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SOME VANISHING SUMS INVOLVING BINOMIAL
COEFFICIENTS IN THE DENOMINATOR

S.PURKAIT AND B.SURY

Abstract. We obtain expressions for sums of the form
∑m

j=0(−1)j
jd

(
m
j

)
(

n+j
j

) and

deduce, for an even integer d ≥ 0 and m = n > d/2, that this sum is 0 or
1
2

according as to whether d > 0 or not. Further, we prove for even d > 0

that
∑d

l=1 cl−1

(−1)l
(

n
l

)
l!

(l+1)
(

2n
l+1

) = 0 where cr = 1
r!

∑r
s=0(−1)s

(r
s

)
(r − s + 1)d−1.

Similarly, we show when d > 0 is even that
∑d

r=0 ar
r!

(
n

r+1

)
(

2n
r+1

) = 0 where ar =

(−1)d+r

r!

∑r
s=0(−1)s

(r
s

)
(r − s + 1)d.

Introduction

Identities involving binomial coefficients usually arise in situations where count-
ing is carried out in two different ways. For instance, some identities obtained by
William Horrace [1] using probability theory turn out to be special cases of the
Chu-Vandermonde identities. Here, we obtain some generalizations of the iden-
tities observed by Horrace and give different types of proofs; these, in turn, give
rise to some other new identities. In particular, we evaluate sums of the form∑m
j=0(−1)jjd (m

j )
(n+j

j ) and deduce that they vanish when d is even and m = n > d/2.

It is well-known [2] that sums involving binomial coefficients can usually be ex-
pressed in terms of the hypergeometric functions but it is more interesting if such a
function can be evaluated explicitly at a given argument. Identities such as the ones
we prove could perhaps be of some interest due to the explicit evaluation possible.
The papers [3], [4] are among many which deal with identities for sums where the
binomial coefficients occur in the denominator and we use similar methods here.

1. Horrace’s identities - other proofs and generalizations

We start with the identities in Horrace’s paper which he deduced using proba-
bility theory.
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Lemma 1.1. For m ≥ 1, n ≥ 0; we have∑m
j=0(−1)j (m

j )
(n+j

j ) = n
n+m ; and∑m

j=1(−1)j−1j
(m

j )
(n+j

j ) = mn
(n+m)(n+m−1) .

The lemma can be easily deduced by induction or using the method of [3].

Remark 1.2. We give another expression for the left hand sides of these identities.
Recall the forward difference operator ∆ defined on a function f by (∆f)(x) =
f(x + 1) − f(x). As usual, one defines ∆k+1f = ∆(∆kf) etc. It is easily seen by
induction on m that

(∆mf)(x) =
m∑
r=0

(−1)r
(
m

r

)
f(x+m− r).

Now, the left hand side of the first identity of Lemma 1.1 is
m∑
j=0

(−1)j
(
m
j

)(
n+j
j

)
which is (∆mg)(0) where

g(x) =
n!

(m+ 1− x)(m+ 2− x) · · · (m+ n− x)
.

Now, one can express g(x) as a partial fraction
∑n
i=1

ai

m+i−x . Also, each aj can be
found by multiplying both sides by the product (m+1−x)(m+2−x) · · · (m+n−x)
and evaluating at x = m+ j; we have aj

∏
i 6=j(i− j) = n! for each j ≤ n. Now, we

compute (∆mg)(x) =
∑n
i=1(∆mgi)(x) where gi(x) = ai

m+i−x . Computing, we see
that

(∆mg)(0) = n!
n∑
i=1

m∑
r=0

∏
j≤n;j 6=i

1
j − i

(−1)r
(
m
r

)
r + i

which easily simplifies to

(∆mg)(0) = n

n∑
i=1

m∑
r=0

(−1)r+i−1
(
n−1
i−1

)(
m
r

)
r + i

.

It is worth noting that although the left hand sides of these identities can be thought
of as the action by the (m + n)-th difference operator, it does not give anything
new and merely reproduces the left hand sides again. Now, by Lemma 1.1, we get
(∆mg)(0) = n

m+n and we have the following corollary.

Corollary 1.3.
n∑
i=1

m∑
r=0

(−1)r+i−1
(
n−1
i−1

)(
m
r

)
r + i

=
1

m+ n
.

Doing the same process with the second identity in Lemma 1.1, we have :
n∑
i=1

m∑
r=0

(−1)r+i−1i
(
n−1
i−1

)(
m
r

)
r + i

=
mn

(m+ n)(m+ n− 1)
.

As a matter of fact, the identity of Corollary 1.3 can be proved in a much more
general form by another manner as follows.
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Lemma 1.4.∑
i1,··· ,ik

(−1)i1+···+ik
(
n1
i1

)
· · ·
(
nk

ik

)
i1 + i2 + · · ·+ ik + 1

=
1

n1 + n2 + · · ·+ nk + 1
.

Proof. Writing (1 − t)n1+···+nk = (1 − t)n1 · · · (1 − t)nk and integrating both sides
from 0 to 1 after expanding the right side binomially, we have the identity asserted.

�

2. A vanishing theorem

A natural generalization of Lemma 1.1 would be to consider the sums of the

form
∑m
j=1(−1)j−1jd

(m
j )

(n+j
j ) for various d > 1. We have the following result which

first shows how the roles of m and n are interchanged and then implies a vanishing
result when m = n. In between, we also adopt a method used in [3] for evaluating
sums where binomial coefficients appear in the denominator.

Theorem 2.1. Let θ be a polynomial and let m+ n > deg(θ). Then, the sum

Pm,n(θ) :=
m∑
j=0

(−1)j
θ(j)

(
m
j

)(
n+j
j

)
satisfies(

m+ n

n

)
Pm,n(θ) =

m∑
j=0

(−1)jθ(j)
(
m+ n

m− j

)
=

n∑
i=0

(−1)i−1θ(−i)
(
m+ n

n− i

)
+ θ(0).

Further, if θ is an even function and if m = n, then Pm,n(θ) = θ(0)/2.

In particular, for n > 2k ≥ 0,
∑n
j=0(−1)j

j2k(n
j)

(n+j
j ) = 0 if k > 0 and = 1

2 if k = 0.

Proof. Now Pm,n(θ) =
∑m
j=0(−1)j

θ(j)(m
j )

(n+j
j ) = (∆mΦ)(0) where

Φ(x) =
θ(m− x)n!

(m+ 1− x)(m+ 2− x) · · · (m+ n− x)
.

Now, we divide θ(x) by the polynomial
∏n
i=1(x+ i) and write

θ(x) = u(x)
n∏
i=1

(x+ i) + v(x)

and deg(v) < n.
Note that if u is not the zero polynomial, we have deg(u) < m by hypothesis. In
particular, (∆mu) is the zero polynomial.
Now, we expand in partial fractions as in Remark 1.2 :

v(m− x)n!
(m+ 1− x)(m+ 2− x) · · · (m+ n− x)

=
n∑
r=1

cr
m+ r − x

.

The coefficients cr are obtained easily as before; we get

ci =
v(−i)n!

(−1)i−1(i− 1)!(n− i)!
.
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Note that v(−i) = θ(−i) for all i = 1, · · · , n. Thus,

Pm,n(θ) = (∆mΦ)(0) = (∆mw)(0)

where w(x) = v(m−x)n!
(m+1−x)(m+2−x)···(m+n−x) =

∑n
r=1

cr

m+r−x .

For i = 1, · · · , n we evaluate (∆m 1
m+i−x )(0) =

∑m
r=0(−1)r (m

r )
r+i as in [3] as follows.

m∑
r=0

(−1)r
(
m
r

)
r + i

=
m∑
r=0

(−1)r
(
m

r

)∫ 1

0

(1− t)r+i−1dt

=
∫ 1

0

ti−1(1− t)mdt = β(i,m+ 1) =
(i− 1)!m!
(m+ i)!

.

Therefore,

Pm,n(θ) =
n∑
i=1

ci
(i− 1)!m!
(m+ i)!

=
n∑
i=1

v(−i)n!
(−1)i−1(i− 1)!(n− i)!

(i− 1)!m!
(m+ i)!

=
1(

m+n
n

) n∑
i=1

(−1)i−1v(−i)
(
n+m

n− i

)
=

1(
m+n
n

) n∑
i=1

(−1)i−1θ(−i)
(
n+m

n− i

)
because v(−i) = θ(−i) for all i = 1, · · · , n. which is Adding and subtracting the
term corresponding to i = 0, we get the expression asserted in the theorem, viz.,

Pm,n(θ) =
1(

m+n
n

) n∑
i=0

(−1)i−1θ(−i)
(
m+ n

n− i

)
+ θ(0).

Adding this expression and the expression 1

(m+n
n )

∑m
j=0(−1)jθ(j)

(
m+n
m−j

)
, it is evident

that when m = n and θ(i) = θ(−i) for all i, the sum is θ(0). Taking θ(x) = x2k,
the last statement follows. The proof is complete.

�

Remark 2.2. It is important to note that although Pm,n(θ) can be re-expressed as
a multiple of

∑m
j=0(−1)jθ(j)

(
m+n
m−j

)
, and hence, can be viewed as the effect of the

(m+n)-th order difference operator on a certain function, this does not give any new
information but merely reproduces the expression. Thus, it is indeed worthwhile to
view Pm,n(θ) rather as the effect of the m-th order difference operator on a certain
function.

We proved the vanishing of Pm,n(θ) when m = n and θ(j) = j2k, but did not
evaluate it for general m,n. As we will see, a natural method to evaluate it is to
evaluate and use the following sums:

Proposition 2.3. For m,n ≥ 1, d ≥ 0 we have

Td :=
m∑
j=0

(−1)j(j + 1)(j + 2) · · · (j + d)

(
m
j

)(
n+j
j

) =
d!
(
n
d+1

)(
m+n
d+1

) .
We also have

Sd :=
m∑
j=0

(−1)jj(j − 1) · · · (j − d+ 1)

(
m
j

)(
n+j
j

) =
(−1)dn

(
m
d

)
d!

(d+ 1)
(
m+n
d+1

) .
As usual, the convention is that the empty product (when d = 0 here) is understood
to be equal to 1.
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Proof. As we did in the proof of Theorem 2.1, we express the denominator
(
n+j
j

)
in terms of the beta function and evaluate the sums. We omit details.

�

Corollary 2.4.
m∑
j=0

(−1)jjd
(
m
j

)(
n+j
j

) =
d∑
l=1

cl−1

(−1)ln
(
m
l

)
l!

(l + 1)
(
m+n
l+1

)
where cr = 1

r!

∑r
s=0(−1)s

(
r
s

)
(r − s+ 1)d−1 for all 0 ≤ r < d− 1.

In particular, if d > 0 is even and < 2n, then
d∑
l=1

cl−1

(−1)l
(
n
l

)
l!

(l + 1)
(

2n
l+1

) = 0

with cl’s as above.
Similarly, we have

m∑
j=0

(−1)jjd
(
m
j

)(
n+j
j

) =
d∑
r=1

ar
r!
(
n
r+1

)(
m+n
r+1

)
where ar = (−1)d+r

r!

∑r
s=0(−1)s

(
r
s

)
(r − s+ 1)d for all 0 ≤ r < d.

In particular, if d > 0 is even and < 2n, then
d∑
r=1

ar
r!
(
n
r+1

)(
2n
r+1

) = 0

with ar’s as above.

Proof. Now
∑m
j=0(−1)jjd (m

j )
(n+j

j ) =
∑d
l=1 cl−1Sl where Sl is as above and where cl’

s are defined by jd =
∏d−1
k=0 ckj(j − 1) · · · (j − k).

If we write

xd =
d−1∏
k=0

ckx(x− 1) · · · (x− k)

then it is easy to determine ck’s recursively and we find that for 0 ≤ r < d− 1, we
have

r!cr =
r∑
s=0

(−1)s
(
r

s

)
(r − s+ 1)d−1.

Thus, Proposition 2.3 implies the first assertion.
Similarly, if we express xd =

∑d
r=0 ar(x + 1)(x + 2) · · · (x + r), then we have∑m

j=0(−1)jjd (m
j )

(n+j
j ) =

∑d
r=1 arTr. We may compute the ar’s recursively and find

that for 0 ≤ r < d, we get

(−1)d+rr!ar =
r∑
s=0

(−1)s
(
r

s

)
(r − s+ 1)d.

�

Acknowledgements: We are indebted to William Horrace for communicating to
us his identities which use probability theory and for pointing out (thanks to George
Andrews) that they are special cases of the Chu-Vandermonde identities. We are



32 S.PURKAIT AND B.SURY

also grateful to the referee who pointed out that some similar results due to A.Sofo
appear in the paper titled ‘Sums of binomial coefficients in integral form’ published
in the Proceedings of the 12th International Conference on Fibonacci numbers and
their application in July 2006 - San Francisco, using different methods.

References

[1] W.C.Horrace - On the difference of maxima from independent uniform samples and a hy-

pergeometric identity, Preprint.
[2] M.Petkovsek, H.S.Wilf and D.Zeilberger - “A=B”, A.K.Peters 1996.

[3] B.Sury - Sum of the reciprocals of the binomial coefficients, European J. Combin. 14 (1993)

351-353.
[4] B.Sury, T.Wang and F-Z.Zhao - Identities involving reciprocals of binomial coefficients, Jour-

nal of Integer Sequences, Vol.7 (2004), Article 04.2.8

Stat-Math Unit, Indian Statistical Institute, 8th Mile Mysore Road, Bangalore
560059, India.


