM stepping rule

Set linker strain to 9.5

 60

Set timing combination to shortest times giving procession.

Zero counters.

For load = 3 to 9 do

Count number of backsteps, forward steps and detachments

Output counter values to file and reset counters.

Repeat above but with ATP gating rule selected.

Appendix A contains the raw data and ratios calculated from the raw data for

each run. Tables A.1-3 list the raw data from which the average ratios in table

3.5 have been generated. Each ratio is obtained by dividing the individual

average value (either forward steps, backward steps or detachments) by the

sum of the average values (forward steps + backward steps + detachments).

The ratio or fraction of forward (green circles), backward (blue triangles)

steps and detachments (orange squares) to the total stepping is plotted

against load in figure 3.5 without gating and in figure 3.6 with gating.

Table 3.5 Gating comparison: average stepping ratios.

 No gate ATP gate

Load Forward Backward Detach Forward Backward Detach

3 0.94 0.06 0.00 0.97 0.03 0.00

3.5 0.96 0.04 0.00 0.96 0.04 0.00

4 0.96 0.04 0.00 0.96 0.04 0.00

4.5 0.95 0.05 0.00 0.98 0.02 0.00

5 0.94 0.03 0.02 0.92 0.08 0.00

5.5 0.86 0.06 0.08 0.94 0.06 0.00

6 0.78 0.06 0.16 0.89 0.11 0.00

6.5 0.67 0.07 0.26 0.49 0.46 0.05

7 0.57 0.09 0.34 0.48 0.47 0.05

7.5 0.35 0.34 0.32 0.46 0.49 0.05

8 0.33 0.37 0.30 0.54 0.42 0.04

8.5 0.35 0.34 0.32 0.47 0.50 0.04

9 0.36 0.30 0.34 0.48 0.48 0.04

The variation across runs in some of the raw load data appears large. To

confirm that 5 runs per set of parameters is sufficient to ascertain system

 61

behaviour, the published plots have been augmented here with maximum and

minimum values for each data point. The maximum values for forward steps

(Fmax), backward steps (Bmax), and detachments (Dmax) are plotted as

dashes linked by a continuous line. The minimum values for forward steps

(Fmin), backward steps (Bmin), and detachments (Dmin) are plotted as

dashes linked with a dotted line. Table 3.6 lists these data points for the

ungated and gated model; these are derived from the raw data listed in

appendix A in tables A.4 and A.5 respectively.

Table 3.6 Gating comparison: minimum and maximum stepping ratios.

 No gate

Load Bmin Bmax Fmin Fmax Dmin Dmax

3 0.02 0.15 0.85 0.98 0.00 0.00

3.5 0.02 0.08 0.92 0.98 0.00 0.00

4 0.00 0.11 0.89 1.00 0.00 0.00

4.5 0.02 0.07 0.93 0.98 0.00 0.00

5 0.02 0.05 0.92 0.97 0.00 0.05

5.5 0.01 0.14 0.78 0.92 0.05 0.10

6 0.04 0.10 0.70 0.85 0.11 0.19

6.5 0.03 0.10 0.63 0.76 0.20 0.28

7 0.05 0.14 0.53 0.64 0.31 0.38

7.5 0.31 0.35 0.33 0.36 0.30 0.33

8 0.36 0.42 0.30 0.35 0.28 0.31

8.5 0.26 0.40 0.31 0.39 0.30 0.35

9 0.16 0.39 0.31 0.43 0.29 0.41

 ATP gate

Load Bmin Bmax Fmin Fmax Dmin Dmax

3 0.00 0.04 0.96 1.00 0.00 0.00

3.5 0.00 0.06 0.94 1.00 0.00 0.00

4 0.00 0.06 0.94 1.00 0.00 0.00

4.5 0.00 0.06 0.94 1.00 0.00 0.00

5 0.02 0.16 0.84 0.98 0.00 0.00

5.5 0.02 0.09 0.91 0.98 0.00 0.00

6 0.08 0.16 0.84 0.92 0.00 0.00

6.5 0.36 0.52 0.41 0.61 0.00 0.07

7 0.39 0.50 0.44 0.53 0.02 0.08

7.5 0.45 0.53 0.43 0.52 0.02 0.09

8 0.31 0.49 0.46 0.65 0.00 0.06

8.5 0.44 0.57 0.39 0.53 0.03 0.05

9 0.36 0.56 0.39 0.63 0.01 0.06

 62

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 4 5 6 7 8 9

Nominal load (pN)

F
ra

c
ti

o
n

Fmax

Forward steps

Fmin

Bmax

Backsteps

Bmin

Dmax

Detachments

Dmin

Figure 3.5 Load characteristics of RBM stepping without gating.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 4 5 6 7 8 9

Nominal load (pN)

F
ra

c
ti

o
n

Fmax

Forward steps

Fmin

Bmax

Backsteps

Bmin

Dmax

Detachments

Dmin

Figure 3.6 Load characteristics of RBM stepping with gating.

3.2.3.1 Discussion

Without the gate (figure 3.5), there is a progressive reduction of forward

steps and a rise in detachments above 5 pN and then in backsteps at 7 pN

 63

until equalisation at a load of 7.5 pN, a stall force that is similar to that

measured by Carter and Cross (2005).37 The ATP gate has the effect of

aligning and accelerating the change in forward and backward steps which

become equal in number at a stall force of 6.5 pN (figure 3.6). The gate

almost eliminates detachments.

Gating has a stabilising effect on the motor but reduces its power: the gated

motor is less likely to detach but stalls at a lower load than the ungated

motor. Figure 3.7 reproduces figure 4a in Nishiyama et al. (2002)106 which

shows the experimental results at two ATP concentrations where the forward

step ratio is plotted as circles, backward ratio as triangles and detachment

ratio as squares. Comparing these experimental results with those obtained

from the simulation, the ungated results match noticeably better than the

gated results thus the simulation data favour the ungated model as more

realistic.

The mismatch between the simulation results and the experimental results is

pronounced at super-stall loads. The experimental curves trend downward for

stepping and upward for detachment at super-stall load whereas the

simulation curves converge and level off at these loads. The discrepancy may

be accounted for by under-recording of detachments by the simulation. In a

simulation run, the motor is allowed to re-engage the MT if it detaches so a

detachment may not be counted. In the experiment, a run stops if the motor

detaches so the detachment is counted. This particularly affects the super-

stall data as the number of detachments increases with load. The later version

of the program follows the experimental method resulting in a better data

match (see section 4.1.2).

 64

Figure 3.7 Nishiyama et al. (2002)106 figure 4a plotting the fraction of

forward steps (circles), backward steps (triangles) and detachments

(squares) for [ATP] of 1 mM (upper plot) and 10 µM (lower plot). The

dashed lines sum the backward steps and detachments.

3.2.4 Part four - blockage behaviour

A long-term goal of studying kinesin is to discover more about axonal

transport dysfunction since this is implicated in neurodegenerative disease

 65

such as Alzheimer’s as discussed in section 1.1.4. An initial step towards this

goal is the investigation of the effect of blocking kinesin’s path. There is

conflicting evidence as to how long kinesin waits before detaching from the

MT at an obstruction (section 1.3.6). Here a blockage was placed on the MT

for a varying amount of time to determine the waiting period. The simulation

runs for part four are summarised in the following pseudo-code.

Initialise program:

Select RBM stepping rule

Set linker strain to 9.5

Set timing combination to shortest times giving procession

Set load to 0

Make successive runs increasing the duration of the blockage.

Repeat above but with ATP gating rule selected.

Without gating, the motor was observed to detach within one hydrolysis cycle.

The detachment was delayed tenfold with gating applied.

3.2.4.1 Discussion

The gated result is consistent with the findings of Seitz and Surrey (2006)40

while the ungated result is consistent with those of Crevel et al. (2004)47.

Detachment happens because the free head moves forward but is unable to

bind the next MT binding site and so is free when its partner head finishes its

hydrolysis cycle and detaches. If the blockage is removed before the bound

head detaches the free head binds the MT and procession resumes. Gating

hydrolysis increases the waiting time since the motor cannot detach before

hydrolysis has completed.

 66

Chapter 4 Results – random ATP arrival

The experiments described in the previous chapter used a simplistic model of

ATP arrival. In this chapter, the effects of a more realistic model employing a

Poisson distribution are described. The behaviour of power stroke and rectified

Brownian motion models over a range of loads and ATP concentrations is

compared against experimental data. A multiple motor system is also

investigated. The main conclusion is that the gated RBM model fits the data

best.

4.1 Single motor investigation

The main program used for the virtual experiments described in this section is

listed in appendix B.2, supporting functions are listed in appendices B.4-7. In

the previous experiments of this study, ATP binding event timings were fixed

throughout a run. The arrival times of an ATP molecule, which is a diffusive

process, are more realistically modelled here by generating them from a

nominal value according to a Poisson distribution using Knuth’s algorithm104 to

simulate random arrival of the molecule. The rest of the event timings were

increased from the fixed values applied in previous experiments in order to

allow for relatively smaller ATP binding timings i.e. the simulation of high

[ATP]. The values approximate the estimates of Rosenfeld et al. (2002)80 in

milliseconds: ADP release (KD → K0) = 7, ATP hydrolysis (KDP → KDu) = 8,

phosphate release (KDP → KDu) = 13. The number of runs per set of

parameters was increased to 100 in order to accommodate the variation

introduced by using the Poisson mechanism.

 67

4.1.1 Velocity and dwell times at no load

The simulation was run for each stepping mechanism in turn at zero load for a

range of ATP concentrations. The number of steps and time taken were

recorded for each run then their average calculated over each set of runs

performed at the same nominal ATP arrival time. Velocity was calculated by

subtracting the number of backsteps from the number of forward steps with

the result divided by the time taken. Dwell time was calculated by dividing the

run duration by the number of steps taken during that time. Both sets of

values were scaled to compare with experiment.

4.1.1.1 Simulation results

The results averaged over 100 runs are listed in table 4.1. Figure 4.1 plots

the velocity data and figure 4.2 plots the dwell times for each stepping

mechanism against ATP concentration which is plotted as nominal arrival time

of the molecule. Results for gated RBM and gated PS are labelled RBMg and

PSg respectively.

 68

Table 4.1 Velocity and dwell time comparison under no load.

 Velocity

ATP
arrival
time PS RBM PSg RBMg

1 215.81 800.00 480.74 768.74

2 178.60 775.44 457.67 736.74

4 183.07 715.91 482.98 689.12

8 101.21 620.65 472.56 610.23

16 148.84 453.21 444.28 443.53

32 107.16 192.00 260.47 258.23

64 40.93 70.70 156.28 160.74

 Dwell time

 PS RBM PSg RBMg

1 1.85 1.06 1.21 0.83

2 2.12 1.21 1.20 0.87

4 1.95 1.64 1.21 0.92

8 2.40 1.99 1.23 1.04

16 2.12 2.58 1.39 1.43

32 2.83 3.69 2.47 2.44

64 4.91 6.00 4.02 3.87

0

100

200

300

400

500

600

700

800

900

110100

Nominal ATP arrival time

V
e
lo

c
it

y
 (

n
m

/s
)

RBM

RBMg

PSg

PS

Figure 4.1 Relationship between velocity and [ATP].

 69

0

1

2

3

4

5

6

7

110100

Nominal ATP arrival time

D
w

e
ll
 t

im
e
 (

s
)

RBM

PS

PSg

RBMg

Figure 4.2 Relationship between dwell time and [ATP].

4.1.1.2 Experimental results

Figure 4.3 is taken from an in vitro fluorescence study of kinesin at varying

[ATP] by Yajima et al. (2002).107 A similar velocity curve was obtained by

bead assay in a study by Rosenfeld et al. (2003).59

 70

Figure 4.3 Yajima et al. (2002)107 figure 2c: plot of run length

(central, in red), dwell time (top left to bottom right in blue) and

velocity (bottom left to top right in green).

4.1.1.3 Discussion

The simulation results confirm those of the previous chapter in supporting the

hypothesis that gating is not required for RBM procession and favouring the

RBM model. By visual inspection, the ungated RBM model provides as good a

fit to both the velocity and dwell time experimental data as the gated RBM

model. The velocity data of both PS models show striking variance with

experiment.

4.1.2 Load

The simulation was run for each stepping mechanism in turn for a range of

ATP arrival times but also for a range of loads. As above, the number of steps

 71

and time taken were recorded for each run then their average calculated over

each set of runs performed with the same nominal ATP arrival time. The

number of runs in which the motor detached from the track were also

recorded. Step ratios (or fractions) were then calculated in the same manner

as section 3.2.3: the steps, backsteps and detachments were summed and

each result in turn divided by this sum to give a data point.

The results for the ungated PS model are not recorded here as the data

proved radically different from experiment, having over 90% detachments

regardless of load.

4.1.2.1 High [ATP]

The load results for nominal ATP arrival time of 1 illustrate the motor

behaviour at high [ATP] as this is significantly quicker than the hydrolysis

cycle time of 28 (the sum of the fixed timings). The simulation results are

listed in tables 4.2-4 and plotted in figure 4.4, figure 4.5, and figure 4.6 for

ungated RBM, gated RBM and gated PS models respectively.

 72

Table 4.2 High [ATP] ungated RBM step ratios.

Load 0 1 2 3 4 5 6 7 8

Ratios

Step

0.990 0.987 0.989 0.979 0.979 0.912 0.943 0.356 0.000

Backstep

0.010 0.013 0.011 0.021 0.021 0.016 0.027 0.051 0.019

Detachment

0.000 0.000 0.000 0.000 0.000 0.071 0.030 0.593 0.981

Backstep +
Detachment

0.010 0.013 0.011 0.021 0.021 0.088 0.057 0.644 1.000

Raw data

Steps

94.4 95.6 96.1 94.1 94.1 89.5 93.8 12.6 0

Backsteps

1 1.3 1.1 2 2 1.6 2.7 1.8 1.9

Detachments

0 0 0 0 0 7 3 21 100

Table 4.3 High [ATP] gated RBM step ratios.

Load 0 1 2 3 4 5 6 7 8

Ratios

Step

0.975 0.968 0.961 0.963 0.958 0.952 0.952 0.943 0.000

Backstep

0.025 0.032 0.039 0.037 0.042 0.048 0.048 0.034 0.016

Detachment

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.984

Backstep +
Detachment

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.984

Raw data

 Steps

98.5 99.6 100.4 99.9 100.7 101.2 98.2 82.2 0

Backsteps

2.5 3.3 4.1 3.8 4.4 5.1 4.9 3 1.6

Detachments

0 0 0 0 0 0 0 2 100

 73

Table 4.4 High [ATP] gated PS step ratios.

Load 0 1 2 3 4 5 6 7 8

Ratios

Step

0.836 0.712 0.895 0.654 0.561 0.178 0.018 0.003 0.000

Backstep

0.009 0.018 0.024 0.031 0.025 0.044 0.023 0.022 0.023

Detachment

0.154 0.270 0.081 0.315 0.414 0.779 0.959 0.975 0.977

Backstep +
Detachment

0.164 0.288 0.105 0.346 0.439 0.822 0.982 0.997 1.000

Raw data

 Steps

27.1 23.7 22.1 18.7 17.6 5.7 1.3 0.3 0

Backsteps

0.3 0.6 0.6 0.9 0.8 1.4 1.7 2.2 2.4

Detachments

5 9 2 9 13 25 70 97 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9

Nominal Load (pN)

F
ra

c
ti

o
n

RBM step RBM backstep RBM detachment RBM back + detachment

Figure 4.4 High [ATP] ungated RBM step ratio to load relationship.

 74

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9

Nominal Load (pN)

F
ra

c
ti

o
n

RBMg step RBMg backstep RBMg detachment RBMg back + detachment

Figure 4.5 High [ATP] gated RBM step ratio to load relationship.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9

Nominal Load (pN)

F
ra

c
ti

o
n

PSg step PSg backstep PSg detachment PSg back + detachment

Figure 4.6 High [ATP] gated PS step ratio to load relationship.

 75

4.1.2.2 Medium [ATP]

The load results for nominal ATP arrival time of 16 illustrate the motor

behaviour at medium [ATP] giving a range of arrival times comparable to the

cycle time. The simulation results are listed in tables 4.5-7 and plotted in

figure 4.7, figure 4.8, and figure 4.9 for ungated RBM, gated RBM and gated

PS models respectively.

Table 4.5 Mid [ATP] ungated RBM step ratios.

Load 0 1 2 3 4 5 6 7 8

Ratios

Step

0.971 0.943 0.951 0.945 0.928 0.869 0.807 0.400 0.000

Backstep

0.029 0.057 0.049 0.055 0.072 0.057 0.080 0.186 0.022

Detachment

0.000 0.000 0.000 0.000 0.000 0.074 0.114 0.414 0.978

Backstep +
Detachment

0.029 0.057 0.049 0.055 0.072 0.131 0.193 0.600 1.000

Raw data

Steps

98.6 98.9 98.7 99.9 98.9 93.5 92.2 27.1 0

Backsteps

2.9 6 5.1 5.8 7.7 6.1 9.1 12.6 2.2

Detachments

0 0 0 0 0 8 13 28 100

 76

Table 4.6 Mid [ATP] gated RBM step ratios.

Load 0 1 2 3 4 5 6 7 8

Ratios

Step

0.963 0.961 0.961 0.950 0.956 0.936 0.943 0.859 0.000

Backstep

0.037 0.039 0.039 0.050 0.044 0.064 0.057 0.046 0.022

Detachment

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.096 0.978

Backstep +
Detachment

0.037 0.039 0.039 0.050 0.044 0.064 0.057 0.141 1.000

Raw data

 Steps

100 100.5 100.3 101.4 101.1 101.2 96.9 35.8 0

Backsteps

3.8 4.1 4.1 5.3 4.7 6.9 5.9 1.9 2.3

Detachments

0 0 0 0 0 0 0 4 100

Table 4.7 Mid [ATP] gated PS step ratios.

Load 0 1 2 3 4 5 6 7 8

Ratios

Step

0.942 0.963 0.951 0.916 0.891 0.392 0.038 0.005 0.000

Backstep

0.022 0.025 0.034 0.040 0.050 0.067 0.048 0.032 0.036

Detachment

0.036 0.013 0.015 0.044 0.059 0.541 0.914 0.963 0.964

Backstep +
Detachment

0.058 0.037 0.049 0.084 0.109 0.608 0.962 0.995 1.000

Raw data

 Steps

77.4 74.6 64.3 61.9 60.6 12.3 2.1 0.5 0

Backsteps

1.8 1.9 2.3 2.7 3.4 2.1 2.7 3 3.7

Detachments

3 1 1 3 4 17 51 90 100

 77

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9

Nominal Load (pN)

F
ra

c
ti

o
n

RBM step RBM backstep RBM detachment RBM back + detachment

Figure 4.7 Mid [ATP] ungated RBM step ratio to load relationship.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9

Nominal Load (pN)

F
ra

c
ti

o
n

RBMg step RBMg backstep RBMg detachment RBMg back + detachment

Figure 4.8 Mid [ATP] gated RBM step ratio to load relationship.

 78

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9

Nominal Load (pN)

F
ra

c
ti

o
n

PSg step PSg backstep PSg detachment PSg back + detachment

Figure 4.9 Mid [ATP] gated PS step ratio to load relationship.

4.1.2.3 Low [ATP]

The load results for nominal ATP arrival time of 64 illustrate the motor

behaviour at low [ATP] as the arrival time is greater than twice the cycle time.

The simulation results are listed in tables 4.8-10 and plotted in figure 4.10,

figure 4.11, and figure 4.12 for ungated RBM, gated RBM and gated PS

models respectively.

Table 4.8 Low [ATP] ungated RBM step ratios.

Load 0 1 2 3 4 5 6 7 8

Ratios

Step 0.761 0.664 0.549 0.485 0.484 0.479 0.477 0.104 0.000

Backstep 0.239 0.336 0.451 0.515 0.516 0.514 0.513 0.350 0.040

Detachment 0.000 0.000 0.000 0.000 0.000 0.007 0.010 0.547 0.960
Backstep +
Detachment 0.239 0.336 0.451 0.515 0.516 0.521 0.523 0.896 1.000

Raw data

 Steps 137.6 186 382.3 392 382.7 392.6 382.9 9.1 0

Backsteps 43.2 94.1 314.2 416.4 408 420.8 411.1 30.7 4.2

Detachments 0 0 0 0 0 6 8 48 100

 79

Table 4.9 Low [ATP] gated RBM step ratios.

Load 0 1 2 3 4 5 6 7 8

Ratios

Step 0.960 0.947 0.942 0.935 0.906 0.894 0.841 0.728 0.000

Backstep 0.040 0.053 0.058 0.065 0.094 0.106 0.159 0.213 0.046

Detachment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.058 0.954
Backstep +
Detachment 0.040 0.053 0.058 0.065 0.094 0.106 0.159 0.272 1.000

Raw data

 Steps 96.8 100.3 100.3 99.2 104.7 106.4 111.9 49.8 0

Backsteps 4 5.6 6.2 6.9 10.8 12.6 21.1 14.6 4.8

Detachments 0 0 0 0 0 0 0 4 100

Table 4.10 Low [ATP] gated PS step ratios.

Load 0 1 2 3 4 5 6 7 8

Ratios

Step 0.975 0.956 0.939 0.932 0.911 0.568 0.095 0.005 0.000

Backstep 0.025 0.044 0.061 0.068 0.089 0.137 0.114 0.030 0.036

Detachment 0.000 0.000 0.000 0.000 0.000 0.295 0.790 0.964 0.964
Backstep +
Detachment 0.025 0.044 0.061 0.068 0.089 0.432 0.905 0.995 1.000

Raw data

 Steps 98.6 99.6 101.6 102.3 104.9 15.4 3.5 0.5 0

Backsteps 2.5 4.6 6.6 7.5 10.2 3.7 4.2 2.8 3.7

Detachments 0 0 0 0 0 8 29 89 100

 80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9

Nominal Load (pN)

F
ra

c
ti

o
n

RBM step RBM backstep RBM detachment RBM back + detachment

Figure 4.10 Low [ATP] ungated RBM step ratio to load relationship.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9

Nominal Load (pN)

F
ra

c
ti

o
n

RBMg step RBMg backstep RBMg detachment RBMg back + detachment

Figure 4.11 Low [ATP] gated RBM step ratio to load relationship.

 81

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9

Nominal Load (pN)

F
ra

c
ti

o
n

PSg step PSg backstep PSg detachment PSg back + detachment

Figure 4.12 Low [ATP] gated PS step ratio to load relationship.

4.1.2.4 Discussion

These results are broadly the same as those of the previous chapter but there

are some differences. These differences occur because the earlier version of

the program allowed the motor to re-engage the MT after detaching whereas

this version of the program ends the run if the motor detaches. The revised

program has produced results that are more realistic at high load as the

modified program now follows the experimental method. Applying a range of

ATP concentrations has revealed unexpected behaviour of the RBM model.

Visual comparison of these results with experiment data (figure 3.7) show

general similarities, the best matches being ungated RBM for high and

medium [ATP] and gated RBM for low[ATP], the exceptions being the high

[ATP] gated PS plot (Figure 4.6) and the ungated RBM model at low [ATP]

(figure 4.10). The most surprising result is the behaviour of the ungated RBM

model at low [ATP], radically different from that displayed at higher

 82

concentration and completely different from experiment. This is primarily due

to an increase in backstepping as ATP concentration is reduced. The backstep

is normally a rare occurrence but, as the time interval between ATP arrivals

increases, the motor lingers longer in the wait state when the likelihood of a

backstep increases. Gating reduces this effect: the gated RBM plot (figure

4.11) shows marked similarity to the experimental data (figure 3.7, lower plot

labelled 10 µM ATP). This is because gating increases the time the motor

spends hydrolysing ATP (see section 2.4.6) and so it spends less time in the

wait state.

The most important feature of the motor under load is the stall force. Table

4.11 compares the stall force of the models to experiment at varying [ATP].

The values shown are estimated from the respective plots to the nearest

0.5 pN as the intersection between the dashed line (backsteps and

detachments) with the step data line. Gated RBM closely tracks the

experimental values, unlike the other models.

Table 4.11 Stall force comparison.

pN Experiment RBM RBMg PSg

High [ATP] 7.5 7 7.5 4

Mid [ATP] - 7 7.5 4.5

Low [ATP] 7 3 7 5

The conclusion is that the gated RBM model behaves the most realistically

under the full range of ATP concentration and load conditions.

 83

4.2 Two motor investigation

The power house of the cell, the mitochondrion, is transported along the axon

by several motors, as noted in section 1.2. With a view to future modelling of

mitochondrial transport, this section reports an initial investigation into the

behaviour of two linked motors.

4.2.1 Multimotor simulation

The main program used for the multimotor experiments is listed in appendix

B.3, supporting functions are listed in appendices B.4-7. This version of the

program includes a linkage between the motors (see section 2.4.8). The run

length calculation was changed from that used in the single motor

investigation to be the result of subtracting the mid-point between the motors

at the finish and start of the run. In the single motor system, the run

terminates if the motor detaches so the run length is directly related to the

stepping count. In the two motor system the run does not terminate if one

motor detaches when its companion continues to process so the stepping

count is not a reliable basis for calculating run length.

4.2.2 Simulation results

The run length and time taken were recorded for 100 simulation runs for each

stepping model applied to a single motor and then to two linked motors at

high [ATP]. The velocity was derived by dividing the run length by the time

taken. The average velocities and run lengths are listed in table 4.12. These

data are plotted in figure 4.13 and figure 4.14 respectively. Gated RBM and

gated PS data are labelled RBMg and PSg respectively.

 84

Table 4.12 Multimotor results.

 Velocity

 RBM RBMg PS PSg

1 motor

597.89 798.04 183.18 505.66

2 motors

623.77 753.27 96.45 458.70

 Run length

 RBM RBMg PS PSg

1 motor

1.91 2.01 0.01 0.49

2 motors

1.86 1.89 0.44 1.87

0

100

200

300

400

500

600

700

800

900

0 1 2 3

Number of motors

M
e

a
n

 V
e
lo

c
it

y
 (

n
m

/s
)

RBMg

RBM

PSg

PS

Figure 4.13 Simulated multiple motor comparison of velocity.

 85

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3

Number of motors

M
e
a
n

 R
u

n
 L

e
n

g
th

 (
m

ic
ro

n
s
)

RBMg

RBM

PSg

PS

Figure 4.14 Simulated multiple motor comparison of run length.

4.2.3 Experimental results

Bead assays conducted by Seitz & Surrey (2006) and Beeg et al. (2008) at

saturation [ATP] (1-5 mM) show that the velocity of the bead is hardly

affected by the number of motors bound to it (figure 4.15) whereas the run

length increases with the number of motors (figure 4.16).40; 108

 86

Figure 4.15 Multiple motor comparison of velocity (Beeg et al. 2008108

figure 2b).

Figure 4.16 Multiple motor comparison of run length (Seitz and Surrey

200640 figure 1d).

 87

4.2.4 Discussion

Only gated RBM stepping velocity shows a good fit to experiment (Figure

4.15); the worst fit is the ungated PS which not only runs at a quarter of the

assay velocity as a single motor but adding a motor halves the velocity again.

The latter effect occurred because progress was slowed by detachments

whereas for the single motor the run terminated on detachment. This

happened to a much lesser extent with the gated motors though not with

ungated RBM where no detachment was observed: linking ungated RBM

motors improves individual motor head coordination.

The run length data are not a good fit for experimental values (figure 4.16).

Gated PS stepping showed the same upward trend but the increase in run

length for the two motor case (almost fourfold) is much higher than the fitted

experimental curves would indicate (about 10%). In contrast, for most of the

RBM runs, both the single and double motors processed the full length of the

MT, indicating a very low probability of detachment. This behaviour is not

consistent with the bead assay though it is consistent with gliding assays (see

section 1.3.3). The convergence of the twin motor run length results for all

but ungated PS is intriguing and may indicate a general property of multiple

motor behaviour.

 88

Chapter 5 Evaluation

This chapter comprises an evaluation of the study and the stepping model. A

coherent argument is made for a new model of kinesin stepping with due

consideration of challenging data. The plausibility of the ungated RBM

mechanism for kinesin stepping was established in the first part of this study

(chapter 3). Further investigation has shown the requirement for gating under

conditions of low ATP concentration (chapter 4). The model is discussed here

in relation to laboratory evidence and is shown to be capable of explaining a

wide range of recent experimental results. Laboratory experiments are

suggested based on the model’s predictions.

5.1 The study

The biological goal of this study was to improve our understanding of how

kinesin walks. A definitive understanding of this phenomenon was not

expected as this is a theoretical study relying on existing evidence gained

from the study the motor in the laboratory. A plausible new stepping model

has been developed following both the extensive consideration of existing

experimental results and theory and the testing of hypotheses by means of a

computer simulation.

The technical goal of the study was to pilot a method suitable for modelling

AT. The simulation was designed and built for this study and is an original

application of agent-based modelling to this field of inquiry. It has proved

useful in investigating the kinesin walk and could support an AT model

through the addition of further agents with properties derived from

experimental findings and theory. Though the software has been useful on the

small scale, extending it would be inefficient and produce an unwieldy tool

 89

since it is written in C, a general programming language, as opposed to a tool

designed for agent-based modelling.

5.2 The simulation

At first glance, the simulation may be viewed as little more than a toy. There

is a striking contrast with most of the existing models of kinesin which use

sets of equations to model varying quantities including those measured in

experiments. A different methodology is used here: that of executable biology

where algorithms are used to mimic biological entites.84

The simulation is a necessarily simplified representation of the motor moving

along a section of MT. All models are a compromise between simplicity and

realism, and must have regard for the computer power and programming

effort available. It is believed that a reasonable balance has been struck here

because, though accuracy and realism are limited, the simulation has proved

useful in the development of the thesis which has due regard for experimental

findings. It has enabled virtual experiments exploring the behaviour of

different models of the motor under widely varying conditions and

comparison of model to real motor behaviour. Specific advantages and

limitations of the simulation are listed below.

The deterministic nature of the finite state machine might be thought to

impose coordination on the heads and thus be an implicit form of gating. The

simulation results show, however, that procession only emerges under some

timing combinations and is influenced by stepping mechanism, linker strain,

load and ATP concentration. Thus, the fact that event timings for each head

are identical is not sufficient for procession; rather, this fixture enables direct

comparison of the behaviour of the alternative models with and without

gating. In any case, the argument for the necessity of gating put forward by

 90

Rosenfeld et al. (2002) applies whether or not timings are fixed (see section

1.4.5.2).

5.2.1 Simulation advantages

• Enables exploration of the mechanism of kinesin motion by variation of

component parameters in virtual experiments

• Visualises the behaviour of the motor during operation of the

simulation

• Formal, consistent, executable model of head binding and hydrolysis

• Relatively transparent – straightforward rules as opposed to an

intricate web of equations

• Small number of variables with few free parameters

• Potential for increasing scope by adding new agents

• Potential for development into a teaching tool

• Modest computational requirements

• Portable – written in the C programming language.

5.2.2 Simulation limitations

• Written in C programming language which is general purpose as

opposed to being a specific agent-based modelling tool

• Requires C programming skills to alter and maintain

• Research software – not user friendly in its present form

• Highly abstract model of kinesin - lacks physical detail and

mathematical rigour

• Not amenable to analytical treatment – simulation has to be run in

order to get data.

5.3 The model

The rectified Brownian motion model of Mather and Fox (2006)102 proposes

that stepping is a diffusive motion rectified by neck linker zippering. Their

model incorporates a gating mechanism that controls when ATP can bind in

order to prevent loss of head coordination that would terminate procession.

 91

The new model retains the notion that stepping is a diffusive motion rectified

by zippering but assumes that no gating is necessary for procession. Kinesin’s

heads are connected by single polypeptide linkers that naturally act like

springs as a result of thermal motion. This entropic linker strain is

hypothesised as sufficient to coordinate the heads and thus facilitate

procession. Theoretical support for this hypothesis comes from the results of

computer simulation devised and implemented to investigate the kinesin walk

as described in chapter 3. Further support is gained by considering the extent

to which the model explains experimental findings including challenging data.

The initial argument put forward here is that the model is a parsimonious

mechanism (being ungated) that provides wide explanatory power and is

therefore a good candidate for explaining the kinesin walk. The ungated RBM

stepping mechanism produces robust processive behaviour that is consistent

with many experimental results obtained in the laboratory but fails at low

[ATP] as we saw in section 4.1.2. Introducing gating, as described in section

2.4.6, rectifies the problem by slowing ATP hydrolysis while the partner head

is not bound, thus providing coordination between the heads in addition to

entropic linker strain. In conclusion, this study favours the thesis that the

stepping mechanism of kinesin is gated RBM.

5.4 Gated RBM model challenged

The model predicts that kinesin should wait at a blockage since the free head

is unable to reach the forward binding site and so the hydrolysis gate is

invoked. This prediction is not compatible with the results of an in vitro study

by Crevel et al. (2004) but tallies with the finding of Seitz and Surrey (2006)

that the motor waits at an obstacle for an order of magnitude longer than the

normal hydrolysis cycle.40; 47

 92

The conflict between these studies stimulated the author to add the gating

rule to the simulation. This achieved the required waiting time (see section

3.2.4) but it also rendered load behaviour less realistic (section 3.2.3), which

would favour the ungated model. Further investigation, using an improved

simulation, showed more realistic load behaviour for the gated model over a

range of [ATP], as described in chapter 4.

5.5 RBM stepping challenged

While gating has proven necessary to faithfully simulate kinesin, RBM

stepping remains the basis of the model. Experimental results that constitute

challenges to RBM stepping are addressed in this section.

5.5.1 Power stroke revisited

If PS is the stepping mechanism of kinesin then, clearly, RBM cannot be. As

discussed in section 1.4.3, there is evidence for a mechanism that overcomes

the energy deficit problem with PS. Khalil et al. (2008) performed optical trap

experiments on mutant kinesins with the cover strand removed.68 The

mutants showed a large reduction in stall force compared to wild-type. The

reduction of stall force could be compensated for by a constant assisting load.

They concluded that the cover strand is required for normal motor operation

which involves PS stepping energised by cover neck bundle formation.

An alternative interpretation of these data is that efficient zippering requires

formation of the cover neck bundle: without the cover strand, kinesin still

walks but is crippled because the zippering process is impaired. The RBM

model assumes that hindering loads act against zippering and zippering

provides the forward bias of the motor. The model predicts, therefore, that

the weaker zippering is, the smaller the force required to prevent zippering

 93

and so stall the motor. The model also predicts that an assisting load will

compensate for the impaired zippering by restoring forward bias. Both

predictions are in accord with the above findings and so it is argued here that

the data do not distinguish between RBM and PS.

The PS model lacks credibility, however, in the light of experimental findings

that kinesin steps without ATP and without zippering (see section 5.6.3) since

the power stroke requires zippering powered by ATP.

5.5.2 Wait state configuration

The model assumes that the detached head is free to diffuse in the wait state

(kinesin waiting for ATP to bind). Evidence for and against this assumption

comes from studies as described in section 1.4.4: bead studies indicate that

one head is bound whereas fluorescence studies indicate that both heads are

bound. Possible explanations for data challenging the assumption are

discussed below.

5.5.2.1 Both heads bound?

Yildiz et al. (2004, 2008) propose that both heads are bound in the wait

state.35; 38 They labelled one head with a fluorophore and observed kinesin at

a low ATP concentration to extend the duration of the wait state such that

steps were discernable at the data capture rate of the apparatus. The head

showed alternating movement averaging 0 nm and ~17 nm i.e. the head

steps forward by the length of 2 tubulin dimers. This behaviour corresponds

to alternate stepping of the heads as would be expected with hand-over-hand

motion but points to the wait state configuration being both heads bound (or

at least within 2 nm of a binding site since that is the calculated maximum

 94

error on position value). This is because any other wait state configuration

would introduce further signals into the data.

If the model is correct then the free head is diffusing in the wait state which

should produce a signal averaging 8 nm i.e. half way between binding sites. A

possible explanation is that the fluorophore tag is interfering with the free

head movement. Carter and Cross (2006) propose that the fluorophore

causes the motor to limp.109 Perhaps the tagging introduces electrostatic

attraction between the head and the MT that effectively parks the head close

to the binding site or significantly increases the probability of the head being

close to the binding site. Further experiment is required to test this

hypothesis.

5.5.2.2 Parked head?

Alonso et al. (2007) propose that one head is detached from the MT in the

wait state but that it is not free to diffuse.83 They found that mixing kinesin

with unpolymerised tubulin dimers caused only one head to bind in the

absence of ATP. Their explanation is that the second head is parked, unable to

bind, until released by the arrival of ATP.

The model predicts that both heads would bind free tubulin and so appears to

be at odds with these data. There is considerable variation in the results

depending on the type of kinesin and tubulin used. Neurospora kinesin mixed

with yeast tubulin, for example, behaved as the model predicts: the ATPase

rates are the same whether the tubulin is polymerised or not (figure 1A,

Alonso et al. 2007)83. An alternative interpretation of their results derives

from the configuration that kinesin takes without cargo: it is folded such that,

although it will bind a microtubule, the tail inhibits normal procession.110 It is

possible that the tail is the source of the gating effect in some of these

 95

experiments: it is obscuring the tubulin binding site of one head. Thus the

findings may only apply to kinesin in solution and not to kinesin whose tail is

bound to cargo.

5.5.3 ATP-binding gate necessary for procession?

Two sets of studies conclude that an ATP-binding gate is required to prevent

kinesin from detaching before it takes the second step. Rosenfeld et al. (2002,

2003) conducted FRET studies to estimate biochemical rates.59; 80 They

calculated that by the time the first head has hydrolysed its ATP and released

from the MT, the second head would also have hydrolysed its ATP. Thus

procession is prevented as the motor detaches from the MT instead of taking

the second step.

Since the ungated model displays procession over a wide range of timings

including those estimated above, the present study does not support the need

for gating.

5.5.4 Stalling mutants

Farrell et al. (2002) studied mutants with a defective head unable to

hydrolyse ATP while Klumpp et al. (2004) studied mutants able to hydrolyse

ATP but not detach from the MT.60; 81 They found that the mutants stalled on

the MT after one hydrolysis cycle. Their explanation is that the gate (as

described in section 1.4.5.2) remains shut, prevents ATP from binding and

thus any further stepping.

An alternative explanation for the stalling is that the mutations caused the

zippering function to be defective. Without zippering, the second head fails to

bind the MT. The mutants are then stalled in a wait state similar to that of

wild-type kinesin (though the bound head is not nucleotide free).

 96

5.6 Model predictions

5.6.1 Non-hydrolysable analogue

AMP-PNP, a non-hydrolysable analogue of ATP, produces intriguing behaviour

in vitro. Guydosh and Block (2006) observed that AMP-PNP caused kinesin to

take isolated backsteps during a long pause (up to several seconds)

culminating in a final backstep before return to normal procession.75 They

hypothesise that the backward linker strain caused by a backstep increases

the probability that the analogue is released from the leading head to be

replaced by ATP thus restarting normal procession. Subramanian and Gelles

(2007) repeated these experiments, observing the motor pause but with no

movement; they suggest that this behaviour is the result of their experiments

being conducted at zero applied force.111 Their analysis also indicated that

short processive runs occur with AMP-PNP bound.

The model predicts the long pause because the analogue behaves like ATP in

that it causes the linker to zipper but the head remains bound since hydrolysis

is necessary for detachment. The free head is thus held close to the forward

binding site. This would result in the motor being stuck in place on the

microtubule with the leading head futilely hydrolysing ATP until AMP-PNP

dissociates. There is no backstepping while the motor is in this state, as found

by Subramanian and Gelles in vitro. The model conflicts with their analysis,

however, as it predicts no procession while AMP-PNP is bound since the

analogue-bound head has high affinity for the MT.31

Consideration of the effect of load provides an explanation for backstepping.

An important feature of the experimental setup of Guydosh and Block was the

use of force-feedback to provide hindering loads of 4.5 pN and 5.3 pN in order

 97

to be able to distinguish steps in the data given the data capture rate of their

apparatus. It is proposed here that such loads are high enough to reduce the

biasing effect of zippering such that the free head is occasionally able to

diffuse close enough to the rear binding site to bind. A backstep is therefore

possible but unlikely and so the model predicts an infrequent backstep during

the pause, as observed in vitro.

An alternative hypothesis is suggested here to account for the terminal

backstep before resumption of normal procession. The new proposal is that

the cause of the terminal backstep is unbinding of AMP-PNP. When AMP-PNP

finally dislodges, the linker unzippers since the empty head does not support

zippering. The result of unzippering, given the rearward load, is that a

backstep is taken. Procession then resumes when ATP binds the leading head.

5.6.2 Backsteps at low load

Backstepping at high load is explained by the result of load counteracting

zippering as explained in the previous section but the model can also account

for isolated backsteps as observed in vitro at low load (section 1.3.4). At low

loads, zippering is unaffected so forward stepping would be predicted.

Isolated backsteps at low load can be explained by considering the wait state.

The wait state is the period after one head has released ADP and is tightly

bound to the MT awaiting ATP to bind. The model assumes that its partner

head is free to diffuse. Assuming that entropic neck linker tension makes

binding and ADP release improbable (rather than impossible) in the wait

state, there is a small probability that the free head will bind the rear site and

release ADP thus the model predicts that kinesin takes an occasional backstep

even at low load.

 98

5.6.3 Wandering mutants and unfuelled procession

Yildiz et al. (2008) engineered mutants with altered neck linkers and

compared their behaviour with wild-type kinesin finding relatively

compromised procession.38 They also found that external force can

compensate for the absence of ATP, making wild-type kinesin walk despite the

lack of hydrolysis. The model can account for most of these findings as

explained below.

5.6.3.1 Extended linkers

At low ATP concentration, mutants with extended linkers slowed and showed

lower stall force in proportion to the extension. Though they maintained

direction on average, they also showed side stepping and more backstepping

than wild-type. External assisting force was found to compensate for slowed

procession.

The model predicts that lowering linker strain would result in compromised

procession with an increase in wandering. The low concentration of ATP

increases the time the motor spends in the wait state where entropic strain

keeps the free head diffusing by restraining it like an elastic band.

Lengthening the linkers brings more binding sites within range of the head

while reducing the strain increases the likelihood of binding. Presumably the

extended linkers are less efficient at zippering, the expected effect being a

reduction in stall force since load is then acting against weaker zippering.

While the linkers are still able to zipper the motor will retain an overall

forward bias. Applying an assisting force would reinforce zippering and thus

be expected to improve procession in these impaired motors.

 99

5.6.3.2 Zero ATP walking

Native kinesin processed slowly in the direction of an externally applied force

of 3 or 6 pN in the absence of ATP.

The model can partly explain this phenomenon. Without ATP, kinesin is in a

wait state and no zippering occurs. The model predicts a very low probability

of the free head binding in this state. Applying external force would increase

the likelihood of the free head binding to the next site in the direction of the

force but a step in that direction remains unlikely so progress would be slow.

The result of the first step is that both heads would be empty and bound to

the MT. A forward force of 6 pN would be sufficient to dislodge the trailing

head to return the motor to the wait state and so sustain procession but 9 pN

is required in the reverse direction.31 While the linkers would be under strain

thus adding to the external force, it is difficult to see how an external force of

3 pN could be sufficient to move the motor to take a second step.

5.6.3.3 Walking without zippering

A non-zippering mutant was immotile in the presence of ATP. This mutant was

induced to process slowly in the direction of an applied external force without

ATP (as above). When ATP was added, it moved faster.

The model predicts that removing zippering would stall the mutant regardless

of ATP concentration since it remains in a wait state whether hydrolysing ATP

or not. Without ATP, an external force will act on the mutant in the same way

as for wild-type. Adding ATP would increase the mutant’s speed under load

because, after hydrolysis and phosphate release, the MT-bound head

detaches without having to wait for ADP to dislodge it.

 100

5.7 Experiments suggested by the model

A good model makes testable predictions suggesting further experiment. The

model has generated alternative explanations of experimental findings

generating the following testable predictions.

5.7.1 Gating

The behaviour of mutant motors has been proposed as demonstrating the

need for gating of ATP-binding during the chemical cycle (section 1.4.5.2).

The model suggests that this behaviour can be explained by the mutation

causing a defect in the zippering function. This prediction could be tested by

determining the state of the linker and the motor’s configuration in the stalled

mutant. If gating is the cause then the linker should be zipped and the motor

configuration both heads bound. If zippering is faulty then the linker should

be mobile and only one head of the motor bound.

5.7.2 Non-hydrolysable analogue

As noted in section 5.6.1, the model predicts that, during the pause, the

motor is futilely hydrolysing ATP until AMP-PNP dissociates from the trailing

head and that the final backstep occurs after AMP-PNP release (and not before

as proposed by Guydosh and Block 2006)75. These predictions could be tested

by determining the hydrolysis rate of the paused motor and the order of the

backstep and analogue release events.

 101

Chapter 6 Summary and conclusions

6.1 Summary

The long-term goal of this research is to contribute to combating dementia by

shedding light on the process of its cause: neurodegeneration. The twin aims

of this study are motivated by this goal. They were to investigate the detail of

the kinesin walk and to pilot a simulation platform for modelling axonal

transport. Axonal transport is vital for the normal functioning of neurons and

its failure is implicated in neurodegenerative disease such as Alzheimer’s. The

molecular motor kinesin plays a major role in axonal transport by carrying

cargo from the neuron cell body to the synapses.

6.2 The study

This study explores the motor’s movement along its microtubule track using a

computational simulation designed and built by the author. The simulation is

the first implementation of an agent-based model of kinesin. This type of

model was chosen because it has potential for modelling axonal transport, a

biological system of much more complexity. The simulation was initially used

to conduct four virtual experiments: comparison of stepping mechanisms,

testing the hypothesis that gating is not required for procession, investigating

the effect of load on the motor, and investigating the effect of placing a

barrier on the track. These were conducted using a simplistic model of ATP

arrival. A more realistic model of ATP arrival was incorporated in the program

and a further set of virtual experiments was conducted to compare models

under varying load and ATP concentration. An initial investigation was also

made into the behaviour of multiple motors using loading to effectively link

them as if bound to the same cargo.

 102

6.3 Simulation results

6.3.1 Fixed ATP arrival results

The PS model of stepping described by Vale and Milligan (2000)55 was

compared to ungated RBM stepping over a range of head event timings and

linker strains. Both gave rise to procession but RBM proved less sensitive to

timing and strain variations.

The effect of gating on the processionary behaviour of the motor with RBM

stepping was measured over a range of linker strains. Gating was found to

reduce the number of timings yielding procession except at the extremes of

linker strain whereas, without gating and at high values of strain, all the

combinations led to procession. These results support the hypothesis that

gating is not necessary and linker strain is sufficient for procession.

The effect of gating and load on processionary behaviour with RBM stepping

was measured in terms of number of forward steps, backsteps and

detachments. The motor behaved more realistically without the gate.

A barrier placed on the MT caused the motor to detach within a hydrolysis

cycle without gating while the detachment was delayed with gating. The

experimental evidence is divided on this issue so no firm conclusion can be

made.

6.3.2 Random ATP arrival results

Varying the ATP concentration at no load confirmed the superiority of RBM

over PS in terms of matching experimental data. The viability of the ungated

RBM model to process was confirmed.

 103

Applying a variable load in addition to varying the concentration yielded

behaviour which supported the unloaded results except at low [ATP]. Gating

of RBM stepping was required at low concentrations in order to replicate

experimental data.

The behaviour of linked motors gave mixed indications: comparing the results

with bead assay data, gated RBM matched the velocity data best but gated PS

matched the run length data best. While bead and gliding assays agree in

terms of velocity, they differ when it comes to run length (section 1.3.3) so

no firm conclusions can be made. Linkage was expected to coordinate the

motors in a similar manner to linkage between heads enabling procession but

this only happened with PS: run length for linked RBM motors did not

increase.

6.4 The model

The simulation results indicate that RBM stepping is more realistic than PS.

They also support the initial hypothesis that head coordination can be

achieved by entropic linker tension without the need for gating. Gating is

required, however, to get realistic load results at low ATP concentration.

Further support for the RBM model derives from its ability to explain and

predict experimental findings and the lack of definitive experimental

challenges.

6.4.1 Explanatory power

The model has broad explanatory power as discussed in section 5.6 and

correctly predicts that:

• During normal procession there will be infrequent backsteps

 104

• A non-hydrolysable analogue will cause long pauses and isolated

backstepping

• External force can make the motor process in the absence of ATP

• Mutants with extended linkers show weakened and wayward

procession

• Mutants lacking zippering can be induced to process by applying

external force.

It is difficult to see how the PS model could account for stepping without ATP

or without zippering as the power stroke consists of zippering powered by

ATP.

6.4.2 Challenges

In section 5.5 challenges to the model in four areas were addressed: the

stepping mechanism, the wait state, ATP-binding gating and blockage

behaviour. Alternative interpretations disarming the challenges are put

forward though should the evidence against the model become definitive then

the model would have to be modified or rejected.

6.5 Conclusions

The primary conclusion of this research is that a good model for kinesin

stepping is rectified Brownian motion, as described by Mather and Fox

(2006).102 This conclusion is supported by the results of the computational

simulation engineered and utilised in this study and by analysis of the results

of laboratory experiments conducted by other researchers. The model

explains a wide range of findings from in vivo and in vitro experiment and its

predictions are born out by numerous experiments. As with any model,

experimental evidence may yet prove it to be in error but it looks promising

 105

and is at least a stimulus for debate and further experiment which will lead to

a definitive understanding of the kinesin walk.

A less positive conclusion is proffered with respect to scaling up the simulation

to model axonal transport. Though the present software could be expanded to

include further agents, there is a limit to the size of a C program that can be

easily maintained and modified. A more efficient, more easily manageable

implementation system is required. The methodology would seem more

promising: agent-based modelling is relatively simple, transparent and

computationally efficient (compared to mathematical modelling). It has

proved useful in this study and is expected to be able to capture essential

features of axonal transport in order to explore failure modes and so pursue

the goal of defeating dementia.

 106

References

1. Watson, B., Friend, J. & Yeo, L. (2009). Piezoelectric ultrasonic
resonant motor with stator diameter less than 250 µm: the Proteus
motor. Journal of Micromechanics and Microengineering 19.

2. Knapp, M. & Prince, M. (2007). Dementia UK. Alzheimer's Society,
London.

3. Roy, S., Zhang, B., Lee, V. M. & Trojanowski, J. Q. (2005). Axonal
transport defects: a common theme in neurodegenerative diseases.
Acta Neuropathol 109, 5-13.

4. De Vos, K. J., Grierson, A. J., Ackerley, S. & Miller, C. C. (2008). Role
of axonal transport in neurodegenerative diseases. Annu Rev Neurosci
31, 151-73.

5. Kandel, E. R., Schwartz, J. H. & Jessel, T. M. (2000). Principles of

Neural Science. 4th edit, McGraw-Hill, New York.

6. Morfini, G. A., Burns, M., Binder, L., Kanaan, N. M., LaPointe, N.,
Bosco, D. A., Brown Jr., R. H., Brown, H., Tiwari, A., Hayward, L.,
Edgar, J., Nave, K.-A., Garberrn, J., Atagi, Y., Song, Y., Pigino, G. &
Brady, S. T. (2009). Minisymposium: Axonal Transport Defects in
Neurodegenerative Diseases. J Neurosci. 29, 12776–86.

7. Kamal, A., Stokin, G. B., Yang, Z., Xia, C. & Goldstein, L. S. (2000).
Axonal transport of amyloid precursor protein is mediated by direct
binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449-
459.

8. Kamal, A., Almenar-Queralt, A., LeBlanc, J. F., Roberts, E. A. &
Goldstein, L. S. B. (2001). Kinesin-mediated axonal transport of a
membrane compartment containing beta-secretase and presenilin-1
requires APP. Nature 414, 643–648.

9. Stokin, G. B., Lillo, C., Falzone, T. L., Brusch, R. G., Rockenstein, E.,
Mount, S. L., Raman, R., Davies, P., Masliah, E., Williams, D. S. &
Goldstein, L. S. (2005). Axonopathy and transport deficits early in the
pathogenesis of Alzheimer's disease. Science 307, 1282-8.

10. Smith, K. D., Kallhoff, V., Zheng, H. & Pautler, R. G. (2007). In vivo
axonal transport rates decrease in a mouse model of Alzheimer's
disease. Neuroimage 35, 1401-8.

11. Ittner, L. M., Fath, T., Ke, Y. D., Bi, M., van Eersel, J., Li, K. M.,
Gunning, P. & Gotz, J. (2008). Parkinsonism and impaired axonal
transport in a mouse model of frontotemporal dementia. Proc Natl

Acad Sci U S A 105, 15997-6002.

12. Pigino, G., Morfini, G., Atagi, Y., Deshpande, A., Yu, C., Jungbauer, L.,
LaDu, M., Busciglio, J. & Brady, S. (2009). Disruption of fast axonal
transport is a pathogenic mechanism for intraneuronal amyloid beta.
Proc Natl Acad Sci U S A 106, 5907-12.

13. Vossel, K. A., Zhang, K., Brodbeck, J., Daub, A. C., Sharma, P.,
Finkbeiner, S., Cui, B. & Mucke, L. (2010). Tau Reduction Prevents Aß-
Induced Defects in Axonal Transport. Science 330, 198.

 107

14. Viel, A., Lue, R. A. & Liebler, J. (2006). From animation at
http://multimedia.mcb.harvard.edu/anim_innerlife.html.

15. Hirokawa, N. (1998). Kinesin and dynein superfamily proteins and the
mechanism of organelle transport. Science 279, 519-26.

16. Brown, A. (2003). Axonal transport of membranous and
nonmembranous cargoes: a unified perspective. J Cell Biol 160, 817–
21.

17. Pilling, A. D., Horiuchi, D., Lively, C. M. & Saxton, W. M. (2006).
Kinesin-1 and Dynein Are the Primary Motors for Fast Transport of
Mitochondria in Drosophila Motor Axons. Mol Biol Cell 17, 2057–68.

18. Hollenbeck, P. J. & Saxton, W. M. (2005). The axonal transport of
mitochondria. J Cell Sci 118, 5411-9.

19. Nogales, E., Whittaker, M., Milligan, R. A. & Downing, K. H. (1999).
High-resolution model of the microtubule. Cell 96, 79-88.

20. Drubin, D. G. & Kirschner, M. W. (1986). Tau Protein Function in Living
Cells. J Cell Biol 103, 2739-46.

21. Conde, C. & Cáceres, A. (2009). Microtubule assembly, organization
and dynamics in axons and dendrites. Nat. Rev. Neurosci. 10, 319-
332.

22. Brady, S. T. (1985). A novel brain ATPase with properties expected for
the fast axonal transport motor. Nature 317, 73-75.

23. Vale, R. D., Reese, T. S. & Sheetz, M. P. (1985). Identification of a
novel force-generating protein, kinesin, involved in microtubule-based
motility. Cell 42, 39-50.

24. Kull, F. J., Sablin, E. P., Lau, R., Fletterick, R. J. & Vale, R. D. (1996).
Crystal structure of the kinesin motor domain reveals a structural
similarity to myosin. Nature 380, 550-5.

25. Howard, J. (2001). Mechanics of Motor Proteins of the Cytoskeleton,
Sinauer Associates, Inc., Sunderland, MA, USA.

26. Vale, R. D. (2003). The molecular motor toolbox for intracellular
transport. Cell 112, 467-80.

27. Hackney, D. D. (1994). Evidence for alternating head catalysis by
kinesin during microtubule-stimulated ATP hydrolysis. Proc Natl Acad

Sci U S A 91, 6865-9.

28. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. & Walter, P.
(2002). Molecular Biology of the Cell, Garland Science, NY.

29. Amos, L. A. & Hirose, K. (2007). A cool look at the structural changes
in kinesin motor domains. J Cell Sci 120, 3919-27.

30. Bodey, A. J., Kikkawa, M. & Moores, C. A. (2009). 9-Angstrom
structure of a microtubule-bound mitotic motor. J Mol Biol 388, 218-
24.

31. Uemura, S., Kawaguchi, K., Yajima, J., Edamatsu, M., Toyoshima, Y. Y.
& Ishiwata, S. (2002). Kinesin-microtubule binding depends on both
nucleotide state and loading direction. Proc Natl Acad Sci U S A 99,
5977-81.

 108

32. Sosa, H., Peterman, E. J., Moerner, W. E. & Goldstein, L. S. (2001).
ADP-induced rocking of the kinesin motor domain revealed by single-
molecule fluorescence polarization microscopy. Nat Struct Biol 8, 540-
4.

33. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. (1993).
Direct observation of kinesin stepping by optical trapping
interferometry. Nature 365, 721-7.

34. Allen, R. D., Metuzals, J., Tasaki, I., Brady, S. T. & Gilbert, S. P.
(1982). Fast Axonal Transport in Squid Giant Axon. Science 218,
1127-1129.

35. Yildiz, A., Tomishige, M., Vale, R. D. & Selvin, P. R. (2004). Kinesin
walks hand-over-hand. Science 303, 676-8.

36. Coppin, C. M., Pierce, D. W., Hsu, L. & Vale, R. D. (1997). The load
dependence of kinesin's mechanical cycle. Proc Natl Acad Sci U S A 94,
8539-44.

37. Carter, N. J. & Cross, R. A. (2005). Mechanics of the kinesin step.
Nature 435, 308-12.

38. Yildiz, A., Tomishige, M., Gennerich, A. & Vale, R. D. (2008).
Intramolecular strain coordinates kinesin stepping behavior along
microtubules. Cell 134, 1030-41.

39. Block, S. M., Goldstein, L. S. & Schnapp, B. J. (1990). Bead movement
by single kinesin molecules studied with optical tweezers. Nature 348,
348-52.

40. Seitz, A. & Surrey, T. (2006). Processive movement of single kinesins
on crowded microtubules visualized using quantum dots. Embo J 25,
267-77.

41. Vale, R. D. (1996). Switches, latches, and amplifiers: common themes
of G proteins and molecular motors. J Cell Biol 135, 291-302.

42. Hancock, W. O. & Howard, J. (1998). Processivity of the motor protein
kinesin requires two heads. J Cell Biol 140, 1395-405.

43. Hancock, W. O. & Howard, J. (1999). Kinesin's processivity results
from mechanical and chemical coordination between the ATP
hydrolysis cycles of the two motor domains. Proc Natl Acad Sci U S A
96, 13147-52.

44. Courty, S., Luccardini, C., Bellaiche, Y., Cappello, G. & Dahan, M.
(2006). Tracking individual kinesin motors in living cells using single
quantum-dot imaging. Nano Lett 6, 1491-5.

45. Svoboda, K. & Block, S. M. (1994). Force and velocity measured for
single kinesin molecules. Cell 77, 773-84.

46. Visscher, K., Schnitzer, M. J. & Block, S. M. (1999). Single kinesin
molecules studied with a molecular force clamp. Nature 400, 184-9.

47. Crevel, I. M., Nyitrai, M., Alonso, M. C., Weiss, S., Geeves, M. A. &
Cross, R. A. (2004). What kinesin does at roadblocks: the coordination
mechanism for molecular walking. Embo J 23, 23-32.

48. Schnitzer, M. J. & Block, S. M. (1997). Kinesin hydrolyses one ATP per
8-nm step. Nature 388, 386-90.

 109

49. Coy, D. L., Wagenbach, M. & Howard, J. (1999). Kinesin takes one 8-
nm step for each ATP that it hydrolyzes. J Biol Chem 274, 3667-71.

50. Hua, W., Young, E. C., Fleming, M. L. & Gelles, J. (1997). Coupling of
kinesin steps to ATP hydrolysis. Nature 388, 390-3.

51. Hua, W., Chung, J. & Gelles, J. (2002). Distinguishing inchworm and
hand-over-hand processive kinesin movement by neck rotation
measurements. Science 295, 844-8.

52. Block, S. M., Asbury, C. L., Shaevitz, J. W. & Lang, M. J. (2003).
Probing the kinesin reaction cycle with a 2D optical force clamp. Proc
Natl Acad Sci U S A 100, 2351-6.

53. Asbury, C. L., Fehr, A. N. & Block, S. M. (2003). Kinesin moves by an
asymmetric hand-over-hand mechanism. Science 302, 2130-4.

54. Ray, S., Meyhofer, E., Milligan, R. A. & Howard, J. (1993). Kinesin
follows the microtubule's protofilament axis. J Cell Biol 121, 1083-93.

55. Vale, R. D. & Milligan, R. A. (2000). The way things move: looking
under the hood of molecular motor proteins. Science 288, 88-95.

56. Rayment, I., Holden, H. M., Whittaker, M., Yohn, C. B., Lorenz, M.,
Holmes, K. C. & Milligan, R. A. (1993). Structure of the Actin-Myosin
Complex and Its Implications for Muscle Contraction. Science 261, 58-
65.

57. Piezzesi, G., Reconditi, M., Linari, M., Lucii, L., Sun, Y.-B., Narayanan,
T., Boesecke, P., Lombardi, V. & Irving, M. (2002). Mechanism of force
generation by myosin heads in skeletal muscle. Nature 415, 659-62.

58. Rice, S., Lin, A. W., Safer, D., Hart, C. L., Naber, N., Carragher, B. O.,
Cain, S. M., Pechatnikova, E., Wilson-Kubalek, E. M., Whittaker, M.,
Pate, E., Cooke, R., Taylor, E. W., Milligan, R. A. & Vale, R. D. (1999).
A structural change in the kinesin motor protein that drives motility.
Nature 402, 778-84.

59. Rosenfeld, S. S., Fordyce, P. M., Jefferson, G. M., King, P. H. & Block,
S. M. (2003). Stepping and stretching. How kinesin uses internal strain
to walk processively. J Biol Chem 278, 18550-6.

60. Klumpp, L. M., Hoenger, A. & Gilbert, S. P. (2004). Kinesin's second
step. Proc Natl Acad Sci U S A 101, 3444-9.

61. Asenjo, A. B., Krohn, N. & Sosa, H. (2003). Configuration of the two
kinesin motor domains during ATP hydrolysis. Nat Struct Biol 10, 836-
42.

62. Asenjo, A. B., Weinberg, Y. & Sosa, H. (2006). Nucleotide binding and
hydrolysis induces a disorder-order transition in the kinesin neck-linker
region. Nat Struct Mol Biol 13, 648-54.

63. Tomishige, M., Stuurman, N. & Vale, R. D. (2006). Single-molecule
observations of neck linker conformational changes in the kinesin
motor protein. Nat Struct Mol Biol 13, 887-94.

64. Mehta, A. D., Rock, R. S., Rief, M., Spudich, J. A., Mooseker, M. S. &
Cheney, R. E. (1999). Myosin-V is a processive actin-based motor.
Nature 400, 590-3.

 110

65. Kodera, N., Yamamoto, D., Ishikawa, R. & Ando, T. (2010). Video
imaging of walking myosin V by high-speed atomic force microscopy.
Nature 468, 72-76.

66. Rice, S., Cui, Y., Sindelar, C., Naber, N., Matuska, M., Vale, R. &
Cooke, R. (2003). Thermodynamic properties of the kinesin neck-
region docking to the catalytic core. Biophys J 84, 1844-54.

67. Hwang, W., Lang, M. J. & Karplus, M. (2008). Force generation in
kinesin hinges on cover-neck bundle formation. Structure 16, 62-71.

68. Khalil, A. S., Appleyard, D. C., Labno, A. K., Georges, A., Karplus, M.,
Belcher, A. M., Hwang, W. & Lang, M. J. (2008). Kinesin's cover-neck
bundle folds forward to generate force. Proc Natl Acad Sci U S A 105,
19247-52.

69. Schnitzer, M. J., Visscher, K. & Block, S. M. (2000). Force production
by single kinesin motors. Nat Cell Biol 2, 718-23.

70. Coppin, C. M., Finer, J. T., Spudich, J. A. & Vale, R. D. (1996).
Detection of sub-8-nm movements of kinesin by high-resolution
optical-trap microscopy. Proc Natl Acad Sci U S A 93, 1913-7.

71. Nishiyama, M., Muto, E., Inoue, Y., Yanagida, T. & Higuchi, H. (2001).
Substeps within the 8-nm step of the ATPase cycle of single kinesin
molecules. Nat Cell Biol 3, 425-8.

72. Fox, R. F. & Choi, M. H. (2001). Rectified Brownian motion and kinesin
motion along microtubules. Phys Rev E Stat Nonlin Soft Matter Phys
63, 051901.

73. Hackney, D. D. (2007). Biochemistry. Processive motor movement.
Science 316, 58-9.

74. Kawaguchi, K. & Ishiwata, S. (2001). Nucleotide-dependent single- to
double-headed binding of kinesin. Science 291, 667-9.

75. Guydosh, N. R. & Block, S. M. (2006). Backsteps induced by nucleotide
analogs suggest the front head of kinesin is gated by strain. Proc Natl

Acad Sci U S A 103, 8054-9.

76. Hirose, K., Lockhart, A., Cross, R. A. & Amos, L. A. (1996). Three-
dimensional cryoelectron microscopy of dimeric kinesin and ncd motor
domains on microtubules. Proc Natl Acad Sci U S A 93, 9539-44.

77. Arnal, I. & Wade, R. H. (1998). Nucleotide-dependent conformations of
the kinesin dimer interacting with microtubules. Structure 6, 33-8.

78. Tomishige, M. & Vale, R. D. (2000). Controlling kinesin by reversible
disulfide cross-linking. Identifying the motility-producing
conformational change. J Cell Biol 151, 1081-92.

79. Crevel, I., Carter, N., Schliwa, M. & Cross, R. (1999). Coupled
chemical and mechanical reaction steps in a processive Neurospora
kinesin. Embo J 18, 5863-72.

80. Rosenfeld, S. S., Xing, J., Jefferson, G. M., Cheung, H. C. & King, P. H.
(2002). Measuring kinesin's first step. J Biol Chem 277, 36731-9.

81. Farrell, C. M., Mackey, A. T., Klumpp, L. M. & Gilbert, S. P. (2002). The
role of ATP hydrolysis for kinesin processivity. J Biol Chem 277,
17079-87.

 111

82. Mori, T., Vale, R. D. & Tomishige, M. (2007). How kinesin waits
between steps. Nature 450, 750-4.

83. Alonso, M. C., Drummond, D. R., Kain, S., Hoeng, J., Amos, L. &
Cross, R. A. (2007). An ATP gate controls tubulin binding by the
tethered head of kinesin-1. Science 316, 120-3.

84. Fisher, J. & Henzinger, T. A. (2007). Executable cell biology. Nat

Biotechnol 25, 1239-49.

85. Kolomeisky, A. B. & Fisher, M. E. (2007). Molecular motors: a
theorist's perspective. Annu Rev Phys Chem 58, 675-95.

86. Astumian, R. D. & Derenyi, I. (1999). A chemically reversible Brownian
motor: application to kinesin and Ncd. Biophys J 77, 993-1002.

87. Bier, M. (2007). The stepping motor protein as a feedback control
ratchet. Biosystems 88, 301-7.

88. Derenyi, I. & Vicsek, T. (1996). The kinesin walk: a dynamic model
with elastically coupled heads. Proc Natl Acad Sci U S A 93, 6775-9.

89. Kanada, R. & Sasaki, K. (2003). Theoretical model for motility and
processivity of two-headed molecular motors. Phys Rev E Stat Nonlin

Soft Matter Phys 67, 061917.

90. Fisher, M. E. & Kolomeisky, A. B. (2001). Simple mechanochemistry
describes the dynamics of kinesin molecules. Proc Natl Acad Sci U S A
98, 7748-53.

91. Maes, C. & van Wieren, M. H. (2003). A Markov Model for Kinesin.
Journal of Statistical Physics 112, 329-355.

92. Mogilner, A., Fisher, A. J. & Baskin, R. J. (2001). Structural changes in
the neck linker of kinesin explain the load dependence of the motor's
mechanical cycle. J Theor Biol 211, 143-57.

93. Thomas, N., Imafuku, Y., Kamiya, T. & Tawada, K. (2002). Kinesin: a
molecular motor with a spring in its step. Proc Biol Sci 269, 2363-71.

94. Shao, Q. & Gao, Y. Q. (2006). On the hand-over-hand mechanism of
kinesin. Proc Natl Acad Sci U S A 103, 8072-7.

95. Xie, P., Dou, S. X. & Wang, P. Y. (2006). Mechanochemical couplings
of kinesin motors. Biophys Chem 123, 58-76.

96. Duke, T. & Leibler, S. (1996). Motor Protein Mechanics: A Stochastic
Model with Minimal Mechanochemical Coupling. Biophysical Journal 71,
1235-1247.

97. Bolterauer, H., Tuszynski, J. A. & Unger, E. (2005). Directed binding: a
novel physical mechanism that describes the directional motion of two-
headed kinesin motor proteins. Cell Biochem Biophys 42, 95-119.

98. Peskin, C. S. & Oster, G. (1995). Coordinated hydrolysis explains the
mechanical behavior of kinesin. Biophys J 68, 202S-210S; discussion
210S-211S.

99. Atzberger, P. J. & Peskin, C. S. (2006). A Brownian Dynamics model of
kinesin in three dimensions incorporating the force-extension profile of
the coiled-coil cargo tether. Bull Math Biol 68, 131-60.

 112

100. Endow, S. A. & Higuchi, H. (2000). A mutant of the motor protein
kinesin that moves in both directions on microtubules. Nature 406,
913-6.

101. Endow, S. A. & Waligora, K. W. (1998). Determinants of kinesin motor
polarity. Science 281, 1200-2.

102. Mather, W. H. & Fox, R. F. (2006). Kinesin's biased stepping
mechanism: amplification of neck linker zippering. Biophys J 91, 2416-
26.

103. Schief, W. R., Clark, R. H., Crevenna, A. H. & Howard, J. (2004).
Inhibition of kinesin motility by ADP and phosphate supports a hand-
over-hand mechanism. Proc Natl Acad Sci U S A 101, 1183-8.

104. Knuth, D. E. (1969). Seminumerical Algorithms. The Art of Computer
Programming, 2, Addison Wesley, Reading, Mass.

105. Asbury, C. L. (2005). Kinesin: world's tiniest biped. Curr Opin Cell Biol
17, 89-97.

106. Nishiyama, M., Higuchi, H. & Yanagida, T. (2002). Chemomechanical
coupling of the forward and backward steps of single kinesin
molecules. Nat Cell Biol 4, 790-7.

107. Yajima, J., Alonso, M. C., Cross, R. A. & Toyoshima, Y. Y. (2002).
Direct Long-Term Observation of Kinesin Processivity at Low Load.
Curr Biol 12, 301-6.

108. Beeg, J., Klumpp, S., Dimova, R., Gracia, R. S., Unger, E. & Lipowsky,
R. (2008). Transport of Beads by Several Kinesin Motors. Biophys J
94, 532-41.

109. Carter, N. J. & Cross, R. A. (2006). Kinesin's moonwalk. Curr Opin Cell

Biol 18, 61-7.

110. Cross, R. & Scholey, J. (1999). Kinesin: the tail unfolds. Nat Cell Biol
1, E119-21.

111. Subramanian, R. & Gelles, J. (2007). Two distinct modes of processive
kinesin movement in mixtures of ATP and AMP-PNP. J Gen Physiol
130, 445-55.

 113

Appendix A Load data

The data in tables A.1-3 were generated by the simulation of the motor over

five runs at each load value as described in section 3.2.3. Tables A.4-5 record

the step ratios calculated from these data which in turn are used to calculate

the minimum and maximum data points as described in section 3.2.3.

Table A.1 Forward steps

 No gate – forward steps

Load 1 2 3 4 5 Average

3 47 48 51 51 49 49.2

3.5 49 49 47 51 47 48.6

4 47 48 49 48 46 47.6

4.5 49 49 49 50 45 48.4

5 51 55 56 56 57 55

5.5 58 51 60 60 58 57.4

6 67 47 54 55 66 57.8

6.5 53 63 78 42 61 59.4

7 60 42 113 89 110 82.8

7.5 26 39 25 17 13 24

8 33 27 15 91 57 44.6

8.5 43 60 16 33 84 47.2

9 60 20 50 16 16 32.4

 ATP gate – forward steps

Load 1 2 3 4 5 Average

3 47 45 48 48 48 47.2

3.5 48 48 49 48 49 48.4

4 47 48 48 48 48 47.8

4.5 49 48 48 48 48 48.2

5 49 48 49 47 49 48.4

5.5 47 49 46 49 48 47.8

6 47 47 47 45 39 45

6.5 50 48 54 49 49 50

7 47 53 53 61 48 52.4

7.5 51 51 43 46 48 47.8

8 50 48 52 49 51 50

8.5 50 52 48 51 49 50

9 48 51 47 41 50 47.4

 114

Table A.2 Backward steps

 No gate – back steps

Load 1 2 3 4 5 Average

3 1 1 2 9 2 3

3.5 1 4 1 2 1 1.8

4 0 2 6 0 3 2.2

4.5 3 1 1 4 3 2.4

5 2 2 2 3 1 2

5.5 2 5 1 11 2 4.2

6 3 7 3 6 3 4.4

6.5 3 3 12 7 7 6.4

7 16 6 19 7 17 13

7.5 27 39 25 15 11 23.4

8 35 38 18 98 64 50.6

8.5 29 78 15 29 77 45.6

9 65 11 33 6 20 27

 ATP gate – back steps

Load 1 2 3 4 5 Average

3 1 2 0 2 2 1.4

3.5 3 1 3 0 3 2

4 2 2 3 2 0 1.8

4.5 1 0 0 3 2 1.2

5 4 1 9 3 4 4.2

5.5 1 5 2 4 2 2.8

6 6 9 5 4 5 5.8

6.5 63 47 63 32 29 46.8

7 44 39 60 68 44 51

7.5 63 56 44 40 50 50.6

8 24 51 48 26 48 39.4

8.5 51 49 54 42 72 53.6

9 44 73 27 53 38 47

 115

Table A.3 Detachments

 No gate – detachments

Load 1 2 3 4 5 Average

3 0 0 0 0 0 0

3.5 0 0 0 0 0 0

4 0 0 0 0 0 0

4.5 0 0 0 0 0 0

5 0 3 0 1 3 1.4

5.5 3 6 7 6 5 5.4

6 9 13 11 13 12 11.6

6.5 14 26 31 18 27 23.2

7 38 29 72 44 65 49.6

7.5 25 34 23 16 12 22

8 27 26 14 85 49 40.2

8.5 39 58 15 30 74 43.2

9 58 19 48 15 15 31

 ATP gate - detachments

Load 1 2 3 4 5 Average

3 0 0 0 0 0 0

3.5 0 0 0 0 0 0

4 0 0 0 0 0 0

4.5 0 0 0 0 0 0

5 0 0 0 0 0 0

5.5 0 0 0 0 0 0

6 0 0 0 0 0 0

6.5 8 5 8 0 2 4.6

7 5 8 7 7 2 5.8

7.5 6 3 3 2 10 4.8

8 4 5 6 0 4 3.8

8.5 3 3 5 3 5 3.8

9 3 7 1 6 5 4.4

 116

Table A.4 Ungated step ratios

 Forward step ratios

Load 1 2 3 4 5

3 0.979 0.98 0.962 0.85 0.961

3.5 0.98 0.925 0.979 0.962 0.979

4 1 0.96 0.891 1 0.939

4.5 0.942 0.98 0.98 0.926 0.938

5 0.962 0.917 0.966 0.933 0.934

5.5 0.921 0.823 0.882 0.779 0.892

6 0.848 0.701 0.794 0.743 0.815

6.5 0.757 0.685 0.645 0.627 0.642

7 0.526 0.545 0.554 0.636 0.573

7.5 0.333 0.348 0.342 0.354 0.361

8 0.347 0.297 0.319 0.332 0.335

8.5 0.387 0.306 0.348 0.359 0.357

9 0.328 0.4 0.382 0.432 0.314

 Backstep ratios

Load 1 2 3 4 5

3 0.021 0.02 0.038 0.15 0.039

3.5 0.02 0.075 0.021 0.038 0.021

4 0 0.04 0.109 0 0.061

4.5 0.058 0.02 0.02 0.074 0.063

5 0.038 0.033 0.034 0.05 0.016

5.5 0.032 0.081 0.015 0.143 0.031

6 0.038 0.104 0.044 0.081 0.037

6.5 0.043 0.033 0.099 0.104 0.074

7 0.14 0.078 0.093 0.05 0.089

7.5 0.346 0.348 0.342 0.313 0.306

8 0.368 0.418 0.383 0.358 0.376

8.5 0.261 0.398 0.326 0.315 0.328

9 0.355 0.22 0.252 0.162 0.392

 Detachment ratios

Load 1 2 3 4 5

3 0 0 0 0 0

3.5 0 0 0 0 0

4 0 0 0 0 0

4.5 0 0 0 0 0

5 0 0.05 0 0.017 0.049

5.5 0.048 0.097 0.103 0.078 0.077

6 0.114 0.194 0.162 0.176 0.148

6.5 0.2 0.283 0.256 0.269 0.284

7 0.333 0.377 0.353 0.314 0.339

7.5 0.321 0.304 0.315 0.333 0.333

8 0.284 0.286 0.298 0.31 0.288

8.5 0.351 0.296 0.326 0.326 0.315

9 0.317 0.38 0.366 0.405 0.294

 117

Table A.5 Gated step ratios

 Forward step ratios

Load 1 2 3 4 5

3 0.979 0.957 1 0.96 0.96

3.5 0.941 0.98 0.942 1 0.942

4 0.959 0.96 0.941 0.96 1

4.5 0.98 1 1 0.941 0.96

5 0.925 0.98 0.845 0.94 0.925

5.5 0.979 0.907 0.958 0.925 0.96

6 0.887 0.839 0.904 0.918 0.886

6.5 0.413 0.48 0.432 0.605 0.613

7 0.49 0.53 0.442 0.449 0.511

7.5 0.425 0.464 0.478 0.523 0.444

8 0.641 0.462 0.491 0.653 0.495

8.5 0.481 0.5 0.449 0.531 0.389

9 0.505 0.389 0.627 0.41 0.538

 Backstep ratios

Load 1 2 3 4 5

3 0.021 0.043 0 0.04 0.04

3.5 0.059 0.02 0.058 0 0.058

4 0.041 0.04 0.059 0.04 0

4.5 0.02 0 0 0.059 0.04

5 0.075 0.02 0.155 0.06 0.075

5.5 0.021 0.093 0.042 0.075 0.04

6 0.113 0.161 0.096 0.082 0.114

6.5 0.521 0.47 0.504 0.395 0.363

7 0.458 0.39 0.5 0.5 0.468

7.5 0.525 0.509 0.489 0.455 0.463

8 0.308 0.49 0.453 0.347 0.466

8.5 0.49 0.471 0.505 0.438 0.571

9 0.463 0.557 0.36 0.53 0.409

 Detachment ratios

Load 1 2 3 4 5

3 0 0 0 0 0

3.5 0 0 0 0 0

4 0 0 0 0 0

4.5 0 0 0 0 0

5 0 0 0 0 0

5.5 0 0 0 0 0

6 0 0 0 0 0

6.5 0.066 0.05 0.064 0 0.025

7 0.052 0.08 0.058 0.051 0.021

7.5 0.05 0.027 0.033 0.023 0.093

8 0.051 0.048 0.057 0 0.039

8.5 0.029 0.029 0.047 0.031 0.04

9 0.032 0.053 0.013 0.06 0.054

 118

Appendix B Program listing

B.1 Main listing – program for chapter 3 results

/*
 Author: Richard Wilson, MOAC DTC, Coventry House, Warwick University, CV4 7AL, UK
 richard.j.wilson@warwick.ac.uk

 Purpose:
 To investigate the motion of the molecular motor kinesin by changing stepping mechanism,
relative timings of ATP hydrolysis, linker strain and load.

 Research questions:
 Is there a difference in behaviour between power stroke and RBM stepping?
 Does linker tension suffice to coordinate the heads (or is gate necessary)?
 How does motor react to blockage?
 How does motor react to load?

 Latest change to program: prep for multiple motors ***unfinished – this version is single motor
only***
*/

#include <stdio.h>
#include <stdbool.h>

//GLOBAL DECLARATIONS

//simulation run parameters
bool ATP_gate=false; //ATP_hydrolysis gate switch - see update_heads.h
bool RBM=true;
//true if rectified Brownian model (else power stroke) - see update_heads.h
bool AMP_PNP=false; //indicates whether non-hydrolysable analogue is //bound to a head - see
update_heads.h

float linker_tension; //linker tension variable
float linker_tension_max=10.; //maximum value of linker tension
//at this value of linker_tension, binding of free head prevented when kinesin //in wait state
(K0.KDu)

float back_load; //hindering load applied to motor
const float stall_load=6.;
//load that defeats zippering (see zippering routine, update_heads.h)
const float load_variation=3.;
//random variation of load (see zippering routine in update_heads.h)

const int last_motor=1;//number of motors simulated

int run; //variable for number of duplicate runs at given parameters
result_max=2; //timing parameter loop control, must be positive integer
const int ATP_result_max=2;
//as above but may want to use different range for ATP_binding parameter
int results[result_max][result_max][result_max][ATP_result_max]; //temporary storage for
results to enable organising before output to file

//kinesin head state
struct head_struct
 {
 int MTbinding; //whether kinesin head bound to MT or free
 int nuc_binding; //which nucleotide is bound to kinesin, if any

 int ATP_binding_count; //timing counter for ATP binding (K0 -> KT)
 int hydrolysis_count; //timing counter for ATP hydrolysis (KT -> KDP)
 int P_release_count;
 //timing counter for phosphate and head release (KDP -> KDu)

 119

 int MT_binding_count; //timing counter for MT binding (KDu -> KD)
 int ADP_release_count; //timing counter for ADP release (KD -> K0)

 int prev_posx; //last x pos
 int prev_posy; //last y pos
 int posx; //current x position of head
 int posy; //current y position of head
 };

//kinesin motor has 2 heads
struct motor_struct
 {
 struct head_struct heada;
 struct head_struct headb;
 };

//array of motors for multiple motor experiments
struct motor_struct motor_array[last_motor];

//head state values
const int k_free=2, k_bound=1;
//signifies whether kinesin bound to MT or not
enum {null,ATP,ADPP,ADP}; //signifies which nucleotide is attached, if any

//motor state values - used in analysis of behaviour
enum {P_diffusion, P_stuck, P_processive};
//diffuses - no procession, frozen on MT, processive motor

//rectangular array representing section of cytosol
const int row_max=15, col_max=100;
int cytosol[row_max+1][col_max+1];
//NB indexing is positive from top left (cytosol[0][0])
const int cytosol_rgb=220;
//pale grey for empty cytosol box used in display.h

//markers for contents of cytosol are all negative (as used by clash routine)
const int MT_null=-99; //interior of MT
const int MT_alpha=-98, MT_beta=-97; //microtubule alpha and beta tubulin
const int head_display=-1; //kinesin head
const int head_prev=1; //represents where heads have been so a track of //kinesin motion is
displayed

//timing parameter variables - used to trigger event when head timing //counter (see
head_struct, above)reaches value
int t_ATPhyd; //KT -> KDP
int t_Prel; //KDP -> KDu
int t_ADPrel; //KD -> K0
int t_ATPbind; //K0 -> KT

const int t_MTbind=0; //delay before KD binds MT when close to MT

int blockage_count=0;
//blockage timer - to time how long blockage placed in the way of kinesin
const int blockage_limit=7; //number of time slices blockage in place

//trace and analysis declarations
bool trace=false; //switch trace of kinesin movement on or off
int uucount;
//tally of successive KDu.KDu states - used in trace_heads() in analysis.h

//flags used in update_heads.h to indicate if step taken
bool step; //set by forward_step()
bool backstep; //set by back_step()

//--
//FUNCTION DECLARATIONS AND DEFINITIONS
//--

//display functions

 120

#include "display.h"

//Brownian motion routines
#include "Brownian.h"

//head update routines
#include "update_heads.h"

//analysis and trace routines
#include "analysis.h"

//routines used by mp8()
void wait(float num)
//slows down computer if motor goes too fast to observe movement
 {
 for (float x=0.; x<=num && x>=0; x=x+0.001);
 }

bool motor_in_play(void)
//if motor has reached RHS of MT then false else true
 {//***Code NOT ready for multiple motor experiments
 struct head_struct *head1=&motor_array[0].heada,*head2=&motor_array[0].headb;

 if (head1->posx >= col_max-1 || head2->posx >= col_max-1)
 return false;
 //kinesin has reached rightmost end of MT
 return true; //kinesin still moving about in cytosol box
 }

//-------------------------
//START OF MAIN ROUTINE
//-------------------------
int mp8(HWND hwnd)
 {
 PAINTSTRUCT ps;
 HDC hdc = BeginPaint(hwnd,&ps); //MS Windows specific routine

 FILE *f=fopen((RBM?"mp8RBM.txt":"mp8PS.txt"),"w");
 //open file for output data
 //file name distinguishes stepping mechanism in use
 if (f == 0)
 {
 UpdateStatusBar("File open failed", 0, 0); //notify user if file open failure
 EndPaint(hwnd,&ps);
 return 0; //exit program
 }

 FILE *fa=fopen((RBM?"mp8aRBM.txt":"mp8aPS.txt"),"w");
 //open file for analysis data (RBM or power stroke model)
 if (fa == 0)
 {
 UpdateStatusBar("Analysis file open failed", 0, 0);
 fprintf(f,"\nError: Analysis file open failed ===mp8 finished.\n");
 fclose(f); //close data file
 EndPaint(hwnd,&ps);
 return 0; //exit program
 }

 //write headers to files
fprintf(f,"===mp8 started. Load variation %.1f Stall %.1f linker strain %.2f MT binding %d
%s\n",
 load_variation,stall_load,linker_tension,t_MTbind,
 (ATP_gate?"ATP gate":"no ATP gate"));
 fprintf(fa,"===mp8 started. Timing variations %d, Load variation %.1f Stall %.1f linker
strain %.2f MT binding %d %s\n", result_max*result_max*result_max*ATP_result_max,

 load_variation,stall_load,linker_tension, t_MTbind,
 (ATP_gate?"ATP gate":"no ATP gate"));

 //set results array to -1 to show up any missing data

 121

 for (int i=0; i<result_max; i++)
 for (int j=0; j<result_max; j++)
 for (int k=0; k<result_max; k++)
 for (int l=0; l < ATP_result_max; l++)
 {
 results[i][j][k][l]=-1;
 }

 //counters for values measured for each set of runs of experiment
 int heads_bound_count;
 int detachment_count;
 int steps;
 int backsteps;
 int timing_loop_count;

 //counters for average values over several runs with same parameters
 int av_steps;
 int av_backsteps;
 int av_detachments;
 int av_time;

 int heads_stuck_max=200;
//if heads don't move for this amount of time then assume kinesin stuck

//---
//ALTERNATE CODE for different experiments
//---
//LINKER LOOP
// for (linker_tension=linker_tension_max; linker_tension>=0.; linker_tension--)
// {//outer loop for testing effect of changing LINKER tension
// back_load=0; //set load to zero if varying linker tension
// heads_stuck_max=500*result_max*(int)(linker_tension_max - linker_tension + 1);
 //expect increase of motor stall with decrease linker strain - not stuck

//OR fix tension
linker_tension=9.5;
//tension set to give occasional back steps (as determined by bead assays)

//LOAD LOOP
// for (back_load=8.; back_load<=8.; back_load+=0.5)
// {//outer loop for testing effect of changing LOAD
//heads_stuck_max=200*(result_max*3+ATP_result_max)*((int)back_load+1);
 //expect increase of motor stalling but not stuck with increase of load

//OR fix load
back_load=0.; //set load to zero

//TIMING LOOP - cycle through all combinations of timing parameters in ranges set
/* for (t_ADPrel=0; t_ADPrel < result_max; t_ADPrel++)
 for (t_ATPbind=0; t_ATPbind < ATP_result_max; t_ATPbind++)
 for (t_ATPhyd=0; t_ATPhyd < result_max; t_ATPhyd++)
 for (t_Prel=0; t_Prel < result_max; t_Prel++)
 {TIMING loop
*/

//OR fix timings to known processive values
t_ADPrel=0;
t_ATPbind=0;
t_ATPhyd=0;
t_Prel=1;

//-----------------------
//END ALTERNATE CODE
//-----------------------

 //initialise variables used across runs
 av_steps=0;
 av_backsteps=0;
 av_detachments=0;

 122

 av_time=0;
 timing_loop_count=0;

 for (run=1; run<=5; run++)
 //do several runs with same parameters so take average for data point
 {//RUN loop
 int time=0; //count the time slices i.e. elapsed time, for this run
 int MT_top; //vertical position of MT
 int step_count=0, backstep_count=0;
 //counters for number of steps in interrupted procession
 bool firststep=false, firstbackstep=false;
 //flags to indicate that first step taken

 uucount=0;//initialise tally of successive u.u states
 // - see trace_heads() in analysis.h
 timing_loop_count++;
 //count of time elapsed over all runs for this timing combo

 step=false; //step hasn't been taken
 backstep=false; //backstep hasn't been taken
 heads_bound_count=0; //both heads bound counter initialisation

 //variables for LOAD experiments
 steps=0; //initialise forward step counter
 backsteps=0; //initialise backstep counter
 detachment_count=0; //initialise detachment counter

 //Clear cytosol array
 for (int i=0; i<=row_max; i++) for (int j=0; j<=col_max; j++)
 cytosol[i][j]=0;

 //put in single MT filament along bottom of cytosol box
 MT_top=row_max; generate_MT(MT_top, 1 ,col_max-1);

 //OPTIONAL: put blockage in path of motor
 //put in 2 blob block to stop kinesin accessing binding site
 //generate_block(MT_top,col_max-13);//towards RHS of MT

 //initialise motor/s (code ready for multiple motors)
 for (int motor=0; motor<last_motor; motor++)
 {
 //get pointers to motor heads
 struct head_struct *head1=&motor_array[motor].heada,
 *head2=&motor_array[motor].headb;

 //position heads close together
 head2->posx=motor+3; //near LHS of MT
 head1->posx=head2->posx-1; //place head to the left of partner
 head1->posy=MT_top-3; //and above MT
 head2->posy=MT_top-4; //place second head below first

 //initialise previous position stores to current position
 head2->prev_posx=head2->posx;
 head1->prev_posx=head1->posx;
 head1->prev_posy=head1->posy;
 head2->prev_posy=head2->posy;

 //reset counters for each head
 head1->hydrolysis_count=0; //timing counter for ATP hydrolysis
 head1->P_release_count=0; //timing counter for phosphate release
 head1->MT_binding_count=0; //timing counter for MT binding
 head1->ADP_release_count=0; //timing counter for ADP release
 head1->ATP_binding_count=0; //timing counter for ATP binding

 head2->hydrolysis_count=0; //timing counter for ATP hydrolysis
 head2->P_release_count=0; //timing counter for phosphate release
 head2->MT_binding_count=0; //timing counter for MT binding
 head2->ADP_release_count=0; //timing counter for ADP release
 head2->ATP_binding_count=0; //timing counter for ATP binding

 123

 //both heads start free of MT and ADP bound
 head2->MTbinding=k_free;
 head2->nuc_binding=ADP;
 head1->MTbinding=k_free;
 head1->nuc_binding=ADP;
 }

 InitDisplay(hdc); //initialise MS Windows screen display
 display_paras(); //display parameters in status bar

 do
 {//INNER LOOP - traversed until motor stuck or reaches RHS of MT
 //***Needs modification for several motor experiments
 for (int motor=0; motor<last_motor; motor++)
 {
 struct head_struct*head1=&motor_array[motor].heada,
 *head2=&motor_array[motor].headb;
 //pointers to current motor heads

 int head1_posx=head1->posx,head2_posx=head2->posx;
 //save current head positions

 //calculate next head states, exit loop if error
 if (update_heads(hdc,head1,head2)==false)
 {
 UpdateStatusBar("head update failed", 0, 0);
 fprintf(f,"\n***head update failed\n");
 break;
 }

 if (trace) trace_heads(f,time,head1,head2);

 if (step) //update_heads() has indicated forward step
 {
 steps++; //total forward steps
 step_count++; //forward steps for continuous run
 step=false; //reset flag
 }
 if (backstep) //update_heads() has indicated backward step
 {
 backsteps++; //total backward steps
 backstep_count++; //backsteps for continuous run
 backstep=false; //reset flag
 }

 //update display of system
 for (int motor=0; motor<last_motor; motor++)
 //display each motor in turn
 display(hdc,&motor_array[motor].heada,&motor_array[motor].headb);

 time++; //increment system time
 }

 //if blockage timed out then remove
 if (blockage_count > blockage_limit)
 {//blockage_count incremented by forward_step() when clash()
 //(see update_heads.h)
 remove_block(MT_top,col_max-13, hdc);
 blockage_count=0;
 }

 } while (motor_in_play() &&heads_bound_count < heads_stuck_max);
 //continue while motor still moving
 //end of INNER LOOP

 for (int motor=0; motor<last_motor; motor++)
 display(hdc, &motor_array[motor].heada, &motor_array[motor].headb);
 //display each motor in turn

 124

 //***Following code works for single motor experiments only
 if (detachment_count > 0)
 {//motor has detached from MT so diffusing
 UpdateStatusBar("Cycle failure/interrupted", 0, 0);
 fprintf(f,"Cycle failure/interrupted.......\t");
 results[t_ATPhyd][t_Prel][t_ADPrel][t_ATPbind]=P_diffusion;
 //display outcome for this set of timing parameters
 display_result(hdc,t_ATPhyd,t_Prel,t_ADPrel, t_ATPbind, t_MTbind,
 50, 50, 150);
 }
 else
 if (heads_bound_count >= heads_stuck_max)
 {//motor has frozen on MT i.e. stuck
 UpdateStatusBar("Cycle failure heads stuck", 0, 0);
 fprintf(f,"Cycle failure: heads stuck......\t");
 results[t_ATPhyd][t_Prel][t_ADPrel][t_ATPbind]=P_stuck;
 display_result(hdc,t_ATPhyd,t_Prel,t_ADPrel,t_ATPbind,t_MTbind,
 220,0,0);
 }
 else
 {//motor has walked to end of MT
 UpdateStatusBar("Cycle success", 0, 0);
 fprintf(f,"Cycle success (both heads bound %d)\t",heads_bound_count);
 results[t_ATPhyd][t_Prel][t_ADPrel][t_ATPbind]=P_processive;
 display_result(hdc,t_ATPhyd, t_Prel,
 t_ADPrel, t_ATPbind, t_MTbind, 0, 220, 0);
 }

 //output to file LOAD results for this set of parameters
 fprintf(f,"Dr%d Tb%d Th%d Pr%d load -%.1f linker %.2f time %4d\n",
 t_ADPrel, t_ATPbind, t_ATPhyd, t_Prel, back_load, linker_tension, time);

fprintf(f,"steps %3d, backsteps %3d, net %3d\n", steps, backsteps, steps-backsteps);

 av_steps+=steps; //accumulate total steps
 av_backsteps+=backsteps; //accumulate total backsteps
 av_detachments+=detachment_count; //accumulate total detachments
 av_time+=time; //time accumulated - rough indicator of motor progress

 }//end RUN loop

//output to analysis file LOAD results for this set of parameters
//analyse_results(fa, av_time/timing_loop_count, av_steps/timing_loop_count,
// av_backsteps/timing_loop_count, av_detachments/timing_loop_count);
 }//end TIMING loop

// }//end LOAD or LINKER loop

 UpdateStatusBar("Finished", 0, 0);
 fprintf(f,"\n===mp8 finished.\n");
 fclose(f); //close data output file
 fprintf(fa,"\n===mp8 finished.\n");
 fclose(fa); //close analysis file
 EndPaint(hwnd,&ps); //finish with MS Windows
 return 0;
 }//mp8

//END of program

 125

B.2 Main listing – single motor program for

chapter 4 results

/*
 Author: Richard Wilson, MOAC DTC, Coventry House, Warwick University, CV4 7AL, UK
 richard.j.wilson@warwick.ac.uk

 This version incorporates more realistic modelling of ATP molecule arrival according to a Poisson
distribution.
 Run now terminates on detachment of motor.

 Purpose of this version:
 To investigate the effect of varying [ATP] on the motion of the molecular motor kinesin.

 Research questions:
 Is power stroke or RBM stepping more realistic model of kinesin?
 How does the motor react to load under variable [ATP]?

*/

#include <stdio.h>
#include <stdbool.h>
#include <math.h>

//GLOBAL DECLARATIONS

//simulation run parameters
bool ATP_gate=true;//*/false; //ATP-hydrolysis or ATP-binding gate switch - see update_heads.h
//int gating_count; //number of times gating operates
bool RBM=/*true;//*/false; //true if rectified Brownian model (else power stroke model) -
impacts update_heads.h
bool AMP_PNP=false; //indicates whether non-hydrolysable analogue is bound to a head - see
update_heads.h

float linker_tension = 9.5; //linker tension set to give percentage of back steps determined from
experiment
float linker_tension_max=10.0; //maximum value of linker tension
//at this value of linker_tension, binding of free head prevented when kinesin in wait state
(K0.KDu)

float back_load; //hindering load applied to motor
const float stall_load=6.;//notional load that defeats zippering (see zippering routine in
update_heads.h)
const float load_variation=3.;//extent of random variation of load (see zippering routine in
update_heads.h)
//simulates dynamic load variation expected through stalk springiness
//equates to widening range of loads affecting zippering from
//stall_load-load_variation/2 to stall_load+load_variation/2
//so below this range no effect and above it no zippering

const int last_motor=1;//number of motors simulated

//kinesin head state
struct head_struct
 {
 int MTbinding; //whether kinesin head bound to MT or free
 int nuc_binding; //which nucleotide is bound to kinesin, if any

 int ATP_binding_count; //timing counter for ATP binding (K0 -> KT)
 int hydrolysis_count; //timing counter for ATP hydrolysis (KT -> KDP)
 int P_release_count; //timing counter for phosphate and head release (KDP -> KDu)
 int MT_binding_count; //timing counter for MT binding (KDu -> KD)

 126

 int ADP_release_count; //timing counter for ADP release (KD -> K0)

 int prev_posx; //last x pos
 int prev_posy; //last y pos
 int posx; //current x position of head
 int posy; //current y position of head
 };

//kinesin motor has 2 heads
struct motor_struct
 {
 struct head_struct heada;
 struct head_struct headb;
 };

//array of motors for multiple motor experiments
struct motor_struct motor_array[last_motor];

//head state values
const int k_free=2, k_bound=1; //signifies whether kinesin bound to MT or not
enum {null,ATP,ADPP,ADP}; //signifies which nucleotide is attached, if any

//rectangular array representing section of cytosol
const int row_max=15, col_max=256;
int cytosol[row_max+1][col_max+1];
//NB indexing is positive from top left (cytosol[0][0])
const int cytosol_rgb=230; //pale grey for empty cytosol box used in display.h

//markers for contents of cytosol are all negative (as used by clash routine)
const int MT_null=-99; //interior of MT
const int MT_alpha=-98, MT_beta=-97; //microtubule alpha and beta tubulin
const int head_display=-1; //kinesin head

const int head_prev=1; //represents where heads have been so a track of kinesin motion can be
displayed

//timing parameter delays - used to trigger event when head counter reaches value
//0 means no delay: the event occurs at the next simulation time, 1 means event occurs one
simulation time later...
// values used to accommodate range of [ATP] concentrations
//approximating Rosenfeld et al. 2002 using t_MT_binding as baseline
const int t_ATPhydrolysis = 8; //KT -> KDP
const int t_P_release = 13; //KDP -> KDu
const int t_ADP_release = 7; //KD -> K0
const int t_MT_binding = 1; //KDu -> KD
//
int t_ATP_binding; //K0 -> KT, depends on [ATP]

int ATP_count;//count of ATPs hydrolysed

int blockage_count=0;
//blockage timer - used to time how long blockage placed in the way of kinesin
const int blockage_limit=7; //number of time slices blockage in place

//trace and analysis declarations
bool trace=/*true;//*/false; //switch trace of kinesin movement on or off
int uucount; //tally of successive KDu.KDu states - used in trace_heads() in analysis.h

//flags used in update_heads.h to indicate if step taken etc.
bool step; //set by forward_step()
bool backstep; //set by back_step()
bool motor_detached;//flags that motor has detached
bool both_heads_bound;//set when both heads boud to MT
bool futile;
//set when head already in position when try to step: ATP hydrolysed when no step taken
bool initial_diffusion; //flag to indicate that motor has yet to engage with MT
bool motor_in_play=false;//flags whether motor at end of MT or not

int runs=100; //number of duplicate runs i.e. with same parameters

 127

//--
//FUNCTION DECLARATIONS AND DEFINITIONS
//--

//display and trace functions
#include "display.h"

//Brownian motion routines
#include "Brownian.h"

//head update routines
#include "update_heads.h"

int two_power(int x)
 {//calculate 2^x, assumes x is positive integer
 int pot=1;

 for (int i=0;i<x;i++) pot*=2;
 return pot;
 }

//function to simulate random arrival of ATP
bool calc_ATP_delay(float L)
 {
 //L is negative exponential of nominal_ATP_delay (the nominal delay before the next molecule
of ATP arrives)
 //this function calculates a number according to the corresponding Poisson distribution
 float p = get_rand();//get random number between 0 and 1
 int k=0;

 if (1.0 < L < 0.0)
 {
 t_ATP_binding = 0;return false;
 }
 for (;p > L; k++) p = p * get_rand();

 t_ATP_binding = k;
//used in update_head_nuc() in update_heads.h to determine when ATP binds the motor
 return true;
 }

bool motor_not_reached_RHS(void) //test if motor has reached RHS of MT
 {
 struct head_struct *head1=&motor_array[0].heada,*head2=&motor_array[0].headb;

 motor_in_play = head1->posx < col_max-1 && head2->posx < col_max-1;
 //set flag to true if kinesin has yet to reach rightmost end of MT
 return motor_in_play; //flag used in main()
 }

//-------------------------
//START OF MAIN ROUTINE
//-------------------------
int mp8c(HWND hwnd)
 {
 PAINTSTRUCT ps;
 HDC hdc = BeginPaint(hwnd,&ps); //MS Windows specific routine
 FILE *f;

 if (ATP_gate) f = fopen(RBM?"mp8cRBMg.txt":"mp8cPSg.txt","a");
 else f = fopen(RBM?"mp8cRBM.txt":"mp8cPS.txt","a");
 //open file for output data
 //file name distinguishes stepping mechanism in use
 if (f == 0)
 {
 UpdateStatusBar("File open failed", 0, 0); //notify user if file open failure
 EndPaint(hwnd,&ps);
 return false; //exit program

 128

 }
 //if fail return error

 //write header to file
 fprintf(f,"===mp8c started===\n");
 fprintf(f,"ADP release %d ATP hydrolysis %d P release %d Load variation %.1f Stall %.1f MT
binding %d %s with %s\n\n",
 t_ADP_release,t_ATPhydrolysis,t_P_release,load_variation,stall_load, t_MT_binding,
 (RBM?"RBM":"PS"),(ATP_gate?"ATP gate":"no ATP gate"));

 float v_m = 700.0 * (float)(t_ADP_release + t_ATPhydrolysis + t_P_release);
 //velocity multiplier to scale velocity calculation
 int nominal_ATP_delay; //for calculating ATP delay for each hydrolysis cycle

//LOAD LOOP
 for (back_load = 0.;back_load <= 8.;back_load++)
 {//outer loop for testing effect of changing LOAD
 fprintf(f,"LOAD %.1f\n",back_load);

 for (int ATP_base = 0;ATP_base < 7;ATP_base++)
 {//ATP concentration variation loop
 //count number of runs resulting in each category:
 int procession=0;
 int stuck=0;
 int diffusion=0;
 float lambda;

 //variables with which to calculate average values over several runs
 float av_steps = 0.0;
 float av_backsteps = 0.0;
 float av_futiles = 0.0;
 float av_time = 0.0;
 float av_ATPs = 0.0;//average number of ATPs hydrolysed
 float av_ATP_delay = 0.0;//average ATP arrival delay
 float av_v =0.0;

 nominal_ATP_delay = two_power(ATP_base) - 1;
 //start at 0 (equivalent to max [ATP] i.e. no delay in ATP arrival) and
 //increase nominal ATP delay by power sequence instead of incrementing
 // to give wide spread of values corresponding to wide spread of [ATP]

 lambda = expf(-(float)(nominal_ATP_delay));//calculate exponential for Poisson routine

 for (int run=1; run<=runs; run++)
 //do several runs with same parameters so can take average of raw data for data point
 {//RUN loop
 int time = 0; //elapsed time used for each run
 int time_max = 500*(t_ADP_release + t_ATPhydrolysis + t_P_release)*(ATP_base+1);
 //time limit beyond which assume motor stuck
 int MT_top = row_max; //vertical position of MT (at bottom of cytosol box)
 int steps = 0; //number of steps motor takes
 int backsteps = 0; //number of back steps
 int futiles = 0;//number of futile ATP hydrolyses i.e. ATP hydrolysed by motor doesn't move
 int minATPd = -1; //minimum ATP delay of run
 int maxATPd = 0; //maximum ATP delay of run
 float totATPd = 0.0; //total of ATP delays produced by Poisson function over run
 float avATPd = 0.0; //average ATP delay over run
 int head1_posx = 0;
 int head2_posx = 0;
 float v = 0.0;//velocity over run
 initial_diffusion = true; //motor starts off diffusing so not engaged with MT
 uucount = 0; //initialise tally of successive u.u states - see trace_heads() in analysis.h

 //initialise flags and variables used by functions in update_heads.h
 step = false; //step hasn't been taken
 backstep = false; //backstep hasn't been taken
 ATP_count = 0;//no ATPs hydrolysed

 //Clear cytosol array

 129

 for (int i=0; i<=row_max; i++) for (int j=0; j<=col_max; j++) cytosol[i][j]=0;

 //put in single MT filament
 generate_MT(MT_top,0,col_max-1);

 //OPTIONAL: put blockage in path of motor
 //put in 2 blob block to stop kinesin accessing binding site
 //generate_block(MT_top,col_max-13);

 //initialise motor/s (code ready for multiple motors)
 for (int motor=0; motor<last_motor; motor++)
 {
 //get pointers to motor heads

struct head_struct
*head1=&motor_array[motor].heada,*head2=&motor_array[motor].headb;

 //set up heads close together
 // head2->posx=motor+3; //near LHS of MT
 head2->posx=motor+col_max/4;
 //as loading motor, start about quarter of the way along MT
 head1->posx=head2->posx-1; //place head to the left of the other
 head1->posy=MT_top-3; //and above MT
 head2->posy=MT_top-4; //place second head below first

 //initialise previous position to current position
 head2->prev_posx=head2->posx;
 head1->prev_posx=head1->posx;
 head1->prev_posy=head1->posy;
 head2->prev_posy=head2->posy;

 //initialise counters for each head

 head1->hydrolysis_count=0; //timing counter for ATP hydrolysis
 head1->P_release_count=0; //timing counter for phosphate release
 head1->MT_binding_count=0; //timing counter for MT binding
 head1->ADP_release_count=0; //timing counter for ADP release
 head1->ATP_binding_count=0; //timing counter for ATP binding

 head2->hydrolysis_count=0; //timing counter for ATP hydrolysis
 head2->P_release_count=0; //timing counter for phosphate release
 head2->MT_binding_count=0; //timing counter for MT binding
 head2->ADP_release_count=0; //timing counter for ADP release
 head2->ATP_binding_count=0; //timing counter for ATP binding

 //both heads start free of MT and ADP bound
 head2->MTbinding=k_free;
 head2->nuc_binding=ADP;
 head1->MTbinding=k_free;
 head1->nuc_binding=ADP;
 }

 InitDisplay(hdc); //initialise MS Windows screen display
 display_paras(' '); //display parameters in status bar

 //calculate ATP molecule arrival delay modelled as Poisson process
 calc_ATP_delay(lambda);
 if (minATPd == -1 || minATPd > t_ATP_binding) minATPd = t_ATP_binding;
 //record minimum value
 if (maxATPd < t_ATP_binding) maxATPd = t_ATP_binding; //record maximum value
 totATPd += (float)t_ATP_binding; //accumulate so can take average over the run

 do
 {//INNER LOOP - traversed until motor stuck or detaches or reaches RHS of cytosol box
 struct head_struct*head1=&motor_array[0].heada,*head2=&motor_array[0].headb;
 //pointers to current motor heads

 do {
 //if motor processing then update() checks for binding and hydrolysis events
 // and updates state of motor appropriately;

 130

 if (update(hdc,head1,head2) == false)
 {// exit loop if error
 UpdateStatusBar("head update failed", 0, 0);

 fprintf(f,"\n***head update failed*** T %d h1 %d x %d y %d h2 %d x %d y %d\n",
 time,head1->nuc_binding,head1->posx,head1->posy,head2->nuc_binding,
 head2->posx,head2->posy);

 motor_in_play = false;
 break;
 }
 update_cytosol(hdc,head1,head2);
 } while (motor_detached && initial_diffusion && motor_not_reached_RHS());
 //repeat until motor engaged or has reached RHS of cytosol
 //it engages with MT or reaches RHS of cytosol box or there's an error

 if (motor_detached) motor_in_play = false;//motor has detached so no longer in play

 if (initial_diffusion == false && head1_posx == head1->posx &&
 head2_posx == head2->posx)
 //heads haven't moved along MT since last hydrolysis
 {
 if (step || backstep)
 {
 step=false;backstep=false;futile=true;
 //not a real step: free head has re-bound to same binding site on MT
 }
 }

 if (trace) trace_heads(f,time,head1,head2);

 if (step || backstep || futile)
 {
 initial_diffusion = false; //initial diffusion has finished
 //calculate next ATP molecule arrival delay modelled as Poisson process
 calc_ATP_delay(lambda);
 if (minATPd == -1 || minATPd > t_ATP_binding) minATPd = t_ATP_binding;
 //record minimum value
 if (maxATPd < t_ATP_binding) maxATPd = t_ATP_binding; //record maximum value
 totATPd += (float)t_ATP_binding; //accumulate for calculation of average
 head1_posx = head1->posx;
 head2_posx = head2->posx;
 //save current head positions
 }

 if (step) //forward step has been taken
 {
 steps++; //total forward steps
 step=false; //reset flag
 display_paras('>'); //forward step indicated in status bar
 }
 else if (backstep) //backward step has been taken
 {
 backsteps++; //total backward steps
 backstep=false; //reset flag
 display_paras('<'); //backstep indicated in status bar
 }
 else if (futile)//no step but hydrolysis
 {
 futile=false;//reset flag
 futiles++; //total futile hydrolyses
 display_paras('F'); //futile hydrolysis indicated in status bar
 }

 /*//update display of system to show blow-by-blow motor progress
 //NB significantly decreases simulation speed
 for (int motor=0; motor<last_motor; motor++)
 //display each motor in turn
 display(hdc,&motor_array[motor].heada,&motor_array[motor].headb);
 //*/
 time++;//increment system time

 131

///*
 //if blockage set and timed out then remove
 if (blockage_count > blockage_limit)
 {//blockage_count incremented by forward_step() when clash()
 //see update_heads.h
 remove_block(MT_top,col_max-13, hdc);
 blockage_count=0;
 }
//*/
 } while (motor_in_play && time > 0 && time <= time_max);
 //continue while motor not at end of MT or detached and not stuck
 //end of INNER LOOP

 //display end state of run
 for (int motor=0; motor<last_motor; motor++)
 display(hdc, &motor_array[motor].heada, &motor_array[motor].headb);

 //analyse what motor has done
 if (time >= time_max)
 {//motor has timed out - assume stuck
 UpdateStatusBar("Motor stuck", 0, 0);
 display_result(hdc,t_ATPhydrolysis,t_P_release,t_ADP_release,ATP_base,run,240,0,0);
 stuck++;
 }
 else
 if (steps + backsteps < 2)
 {//motor hasn't processed (needs at least 2 steps): assume no backward procession
 UpdateStatusBar("Motor detached", 0, 0);
 display_result(hdc,t_ATPhydrolysis,t_P_release,t_ADP_release,ATP_base,run,0,0,240);
 diffusion++;
 }
 else
 {//motor has processed
 UpdateStatusBar("Procession", 0, 0);
 display_result(hdc,t_ATPhydrolysis,t_P_release,t_ADP_release,ATP_base,run,0,240,0);
 procession++;
 }
 //calculate results for run
 v = (steps + backsteps < 2)?0.0:v_m * (float)(steps - backsteps)/(float)time;
 avATPd = totATPd/(float)ATP_count; //average ATP delay over total number of hydrolyses
completed in run
/*
 //output this run results to file
 fprintf(f,"Run %2d Steps forward %4d back %2d ATPs %4d Futiles (calc: %3d) %3d Time
%5d V %0.3f ",
 run,steps,backsteps,ATP_count,ATP_count-steps-backsteps,futiles,time,v);
 fprintf(f,"ATP delay av %.1f range %d - %d\n",avATPd,minATPd,maxATPd);
//*/

 //accumulate totals over all runs
 av_time += (float)time; //run times
 av_steps += (float)steps; //total steps
 av_backsteps += (float)backsteps; //total backsteps
 av_futiles += (float)futiles;
 av_ATP_delay += avATPd;//average ATP arrival delay
 av_ATPs += (float)ATP_count;
 av_v += v;//accumulate velocity
 //NB variables used per run are reset at top of run loop
 }//end RUN loop

 //calculate averages over runs and output to file
 av_time /= (float)runs;
 av_steps /= (float)runs;
 av_backsteps /= (float)runs;
 av_futiles /= (float)runs;
 av_ATP_delay /= (float)runs;
 av_ATPs /= (float)runs;
 av_v /= (float)runs;

 132

 fprintf(f,"Poisson i/p %d lambda %f Av ATP delay %.1f Procession %d stuck %d diffusion
%d\n",
 nominal_ATP_delay,lambda,av_ATP_delay,procession,stuck,diffusion);
 fprintf(f,"%d run av: Steps %.1f Backsteps %.1f ATPs % .1f Futiles %.1f Time %.0f V %.2f
Dwell %.1f\n",

 runs,av_steps,av_backsteps,av_ATPs,av_futiles,av_time,av_v,av_time/(av_steps+av_backstep
s));

 }//end concentration variation loop
 }//end LOAD loop

 UpdateStatusBar("Finished", 0, 0);
 fprintf(f,"===mp8 finished===\n\n");
 fclose(f); //close data output file
 EndPaint(hwnd,&ps); //finish with MS Windows
 return 0;
 }//mp8c

//END of program

 133

B.3 Main listing – multimotor program

/*
 Author: Richard Wilson, MOAC DTC, Coventry House, Warwick University, CV4 7AL, UK
 richard.j.wilson@warwick.ac.uk

Multimotor Program: this version devised to investigate 2 motors coupled by flexible link

 This version incorporates the Poisson ATP arrival distribution
 Run terminates if both motors detached but not if only one detaches
 Motors started in contact with MT to get consistent start position for each run
 Velocity derived from path length rather than stepping count (which only works for single
motor)

Purpose of this version:
 To investigate the effect of linking 2 motors

 Research questions:
 Does second motor coordinate with first analogous to two heads coordinating when bound to
same cargo?
 Measure by comparing velocity and run length behaviour of 1 motor to 2 motor system.
*/

#include <stdio.h>
#include <stdbool.h>
#include <math.h>

//GLOBAL DECLARATIONS

//simulation run parameters
bool ATP_gate=/*true;//*/false; //ATP-hydrolysis or ATP-binding gate switch - see
update_heads.h
//int gating_count; //number of times gating operates
bool RBM=true;//*/false; //true if rectified Brownian model (else power stroke model) - impacts
update_heads.h
bool AMP_PNP=false; //indicates whether non-hydrolysable analogue is bound to a head - see
update_heads.h

float linker_tension = 9.5; //linker tension set to give percentage of back steps determined from
experiment
float linker_tension_max=10.0; //maximum value of linker tension
//at this value of linker_tension, binding of free head prevented when kinesin in wait state
(K0.KDu)

float back_load; //hindering load applied to motor
const float stall_load=6.;//notional load that defeats zippering (see zippering routine in
update_heads.h)
const float load_variation=3.;//extent of random variation of load (see zippering routine in
update_heads.h)
//simulates dynamic load variation expected through stalk springiness
//equates to widening range of loads affecting zippering from
//stall_load-load_variation/2 to stall_load+load_variation/2
//so below this range no effect and above it no zippering

const int last_motor=2;//number of motors simulated

//kinesin head state
struct head_struct
 {
 int MTbinding; //whether kinesin head bound to MT or free
 int nuc_binding; //which nucleotide is bound to kinesin, if any

 int ATP_binding_count; //timing counter for ATP binding (K0 -> KT)
 int hydrolysis_count; //timing counter for ATP hydrolysis (KT -> KDP)
 int P_release_count; //timing counter for phosphate and head release (KDP -> KDu)

 134

 int MT_binding_count; //timing counter for MT binding (KDu -> KD)
 int ADP_release_count; //timing counter for ADP release (KD -> K0)

 int prev_posx; //last x pos
 int prev_posy; //last y pos
 int posx; //current x position of head
 int posy; //current y position of head
 };

//kinesin motor has 2 heads
struct motor_struct
 {
 struct head_struct heada;
 struct head_struct headb;
 };

//array of motors for multiple motor experiments
struct motor_struct motor_array[last_motor];

//head state values
const int k_free=2, k_bound=1; //signifies whether kinesin bound to MT or not
enum {null,ATP,ADPP,ADP}; //signifies which nucleotide is attached, if any

//rectangular array representing section of cytosol
const int row_max=15, col_max=256;
int cytosol[row_max+1][col_max+1];
//NB indexing is positive from top left (cytosol[0][0])
const int cytosol_rgb=230; //pale grey for empty cytosol box used in display.h

//markers for contents of cytosol are all negative (as used by clash routine)
const int MT_null=-99; //interior of MT
const int MT_alpha=-98, MT_beta=-97; //microtubule alpha and beta tubulin
const int head_display=-1; //kinesin head

const int head_prev=1; //represents where heads have been so a track of kinesin motion can be
displayed

//timing parameter delays - used to trigger event when head counter reaches value
//0 means no delay: the event occurs at the next simulation time, 1 means event occurs one
simulation time later...
///* values used to accommodate range of [ATP] concentrations
//approximating Rosenfeld et al 2002 using t_MT_binding as baseline
const int t_ATPhydrolysis = 8; //KT -> KDP
const int t_P_release = 13; //KDP -> KDu
const int t_ADP_release = 7; //KD -> K0
const int t_MT_binding = 1; //KDu -> KD

int t_ATP_binding; //K0 -> KT, depends on [ATP]

int ATP_count;//count of ATPs hydrolysed

int blockage_count=0; //blockage timer - used to time how long blockage placed in the way of
kinesin
const int blockage_limit=7; //number of time slices blockage in place

//trace and analysis declarations
bool trace=/*true;//*/false; //switch trace of kinesin movement on or off
int uucount; //tally of successive KDu.KDu states - used in trace_heads() in analysis.h

//flags used in update_heads.h to indicate if step taken etc.
bool step; //set by forward_step()
bool backstep; //set by back_step()
bool motor_detached;//flags motor detachment
bool both_heads_bound;//set when both heads bound to MT

bool futile;//set when head already in position when try to step: ATP hydrolysed when no step
taken
bool motor_has_detached[last_motor];//flags whether motor processing

 135

int runs=100;//number of duplicate runs i.e. with same parameters

const int motor_distance = 15;//default distance between motors

//--
//FUNCTION DECLARATIONS AND DEFINITIONS
//--

//display and trace functions
#include "display.h"

//Brownian motion routines
#include "Brownian.h"

//head update routines
#include "update_heads.h"

int two_power(int x)
 {//calculate 2^x, assumes x is positive integer
 int pot=1;

 for (int i=0;i<x;i++) pot*=2;
 return pot;
 }

//function to simulate random arrival of ATP
bool calc_ATP_delay(float L)
 {
 //L is negative exponential of nominal_ATP_delay (the nominal delay before the next molecule
of ATP arrives)
 //this function calculates a number according to the corresponding Poisson distribution
 float p = get_rand();//get random number between 0 and 1
 int k=0;

 if (1.0 < L < 0.0)
 {
 t_ATP_binding = 0;return false;
 }
 for (;p > L; k++) p = p * get_rand();

 t_ATP_binding = k;
//used in update_head_nuc() in update_heads.h to determine when ATP binds the motor
 return true;
 }

int fn_m_distance(int motor)
 {//returns load value for leading motor increasing with distance between motors greater than
motor_distance
 //or load value for trailing motor decreasing with distance when too close

 //get pointers to motor heads
 struct head_struct
 *head1=&motor_array[motor].heada,
 *head2=&motor_array[motor].headb;
 int other_motor = (motor == 0)?1:0; //***assumes 2 motors
 struct head_struct
 *other_head1=&motor_array[other_motor].heada,
 *other_head2=&motor_array[other_motor].headb;

 int motor_pos = (head1->posx + head2->posx)/2;
 int other_motor_pos = (other_head1->posx + other_head2->posx)/2;
 int m_x = motor_pos - other_motor_pos;
 if (m_x < 0) //this is the trailing motor
 {
 m_x = -m_x;//absolute value
 if (m_x >= motor_distance) return 0;//motors at normal distance or greater
 else return (motor_distance - m_x);//load increases on trailing motor as motors get closer
 }
 //this is the leading motor

 136

 if (m_x <= motor_distance) return 0;//motors at normal distance or less
 else return (m_x - motor_distance);//load increases as motors moves away from each other
 }

bool any_motors_in_play(void)//if all motors detached then returns false
 {
 for (int motor = 0; motor < last_motor;motor++)
 if (motor_has_detached[motor] == false) return true;
 return false;
 }

bool all_motors_in_play(void)//if any motors detached then returns false
 {
 for (int motor = 0; motor < last_motor;motor++) if (motor_has_detached[motor]) return false;
 return true;
 }

//-------------------------
//START OF MAIN ROUTINE
//-------------------------
int mp1(HWND hwnd)
 {
 PAINTSTRUCT ps;
 HDC hdc = BeginPaint(hwnd,&ps); //MS Windows specific routine
 FILE *f;

 if (ATP_gate) f = fopen(RBM?"mp1cRBMg.txt":"mp1cPSg.txt","a");
 else f = fopen(RBM?"mp1cRBM.txt":"mp1cPS.txt","a");
 //open file for output data
 //file name distinguishes stepping mechanism in use
 if (f == 0)
 {
 UpdateStatusBar("File open failed", 0, 0); //notify user if file open failure
 EndPaint(hwnd,&ps);
 return false; //exit program
 }
 //if fail return error
 //write header to file
 fprintf(f,"===mp1c started=== %d motor/s\n",last_motor);
 fprintf(f,"ADP release %d ATP hydrolysis %d P release %d Load variation %.1f Stall %.1f MT
binding %d %s with %s\n\n",
 t_ADP_release,t_ATPhydrolysis,t_P_release,load_variation,stall_load, t_MT_binding,
 (RBM?"RBM":"PS"),(ATP_gate?"ATP gate":"no ATP gate"));

 float v_m = 700.0 * (float)(t_ADP_release + t_ATPhydrolysis + t_P_release);
 //velocity multiplier to scale velocity calculation
 int nominal_ATP_delay; //for calculating ATP delay for each hydrolysis cycle

 for (int ATP_base = 0;ATP_base < 1;ATP_base++)//*****
 {//ATP concentration variation loop
 //count number of runs resulting in each category:
 int procession=0;
 int stuck=0;
 int diffusion=0;
 float lambda;
 //variables with which to calculate average values over several runs
 float av_steps = 0.0;
 float av_backsteps = 0.0;
 float av_futiles = 0.0;
 float av_time = 0.0;
 float av_ATPs = 0.0;//average number of ATPs hydrolysed
 float av_ATP_delay = 0.0;//average ATP arrival delay
 float av_runlength = 0.0;
 int min_runlength = -1;
 int max_runlength = 0;

 nominal_ATP_delay = two_power(ATP_base) - 1;
 //start at 0 (equivalent to max [ATP] i.e. no delay in ATP arrival)

 137

 //increase nominal ATP delay by power sequence instead of incrementing to give wide spread
of values
 //corresponding to wide spread of [ATP]
 lambda = expf(-(float)(nominal_ATP_delay));//calculate exponential for Poisson routine

 for (int run=1; run<=runs; run++)
 //do several runs with same parameters so can take average of raw data for data point
 {//RUN loop
 int time = 0; //elapsed time used for each run
 int time_max = 500*(t_ADP_release + t_ATPhydrolysis + t_P_release)*(ATP_base+1);
 //time limit beyond which assume motor stuck
 int MT_top = row_max; //vertical position of MT (at bottom of cytosol box)
 int steps = 0; //number of steps motor takes
 int backsteps = 0; //number of back steps
 int futiles = 0;//number of futile ATP hydrolyses i.e. ATP hydrolysed by motor doesn't move
 float totATPd = 0.0; //total of ATP delays produced by Poisson function over run
 float avATPd = 0.0; //average ATP delay over run
 int head1_posx = 0;
 int head2_posx = 0;
 float v = 0.0;//velocity over run
 bool no_error = true;//error flag
 bool motor_not_at_RHS = true;
 int runlength = 0;//length motor/s traverse/s in a run
 int mstart[last_motor];//motor start position
 int mfinish[last_motor];//motor finish position
 int cstart = 0;//start position of run
 int cfinish = 0;//finish position of run

 uucount = 0; //initialise tally of successive u.u states - see trace_heads() in analysis.h

 //initialise flags and variables used by functions in update_heads.h
 step = false; //step hasn't been taken
 backstep = false; //backstep hasn't been taken
 ATP_count = 0;//no ATPs hydrolysed
 motor_detached = false;//motor starts attached

 //Clear cytosol array
 for (int i=0; i<=row_max; i++) for (int j=0; j<=col_max; j++) cytosol[i][j]=0;

 //put in single MT filament
 generate_MT(MT_top,0,col_max-1);

 //OPTIONAL: put blockage in path of motor
 //put in 2 blob block to stop kinesin accessing binding site
 //generate_block(MT_top,col_max-13);

 //initialise motor/s (code ready for multiple motors)
 for (int motor = 0; motor < last_motor; motor++)
 {
 //get pointers to motor heads
 struct head_struct
 *head1=&motor_array[motor].heada,
 *head2=&motor_array[motor].headb;

 head2->posx=motor*motor_distance + 4; //start first motor near LHS of MT
 //displace other motors to the right by motor_distance
 head1->posx=head2->posx-1; //place head to the left of the other
 head1->posy=MT_top-1; //and in contact with MT
 head2->posy=MT_top-2; //place second head above first

 //initialise previous position to current position
 head2->prev_posx=head2->posx;
 head1->prev_posx=head1->posx;
 head1->prev_posy=head1->posy;
 head2->prev_posy=head2->posy;

 //initialise counters for each head
 head1->hydrolysis_count=0; //timing counter for ATP hydrolysis
 head1->P_release_count=0; //timing counter for phosphate release

 138

 head1->MT_binding_count=0; //timing counter for MT binding
 head1->ADP_release_count=0; //timing counter for ADP release
 head1->ATP_binding_count=0; //timing counter for ATP binding

 head2->hydrolysis_count=0; //timing counter for ATP hydrolysis
 head2->P_release_count=0; //timing counter for phosphate release
 head2->MT_binding_count=0; //timing counter for MT binding
 head2->ADP_release_count=0; //timing counter for ADP release
 head2->ATP_binding_count=0; //timing counter for ATP binding

 //start with one head free of MT, the other bound; both ADP bound
 head2->MTbinding=k_free;
 head2->nuc_binding=ADP;
 head1->MTbinding=k_bound;
 head1->nuc_binding=ADP;

 mstart[motor] = (head1->posx + head2->posx)/2;//approx motor start position
 }

 //calculate approx cargo start position
 cstart = mstart[0];//start position for 1 motor
 for (int motor = 1;motor < last_motor; motor++) cstart = (mstart[motor] + cstart)/2;
 //mid start position for 2 motors

 InitDisplay(hdc); //initialise MS Windows screen display
 display_paras(' ',0); //display parameters in status bar

 //calculate ATP molecule arrival delay modelled as Poisson process
 calc_ATP_delay(lambda);
 totATPd += (float)t_ATP_binding; //accumulate so can take average over the run

 do
 {//INNER LOOP - traversed until motor stuck or detached
 for (int motor = 0;motor < last_motor;motor++)
 {
 struct head_struct
 *head1=&motor_array[motor].heada,
 *head2=&motor_array[motor].headb;
 //pointers to current motor heads

 motor_has_detached[motor] = false;
 //initialise detachment latch for this motor

 if (last_motor > 1 && all_motors_in_play())
 back_load = fn_m_distance(motor);
 //if more than one motor and all motors processing then apply load as required
 display_paras(' ',motor); //display parameters in status bar

 do {
 //if motor processing then update() checks for binding and hydrolysis events
 // and updates state of motor appropriately;
 if (update(hdc,head1,head2) == false)
 {// exit loop if error
 UpdateStatusBar("head update failed", 0, 0);
 fprintf(f,"\n***head update failed*** T %d h1 %d x %d y %d h2 %d x %d y
%d\n",time,
 head1->nuc_binding,head1->posx,head1->posy,head2-
>nuc_binding,head2->posx,head2->posy);
 no_error = false;
 break;
 }
 if (motor_detached) motor_has_detached[motor] = motor_detached;
 //this motor has detached latch set
 update_cytosol(hdc,head1,head2);
 if (motor_not_at_RHS)
 motor_not_at_RHS = (head1->posx < col_max-1 && head2->posx < col_max-1);
 //test whether motor reached RHS at each looping
 //flag acts as a latch - if either motor reaches RHS then set to true
 } while (motor_detached && any_motors_in_play() && motor_not_at_RHS);

 139

 //repeat until motor engaged or hit RHS of cytosol box

 motor_detached = false; //reset flag which may be set in update_heads()

 if (head1_posx == head1->posx && head2_posx == head2->posx)
 //heads haven't moved along MT since last hydrolysis
 {
 if (step || backstep)
 {
 step=false;backstep=false;futile=true;
 //not a real step: free head has re-bound to same binding site on MT
 }
 }

 if (trace) trace_heads(f,time,head1,head2);

 if (step || backstep || futile)
 {
 //calculate next ATP molecule arrival delay modelled as Poisson process
 calc_ATP_delay(lambda);
 totATPd += (float)t_ATP_binding; //accumulate for calculation of average
 head1_posx = head1->posx;
 head2_posx = head2->posx;
 //save current head positions
 }

 if (step) //forward step has been taken
 {
 steps++; //total forward steps
 step=false; //reset flag
 display_paras('>',0); //forward step indicated in status bar
 }
 else if (backstep) //backward step has been taken
 {
 backsteps++; //total backward steps
 backstep=false; //reset flag
 display_paras('<',0); //backstep indicated in status bar
 }
 else if (futile)//no step but hydrolysis
 {
 futile=false;//reset flag
 futiles++; //total futile hydrolyses
 display_paras('F',0); //futile hydrolysis indicated in status bar
 }
 }//end motor loop

 /*//update display of system to show blow-by-blow motor progress
 //NB significantly decreases simulation speed
 for (int motor=0; motor<last_motor; motor++)
 //display each motor in turn
 display(hdc,&motor_array[motor].heada,&motor_array[motor].headb);
 //*/

 time++;//increment system time

///*
 //if blockage set and timed out then remove
 if (blockage_count > blockage_limit)
 {//blockage_count incremented by forward_step() when clash()
 //see update_heads.h
 remove_block(MT_top,col_max-13, hdc);
 blockage_count=0;
 }
//*/
 } while (any_motors_in_play() && time > 0 && time <= time_max && motor_not_at_RHS
&& no_error);
 //continue while motor processing, not at RHS and no error
 //end of INNER LOOP

 140

 //display end state of run and find finish position
 for (int motor=0; motor<last_motor; motor++)
 {
 display(hdc, &motor_array[motor].heada, &motor_array[motor].headb);
 mfinish[motor] = (motor_array[motor].heada.posx + motor_array[motor].headb.posx)/2;
 //approx motor finish position/s
 }
 //calculate approx cargo finish position
 cfinish = mfinish[0];//finish position for 1 motor
 for (int motor = 1;motor < last_motor; motor++) cfinish = (mfinish[motor] + cfinish)/2;
 //mid finish position for 2 motors
 if (cfinish < 0) cfinish = -cfinish;

 //analyse what motor has done
 if (time >= time_max)
 {//motor has timed out - assume stuck
 UpdateStatusBar("Motor stuck", 0, 0);
 display_result(hdc,t_ATPhydrolysis,t_P_release,t_ADP_release,ATP_base,run,240,0,0);
 stuck++;
 }
 else
 if (steps + backsteps < 2)
 {//motor hasn't processed (needs at least 2 steps)
 UpdateStatusBar("Motor detached", 0, 0);
 display_result(hdc,t_ATPhydrolysis,t_P_release,t_ADP_release,ATP_base,run,0,0,240);
 diffusion++;
 }
 else
 {//motor has processed
 UpdateStatusBar("Procession", 0, 0);
 display_result(hdc,t_ATPhydrolysis,t_P_release,t_ADP_release,ATP_base,run,0,240,0);
 procession++;
 }
 //calculate results for run
 avATPd = totATPd/(float)ATP_count; //average ATP delay over total number of hydrolyses
completed in run
 runlength = ((cfinish - cstart) <= 0)?0:cfinish - cstart;
///*
 //output run results to file
 fprintf(f,"Run %2d L %d (%d to %d) Steps %4d back %2d ATP delay av %.1f T %5d V
%.1f\n",
 run,runlength,cstart,cfinish,steps,backsteps,avATPd,time,
 v_m*(float)runlength/(float)time);
//*/

 if (min_runlength == -1 || runlength < min_runlength) min_runlength = runlength;
 if (runlength > max_runlength) max_runlength = runlength;
 //accumulate totals over all runs
 av_time += (float)time; //run times
 av_steps += (float)steps; //total steps
 av_backsteps += (float)backsteps; //total backsteps
 av_futiles += (float)futiles;
 av_ATP_delay += avATPd;//average ATP arrival delay
 av_ATPs += (float)ATP_count;
 av_runlength += (float)runlength;
 }//end RUN loop

 //calculate averages over runs and output to file
 av_time /= (float)runs;
 av_steps /= (float)runs;
 av_backsteps /= (float)runs;
 av_futiles /= (float)runs;
 av_ATP_delay /= (float)runs;
 av_ATPs /= (float)runs;
 av_runlength /= (float)runs;
 fprintf(f,"Poisson i/p %d Av ATP delay %.1f Procession %d stuck %d diffusion %d\n",
 nominal_ATP_delay,av_ATP_delay,procession,stuck,diffusion);
 fprintf(f,"%d run av: L %.1f (%d to %d) Steps %.1f Backsteps %.1f ATPs % .1f Futiles %.1f
T %.0f V %.1f Dwell %.1f\n",

 141

 runs,av_runlength,min_runlength,max_runlength,av_steps,av_backsteps,av_ATPs,av_futiles,av
_time,
 v_m*av_runlength/av_time,av_time/(av_steps+av_backsteps));
 }//end concentration variation loop

 UpdateStatusBar("Finished", 0, 0);
 fprintf(f,"===mp1 finished===\n\n");
 fclose(f); //close data output file
 EndPaint(hwnd,&ps); //finish with MS Windows
 return 0;
 }//mp1

//END of program

 142

B.4 Update routines

//update_heads.h contains head state update routines
//entry routine is update_heads()

//The stepping conditions depend on the setting of the RBM flag:

//RBM
//===
//If RBM flag is true then following rectified Brownian mechanism (Fox and Choi 2001)
//stepping is a diffusive process with bias provided by zippering.
//Binding of ATP sets up zippering (through conformational change in head) which remains until P
released;
//(Asenjo, Weinberg & Sosa 2006)
//so, as soon as free head diffuses forward, the bound head's neck linker zippers
//and free head restrained local to forward binding site so binds i.e. a step is taken.

//If ATP_gate flag set then ATP hydrolysis gate applied
//This is hypothesised to make hydrolysis v slow unless/until free head binds to next site
//i.e. forward neck linker strain required to make hydrolysis efficient
//(Hancock and Howard, 1999 found that about 10 fold diff between
//hydrolysis time for single and twin head kinesin)

//PS
//==
//If RBM flag is false then
//following power stroke mechanism whereby ATP binding causes linker zippering
// which pulls free head forward to near next binding site so it binds and a step is taken
// (Vale and Milligan 2000)

//If ATP_gate flag also set then ATP binding gate applied
//if both heads are bound when the leading head is in K0 state, then the PS gate operates to stop
ATP binding
//until leading head hydrolyses its ATP and detaches
//(proposed as a head coordination mechanism by Rosenberg et al 2002)

bool zipper_active(struct head_struct *head)
 {//determine whether zipper active
 if ((back_load + load_variation*(get_rand()-0.5))>stall_load) return false;
 //if load sufficient to defeat zippering then return false
 if (RBM)
 //RBM model so if ATP or ADPP bound then head set up for linker zippering
 switch (head->nuc_binding)
 {
 case ATP:
 case ADPP: return true;
 default: return false;
 }
 else //power stroke model where ATP binding is the event causing zippering
 switch (head->nuc_binding)
 {
 case ATP: if (head->hydrolysis_count == 0) return true;
 default: return false;
 }
 }

bool update_head_nuc(int head_nuc_binding, struct head_struct *head, struct head_struct
*other_head)
 {//update nucleotide binding to this head
 //procession cycle is KD->K0->KT->KDP->KDu->KD...
 //Note KDP->KDu requires change to MT binding
 switch (head_nuc_binding) //current nucleotide binding to this head
 {
 case null:
 if (head->MTbinding == k_bound)//always true in present model

 143

 {
 if (ATP_gate && RBM == false && other_head->MTbinding == k_bound && other_head-
>posx < head->posx)
 //if PS with gating and both heads bound and this is the lead head then ATP gate operates
 head->ATP_binding_count++;
 //so count up amount of time in K0 state i.e. waiting for ATP
 else
 {
 if (head->ATP_binding_count >= t_ATP_binding)
 {
 head->ATP_binding_count=0;
 head->nuc_binding=ATP; //ATP binds because binding delay ended
 }
 else head->ATP_binding_count++;
 //count up amount of time in K0 state i.e. waiting for ATP
 }
 }
 else head->nuc_binding=ADP;
 //else ADP binds (since head is free)
 //this would only happen if head pulled off MT
 break;
 case ADP:
 if (head->MTbinding == k_bound)
 //binding to MT liberates ADP when ADP_release_count reached
 {
 if (head->ADP_release_count >= t_ADP_release)
 {
 head->ADP_release_count=0;
 head->nuc_binding=null; //ADP released
 }
 else head->ADP_release_count++; //count up amount of time in KD state
 }
 else head->ADP_release_count=0; //count only happens when bound
 //else it's free to diffuse
 break;
 case ADPP:
 if (head->P_release_count >= t_P_release)
 {
 head->P_release_count=0;
 head->nuc_binding=ADP; //phosphate released
 }
 else head->P_release_count++; //count up amount of time in KDP state
 break;
 case ATP:
 if (RBM && ATP_gate && (other_head->MTbinding == k_free || other_head->posx !=
(head->posx+2)))
 //the RBM ATP gate is operating when switch is on and other head not bound to forward
site...
 {
 if (head->hydrolysis_count >= 10*(t_ATPhydrolysis+1))
 //increase effective delay to ATP binding by 10
 {
 head->hydrolysis_count=0;
 head->nuc_binding=ADPP; //ATP hydrolysed
 ATP_count++; //increment count of number of ATPs hydrolysed
 break;
 }
 }
 else //either PS or RBM without ATP gate so normal hydrolysis
 if (head->hydrolysis_count >= t_ATPhydrolysis)
 {
 head->hydrolysis_count=0;
 head->nuc_binding=ADPP; //ATP hydrolysed
 ATP_count++; //increment count of number of ATPs hydrolysed
 break;
 }
 head->hydrolysis_count++; //count up amount of time in KT state
 break;
 default:

 144

 return false;
 }
 return true;
 }

bool update_head_states_nuc(struct head_struct *head1,struct head_struct *head2)
 //sets next head nucleotide binding state - both heads treated the same way
 {
 int head1_nuc_binding=head1->nuc_binding; //get current head nucleotide binding state
 int head2_nuc_binding=head2->nuc_binding; //get current head nucleotide binding state

 if (update_head_nuc(head1_nuc_binding,head1,head2)==false)
 {
 UpdateStatusBar("ERROR head1 nuc_binding value out of range", 0, 0);
 return false;
 }

 if (AMP_PNP && head2_nuc_binding == ATP) return true;
 //if non-hydrolysable analogue bound to head2 then prevent hydrolysis
 //ref Guydosh and Block experiments

 if (update_head_nuc(head2_nuc_binding,head2,head1)==false)
 {
 UpdateStatusBar("ERROR head2 nuc_binding value out of range", 0, 0);
 return false;
 }
 return true;
 }

bool head_near_MT(struct head_struct *head)
 {//motor has to be above MT before binding and binds at beta-tubulin
 return (cytosol[head->posy+1][head->posx] == MT_beta);
 //true iff head is above beta-tubulin (rather than alpha-tubulin)
 }

bool next_head_MT(struct head_struct *head,int prev_nuc_state,struct head_struct *other_head)
 {//returns MT binding state of this head given the nucleotide binding
 switch (head->nuc_binding) //look at which nucleotide is bound to this head
 {
 case ATP:
 case null:
 case ADPP:
 head->MTbinding=k_bound; //all these states have strong affinity for MT
 break;
 case ADP:
 if (head->MTbinding==k_free && head_near_MT(head)) //free but close to binding site
 {
 head->MTbinding=k_bound;//so dock head to MT
 break;
 }
 if (head->MTbinding==k_bound && prev_nuc_state==ADPP)
 //MT bound but previous state was KDP
 {
 head->MTbinding=k_free;
 //move free head towards other if linker tension
 if (linker_tension>0.)
 {
 if (other_head->posx>head->posx+1)
 head->posx=head->posx+1; //other head is in front
 else if(other_head->posx<head->posx-1)
 head->posx=head->posx-1; //other head is trailing
 //if neither then assume no tension
 }
 }
 break; //no change
 default: return false; //error - unknown nucleotide binding state
 }
 return true;
 }

 145

void forward_step(struct head_struct *free_head,struct head_struct *MT_head)
 {
 if (free_head->posx != MT_head->posx+2)//if not already in position then
 if (Clash(MT_head->posx+2,MT_head->posy))
 //if something in the way of next MT binding site
 {//then don't step
 UpdateStatusBar("Blockage", 0, 0);
 blockage_count++; //count time blocked
 return;
 }
 else
 {//bring free head to next binding site
 free_head->posx=MT_head->posx+2;
 free_head->posy=MT_head->posy;
 }
 step=true; //flag that step has been taken
 }

void back_step(struct head_struct *free_head,struct head_struct *MT_head)
 {
 if (free_head->posx != MT_head->posx-2) //if not already in position then
 {//bring free head to previous binding site
 free_head->posx=MT_head->posx-2;
 free_head->posy=MT_head->posy;
 }
 backstep=true; //flag that backward step has been taken
 }

void process_wait_state(struct head_struct *free_head,struct head_struct *MT_head)
 {
 //one head free, other bound to MT
 //whether step is taken depends on linker strain, load, and zippering status
 if (linker_tension<linker_tension_max)
 //stepping can occur without zippering if linker tension is less than max
 if (get_rand() >= (linker_tension/linker_tension_max))
 //probability of stepping without zippering depends on linker strain
 {
 if (get_rand()>(0.5*(1.0+back_load/stall_load))) forward_step(free_head,MT_head);
 //either direction of step is equally probable at low load
 //but as load increases so does probability of backstep
 else back_step(free_head,MT_head);
 return;
 }
 //else stepping depends on zippering status
 if (zipper_active(MT_head)) forward_step(free_head,MT_head);
 }

bool update(HDC hdc,struct head_struct *head1,struct head_struct *head2)
 {//main head update routine
 struct head_struct current_head1,current_head2;

 //temporarily store part of current states
 current_head1.nuc_binding=head1->nuc_binding;
 current_head1.MTbinding=head1->MTbinding;
 current_head1.posx=head1->posx;
 current_head2.nuc_binding=head2->nuc_binding;
 current_head2.MTbinding=head2->MTbinding;
 current_head2.posx=head2->posx;

 both_heads_bound = false;//reset flag

 //if kinesin free of MT then give heads some Brownian motion
 if (head1->MTbinding==k_free && head2->MTbinding==k_free) //both heads free
 {
 motor_detached = true;//set flag to indicate that motor is diffusing
 if (Brownian(head1,head2) == false) return false; //if false then motor stuck
 }
 else//at least one head bound

 146

 {
 motor_detached = false;
 if (head1->MTbinding == k_free) //head1 free so
 process_wait_state(head1,head2); //make step depending on conditions
 else
 if (head2->MTbinding == k_free) //head2 free so
 process_wait_state(head2,head1); //make step depending on conditions
 else both_heads_bound = true;//both heads bound to MT so step impossible
 }

 //update nucleotide binding
 if (update_head_states_nuc(head1,head2)==false) return false; //if error return false

 //update MT binding given current and previous nucleotide binding
 if (next_head_MT(head1,current_head1.nuc_binding,¤t_head2)==false) return false;
 if (next_head_MT(head2,current_head2.nuc_binding,¤t_head1)==false) return false;

 return true;
 }

B.5 Brownian motion routines

//Brownian.h
//provides rough diffusive motion when motor free of MT
//entry function is Brownian()

float get_rand(void)//return random number between 0.0 and 1.0
 {
 return ((float)rand()/RAND_MAX);
 }

bool Clash(int posx, int posy)
 {//returns true if position blocked
 if (cytosol[posy][posx] < 0) return TRUE; //all contents of cytosol represented by negative
numbers
 return FALSE;
 }

void Diffuse(int *posx1, int *posx2, int *posy1, int *posy2)
 {//move heads together one position at random
 float randno=get_rand();
 bool move_forward = get_rand() > 0.5

 //there are 8 possibilities of moving together...
 if (randno > 0.5)
 {
 if (get_rand() > 0.5)
 {
 if (move_forward)
 { (*posx1)++; (*posx2)++; //move both forward
 }
 else
 { (*posx1)--; (*posx2)--; //move both back
 }
 }
 else
 {
 if (get_rand() > 0.5)
 { (*posy1)++; (*posy2)++; //move both down
 }
 else
 { (*posy1)--; (*posy2)--; //move both up
 }
 }
 }
 else
 {

 147

 if (get_rand() > 0.5)//diagonal: up, forward or back
 {
 (*posy1)++; (*posy2)++;
 if (move_forward)
 { (*posx1)++;(*posx2)++;
 }
 else
 { (*posx1)--;(*posx2)--;
 }
 }
 else //diagonal: down, forward or back
 {
 (*posy1)--; (*posy2)--;
 if (move_forward)
 { (*posx1)++;(*posx2)++;
 }
 else
 { (*posx1)--;(*posx2)--;
 }
 }
 }
 }

void Rotate(int *posx1,int *posx2,int *posy1,int *posy2)
 {//limited rotate of molecule at random
 float randno=get_rand();

 if (*posy1 == *posy2)//heads abreast
 {
 if (randno < 0.2) (*posy1)++; //move head1 down
 else if (0.2 <= randno < 0.4) (*posy1)--; //move head1 up
 else if (0.4 <= randno < 0.6) (*posy2)--; //move head2 up
 else if (0.6 <= randno < 0.8) (*posy2)++; //move head2 down
 //else no change
 }
 else if (*posy1 > *posy2) //1 down, 2 up - assume either stays or rotates clockwise
 {
 if (randno>0.5) (*posy1)--;
 else (*posy2)++;
 }
 else //1 up, 2 down - assume either stays or rotates anticlockwise
 {
 if (randno>0.5) (*posy1)++;
 else (*posy2)--;
 }
 }

bool Brownian(struct head_struct *head1_ptr,struct head_struct *head2_ptr)
 {// Brownian moves heads at random
 int posx1,posx2,posy1,posy2;

 //assumes both heads free so move together at random
 int i=0;
 do {
 if (i++ >= 50) return false;//molecule is stuck somehow
 posx1=head1_ptr->posx; posx2=head2_ptr->posx; //get x positions of heads
 posy1=head1_ptr->posy; posy2=head2_ptr->posy; //get y positions of heads
 //move heads small distance at random
 Diffuse(&posx1,&posx2,&posy1,&posy2); //move heads together
 Rotate(&posx1,&posx2,&posy1,&posy2); //rotate molecule
 //but not outside cytosol box or into MT (or other motor)
 } while (posx1 < 0 || posx2 < 0 || posx1 >= col_max || posx2 >= col_max ||
 posy1 < 0 || posy2 < 0 || posy1 >= row_max || posy2 >= row_max ||
 Clash(posx1,posy1) || Clash(posx2,posy2));

 //remove heads from current position in cytosol
 cytosol[head1_ptr->posy][head1_ptr->posx]=0;
 cytosol[head2_ptr->posy][head2_ptr->posx]=0;
 //update store of head positions

 148

 head1_ptr->posx=posx1; head1_ptr->posy=posy1;
 head2_ptr->posx=posx2; head2_ptr->posy=posy2;
 //place heads in new positions
 cytosol[posy1][posx1]=head_display;
 cytosol[posy2][posx2]=head_display;
 return true;
 }//end of Brownian function

B.6 Analysis routines

//analysis.h includes data analysis, results display and trace routines

void display_result(HDC hdc,int i,int j,int k,int l,int m, int r,int g,int b)
 //plots rough graphs of results under cytosol box display for indicative purposes during run
 {//displays i as x coordinate, j for y coordinate of top left and k+2 for size of colour square
 //l adjusts y to give separate plot areas, one below the other
 int leftx,topy,extent;

 j=j+(result_max+1)*k*4;//combine j with k to move graphs vertically
 leftx=((result_max+1)*i*4+4)+//i horizontally displaces top left corner of each graph
 (result_max+1)*4*(run-1); //also displace to right for each run
 topy=12*row_max+//display results below active transport diagram
 j*4*(result_max+1)+//displaced downwards by j
 4*(result_max+1)*(int)(back_load*2); //and LOAD
// (result_max+1)*(int)(linker_tension); //and LINKER tension
 extent=4*l*(ATP_result_max+1);
 //k displaces series of graphs horizontally

 for (int x=leftx+extent;x<=leftx+extent+3;x++)
 for (int y=topy+3;y>=topy;y--)
 SetPixel(hdc,x,y,RGB(r,g,b));
 }

void analyse_results(FILE *f, int time, int steps, int backsteps, int detachment_count)
 //sorts timing combination result array data into the 3 phases
 // and outputs result to file
 {
 int count=0;

 //write intro
 //fprintf(f,"===Run %d. ADP rel, ATP bind, ATP hydrolysis, P release\nLinker tension
%d\nsteps %d backstep %d detachments %d\nDiffusion phase: ",
 fprintf(f,"===Run %d Load -%.1f linker %.2f av time %d av steps %d av backsteps %d av
detachments %d\nDiffusion phase: ",
 run,back_load,linker_tension,time,steps,backsteps,detachment_count);
 //write data
 for (int i=0; i<result_max; i++)
 for (int j=0; j<result_max; j++)
 for (int k=0; k<result_max; k++)
 for (int l=0; l < ATP_result_max; l++)
 if (results[i][j][k][l] == P_diffusion)
 {
 //fprintf(f,"%d%d%d%d ",k,l,i,j);
 count++;
 }
// fprintf(f,"\n***total %d\n",count);
 fprintf(f,"%d ",count);
 count=0;
 //write intro
 fprintf(f,"Stuck phase: ");
 //write data
 for (int i=0;i<result_max;i++)
 for (int j=0;j<result_max;j++)
 for (int k=0;k<result_max;k++)
 for (int l=0;l < ATP_result_max;l++)
 if (results[i][j][k][l] == P_stuck)
 {

 149

 //fprintf(f,"%d%d%d%d ",k,l,i,j);
 count++;
 }
// fprintf(f,"\n***total %d\n",count);
 fprintf(f,"%d ",count);
 count=0;
 //write intro
 fprintf(f,"Processive phase: ");
 //write data
 for (int i=0;i<result_max;i++)
 for (int j=0;j<result_max;j++)
 for (int k=0;k<result_max;k++)
 for (int l=0;l < ATP_result_max;l++)
 if (results[i][j][k][l] == P_processive)
 {
 //fprintf(f,"%d%d%d%d ",k,l,i,j);
 count++;
 }
// fprintf(f,"\n***total %d\n",count);
 fprintf(f,"%d ",count);
 count=0;
 //write intro
// fprintf(f,"Missing data :");
 //write data
 for (int i=0;i<result_max;i++)
 for (int j=0;j<result_max;j++)
 for (int k=0;k<result_max;k++)
 for (int l=0;l < ATP_result_max;l++)
 if (results[i][j][k][l] == -1)
 {
 //fprintf(f,"%d%d%d%d ",k,l,i,j);
 count++;
 }
// fprintf(f,"\ntotal %d\n",count);
 if (count>0) fprintf(f,"Missing data total %d\n",count);
 fprintf(f,"\n");
 }

void trace_heads(FILE *f,int time,struct head_struct *head1, struct head_struct *head2)
 {//outputs trace of head states to file
 bool selector=(head1->posx<=head2->posx);//position trace of heads reflecting actual position

 if (head1->MTbinding == k_free && head2->MTbinding == k_free)
 {
 if (head1->nuc_binding != ADP || head2->nuc_binding != ADP)
 fprintf(f,"\nBoth heads should be KDu?!\n");
 uucount++; //tally detached states
 if (uucount > 1) return; //since no point in outputting successive u.u
 }
 else
 {
 if (uucount > 1) fprintf(f,"(%d) ",uucount+1); //total contiguous u.u states
 uucount=0;
 }
 switch (selector?head1->nuc_binding:head2->nuc_binding) //trailing head
 {
 case null:fprintf(f,"0");break;
 case ATP:fprintf(f,"T");break;
 case ADPP:fprintf(f,"P");break;
 case ADP:if (selector) fprintf(f,"%c",(head1->MTbinding == k_bound)?'D':'u');
 else fprintf(f,"%c",(head2->MTbinding == k_bound)?'D':'u');
 break;
 }
 if (step) fprintf(f,">>");
 else if (backstep) fprintf(f,"<<");
 else fprintf(f,".");
 switch (selector?head2->nuc_binding:head1->nuc_binding)//leading head
 {
 case null:fprintf(f,"0");break;

 150

 case ATP:fprintf(f,"T");break;
 case ADPP:fprintf(f,"P");break;
 case ADP:if (selector) fprintf(f,"%c",(head2->MTbinding == k_bound)?'D':'u');
 else fprintf(f,"%c",(head1->MTbinding == k_bound)?'D':'u');
 break;

 }
 fprintf(f," ");
 }

B.7 Display routines

//display.h
//display routines

void UpdateStatusBar(LPSTR lpszStatusString, WORD partNumber, WORD Flags);
 //displays text in status bar at bottom of window

void PlotBlob(HDC hdc, int leftx, int topy, int xlength, int ylength,COLORREF rgb)
 {//plots a rectangle xlength by ylength pixels with top left coordinates leftx, topy
 // in rgb colour with 1 pixel grey border
 xlength--; ylength--;
 for (int x=leftx; x<=leftx+xlength; x++)
 for (int y=topy+ylength; y>=topy; y--)
 {
 if (x==leftx && (y==topy+ylength || y==topy) || x==leftx+xlength &&
 (y==topy+ylength || y==topy)) //cytosol grey border
 SetPixel(hdc,x,y,RGB(cytosol_rgb,cytosol_rgb,cytosol_rgb));
 else SetPixel(hdc,x,y,rgb);
 }
 }

char DigitToChar(int digit)
 {
 switch (digit)
 {
 case 0: return '0';
 case 1: return '1';
 case 2: return '2';
 case 3: return '3';
 case 4: return '4';
 case 5: return '5';
 case 6: return '6';
 case 7: return '7';
 case 8: return '8';
 case 9: return '9';
 }
 return('*');
 }

void display_paras(void)
 {//displays head event timings in status bar
 static char Buffer[20];

 for (int i=4; i<15; i++) Buffer[i]=' ';

 Buffer[19]=0;
 Buffer[0]='T';
 Buffer[1]='h';
 Buffer[2]='=';
 Buffer[3]=DigitToChar(t_ATPhyd);

 Buffer[5]='P';
 Buffer[6]='r';
 Buffer[7]='=';
 Buffer[8]=DigitToChar(t_Prel);

 151

 Buffer[10]='D';
 Buffer[11]='r';
 Buffer[12]='=';
 Buffer[13]=DigitToChar(t_ADPrel);

 Buffer[15]='T';
 Buffer[16]='b';
 Buffer[17]='=';
 Buffer[18]=DigitToChar(t_ATPbind);

 UpdateStatusBar(Buffer, 0, 0);
 }

void InitDisplay(HDC hdc)
 {//Initialise display of cytosol - grey box with MT filament at base
 int r,g,b;

 //pale grey background
 for (int y=0;y<=row_max;y++)
 {
 int teny=y*10;
 for (int x=0;x<=col_max;x++)
 {
 PlotBlob(hdc,x*10,teny,10,10,RGB(cytosol_rgb,cytosol_rgb,cytosol_rgb));
 }
 }

 //plot MT filament
 for (int y=0; y<=row_max; y++)
 {
 int teny=y*10;
 for (int x=0; x<=col_max; x++)
 {
 int tenx=x*10;
 r=0;g=0;b=0;
 switch (cytosol[y][x])
 {
 case 0: continue;//already plotted the background
 case MT_beta: r=100; tenx=tenx+5; break;//beta-tubulin brown
 case MT_alpha: r=70; tenx=tenx+5; break;//alpha-tubulin deep brown
 case MT_null: r=10;g=10;b=10; tenx=tenx+5; break;//interior of MT almost black
 //bound kinesin head over beta-tubulin but also overhanging
 //alpha-tubulin (as per EM studies)
 default: b=255; //blue for error
 }
 PlotBlob(hdc,tenx,teny,10,10,RGB(r,g,b));
 }
 }
 }

void PlotHead(HDC hdc,int x,int y,struct head_struct *head)
 {//plots a blob to represent a head, colour-coded for nucleotide binding state
 int r=0,g=0,b=0;

 //traffic light colours for nucleotide, blue for no nucleotide bound
 switch (head->nuc_binding)
 {
 case ATP: r=255; break; //red
 case ADPP: g=255; r=255; break; //yellow
 case ADP: g=255; break; //green
 case null: b=255; break; //blue
 default: b=255; r=255; //purple for unknown state
 }

 PlotBlob(hdc,x*10,y*10,13,10,RGB(cytosol_rgb,cytosol_rgb,cytosol_rgb)); //clear head space
 if (head->MTbinding == k_bound) PlotBlob(hdc,x*10,y*10+2,13,8,RGB(r,g,b)); //display head
abutting MT
 //to indicate bound to MT
 else PlotBlob(hdc,x*10,y*10,13,8,RGB(r,g,b)); //not bound so display head close to MT

 152

 }

void update_cytosol(HDC hdc, struct head_struct *head1,struct head_struct *head2)
 {//puts markers for heads into cytosol array
 //and updates previous positions in head structures

 //put previous head positions in display
 cytosol[head1->prev_posy][head1->prev_posx]=head_prev;
 cytosol[head2->prev_posy][head2->prev_posx]=head_prev;

 //put each head in current position
 cytosol[head1->posy][head1->posx]=head_display;
 cytosol[head2->posy][head2->posx]=head_display;

 //store new/current head positions
 head1->prev_posx=head1->posx;
 head1->prev_posy=head1->posy;
 head2->prev_posx=head2->posx;
 head2->prev_posy=head2->posy;
 }

void display(HDC hdc,struct head_struct *head1,struct head_struct *head2)
 //displays current state of model
 //only changes display where head activity
 //past position of head is grey, present position colour-coded by PlotHead()
 {
 int r,g,b;

 for (int y=0;y<=row_max;y++)
 {
 for (int x=0;x<=col_max;x++)
 {
 switch (cytosol[y][x])
 {
 case 0:
 case MT_beta:
 case MT_alpha:
 case MT_null:
 break;//ignore since don't move
 case head_prev:
 r=cytosol_rgb-20;g=cytosol_rgb-20;b=cytosol_rgb-20;//pale grey
 PlotBlob(hdc,x*10,y*10,13,10,RGB(r,g,b));
 //overwrite previous head position with ghost
 //showing where it was
 break;
 case head_display:
 break;
 default: b=255;r=255;g=0; //error: unknown item in cytosol
 PlotBlob(hdc,x*10,y*10,13,10,RGB(r,g,b));
 //plot a purple blob
 break;
 }
 }
 }
 //display current position of heads
 PlotHead(hdc,head1->posx,head1->posy,head1);
 PlotHead(hdc,head2->posx,head2->posy,head2);
 }

void generate_MT(int MT_top,int left,int right)
 {//Generates MT filament as line of dimers composed of alternate a-tubulin and b-tubulin
 for (int j=left; j<right-1; j=j+2)
 {
 cytosol[MT_top][j]=MT_alpha;
 cytosol[MT_top][j+1]=MT_beta;
 }
 }

void generate_block(int MT_top, int block_pos)

 153

 {//cover MT dimer at block_pos in horizontal direction
 cytosol[MT_top-1][block_pos-1]=MT_null;
 cytosol[MT_top-1][block_pos]=MT_null;
 }

void remove_block(int MT_top, int block_pos, HDC hdc)
 {//remove block from MT in cytosol array and update display
 int x=block_pos-1, y=MT_top-6;

 cytosol[y][x]=0;
 cytosol[y][block_pos]=0;

 //remove from display by overwriting with background grey
 PlotBlob(hdc,x*10,y*10,10,10,RGB(cytosol_rgb,cytosol_rgb,cytosol_rgb));
 PlotBlob(hdc,(x+1)*10,y*10,10,10,RGB(cytosol_rgb,cytosol_rgb,cytosol_rgb));
 }

 154

Appendix C Published papers

Wilson, R. J. (2009). Kinesin’s walk: springy or gated head coordination?

BioSystems 96, 121-6.

Wilson, R. J. (2008). Simulating the Kinesin Walk: a Small Step towards

Understanding Dementia. In UKSim European Symposium on Computer

Modelling and Simulation, pp. 226-31. IEEE.

Wilson, R. J. (2008). Towards a cure for dementia: the role of axonal

transport in Alzheimer's disease. Sci Prog 91, 65-80.

 139

 //repeat until motor engaged or hit RHS of cytosol box

 motor_detached = false; //reset flag which may be set in update_heads()

 if (head1_posx == head1->posx && head2_posx == head2->posx)
 //heads haven't moved along MT since last hydrolysis
 {
 if (step || backstep)
 {
 step=false;backstep=false;futile=true;
 //not a real step: free head has re-bound to same binding site on MT
 }
 }

 if (trace) trace_heads(f,time,head1,head2);

 if (step || backstep || futile)
 {
 //calculate next ATP molecule arrival delay modelled as Poisson process
 calc_ATP_delay(lambda);
 totATPd += (float)t_ATP_binding; //accumulate for calculation of average
 head1_posx = head1->posx;
 head2_posx = head2->posx;
 //save current head positions
 }

 if (step) //forward step has been taken
 {
 steps++; //total forward steps
 step=false; //reset flag
 display_paras('>',0); //forward step indicated in status bar
 }
 else if (backstep) //backward step has been taken
 {
 backsteps++; //total backward steps
 backstep=false; //reset flag
 display_paras('<',0); //backstep indicated in status bar
 }
 else if (futile)//no step but hydrolysis
 {
 futile=false;//reset flag
 futiles++; //total futile hydrolyses
 display_paras('F',0); //futile hydrolysis indicated in status bar
 }
 }//end motor loop

 /*//update display of system to show blow-by-blow motor progress
 //NB significantly decreases simulation speed
 for (int motor=0; motor<last_motor; motor++)
 //display each motor in turn
 display(hdc,&motor_array[motor].heada,&motor_array[motor].headb);
 //*/

 time++;//increment system time

///*
 //if blockage set and timed out then remove
 if (blockage_count > blockage_limit)
 {//blockage_count incremented by forward_step() when clash()
 //see update_heads.h
 remove_block(MT_top,col_max-13, hdc);
 blockage_count=0;
 }
//*/
 } while (any_motors_in_play() && time > 0 && time <= time_max && motor_not_at_RHS
&& no_error);
 //continue while motor processing, not at RHS and no error
 //end of INNER LOOP

 140

 //display end state of run and find finish position
 for (int motor=0; motor<last_motor; motor++)
 {
 display(hdc, &motor_array[motor].heada, &motor_array[motor].headb);
 mfinish[motor] = (motor_array[motor].heada.posx + motor_array[motor].headb.posx)/2;
 //approx motor finish position/s
 }
 //calculate approx cargo finish position
 cfinish = mfinish[0];//finish position for 1 motor
 for (int motor = 1;motor < last_motor; motor++) cfinish = (mfinish[motor] + cfinish)/2;
 //mid finish position for 2 motors
 if (cfinish < 0) cfinish = -cfinish;

 //analyse what motor has done
 if (time >= time_max)
 {//motor has timed out - assume stuck
 UpdateStatusBar("Motor stuck", 0, 0);
 display_result(hdc,t_ATPhydrolysis,t_P_release,t_ADP_release,ATP_base,run,240,0,0);
 stuck++;
 }
 else
 if (steps + backsteps < 2)
 {//motor hasn't processed (needs at least 2 steps)
 UpdateStatusBar("Motor detached", 0, 0);
 display_result(hdc,t_ATPhydrolysis,t_P_release,t_ADP_release,ATP_base,run,0,0,240);
 diffusion++;
 }
 else
 {//motor has processed
 UpdateStatusBar("Procession", 0, 0);
 display_result(hdc,t_ATPhydrolysis,t_P_release,t_ADP_release,ATP_base,run,0,240,0);
 procession++;
 }
 //calculate results for run
 avATPd = totATPd/(float)ATP_count; //average ATP delay over total number of hydrolyses
completed in run
 runlength = ((cfinish - cstart) <= 0)?0:cfinish - cstart;
///*
 //output run results to file
 fprintf(f,"Run %2d L %d (%d to %d) Steps %4d back %2d ATP delay av %.1f T %5d V
%.1f\n",
 run,runlength,cstart,cfinish,steps,backsteps,avATPd,time,
 v_m*(float)runlength/(float)time);
//*/

 if (min_runlength == -1 || runlength < min_runlength) min_runlength = runlength;
 if (runlength > max_runlength) max_runlength = runlength;
 //accumulate totals over all runs
 av_time += (float)time; //run times
 av_steps += (float)steps; //total steps
 av_backsteps += (float)backsteps; //total backsteps
 av_futiles += (float)futiles;
 av_ATP_delay += avATPd;//average ATP arrival delay
 av_ATPs += (float)ATP_count;
 av_runlength += (float)runlength;
 }//end RUN loop

 //calculate averages over runs and output to file
 av_time /= (float)runs;
 av_steps /= (float)runs;
 av_backsteps /= (float)runs;
 av_futiles /= (float)runs;
 av_ATP_delay /= (float)runs;
 av_ATPs /= (float)runs;
 av_runlength /= (float)runs;
 fprintf(f,"Poisson i/p %d Av ATP delay %.1f Procession %d stuck %d diffusion %d\n",
 nominal_ATP_delay,av_ATP_delay,procession,stuck,diffusion);
 fprintf(f,"%d run av: L %.1f (%d to %d) Steps %.1f Backsteps %.1f ATPs % .1f Futiles %.1f
T %.0f V %.1f Dwell %.1f\n",

 141

 runs,av_runlength,min_runlength,max_runlength,av_steps,av_backsteps,av_ATPs,av_futiles,av
_time,
 v_m*av_runlength/av_time,av_time/(av_steps+av_backsteps));
 }//end concentration variation loop

 UpdateStatusBar("Finished", 0, 0);
 fprintf(f,"===mp1 finished===\n\n");
 fclose(f); //close data output file
 EndPaint(hwnd,&ps); //finish with MS Windows
 return 0;
 }//mp1

//END of program

 142

B.4 Update routines

//update_heads.h contains head state update routines
//entry routine is update_heads()

//The stepping conditions depend on the setting of the RBM flag:

//RBM
//===
//If RBM flag is true then following rectified Brownian mechanism (Fox and Choi 2001)
//stepping is a diffusive process with bias provided by zippering.
//Binding of ATP sets up zippering (through conformational change in head) which remains until P
released;
//(Asenjo, Weinberg & Sosa 2006)
//so, as soon as free head diffuses forward, the bound head's neck linker zippers
//and free head restrained local to forward binding site so binds i.e. a step is taken.

//If ATP_gate flag set then ATP hydrolysis gate applied
//This is hypothesised to make hydrolysis v slow unless/until free head binds to next site
//i.e. forward neck linker strain required to make hydrolysis efficient
//(Hancock and Howard, 1999 found that about 10 fold diff between
//hydrolysis time for single and twin head kinesin)

//PS
//==
//If RBM flag is false then
//following power stroke mechanism whereby ATP binding causes linker zippering
// which pulls free head forward to near next binding site so it binds and a step is taken
// (Vale and Milligan 2000)

//If ATP_gate flag also set then ATP binding gate applied
//if both heads are bound when the leading head is in K0 state, then the PS gate operates to stop
ATP binding
//until leading head hydrolyses its ATP and detaches
//(proposed as a head coordination mechanism by Rosenberg et al 2002)

bool zipper_active(struct head_struct *head)
 {//determine whether zipper active
 if ((back_load + load_variation*(get_rand()-0.5))>stall_load) return false;
 //if load sufficient to defeat zippering then return false
 if (RBM)
 //RBM model so if ATP or ADPP bound then head set up for linker zippering
 switch (head->nuc_binding)
 {
 case ATP:
 case ADPP: return true;
 default: return false;
 }
 else //power stroke model where ATP binding is the event causing zippering
 switch (head->nuc_binding)
 {
 case ATP: if (head->hydrolysis_count == 0) return true;
 default: return false;
 }
 }

bool update_head_nuc(int head_nuc_binding, struct head_struct *head, struct head_struct
*other_head)
 {//update nucleotide binding to this head
 //procession cycle is KD->K0->KT->KDP->KDu->KD...
 //Note KDP->KDu requires change to MT binding
 switch (head_nuc_binding) //current nucleotide binding to this head
 {
 case null:
 if (head->MTbinding == k_bound)//always true in present model

 143

 {
 if (ATP_gate && RBM == false && other_head->MTbinding == k_bound && other_head-
>posx < head->posx)
 //if PS with gating and both heads bound and this is the lead head then ATP gate operates
 head->ATP_binding_count++;
 //so count up amount of time in K0 state i.e. waiting for ATP
 else
 {
 if (head->ATP_binding_count >= t_ATP_binding)
 {
 head->ATP_binding_count=0;
 head->nuc_binding=ATP; //ATP binds because binding delay ended
 }
 else head->ATP_binding_count++;
 //count up amount of time in K0 state i.e. waiting for ATP
 }
 }
 else head->nuc_binding=ADP;
 //else ADP binds (since head is free)
 //this would only happen if head pulled off MT
 break;
 case ADP:
 if (head->MTbinding == k_bound)
 //binding to MT liberates ADP when ADP_release_count reached
 {
 if (head->ADP_release_count >= t_ADP_release)
 {
 head->ADP_release_count=0;
 head->nuc_binding=null; //ADP released
 }
 else head->ADP_release_count++; //count up amount of time in KD state
 }
 else head->ADP_release_count=0; //count only happens when bound
 //else it's free to diffuse
 break;
 case ADPP:
 if (head->P_release_count >= t_P_release)
 {
 head->P_release_count=0;
 head->nuc_binding=ADP; //phosphate released
 }
 else head->P_release_count++; //count up amount of time in KDP state
 break;
 case ATP:
 if (RBM && ATP_gate && (other_head->MTbinding == k_free || other_head->posx !=
(head->posx+2)))
 //the RBM ATP gate is operating when switch is on and other head not bound to forward
site...
 {
 if (head->hydrolysis_count >= 10*(t_ATPhydrolysis+1))
 //increase effective delay to ATP binding by 10
 {
 head->hydrolysis_count=0;
 head->nuc_binding=ADPP; //ATP hydrolysed
 ATP_count++; //increment count of number of ATPs hydrolysed
 break;
 }
 }
 else //either PS or RBM without ATP gate so normal hydrolysis
 if (head->hydrolysis_count >= t_ATPhydrolysis)
 {
 head->hydrolysis_count=0;
 head->nuc_binding=ADPP; //ATP hydrolysed
 ATP_count++; //increment count of number of ATPs hydrolysed
 break;
 }
 head->hydrolysis_count++; //count up amount of time in KT state
 break;
 default:

 144

 return false;
 }
 return true;
 }

bool update_head_states_nuc(struct head_struct *head1,struct head_struct *head2)
 //sets next head nucleotide binding state - both heads treated the same way
 {
 int head1_nuc_binding=head1->nuc_binding; //get current head nucleotide binding state
 int head2_nuc_binding=head2->nuc_binding; //get current head nucleotide binding state

 if (update_head_nuc(head1_nuc_binding,head1,head2)==false)
 {
 UpdateStatusBar("ERROR head1 nuc_binding value out of range", 0, 0);
 return false;
 }

 if (AMP_PNP && head2_nuc_binding == ATP) return true;
 //if non-hydrolysable analogue bound to head2 then prevent hydrolysis
 //ref Guydosh and Block experiments

 if (update_head_nuc(head2_nuc_binding,head2,head1)==false)
 {
 UpdateStatusBar("ERROR head2 nuc_binding value out of range", 0, 0);
 return false;
 }
 return true;
 }

bool head_near_MT(struct head_struct *head)
 {//motor has to be above MT before binding and binds at beta-tubulin
 return (cytosol[head->posy+1][head->posx] == MT_beta);
 //true iff head is above beta-tubulin (rather than alpha-tubulin)
 }

bool next_head_MT(struct head_struct *head,int prev_nuc_state,struct head_struct *other_head)
 {//returns MT binding state of this head given the nucleotide binding
 switch (head->nuc_binding) //look at which nucleotide is bound to this head
 {
 case ATP:
 case null:
 case ADPP:
 head->MTbinding=k_bound; //all these states have strong affinity for MT
 break;
 case ADP:
 if (head->MTbinding==k_free && head_near_MT(head)) //free but close to binding site
 {
 head->MTbinding=k_bound;//so dock head to MT
 break;
 }
 if (head->MTbinding==k_bound && prev_nuc_state==ADPP)
 //MT bound but previous state was KDP
 {
 head->MTbinding=k_free;
 //move free head towards other if linker tension
 if (linker_tension>0.)
 {
 if (other_head->posx>head->posx+1)
 head->posx=head->posx+1; //other head is in front
 else if(other_head->posx<head->posx-1)
 head->posx=head->posx-1; //other head is trailing
 //if neither then assume no tension
 }
 }
 break; //no change
 default: return false; //error - unknown nucleotide binding state
 }
 return true;
 }

 145

void forward_step(struct head_struct *free_head,struct head_struct *MT_head)
 {
 if (free_head->posx != MT_head->posx+2)//if not already in position then
 if (Clash(MT_head->posx+2,MT_head->posy))
 //if something in the way of next MT binding site
 {//then don't step
 UpdateStatusBar("Blockage", 0, 0);
 blockage_count++; //count time blocked
 return;
 }
 else
 {//bring free head to next binding site
 free_head->posx=MT_head->posx+2;
 free_head->posy=MT_head->posy;
 }
 step=true; //flag that step has been taken
 }

void back_step(struct head_struct *free_head,struct head_struct *MT_head)
 {
 if (free_head->posx != MT_head->posx-2) //if not already in position then
 {//bring free head to previous binding site
 free_head->posx=MT_head->posx-2;
 free_head->posy=MT_head->posy;
 }
 backstep=true; //flag that backward step has been taken
 }

void process_wait_state(struct head_struct *free_head,struct head_struct *MT_head)
 {
 //one head free, other bound to MT
 //whether step is taken depends on linker strain, load, and zippering status
 if (linker_tension<linker_tension_max)
 //stepping can occur without zippering if linker tension is less than max
 if (get_rand() >= (linker_tension/linker_tension_max))
 //probability of stepping without zippering depends on linker strain
 {
 if (get_rand()>(0.5*(1.0+back_load/stall_load))) forward_step(free_head,MT_head);
 //either direction of step is equally probable at low load
 //but as load increases so does probability of backstep
 else back_step(free_head,MT_head);
 return;
 }
 //else stepping depends on zippering status
 if (zipper_active(MT_head)) forward_step(free_head,MT_head);
 }

bool update(HDC hdc,struct head_struct *head1,struct head_struct *head2)
 {//main head update routine
 struct head_struct current_head1,current_head2;

 //temporarily store part of current states
 current_head1.nuc_binding=head1->nuc_binding;
 current_head1.MTbinding=head1->MTbinding;
 current_head1.posx=head1->posx;
 current_head2.nuc_binding=head2->nuc_binding;
 current_head2.MTbinding=head2->MTbinding;
 current_head2.posx=head2->posx;

 both_heads_bound = false;//reset flag

 //if kinesin free of MT then give heads some Brownian motion
 if (head1->MTbinding==k_free && head2->MTbinding==k_free) //both heads free
 {
 motor_detached = true;//set flag to indicate that motor is diffusing
 if (Brownian(head1,head2) == false) return false; //if false then motor stuck
 }
 else//at least one head bound

 146

 {
 motor_detached = false;
 if (head1->MTbinding == k_free) //head1 free so
 process_wait_state(head1,head2); //make step depending on conditions
 else
 if (head2->MTbinding == k_free) //head2 free so
 process_wait_state(head2,head1); //make step depending on conditions
 else both_heads_bound = true;//both heads bound to MT so step impossible
 }

 //update nucleotide binding
 if (update_head_states_nuc(head1,head2)==false) return false; //if error return false

 //update MT binding given current and previous nucleotide binding
 if (next_head_MT(head1,current_head1.nuc_binding,¤t_head2)==false) return false;
 if (next_head_MT(head2,current_head2.nuc_binding,¤t_head1)==false) return false;

 return true;
 }

B.5 Brownian motion routines

//Brownian.h
//provides rough diffusive motion when motor free of MT
//entry function is Brownian()

float get_rand(void)//return random number between 0.0 and 1.0
 {
 return ((float)rand()/RAND_MAX);
 }

bool Clash(int posx, int posy)
 {//returns true if position blocked
 if (cytosol[posy][posx] < 0) return TRUE; //all contents of cytosol represented by negative
numbers
 return FALSE;
 }

void Diffuse(int *posx1, int *posx2, int *posy1, int *posy2)
 {//move heads together one position at random
 float randno=get_rand();
 bool move_forward = get_rand() > 0.5

 //there are 8 possibilities of moving together...
 if (randno > 0.5)
 {
 if (get_rand() > 0.5)
 {
 if (move_forward)
 { (*posx1)++; (*posx2)++; //move both forward
 }
 else
 { (*posx1)--; (*posx2)--; //move both back
 }
 }
 else
 {
 if (get_rand() > 0.5)
 { (*posy1)++; (*posy2)++; //move both down
 }
 else
 { (*posy1)--; (*posy2)--; //move both up
 }
 }
 }
 else
 {

 147

 if (get_rand() > 0.5)//diagonal: up, forward or back
 {
 (*posy1)++; (*posy2)++;
 if (move_forward)
 { (*posx1)++;(*posx2)++;
 }
 else
 { (*posx1)--;(*posx2)--;
 }
 }
 else //diagonal: down, forward or back
 {
 (*posy1)--; (*posy2)--;
 if (move_forward)
 { (*posx1)++;(*posx2)++;
 }
 else
 { (*posx1)--;(*posx2)--;
 }
 }
 }
 }

void Rotate(int *posx1,int *posx2,int *posy1,int *posy2)
 {//limited rotate of molecule at random
 float randno=get_rand();

 if (*posy1 == *posy2)//heads abreast
 {
 if (randno < 0.2) (*posy1)++; //move head1 down
 else if (0.2 <= randno < 0.4) (*posy1)--; //move head1 up
 else if (0.4 <= randno < 0.6) (*posy2)--; //move head2 up
 else if (0.6 <= randno < 0.8) (*posy2)++; //move head2 down
 //else no change
 }
 else if (*posy1 > *posy2) //1 down, 2 up - assume either stays or rotates clockwise
 {
 if (randno>0.5) (*posy1)--;
 else (*posy2)++;
 }
 else //1 up, 2 down - assume either stays or rotates anticlockwise
 {
 if (randno>0.5) (*posy1)++;
 else (*posy2)--;
 }
 }

bool Brownian(struct head_struct *head1_ptr,struct head_struct *head2_ptr)
 {// Brownian moves heads at random
 int posx1,posx2,posy1,posy2;

 //assumes both heads free so move together at random
 int i=0;
 do {
 if (i++ >= 50) return false;//molecule is stuck somehow
 posx1=head1_ptr->posx; posx2=head2_ptr->posx; //get x positions of heads
 posy1=head1_ptr->posy; posy2=head2_ptr->posy; //get y positions of heads
 //move heads small distance at random
 Diffuse(&posx1,&posx2,&posy1,&posy2); //move heads together
 Rotate(&posx1,&posx2,&posy1,&posy2); //rotate molecule
 //but not outside cytosol box or into MT (or other motor)
 } while (posx1 < 0 || posx2 < 0 || posx1 >= col_max || posx2 >= col_max ||
 posy1 < 0 || posy2 < 0 || posy1 >= row_max || posy2 >= row_max ||
 Clash(posx1,posy1) || Clash(posx2,posy2));

 //remove heads from current position in cytosol
 cytosol[head1_ptr->posy][head1_ptr->posx]=0;
 cytosol[head2_ptr->posy][head2_ptr->posx]=0;
 //update store of head positions

 148

 head1_ptr->posx=posx1; head1_ptr->posy=posy1;
 head2_ptr->posx=posx2; head2_ptr->posy=posy2;
 //place heads in new positions
 cytosol[posy1][posx1]=head_display;
 cytosol[posy2][posx2]=head_display;
 return true;
 }//end of Brownian function

B.6 Analysis routines

//analysis.h includes data analysis, results display and trace routines

void display_result(HDC hdc,int i,int j,int k,int l,int m, int r,int g,int b)
 //plots rough graphs of results under cytosol box display for indicative purposes during run
 {//displays i as x coordinate, j for y coordinate of top left and k+2 for size of colour square
 //l adjusts y to give separate plot areas, one below the other
 int leftx,topy,extent;

 j=j+(result_max+1)*k*4;//combine j with k to move graphs vertically
 leftx=((result_max+1)*i*4+4)+//i horizontally displaces top left corner of each graph
 (result_max+1)*4*(run-1); //also displace to right for each run
 topy=12*row_max+//display results below active transport diagram
 j*4*(result_max+1)+//displaced downwards by j
 4*(result_max+1)*(int)(back_load*2); //and LOAD
// (result_max+1)*(int)(linker_tension); //and LINKER tension
 extent=4*l*(ATP_result_max+1);
 //k displaces series of graphs horizontally

 for (int x=leftx+extent;x<=leftx+extent+3;x++)
 for (int y=topy+3;y>=topy;y--)
 SetPixel(hdc,x,y,RGB(r,g,b));
 }

void analyse_results(FILE *f, int time, int steps, int backsteps, int detachment_count)
 //sorts timing combination result array data into the 3 phases
 // and outputs result to file
 {
 int count=0;

 //write intro
 //fprintf(f,"===Run %d. ADP rel, ATP bind, ATP hydrolysis, P release\nLinker tension
%d\nsteps %d backstep %d detachments %d\nDiffusion phase: ",
 fprintf(f,"===Run %d Load -%.1f linker %.2f av time %d av steps %d av backsteps %d av
detachments %d\nDiffusion phase: ",
 run,back_load,linker_tension,time,steps,backsteps,detachment_count);
 //write data
 for (int i=0; i<result_max; i++)
 for (int j=0; j<result_max; j++)
 for (int k=0; k<result_max; k++)
 for (int l=0; l < ATP_result_max; l++)
 if (results[i][j][k][l] == P_diffusion)
 {
 //fprintf(f,"%d%d%d%d ",k,l,i,j);
 count++;
 }
// fprintf(f,"\n***total %d\n",count);
 fprintf(f,"%d ",count);
 count=0;
 //write intro
 fprintf(f,"Stuck phase: ");
 //write data
 for (int i=0;i<result_max;i++)
 for (int j=0;j<result_max;j++)
 for (int k=0;k<result_max;k++)
 for (int l=0;l < ATP_result_max;l++)
 if (results[i][j][k][l] == P_stuck)
 {

 149

 //fprintf(f,"%d%d%d%d ",k,l,i,j);
 count++;
 }
// fprintf(f,"\n***total %d\n",count);
 fprintf(f,"%d ",count);
 count=0;
 //write intro
 fprintf(f,"Processive phase: ");
 //write data
 for (int i=0;i<result_max;i++)
 for (int j=0;j<result_max;j++)
 for (int k=0;k<result_max;k++)
 for (int l=0;l < ATP_result_max;l++)
 if (results[i][j][k][l] == P_processive)
 {
 //fprintf(f,"%d%d%d%d ",k,l,i,j);
 count++;
 }
// fprintf(f,"\n***total %d\n",count);
 fprintf(f,"%d ",count);
 count=0;
 //write intro
// fprintf(f,"Missing data :");
 //write data
 for (int i=0;i<result_max;i++)
 for (int j=0;j<result_max;j++)
 for (int k=0;k<result_max;k++)
 for (int l=0;l < ATP_result_max;l++)
 if (results[i][j][k][l] == -1)
 {
 //fprintf(f,"%d%d%d%d ",k,l,i,j);
 count++;
 }
// fprintf(f,"\ntotal %d\n",count);
 if (count>0) fprintf(f,"Missing data total %d\n",count);
 fprintf(f,"\n");
 }

void trace_heads(FILE *f,int time,struct head_struct *head1, struct head_struct *head2)
 {//outputs trace of head states to file
 bool selector=(head1->posx<=head2->posx);//position trace of heads reflecting actual position

 if (head1->MTbinding == k_free && head2->MTbinding == k_free)
 {
 if (head1->nuc_binding != ADP || head2->nuc_binding != ADP)
 fprintf(f,"\nBoth heads should be KDu?!\n");
 uucount++; //tally detached states
 if (uucount > 1) return; //since no point in outputting successive u.u
 }
 else
 {
 if (uucount > 1) fprintf(f,"(%d) ",uucount+1); //total contiguous u.u states
 uucount=0;
 }
 switch (selector?head1->nuc_binding:head2->nuc_binding) //trailing head
 {
 case null:fprintf(f,"0");break;
 case ATP:fprintf(f,"T");break;
 case ADPP:fprintf(f,"P");break;
 case ADP:if (selector) fprintf(f,"%c",(head1->MTbinding == k_bound)?'D':'u');
 else fprintf(f,"%c",(head2->MTbinding == k_bound)?'D':'u');
 break;
 }
 if (step) fprintf(f,">>");
 else if (backstep) fprintf(f,"<<");
 else fprintf(f,".");
 switch (selector?head2->nuc_binding:head1->nuc_binding)//leading head
 {
 case null:fprintf(f,"0");break;

 150

 case ATP:fprintf(f,"T");break;
 case ADPP:fprintf(f,"P");break;
 case ADP:if (selector) fprintf(f,"%c",(head2->MTbinding == k_bound)?'D':'u');
 else fprintf(f,"%c",(head1->MTbinding == k_bound)?'D':'u');
 break;

 }
 fprintf(f," ");
 }

B.7 Display routines

//display.h
//display routines

void UpdateStatusBar(LPSTR lpszStatusString, WORD partNumber, WORD Flags);
 //displays text in status bar at bottom of window

void PlotBlob(HDC hdc, int leftx, int topy, int xlength, int ylength,COLORREF rgb)
 {//plots a rectangle xlength by ylength pixels with top left coordinates leftx, topy
 // in rgb colour with 1 pixel grey border
 xlength--; ylength--;
 for (int x=leftx; x<=leftx+xlength; x++)
 for (int y=topy+ylength; y>=topy; y--)
 {
 if (x==leftx && (y==topy+ylength || y==topy) || x==leftx+xlength &&
 (y==topy+ylength || y==topy)) //cytosol grey border
 SetPixel(hdc,x,y,RGB(cytosol_rgb,cytosol_rgb,cytosol_rgb));
 else SetPixel(hdc,x,y,rgb);
 }
 }

char DigitToChar(int digit)
 {
 switch (digit)
 {
 case 0: return '0';
 case 1: return '1';
 case 2: return '2';
 case 3: return '3';
 case 4: return '4';
 case 5: return '5';
 case 6: return '6';
 case 7: return '7';
 case 8: return '8';
 case 9: return '9';
 }
 return('*');
 }

void display_paras(void)
 {//displays head event timings in status bar
 static char Buffer[20];

 for (int i=4; i<15; i++) Buffer[i]=' ';

 Buffer[19]=0;
 Buffer[0]='T';
 Buffer[1]='h';
 Buffer[2]='=';
 Buffer[3]=DigitToChar(t_ATPhyd);

 Buffer[5]='P';
 Buffer[6]='r';
 Buffer[7]='=';
 Buffer[8]=DigitToChar(t_Prel);

 151

 Buffer[10]='D';
 Buffer[11]='r';
 Buffer[12]='=';
 Buffer[13]=DigitToChar(t_ADPrel);

 Buffer[15]='T';
 Buffer[16]='b';
 Buffer[17]='=';
 Buffer[18]=DigitToChar(t_ATPbind);

 UpdateStatusBar(Buffer, 0, 0);
 }

void InitDisplay(HDC hdc)
 {//Initialise display of cytosol - grey box with MT filament at base
 int r,g,b;

 //pale grey background
 for (int y=0;y<=row_max;y++)
 {
 int teny=y*10;
 for (int x=0;x<=col_max;x++)
 {
 PlotBlob(hdc,x*10,teny,10,10,RGB(cytosol_rgb,cytosol_rgb,cytosol_rgb));
 }
 }

 //plot MT filament
 for (int y=0; y<=row_max; y++)
 {
 int teny=y*10;
 for (int x=0; x<=col_max; x++)
 {
 int tenx=x*10;
 r=0;g=0;b=0;
 switch (cytosol[y][x])
 {
 case 0: continue;//already plotted the background
 case MT_beta: r=100; tenx=tenx+5; break;//beta-tubulin brown
 case MT_alpha: r=70; tenx=tenx+5; break;//alpha-tubulin deep brown
 case MT_null: r=10;g=10;b=10; tenx=tenx+5; break;//interior of MT almost black
 //bound kinesin head over beta-tubulin but also overhanging
 //alpha-tubulin (as per EM studies)
 default: b=255; //blue for error
 }
 PlotBlob(hdc,tenx,teny,10,10,RGB(r,g,b));
 }
 }
 }

void PlotHead(HDC hdc,int x,int y,struct head_struct *head)
 {//plots a blob to represent a head, colour-coded for nucleotide binding state
 int r=0,g=0,b=0;

 //traffic light colours for nucleotide, blue for no nucleotide bound
 switch (head->nuc_binding)
 {
 case ATP: r=255; break; //red
 case ADPP: g=255; r=255; break; //yellow
 case ADP: g=255; break; //green
 case null: b=255; break; //blue
 default: b=255; r=255; //purple for unknown state
 }

 PlotBlob(hdc,x*10,y*10,13,10,RGB(cytosol_rgb,cytosol_rgb,cytosol_rgb)); //clear head space
 if (head->MTbinding == k_bound) PlotBlob(hdc,x*10,y*10+2,13,8,RGB(r,g,b)); //display head
abutting MT
 //to indicate bound to MT
 else PlotBlob(hdc,x*10,y*10,13,8,RGB(r,g,b)); //not bound so display head close to MT

 152

 }

void update_cytosol(HDC hdc, struct head_struct *head1,struct head_struct *head2)
 {//puts markers for heads into cytosol array
 //and updates previous positions in head structures

 //put previous head positions in display
 cytosol[head1->prev_posy][head1->prev_posx]=head_prev;
 cytosol[head2->prev_posy][head2->prev_posx]=head_prev;

 //put each head in current position
 cytosol[head1->posy][head1->posx]=head_display;
 cytosol[head2->posy][head2->posx]=head_display;

 //store new/current head positions
 head1->prev_posx=head1->posx;
 head1->prev_posy=head1->posy;
 head2->prev_posx=head2->posx;
 head2->prev_posy=head2->posy;
 }

void display(HDC hdc,struct head_struct *head1,struct head_struct *head2)
 //displays current state of model
 //only changes display where head activity
 //past position of head is grey, present position colour-coded by PlotHead()
 {
 int r,g,b;

 for (int y=0;y<=row_max;y++)
 {
 for (int x=0;x<=col_max;x++)
 {
 switch (cytosol[y][x])
 {
 case 0:
 case MT_beta:
 case MT_alpha:
 case MT_null:
 break;//ignore since don't move
 case head_prev:
 r=cytosol_rgb-20;g=cytosol_rgb-20;b=cytosol_rgb-20;//pale grey
 PlotBlob(hdc,x*10,y*10,13,10,RGB(r,g,b));
 //overwrite previous head position with ghost
 //showing where it was
 break;
 case head_display:
 break;
 default: b=255;r=255;g=0; //error: unknown item in cytosol
 PlotBlob(hdc,x*10,y*10,13,10,RGB(r,g,b));
 //plot a purple blob
 break;
 }
 }
 }
 //display current position of heads
 PlotHead(hdc,head1->posx,head1->posy,head1);
 PlotHead(hdc,head2->posx,head2->posy,head2);
 }

void generate_MT(int MT_top,int left,int right)
 {//Generates MT filament as line of dimers composed of alternate a-tubulin and b-tubulin
 for (int j=left; j<right-1; j=j+2)
 {
 cytosol[MT_top][j]=MT_alpha;
 cytosol[MT_top][j+1]=MT_beta;
 }
 }

void generate_block(int MT_top, int block_pos)

 153

 {//cover MT dimer at block_pos in horizontal direction
 cytosol[MT_top-1][block_pos-1]=MT_null;
 cytosol[MT_top-1][block_pos]=MT_null;
 }

void remove_block(int MT_top, int block_pos, HDC hdc)
 {//remove block from MT in cytosol array and update display
 int x=block_pos-1, y=MT_top-6;

 cytosol[y][x]=0;
 cytosol[y][block_pos]=0;

 //remove from display by overwriting with background grey
 PlotBlob(hdc,x*10,y*10,10,10,RGB(cytosol_rgb,cytosol_rgb,cytosol_rgb));
 PlotBlob(hdc,(x+1)*10,y*10,10,10,RGB(cytosol_rgb,cytosol_rgb,cytosol_rgb));
 }

 154

Appendix C Published papers

Wilson, R. J. (2009). Kinesin’s walk: springy or gated head coordination?

BioSystems 96, 121-6.

Wilson, R. J. (2008). Simulating the Kinesin Walk: a Small Step towards

Understanding Dementia. In UKSim European Symposium on Computer

Modelling and Simulation, pp. 226-31. IEEE.

Wilson, R. J. (2008). Towards a cure for dementia: the role of axonal

transport in Alzheimer's disease. Sci Prog 91, 65-80.

BioSystems 96 (2009) 121–126

Contents lists available at ScienceDirect

BioSystems

journa l homepage: www.e lsev ier .com/ locate /b iosystems

Kinesin’s walk: Springy or gated head coordination?

Richard J. Wilson ∗

MOAC Centre, University of Warwick, Coventry CV4 7AL, UK

a r t i c l e i n f o

Article history:
Received 11 July 2008
Received in revised form 12 December 2008
Accepted 18 December 2008

Keywords:
Rectified Brownian motion
ATP gating
Motor protein procession
Entropic strain
Agent-based modeling

a b s t r a c t

Conventional kinesin (kinesin-1) is a motor protein that performs a vital function in the eukaryotic cell: it
actively transports cargo to required destinations. Kinesin pulls cargo along microtubule tracks using twin
linked motor domains (heads) that bind the microtubule, hydrolyse ATP, and alternately step forward.
The detail of the kinesin walk has yet to be discovered but a prominent theory is that the mechanism
is rectified Brownian motion (RBM) biased by linker zippering. There is evidence that an ATP binding
gate coordinates the heads. The hypothesis proposed here is that the gate is unnecessary, that entropic
linker strain is sufficient to enable procession. An agent-based computer simulation has been devised to
explore head coordination in the RBM model. Walking was found to emerge in silico without a gate to
synchronise the heads. Further investigation of the model by applying a range of hindering loads resulted
in backstepping or detachment with similar characteristics to behaviour observed in vitro. It is unclear
whether kinesin waits at an obstacle but adding an ATP hydrolysis gate to the model in order to force
waiting resulted in the model behaving less realistically under load. It is argued here that an RBM model
free of gating is a good candidate for explaining kinesin procession.

© 2008 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Cell survival is dependent upon the active transport of macro-
molecules, vesicles and organelles to their functional destinations.
Long distance active transport is particularly important to neu-
rons which have extended projections, the longest being the
axon (Hirokawa, 1998). Failure of axonal transport is implicated
in neurodegenerative diseases including motor neuron disease,
Huntington’s disease, amyotrophic lateral sclerosis and Alzheimer’s
disease (Gunawardena and Goldstein, 2004; Roy et al., 2005) and
is thought to be an early event in the development of Alzheimer’s
(Stokin et al., 2005). Improving our understanding of axonal trans-
port is therefore an important task in the programme to conquer
such disease.

Long distance axonal transport is accomplished by motor pro-
teins that traverse microtubules. Microtubules are hollow, 25 nm
diameter tubes, typically composed of 13 laterally bound filaments
consisting of 8 nm long tubulin heterodimers that spontaneously
bond end to end. This structure makes a microtubule a polar poly-
mer with a ring of �-tubulins at the minus end and one of �-tubulins
at the plus end (Nogales et al., 1999). The motor protein under
investigation here is the most studied member of the kinesin fam-
ily of motor proteins known as conventional kinesin or kinesin-1,
referred to herein simply as kinesin. Kinesin is a homodimer com-

∗ Tel.: +44 2476 574695; fax: +44 2476 575795.
E-mail address: richard.j.wilson@warwick.ac.uk.

prising 2 heavy and 2 light chains (Vale, 2003). Each heavy chain
N-terminal region forms a globular motor domain (head) connected
by a short, flexible, single polypeptide neck linker to a long, coiled-
coil stalk. The stalks form the dimer and, at their C-terminal region,
combine with the light chains to form a fan-like tail which binds to
cargo. The heads have two binding sites: one binds and hydrolyses
the nucleotide ATP, the other binds a microtubule with nucleotide-
dependent strength (Uemura et al., 2002).

Kinesin walks along the outside of a microtubule towards the
plus end by processively stepping along a filament for some hun-
dreds of steps (Howard et al., 1989; Ray et al., 1993). A single ATP
molecule is hydrolysed at each step (Schnitzer and Block, 1997)
which moves the molecule forward by the length of a tubulin dimer
(Svoboda et al., 1993). The weight of experimental evidence favours
an asymmetric hand-over-hand stepping over the alternative possi-
bilities of symmetric hand-over-hand or inchworm motion: kinesin
walks in a similar manner to toeing a line (Asbury, 2005).

The way kinesin utilises the free energy of ATP hydrolysis to tow
cargo has provoked controversy. Rice et al. (1999) observed that
ATP binding causes a conformational change in the normally flexi-
ble neck linker: it becomes fixed (zippered) to the head and aligned
in the direction of motion. Vale and Milligan (2000) proposed that
this change constitutes a power stroke whereby zippering pulls
the free head forwards to the next binding site via its neck linker.
Given a stall force of 6 pN together with a step of 8 nm, kinesin
develops 48 pN nm of work per step (29 kJ/mol) but the free energy
of zippering is calculated to be about 3 kJ/mol (Rice et al., 2003)
which is clearly not enough to power kinesin. An alternative role for

0303-2647/$ – see front matter © 2008 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.biosystems.2008.12.002

122 R.J. Wilson / BioSystems 96 (2009) 121–126

zippering has been proposed by Fox and Choi (2001) on the basis
that viscosity and thermal forces are dominant at the nanoscale.
In their model, stepping is achieved by rectified Brownian motion
(RBM). Rather than being a source of force, zippering provides direc-
tionality by forward biasing the otherwise random motion of the
free head. The work done by kinesin in transporting its load is then
powered by diffusion and binding of the free head to the next site
on the microtubule.

There is controversy about kinesin’s configuration when the
molecule is waiting for ATP to bind during procession (the wait
state). Yildiz et al. (2004) propose that both heads are bound to the
microtubule whereas Mori et al. (2007) propose that one head is
detached. There are four possible configurations of the ADP-bound
head: bound and waiting to step forward, free to diffuse, parked,
or bound after stepping, but no conclusive evidence determining
which configuration is correct (Hackney, 2007). The configuration
assumed in this study is that the head is free to diffuse. Given that
the neck linkers are flexible, the question then is why the free head
does not bind the microtubule and so take a forward or backward
step before ATP arrives. The proposal made here is that the mecha-
nism is entropic linker strain, whereby thermal forces render linkers
spring-like.

Entropic linker strain has previously been proposed as a mecha-
nism to pull the free head away from the microtubule following
phosphate release and to prevent re-binding (Rice et al., 2003).
Since occasional backstepping has been observed during proces-
sion (Svoboda and Block, 1994), it is proposed here that linker strain
does not prevent re-binding but does make it unlikely. If the link-
ers were completely flexible then the free head could diffuse as
far as either binding site but the spring-like nature of the linkers
significantly reduces the likelihood of it reaching either site (Fig.
1a). Normal stepping occurs after ATP binds causing zippering in
the forward direction (Rice et al., 1999). The free head can now no
longer reach the rear MT binding site (Fig. 1b) and stepping forward
is promoted by the entropic strain reduction of zippering.

Fig. 1. Diagrammatic depiction of kinesin’s motor domain in (a) wait state; (b) after
zippering of linker. Head depicted as dark blue rectangle (D indicates ADP-bound;
T indicates ATP-bound; 0 indicates nucleotide-free), neck linkers as irregular lines,
microtubule as light blue rectangles labelled � for �-tubulin, � for �-tubulin. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of the article.)

This paper focuses on the mechanism of procession with spe-
cial reference to the role of head coordination. Procession requires
that one head detaches and steps forward while the other stays
bound to the microtubule. Detachment occurs when phosphate is
released after ATP hydrolysis. If the bound head completes hydrol-
ysis and detaches before the free head binds then kinesin would
diffuse away from the microtubule. Rosenfeld et al. (2003) propose
that neck linker strain resulting from both heads being bound pre-
vents ATP from binding until the strain is released by one head
detaching thus providing a coordinating point in the kinetic cycle.
Mather and Fox (2006) incorporate this gating mechanism in their
RBM model. The hypothesis put forward in this paper is that ATP
gating is not necessary for head coordination; rather, entropic neck
linker strain suffices to enable kinesin procession. An agent-based
simulation has been developed to test the hypothesis and investi-
gate the resulting model. Procession was found to emerge without
an ATP binding gate in silico thus lending support to the hypothesis.
Subjecting simulated kinesin to hindering loads resulted in back-
stepping or detachment, behaviour observed in vitro (Nishiyama
et al., 2002; Carter and Cross, 2005). Placing a barrier on the track
caused the simulated kinesin to diffuse away from the microtubule
as observed in vitro by Crevel et al. (2004). Seitz and Surrey (2006),
however, found that kinesin waits at an obstacle. An ATP hydroly-
sis gate was necessary to replicate waiting behaviour in silico but
was found to have a negative effect on processivity and load char-
acteristics. A non-gated RBM model is proposed as the most likely
candidate to explain kinesin’s procession.

2. The Simulation

Most previous modelling of kinesin has taken one of two
approaches: Brownian ratchet or chemical-kinetic (Kolomeisky and
Fisher, 2007). In the Brownian (or thermal) ratchet model a parti-
cle moves stochastically between potentials; in the kinetic model it
moves through a series of chemical states linked by rate constants.
The focus of these models is to re-create data relationships found in
single-molecule laboratory experiments such as that between load
and velocity.

Here, a systems approach is taken with the focus on the rela-
tionship between procession of the molecule and the motive
component parts: the heads and their linkers; procession is not
built into the model but emerges if the heads coordinate. The author
has designed and programmed a discrete, event-driven simulation
with a fixed-increment clock incorporating elements of previous
approaches to produce an original method of modelling kinesin.
Previous work with this model indicated that rectified Brownian
motion is a better candidate than a power stroke for the stepping
mechanism (Wilson, 2008b). The new work reported here builds
on the earlier study by further exploring the RBM theory with
the immediate intent of providing indicative results relating to its
theoretical viability without ATP gating. Definitive results require
experimental evidence but the work presented and discussed here
in the light of laboratory findings can at least stimulate debate and
further experiments which will progress our knowledge about the
kinesin walk. Simple, agent-based modelling was chosen for its
scalability and it is intended that a model of axonal transport will be
built up from this preliminary work in order to investigate failure
modes relevant to neurodegeneration.

2.1. Modelling the Motor Domain

Kinesin’s motor domain is composed of twin heads connected
by neck linkers to the base of the stalk. The motor is confined to a
2D box representing a small section of cytosol containing a micro-
tubule filament. The heads are treated as identical agents, following

R.J. Wilson / BioSystems 96 (2009) 121–126 123

the same hydrolysis and binding rules. Each head is modelled as a
separate finite state machine (FSM) or finite state automaton: a set
of discrete states with transitions between them where the next
state depends on the previous state and the current input (if any).
There are five possible states of nucleotide and microtubule binding
for a kinesin head. These are denoted by KD, K0, KT, KDP and KDu
which represent, respectively, a kinesin head bound to ADP, to no
nucleotide, to ATP, to hydrolysed ATP (all bound to the microtubule)
and to the ADP-bound head free of the microtubule. The transition
sequence between the states of the machine is:

KDu → KD → K0 → KT → KDP → KDu . . .

Procession occurs if each head goes through the transition
sequence but out of phase as can be seen in Fig. 2 which illustrates
the procession cycle resulting from head coordination. Entry into
the cycle is initiated when kinesin in solution encounters the micro-
tubule. One head binds to the microtubule which causes the head to
release its ADP while the other head remains free (Hackney, 1994).
This configuration is assumed to be identical to the wait state that
occurs during procession when the molecule is awaiting ATP. ATP
binds the nucleotide-free head causing its neck linker to zipper to
the head (Rice et al., 1999) which results in the ADP-bound head
binding to the next microtubule binding site. This in turn causes
ADP release followed by ATP binding and hydrolysis. Meanwhile
the other head hydrolyses ATP, releases phosphate and detaches
(Rosenfeld et al., 2003; Klumpp et al., 2004). Thus each head alter-
nately steps forward and hydrolyses ATP: kinesin walks along the
microtubule.

The following series of rules embodies the hydrolysis cycle and
the interaction between individual head and microtubule:

(1) If an ADP-bound head encounters the microtubule, it binds
(KDu → KD)

(2) Binding to the microtubule causes ADP release (KD → K0)
(3) ATP binds the empty head (K0 → KT)
(4) The bound head hydrolyses ATP (KT → KDP)
(5) Head detachment occurs with phosphate release (KDP → KDu)

The corresponding FSM is shown in Fig. 3; it applies to both
heads. Inter-head gating is deliberately left out of the kinetic cycle
described by these rules as the purpose is to see under what con-
ditions the heads operating independently can coordinate.

2.2. Linker Strain and Stepping

In this model linker strain influences stepping during the wait
state which occurs during procession when kinesin is waiting for
ATP to bind, just before stepping. There are several possible con-
figurations for the wait state but no definitive evidence selecting
one option (Hackney, 2007). The controversial assumption made
here is that the wait state comprises one head bound and one head
free. This occurs in the model after rule 2 has been applied to one

Fig. 3. FSM state transition diagram.

head and rule 5 has been applied to the other. One head is then
nucleotide free and bound to the microtubule awaiting ATP and the
other is ADP-bound and diffusing subject to restraint by the neck
linkers as illustrated in Fig. 1a and the rightmost state depicted in
Fig. 2.

The stepping of the free head in the wait state is simulated by a
pseudo-random number function such that there is an equal prob-
ability of the head moving forwards or backwards. Whether or not
the head binds the microtubule depends on the entropic linker
strain though this does not affect the probability of forward com-
pared to rearward binding. The strain is treated as a variable when
examining its effect on kinesin’s processive behaviour. At maximum
strain the free head cannot reach either binding site while, for lower
values of strain, the probability of binding depends inversely on the
value of the strain. Note that this is not the relationship between
binding probability and strain in the loading experiments where
the strain value (and hence the probability) is fixed to a realistic
value in that the resulting frequency of backstepping matches in
vitro observations.

2.3. Zippering

Zippering is modelled as a switch that is activated when the
wait state is exited by ATP binding (rule 3 above) and reset when
phosphate is released (rule 5 above). Thus activation of the switch
simulates the setting up of zippering of the neck linker to the bound
head and resetting the switch simulates the linker unzippering. The
probability of a forward step is made certain when the free head
diffuses forwards and the zippering switch is set (see Fig. 1b).

2.4. Load

The effect of hindering load is simulated by altering the opera-
tion of the zippering switch. Loads less than 4 pN are assumed to

Fig. 2. Kinesin procession as a series of states or snapshots of the motor domain (adapted from Vale and Milligan, 2000). A short section of microtubule is depicted as
alternating light and dark tubulins at the base of each snapshot. Kinesin is stepping along the microtubule towards the right. The capital letter above each head indicates
which nucleotide is bound: D for ADP; T for ATP; DP for hydrolysed ATP; 0 for none.

124 R.J. Wilson / BioSystems 96 (2009) 121–126

have no effect on zippering, the probability of zippering is progres-
sively reduced as the load is increased from 4 pN to 7 pN, and loads
above 7 pN prevent zippering. There is no attempt to model any
effect load may have on head binding.

2.5. Obstacle

An obstacle can be placed towards the plus end of the micro-
tubule for a given time interval. Initial simulation results with a
barrier on the microtubule (Section 3.4) indicated the possible need
for an additional modelling constraint: an ATP hydrolysis gate. The
gate was implemented by slowing ATP hydrolysis tenfold unless
the partner head is bound to the forward binding site. This mir-
rors the experimental finding by Hancock and Howard (1999) that
single-headed kinesin hydrolyses ATP ten times slower than native
kinesin.

In order to show the progression of the simulation, the state
of the system is displayed in a graphic window. The activity of
the motor is displayed at the top of the screen while a results
summary is plotted underneath. The experimenter can thus keep
a visual check on the system’s behaviour. As a first step towards
modelling axonal transport, the heads are contained within a two-
dimensional box representing an area of cytosol containing a length
of microtubule filament laid out laterally as alternate �- and �-
tubulins. Each simulation run starts with kinesin positioned at the
same location near the minus end of the microtubule. Pseudo-
random motion is applied to each head to approximate diffusion
until the motor engages with the microtubule. The simulation run
is terminated when the motor reaches the plus end of the micro-
tubule or becomes stuck with both heads permanently bound. In
order to minimise pseudo-random bias affecting the results, each
run of the program was repeated five times and an average over the
values taken as a data point. Results are output to file for analysis.

3. Results and Discussion

3.1. Head Coordination and Procession

The mechanical conditions for procession are that at least one
head is bound to the microtubule at all times and that the heads take
it in turns to detach and step forward. If the first condition were not
met then kinesin would diffuse away from the microtubule. If the
second condition were not met then kinesin would stall, remaining
tightly bound to the microtubule. To achieve the required head coor-
dination, an ATP binding gate has been proposed whereby binding
of ATP to the nucleotide-free head is prevented by neck linker
strain resulting from both heads being bound to the microtubule
(Rosenfeld et al., 2003). Support for this view comes from in vitro
experiments with mutant kinesins indicating that detachment of
the partner head is necessary to enable ATP binding (Klumpp et al.,
2004). It is possible that native kinesin does not employ this coor-
dination mechanism; the alternative proposed here is that entropic
linker strain is all that is necessary.

In order to test the hypothesis that entropic neck linker strain
is sufficient to coordinate the heads, the simulation was used to
assess the effect of varying the strain on processivity. Processiv-
ity was measured by determining whether procession arose under
different head event timing conditions. The timing of 3 events
was varied: ADP release (KD → K0), ATP hydrolysis (KT → KDP),
and phosphate release with head detachment (KDP → KDu). Each
parameter was given a value in the range 1–3 and all possible
combinations (33 = 27) run through for each level of linker strain.
These values are relative to the timing of head binding (KDu → KD)
which is treated here as a constant. Neck linker strain was lin-
early varied from 0 (representing no strain) to 10 (representing

Fig. 4. Relationship between neck linker strain and timing combinations giving rise
to procession. Hollow bars show values for the model without the ATP gate, filled
bars show values for the model with the ATP gate.

enough strain to prevent binding without zippering). The number
of timing combinations which resulted in uninterrupted proces-
sion along the microtubule was counted for each strain value. This
was deemed a suitable measure of head coordination as any inter-
ruption to procession would entail both heads detaching from the
microtubule which can only happen if the heads lose coordina-
tion.

The hypothesis is supported by the simulation results which are
displayed in histogram form as hollow bars in Fig. 4. The model
shows procession without an ATP binding gate under the whole
range of timing conditions at high linker strain (values above 7).
The percentage of timing conditions producing procession slowly
reduces with strain though remaining above 60% until a dramatic
drop to below 10% when the strain is reduced to zero. Thus linker
strain coordinates the heads over a range of timings though it is not
essential since some timing combinations gave rise to procession
even without strain.

The filled bars in Fig. 4 show that the ATP hydrolysis gate
decreases the incidence of procession except at maximum and very
low linker strain. The effect of ATP gating is most striking with zero
linker strain where over 70% of the timings resulted in procession:
comparable to an ungated linker strain of 2. The simulation con-
firms that ATP gating is therefore a potential alternative stabilising
factor for kinesin as would be expected given its direct influence
in head synchronisation though linker strain is more effective than
ATP gating at head coordination in this model.

3.2. Load, Stepping and Detachment

The proposed model accounts for the occasional backward
movement observed under light load and the increase in backstep-
ping with increasing load observed in vitro (Svoboda and Block,
1994; Nishiyama et al., 2002; Carter and Cross, 2005). Backstepping
at light loads (loads that do not affect zippering), can be explained
by considering the wait state. The wait state is the period after one
head has released ADP and before ATP binds. The model assumes
that its partner head is free to diffuse. In this configuration, if we
further assume that entropic neck linker tension makes binding and
ADP release improbable (rather than impossible), there is a small
window of opportunity for the free head to bind the rear site and
release ADP thus the model predicts that kinesin takes an occa-
sional backstep even at low load. As the load is increased it begins
to counteract the biasing effect of zippering so that the number of
backsteps increases. At stall, the load is high enough to counteract
zippering so that equal numbers of forward and backward steps are
taken resulting in no net movement.

R.J. Wilson / BioSystems 96 (2009) 121–126 125

Fig. 5. Relationship between hindering load, stepping and detachment for model
(a) without ATP gate; (b) with ATP gate. Green square with plus sign inset indicates
fraction of forward steps, blue square with cross inset is fraction of backward steps,
orange triangle is fraction of detachments in terms of total steps. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of the article.)

Fig. 5 shows the result of varying hindering load on the modelled
kinesin. The plot shows approximate equalisation of forward and
backward steps at a load of 7.5 pN which is within the range of
stall force (7–8 pN) reported by Nishiyama et al. (2002) and Carter
and Cross (2005). The model shows the same trends of increased
backstepping and detachments with increasing load above about
5 pN as reported by Nishiyama et al. (2002) (Fig. 5a, page 792). The
results therefore favour the ungated model.

Intriguing behaviour in the presence of a non-hydrolysable ana-
logue of ATP in vitro was discovered by Guydosh and Block (2006).
They observed isolated backsteps during a long pause (up to several
seconds) culminating in a final backstep before return to nor-
mal procession. They hypothesise that the backward linker strain
caused by a backstep increases the probability that the analogue is
released from the leading head to be replaced by ATP thus restarting
normal procession. The model proposed in this paper predicts the
pause because the analogue behaves like ATP, causing the linker to
zipper so preventing the free head from reaching the rear site. Thus,
at low load, kinesin is stuck in place on the microtubule with the
leading head futilely hydrolysing ATP. Guydosh and Block used an
optical force clamp to provide hindering loads of 4.5 pN and 5.3 pN.
It is proposed here that fluctuations in the load would occasionally
apply sufficient force to unzipper the linker in which case a back-
step may occur though it is likely to be isolated and infrequent as
they observed.

3.3. Contrary Evidence of Wait State Configuration

The model proposed here depends on the detached head being
free to diffuse in the wait state. Evidence for a different configura-
tion is therefore a challenge to the model. Yildiz et al. (2004) suggest
that both heads are bound in the wait state. They labelled one head
with a fluorophore and observed kinesin at low ATP concentration
to extend the duration of the wait state. Alternating movement aver-
aging 0 nm and 17 nm (the length of 2 tubulin dimers) was recorded
corresponding to alternate stepping as would be expected with
hand-over-hand motion. They suggest that this result also points

to the wait state configuration being both heads bound since a free
fluorescent head would introduce a further signal into the data.
An alternative interpretation of the data depends on the lifetime
of the wait state at the ATP concentration used in the experiment
(340 nM). It is acknowledged that the stepping time (once ATP has
bound) is much too short to register on the timescale of their image
capture (0.33 s). Perhaps the wait state is also too short to affect the
measurement: if the time that the fluorescent head is freely diffus-
ing is much shorter than the image detection time then the signal
from it will be lost in the noise.

Alonso et al. (2007) propose that one head is detached from
the microtubule in the wait state but that it is not free to diffuse.
They found that mixing kinesin with unpolymerised tubulin dimers
caused only one head to bind in the absence of ATP. Their explana-
tion is that the second head is parked, unable to bind, until released
by the arrival of ATP. If this is the configuration of the wait state
then clearly the model proposed in this paper is incorrect. A pos-
sible explanation for their data arises from the fact that, without
cargo, kinesin is folded such that the tail inhibits normal proces-
sion (Cross and Scholey, 1999). The unbound head might then be
effectively parked by the tail obscuring its tubulin binding site until
ATP binding releases it. Thus the findings may only apply to kinesin
in solution and not to kinesin pulling cargo. In any case, if the head
were parked in the wait state during normal transport then it is
difficult to see how backstepping could occur.

3.4. Blocked Kinesin and the ATP Hydrolysis Gate

A long-term goal of studying kinesin is to discover more about
how transport fails since this is implicated in neurodegenerative
disease such as Alzheimer’s (Wilson, 2008a). A first step in this
direction is to explore the effect of a blockage on the microtubule. In
this study, confronting simulated processing kinesin with a block-
age caused the molecule to detach and diffuse away from the
microtubule. This behaviour is in line with the results of an in vitro
study by Crevel et al. (2004) who found that, when confronted with
an obstacle, kinesin detached after one hydrolysis cycle.

Contrary behaviour was observed by Seitz and Surrey (2006),
however, who used a mutant kinesin that diffused away after
stalling on the microtubule to provide a temporary blockage.
Though native kinesin was slowed by the mutant there was lit-
tle effect on procession distance (run length). They concluded that
confronting kinesin with a temporary obstacle forces the motor
into a wait state. The simulated kinesin diffuses away because
the free head is prevented from reaching the next binding site
by the barrier but the bound head hydrolyses ATP then detaches
as it would during procession. Hancock and Howard (1999) com-
pared the ATPase rate of native kinesin to that of a single-headed
mutant: it was an order of magnitude faster. If kinesin behaves like
the single-headed mutant when confronted by an obstacle then it
would wait. An optional ATP gate was incorporated into the model
whereby hydrolysis can be slowed by an order of magnitude unless
both heads are bound to the microtubule with KT at the rear. A
blockage prevents both heads from binding thus dramatically slow-
ing hydrolysis and correspondingly increasing the duration of the
wait state. If the blockage is removed before hydrolysis is com-
plete, the free head binds the microtubule and the trailing head
returns to the relatively fast hydrolysis characteristic of normal
procession. This mechanism has the biologically satisfying con-
sequence that kinesin waits at a temporary obstruction or snag
but escapes a permanent one. This would make sense in terms of
the efficiency of active transport since waiting at a blockage then
continuing procession is faster than a diffusive search for a clear
track (unless, of course, the wait is prolonged). If the blockage is
long-term then the hydrolysis cycle will eventually complete, the
head will detach from the microtubule and, since both heads are

126 R.J. Wilson / BioSystems 96 (2009) 121–126

then free, kinesin has a chance of diffusing around the obstruc-
tion.

On the other hand, switching the gate on has the destabilis-
ing effect of making kinesin more sensitive to timing variations at
high linker strain (filled bars in Fig. 4) and load behaviour becomes
less realistic as noted in Section 3.2. It would seem, therefore, that
either there is no hydrolysis gate and so a different mechanism is
in operation or kinesin does not wait at an obstacle.

4. Conclusion

A parsimonious model for the kinesin walk is proposed here
that is capable of accounting for experimental evidence of back-
stepping. It is a modified form of the rectified Brownian motion
model of Mather and Fox (2006) in which an ATP binding gate
coordinates the heads. The new hypothesis is that no gating is
necessary, that entropic neck linker strain is sufficient for pro-
cession. Theoretical support for this hypothesis comes from the
results of computer simulation devised and implemented to inves-
tigate the model. Simulation results show that entropic neck linker
strain is sufficient to coordinate the heads and that the ungated
model also displays behaviour under load similar to that observed
in vitro.

The simulation tool is currently being developed to respond
more realistically to loading effects and to incorporate several
kinesins in order to investigate crowding effects. The long-term
aim is to increase the scope of the model to encompass aspects
of axonal active transport and so assist in understanding failures
in this system relevant to the early stages of neurodegenera-
tion.

Acknowledgements

This work is supported financially by the UK Engineering and
Physical Sciences Research Council. The author is grateful to Jacob
Navia for supplying the software used to facilitate the writing of
the simulation program (http://www.cs.virginia.edu/∼lcc-win32/).
My thanks go to colleagues (Sara Kalvala, Matthew Hodgkin and
Brent Kiernan) and to reviewers for constructive comments on the
manuscript.

References

Alonso, M.C., Drummond, D.R., Kain, S., Hoeng, J., Amos, L., Cross, R.A., 2007. An ATP
gate controls tubulin binding by the tethered head of kinesin-1. Science 316,
120–123.

Asbury, C.L., 2005. Kinesin: world’s tiniest biped. Curr. Opin. Cell Biol. 17, 89–97.
Carter, N.J., Cross, R.A., 2005. Mechanics of the kinesin step. Nature 435,

308–312.
Crevel, I.M., Nyitrai, M., Alonso, M.C., Weiss, S., Geeves, M.A., Cross, R.A., 2004. What

kinesin does at roadblocks: the coordination mechanism for molecular walking.
EMBO J 23, 23–32.

Cross, R., Scholey, J., 1999. Kinesin: the tail unfolds. Nat. Cell Biol. 1, 119–121.
Fox, R.F., Choi, M.H., 2001. Rectified Brownian motion and kinesin motion along

microtubules. Phys. Rev. E 63 (051901), 1–12.

Gunawardena, S., Goldstein, L.S., 2004. Cargo-carrying motor vehicles on the neu-
ronal highway: transport pathways and neurodegenerative disease. J. Neurobiol.
58, 258–271.

Guydosh, N.R., Block, S.M., 2006. Backsteps induced by nucleotide analogs sug-
gest the front head of kinesin is gated by strain. Proc. Natl. Acad. Sci. 103 (21),
8054–8059.

Hackney, D.D., 1994. Evidence for alternating head catalysis by kinesin during
microtubule-stimulated ATP hydrolysis. Proc. Natl. Acad. Sci. 91 (15), 6865–6869.

Hackney, D.D., 2007. Processive motor movement. Science 316, 58–59.
Hancock, W.O., Howard, J., 1999. Kinesin’s processivity results from mechanical and

chemical coordination between the ATP hydrolysis cycles of the two motor
domains. Proc. Natl. Acad. Sci. 96 (23), 13147–13152.

Hirokawa, N., 1998. Kinesin and dynein superfamily proteins and the mechanism of
organelle transport. Science 279, 519–526.

Howard, J., Hudspeth, A.J., Vale, R.D., 1989. Movement of microtubules by single
kinesin molecules. Nature 342, 154–158.

Klumpp, L.M., Hoenger, A., Gilbert, S.P., 2004. Kinesin’s second step. Proc. Natl. Acad.
Sci. 101, 3444–3449.

Kolomeisky, A.B., Fisher, M.E., 2007. Molecular motors: a theorist’s perspective. Annu.
Rev. Phys. Chem. 58, 675–695.

Mather, W.H., Fox, R.F., 2006. Kinesin’s biased stepping mechanism: amplification of
neck linker zippering. Biophys. J. 91, 2416–2426.

Mori, T., Vale, R.D., Tomishige, M., 2007. How kinesin waits between steps. Nature
450 (29), 750–754.

Nishiyama, M., Higuchi, H., Yanagida, T., 2002. Chemomechanical coupling of the for-
ward and backward steps of single kinesin molecules. Nat. Cell Biol. 4, 790–797.

Nogales, E., Whittaker, M., Milligan, R.A., Downing, K.H., 1999. High-resolution model
of the microtubule. Cell 96, 79–88.

Ray, S., Meyhofer, E., Milligan, R.A., Howard, J., 1993. Kinesin follows the micro-
tubule’s protofilament axis. J. Cell. Biol. 121, 1083–1093.

Rice, S., Lin, A.W., Safer, D., Hart, C.L., Naber, N., Carragher, B.O., Cain, S.M., Pechat-
nikova, E., Wilson-Kubalek, E.M., Whittaker, M., Pate, E., Cooke, R., Taylor, E.W.,
Milligan, R.A., Vale, R.D., 1999. A structural change in the kinesin motor protein
that drives motility. Nature 402, 778–784.

Rice, S., Cui, Y., Sindelar, C., Naber, N., Matuska, M., Vale, R., Cooke, R., 2003. Ther-
modynamic properties of the kinesin neck-region docking to the catalytic core.
Biophys. J. 84, 1844–1854.

Rosenfeld, S.S., Fordyce, P.M., Jefferson, G.M., King, P.H., Block, S.M., 2003. Stepping
and stretching. How kinesin uses internal strain to walk processively. J. Biol.
Chem. 278, 18550–18556.

Roy, S., Zhang, B., Lee, V.M-Y., Trojanowski, J.Q., 2005. Axonal transport defects: a
common theme in neurodegenerative diseases. Acta Neuropathol. 109, 5–13.

Schnitzer, M.J., Block, S.M., 1997. Kinesin hydrolyses one ATP per 8 nm step. Nature
388, 386–390.

Seitz, A., Surrey, T., 2006. Processive movement of single kinesins on crowded micro-
tubules visualized using quantum dots. EMBO J. 25, 267–277.

Stokin, G.B., Lillo, C., Falzone, T.L., Brusch, R.G., Rockenstein, E., Mount, S.L., Raman,
R., Davies, P., Masliah, E., Williams, D.S., Goldstein, L.S., 2005. Axonopathy and
transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307,
1282–1288.

Svoboda, K., Schmidt, C.F., Schnapp, B.J., Block, S.M., 1993. Direct observation of
kinesin stepping by optical trapping interferometry. Nature 365, 721–727.

Svoboda, K., Block, S.M., 1994. Force and velocity measured for single kinesin
molecules. Cell 77, 773–784.

Uemura, S., Kawaguchi, K., Yajima, J., Edamatsu, M., Toyoshima, Y.Y., Ishiwata, S.,
2002. Kinesin–microtubule binding depends on both nucleotide state and load-
ing direction. Proc. Natl. Acad. Sci. 99 (9), 5977–5981.

Vale, R.D., 2003. The molecular motor toolbox for intracellular transport. Cell 112,
467–480.

Vale, R.D., Milligan, R.A., 2000. The way things move: looking under the hood of
molecular motor proteins. Science 288 (5463), 88–95.

Wilson, R.J., 2008a. Towards a cure for dementia: the role of axonal transport in
Alzheimer’s disease. Sci. Prog. 91 (1), 65–80.

Wilson, R.J., 2008b. IEEE Proceedings: Second UKSIM European Symposium on
Computer Modeling and Simulation. Simulating the kinesin walk: a small step
towards understanding dementia, 226–231.

Yildiz, A., Tomishige, M., Vale, R.D., Selvin, P.R., 2004. Kinesin walks hand-over-hand.
Science 303, 676–679.

Simulating the Kinesin Walk: a Small Step towards Understanding Dementia

Richard J. Wilson

MOAC Centre, University of Warwick, Coventry CV4 7AL, UK
 richard.j.wilson@warwick.ac.uk

Abstract

Dementia results from neurodegeneration, a cause
of which is the failure of axonal transport. Axonal
transport is the systematic movement of vital cargo
between the neuron cell body and the synapse. The
engines powering this transport are motor proteins,
molecular nanomachines. Kinesin-1 (conventional
kinesin) is a motor protein that carries cargo to the
synapse by walking along microtubule tracks. Its twin
motor domains (heads) alternately bind the
microtubule, derive energy from hydrolysing ATP, and
step forward. This motion cannot be directly observed
so the details are a matter of debate based on indirect
experimental observations. A rule-based, spatial
computer simulation has been built to better
understand how kinesin walks. Results show a
preference for rectified Brownian motion over a power
stroke mechanism for normal stepping. A small step
towards investigation of transport failure - placing a
blockage on the microtubule - indicates a possible
novel gating mechanism for kinesin.

1. Introduction

Macromolecules, vesicles and organelles need to be
actively transported about the eukaryotic cell since
diffusion is indiscriminate and ineffective. Active
transport is especially important in neurons as they
have extended projections, the longest being the axon
which can reach over a metre [1]. Failure of axonal
transport (active transport along the axon) is implicated
in neurodegenerative diseases such as Alzheimer’s [2].
Improving our understanding of the axonal transport
system is therefore an important task in the programme
to find a cure for these terrible diseases.

Long distance axonal transport is accomplished by
kinesin and dynein motor proteins that bind cargo and
ferry it unidirectionally along microtubule tracks [1].
Kinesin-1 (herein referred to as kinesin) is a member of

the kinesin family of motor proteins that transfers
cargo from the neuron cell body to the synapse. Local
transport at the synapse is conducted by the myosin-
actin system which is outside the scope of this paper.

Microtubules are hollow, 25 nm diameter rigid
tubes, typically composed of 13 laterally bound
filaments that provide linear tracks for the motors [3].
Filaments consist of heterodimers of the protein tubulin
about 8 nm long that spontaneously bond end to end. A
microtubule is a polar polymer with a ring of
α-tubulins bounding the minus end and β-tubulins
bounding the plus end [4].

Kinesin is a homodimer, a protein comprising 2
identical monomer parts, extending to about 70 nm in
length [5]. The monomer is composed of a heavy chain
and a light chain. The N-terminal region of the heavy
chain forms a globular motor domain (head) of
comparable size to tubulin. The head has two binding
sites: one binds and hydrolyses the nucleotide ATP
(adenosine triphosphate), the other binds a microtubule
with nucleotide-dependent strength [6]. The head is
connected by a short, flexible, single polypeptide neck
linker to a long, coiled-coil stalk. The stalks form the
dimer and, at their C-terminal region, combine with the
light chains to form a fan-like tail which binds to
cargo.

Kinesin walks along a microtubule filament in an
asymmetric head-over-head (hand-over-hand) manner,
similar to toeing a line [7]. It hydrolyses one ATP
molecule at each step [8] and making hundreds of steps
without detaching from the microtubule [9]. The
direction of procession (continuous stepping) is
determined by the orientation in which the heads bind
to the microtubule and by zippering of the neck linker.
A head binds to the microtubule in one direction,
mainly to the β-tubulin [10] while the binding of ATP
causes the linker to zipper to the head, pointing in the
direction of motion thus conveying plus-end direction
to the kinesin walk [11]. There are competing theories
to explain how kinesin steps. Vale and Milligan [12]
suggest a power stroke mechanism: zippering pulls the
free head forward. Fox and Choi [13] consider that

Second UKSIM European Symposium on Computer Modeling and Simulation

978-0-7695-3325-4/08 $25.00 © 2008 IEEE

DOI 10.1109/EMS.2008.49

226

Authorized licensed use limited to: WARWICK UNIVERSITY. Downloaded on September 26, 2009 at 15:27 from IEEE Xplore. Restrictions apply.

zippering rectifies the Brownian motion of the free
head.

This paper reports a comparison of the power stroke
and rectified Brownian motion models by varying the
conditions necessary for head coordination in a
computational simulation. Results support doubts
about the power stroke model in terms of the energy of
zippering [14] and physical properties at the nanoscale
[13] as it proves much more sensitive to parameter
variations and is thus a less likely route of motor
protein development in evolutionary terms. The long-
term goal of this research is to discover more about
axonal transport dysfunction. As a first step, a barrier
was placed on the microtubule preventing the motor
from stepping. Both models of kinesin detached at the
obstacle. Some laboratory experiments show that
kinesin waits at a temporary obstacle [15]. It is
proposed that this may be achieved through the
operation of an ATP hydrolysis gate.

2. Modelling kinesin

Modelling of kinesin has primarily treated the
molecule as a whole with the focus on accurately
reproducing experimental biophysical data such as
velocity response to load. Two main approaches have
been used: Brownian ratchet or chemical-kinetic [16].
In the Brownian (or thermal) ratchet model a particle
moves stochastically between potentials; in the kinetic
model it moves through a series of chemical states
linked by rate constants.

This study takes a more qualitative approach with
the focus on how the components – the heads – interact
to enable kinesin to walk. It is an attempt to formally
investigate intuitive theory of the mechanism of the
walk as derived from experiment. Elements of both the
aforementioned approaches are employed, however, in
that rectified Brownian motion is assumed in one
simulation while in both simulations each head goes
through the same series of chemical and binding states.

2.1. The simulation

A rule-based, two dimensional spatial simulation
has been designed and implemented in the C
programming language and runs on a standard laptop.
The heads are bounded by a rectangular box
representing part of an axon. A length of microtubule
is laid out along the base of the box as alternate α- and
β-tubulins. The heads are spatially constrained to
simulate the physical neck linker connection between
them and functionally constrained to simulate their
interaction with nucleotide and microtubule.

A simulation run starts with kinesin in solution with
both heads ADP-bound at the left end of the box close

to the minus end of the microtubule. Constrained
random motion is applied to each head to approximate
diffusion until the microtubule is approached and
kinesin engages with it. The simulation run is
terminated when the motor reaches the plus end of the
microtubule or procession fails. One run of the
program consists of a series of simulation runs, one for
each combination of parameter values thus
exhaustively exploring all combinations of parameter
values. The results are output to file for analysis.

In order to show the progression of the simulation,
the state of the system is displayed in a graphic
window. The activity of the motor is displayed at the
top of the screen while a results summary is plotted
underneath. The experimenter can thus keep a visual
check on the system’s behaviour.

2.2. Theory of kinesin procession

There is general agreement about the overall
mechanism of procession though the details are a
matter of debate. Entry into the cycle is initiated when
kinesin in solution (both heads ADP-bound)
encounters the microtubule. One head binds to the
microtubule which causes the head to release its ADP
while the other head remains free [17]. ATP binds the
nucleotide-free head causing its neck linker to zipper to
the head [11] which results in the free head binding to
the next microtubule binding site. This in turn causes
ADP release followed by ATP binding and hydrolysis.
Meanwhile the other head hydrolyses ATP, releases
phosphate and detaches. Thus each head alternately
steps forward: kinesin walks along the microtubule.

Figure 1. Kinesin procession as a series of
states or snapshots. The red capital letters
placed above the heads indicate which
nucleotide is bound to a head: D for ADP, T for
ATP, DP for hydrolysed ATP, 0 for none.

The procession cycle is illustrated in figure 1. Each
of the 8 snapshots diagram the lower part of kinesin
traversing a short section of microtubule which is
shown as a line of alternate light and dark blobs
(adapted from Vale and Milligan [12]). At the top left
and bottom right of the figure, the free head has
stepped forward after ATP has bound to its partner.

227

Authorized licensed use limited to: WARWICK UNIVERSITY. Downloaded on September 26, 2009 at 15:27 from IEEE Xplore. Restrictions apply.

The free head then binds the microtubule and releases
ADP while its companion hydrolyses ATP. The
trailing head detaches after release of phosphate ready
for the next step. Kinesin is moving to the right.

This mechanochemical cycle is used as a basis for
the simulation. The cycle is deterministic with reverse
transitions being ignored. Unlike the rotary motor
ATP-synthase, kinesin does not produce ATP when
run in reverse: both backward stepping and forward
stepping are accompanied by ATP hydrolysis [18].

2.3. Stepping models

Two models of stepping are implemented: power
stroke (PS) and rectified Brownian motion (RBM).
What distinguishes them is the condition under which
stepping occurs. PS stepping occurs following binding
of ATP to the fixed head, the free head is propelled
forward by zippering. In RBM stepping, the binding of
ATP sets up zippering but zippering only occurs after
the free head diffuses forward pulling the neck linker
with it.

2.4. Head model

The heads are modelled as separate entities and the
coordination of their mechanochemical cycles is not
imposed as a constraint in the simulation: procession is
an emergent phenomenon contingent on head
coordination. Each head is modelled as an event-driven
finite state machine (FSM). The theoretical maximum
possible number of states of the FSM is 8 since a head
has 4 states of nucleotide binding and 2 states of
microtubule binding. Not all these states are physically
realistic. Experimental evidence shows that the ADP-
bound head has weak affinity for the MT otherwise it
has a strong affinity for the MT [6]. The number of
states modelled is therefore 5: KD, K0, KDP, KT and
KDu which represent, respectively, a kinesin head
bound to ADP, to no nucleotide, to ATP, or to
hydrolysed ATP, (all bound to the MT) and the ADP-
bound head unbound to the MT.

2.5. Rules

The following set of rules embodies the hydrolysis
cycle and the interaction between individual head and
microtubule and thus defines the events used to drive
the FSMs:
1) If an ADP-bound head encounters the

microtubule, it binds (KDu → KD)
2) Binding to the microtubule causes ADP release

(KD → K0)
3) ATP binds the empty head (K0 → KT)
4) The bound head hydrolyses ATP (KT → KDP)

5) Head detachment occurs with phosphate release
(KDP → KDu)

6) If the bound head makes the K0 -> KT transition
and the other head is unbound then a step is taken.

Rule 6 is used in the PS model. For the RBM
model, rule 6 is modified: the step is taken if one head
is free and the bound head is in state KT or KDP.

2.6. Event timing

The timings of the transitions from one procession
state to the next are parameterised. This enables
investigation of the effect of changing the relative
timing of the events on the behaviour of the motor.
There are 4 parameters corresponding to the 4
transitions:
• Time taken to hydrolyse ATP (KT -> KDP)
• Time taken to detach (KDP -> KDu)
• ADP release time (KD -> K0)
• ATP binding time (K0 -> KT).

The parameters take positive integer values where
the higher the value the longer the head stays in the
state i.e. the longer the transition delay. The same set
of parameters is applied to each head since kinesin is a
homodimer (the heads are physically the same).

2.7. Neck linkers

The point in the procession cycle where one head is
free and the bound head is nucleotide free is called the
wait state as the molecule is waiting for ATP. The
movement of the free head in the wait state is
presumed to be diffusive and is simulated by a pseudo-
random number function such that there is an equal
probability of the head moving forwards or backwards.

The extent of the movement of the free head and
thus the probability of binding the microtubule is
influenced by the neck linkers. Entropic strain causes
the linkers to act like springs [19]. In order to
investigate the effect of the linkers on the behaviour of
the molecule, the amount of strain is parameterised in
the range 0 to 10 where 0 is no strain and 10 is
maximum strain. At maximum linker strain, the free
head cannot reach either binding site. For lower values
of strain, the probability of binding is inversely
proportional to the value of the strain, again with equal
probability of binding forwards or backwards.
The physical basis of the probability function is that
the stronger the springs of the neck linkers are, the less
likely the free head will bind either site so that, in the
limit, the head would diffuse without binding.

228

Authorized licensed use limited to: WARWICK UNIVERSITY. Downloaded on September 26, 2009 at 15:27 from IEEE Xplore. Restrictions apply.

2.8. Barrier

An obstacle can be placed towards the plus end of
the microtubule for a given time interval. The obstacle
acts as a barrier preventing kinesin from stepping
forward to the next binding site.

3. Results and discussion

The power stroke (PS) and the rectified Brownian
motion (RBM) models of stepping were compared by
varying the timing parameters and the neck linker
strain. There are 3 possible phases to the system:
procession, stuck or diffusion. Kinesin either walks
along the MT to the plus end (procession phase) or
engages with the MT but then remains stuck in position
(stuck phase) or fails to process and disengages from
the MT (diffusion phase).

3.1. Power stroke

With linker strain, varying the timing parameters
revealed a 2 phase system: procession or diffusion. A
different phase map resulted from removing linker
strain: procession did occur but the majority of timing
combinations caused kinesin to get stuck.

The latter case is amenable to a simple analysis.
The time taken for one head to get from one step to the
next must equal the time taken for the other head to do
the same (the dwell times are the same). Consider the
first half of the cycle depicted in figure 2A (time 0 to
3). One head (K1) hydrolyses ATP, releases phosphate
and detaches from the microtubule. In parallel, the
other head (K2) docks to the microtubule, releases
ADP then ATP binds. Thus the time taken for ATP
hydrolysis (T1) plus phosphate release and head
detachment (T2) must be the same as the time for head
binding (T3) plus ADP release (T4) plus ATP binding
(T5). Summing and equating these timing parameters
gives the equality:

 T1 + T2 = T3 + T4 + T5
This equation precisely defines the timings of the

power stroke procession phase at zero neck linker
tension. Though this is an unrealistic situation, it is
interesting to note that the lowest timing values are
consistent with Ma and Taylor’s estimates where T2 is
about twice the value of the other parameters [20].

3.2. Rectified Brownian motion

Unlike PS kinesin, RBM kinesin processed under
all timing combinations at high values of linker strain.
Reducing the linker strain resulted in a 2 phase system:
procession or stuck. The relation between the

parameters and the phase has not so far proved
amenable to analysis.

3.3. Model comparison

Figure 2 plots the relationship between neck linker
strain and timing combinations giving interrupted
procession (failure to continuously step from one end
of the microtubule to the other). The RBM model
shows procession for the whole timing range at linker
strain values above 7 whereas even at maximum strain
the PS model fails to process under some timing
conditions.

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10

Linker strain
In

er
ru

pt
io

ns
 to

pr

oc
es

si
on

Figure 2. Relationship between neck linker
strain and procession. Green diamonds are
RBM values, red squares are power stroke
values. A linear trend line is fitted to the power
stroke data, an exponential trend line is fitted
to the RBM data.

Figure 3 plots the average number of detachments
of kinesin from the microtubule per run over the range
of linker strain. The RBM model shows no
detachments until the strain is below 2 whereas
procession is interrupted during runs of the PS model
over the whole range of strain.

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7 8 9 10

Linker strain

D
et

ac
hm

en
ts

Figure 3. Relationship between neck linker
strain and detachment of kinesin from the
microtubule. Green diamonds are RBM values,
red squares are power stroke values.

Svoboda and Block [21] observed a small
proportion of backsteps during normal procession in

229

Authorized licensed use limited to: WARWICK UNIVERSITY. Downloaded on September 26, 2009 at 15:27 from IEEE Xplore. Restrictions apply.

vivo. Setting the linker strain to 9.5 results in a similar
proportion of backsteps in silico which puts the
processive behaviour of RBM kinesin well within
realistic parameters.

In summary, both models can support procession in
silico but procession emerges from the RBM model
over a much greater range of timings and strains than
the PS model. This result favours RBM on
evolutionary grounds as evolution tends to select
robust mechanisms allowing wide parameter variations
to not adversely affect the functioning of a system [21].

3.4. Axonal transport failure

Axonal transport failure is implicated in the
neurodegenerative process [22] and there is evidence
that it is an early event in the development of the most
prevalent dementia, Alzheimer’s disease [23].

As an initial attempt to look at dysfunctional
transport, the effect of a blockage on the microtubule
on kinesin has been investigated in the present study.
Both PS and RBM kinesin detached and diffused away
from the microtubule within the timing of a
processionary cycle. This happens because the free
head tries to step forward but is blocked while the
bound head hydrolyses ATP then detaches as it would
during procession.

There is conflicting in vitro experimental evidence
concerning what happens when kinesin is confronted
by an obstacle. Crevel et al. found that kinesin
detaches from the microtubule after one hydrolysis
cycle [24]. Seitz and Surrey, however, found that the
motor waits at an obstacle for an order of magnitude
longer than the normal hydrolysis cycle and then
resumes processing after the obstacle is removed [15].

Evidence supporting the waiting behaviour comes
from Hancock and Howard who found that twin-
headed kinesin’s ATP-ase rate is an order of magnitude
faster than that of single headed kinesin [25]. They
suggest that forward neck linker strain is required for
the fast ATP hydrolysis characteristic of normally
processing kinesin. Thus if the free head is prevented
from binding the microtubule then hydrolysis is
slowed. If the blockage is removed before the slow
hydrolysis is complete, the free head binds the MT at
the forward binding site and normal procession
resumes. Thus kinesin waits at a temporary obstacle
but escapes a permanent obstruction.

To make simulated kinesin wait in this manner, a
new rule was added so that the rate of ATP hydrolysis
is slowed by a factor of ten unless both heads are
bound. Besides the waiting behaviour, the overall
effect of adding this rule is to enhance head
coordination.

3.5. Future work

The full impact of adding the new rule is being
assessed in concert with investigating varying loads on
the molecule (cargo effects have been ignored in the
present work). It is planned to extend the simulation to
encompass more elements of the axonal transport
system and thus provide a more comprehensive
window on its normal operation and its role in
neurodegeneration.

4. Conclusion

This research was motivated by a desire to better
understand the role of axonal transport in dementia.
The motor protein kinesin is an important engine of
axonal transport and the main focus of this study is
kinesin’s walking mechanism.

Two models of the kinesin walk have been
compared under a range of timing and linker strain
values to discover under what conditions the heads
coordinate such that procession occurs. The rectified
Brownian motion model has proven more robust than
the power stroke model and would therefore seem to be
the more likely candidate for the kinesin procession
mechanism on evolutionary grounds. This conclusion
confirms doubts about the power stroke mechanism
expressed in terms of insufficient energy of zippering
[14] and the domination by viscous and thermal forces
of the nanoscale [13].

The effect of confronting kinesin with a blockage
on the microtubule has also been investigated as a first
step towards understanding dysfunctional transport.
Results indicate that there may be an ATP hydrolysis
gate operating to keep kinesin waiting at a temporary
blockage. Whether or not this is the case can only be
discovered in the laboratory.

Qualitative simulation is unable to provide
definitive solutions but the author believes that it has
an important place in firming up theoretical
mechanisms of biological processes and can suggest
areas for laboratory experiment. It is hoped that
increasing the scope of the simulation to encompass
more aspects of axonal transport will prove of
significant value in understanding normal neuron
function and relevant to understanding the early stages
of neurodegeneration.

5. Acknowledgements

This work is supported by the UK Engineering and
Physical Sciences Research Council. The author is
grateful to Jacob Navia for supplying the lcc-win32
compiler software (http://www.cs.virginia.edu/~lcc-

230

Authorized licensed use limited to: WARWICK UNIVERSITY. Downloaded on September 26, 2009 at 15:27 from IEEE Xplore. Restrictions apply.

win32/) and to colleagues for constructive comments
on the structure of the paper.

6. References

[1] N. Hirokawa, "Kinesin and dynein superfamily
proteins and the mechanism of organelle transport,"
Science, vol. 279, pp. 519-26, 1998.

[2] R. J. Wilson, "Towards a cure for dementia: the role
of axonal transport in Alzheimer's disease," Sci Prog,
vol. 91, pp. 65-80, 2008.

[3] S. Ray, E. Meyhofer, R. A. Milligan, and J. Howard,
"Kinesin follows the microtubule's protofilament
axis," J Cell Biol, vol. 121, pp. 1083-93, 1993.

[4] E. Nogales, M. Whittaker, R. A. Milligan, and K. H.
Downing, "High-resolution model of the
microtubule," Cell, vol. 96, pp. 79-88, 1999.

[5] R. D. Vale, "The molecular motor toolbox for
intracellular transport," Cell, vol. 112, pp. 467-80,
2003.

[6] S. Uemura, K. Kawaguchi, J. Yajima, M. Edamatsu,
Y. Y. Toyoshima, and S. Ishiwata, "Kinesin-
microtubule binding depends on both nucleotide state
and loading direction," Proc Natl Acad Sci U S A,
vol. 99, pp. 5977-81, 2002.

[7] C. L. Asbury, "Kinesin: world's tiniest biped," Curr
Opin Cell Biol, vol. 17, pp. 89-97, 2005.

[8] M. J. Schnitzer and S. M. Block, "Kinesin hydrolyses
one ATP per 8-nm step," Nature, vol. 388, pp. 386-
90, 1997.

[9] J. Howard, A. J. Hudspeth, and R. D. Vale,
"Movement of microtubules by single kinesin
molecules," Nature, vol. 342, pp. 154-8, 1989.

[10] K. Hirose, A. Lockhart, R. A. Cross, and L. A. Amos,
"Nucleotide-dependent angular change in kinesin
motor domain bound to tubulin," Nature, vol. 376,
pp. 277-9, 1995.

[11] S. Rice, A. W. Lin, D. Safer, C. L. Hart, N. Naber, B.
O. Carragher, S. M. Cain, E. Pechatnikova, E. M.
Wilson-Kubalek, M. Whittaker, E. Pate, R. Cooke, E.
W. Taylor, R. A. Milligan, and R. D. Vale, "A
structural change in the kinesin motor protein that
drives motility," Nature, vol. 402, pp. 778-84, 1999.

[12] R. D. Vale and R. A. Milligan, "The way things
move: looking under the hood of molecular motor
proteins," Science, vol. 288, pp. 88-95, 2000.

[13] R. F. Fox and M. H. Choi, "Rectified Brownian
motion and kinesin motion along microtubules," Phys
Rev E Stat Nonlin Soft Matter Phys, vol. 63, pp.
051901, 2001.

[14] S. Rice, Y. Cui, C. Sindelar, N. Naber, M. Matuska,
R. Vale, and R. Cooke, "Thermodynamic properties
of the kinesin neck-region docking to the catalytic
core," Biophys J, vol. 84, pp. 1844-54, 2003.

[15] A. Seitz and T. Surrey, "Processive movement of
single kinesins on crowded microtubules visualized
using quantum dots," Embo J, vol. 25, pp. 267-77,
2006.

[16] A. B. Kolomeisky and M. E. Fisher, "Molecular
motors: a theorist's perspective," Annu Rev Phys
Chem, vol. 58, pp. 675-95, 2007.

[17] D. D. Hackney, "Evidence for alternating head
catalysis by kinesin during microtubule-stimulated
ATP hydrolysis," Proc Natl Acad Sci U S A, vol. 91,
pp. 6865-9, 1994.

[18] N. J. Carter and R. A. Cross, "Mechanics of the
kinesin step," Nature, vol. 435, pp. 308-12, 2005.

[19] W. H. Mather and R. F. Fox, "Kinesin's biased
stepping mechanism: amplification of neck linker
zippering," Biophys J, vol. 91, pp. 2416-26, 2006.

[20] Y. Z. Ma and E. W. Taylor, "Interacting head
mechanism of microtubule-kinesin ATPase," J Biol
Chem, vol. 272, pp. 724-30, 1997.

[21] H. Kitano, "Biological robustness," Nat Rev Genet,
vol. 5, pp. 826-37, 2004.

[22] S. Roy, B. Zhang, V. M. Lee, and J. Q. Trojanowski,
"Axonal transport defects: a common theme in
neurodegenerative diseases," Acta Neuropathol, vol.
109, pp. 5-13, 2005.

[23] G. B. Stokin, C. Lillo, T. L. Falzone, R. G. Brusch,
E. Rockenstein, S. L. Mount, R. Raman, P. Davies,
E. Masliah, D. S. Williams, and L. S. Goldstein,
"Axonopathy and transport deficits early in the
pathogenesis of Alzheimer's disease," Science, vol.
307, pp. 1282-8, 2005.

[24] I. M. Crevel, M. Nyitrai, M. C. Alonso, S. Weiss, M.
A. Geeves, and R. A. Cross, "What kinesin does at
roadblocks: the coordination mechanism for
molecular walking," Embo J, vol. 23, pp. 23-32,
2004.

[25] W. O. Hancock and J. Howard, "Kinesin's
processivity results from mechanical and chemical
coordination between the ATP hydrolysis cycles of
the two motor domains," Proc Natl Acad Sci U S A,
vol. 96, pp. 13147-52, 1999.

231

Authorized licensed use limited to: WARWICK UNIVERSITY. Downloaded on September 26, 2009 at 15:27 from IEEE Xplore. Restrictions apply.

Towards a cure for dementia: the
role of axonal transport in
Alzheimer’s disease
Richard J. Wilson

ABSTRACT

Alzheimer’s disease is an incurable, fatal illness characterised by years of

progressive mental decline. It afflicts half a million people in the UK – more

than any other dementia. The primary risk factor is old age so this number is

rising as we live longer. Current treatment is palliative while more potent

drugs have encountered problems during clinical trials. It is known that the

disease results from brain deterioration associated with the formation of

microscopic lesions. Genetic mutations cause a small minority of cases but

our knowledge of the underlying biological mechanisms is limited. The key to

improved understanding may be a process vital to brain cells called axonal

transport. Disruption of axonal transport seems to be an early event in the

progression of the disease and is linked to lesion formation and brain

dysfunction so a full investigation of this process should lead to a cure, if

not prevention.

Keywords: Alzheimer’s disease, axonal transport, kinesin, microtubule,

amyloid hypothesis, tau hypothesis

Richard Wilson is a final year PhD research student.
Originally from a computer science background, he
gave up studying pattern recognition in artificial
neural networks for an IT career. Currently investigat-
ing motor proteins and axonal transport, his long
term aim is to make a significant contribution to
understanding ageing neurons and neurodegeneration.
He may be contacted at
E-mail: richard.j.wilson@warwick.ac.uk

Science Progress (2008), 91(1), 65–80 doi: 10.3184/003685008X285375

www.scilet.com 65

Alzheimer’s disease: a growing scourge

The population is increasing and we are living longer but not
necessarily healthier lives: more of us are suffering disease and
infirmity in old age. One particularly distressing set of late-onset
diseases is dementia. It is estimated that over 20 million people
suffer dementia worldwide, about 700,000 in the UK. The serious
impact of dementia on families and society is increasing as these
Figures are expected to double every 20 years. In the UK, the
current cost of care alone is calculated at over £17B per annum
while the annual death toll is over 60,000. The majority of dementia
sufferers have Alzheimer’s disease (AD)1.
Following initial diagnosis of AD, the individual endures (on

average) 8 years of increasingly distressing and decreasingly
manageable symptoms as their brain decays. The billions of
specialised cells of the brain that enable our cognitive faculties
are called neurons (or neurones). They interconnect via synapses to
form the complex neural network of the brain. The disease initially
destroys synapses then kills neurons; the damage spreads out from
the interior of the brain to the surface: from the basal forebrain
through the hippocampus to the cortex2. It is estimated that
neurodegeneration starts more than 20 years before symptoms
become apparent3.
The first symptoms, notably abnormal memory deficit, are

accompanied by a reduction in the normal production of the
neurotransmitter acetylcholine. Neurotransmitters are the chemi-
cals that nerve cells use to communicate with one another. Drugs
have been developed to compensate for this decline but Mount and
Downton4 note that ‘‘...none of the currently approved drugs stops
the underlying degeneration of brain cells or reverses the progres-
sion of Alzheimer disease.’’
This paper outlines our current knowledge of AD, recent

advances towards a cure, and the role of axonal (axoplasmic)
transport in normal and diseased brains.

Two types of Alzheimer’s

There are two recognised types of AD: familial and sporadic

The familial form of AD is estimated to account for less that 5% of
all AD cases and is normally early-onset i.e. most cases present
before the age of 65. It is identified with specific genetic mutations
affecting amyloid precursor protein (APP), presenilin-1 (PS1), and

66 Richard J. Wilson

presenilin-2; most cases have the PS1 mutation. The main consti-
tuent of senile plaques, amyloid-b, is produced by the sequential
cleaving of APP by b-secretase and g-secretase. Presenilin is a
component of g-secretase. Faulty processing of APP is therefore
suspected of causing familial AD3.
The common, sporadic form of AD is late-onset: incidence rises

steeply with age after 65. Sporadic AD doesn’t correlate with any of
the familial-form genetic mutations though there is a genetic link: a
mutation in the gene for apolipoprotein E that is thought to
compromise the protein’s neuroprotective function. This mutation,
however, is not a determinant but a risk factor for the disease; the
cause of sporadic AD remains to be discovered3.

Shrunken brain with lesions

Dementias result from the dysfunction, degeneration and loss of
neurons in the brain. The most obvious characteristic of a post-
mortem AD brain is massive neural atrophy (Figure 1).
Microscopic examination of stained sections of AD brain reveals

the presence of myriad extracellular senile plaques and intracellular
neurofibrillary tangles, significantly more than observed in normal
brains of the same age5. The processes governing the formation of
these inclusions, the toxicity of the various intermediates in their

www.scilet.com Towards a cure for dementia 67

Fig. 1. Brain section comparison. #2007 Alzheimer’s Association. All rights

reserved. Illustration by Stacy Janis.

formation and their mechanisms of damage are under intensive
study.
The presence of plaques and tangles has given rise to two

hypotheses as to the cause of this devastation: the amyloid
hypothesis and the tau hypothesis respectively. To what extent
either hypothesis is correct remains to be demonstrated.

Amyloid hypothesis

The amyloid hypothesis proposes that AD is caused by genetic
mutations or environmental factors which favour the production of
amyloid-b (Ab) protein. The consequent excess Ab aggregates into
fibrils that accumulate as senile plaques. Some or all of these forms
of Ab are toxic so the result is the cascade of neural dysfunction
and loss underlying dementia6.
Glenner proposed that amyloid was at the heart of the disease

following his group’s discovery that Ab is the main constituent of
plaques7. As noted above, Ab is produced from the sequential
cleaving of APP by b-secretase followed by g-secretase. There is an
alternative proteolytic pathway that does not produce Ab whereby
APP is first cleaved by a-secretase. Little is known about the
control of these pathways.
The incidence of plaques is not well correlated with the progres-

sion of AD5 so the toxicity of intermediate forms of Ab has been
extensively investigated in the laboratory. A study of rhesus
monkeys and rats compared the effects of microinjection of
soluble or fibrillar Ab (at a similar concentration to that found in
plaques) into the cerebral cortex of young and old animals8. Only
fibrillar Ab caused extensive neuron loss, tau phosphorylation, and
microglial proliferation (microglia are the brain’s immune cells)
and then only in older monkeys. It seems that rats are too short-
lived to show a significant response and that, in higher mammals,
young neurons are either protected from or dispose of the toxic
fibrils. In a study of a mouse model expressing human familial
APP, the physiological changes accompanying behavioural deficits
were found to be intracellular Ab aggregate deposition; plaque
formation occurred later9.
This evidence would seem to support the amyloid hypothesis but

an alternative interpretation is that Ab has a neuroprotective role.
The bioflocculant hypothesis10 proposes that its function is to bind
toxins and form plaques to sequester neurotoxic solutes in a form
inducing microglial phagocytosis (disposal by engulfing). Both
hypotheses could be right: disposal of toxins may be the normal

68 Richard J. Wilson

function of Ab but, perhaps, the process becomes dysfunctional in
the ageing neurons of susceptible subjects. An intriguing possibility
is that such a response may be induced by viral infection or
reactivation of a dormant virus11.

Search for an amyloid treatment

The amyloid hypothesis has prompted considerable effort to find a
cure, themostadvancedbeing targetedondevelopingavaccine. In the
late 1990s experiments using the AD mouse model showed positive
results for bothactive vaccination (injectingAbor fragments thereof)
and passive vaccination (injecting antibody to Ab) 12. Reduction in
amyloid accumulation and plaque removal were reported. Further
positive results followed but, in 2001, phase 2 clinical trials of an
active vaccine were stopped because several subjects developed
encephalitis. Work continues to develop a safe vaccine.
Alternative approaches to reducing or eliminating Ab are also

being pursued. A potential treatment based on enhancing Ab
degradation13 has entered clinical trials. Another potential treat-
ment may enable Ab removal from the blood stream. A faulty
protein mediating Ab clearance from the mouse brain into the
blood stream has been found14. An unlikely b-secretase antagonist
has recently been discovered. In mouse cell cultures, normally
functioning prion protein has been found to regulate b-secretase
and thus Ab production15. Mutant versions of prion were found to
have no regulatory effect indicating a possible connection between
prion diseases and AD. This study raises the exciting possibility
that a single cure might be found for both diseases.

Tau hypothesis

The tau hypothesis proposes that abnormal tau disrupts axonal
transport by microtubule destabilisation and physical blockage
through aggregating into NFTs. This disruption compromises the
normal functioning of the neuron, leads to axonal atrophy, cell
death and thus to dementia16.
Tau is a microtubule associated protein that, when normally

phosphorylated, binds to and helps stabilise microtubules (MTs) in
the axons of neurons. Neurofibrillary tangles (NFTs) are mainly
composed of filaments of hyperphosphorylated tau (h-tau) protein,
a form of tau that doesn’t bind MTs. A cell culture study showed
that addition of h-tau from AD brains caused sequestration of
normal tau, MT disassembly and inhibited formation of MTs17. It

www.scilet.com Towards a cure for dementia 69

is not clear what triggers the production of abnormal tau but a
complex picture has arisen whereby sequential phosphorylation of
multiple sites is required to produce h-tau that both fails to bind to
MTs and forms fibrils18.
The incidence of NFTs correlates with the progression of AD5 so

the question arises as to whether NFTs are toxic or are markers of
toxicity. To find out, researchers used a mouse model expressing
human tau that develops progressive age-related NFT deposition,
neuronal loss and memory impairments19. Switching off tau
production stopped neuron loss and memory recovered though
NFTs continued to form. It was concluded that NFTs are not
sufficient to cause cognitive decline or neuronal death and could be
part of a protective response. As the insoluble tau aggregate grows
to dominate the cell body, however, interference in normal function
is inevitable but study of this process is outside the scope of mouse
models given the animal’s short lifespan.

Search for a tau treatment

One line of investigation has been to try to stop NFT formation,
the focus being on kinases (enzymes that phosphorylate proteins)
and phosphatases (enzymes that remove phosphate). Glycogen
synthase kinase-3b (GSK3b) has been shown to induce tau
phosphorylation, NFTs, synaptic loss and neuronal death,
resulting in cognitive impairment in animal models20. A possible
treatment would therefore be to inhibit GSK3b. In the cell culture
study cited above17, MT disruption by h-tau was found to be
reversible by introducing a phosphatase. A major problem with
developing drugs along these lines is that these enzymes are active
in many pathways so any treatment would have to be made
selective of their action on tau. A possible further problem arises
if NFT formation is neuroprotective: treatment would then prove
counter-productive.
Another line of research is aimed at restabilising MTs. A study

investigating the possibility of a replacement therapy gave positive
results in mice expressing human tau protein21. The mice produced
excess tau that caused progressive motor impairment with a
reduction in the number of MTs, reduced axonal transport, and
axonal degeneration. A series of injections of paclitaxel (an MT
stabilising compound) ameliorated these deficits. Unfortunately
such compounds cannot be used to treat AD either because they
lack selectivity, or are resistant to crossing the blood-brain barrier
or show toxicity16.

70 Richard J. Wilson

Axonal transport and Alzheimer’s

There is increasing evidence that breakdown of axonal transport
is a key event in the neurodegenerative process22. Study of axonal
transport and its failure holds out the promise of effective
treatment for diseases such as AD. There is also evidence that
failure of axonal transport occurs early in the pathology of AD23.
An early diagnosis would give clinicians a wider scope for
treatment and an increased probability of cure when suitable
drugs become available.

Importance of axonal transport to neurons

Proteins, vesicles (hollow lipid containers) and organelles are
transported in a timely and orderly fashion within a cell by
specialised proteins operating on cytoskeletal tracks. In the axon
of a neuron, this process is known as axonal transport. A neuron
has a number of projections emanating from its cell body: many
dendrites and a long, thin axon. Input signals are received by the
dendrites, processed by the neuron and output signals sent along
the axon which branches out at its tip to connect to as many as
thousands of dendrites of other neurons. The length of the axon
makes axonal transport especially important to neurons as vital
cargo has a significantly increased distance to travel compared to
the extent of other types of cell.
The functional importance of axonal transport to neurons can

be appreciated by considering inter-neuron communication. In
response to sufficient excitatory stimulation via the dendrites,
neurons ‘‘fire’’: they generate electrical impulses (action poten-
tials) that travel down the axon to influence the activity of the
following (post-synaptic) neurons via synapses at the axon
terminal. Most neurons communicate via chemical synapses.
The arrival of the electrical impulse at the synapse triggers
release of neurotransmitter which diffuses across the synaptic
gap to bind to receptors in the dendritic membrane of the post-
synaptic neuron thus modulating the firing of that neuron. Some
neurotransmitter is recycled but some is lost by being broken
down in the synaptic gap. Replacement neurotransmitter is
manufactured in the cell body and transported to the synapses
by axonal transport. Maintenance of axonal transport is therefore
crucial to the proper functioning of a neuron not least by
replenishing the supply of neurotransmitter.

www.scilet.com Towards a cure for dementia 71

Axonal transport – a complex system

Axonal transport comprises long-distance and local transport of
proteins, vesicles and organelles within the axon of the neuron by
motor proteins moving along protein polymer tracks. Local trans-
port – the actomyosin system in which myosin motors traverse
actin filaments – will not be discussed here. For a stimulating
introduction to this subject in the context of the molecular
biology of the cell see Alberts et al.24. Figure 2 diagrams some of
the complexity of active transport in a neuron25. The framework
for long-distance transport is the microtubule cytoskeleton.

Microtubules

Microtubules (MTs) are rigid, tubular assemblies of (typically) 13
protein filaments that associate side by side but slightly offset
giving the tube a spiral shape some 25 nm in diameter. Filaments
assemble from tubulin heterodimers (comprising two different
proteins) that bind head-to-tail such that the a-tubulin protein
alternates with its b-tubulin partner. MTs are polarised in the sense
that the face of one end is a ring of a-tubulins (the minus end) while
the other face is a ring of b-tubulins (the plus end). The axon
contains a series of bundles of MTs all oriented with their plus ends
farther away from the cell body than their minus ends (see
Figure 2).

Motor proteins

Each MT filament provides a linear path on which two families of
motor protein can travel: kinesins and dyneins. Most kinesins move
towards the MT plus end i.e. away from the cell body (known as
anterograde motion) whereas dyneins move in the opposite direc-
tion (retrograde motion). Cargo such as vesicles containing neuro-
transmitter is transported in one direction though mitochondria
move in both directions pausing where ATP is needed. ATP
(adenosine triphosphate) is an energy-rich molecule synthesised in
mitochondria and widely used to fuel cellular processes including
axonal transport. A mitochondrion binds kinesin, dynein and
myosin motors and regulation of its movement involves phosphor-
ylation but how coordination between the motors is achieved has
yet to be determined26.
Kinesins and dyneins share similar motor domains that hydro-

lyse ATP and alter conformation to variably associate with MTs.

72 Richard J. Wilson

www.scilet.com Towards a cure for dementia 73

F
ig
.
2
.
D
ia
g
ra
m

o
f
ty
p
ic
a
l
n
eu
ro
n
sh
o
w
in
g
d
en
d
ri
te
s
(
le
ft
)
a
n
d
a
lo
n
g
,
th
in

a
x
o
n
(
ri
g
h
t)

in
w
h
ic
h
th
e
m
ic
ro
tu
b
u
le
s
a
re

u
n
ip
o
la
r.
K
in
es
in
s
(
K
IF
s)

a
re

sh
o
w
n
tr
a
n
sp
o
rt
in
g
ve
si
cl
es

to
w
a
rd
s
th
e
sy
n
a
p
ti
c
te
rm

in
a
l.
(
fr
o
m

H
ir
o
k
a
w
a
a
n
d
T
a
k
em

u
ra

2
5
)
.

The coordinated action of the motor domains enables motor
proteins to reliably pull cargo through the crowded cytosol. As
the motor is the dynamic heart of axonal transport, we shall take
a closer look at the structure of a typical motor and how it
functions.

Kinesin – a two-headed nanomachine

Conventional kinesin (kinesin I) is a representative example of
the kinesin family of motor proteins. Its structure is a fan-like,
cargo-binding tail connected by a long coiled-coil stalk to two
short, flexible neck linkers terminating in the globular motor
domains (heads). It measures about 70 nm from heads to tail
when active. The stalk has a hinge region about which the
protein jack-knifes when inactive. Each head has two binding
sites: one for MTs, the other for nucleotide. During cargo
transportation the nucleotide site performs hydrolysis of ATP
(energy-providing removal of a phosphate to yield ADP –
adenosine diphosphate). Members of the family share a
common head structure and function27.
The details of the movement mechanism are a matter of debate

but it has been established that kinesin ‘‘walks’’ in a head-over-
head (or hand-over-hand) fashion. Each head alternately steps
past its partner to the next binding site along the MT moving the
cargo a distance of about 8 nm (the length of a tubulin dimer)28.
Figure 3 is a still picture from an animation29 showing a vesicle
being pulled along an MT by kinesin.

74 Richard J. Wilson

Fig. 3. Depiction of kinesin pulling vesicle along microtubule (from Viel, Lue
and Liebler29).

Head coordination

In order for kinesin to walk, each head in turn must step along the
MT while at least one head must be bound to the MT at any one
time. The affinity of a head for the MT has, therefore, to change
during the walking cycle. The affinity depends on the bound
nucleotide. A head is weakly attracted to the MT when ADP-
bound whereas it is tightly bound to the MT when the nucleotide
binding site is empty or ATP is bound30. Thus the hydrolysis cycle
provides the necessary alteration in affinity for the MT that enables
kinesin to walk. Kinesin in solution has ADP-bound heads. When a
head encounters an MT it binds to it and releases ADP. ATP then
binds to the head which proceeds to hydrolyse it, phosphate is
released and the head detaches from the MT ready to take the next
step. The second head follows the same cycle of events31.
Note that the hydrolysis cycle of one head has to be out of phase

with that of the other head. If it were in phase then the motor
would be unable to walk as both heads would be bound to the MT
(preventing stepping) or they would be free at the same time
resulting in the kinesin diffusing away form the MT. It is not
known how the hydrolysis cycle is synchronised to the walking
motion but one theory is that tension in the neck linkers modulates
nucleotide binding32.

Walk this way

As the kinesin molecule is a homodimer (comprising two identical
components) the directionality of its travel along the MT needs
explanation. Kinesin walks towards the plus end of an MT for two
reasons. The first is that the heads bind in only one direction
(mainly to the b-tubulin of the dimer). The second is that binding of
ATP to the empty head causes a conformational change in the head
such that the neck linker zips to the head thus restricting the free
head to binding the next rather than the previous MT binding
site31.
It was initially believed that kinesin moved forward by a power

stroke action using the energy released by ATP hydrolysis. On this
view, the trailing head is pulled forward by the zippering of the
neck linker to the MT-bound head. It is now clear that the energy
of zippering is insufficient to achieve a power stroke. An analysis of
the physics of the motion indicates that the mechanism is biased
Brownian motion33. On this account, the diffusive motion of the
free head is biased in the direction of movement by neck linker

www.scilet.com Towards a cure for dementia 75

zippering. The energy released by ATP hydrolysis powers confor-
mational change in the head and not the forward motion which is
diffusive.

Transport regulation

Not much is known about the regulation of axonal transport. The
movement of axonal mitochondria is a case in point26. For the
system to work properly cargo has to be moved to where it is
required. For a vesicle containing neurotransmitter this entails
binding to kinesin which then has to take the appropriate path
e.g. along the axon rather than a dendrite, with transfer to the
actomyosin system for local transport and storage at the synapse.

Lethal pileups on the axon highway

Several possible causes of transport failure have been discovered
besides lack of tau stabilisation of microtubules as discussed under
the tau hypothesis.

The APP connection

Kinesin transports vesicles containing APP, b-secretase and prese-
nilin-1 towards the synapse34. It is suggested that axonal blockage
would result in the accumulation of these vesicles which might
encourage proteolysis of the APP to generate Ab and so cause the
neurodegenerative amyloid cascade23. Mice expressing mutant
human APP developed axonal swellings similar to those observed
in AD brains. The swellings accumulated abnormal amounts of
microtubule-associated and molecular motor proteins, organelles,
and vesicles were observed. Reducing the dosage of kinesin
enhanced the frequency of axonal defects, increased Ab levels
and amyloid deposition. The proposed mechanism was that
axonal transport failure causes a build-up of toxic material that
initiates b-secretase cleavage of APP resulting in Ab production,
development of senile plaques and AD.
The opposite view was proposed following a cell culture study.

Soluble (but not fibrillar) Ab in the presence of tau caused loss of
MTs and numerous axonal swellings filled with membrane-bound
organelles in rat cortical neurons35. Perhaps both proposals are
correct: Ab and axonal transport failure cause each other. It is clear
that Ab production is intimately bound up with axonal transport
failure.

76 Richard J. Wilson

Hirano blockage

In addition to plaques and tangles there is a third type of lesion
characteristic of AD brains: Hirano bodies. They contain actin
filaments and tau protein, the latter is implicated in their formation
though this process is not well understood36. It is proposed that
these inclusions (like tau fibrils) physically disrupt axonal trans-
port.

Axonal pathogen transport

Viral infection has been proposed as a cause of AD37. Viruses or
their components use axonal transport to traverse neurons. A study
of how HSV gets to the mucosal membrane after manufacture in
the cell body used a giant squid axon to show that HSV uses axonal
transport. APP is present in HSV and it appears to be instrumental
in its binding to kinesin for transport38. A rat study has shown that
axonal transport of the HIV-1 envelope glycoprotein gp120 from
the striatum or hippocampus to distal neurons results in cell death.
This finding indicates that axonal transport could be the
mechanism for promoting widespread neuron loss causing
dementia associated with AIDS39. Could this also apply to AD?

Conclusions – towards a cure for Alzheimer’s

Alzheimer’s disease (AD) is proving a monumental challenge.
Progress is being made but our knowledge is fragmentary. We
have yet to discover the cause of sporadic AD, how genetic
mutations lead to the familial form, why only some types of
neurons are affected, what governs the progress of the disease
through the brain, what determines the pathway for APP proteo-
lysis, which comes first: abnormal phosphorylation of tau or axonal
transport dysfunction, whether lesions are formed as a result of
defence or pathology or both, why plaques aren’t cleared by
microglia...
Current treatment, though helpful to many patients, is palliative.

Search for a cure is focussed primarily on preventing the character-
istic lesions – neurofibrillary tangles and senile plaques – found in
AD brains. Though there are compounds that show promise in
defeating tau pathology in animal models, there are significant
barriers to the development of suitable drugs for humans. Evidence
of the toxicity of pre-amyloid aggregations of Ab in animal models
has spurred development of drugs designed to eliminate or suppress

www.scilet.com Towards a cure for dementia 77

the production of Ab. Clinical trials of a vaccine are well advanced
though adverse reactions have so far prevented deployment. It is to
be hoped that safe and effective drugs will soon be on the market.
The ideal position would be to fully understand AD so as to be

able to diagnose it early, before any irreversible damage is done, if
not prevent it altogether. Laboratory studies indicate that axonal
transport dysfunction occurs early in the disease and that there are
connections between disruption of axonal transport, abnormal
proteins and neurodegeneration. Axonal transport seems, there-
fore, central to the enterprise of conquering this abominable
disease, having the potential to pull together all the components
so far identified40.

Acknowledgement

The author’s doctoral research is funded by the Engineering and
Physical Sciences Research Council.

References

1. Knapp, M. and Prince, M. (2007) The Rising Cost of Dementia in the UK.
Alzheimer’s Society, London.

2. Terry, R.D., Masliah, E., Salmon, D.P., Butters, N., DeTeresa, R., Hill, R.,
Hansen, L.A. and Katzman, R. (1991) Physical basis of cognitive altera-
tions in Alzheimer’s disease: synapse loss is the major correlate of cognitive

impairment. Ann. Neurol., 30, 572–580.
3. Goedert, M. and Spillantini, M.G. (2006) A Century of Alzheimer’s

Disease. Science, 314, 777–781.
4. Mount, C. and Downton, C. (2006) Alzheimer disease: progress or profit?

Nat. Med., 12(7), 780–3.
5. Arriagada, P.V., Growdon, J.H., Hedley-Whyte, E.T. and Hyman, B.T.

(1992) Neurofibrillary tangles but not senile plaques parallel duration and

severity of Alzheimer’s disease. Neurology, 42, 631–639.
6. Selkoe, D.J. (2002) Alzheimer’s disease is a synaptic failure. Science, 298,

789–791.

7. Glenner, D.G. and Wong, C.W. (1984) Alzheimer’s disease: initial report of
the purification and characterization of a novel cerebrovascular amyloid
protein. Biochem. Biophys. Res. Commun., 120(3), 885–90.

8. Geula, C., Wu, C.K., Saroff, D., Lorenzo, A., Yuan, M. and Yankner, B.A.
(1998) Aging renders the brain vulnerable to amyloid beta-protein neuro-
toxicity. Nat. Med., 4, 827–831.

9. Knobloch, M., Konietzko, U., Krebs, D.C. and Nitsch, R.M. (2007)

Intracellular Ab and cognitive deficits precede b-amyloid deposition in
transgenic arc Ab mice. Neurobiol. Aging, 28, 1297–1306.

78 Richard J. Wilson

10. Robinson, S.R. and Bishop, G.M. (2002) A-b as a bioflocculant: implica-
tions for the amyloid hypothesis of Alzheimer’s disease. Neurobiol. Aging,

23, 1051–1072.
11. Dobson, C.B., Wozniak, M.A. and Itzhaki, R.F. (2003) Do infectious

agents play a role in dementia? Trends Microbiol., 11(7), 312–317.
12. Schenk, D. (2002) Amyloid-b immunotherapy for Alzheimer’s disease: the

end of the beginning. Nat. Rev. Neurosci., 3(10), 824–8.
13. White, A.R., Du, T., Laughton, K.M., Volitakis, I., Sharples, R.A.,

Hoke, D.E., Holsinger, R.M.D., Evin, G., Cherny, R.A., Hill, A.F.,

Barnham, K.J., Li, Q.-X., Bush, A.I. and Masters, C.L. (2006) Degrada-
tion of the Alzheimer’s Disease Amyloid Beta Peptide by Metal-depen-
dent Up-regulation of Metallprotease Activity. J. Biol. Chem., 281,

17670–17680
14. Deane, R. and Zlokovic, B.V. (2007) Role of the blood-brain barrier in the

pathogenesis of Alzheimer’s disease. Curr. Alzheimer Res., 4(2), 191–7.

15. Parkin, E.T., Watt, N.T., Hussain, I., Eckman, E.A., Eckman, C.B.,
Manson, J.C., Baybutt, H.N., Turner, A.J. and Hooper, N.M. (2007)
Cellular prion protein regulates b-secretase cleavage of the Alzheimer’s
amyloid precursor protein. Proc. Natl. Acad. Sci., 104(26), 11062–11067.

16. Ballatore, C., Lee, V.M.-Y. and Trojanowski, J.Q. (2007) Tau-mediated
neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev.
Neurosci., 8, 663–672.

17. Li, B., Chohan, M.O., Grundke-Iqbal, I. and Iqbal, K. (2007) Disruption
of microtubule network by Alzheimer abnormally hyperphosphorylated
tau. Acta Neuropathol., 113(5), 501–11.

18. Wang, J.-Z., Grundke-Iqbal, I. and Iqbal, K. (2007) Kinases and phos-
phatases and tau sites involved in Alzheimer neurofibrillary degeneration.
Eur. J. Neurosci., 25(1), 59–68.

19. SantaCruz, K., Lewis, J., Spires, T., Paulson, J., Kotilinek, L., Ingelsson,

M., Guimaraes, A., DeTure, M., Ramsden, M., McGowan, E., Forster,
C., Yue, M., Orne, J., Janus, C., Mariash, A., Kuskowski, M., Hyman, B.,
Hutton, M. and Ashe, K.H. (2005) Tau Suppression in a Neurodegen-

erative Mouse Model Improves Memory Function. Science, 309, 476–
4481.

20. Takashima, A. (2006) GSK-3 is essential in the pathogenesis of Alzhei-

mer’s disease. J. Alzheimers Dis., 9(3 Suppl), 309–17.
21. Zhang, B., Maiti, A., Shively, S., Lakhani, F., McDonald-Jones, G.,

Bruce, J., Lee, E.B., Xie, S.X., Joyce, S., Li, C., Toleikis, P.M., Lee,

V.M.-Y. and Trojanowski, J.Q. (2005) Microtubule-binding drugs offset
tau sequestration by stabilizing microtubules and reversing fast axonal
transport deficits in a tauopathy model. Proc. Natl. Acad. Sci., 102(1),
227–231.

22. Roy, S., Zhang, B., Lee, V.M.-Y. and Trojanowski, J.Q. (2005) Axonal
transport defects: a common theme in neurodegenerative diseases. Acta
Neuropathol., 109, 5–13.

23. Stokin, G.B., Lillo, C., Falzone, T.L., Richard, G., Brusch, R.G., Rock-
enstein, E., Mount, S.L., Raman, R., Davies, P., Masliah, E., Williams,
D.S. and Goldstein, L.S.B. (2005) Axonopathy and Transport Deficits

Early in the Pathogenesis of Alzheimer’s Disease. Science, 307, 1282–88.

www.scilet.com Towards a cure for dementia 79

24. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P.
(2002) Molecular biology of the cell. Garland Science, NY.

25. Hirokawa, N. and Takemura, R. (2005) Molecular motors and mechan-
isms of directional transport in neurons. Nat. Rev. Neurosci., 6, 201–214.

26. Hollenbeck, P.J. and Saxton, W.M. (2005) The axonal transport of
mitochondria. J. Cell. Sci., 118, 5411–5419.

27. Vale, R.D. (2003) The molecular motor toolbox for intracellular trans-
port. Cell., 112, 467–480.

28. Asbury, C.L. (2005) Kinesin: world’s tiniest biped. Curr. Opin. Cell. Biol.,

17, 89–97.
29. Viel, A., Lue, R.A. and Liebler, J. (2006) animation at http://multi-

media.mcb.harvard.edu/anim_innerlife.html

30. Uemura, S., Kawaguchi, K., Yajima, J., Edamatsu, M., Toyoshima, Y.Y.
and Ishiwata, S. (2002) Kinesin-microtubule binding depends on both
nucleotide state and loading direction. Proc. Natl. Acad. Sci., 99(9), 5977–

5981.
31. Rice, S., Lin, A.W., Safer, D., Hart, C.L., Naber, N., Carragher, B.O.,

Cain, S.M., Pechatnikova, E., Wilson-Kubalek, E.M., Whittaker, M.,
Pate, E., Cooke, R., Taylor, E.W., Milligan, R.A. and Vale, R.D. (1999) A

structural change in the kinesin motor protein that drives motility. Nature,
402, 778–784.

32. Sablin, P.E. and Fletterick, R.J. (2004) Coordination between Motor

Domains in Processive Kinesins. J. Biol. Chem., 279(16), 15707–15710
33. Mather, W.H. and Fox, R.F. (2006) Kinesin’s Biased Stepping Mechan-

ism: Amplification of Neck Linker Zippering. Biophys. J., 91, 2416–2426.

34. Kamal, A., Almenar-Queralt, A., LeBlanc, J.F., Roberts, E.A. and Gold-
stein, L.S. (2001) Kinesin-mediated axonal transport of a membrane
compartment containing beta-secretase and presenilin-1 requires APP.
Nature, 414, 643–648.

35. King, M.E., Kan, H.-M., Baas, P.W., Erisir, A., Glabe, C.G. and Bloom,
G.S. (2006) Tau-dependent microtubule disassembly initiated by prefibril-
lar b-amyloid. J. Cell. Biol., 175, 541–546.

36. Gallo, G. (2007) Tau is actin up in Alzheimer’s disease. Nat. Cell. Biol., 9,
133–134

37. Itzhaki, R.F., Lin, W.-R., Shang, D., Wilcock, G.K., Faragher, B. and

Jamieson, G.A. (1997) Herpes simplex virus type 1 in brain and risk of
Alzheimer’s disease. Lancet, 349, 241–4.

38. Satpute-Krishnan, P., DeGiorgis, J.A. and Bearer, E.L. (2003) Fast

anterograde transport of herpes simplex virus: role for the amyloid
precursor protein of Alzheimer’s disease. Aging Cell, 2, 305–18.

39. Bachis, A., Aden, S.A., Nosheny, R.L., Andrews, P.M. and Mocchetti, I.
(2006) Axonal Transport of Human Immunodeficiency Virus Type 1

Envelope Protein Glycoprotein 120 Is Found in Association with Neuro-
nal Apoptosis. J. Neurosci., 26(25), 6771–6780.

40. Adalbert, R., Gilley, J. and Coleman, M.P. (2007) Abeta, tau and ApoE4

in Alzheimer’s disease: the axonal connection. Trends Mol. Med., 13(4),
135–42.

80 Richard J. Wilson

	WRAP_THESIS_coversheet.pdf

