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Abstract

Methane (CH4) is one of the most potent greenhouse gases and its increasing concentration in

the Earth’s atmosphere is linked to today’s global warming. The types of land and land-use

have an impact on net CH4 fluxes, e.g. wetlands are generally net CH4 emitters while upland

forest soils are a sink for CH4. This project aimed to elucidate the effect of afforestation and

reforestation on net CH4 fluxes and to determine the control of the CH4-oxidising bacteria

(methanotrophs) on net CH4 flux rate. This was investigated using a combination of

molecular (T-RFLP, cloning/sequencing, microarray) and activity-specific (PLFA-SIP)

approaches. Several sites were selected to analyse soil methanotrophs under shrubs

regenerating after a fire compared to a native mature forest (in New Zealand), and under bog,

grass, heath, pine and birch vegetation (in Scotland). Furthermore, a simple bottom-up

approach was applied to seasonal measurements of local net CH4 fluxes in Scotland. These

were upscaled to annual values in order to estimate the contribution to the national CH4

budget for each habitat investigated. The effect on CH4 mitigation of the conversion of

different types of non-forested habitat to forests was then estimated.

Afforestation/reforestation was always found to induce net CH4 oxidation at rates much faster

than previously estimated. This preliminary analysis suggests that heathland conversion to

birch forest was beneficial in term of CH4 sinks but it also induced large and permanent

losses of soil C. However, bog afforestation with pine trees can potentially neutralise the

national CH4 emissions from non-forested areas, while preserving soil C stocks. This project

also revealed that changes in net CH4 flux due to land-use changes were closely related to

shifts in the structure of the methanotrophic community. The relative abundance of members

of the USCα cluster (high-affinity methanotrophs) was a strong predictor of net CH4 fluxes.

Finally, the sole presence of trees suggested a niche-specific adaptation of the methanotrophs,

which may have been correlated to some of the soil characteristics.
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Chapter 1 Introduction

1. Methane in the context of global warming

The appearance of the greenhouse effect was a vital factor for the emergence of non-aquatic

life. Several gases (carbon dioxide (CO2) and water vapour (H2O)) and other trace gases

(methane (CH4), nitrous oxide (N2O)) are recognised as potent greenhouse gases (GHGs)

(Lacis et al., 1981). The increase in concentration of these gases in the atmosphere impacts

on global warming (mainly CO2, CH4 and N2O). Other contributions to the phenomenon

involve destruction of the stratospheric ozone (O3) layer (by halogenated compounds and

N2O) and increase in tropospheric (pollutant) O3 (by NOx, CO and hydrocarbons) (Conrad,

1996). Also, CH4 reacts with hydroxyl free radicals (•OH) (see section 2.2), whose oxidative

effect is essential to atmospheric cleansing (Le Mer & Roger, 2001). As a result, other

pollutants, such as chloro-fluoro carbons (CFCs) are not eliminated, leading to an increased

longevity of other GHGs (O3, CO, CO2).

For centuries, the atmospheric concentration of the three main anthropogenic GHGs (CO2,

CH4 and N2O) was stable, but major increases have occurred since the beginning of the

industrial era as a consequence of human activities (Figure 1.1). CH4 constitutes the second

most significant greenhouse gas after CO2, and it is thought to account for up to 20-30% of

global warming (IPCC, 2007). It had a stable, relatively constant abundance of 700 ppb (parts

per billion) until the 19th century when a steady increase brought CH4 mixing ratio to 1,745

ppb in 1998. During the late 1970s and early 1980s, the rate of increase in CH4 concentration

was as high as 1%.yr-1 but a minor slowdown started in the mid-1980s. Atmospheric CH4 has
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since stabilised at a value of 1.77-1.78 ppm in 2005. Today, a slight imbalance towards an

annual increase of about 0.1%.yr-1 of CH4 emission has been calculated (IPCC, 2007).

Figure 1.1: Atmospheric concentrations of important greenhouse gases over the last 2,000 years.

Increases since about year 1750 are attributed to human activities in the industrial era. Concentration units are
parts per million (ppm) or parts per billion (ppb). Source: IPCC (IPCC, 2007).

Despite a short lifetime of approximately 8 years in the atmosphere, CH4 is 25 times more

efficient than CO2 as a greenhouse gas, over a 100-year horizon and on a mass basis (Shindell

et al., 2009). Yet, an increase of atmospheric CH4 concentration to 2.55 ppm and a lifetime of

8.4 years are predicted by 2050 based on current rates of CH4 emissions and subsequent

decrease in •OH radical concentration (Lelieveld et al., 1998). In addition, it was suggested

that recently observed slowdown in global CH4 emissions was only temporary and

atmospheric CH4 might rise again (Bousquet et al., 2006). Consequently, it is essential to

understand the processes responsible for the sources and sinks of CH4 in order to efficiently

mitigate the global warming effect of this gas.
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2. The carbon and methane cycles

2.1. Definition

Atmospheric gases like CO2 and CH4 are each part of a cycle in which living organisms, such

as plants and microbes, are either consumers or producers. In particular, trace gases can be

substrates for microbial growth by acting as electron donors or acceptors (Conrad, 1996).

Although the CH4 sources are numerous and relatively well known, CH4 is removed from the

atmosphere by only a few processes (see section 2.2).

Microbial CH4 production (methanogenesis) is performed by a specific group of Archaea

called methanogens, and always occurs in anoxic environments as a consequence of

fermentation, the anaerobic degradation of organic matter (see section 2.4). Archaeal

methanogens only constitute the last step of fermentation and rely on the presence of a larger

bacterial consortium including hydrolytic, fermenting, syntrophic and acetogenic bacteria

(Cicerone & Oremland, 1988) (Figure 1.2). Recently, a controversy arose concerning the

ability of plants to abiotically produce CH4 (see section 2.2). However, it is well known that

some plants, such as in rice paddies, can emit CH4 produced in deeper soil layers after

passive transport through the transpiration stream (aerenchyma) (Butterbach-Bahl et al.,

1997; Neue et al., 1997), effectively bypassing the zone of CH4 oxidation (see below).

In contrast, microbial CH4 consumption (methanotrophy) is achieved by a unique group of

Proteobacteria called methanotrophs (see section 3). The majority of methanotrophs are

aerobic organisms. Thus, CH4 oxidation usually takes place at anoxic/oxic boundaries such as

sediments, where methanotrophs play an important role in attenuating CH4 emissions to the

atmosphere after production in the deeper anoxic environments (Conrad, 2009) (Figure 1.2).
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Figure 1.2: Global carbon cycle in nature.

The five main compartments of C processing are indicated by the coloured boxes. Arrows indicate either the
substrates produced by a process or for which other process intermediates are produced. Adapted from Liu &
Whitman (2008) and Ferry (2010).

2.2. Sources and sinks of CH4 on Earth

An environment is a CH4 source when the balance between production by methanogens and

consumption by methanotrophs is positive, resulting in net CH4 emission. When the balance

is negative, the environment is a CH4 sink (Le Mer & Roger, 2001). The global budget of

CH4 is about 600 Tg of CH4 emitted per year (Conrad, 2009; Lelieveld et al., 1998).

Interestingly, this is matched by corresponding levels of CH4 sink (Le Mer & Roger, 2001).

Methane is naturally emitted from sources such as wetlands, oceans, plants, termites and

geological sources (e.g. gas seepage, hydrates). Wetlands represent the largest source with

62% of the (natural) CH4 budget (see Figure 1.3). Anthropogenic sources include rice

agriculture, livestock, landfills and waste treatment, biomass burning, and fossil fuel
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extraction, transport and consumption. As mentioned earlier, most of the natural CH4 sources

are of microbial origin (Conrad, 1996). Emissions from biogenic sources account for 69% of

the global total. Unexpectedly, abiotic production of CH4 through plant leaves via the

possible aerobic degradation of pectin was revealed by Keppler et al. (2006). Unfortunately,

these findings could not be reproduced (Beerling et al., 2008; Dueck et al., 2007). However,

if true, CH4 emission from plants could have a significant contribution to global CH4 budget

(Conrad, 2009). More details on emission of CH4 from plants, as well as from upland forest

soils, can be found elsewhere (Conrad, 2009; Megonigal & Guenther, 2008; Nisbet et al.,

2009).

During the pre-industrial era, natural sources represented over 90% of total emission. In

contrast, man-made emissions dominate present-day CH4 budgets, accounting for 63% of the

total global budget (Conrad, 2009), and occur mostly in the Northern Hemisphere (Lelieveld,

2006). Figure 1.3 shows the detailed global CH4 sources, both natural and anthropogenic.

Figure 1.3: Global sources of atmospheric CH4.

The left side of the left pie chart represents the natural CH4 sources, whereas its right side gives an estimate of
the anthropogenic sources as detailed in the right pie chart. In bold are the microbial-related productions.
Source: adapted from IPCC (2001) and Conrad (2009).
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In the troposphere, chemical removal of CH4 from the atmosphere represents 88% of the total

sink. It is performed through the photochemical oxidation of CH4 initiated by the reaction

with •OH radicals, according to the reaction: CH4 + •OH → CH3• + H2O (Cicerone &

Oremland, 1988). The loss of CH4 in the stratosphere accounts for about 7% of the sink.

Finally, CH4 is also eliminated from the atmosphere by uptake in upland soils due to

microbial oxidation (5%) (Conrad, 2009).

2.3. Importance of terrestrial CH4 in relation to climate change

The management of global CH4 sources and sinks is essential for efficient mitigation of

global warning. It is possible to impact on the CH4 budget by reducing anthropogenic

emissions. This was the primary goal of the establishment of the Kyoto Protocol of 1997

(UNFCCC, 1998). This would include, for example, better management of landfills, livestock

or rice cultivation. A more detailed discussion is found in Le Mer & Roger (2001) and Reay

et al. (2010). However, the impact that we can have on CH4 consumption is limited because

the terrestrial sink contribution to the global budget is weak (only 5%), nonetheless

important, and because ultimately, this process will determine whether an ecosystem is a

source or sink for CH4. This is in particular true since it is estimated that more than 50% of

CH4 produced below ground is oxidised before reaching the atmosphere (Kvenvolden &

Rogers, 2005; Reeburgh, 2003). Besides, most of this sink occurs in upland soils, especially

in temperate forests (Le Mer & Roger, 2001; Ojima et al., 1993). Therefore, it is important to

better understand the mechanisms involved in CH4 emission from and sinks to soil. Progress

could be made to enhance this terrestrial sink, for example by improving the land

managements and uses through the implementation of appropriate policies (Chazelas et al.,

2006; Schulze et al., 2009).
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Soil CH4 sink is performed by a particular group of methanotrophs, which have a high

affinity for CH4 (Bender & Conrad, 1992) but have not yet been isolated (Henckel et al.,

2000a; Holmes et al., 1999; Knief et al., 2003). These microorganisms can survive and thrive

on the trace concentrations of atmospheric CH4 fluxes between atmosphere and soils. They

are affected by numerous environmental factors of the soils (see section 5.1). Thus,

deciphering the mechanisms that can lead to an improvement of terrestrial CH4 sinks may

help with choosing more adapted approaches for the mitigation of climate change.

2.4. Methane-producing Archaea (methanogens)

2.4.1. Definition and taxonomy

Methanogens are CH4-producing Archaea, or methanoarchaea, and earned their name from

their ability to produce CH4 as a result of energy production and growth. Methanogens are

obligate CH4 producers and strictly anaerobic microorganisms, which can feed on few

substrates, depending on the type of CH4-production pathway they use (see section 2.4.3).

Methanogenesis, a form of anaerobic respiration, forms the terminal step of the anaerobic

food chain by converting methanogenic substrates to CH4 (Hedderich & Whitman, 2006).

Methanoarchaea constitute an ancient monophyletic lineage within the Euryarcheota phylum

and are extremely diverse despite their limited substrate range (Boone et al., 1993; Whitman

et al., 2001). They are classified into three classes, six orders, eleven families and 32 genera

(Table 1.1).
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Table 1.1: Taxonomy of major methanogens.

The extremophilic/tolerant methanogens are also colour-coded: blue: extreme thermophiles (growth >80°C); yellow: extreme halophiles (growth at 4.3 M NaCl).

Domain /
Kingdom /

Phylum
Class Order Family Genus Major CH4 production pathway

Archaea /
Archaebacteria /
Euryarchaeota

Methanobacteria Methanobacteriales
Methanobacteriaceae

Methanobacterium

H2/CO2, methylotrophic
Methanobrevibacter
Methanosphaera
Methanothermobacter

Methanothermaceae Methanothermus

Methanococci

Methanococcales
Methanococcaceae

Methanococcus

H2/CO2
Methanothermococcus

Methanocaldococcaceae
Methanocaldococcus
Methanotorris

Methanomicrobiales

Methanomicrobiaceae

Methanomicrobium

H2/CO2

Methanoculleus
Methanofollis
Methanogenium
Methanolacinia
Methanoplanus

Methanospirillaceae Methanospirillum

Methanocorpusculaceae
Methanocorpusculum
Methanocalculus

Methanocellales (RC-I) Methanocellacaea Methanocella H2/CO2

Methanosarcinales
Methanosarcinaceae

Methanosarcina Aceticlastic, methylotrophic
Methanococcoides

Methylotrophic

Methanohalobium
Methanohalophilus
Methanolobus
Methanomethylovorans
Methanimicrococcus
Methanosalsum

Methanosaetaceae Methanosaeta Aceticlastic

Methanopyri Methanopyrales Methanopyraceae Methanopyrus H2/CO2
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A novel lineage of methanogens, rice cluster I (RC-I), was identified from rice roots by

culture-independent approaches (Großkopf et al., 1998; Lueders et al., 2001). However, RC-I

members are widely distributed in other habitats around the world (Conrad et al., 2006). They

form a distinct clade within the Methanomicrobiales and Methanosarcinales radiation based

on the genetic analysis of 16S rRNA and mcrA (coding for the methyl-coenzyme M

reductase) (Großkopf et al., 1998; Lueders et al., 2001). The RC-I methanogens have a

selective advantage over the other methanoarchae that allows them to survive in the (oxic)

rhizosphere of rice roots (Erkel et al., 2006). This is because these organisms possess a

unique set of antioxidants and O2-sensitive enzymes. Recently, two novel members of RC-I

were isolated in pure culture, Methanocella paludicola and Methanocella arvoryzae, and the

new Methanocellales order was created (Sakai et al., 2007; 2008; 2010) (see Table 1.1).

2.4.2. Ecology of methanogens

Most of the methanogens are mesophiles, however, several genera of methanogens (see Table

1.1) can be found in extreme environments such as marine geothermal sediments and hot

springs, as well as in hypersaline sediments. Mesophilic methanogens are mostly found in

marine and freshwater sediments, animal gastrointestinal tracts, rice paddies and anaerobic

digestors (Liu & Whitman, 2008).

Because methanogens cannot use complex organic compounds, they need the presence of

bacterial anaerobes in the environment to degrade these compounds into simple sugars and

fatty acids. These are further fermented by syntrophic bacteria to form acetate, formate,

hydrogen (H2) and CO2, which constitute the substrates for methanogenesis (also see Figure

1.2). Acetogens (acetate-producing bacteria) are part of this syntrophic consortium when

methanogens consume H2 and formate efficiently (Stams, 1994). Methanogens are found in

anaerobic environments where CO2 constitutes the main electron acceptor. However, because
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CO2 is less thermodynamically favourable, methanogens are outcompeted by sulfate-reducing

bacteria, denitrifiers or iron-reducing bacteria if other electron acceptors such as SO4
2-, NO3

-

or Fe3+, respectively, are dominant. But since CO2 is produced during fermentation, it never

constitutes a limiting factor and anaerobic respiration by methanogens (i.e. methanogenesis)

can become dominant in anaerobic environments (Liu & Whitman, 2008).

Most methanogens are H2-consumers because they need H2 as electron donor (see section

2.4.3). Therefore, they need to closely interact with H2-producing microorganisms, and also

as a way to dispose of reducing equivalents. This important interaction is called interspecies

hydrogen transfer (Hedderich & Whitman, 2006; Stams & Plugge, 2009).

2.4.3. CH4-production pathways

The complexity and uniqueness of methanogenesis as a form of anaerobic respiration resides

in the requirement of six unusual coenzymes (ferredoxin (Fd), methanofuran (MFR),

tetrahydromethanopterin (H4MPT), coenzyme F420 (F420), coenzyme M (CoM) and coenzyme

B (CoB)); a long, multistep pathway and several unique membrane-bound enzyme complexes

coupled to the generation of a proton gradient driving ATP synthesis (Ferry, 2010). The three

main methanogenic substrates are CO2, acetate and methyl-group containing compounds

(such as methanol, methylated amines and methylated sulfides). Therefore, three distinct

pathways for CH4 production exist (Deppenmeier, 2002; Ferry, 1999) (see Figure 1.4). The

hydrogenotrophic methanogenesis represents the production of CH4 from reduction of CO2

with H2, while the conversion of acetate to CO2 and CH4 is called aceticlastic

methanogenesis. They represent the two major pathways for CH4 production by

methanogens, whereas methylotrophic methanogenesis (utilisation of methyl groups) only

has a minor contribution (Ferry, 2010).
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Figure 1.4: Major pathways of CH4 production in methanogens: (A) CO2-reduction pathway; (B)
aceticlastic pathway.

Abbreviations: Ac-CoA = acetyl-coenzyme A; AcS/CODH = acetyl-CoA synthase and carbon monoxide
dehydrogenase; AK = acetate kinase; CoB = coenzyme B; CoM = coenzyme M; ECH = enrgy-converting
hydrogenase; F420 = coenzyme F420; Fd = ferredoxin; FDH = formate dehydrogenase; H4MPT =
tetrahydromethanopterin; H4SPT = tetrahydrosarcinapterin; HDR = heterodisulfide reductase; MCR = methyl-
coenzyme M reductase; MFR = methanofuran; MTR = methyltransferase.
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Similarities between the three types of methanogenesis

Although the intermediates and enzymatic reactions of the three pathways are different, they

share common features in the final steps of CH4 production (Figure 1.4). The

hydrogenotrophic and aceticlastic pathways both result in the production of a carrier-bound

methyl-intermediate. The carrier protein is H4MPT in the hydrogenotrophic pathway and

tetrahydrosarcinapterin (H4SPT), a derivative of H4MPT, in the aceticlastic pathway. The

transfer of the methyl-group to CoM by a specific, membrane-bound methyltransferase

(MTR), and the subsequent reduction of methyl-CoM to CH4 by the key enzyme methyl-

coenzyme M reductase (MCR) (see section 2.4.4), is common is all three pathways. During

this last step, CoB is the electron donor and the heterodisulfide CoM-S-S-CoB is then

formed. Finally, the heterodisulfide reductase (HDR), another membrane-bound enzyme,

regenerates the thiols (Figure 1.4). Another important membrane-bound enzyme is the

energy-converting hydrogenase (ECH), which is involved in the reduction/oxidation of Fd.

CO2-reduction pathway (Figure 1.4A)

Most methanogens, including members of the novel RC-I clade, can oxidise CO2, using H2 as

primary electron donor. Many hydrogenotrophs can also use formate as electron donor from

the activity of the formate dehydrogenase (FDH) (Liu & Whitman, 2008). Hydrogenotrophic

methanogenesis is the most complex pathway and requires all six of the unusual coenzymes.

Basically, H2/CO2 methanogenesis consists in a series of enzymatic reactions involving one-

carbon (C1) intermediates bound to the carrier molecules MFR, H4MPT and CoM (DiMarco

et al., 1990; Gorris & van der Drift, 1994).
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Aceticlastic pathway (Figure 1.4B)

Only the species of Methanosarcina and Methanosaeta are aceticlastic methanogens but they

are responsible for two-thirds of CH4 biologically generated (Liu & Whitman, 2008). The

cleavage of acetate forms CO2 from the oxidation of the carboxyl-group, and CH4 from the

reduction of the methyl-group (Ferry, 1997). In this pathway, the unusual coenzymes Fd,

H4SPT, CoM and CoB are involved. Coenzyme A (CoA) is also used. Here, the acetate is

activated to acetyl-CoA (Ac-CoA) by acetate kinase (AK), before the C-C bond is cleaved by

the multienzyme complex of acetyl-CoA synthase and carbon monoxide dehydrogenase

(AcS/CODH).

Methylotrophic pathway

Only members of the Methanosarcinales order, except the Methanosaeta genus, can use

methylated compounds to produce CH4 (Table 1.1). They are called methylotrophic

methanogens but their pathway is not a major contributor of methanogenesis. More details

are found elsewhere (Liu & Whitman, 2008).

2.4.4. MCR, the key enzyme in methanogenesis

This specific enzyme catalyses the transfer of CoM to the other thioenzyme CoB to form the

heterodisulfide CoM-S-S-CoB and CH4 (Thauer, 1998). MCR consists of a dimer of three

subunits, α (McrA), β (McrB) and γ (McrG), and contains a unique porphinoid nickel (Ni)-

containing active site called coenzyme F430 (Gunsalus & Wolfe, 1980). The enzyme’s

apparent molecular mass is about 300 kDa. Two distinct isoenzymes of methyl-CoM

reductase were identified (Steigerwald et al., 1993). The second enzyme, designated MRT for

methyl reductase two, has a different substrate affinity (Bonacker et al., 1993).
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MCR activity is encoded by the mcrBDCGA operon, while the mrtBDGA operon codes for

the MRT (Thauer, 1998). The equivalent of the gene mcrC is missing in the mrt operon (Pihl

et al., 1994). The products of the genes mcrC (McrC), mcrD (McrD) and mrtD (MrtD) are

below 20 kDa. Their function is still unknown, but they might be involved in the post-

translational modification of the α-subunit (Reeve et al., 1997). mcrA constitutes a good

functional marker for the analysis of the phylogeny of methanogens and gave congruent

results compared to 16S rRNA-based studies (Conrad et al., 2006).

Regulation of gene expression in methanogens is not well understood. Primary sensors and

signal transduction cascades have not been elucidated (Hedderich & Whitman, 2006).

However, evidence was found for regulation by trace elements and their availability. This is

because many catabolic enzymes of methanogenesis contain trace metals (molybdenum,

tungsten, selenium, nickel) in their active site. The coenzyme F390 has a hypothetical

important role in cell. For example, a mutant of Methanothermobacter thermoautotrophicus

was unable to form F390 under H2-deprived conditions. As a consequence, this mutant was

also lacking the ability to synthesise MCR (Pennings et al., 1998). Availability of the

substrate H2 was found to regulate the formation of some key enzymes of methanogenesis,

such as MRC. In Methanothermobacter species, the expression of the two isoenzymes of

MCR is differently regulated by H2 availability, with isoenzyme I (MCR) predominantly

expressed in H2-limiting conditions (Bonacker et al., 1992; Morgan et al., 1997).
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3. Methane-oxidising Bacteria (methanotrophs)

3.1. Definitions

Aerobic methanotrophs

Methanotrophs are Gram-negative aerobic bacteria and earned their name from their ability to

oxidise CH4 in order to use it as a source of carbon (C) and energy. Methanotrophs are related

to the methylotrophs because they can grow on one-carbon (C1) substrates. But

methylotrophs are not able to oxidise CH4. Methanotrophs are often found at the anoxic/oxic

interface of various habitats such as geothermal reservoirs, landfills, soils, peat bogs,

wetlands or aquatic environments and sediments, where they consume the CH4 diffusing

from the underground methanogenic sources and are thus able to reduce or completely

eliminate these CH4 emissions (Conrad, 1996; Conrad & Rothfuss, 1991; Whalen et al.,

1990). Methanotrophs can also live in symbiosis with plants (Sphagnum spp. for which they

produce CO2 (Raghoebarsing et al., 2005; van Winden et al., 2010)) and with marine

invertebrates from hydrothermal vents and cold seeps in the deep sea by providing nutrients

to them in exchange of electron donors (Petersen & Dubilier, 2009). These methanotrophs are

capable of oxidising high concentrations of CH4 (>10,000 ppm) and can be isolated and

cultivated. However, other methanotrophs have the ability to oxidise CH4 only at atmospheric

levels (~1.8 ppm) but they cannot be cultured, although they have been identified in upland

soils (Henckel et al., 2000a; Holmes et al., 1999; Knief et al., 2003).

The majority of aerobic methanotrophs use CH4 as their sole source of C and energy (obligate

methanotrophs). Yet, facultative methanotrophs exist and proved to be able to feed on

multicarbon substrates (see section 3.4.2). The large majority of aerobic methanotrophs are

neutrophiles (growth at a neutral pH of 6.5-7.5) and mesophiles (growth at temperatures
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between 20 and 40°C) (Whittenbury et al., 1970). Nevertheless, several species of

extremotolerant methanotrophs have been isolated from extreme ecosystems displaying high

and low values of temperature, pH or salinity (Trotsenko & Khmelenina, 2002). These

extremophiles are shown in Table 1.2.

Anaerobic methanotrophs

Anaerobic oxidation of methane (AOM) can be achieved by particular methanotrophs, called

anaerobic methanotrophic Archeae (ANME) and related to methanogens, by coupling with

sulfate-reducing bacteria (SRB) (Boetius et al., 2000; Hinrichs et al., 1999). AOM involves

the use of sulfate as electron acceptor to oxidise CH4 via a process of reversed

methanogenesis (Thauer & Shima, 2008). More recently, AOM coupled to denitrification was

described by Raghoebarsing et al. (2006) from enriched cultures. In particular, the bacterium

Methylomirabilis oxyfera was found to be able to reduce nitrite to form its own supply of O2

via a new intra-aerobic pathway (Ettwig et al., 2010). Genomic analysis revealed that this

organism does not use reversed methanogenesis to oxidise CH4 but rather the typical aerobic

methanotrophic mechanism (Wu et al., 2011). Apart from using sulfate and nitrate/nitrite as

electron acceptors, AOM was also found to be dependant of the metals manganese and iron in

marine environments (Beal et al., 2009).
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Table 1.2: Taxonomy of aerobic methanotrophs.

The extremophilic/tolerant methanotrophs are also colour-coded: orange: psychrophiles (growth at 5-10°C but not above 20°C); purple: haloalkaliphiles (growth at 12% NaCl
and at pH of 9-11); yellow: halophiles (growth at 15% NaCl); blue: thermophiles (growth >45°C); green: acidophiles (growth at pH of 4.5-5.5); grey: thermoacidophiles
(growth at 60°C and at pH of 2).

Domain: Bacteria / Kingdom: Eubacteria / Phylum: Proteobacteria Phylum: Verrucomicrobia

Class: Gammaproteobacteria
Order: Methylococcales

Class: Alphaproteobacteria
Order: Rhizobiales

Class: Verrucomicrobiae
Order: Methylacidiphilales

Family: Methylococcaceae Family: Methylocystaceae Family: Methylacidiphilaceae

Methylobacter Methylomonas Methylocaldum Methylocystis Methylacidiphilum
Methylobacter bovis Methylomonas aurantiaca Methylocaldum gracile 5 Methylocystis echinoides Methylacidiphilum infernorum 11

Methylobacter chroococcum Methylomonas fodinarum Methylocaldum szegediense 5 Methylocystis heyeri 10 Methylacidiphilum fumarolicum12

Methylobacter luteus Methylomonas methanica Methylocaldum tepidum 5 Methylocystis hirsute Methylacidiphilum kamchatkensis13

Methylobacter marinus Methylomonas rubra Methylococcus Methylocystis methanolicus
Methylobacter psychrophilus 1 Methylomonas scandinavica 1 Methylococcus capsulatus 15 Methylocystis minimus
Methylobacter tundripaludum Methylosarcina Methylococcus thermophilus 1 Methylocystis parvus
Methylobacter vinelandii Methylosarcina fibrata Methylogaea Methylocystis pyriformis
Methylomicrobium Methylosarcina lacus Methylogaea oryzae 21 Methylocystis rosea
Methylomicrobium agile Methylosarcina quisquiliarum Methylosinus
Methylomicrobium album Methylosphaera Methylosinus sporium
Methylomicrobium buryatense 1 Methylosphaera hansonii 2 Methylosinus trichosporium

Methylomicrobium pelagicum 1 Methylothermus Family: Beijerinckiaceae

Methylohalobius Methylothermus thermalis 4 Methylocapsa
Methylohalobius crimeensis 3 Methylothermus subterraneus 14 Methylocapsa acidiphila 6

Methylosoma Methylovulum Methylocapsa aurea 16

Methylosoma difficile Methylovulum miyakonense 18 Methylocella
Methylocella palustris 7

Clonothrix Crenothrix Methylocella silvestris 8

Clonothrix fusca 19 Crenothrix polyspora 20 Methylocella tundrae 9

Methyloferula
Methyloferula stellata 17

Type I Type X Type II

References: 1 Trotsenko & Khmelenina (2002); 2 Bowman et al. (1997); 3 Heyer et al. (2005); 4 Tsubota et al. (2005); 5 Bodrossy et al. (1997);
6 Dedysh et al. (2002); 7 Dedysh et al. (2000); 8 Dunfield et al. (2003); 9 Dedysh et al. (2004); 10 Dedysh et al. (2007); 11 Dunfield et al. (2007);
12 Pol et al. (2007); 13 Islam et al. (2008); 14 Hirayama et al. (2010); 15 Bowman et al. (1993); 16 Dunfield et al. (2010); 17 Vorobev et al. (2010);
18 Iguchi et al. (2011); 19 Stoecker et al. (2006); 20 Vigliotta et al. (2007); 21 Geymonat et al.(2010).
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Oxidation of CH4

It is performed in methanotrophs by a unique enzyme called methane monooxygenase

(MMO). MMO exists in two forms: a soluble form (sMMO) and a membrane-bound, or

particulate, form (pMMO) (Hakemian & Rosenzweig, 2007; Lipscomb, 1994; Prior &

Dalton, 1985b). Although these two enzymes catalyse the same reaction, their mechanism

and origin are very different (Holmes et al., 1995) (see section 3.3.3). The oxidation of CH4

into methanol is followed by the formation of formaldehyde by the enzyme methanol

dehydrogenase (MDH). Formaldehyde constitutes the central point of methanotroph

metabolism as two pathways were identified for its assimilation and these were used to

separate methanotrophs into two groups (type I and type II) (Figure 1.5). The type I

methanotrophs use the ribulose monophosphate (RuMP) pathway whereas the type II

methanotrophs assimilate formaldehyde through the serine pathway (Lawrence & Quayle,

1970; Trotsenko & Murrell, 2008). This distinction was correlated by the presence of

intracytoplasmic membranes (ICM) typical to each pathway. However, some exceptions were

recently observed in the genera Methylocella and Methylacidiphilum (Table 1.3).

Only a portion (~50%) of the formaldehyde is assimilated into cellular biomass, i.e. for the

production of energy (Prior & Dalton, 1985b). The remaining is converted into formate and

ultimately into CO2 (Figure 1.5). For this reason, methanotrophs are seen as playing a key

role in climate mitigation (Conrad, 1996).

3.2. Taxonomy of aerobic methanotrophs

For a long time, the taxonomy of aerobic methanotrophs was fairly straightforward (Bowman

et al., 1993; Whittenbury et al., 1970) but recent progress shed more light on their complex

organisation due to the existence of several organisms that did not “follow the rules”. To
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date, aerobic methanotrophs have representatives in two phyla, three orders and four families.

A total of 20 genera and 52 species have been identified (Table 1.2).

Based on morphological, physiological and genetic differences (see section 3.3), CH4-

oxidising bacteria were divided into the two groups type I and type II. Type X was also

created to accommodate methanotrophs of the genus Methylococcus and later, of the genera

Methylocaldum and Methylogaea (Table 1.2). Type X methanotrophs share characteristics of

both type I and type II (see section 3.4.1). However, type X microorganisms should be

considered a sub-set of type I methanotrophs (Bowman et al., 1993; Semrau et al., 2010).

Type I (and type X) methanotrophs belong to the Methylococcaceae family of the class of the

Gammaproteobacteria of the Proteobacteria phylum, whereas type II methanotrophs are

Alphaproteobacteria divided into two families: the Methylocystaceae and the

Beijerinckiaceae (Bowman et al., 1993; Op den Camp et al., 2009). Among the

Methylococcaceae, two unique genera are present: Clonothrix and Crenothrix (Stoecker et

al., 2006; Vigliotta et al., 2007). The two species that represent them are filamentous,

sheathed microorganisms with a unique and complex life complex and were isolated from

groundwater environments. Although 16S rRNA-based studies relate them to type I

methanotrophs, Crenothrix shows a very divergent encoding sequence for pMMO (Stoecker

et al., 2006) (see section 3.5.2).

Recently, CH4-oxidising bacteria of the Verrucomicrobia phylum were identified and the

three species that were isolated from geothermal habitats in Italy, New Zealand and Russia

(Dunfield et al., 2007; Islam et al., 2008; Pol et al., 2007) were classified under the

Methylacidiphilum family and Methylacidiphilales order (Op den Camp et al., 2009) (Table

1.2). These methanotrophic Verrucomicrobia represent a unique group of methanotrophs

although they share many characteristics of methanotrophic Proteobacteria, especially of

Alphaproteobacteria (type II methanotrophs). However, it should be clear that aerobic
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methanotrophs are now of two types: proteobacterial methanotrophs (type I and type II) and

verrucomicrobial methanotrophs (see section 3.4.3).

3.3. Differences between aerobic methanotrophs

These differences are summarised in Table 1.3.

3.3.1. Intracytoplasmic membrane (ICM) formation

The ICM is an important characteristic since all type I methanotrophs contain ICM organised

as bundles of vesicular disks distributed throughout the cell and perpendicular to the cell

periphery (Trotsenko & Murrell, 2008). The RuMP pathway associated to this type I ICM

and to the assimilation of formaldehyde used to be unique to type I methanotrophs. However,

a novel type II methanotroph, Methyloferula stellata, was recently found to use the RuMP

pathway (Vorobev et al., 2010), where all the other type II methanotrophs use the serine

pathway to assimilate formaldehyde. The ICM formation in type II methanotrophs is

different. For the members of the Methylocystaceae, ICM are stacks packed in parallel to the

periphery of the cell (Trotsenko & Murrell, 2008). However, the methanotrophs of the

Beijerinckiaceae have a different ICM formation: in Methylocapsa sp. ICM are membrane

vesicles packed parallel to only one side of the cell membrane (described as type III by

Dedysh et al. (2002)), whereas Methylocella spp. contain vesicular membranes connected to

the ICM (Dedysh et al., 2000) (Table 1.3). Verrucomicrobial methanotrophs do not possess

an ICM system that is found in proteobacterial methanotrophs (see section 3.4.3).

3.3.2. Formaldehyde assimilation pathways

After oxidation of CH4 into formaldehyde, two metabolic pathways are available (the RuMP

and serine pathway) resulting in the synthesis of (phospho)trioses. These pathways were

reviewed in great length by Trotsenko and Murrell (2008) and will be discussed briefly here.
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Table 1.3: Some characteristics of known aerobic methanotrophs.

When not mentioned, data were compiled from Semrau et al. (2010) and Op den Camp et al. (2009).

Gram-negative, aerobic Type I Type X Type II

Phylum/class Gammaproteobacteria Alphaproteobacteria Verrucomicrobia

Genera

Methylobacter, Methylomicrobium,
Methylomonas, Methylosarcina,
Methylosphaera, Methylohalobius,
Methylothermus, Methylosoma,
Methylovulum, Clonothrix, Crenothrix

Methylocaldum,
Methylococcus,
Methylogaea

Methylocystis,
Methylosinus

Methylocapsa,
Methylocella,
Methyloferula

Methylacidiphilum

Methanotrophy Obligate Obligate
Obligate

Facultative * Obligate

ICM formation
Bundles of vesicular disks distributed throughout the cell and
perpendicular to cell periphery

Methylocystaceae – membrane stacks packed in
parallel to cell periphery

Methylocapsa – membrane vesicles packed parallel to
only one side of cell membrane

Methylocella – vesicular membranes connected to ICM

No but carboxysome-
like structures or
vesicular membranes

Formaldehyde assimilation RuMP pathway
RuMP pathway; Low levels of
enzymes of the serine pathway

Serine pathway
Serine pathway
RuMP pathway **

A variant of the serine
pathway

MMO activity pMMO; sMMO € pMMO; sMMO pMMO
‡
; sMMO

‡‡ pMMO

pmoA genotype affiliation
associated with oxidation
of atmospheric CH4

§

USCγ; cluster 1, cluster 3 

Methylococcaceae
Methylocystaceae

USCα; cluster 5 

Beijerinckiaceae
Methylacidiphilaceae

Major PLFA biomarkers
14:0; 16:0; 16:1ω7c 

18:1ω7 # 16:0; 16:1ω7c 
18:1ω8c 

18:2 ω6c,12c; 18:2 ω7c,12c ## 18:1ω7c i14:0; a15:0; 18:0 

Nitrogen fixation Methylosphaera, Methylosoma, Methylogaea and Methylococcus only † yes yes

RubisCO activity no yes Methyloferula only ¥ yes

G+C (mol%) 43-63 57-65 62-67 56-63 41-46

* Only in Methylocella (Dedysh et al., 2005) and Methylocapsa aurea (Dunfield et al., 2010). ** Only in Methyloferula (Vorobev et al., 2010). € Only in Methylomonas (Koh et
al., 1993; Shigematsu et al., 1999), Methylomicrobium (Fuse et al., 1998), Methylovulum (Iguchi et al., 2010a; 2010b) and Methylococcus (Bowman et al., 1993). ‡ Not in Methylocella
(Dedysh et al., 2005) or Methyloferula (Vorobev et al., 2010). ‡‡ Not in Methylocapsa (Dedysh et al., 2002; Dunfield et al., 2010). § Kolb (2009). # Only in Methylohalobius (Heyer
et al., 2005). ## Bodelier et al. (2009). † From, respectively, Bowman et al. (1997), Rahalkar et al. (2007), Geymonat et al. (2010), Bowman et al. (1993). ¥ Vorobev et al. (2010).
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Figure 1.5: Oxidation of CH4 and simplified pathways of carbon assimilation in methanotrophs: (A) RuMP pathway of type I methanotrophs; (B) Serine pathway
of type II methanotrophs; (C) CO2 fixation via Calvin-Benson-Bassham cycle.

Multiple arrows represent consecutives enzymatic reactions which are not detailed here. Abbreviations: Ac-CoA = acetyl-coenzyme A; CytC = cytochrome C; FalDH =
formaldehyde dehydrogenase; FDH = formate dehydrogenase; F-1,6-BP = fructose-1,6-bisphosphate; G-6-P = glucose-6-phosphate; GAP = glyceraldehydes-3-P; GK =
glycerate kinase; HPI = hexulose-6-P isomerase; HPS = hexulose-6-P synthase; MDH = methanol dehydrogenase; Pyr = pyruvate; PDH = pyruvate dehydrogenase; R-5-P =
ribulose-5-P; R-1,5-BP = ribulose-1,5-bisphosphate; SGAT = serine-glyoxylate aminotransferase; SHTM = serine-hydroxytransmethylase; 2-P-G = 2-phospho-glycerate.
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The RuMP cycle (Figure 1.5A).

In a first step, formaldehyde is combined to a ribulose-5-phosphate (R-5-P) molecule via the

activity of a key enzyme, the hexulose-6-phosphate synthase (HPS). The resulting product is

quickly isomerised to fructose-6-P (F-6-P) by the unique hexulose phosphate isomerase

(HPI). In the second step, the phosphohexose is cleaved into pyruvate (Pyr) and

glyceraldehyde-3-P (GAP) via variants of the Embden-Meyerhof-Parnas (i.e. glycolysis) and

Entner-Doudoroff cycles. Pyruvate can then be oxidise by the pyruvate dehydrogenase (PDH)

to acetyl-coenzyme A (Ac-CoA), which constitutes the start of tricarboxylic acid (TCA)

cycle (also known as citric acid cycle or Krebs cycle) involved in the production of energy

and of precursors of some amino acids. However, in type I and type X methanotrophs, this

cycle is incomplete due to the absence of the enzymatic activity of the alpha-ketoglutarate

dehydrogenase (αKGDH) (Wood et al., 2004). Nonetheless, the genes encoding this enzyme

were present in the genome of Methylococcus capsulatus (Bath) (Ward et al., 2004). The last

step of the RuMP pathway is the regeneration of the R-5-P from GAP and F-6-P through a

series of reactions (rearrangements).

The serine pathway (Figure 1.5B).

In a first step, formaldehyde reacts with glycine to form serine via the activity of a key

enzyme, the serine-hydroxytransmethylase (SHTM). Next, the specific enzyme serine-

glyoxylate aminotransferase (SGAT) transfers the amino group of serine to glyoxylate

(transamination) resulting in the formation of glycine and hydroxypyruvate. Then, the unique

enzymes hydroxypyruvate reductase (HPR) and glycerate kinase (GK) form 2-phospho-

glycerate (2-P-G). Other enzymes specific to the serine pathway subsequently form

glyoxylate and Ac-CoA. From this point, Ac-CoA can enter a complete TCA cycle due to the

presence an active αKGDH in type II methanotrophs. The last step of the serine pathway is 
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the regeneration of glycine from the first step but also by oxidation of Ac-CoA into

glyoxylate. Alternatively, glyoxylate can be regenerated from the biosynthesis pathway of

poly-β-hydroxybutyrate (Korotkova et al., 2002), which is known as a storage compound in

methanotrophs (Kolb, 2009; Murrell & Jetten, 2009). In most methanotrophs, and in

particular in type II (except in Methylacidiphilum – see section 3.4.3), glyoxylate cannot be

formed through the glyoxylate bypass, due to the absence of the enzymes isocitrate lyase and

malate synthase (Trotsenko & Murrell, 2008). Yet, Chen et al. (2010) identified the genes

encoding the enzymes of the glyoxylate shunt in Methylocella silvestris.

3.3.3. MMO activity

The first step in the oxidation of CH4 by methanotrophs is achieved by the specific enzyme

CH4 monooxygenase (MMO) (Hakemian & Rosenzweig, 2007; Lieberman & Rosenzweig,

2004; Semrau et al., 2010). Both enzymatic forms require O2 to perform the reaction but they

use a different electron donor/acceptor system: NADH + H+/NAD+ in the case of sMMO and

cytochrome C with pMMO (Figure 1.5). pMMO is present in all methanotrophs, except in

Methylocella and Methyloferula spp. (Dedysh et al., 2000; 2004; 2003; Vorobev et al., 2010).

Yet, many methanotrophs (Methylomonas, Methylomicrobium, Methylovulum,

Methylococcus, Methylocystis and Methylosinus) contain both enzymes (Table 1.3).

Detection of MMO activity

The MMO enzymatic activity is unique to methanotrophs and its putative active site is

encoded by the pmoA (pMMO) or mmoX (sMMO) genes (see section 3.5.1). Thus, these two

functional genes represent ideal molecular markers for the study of methanotroph

communities. In fact, phylogenetic studies based on 16S rRNA, mmoX and pmoA sequences

gave congruent results and allowed to observe a distinct separation between type I and type II

methanotrophs (Holmes et al., 1999; Horz et al., 2001; McDonald et al., 2008).
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3.3.4. Phospholipids fatty acid (PLFA) signature

Another difference between type I, type X and type II methanotrophs, which makes them

distinguishable, is the range of PLFAs present in their cell membrane (see section 4.1) (Table

1.3). The PLFAs 14:0, 16:0 and 16:1ω7 are most abundantly found in type I methanotrophs 

while type II methanotrophs contain mainly the PLFAs 18:1ω7c (Beijerinckiaceae) and

18:1ω8c (Methylocystaceae) (Bodelier et al., 2009; Bowman et al., 1993). Recently, the

PLFAs 18:2ω6c,12c and 18:2ω7c,12c were found to be characteristically found in members 

of the Methylocystaceae family (Bodelier et al., 2009).

However, one exception exists with Methylohalobius crimeensis, a type I methanotroph that

contains 18:1ω7 as a major PLFA (Heyer et al., 2005). Other PLFAs, such as 16:1ω8c or 

18:1ω9c are present in both types of methanotrophs but they are less abundant (Dedysh et al.,

2007). The novel methanotrophs of the Methylacidiphilum genus contain a unique PLFA

signature composed of i14:0, a15:0 and 18:0 (Op den Camp et al., 2009).

3.3.5. N2 fixation

Another difference that used to be considered important between type I and type II

methanotrophs was the ability of type II (and type X) methanotrophs to assimilate

atmospheric nitrogen (N2) whereas it was believed type I could not (Hanson & Hanson, 1996;

Murrell & Dalton, 1983). However, recent findings revealed that members of the genera

Methylosphaera, Methylosoma and Methylogaea can fix N2 and possess the nifH gene

(Bowman et al., 1997; Geymonat et al., 2010; Rahalkar et al., 2007). Similarly, members of

the Methylacidiphilum genus were identified as being able to assimilate N2 (Khadem et al.,

2010; Op den Camp et al., 2009).
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3.4. Particularities to the type I/type II separation

3.4.1. The case of type X methanotrophs

As mentioned earlier, type X methanotrophs display characteristics of both type I and type II

cells (Table 1.3). Type X methanotrophs assimilate formaldehyde using the RuMP pathway

but they also show low levels of the enzymes of the serine pathway. Furthermore, they have

the genes encoding the sMMO enzyme, which is mostly found in type II methanotrophs. The

PLFA signature of type X methanotrophs is similar to type I representatives. Finally, the

G+C content in type X methanotrophs is more characteristic of type II representatives

because type I methanotrophs tend to have a lower G+C content (Table 1.3).

Until recently, type X methanotrophs used to be the only ones to possess the ribulose

bisphosphate carboxylase/oxygenase (RubisCO) activity (fixation of CO2) (Baxter et al.,

2002; Stanley & Dalton, 1982). However, the novel type II methanotroph Methyloferula

stellata (as well as members of Methylacidiphilum – see section 3.4.3) also display this

activity (Vorobev et al., 2010).

3.4.2. The case of facultative methanotrophs

Methylocella species are unique to the other methanotrophs because they proved to be able to

grow on several substrates containing C-C bonds, i.e. they are facultative methanotrophs. The

multicarbon metabolites include acetate, pyruvate, succinate, malate and ethanol (Dedysh et

al., 2005). This ability was explained by the fact that Methylocella only relies on the sMMO

enzyme to oxidise CH4 because of the lack of the pMMO enzyme (Dedysh et al., 2000;

Dedysh et al., 2004; Dunfield et al., 2003). Remarkably, it is now well known that sMMO is

a very versatile enzyme capable of oxidising a wide range of alkanes, aliphatics and aromatic
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compounds (Colby et al., 1977), which could explain the facultative methanotrophy of

Methylocella. However, the evolutionary reasons behind obligate methanotrophy are still

unknown (Dedysh et al., 2005; Theisen & Murrell, 2005). In most type II methanotrophs, the

glyoxylate bypass is not active (see above). This cycle is essential for growth on two-carbon

compounds (Chung et al., 1988) but seems to be functioning in Methylocella silvestris (Chen

et al., 2010).

Recently, another facultative type II methanotroph was isolated, Methylocapsa aurea

(Dunfield et al., 2010). Like Methylocella, it is found in acidic soils. Yet, it is quite different

since the pMMO enzyme was detected but the sMMO was not. And like Methylocapsa

acidiphila, the typical ICM formation was present (Table 1.3). In contrast, the recently

identified type I methanotroph Crenothrix polyspora also proved to be facultatively

methanotrophic in the absence of CH4 (Stoecker et al., 2006).

3.4.3. The case of Methylacidiphilum

Until recently, methanotrophic bacteria were only represented by Proteobacteria (α- and γ-

classes). Yet, the novel Methylacidiphilum genus does not fit in the type I/type II

classification of methanotrophs, except that its members are obligate and aerobic cells. Based

on 16S rRNA gene analyses, Methylacidiphilum belongs to the Verrucomicrobia phylum. In

contrast, based on pmoA phylogeny, Methylacidiphilum appears to be evolutionary related to

proteobacterial methanotrophs (Hou et al., 2008; Op den Camp et al., 2009).

Verrucomicrobial methanotrophs possess a different membrane system than the ICM system

found in proteobacterial methanotrophs but like most type II methanotrophs,

Methylacidiphilum uses the pMMO enzyme to oxidise CH4 (Table 1.3). Genomic analysis

postulated the presence of a possible serine pathway to assimilate formaldehyde in

verrucomicrobial methanotrophs. However, it is unclear whether formaldehyde is a precursor
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for C fixation. Indeed, the enzyme glycerate kinase, essential to the serine pathway, was not

detected in the genome. Instead, it is believed that Methylacidiphilum could primarily fix

carbon autotrophically via a complete Calvin-Benson-Bassham cycle (Op den Camp et al.,

2009) (Figure 1.5C). In fact, it was observed that the growth of Methylacidiphilum

infernorum was strongly dependant on CO2 (Dunfield et al., 2010). Nevertheless, Op den

Camp et al. (2009) suggested that Methylacidiphilum members are true methanotrophs rather

than ammonia oxidisers since all three isolated strains were not able to grow on NH4
+-

containing medium in the absence of CH4 (see below). Verrucomicrobial methanotrophs also

possess a complete TCA cycle but unlike type II methanotrophs, they are able to replenish

their stocks of glyoxylate through an operational set of enzymes (isocitrate lyase and malate

synthase) of the glyoxylate bypass (Hou et al., 2008).

3.5. sMMO vs. pMMO

3.5.1. Structure of sMMO and pMMO

Soluble methane monooxygenase (sMMO)

sMMO is a well-characterised enzyme. It consists of three components: a hydroxylase, a

reductase (MmoC) and a regulatory protein, or protein B (MmoB) (Stirling & Dalton, 1979).

The hydroxylase component of the enzymatic complex consists of a dimer of three subunits

(α, β and γ) of 61, 45 and 20 kDa, respectively. The α-subunit acts as the active site of CH4

catalysis and is characterised by the presence of a non-heme, binuclear Fe-centre, that is to

say two iron (Fe) atoms bridged by an oxygen atom (Green & Dalton, 1985). MmoC (39

kDa) contains a Fe2S2 and FAD centre and uses NADH + H+ for the reduction reaction (Fox

et al., 1989). MmoB (16 kDa) acts as a coupling protein of the oxidation of NADH and CH4,

and its activity might be controlled by proteolysis of its terminal amino acid (Lloyd et al.,

1997). A model of the structure of sMMO was proposed by Murrell et al. (2000a).
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sMMO is coded by the mmoXYBZDC gene cluster (Stainthorpe et al., 1990) (Figure 1.6).

Figure 1.6: Physical map of the sMMO operon from Methylococcus capsulatus (Bath).

The genes encoding for the sMMO enzyme (mmoXYBZDC) are highlighted in red. The regulatory genes, mmoG
and mmoR are highlighted in green and purple, respectively. The genes encoding for a two-component senor-
regulatory system are highlighted in blue. The location and direction of transcription from the σ54 promoter is
indicated with a black arrow. The gene boundaries are shown to scale and are indicated by the scale bar.

Among this (mmo) operon of six genes, mmoX, mmoY and mmoZ code for, respectively, the

α-, β- and γ-subunits of the hydroxylase component, while mmoB and mmoC encode MmoB

and MmoC, respectively. mmoD (also know as orfY) codes for the protein MmoD (12 kDa),

the exact role of which is unknown except that it is probably involved in the assembly of the

di-iron centre of the hydroxylase component (Merkx & Lippard, 2002). The genes mmoR and

mmoG are also found in the vicinity of the mmo operon, although their exact location will

vary among methanotrophs (Scanlan et al., 2009). These genes were found to code for

proteins involved in the regulation of sMMO expression (Csáki et al., 2003; Scanlan et al.,

2009; Stafford et al., 2003). mmoR codes for MmoR, a σ54-dependant transcriptional

activator/regulator for the transcription of mmoXYBZDC. mmG encodes MmoG, a putative

GroEL-like chaperone, that could be involved in the folding and/or assembly of sMMO

(Scanlan et al., 2009; Stafford et al., 2003). In Methylococcus capsulatus (Bath), mmoS and

mmoQ were found to code for a putative two-component signal transduction system

(MmoS/MmoQ) (Csáki et al., 2003). MmoS would act as copper-sensing element, which

phosphorylation would signal MmoQ to interact with MmoR for the activation of sMMO

production. A summary diagram of the model for the transcriptional regulation of the

mmoXYBZDC operon can be found elsewhere (Csáki et al., 2003; Hakemian & Rosenzweig,

2007). sMMO has a broad range of substrate and hence is seen as a useful tool for pollutant

bioremediation (Hanson & Hanson, 1996; Semrau et al., 2010; Shigematsu et al., 1999).
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Particulate methane monooxygenase (pMMO)

pMMO, in contrast to sMMO, is a less well understood enzyme. It consists of a trimer of

three subunits (α, β and γ) of 45, 27 and 23 kDa, respectively (Zahn & Dispirito, 1996). The 

45- and 27-kDa subunits are thought to constitute the active site of pMMO, as they can be

inhibited by the suicide substrate acetylene (DiSpirito et al., 1991; Prior & Dalton, 1985a).

pMMO is an iron- and copper-containing enzyme but much debate exists as to the exact

number and type of metal centres, as well as on the nature of the electron donor (Lieberman

& Rosenzweig, 2004; Semrau et al., 2010).

pMMO is coded by the pmoCAB gene cluster (Gilbert et al., 2000; Semrau et al., 1995;

Stolyar et al., 1999) (Figure 1.7). Among this (pmo) operon of three genes, pmoC, pmoA and

pmoB code for the α-, β- and γ-subunits, respectively, of pMMO. 

Figure 1.7: Structural gene organisation of the pMMO operon in methanotrophs.

The pmoCAB operon encodes for the α-, β- and γ-subunits of pMMO, respectively. The location and direction of 
transcription from the σ70 promoter is indicated with the black arrow. The gene boundaries are shown to scale
and are indicated by the scale bar.

The pmoA gene was described as highly conserved while pmoCAB was shown to be

evolutionary linked to the amoCAB gene cluster, coding for the ammonia monooxygenase

(AMO), found in nitrifying bacteria of the Betaproteobacteria and Gammaproteobacteria

phyla (Holmes et al., 1995). Despite a very different physiological function, pMMO and

AMO share a very similar polypeptide structure and can both oxidise methane and ammonia,
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although their affinity for these substrates are different, and they are activated by different

concentrations of copper (Hanson & Hanson, 1996). A second pmoCAB operon (pmoCAB2)

was identified in Methylocystis sp. strain SC2 (see below) and was reported to code for a

functional equivalent to the conventional pMMO (Ricke et al., 2004). Furthermore, the

pmoCAB2 gene cluster showed a degree of conservation similar to the pmoCAB and amoCAB

operons, confirming an evolutionary relationship rather than a recent horizontal transfer.

However, the authors suggested that the novel pMMO-like enzyme may have a different

functional role in Methylocystis strain SC2. This was confirmed later by the evidence that the

products of pmoCAB1 and pmoCAB2 (PmoCAB1 and PmoCAB2, respectively) were two

isoenzymes with different CH4 oxidation kinetics (Baani & Liesack, 2008). Indeed, the

authors showed that pMMO1 was activated when CH4 concentrations were >600 ppm,

whereas pMMO2 was expressed constitutively and could oxidise CH4 with an apparent Km

that would correspond to atmospheric CH4 mixing ratios (Bender & Conrad, 1992), which

was recently confirmed by Kravchenko et al. (2010). Thus, this would provide these

organisms with a mechanism for survival in dry upland soil for extended time by using

atmospheric CH4 (Baani & Liesack, 2008). This would be in agreement with the frequent

detection of Methylocystaceae in forest soils (Kolb, 2009), and the ability of Methylocystis

spp. to use reserve material such as poly-β-hydroxybutyrate (Knief & Dunfield, 2005). 

3.5.2. Gene copy number and variations

It is now well known that most methanotrophs that possess the pMMO activity have two

nearly identical copies of the pmoCAB operon (Gilbert et al., 2000; Semrau et al., 1995;

Stolyar et al., 1999; Ward et al., 2004). A third copy of pmoC (pmoC3), coding for a

functional PmoC that may be essential to cell growth, was also found in Methylococcus

capsulatus (Bath) (Semrau et al., 1995; Stolyar et al., 1999). The physiological explanation
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for the presence of multiple copies of the pmoCAB operon is not clear. However, Stolyar et

al. (1999; 2001) showed that the relative expression of the two operons was dependent on the

copper levels.

Remarkably, a novel pmoA-like gene, named pmoA2, was discovered in Methylocystis sp.

strain SC2 and Methylosinus trichosporium strain KS21 (Dunfield et al., 2002). pmoA2 is

actually widely found in many Methylocystaceae type II microorganisms but not in type I

methanotrophs (Tchawa Yimga et al., 2003). All proteobacterial pmoA2 sequences form a

consistent cluster distinctly separated from the conventional pmoA (pmoA1).

Crenothrix polyspora has a divergent/unusual pmoA gene (u-pmoA), which places this type I

methanotroph apart in the pmoA phylogeny (Stoecker et al., 2006; Vigliotta et al., 2007).

Three copies of pmoA were identified in Methylacidiphilum, with the verrucomicrobial pmoA

being phylogenetically separated from the conventional proteobacterial pmoA (Op den Camp

et al., 2009; Semrau et al., 2010). A fourth copy of pmoA was found in Methylacidiphilum

kamchatkense and it formed a monophyletic cluster with the verrucomicrobial pmoA1 and

pmoA2, while pmoA3 was separated from them (Op den Camp et al., 2009).

A duplicate copy of mmoX was identified in Methylosinus sporium 5 but the authors

concluded that only one copy was functional (Ali et al., 2006).

3.5.3. Regulation by copper and copper-uptake system

Copper (Cu) plays a major role in the regulation of the MMO activity. In an early study by

Green et al. (1985), it was observed that sMMO activity can be inhibited by copper. In

contrast, pMMO needs Cu to be active since its active form contains 15 Cu atoms per enzyme

molecule (Zahn & Dispirito, 1996). In methanotrophs that contain both forms of MMO, the

expression of the genes encoding both sMMO and pMMO is dependent on the Cu levels in

the environment (Stanley et al., 1983). More specifically, a switch between the expression of
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the two enzymes occurs when the copper-to-biomass ratio changes (Murrell et al., 2000b;

Nielsen et al., 1997). When Cu availability is high, pMMO is expressed while sMMO is not.

In contrast, the mmo operon expression is activated (positive control) in copper-deficient

conditions, while the pmo operon is repressed (negative control). This positive regulation of

the mmo operon may be seen as a survival mechanism in methanotrophs that are able to

synthesise both MMO forms (Hanson & Hanson, 1996; Knapp et al., 2007). The model for

the dual regulation of the genes encoding pMMO and sMMO proposed by Murrell et al.

(2000a) was since updated and reviewed elsewhere (Hakemian & Rosenzweig, 2007;

Trotsenko & Murrell, 2008).

Methanobactin (mb) is a novel siderophore-like peptide (1.2 kDa). Since it has high affinity

for binding Cu, it is therefore called a chalkophore. It was identified as a Cu transporter,

which methanotrophs release to sequester extracellular copper (Kim et al., 2004; 2005). It

was observed that a Cu-binding compound (CBC), i.e. methanobactin, was associated with

pMMO (Zahn & Dispirito, 1996) and that the addition of Cu-containing mb (Cu-mb)

increased pMMO activity when the Cu-to-mb ratio was >0.6 Cu atom per mb (Choi et al.,

2005). Further to the evidence that Cu-mb regulates CH4 oxidation by the pMMO,

constitutive sMMO (sMMOc) mutants of Methylosinus trichosporium OB3b could not

express pMMO or form the corresponding ICM and were defective in Cu uptake (Fitch et al.,

1993; Phelps et al., 1992). The correlation between Cu regulation and MMO expression, i.e.

the “switchover” model proposed by Murrell et al. (2000a), is not only dependent on the Cu-

to-biomass ratio but also the Cu-to-mb ratio as well as the Cu geochemistry, i.e. the mineral

form of Cu available (Choi et al., 2005; Knapp et al., 2007). Knapp et al. (2007) also

suggested that the ability of mb to mediate Cu release from a mineral phase could be an

important factor for shaping methanotroph community structure and influencing CH4
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oxidation rates in natural systems. This finding was supported by Choi et al. (2010) who

observed that the mb secreted by alphaproteobacterial (type II) methanotrophs was competing

with the mb produced by gammaproteobacterial (type I) methanotrophs.

To summarise, the chalkophore mb has three identified functions due to its Cu-chelating

properties: 1) Cu shuttle; 2) regulation of MMO activity; and 3) reduction of Cu toxicity

(Choi et al., 2005; Fitch et al., 1993; Kim et al., 2005). Methanobactin can be produced by

many Methylococcaceae and Methylocystaceae but it is not known yet if Beijerinckiaceae

and Methylacidiphilaceae can secrete mb (Semrau et al., 2010; Yoon et al., 2010).
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4. Techniques used for identifying methanotrophs

Like the majority of soil microorganisms, many methanotrophs cannot be cultured. This

applies in particular to the high-affinity methanotrophs responsible for the oxidation of

atmospheric CH4 (Bender & Conrad, 1992). Thus, studies often use culture-independent

methods to investigate methanotrophic diversity and composition in the environment. Several

physiological, biochemical and molecular techniques are also available to help link

environmental processes to specific microbial taxa (Gutierrez-Zamora & Manefield, 2010;

McDonald et al., 2008; Singh & Thomas, 2006; Torsvik & Ovreas, 2002). These include the

use of stable or radioactive isotope probing methods, fluorescent probe-based approaches, or

detection of biomarkers or fingerprinting of genetic markers extracted directly from

environmental samples. Only a few of them will be reviewed here although there were

discussed in detail in the above references.

4.1. Biochemical techniques

Phospholipid fatty acids (PLFAs) are present in the cell membrane of bacteria and are

assumed to be degraded relatively rapidly after cell death. Hence, they are considered to be

good biomarkers of living microorganisms (Bowman et al., 1993; Frostegård et al., 2010) as

well as for observation of shifts in community structures and microbial biomass (Frostegård

et al., 1993a; Frostegård et al., 1993b). PLFA extraction and identification methods are well

established (Bligh & Dyer, 1959; Frostegård et al., 1991). In brief, after extraction and

fractionation of the total lipids, polar lipids are trans-esterified using a mild alkaline

methanolysis, producing PLFA methyl esters (PLFAMEs), and derivatisation is performed

using dimethyl disulfide. Samples can then be analysed by gas chromatography-mass

spectrometry (GC-MS). The resulting separation of fatty acids produces unique PLFA

patterns specific to the microorganisms from which they originated.
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Although PLFA profiles give an indication of the microbial taxa present in the soil at the time

of the sampling, its resolution level is low (Singh et al., 2006a) and it does not provide

information of the particular active species responsible for the process under study, e.g.

methanotrophy, unless coupled to stable isotope probing (Boschker & Middelburg, 2002)

(see section 4.2.3). Furthermore, it is now known that some PLFAs that were originally

thought to be unique to a taxum are actually not, as discussed elsewhere (Frostegård et al.,

2010; Ruess & Chamberlain, 2010). Similarly, Sundh et al. (2000) concluded that PLFA

analysis on its own should not be used for the study of the methanotrophic community

structure in upland forest soils, i.e. where CH4 is present at trace levels. Other misuses of

PLFA measurements in soils were discussed recently by Frostegård et al. (2010).

4.2. Biomolecular techniques

4.2.1. Terminal-restriction fragment length polymorphism (T-RFLP)

T-RFLP is an automated, sensitive and semi-quantitative technique widely used for the

comparison of microbial communities and change in their structure (Osborn et al., 2000;

Singh et al., 2006a). Based on the PCR amplification of genes using fluorescently-labelled

primers (Bruce, 1997; Liu et al., 1997), amplicons are subjected to enzymatic digestion,

separation by size by electrophoresis and detection by excitation of the fluorescent dye.

Several fluorescently-labelled terminal restriction fragments (T-RFs) are produced based on

the degree of conservation between species present in the environmental samples. Thus, it

gives a unique description of the structure and composition of the microbial community

through production of characteristic fragmentation patterns (Blackwood et al., 2003; Kitts,

2001; Tiedje et al., 1999). Because several dyes can be detected at once, genes specific to

different phylogenetic groups (e.g. Bacteria, Archaea, and Fungi) can be studied

simultaneously by using multiplex T-RFLP (Singh et al., 2006b; Singh & Thomas, 2006).
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The resolution power of T-RFLP can be reasonably high and allow detecting variations

between different species at ±1 base pair (bp), in theory. However, care should be used as the

accuracy of the detection will vary depending on factors such as true T-RF length, purine

content or performance of the genetic analyser and associated capillary column (Kaplan &

Kitts, 2003; Schütte et al., 2008). These can induce discrepancies, or T-RF drifts (difference

between observed T-RF length and true T-RF length), which cannot be corrected. Kaplan &

Kitts (2003) suggested a window of ±2 bp as an appropriate approach for “binning” T-RFs of

similar sizes. Other advances made in T-RFLP analysis, including choosing the appropriate

primers, restriction enzymes or statistical approaches for analysis of results, as well as the in

silico methods available online, are found elsewhere (Culman et al., 2009; Schütte et al.,

2008; Singh et al., 2006a; Szubert et al., 2007; Thies, 2007)

4.2.2. Cloning and sequencing

Cloning uses PCR products generated the same way as from the T-RFLP procedure but with

non-labelled primers. The resulting clones are screened for the gene inserts of interest. The

subsequent PCR amplicons can be purified and sequenced in order to identify the

microorganisms present. As a result, a phylogenetic tree may be constructed to visualise the

position of the clones compared to extant methanotrophs. Also, because the sequence of

clones, or known organisms, is then accessible, it can be virtually digested (in silico analysis)

and the true T-RF length can be compared with the observed T-RF length of a T-RFLP

analysis (Kitts, 2001). Thus, cloning/sequencing is also a useful tool to assign the detected T-

RFs to specific operational taxonomic units (OTUs) (Horz et al., 2001; Horz et al., 2005;

Moeseneder et al., 2001; Singh et al., 2009).
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4.2.3. Stable isotope probing (SIP)

The natural abundance of 13C is about 1%. Therefore, the incubation of an environmental

sample with a 13C-labelled (>99%) substrate as unique C source will result in 13C-

incorporation into the different constituents (PLFA, DNA, RNA, protein) of the dividing cell

(Dumont & Murrell, 2005; McDonald et al., 2008). On this principal, it is possible to unravel

the identity of a microorganism responsible for a particular environmental process (or

biological function) under condition approaching those in situ. This “function-identity”

method was successfully used for the detection of methanotrophs, using 13C-CH4 as substrate,

from different habitats, as reviewed in Gutierrez-Zamora & Manefield (2010).

SIP of methanotrophs was applied to the labelling of lipids (Boschker et al., 1998; Maxfield

et al., 2006) and nucleic acids – DNA (Radajewski et al., 2000), rRNA (Noll et al., 2008) and

mRNA (Dumont et al., 2011). Detailed methodology can be found elsewhere (Huang et al.,

2009; Neufeld et al., 2007b; Whiteley et al., 2007). The enrichment of proteins with 13C-

labelled substrate was recently achieved by Jehmlich et al. (2008; 2010). Recent advances on

SIP and related technologies were reviewed by Murrell & Whiteley (2011).

Each of the above SIP techniques has its advantages and inconveniences. Although the

resolution power of PLFA-based SIP (PLFA-SIP) is low due to the little variety of PLFAs in

known methanotrophs, it has the highest sensitivity because it requires short incubation times

(hours/days) (Neufeld et al., 2007a). It also constitutes an inexpensive alternative to gather

information on the groups of active methanotrophs and is ideal for detecting active

methanotrophs at atmospheric CH4 levels, i.e. between 2 and 10 ppm (Bull et al., 2000;

Crossman et al., 2005; Maxfield et al., 2006; Singh & Tate, 2007). On the other hand, DNA-

SIP has the highest resolution power but is labour-intensive and requires careful attention to

detail during the each experimental step (Neufeld et al., 2007a). It also involves high

substrate consumption (>10,000 ppm) and long incubation times (weeks), which can
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potentially enhance cross-feeding of the labelled substrate (Neufeld et al., 2007a). Finally,

rRNA-SIP has a higher sensitivity because it does not involve cell division, like DNA-SIP,

and requires less time (days/weeks) to reach sufficient levels of 13C-incorporation (Lueders et

al., 2004; Manefield et al., 2002). Nevertheless, it is only specific to a particular gene unlike

DNA-SIP, which can target entire functional operons when coupled to metagenomic

approach (Dumont et al., 2006). pmoA mRNA-SIP is more sensitive than DNA-SIP and

minimises the potential problems of cross-feeding (Dumont et al., 2011).

4.2.4. Diagnostic microarrays

A DNA-based microarray relies on the hybridisation of oligonucleotide or gene probes to

specific DNA sequences. It was originally developed for genome-wide expression analysis

(Schena et al., 1995). The microarray was first adapted as a diagnostic tool for the detection

of microbial communities using probes targeting functional genes of known microorganisms

at the strain, species or genus level (Wu et al., 2001). It was quickly optimised for the

community analysis of methanotrophs (Bodrossy et al., 2003; Stralis-Pavese et al., 2004).

The most recent pmoA diagnostic array contains 199 probes, which allow detection of most

known genera of methanotrophs, mostly at the species level, as well as some ammonia

oxidisers (Stralis-Pavese et al., 2011). However, it does not resolve the most recently

discovered methanotrophs, i.e. members of Crenothrix, Clonothrix, and Methylacidiphilum.

Despite its high throughput and resolution, the pmoA diagnostic microarray is unable to

identify new microbes. As a result, it should be used along genomics (McDonald et al., 2008)

or other fingerprinting techniques such as T-RFLP.
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5. Regulation of aerobic methanotrophy

The composition of the soil methanotrophic community is dynamic. Changes in the

methanotrophic population dynamic of a soil will affect its potential to act as source or sink

for CH4. As a result, changes in the particular use or management of a land, such as upland

soils (e.g. grassland, pasture, forest), will influence CH4 sinks (Ojima et al., 1993).

Methanotrophs and CH4 oxidation rates are influenced by many abiotic and biotic factors,

which will be briefly discussed below.

5.1. Effects of environmental factors on methanotrophs and CH4 oxidation rates

As mentioned earlier, numerous environmental factors of the soil such as gas diffusion and

moisture content, temperature, pH, substrate availability, etc. can influence methanotrophic

activity (Bender & Conrad, 1995; Topp & Pattey, 1997).

Soil moisture

This was identified as a strong controller of CH4 consumption (Castro et al., 1995; Lessard et

al., 1994). Methanotrophic activity was found to be reduced when soil moisture increased

above field capacity due to a decrease in O2 availability (Czepiel et al., 1995; Sitaula et al.,

1995). In temperate forest and poorly drained soils, when moisture ranged 60-100% water-

filled pore space (WFPS), CH4 oxidation rates decreased. This was attributed to limited O2

availability and soil gas diffusivity (Bender & Conrad, 1995; Whalen & Reeburgh, 1990), in

particular because CH4 transport in water is 10,000 times slower than in air (Castro et al.,

1995; Whalen & Reeburgh, 1992). In contrast, when moisture is very low (<12%), CH4

consumption is also inhibited as observed in desert and landfill cover soils (Striegl et al.,

1992; Whalen et al., 1990). It was suggested that it was caused by increased osmotic stress

and desiccation (Conrad, 1996; Jäckel et al., 2001).
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Temperature

The effect of temperature is inconsistent, indicating that soil methanotrophs adapt to different

temperatures (Hanson & Hanson, 1996). This may be because methanotrophs are found to

thrive in a large range of temperature due to the existence of mesophilic, psychrophilic and

thermophilic members (Table 1.2). Although temperature changes were found to have little

effect on overall CH4 consumption, temperatures <10°C and >40°C seem to decrease

significantly methanotrophic activity in forest and landfill cover soils, possibly due to the

inhibition of mesophilic methanotroph activity (Castro et al., 1995; Semrau et al., 2010).

Interestingly, methanogens are highly sensitive to temperature (and pH) variations, as

discussed by Le Mer & Roger (2001). Thus, they may influence more the net CH4 flux.

pH

Soil pH does not seem to be a strong controller of CH4 oxidation since similar values were

measured between pH 3.5 to 8 (Born et al., 1990). Again, as with temperature, this could be

explained by the range of pH values to which methanotrophs are adapted, because

neutrophilic, alkaliphilic and acidophilic methanotrophs exist (Table 1.2). However, soil

alkalisation and acidification were found to decrease net CH4 fluxes in grassland and forest

(Amaral et al., 1998; Hütsch et al., 1994; Reay et al., 2001). In more recent years, pH was

found to influence the community structure in forest soils. After reviewing several studies

from conifer and deciduous forests, Kolb (2009) observed that type I-related methanotrophs

and members of the upland soil cluster γ (USCγ) were predominantly found in neutral soils, 

while type II-related methanotrophs and members of the USCα thrived in acidic soils. Also, 

the recent finding of the verrucomicrobial members of the Methylacidiphilum genus proved

that CH4 consumption at very acidic pH (<1) is possible (Op den Camp et al., 2009).
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Copper and nitrogen

Copper has an important effect on methanotrophic activity due to its involvement in the

regulation of sMMO and pMMO and the role of the Cu shuttle methanobactin, which were

both discussed earlier (see section 3.5.3). Nitrogen, mainly supplemented as inorganic

fertiliser or via atmospheric deposition, also plays a significant role in methanotrophy but this

will be discussed below (section 5.2) with the use of fertilisers. However, based on culture

experiments, type II methanotrophs were found to outcompete type I methanotrophs under

copper- and nitrogen-limited conditions (Graham et al., 1993).

Concentration of CH4

The concentration of CH4 was shown to affect the CH4 oxidation rates (Bender & Conrad,

1995). It was proved that when a very high concentration of CH4 was present (10,000 ppm),

with low O2 concentrations, type II methanotrophs outcompeted type I methanotrophs, while

growth of type I methanotrophs was favoured at lower CH4 (1,000 ppm) and high O2

concentrations (Amaral & Knowles, 1995; Henckel et al., 2000b). However, this would only

apply to methanotrophs that have a low affinity to CH4, which is when CH4 input is high, e.g.

due to intense methanogenesis. Then, the trend is reversed and type II methanotrophs become

more oligotrophic (Knief & Dunfield, 2005). High-affinity methanotrophs are able to oxidise

trace concentrations of CH4 (Bender & Conrad, 1992), such as found in upland soils. These

microbes are mainly grouped into two clades, USCα and USCγ, and are distantly related to, 

respectively, type II and type I methanotrophs (Bull et al., 2000; Holmes et al., 1999; Knief

et al., 2003; Knief et al., 2006; Singh & Tate, 2007). Only soil pH seems to be a strong

controller of the presence of either clade (see above).
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Soil structure

As well as the soil moisture (see above), the nature of the soil can influence net CH4 fluxes.

Specifically, soil texture and mineralogy are believed to be another strong controller of CH4

consumption (Castro et al., 1995; Le Mer & Roger, 2001). Soils containing some types of

clay protect organic matter from mineralization (Oades, 1988) and soils with a high clay

content are known to retain CH4 by preventing diffusion (Sass et al., 1994). At low soil

moisture, soil texture plays a role in CH4 transport, in particular gas diffusivity. Soil

characteristics such as porosity, WFPS and bulk density are closely linked to soil water

content and therefore influence O2 availability and CH4 diffusion in soils (Ball et al., 1997;

Smith et al., 2003).

In summary, soil moisture, WFPS and porosity are recognised as important drivers of CH4

oxidation rates. Although temperature is not a major controller of methanotrophy, elevated

temperature and levels of CO2 may have an indirect effect on CH4 production and global

warming, as discussed by Singh et al. (2010).

5.2. Effects of change in land management and land use

Influence of land management

Fertilisation is an important practice for land management. Conflicting reports on the precise

effect of inorganic nitrogenous fertilisers (ammonia- or nitrate-based) on CH4 consumption

exist, showing either no effect, inhibition or stimulation (Bodelier & Laanbroek, 2004;

Mohanty et al., 2006). However, several studies showed that inorganic fertilisers inhibit

methanotrophs in many land uses such as rice paddies, grassland and forests (Conrad &

Rothfuss, 1991; Hanson & Hanson, 1996; Hütsch et al., 1994). This was attributed to the

possible competition of NH4
+ for binding to the MMO, or through the toxicity of NO3

-. Long-
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term application of ammonium-N fertiliser decreased soil sink strength whereas nitrate-N did

not (Willison et al., 1995). On the other hand, organic fertilisers (compost but not manure)

had no effect on methanotrophy in comparison to inorganic fertilisers (Seghers et al., 2005).

Thus, the choice of the form of fertiliser (organic vs. inorganic) as well as the form of N

(NH4
+-N vs. NO3

--N) are important.

The effects of biocides (insecticides, pesticides and herbicides) on CH4 uptake were also

investigated. Some lowered CH4 oxidation rates (Boeckx et al., 1998; Mosier et al., 1991;

Priemé & Ekelund, 2001; Topp, 1993) whereas others did not have an effect (Hütsch, 1996;

Seghers et al., 2003b; 2005). Few studies evaluated the impact of fertiliser and herbicides on

methanotrophic abundance and community structure. Seghers et al. (2003a; 2003b; 2005)

concluded that application of organic fertiliser improved CH4 oxidation rates and the

abundance of methanotrophs, in particular type II, whereas the combined application of

herbicides had no effect. Maxfield et al. (2008) identified a decrease in the biomass of

uncultured high-affinity methanotrophs and CH4 oxidation rates due to fertiliser application.

Agricultural practices such as tillage and ploughing were found to reduce CH4 consumption,

although tillage seemed to be less damaging while direct seeding improved CH4 oxidation

(Hütsch, 1998). Also, site preparation for afforestation indicated that drainage had reduced

CH4 emissions compared to mounding (Mojeremane et al., 2010).
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Influence of land use

The way a land is used, and changes in its use, such as afforestation, can influence the CH4

sink strength. From several studies, the following trend was observed (in decreasing order of

sink strength): woodland > non-cultivated upland > grassland > cultivated soils (Dobbie &

Smith, 1996; Hütsch et al., 1994; Le Mer & Roger, 2001; Willison et al., 1995). More

specifically, an effect of land-use change on CH4 oxidation rates was associated to tree

species (Borken & Beese, 2006; Menyailo et al., 2010; Menyailo & Hungate, 2003; Reay et

al., 2001; Reay et al., 2005; Saggar et al., 2007). Different tree species had varied effects on

CH4 consumption but a common trend was that soils under hardwood species (aspen, beech,

birch, oak) consumed more CH4 than soils under coniferous species (larch, pine, spruce).

Interestingly, Reay et al. (2001; 2005) observed that soils under alder were not able to oxidise

significant amounts of CH4. This was correlated with high nitrification rates and it was

suggested that the high concentrations of nitrate measured were the result of N2 fixation by

the symbiotic Frankia sp. in the root nodules and subsequent conversion of ammonia to

nitrate by ammonia-oxidising bacteria.

Compared to cultivated soils, uncultivated set-aside soils showed little or no difference in

CH4 oxidation rates, indicating that recovery from agricultural use was not immediate

(Dobbie & Smith, 1996; Hütsch, 1998). Similarly, Priemé et al. (1997) found that, in

Denmark and Scotland, over 100 years were necessary to reach pre-cultivation levels of CH4

oxidation rates after land-use change from arable culture to woodland. This was later

confirmed to be true for many other Northern European soils (Smith et al., 2000).

Afforested soils were found to have increased oxidation rates of ambient concentrations of

CH4 due to a change in the methanotrophic community structure from type I to type II

methanotrophs when shifting from pasture to pine forest (Singh et al., 2007; Singh et al.,

2009). In contrast, forest clear-felling and deforestation were shown to change the soil from
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being a sink for CH4 into a net source (Keller et al., 1990; Keller & Reiners, 1994; Zerva &

Mencuccini, 2005). Dörr et al. (2010) associated this change with a shift from type II

methanotrophs of the Beijerinckiaceae towards type I methanotrophs of the

Methylococcaceae occurring after conversion of forest to farmland.

In summary, changes in methanotrophic activity and atmospheric CH4 consumption are due

to environmental and ecological factors. Increased CH4 uptake rates were mostly correlated

with low water content and lack of chemical fertilisation in soils and sediments. In addition,

competition between type I and type II methanotrophs occurs through copper availability, N,

CH4 and O2 concentrations.

5.3. Importance of afforestation/reforestation in relation to climate change

Because upland soils and forests represent the major terrestrial and biological sinks for CH4,

it is essential to police their management in order to reduce GHG emissions (Schulze et al.,

2009). Moorland burning, peat extraction and peatland disturbance through drainage are

common practises in Scotland which are known to increase C losses. Similarly, land-use

changes can alter soil C content and net CH4 flux. While conversion of natural vegetation to

cultivated land is known to induce increased CH4 emissions (see above) and induce large

losses of C (Post & Kwon, 2000), reversion to woodland is thought to improve CH4 sinks

(see above) and C sequestration after a lag phase during which the soil C must recover from

soil disturbance (Hargreaves et al., 2003; Trotter et al., 2005). The main reasons for C loss

are reduced inputs of organic matter, decreased physical protection to decomposition (e.g.

due to tillage) and increased decomposability (Post & Kwon, 2000), whereas changes in net

CH4 fluxes are caused by modification of the methanotrophic and methanogenic activities.
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Under the Kyoto Protocol (UNFCCC, 1998), world-wide projects were implemented for the

improvement of forested areas, either through tree planting or natural regeneration of forests

(Article 3.3), in order to increase C sequestration (Article 3.4). Afforestation and reforestation

also have an impact on the global CH4 budget by mitigating CH4 emissions and improving

CH4 sinks. As a result, the “Kyoto forests” may constitute an advantage in response to global

warming and represent a component of the carbon market (Article 17 of the Kyoto Protocol)

(Trotter et al., 2005; UNFCCC, 1998). For these reasons, and because of the importance of

terrestrial CH4 sinks, the biological mechanisms involved should be determined since

forestation impacts on CH4 oxidation rates via modification of soil abiotic and biotic

properties.
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6. Aims of the study

Several studies have monitored how net CH4 fluxes are affected by differing land-use

changes and land managements (Saggar et al., 2007; Singh et al., 2007; Tate et al., 2007), but

the specific mechanisms involved remain controversial. This study aims to examine how

changes in land use, such as afforestation/reforestation, can influence the sink for

atmospheric CH4 in soils and especially how change in net CH4 flux is linked with

methanotrophic diversity and activity. In this thesis, the following hypotheses were tested:

a. A change in the use of a land, such as by afforestation/reforestation, can affect

CH4 oxidation rates.

This was tested by measuring net CH4 fluxes from field sites with differing land uses.

b. The changes in the CH4 oxidation rates are related to changes in the

methanotrophic diversity and activity.

In Scotland, the effect of land-use change on the methanotrophic community structure

was investigated using T-RFLP and a diagnostic microarray, while the active

methanotrophs were identified using PLFA-SIP. Also, re-establishment of a stable and

active methanotroph community structure after fire was examined and compared to a

native forest in New Zealand using similar approaches as in Scotland, except that the

identity of the methanotrophs present was investigated by cloning and sequencing

instead of microarray analysis.

c. Afforestation can help offsetting of the national CH4 emissions in Scotland.

A bottom-up approach was adopted to upscale the local flux data generated to the

Scottish national level by applying a model based on one used in New Zealand (Tate et

al., 2005). The upscaling helped to assess the potential of afforestation in the mitigation

of CH4 in Scotland.
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Chapter 2 Materials and methods

1. Field site description

For this work, several field sites were chosen in New Zealand (two) and in Scotland (four).

1.1. In New Zealand

Two sites were explored: the Puruki indigenous forest and the Turangi site (Figure 2.1).

These two sites were chosen because they were on (Puruki) and nearby (Turangi) sites that

had been used by previous studies, data from which were included in this work for

comparative purposes.

Figure 2.1: Location of the Puruki and Turangi sites in the North Island of New Zealand.



Chapter 2 Materials and methods

51

The Puruki indigenous forest (Puruki-Native) was described by Beets & Brownlie (1987). It

is located in the Purukohukohu experimental basin in central North Island, about 30 km south

of Rotorua, New Zealand (38°26’ S and 176°13’ E) and was initially used as part of a long-

term hydrological study (Beets and Brownlie, 1987). The site was situated at an elevation of

ca. 550 m. Meteorological data collected between 1976 and 1985 showed that precipitation

averaged 1500 mm yr-1 (range, 1150-2010 mm) and that average annual temperature ranged

between 9 and 11oC. Soils in the Experimental Basin were described by Rijkse and Bell

(1974). They are Oruanui sandy loams and are classified as ashy over pumiceous Typic

Udivitrands. Litter depth in the forest was very variable but averaged 80 mm for FH material;

roots were often abundant in this FH layer. A typical soil profile contained an Ah horizon at

0-100 mm depth and a Bs horizon at ca. 100-200 mm depth.

The indigenous forest has a three-tiered structure and is rich in plant species: rimu

(Dacrydium cupressinum) emerged over a canopy dominated by kamahi (Weinmania

racemosa), hinau (Elaeocarpus dentatus), rewarewa (Knightia excelsa), mangeao (Litsea

calicaris) and tawa (Beilschmiedia tawa). The sparse understorey comprises hardwood trees,

shrubs and ferns.

The Turangi site was previously described in detail by Scott et al. (2000). It is located in

Tongariro National Park in central North Island, New Zealand (39°05’ S, 175°45’ E). Until

the late 1940s, when active fire suppression began, the original indigenous primary forest had

been subjected to intermittent fires (Rogers, 1994). Mean annual temperature is about 9.3o C

and annual rainfall about 1520 mm (Whitehead et al., 2004). The soils were developed from a

series of rhyolytic and andesitic volcanic eruptions, and are classified as Podzolic Orthic

Pumice soils of the Rangipo series (Hewitt, 1993); they are roughly similar to Vitrands (Soil
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Survey Staff 1990). The most recent additions of volcanic ash were from eruptions from Mt

Ruapehu in 1995 and 1996, with <2 mm of a medium-fine-grade layer of andesitic material

being deposited (Cronin et al., 2003).

At the time of sampling, in 2008, the area was covered by a variety of shrubs of varying age,

comprised mainly of manuka (Leptospermum scoparium) and kanuka (Kunzea ericoides var.

ericoides), with some broadleaf canopy species and an understorey of mosses. Two stands

were selected with actual stand ages since burning being about 47 and 67 years (here referred

to as Turangi-47 and Turangi-67, respectively). The edge of the 35-year-old stand was about

100 m west of the 55-year-old stand.

Table 2.1 shows some meteorological data that characterised the field sites in the month

during sampling.

Table 2.1: Some meteorological data from the field sites in New Zealand.

Within brackets is indicated the weather station closest to the field site.

Turangi – Feb. 08
(Taupo) 1

Puruki – Jan. 08
(Rotorua) 2

Temperature
(°C)

Humidity
(%)

Precipitation
(mm)

Temperature
(°C)

Humidity
(%)

Precipitation
(mm)

High 26.0 N/A 25.9 34.1 98.0 51.3

Low 6.0 N/A - 8.5 24.0 -

Av. 17.0 N/A - 19.4 69.8 -

1,2 data from http://www.wunderground.com/weatherstation/
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1.2. In Scotland

Four sites were explored between 2008 and 2009: the Tulchan Estate, the Craggan forest, Bad

à Cheo and the Glensaugh Research Station (Figure 2.2).

Figure 2.2: Location of the four sampling sites in Scotland.

Position of the sites on the map is not accurate.

Craggan

Glensaugh

Tulchan

Bad à Cheo
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The Glensaugh Research Station is part of the Macaulay Land Use Research Institute and is

located in Laurencekirk, Aberdeenshire, Scotland, UK (national grid reference NO671782).

The study site is an agroforestry plot that was used to study experimental planting and

grazing management between 1988 and 2001 (Glensaugh Agroforestry Demonstration,

http://www.macaulay.ac.uk/aboutus/researchstations/agroforestry.html). The site is a pasture

occupied by ewes and lambs, with regular fertiliser applications during each grazing season.

In 1988, a subplot was planted with Scots pine (Pinus sylvestris). Therefore, the pine forest

was about 20-years old at the time of this study. No fertilizer was applied since.

Bad à Cheo is situated near Thurso, in Northern Scotland, along the A9 (national grid

reference ND169503) and is part of the Rumster forest. It had been the subject of detailed

hydrochemical studies (Miller et al., 1996). The study site is composed of an open bog of

deep blanket peat dominated by a mixture of peat moss (Sphagnum spp.), deergrass

(Trichophorum cespitosum) and cotton-grass (Eriophorum spp.). Adjacent to the bog,

experimental forestry plots were drained, ploughed and planted in 1968 and 1988 with a

mixture of Sitka spruce (Picea sitchensis) and lodgepole pine (Pinus contorta) (Anderson et

al., 1992). Therefore, at the time of this study, the young and old pine forests were about 20-

and 40-years old, respectively. Because of the age difference, the younger pine forest lay on

much wetter ground compared to the older pine forest. Also, at the time of sampling, natural

colonisation of the bog by conifers was observed.

The Craggan forest is also described elsewhere (Miles & Young, 1980; Mitchell et al., 2007).

It is located in Moray, near the Spey River, Scotland, UK (national grid reference NJ190322)

and was originally used in 1978 in a study testing the durability of changes caused by Betula

spp. on moorland (Miles & Young, 1980). Open Calluna-dominated moorland is adjacent to
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a natural chronosequence of birch trees (Betula spp.) aged about 53, 62 and 88 years. During

the colonisation phase, heather (Calluna vulgaris) was replaced by wavy hairgrass

(Deschampsia flexuosa) and bilberry (Vaccinium myrtillus) before long-term establishment of

birch woodland (Hester et al., 1991; Miles, 1981). For our study, soil samples were taken

from the 62-year-old stand (young birch forest) and the 88-year-old stands (old birch forest)

only. It is worth noting that the moorland was cleared of trees in 1974 but has since been

progressively naturally colonised by birch. Also, due to the old age of the 88-year-old stands,

few trees were left standing and alive, with mainly colonial bentgrass (Agrostis capillaris)

present as understorey vegetation. The Craggan site was situated on the slope of a hill.

The Tulchan Estate is described in more detail elsewhere (Hester et al., 1991; Miles &

Young, 1980). Briefly, the study site is located on the Tulchan Estate, Speyside, Scotland,

UK (national grid reference NJ154373). The site contains a natural heather moorland-birch

woodland chronosequence. The open Calluna-dominated moorland is adjacent to two stands

of birch trees (Betula pubescens) following natural invasion of the heathland in ca. 1953

(young birch forests, 55-year-old) and ca. 1943 (old birch forests, 65-year-old) (Keith et al.,

2006). Like in Tulchan, similar changes in vegetation occurred (Hester et al., 1991).

To summarise, four sites were investigated in Scotland. There were three habitats per site

(non-forested, young forest and old forest; except for Glensaugh: no old forest) but only five

different habitats in total (grassland, bog, moorland, conifer forest and birch woodland). As a

result, three types of land-use change were examined: conversion of grassland to pine forest,

afforestation of bog with pine trees, and natural colonisation of moorland by birch stands.

Table 2.2 shows some meteorological data that characterised the field sites in the month prior

to, as well as during sampling.
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Table 2.2: Some meteorological data from the field sites in Scotland for each season.

Within brackets is indicated the weather station closest to the field site. The month prior to and of sampling are
displayed. The year averages are also shown.

Glensaugh
(Laurencekirk) 1

Bad à Cheo
(Thurso) 2

Craggan/Tulchan
(Spey) 3

Temperature
(°C)

Humidity
(%)

Precipitation
(mm)

Temp.
(°C)

Hum.
(%)

Precip.
(mm)

Temp.
(°C)

Hum.
(%)

Precip.
(mm)

Oct. 08
High 18.8 98.0 33.8 16.4 96.0 125.2 17.0 N/A 95.8

Low 0.7 38.0 - -0.2 59.0 - -4.2 N/A -

Autumn
Av. 8.3 75.6 - 7.6 86.3 - 6.3 N/A -

High 13.8 98.0 37.1 12.8 96.0 72.4 13.1 N/A 53.0

Nov. 08
Low -6.1 37.0 - -4.9 60.0 - -9.6 N/A -

Av. 5.5 79.0 - 5.7 88.9 - 3.7 N/A -

Jan. 09
High 37.8 94.0 94.0 12.2 95.0 31.0 11.9 N/A 26.0

Low -3.3 46.0 - -4.1 75.0 - -12.6 N/A -

Winter
Av. 8.3 81.3 - 3.3 89.2 - 1.7 N/A -

High 28.0 98.0 43.4 12.1 96.0 45.2 11.6 N/A 72.2

Feb. 09
Low -6.0 49.0 - -7.5 63.0 - -19.5 N/A -

Av. 4.8 80.3 - 4.1 88.4 - 1.7 N/A -

Mar. 09
High 17.4 98.0 29.2 17.5 95.0 93.5 18.7 N/A 71.4

Low -3.7 38.0 - -4.1 62.0 - -7.9 N/A -

Spring
Av. 6.2 77.2 - 5.4 87.6 - 4.6 N/A -

High 17.2 98.0 30.7 17.9 95.0 38.6 19.1 N/A 27.0

Apr. 09
Low 0.7 42.0 - -0.5 44.0 - -2.6 N/A -

Av. 8.4 82.0 - 8.3 83.3 - 7.9 N/A -

Jun. 09
High 22.5 98 51.3 27.4 95.0 41.4 27.4 N/A 53.6

Low 4.2 40.0 - 3.0 52.0 - -0.7 N/A -

Summer
Av. 12.4 81.8 - 11.8 82.4 - 12.4 N/A -

High 25.6 98.0 100.3 30.1 93.0 0.0 28.7 N/A 122.5

Jul. 09
Low 9.0 41.0 - 13.6 56.0 - 4.0 N/A -

Av. 15.4 80.1 - 17.6 85.0 - 14.3 N/A -

Av. 08

High 26.5 98.0 778.3 26.9 97.0 785.4 17.6 N/A 809.8

Low -6.1 29.0 - -6.8 35.0 - -4.8 N/A -

Av. 8.9 78.3 - 8.1 86.0 - 7.1 N/A -

Av. 09

High 37.8 98.0 887.5 30.1 96.0 847.6 18.9 N/A 883.5

Low -6.0 29.0 - -7.5 43.0 - -5.6 N/A -

Av. 9.4 82.1 - 7.9 86.5 - 7.4 N/A -

1,2 data from http://www.wunderground.com/weatherstation/
3 data from http://www.strathspeyweather.co.uk/
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2. Soil sampling

2.1. In New Zealand

Puruki forest

Samples were taken on 29th January 2008 from three different areas of about 40-50 m2. One

area was located towards the bottom of the slope, the second ca. 30-40 m upslope, and the

third a further 10-20 m upslope and close to the original sampling area used by Ross et al.

(1999). In each area, six intact soil cores (10 cm diameter, 0-10 cm depth) were collected in

stainless steel rings, after removal of L (litter) and FH (fermentation-humus) material. The

(eighteen) cores were taken at random within the sampling area, except for locations with

large roots that prevented the core being inserted to its full depth. Each core was retained in

the metal liner and sealed with cling film to minimise moisture loss, and to protect the soil

surface. The cling film was, however, pierced with several holes to allow airflow into the

core. In addition, after removal of L and FH material, four small cores (2.5 cm diameter, 0-10

cm depth) were taken equidistantly apart within ca. 5 cm of a “large” core, and pooled for

subsequent analyses. These pooled samples were sieved (5.6 mm) and stored at 4oC within 24

hours of collection.

Turangi site

The 47- and 67-year old stands were sampled on 20th February 2008. After removal of the L

and FH materials, a hand-held stainless steel soil corer (2.5 cm diameter) was used to extract

soil cores (0-10 cm depth) in duplicate and at random along a transect composed of six

adjacent plots. In each plot, three cores were sampled about 30 to 50 cm apart, and then

pooled to give one soil sample for each of the six plots, for both 47- and 67-year old stands

(each n=6). Soils were sieved (5.6 mm) and kept at 4ºC within 24 h of collection.
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2.2. In Scotland

Each site was visited four times over the period of a year (2008-2009), as a sampling

campaign occurred once during each season: autumn (October/November 2008), winter

(February 2009), spring (April 2009) and summer (July 2009).

The sampling procedure was the same for each site and similar to the method used at the

Puruki forest in New Zealand (see above). In brief, stainless steel rings (10 cm diameter, 0-10

cm depth) were used to extract soil cores after removal of the L and FH layers. For each site,

twelve replicates per habitat were sampled at random, and were randomly grouped in four

sets of three cores for measurement of net CH4 fluxes (see section 4.). Therefore, n=4 for

each habitat, for each site, for each season (n=176 in total). Within a few hours of sampling,

the soil cores were taken to the laboratory and left overnight in an environment-controlled

chamber (minimum 70% humidity). For each seasonal experiment, the temperature of the

chamber was set using a value close to the site’s air temperature at the time of sampling: 5°C

in winter, 10°C in spring, 15°C in summer and 20°C in autumn. The temperature of the latter

was a bit too high due to an error in the protocol. The following day, measurements of net

CH4 fluxes were performed and the soil cores were then stored at 4ºC.

Also, during summer, smaller intact cores (5 cm diameter, 0-5 cm depth) were taken in

triplicate from each habitat from each site for bulk density, porosity and water retention

analysis (n=33).
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3. Soil analyses

3.1. New Zealand soils

Several chemical properties (pH, total C and N, mineral N (NH4
+-N and NO3

--N) and

moisture) were measured on the composite samples (2.5 cm diameter, 0-10 cm depth)

collected at Turangi-47, Turangi-67 (each n=6) and Puruki-Native (n=9). The analytical

procedures were described by Singh et al. (2009). Briefly, soil pH was determined in a 1:2.5

water suspension (Blakemore et al., 1987). Total C and N were measured by combustion in a

Leco FP-2000 CNS analyser (LECO Corporation, USA). Mineral N (NH4
+-N and NO3

--N)

was extracted from field-moist soil (5.0 g oven-dry equivalent) by shaking with 50 mL of 2

M KCl for one hour and determined with a Lachat QuickChem FIA 800 (Zellweger

Analytics, USA). Moisture in the sieved-soil samples was determined by drying overnight at

105°C to constant weight (Blakemore et al., 1987).

At Turangi-47 and Turangi-67, a second set of composite samples (each n=6) was used for

CH4 uptake measurements as well as for soil incubation with enriched CH4 (13C-CH4) and

microbial analyses. At Puruki-Native, the 18 intact soil cores collected in stainless steel rings

(10 cm diameter, 0-10 cm depth) were paired for measurement of net CH4 fluxes and soil

physical properties, as well as for soil incubation and microbial analyses (n=9).

3.2. Scottish soils

Following gas measurements (see section 4.), the soils were processed for physico-chemical

analysis, as well as for biochemistry and molecular work. I processed the soils myself but

most of the chemical analyses were performed by the analytical group at the Macaulay Land

Use Research Institute. References of the methods used are available from Dr Jason Owen or

Dr Andy Midwood. However, pH and physical properties were measured by me.
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3.2.1. Processing of soils

Fresh soil cores were wet-sieved through a 5.6 mm-mesh sieve to separate the vegetation

from the soil. A fresh sub-sample was kept at 4ºC for subsequent NH4
+/NO3

- analysis (KCl

extraction) and moisture measurement; but also for soil enrichment (PLFA-SIP) and DNA

extraction for PCR/T-RFLP analysis. During wet-sieving, the triplicate soil cores from each

set of four chambers were sieved together to obtain a homogenous sample (total n=176). The

remaining soil was dried at 30ºC and then dry-sieved through a 2 mm-mesh sieve for pH and

particle size analysis. A sub-sample was milled (Retsch mill, 5 minutes at 60 strokes per

second) for subsequent use for total C and N analysis.

The smaller soil cores from the summer campaign were dried using hanging water columns

for measurement of soil bulk density, porosity and water-filled pore space (WFPS).

3.2.2. Chemical analyses

Field-moist 5.6-mm sieved soils were extracted with 1 M KCl for 1 hour and extracts were

analysed colorimetrically for mineral N (NH4
+-N and NO3

--N).

Moisture content was measured after drying the fresh soil samples in an oven at 105ºC

overnight. Data are expressed per gram of soil on an oven-dry basis.

Dried soils were used to determine soil pH in water after mixing thoroughly the soil water

slurry (1:2.5 suspension) for 30 minutes. Particle size distribution analysis was performed on

the dried soils using laser diffraction on a Malvern Mastersizer 2000 particle size analyser

fitted with a Malvern Hydro 2000G sample dispersion tank (Malvern, UK). Briefly, the soil

sample was mixed with a dispersant agent and the liquid suspension was circulated through a

cell, through which a laser was passed. The laser was diffracted by the suspended particles

and a series of detectors registered the degree of diffraction. The angle of diffraction was
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directly proportional to the angle of incidence encountered by the laser, i.e. the smaller the

particle the higher the angle of incidence and the greater the diffraction. A mathematical

model resolved the required particle size distribution to account for the observed diffraction

of the laser.

Milled soils were used to measure soil total C and N by combustion in a Thermo-Finnigan

Elemental Analyser (FlashEA 1112 Series). The combustion products were carried by a

constant flow of helium through an oxidation catalyst, copper oxide and platinised Alumina.

CO2, N2, NOx and H2O then flowed into a reduction reactor containing copper wires held at

680ºC, where excess oxygen was removed and any nitrogen oxides were converted into

nitrogen gas. Water was then absorbed by magnesium perchlorate.

3.2.3. Physical analyses

Soil bulk density, porosity and water-filled pore space (WFPS) were measured by saturating

the small field-moist cores with water. The volume of pores was estimated by measuring the

gravimetric soil water content, after equilibrating the cores at 10, 50, 100 and 150 kPa suction

pressures, using hanging water columns. The pore volume was computed from the volume of

water extracted between successive intervals of applied suction (Nielsen et al., 2008).

WFPS was estimated for each core as the ratio of the volumetric soil moisture content to the

total pore space, or porosity (Linn & Doran, 1984). Porosity was estimated to be equivalent to

the volumetric water content at water saturation. Volumetric water content was calculated as

the ratio of the gravimetric water content to the bulk density. Bulk density corresponded to

the oven-dry soil weight (105°C overnight) divided by the volume of the core.
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4. Gas flux measurements

4.1. Gas sampling

New Zealand soils

Turangi-47 and -67 samples: Air samples were collected from six field-based static chambers

as described in Saggar et al. (2007). Briefly, the PVC chambers were fitted with a gas

sampling tube and a 3-way tap through which 25 mL of air were sampled using a plastic

syringe fitted with Luer lock (Fisher Scientific, UK). The gas sample was then quickly

injected into a pre-evacuated 12-mL glass Exetainer (Labco Ltd, UK) in order to create a

positive pressure in the Exetainer. Headspace sampling was performed at three time points:

immediately after locking the lid (T0), and after 30 and 60 minutes (T30 and T60).

Puruki-Native samples: Headspace gas samples were taken using nine laboratory-based

closed PVC chambers, similar to the field-based static chambers. The replicate intact cores

from each habitat were grouped in pairs inside each chamber. Before starting any

measurements, the cling film was removed from the soil cores and the latter were left in the

open chamber for 2-3 hours (see Figure 2.3). The gas sampling procedure was similar to the

Turangi-47 and Turangi-67 soils. All measurements were performed in a constant

temperature room at 20ºC. These two approaches (field and lab based chamber

measurements) have been evaluated before and reported to produce identical results (Tate et

al., 2007).
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Figure 2.3: Closed-chamber set-up for the measurement of net CH4 fluxes.

With the NZ samples (Puruki-Native only), two soil cores per (PVC) chambers were used, whereas, with
Scottish soils, each chamber contained three cores (as displayed here, left). A sampling tube was attached to the
lid of a chamber and was fitted with a three-way tap through which air was sampled using a plastic syringe (see
above, right).

Scottish soils

Headspace gas samples were taken using closed PVC chambers (~9 L) fitted with a gas

sampling tube and a 3-way tap. Out of the twelve replicates from each habitat, three soil cores

per chamber were used, so for each habitat n=4. Before starting any measurements, the soil

cores were unwrapped and left in the open chamber for 2-3 hours.

Immediately after locking the lid of the chambers (T0), 12 mL of air were sampled from the

chamber’s headspace using a plastic syringe fitted with Luer lock (Fisher Scientific, UK) and

3-way tap, and quickly injected into a pre-evacuated 12-mL glass Exetainer (Labco Ltd, UK)

using a Luer syringe needle 24 mm, 25G (Fisher Scientific, UK). Headspace sampling was

repeated after 30, 60 and 90 minutes (T30, T60 and T90, respectively).

4.2. Gas analysis

GC measurements of the New Zealand samples were performed by Dr Jagrati Singh. I was

only observing. However, I implemented the GC system at the Macaulay Land Use Institute

and analysed all the Scottish samples myself.
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New Zealand samples

Exetainers containing the gas samples were loaded onto an automated gas analysis system

(Shimadzu-2010 gas chromatograph, Japan) described in Hedley et al. (2006). Briefly, the air

samples were injected into a 1-mL sample loop and directed through a 0.91 m pre-column

[OD = 3 mm] and 3.66 m analytical column [OD = 3 mm]. The columns were both filled

with Porapak QS 80/100, and heated at 60°C. Concentrations of CH4 in the atmosphere were

detected with a flame ionisation detector (FID) running at 250°C. Concentrations were

estimated using the Shimadzu GC Solution (version 2.21 SU1) software, based on an in-

house calibration curve. A series of standards ranging 0.01% to 1% CH4 was prepared daily

before a run. A 0.1% standard was run every 30 samples to check for accuracy. Precision was

0.87% with a method-detection limit of 0.04 ppm. Detailed description of the headspace set-

up and gas measurements are presented elsewhere (Saggar et al., 2004; Tate et al., 2007).

Change in headspace CH4 was calculated based on the equation presented below:

Equation 2.1: Headspace gas flux measurement function from Saggar et al. (2007).

F = ρ
V

A
×
∆c

∆t
×

273

T + 273

where F is the net CH4 flux (mg.m-2.h-1); ρ the density of CH4 (kg.m-3) at the corresponding experimental

temperature; V the headspace volume in the jar/chamber which accounts for the volume occupied by the glass

containers/cores (m3); A the surface area of the glass containers/cores in the jar/chamber (m2); Δc/Δt the average 

rate of change of concentration with time (ppm.h-1); T the temperature (ºC) in the chamber.

Scottish samples

Atmospheric CH4 concentrations inside the chamber headspace were measured on a gas

chromatograph (TRACE™ GC, Thermo-Finnigan, Italy) using an analytical capillary column

PLOT Al2O3/KCl FS [L = 50 m x ID = 0.53 mm x OD = 0.70 mm, 10 µm-film thickness]

(Varian, UK) and a flame ionisation detector (FID) for the detection of CH4. The carrier gas

was helium (He). The analytical parameters of the GC were the following:
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 FID with split injection mode and constant flow of carrier gas (variable pressure)

o Oven temperature = 80ºC

o Column flow = 9 mL.min-1

o Split ratio = 20

o Inlet temperature = 200ºC

 Detection method (FID):

o Fuel gas = H2 (35 mL/min) + air (350 mL.min-1)

o Make-up gas = N2 (30 mL.min-1)

o Base temperature = 250ºC

 Run time = 120 s

Using a gas-tight precision injection glass syringe, 1 mL of sample was taken from the

Exetainer and injected into the column. A 20 ppm CH4 standard (CryoService Limited, UK)

was analysed after every 20 samples to check for accuracy. Precision was 3.31% with a

method-detection limit of 0.19 ppm.

The atmospheric CH4 concentrations (at T0, T30, T60 and T90) of the unknown samples were

calculated by comparing the peak area from the chromatogram to the peak area of the CH4

standard. The results were then used to estimate the atmospheric CH4 concentration variation

inside the chamber headspace using Equation 2.1 from Saggar et al. (2007).
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5. Methanotroph characterisation of using molecular methods

5.1. DNA extraction

Because fewer soil samples were from the New Zealand sites, DNA from soil (500 mg) was

extracted using a tube-based procedure provided by the PowerSoil™ DNA isolation kit

(MoBio, USA). Since a lot more soil samples from Scotland were involved, a 96-well plate-

based extraction procedure was available with the PowerSoil-htp™ 96-well soil DNA

isolation kit (Mobio, USA) to extract DNA from soil (250 mg). Both kits used similar

reagents and manufacturer’s instructions were followed except that DNA was eluted in 50 µL

instead of the recommended 100 µL, in order to increase the final concentration.

Measurement of DNA concentrations was performed using a spectrophotometer (Nano-

Drop® ND-1000, NanoDrop Technologies, USA) and calculations were completed by the

associated software (version 3.5.2).

5.2. PCR conditions for T-RFLP analysis

Two genes were amplified: the gene coding for the 16S rRNA for both type I and type II

methanotrophs; also the functional gene pmoA coding for the putative active site of the

particulate methane monooxygenase (pMMO) enzyme (McDonald et al., 2008), which is

found in all methanotrophs except Methylocella and Methyloferula spp. (Dedysh et al., 2000;

Dunfield et al., 2003; Vorobev et al., 2010). Table 2.3 provides a list of the different primers

(and target genes) used in this study.
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Table 2.3: PCR conditions for the amplification of the 16S rDNA genes of the type I and type II methanotrophs and of pmoA genes.

Primer sets Fluorescent label a Sequence
(5’ to 3’) b,c

Target gene
(predicted amplicon size)

Specificity Reference

Type IF 6-FAM™ ATGCTTAACACATGCAAGTCGAACG (44-68)

16S rRNA

(681 bp)
Type I methanotrophs Chen et al. (2007)

Type IR NED™ CCACTGGTGTTCCTTCMGAT (706-725)

Type IIF none GGGAMGATAATGACGGTACCWGGA (445-493)

16S rRNA

(550 bp)
Type II methanotrophs Chen et al. (2007)

Type IIR VIC® GTCAARAGCTGGTAAGGTTC (975-995)

pmo189F VIC GGNGACTGGGACTTCTGG

pmoA

(500 bp)
All methanotrophs d Bourne et al. (2001)

pmo650R none ACGTCCTTACCGAAGGT

a 6-FAM™: 6-carboxyfluorescein; NED™ and VIC®: registered trademarks of Life Technologies Corporation.
b Numbers in brackets corresponding to position of Escherichia coli 16S rRNA gene sequence aligned in the ARB database.
c R represents A or G; M represents A or C; W represents A or T; N can be any base.
d Except Methylocella and Methyloferula spp.
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5.2.1. Target preparation

The amplification of the two genes used the following optimised master mix (see Chapter 3)

(final concentrations given): 1x NH4
+ reaction buffer, 6 mM MgCl2, 50 µM of each

deoxynucleotide, 0.02 U.μL-1 BioTaq™ DNA polymerase (all reagents from Bioline, UK),

0.3 μg.μL-1 bovine serum albumin (Roche diagnostic, UK), 0.3 µM of each primer and 3

ng.μL-1 DNA template (only 1µL of DNA template for the analysis of 16S rRNA genes).

For the pmoA gene, an optimised touchdown PCR programme was used (see Chapter 3):

initial denaturation at 95ºC for 7 min, denaturation at 94ºC for 1 min, annealing at 65ºC for

1.5 min, extension at 72ºC for 1 min for 15 cycles with a decrement of 0.8ºC/cycle, and then

denaturation at 94ºC for 1 min, annealing at 53ºC for 1 min, extension at 72ºC for 1 min for

20 cycles, and a final extension at 72ºC for 10 min.

Both type I and type II 16S rRNA genes were amplified using a classic PCR program: initial

denaturation at 95ºC for 5 min, denaturation at 94ºC for 1 min, annealing at 60ºC for 1 min,

extension at 72ºC for 1 min for 30 cycles and a final extension at 72ºC for 10 min. PCRs

were performed on a DYAD™ DNA Engine® Peltier thermal cycler (MJ Research, USA).

Purity and size of the PCR amplicons were checked by loading 5 µL of each reaction mix on

a 1% (w/v) agarose gel stained with ethidium bromide and observed under UV light.

5.2.2. Target purification

PCR products were purified using the UltraClean-htp™ 96-well PCR Clean-up™ kit

(MoBio, USA) according to the manufacturer’s instructions, except that DNA was eluted in

35 µL instead of the recommended 100 µl, to increase the final concentration. Concentrations

of the purified PCR products were then measured on the Nano-Drop ND-1000.
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5.3. Terminal-restriction fragment length polymorphism (T-RFLP) analyses

A known concentration of purified PCR amplicon (10 ng.μL-1) from each target gene was

digested with three restriction enzymes: MspI (pmoA gene and 16S rRNA gene of type I and

type II methanotrophs), HhaI (pmoA gene and 16S rRNA gene of type I methanotrophs) and

MboI (16S rRNA gene of type II methanotrophs). Table 2.4 provides a summary of the

different reactions.

Table 2.4: Individual enzymatic reactions performed on the target genes under investigation.

Gene
Restriction enzyme

MspI HhaI MboI

16S rRNA type I a X X

16S rRNA type II X X

pmoA a X X

a Although the PCR products of the 16S rRNA genes from type I methanotrophs and pmoA genes were digested
separately, the two were mixed together before analysis on the sequencer.

In a 10-μL reaction mix, the final concentrations of the different components were as follows: 

10 ng.μL-1 of DNA template, 1x of enzyme solution, 1x of enzyme buffer and 0.1 μg.μL-1 of

bovine serum albumine (all reagents from Promega, UK). Samples were then digested for 3

hours at 37ºC on a DYAD™ thermal cycler, and the enzyme reaction was stopped by

incubation at 95ºC for 15 min.

1-μL aliquots of digested PCR products were transferred onto a MicroAmp® optical 96-well 

plate (Applied Biosystems, UK) and mixed with 12 µL of Hi-Di™ formamide (Applied

Biosystems, UK). 0.3 µL of LIZ-labelled GeneScan™-500 internal size standard (Applied

Biosystems, UK) was added and the reaction was denatured at 95°C for 5 min. T-RFLP

analysis was carried out on an automated sequencer, an ABI Prism® 3130xl genetic analyzer

(Applied Biosystems, UK). Terminal restriction fragments (T-RFs) generated by the
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sequencer were analyzed using the size-calling software GeneMapper™ 4.0 (Applied

Biosystems, UK) and quantified by advanced mode using second order algorithm. T-RFs in a

T-RFLP profile were selected by the software if their minimum peak height was above the

noise observed with the negative control (usually above 25 relative fluorescence units). Only

peaks 30-550 bp were considered in order to avoid T-RFs caused by primer-dimers and to

obtain fragments within the linear range of the internal size standard (Singh et al., 2007).

5.4. Cloning and sequencing analysis

This was performed on the New Zealand samples only.

5.4.1. Target preparation

The PCR products for cloning and sequencing of the pmoA gene were generated in the same

way as detailed earlier for T-RFLP (see section 5.2.), except that no fluorescently-labelled

primer was used. Purification of PCR products was performed as described previously (see

section 5.2.2). In order to minimise PCR bias and sample variation, replicates from each site

(Turangi and Puruki) were pooled prior to cloning: for the Turangi library (Turangi-47 and

Turangi-67 were combined), 12 replicates were pooled; and 18 replicates for the Puruki

(Puruki-Native) library.

5.4.2. Cloning reaction

In total, two separate clone libraries were obtained, one for each individual sampling area

(Puruki-Native and Turangi shrublands). Details of the cloning and sequencing methods have

been described before (Singh et al., 2007; 2009). In brief, the pmoA gene amplicons obtained

were cloned in Escherichia coli using a TOPO TA Cloning® kit (Invitrogen, UK). 16 clones

were selected from each library and were amplified with the vector-specific T3 / T7 primers.
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The reacted products were purified using the Wizard® SV Gel and PCR Clean-Up System

(Promega, USA) following the manufacturer’s instructions. Samples were submitted for

sequencing to Macrogen Europe (The Netherlands). Sequencing was conducted under

BigDye™ terminator cycling conditions on an ABI Automatic Sequencer 3730XL

(Macrogen Europe, The Netherlands).

5.4.3. Alignment and identification of clone sequences

The analysed sequences were used to find matches with prokaryotic genes using the NCBI

database (http://www.ncbi.nlm.nih.gov). All sequences were manually checked for chimeras,

and the sequences with a split in alignment were removed from further analysis. Clone

sequences were aligned on the forward and reverse primers using Kodon software (Applied

Maths, Belgium). Kodon was also used to translate the nucleotide sequences of the pmoA

gene in order to confirm that inserts coded for functional proteins (absence of stop codon).

Finally, the derived pmoA amino acid sequences were used to construct a phylogenetic tree

using the MEGA 5 (Molecular Evolutionary Genetics Analysis) software (Kumar et al.,

2008) by performing neighbour-joining tree analysis with 1,000 bootstrap replicates using the

Poisson algorithm. To match individual clones with a specific T-RF, sequences were run with

REMA software (http://macaulay.ac.uk/rema) to predict the (virtual) size of the T-RF for

individual clones (Szubert et al., 2007).

Following selection of 16 colonies from each of the two cloning reactions, 15 clone colonies

produced a PCR product with the pmoA gene for each library. In total, 15 clean pmoA

sequences were obtained from Turangi shrublands (Turang-47 and Turangi-67) and 13 clean

pmoA sequences from Puruki-Native. These clones were merged with clones obtained from

the previous studies on these sites. Translated amino acid sequences were used for

constructing a phylogenetic tree.
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5.4.4. Nucleotide sequence accession numbers

The pmoA sequence data of the New Zealand samples were submitted with annotated features

to the EMBL (European Molecular Biology Laboratory) nucleotide sequence database

(http://www.ebi.ac.uk/embl/) under the accession numbers FR715958 to FR715985.

5.5. Diagnostic pmoA microarray analysis

This was performed on the Scottish samples only, using n=4 for each habitat of each site

(total n=44). Microarray analysis was carried out using a modified method of Stralis-Pavese

et al. (2004; 2011). The different steps involved are briefly described below:

5.5.1. Target preparation

The PCR products for the pmoA gene for the microarray assay were generated in the same

way as detailed earlier for T-RFLP (see section 5.2), except that no fluorescently-labelled

primer was used. Also the reverse primer for the amplification of the pmoA gene (pmo650R)

contained the T7 promoter site (5’-TAATACGACTCACTATAG-3’) at its 5’ end, which

enabled T7 RNA polymerase-mediated in vitro transcription, using the PCR products as

template, to generate fluorescently-labelled RNA for hybridisation on the microarray slides.

Purification of PCR products was performed as described previously (see section 5.2.2).

5.5.2. In vitro transcription

In vitro transcription was carried out under RNAase-free conditions. The procedure was as

follows (20 µl final volume): 8 µL purified PCR product (50 ng.μL-1), 4 µL 5x T7 RNA

polymerase buffer, 2 µL DTT (100 mM), 0.5 µL RNAsin (40 U.μL-1) (Promega), 1 µL of
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each ATP, CTP, GTP (10 mM), 0.5 µL UTP (10 mM), 1 µL T7 RNA polymerase (40 U.µL-1)

(Invitrogen) and 1 µL Cy3-UTP (5 mM) were added into a 1.5 mL Eppendorf tube and

incubated at 37oC for 4 hours. RNA was purified immediately based on the RNeasy Mini Kit

(Qiagen): 80 µL of DEPC-treated water were added to IVT mixture, followed by adding 350

µL of RLT and 250 µL of ethanol, and then mixed thoroughly. Samples were transferred to

an Rneasy mini tube and 500 µL of RPE were added. Tubes were centrifuged at 10,000 rpm

for 15 sec. Another 500 µL of RPE were added, and then centrifugation at 10,000 rpm for 2

min. Purified RNA was eluted into 50 µL of dH2O. RNA yields and dye incorporation rates

were measured by spectrophotometry. Purified RNA was fragmented by incubating with 9.5

mM ZnCl2 and 24 mM TrisCl (pH7.4) at 60oC for 30 min. Fragmentation was stopped by the

addition of 12 mM EDTA (pH 8.0) to the reaction and putting it on ice. 1 µL of RNAsin (40

U.μL-1) was added to the fragmented target.

5.5.3. Hybridisation

Hybridisation was carried out (in triplicate) in an aluminium block on a Belly Dancer (Stovall

Life Sciences, USA), which was preheated to 55oC for at least 1 hour. For each hybridisation,

the following was added to a 1.5 mL Eppendorf tube (100 µl final volume) and incubated at

65oC for 1 min: 62 µL of DEPC-treated water, 1 µL of 10% SDS, 30 µl of 20x SSC (3 M

sodium chloride, 0.3 M sodium citrate, pH 7.0), 2 µl of 50x Denhardt’s reagent (Sigma) and 5

µl of target RNA (corresponding to about 200 ng of RNA). Preheated hybridisation mixtures

were applied onto the preheated slides containing the arrays. The assembled microarray slides

were incubated overnight in the HybriWell hybridisation chambers (Grace BioLabs) at 55oC

at maximum bending and lowest rotation. Following hybridisation, the slides were washed by

shaking at room temperature for 5 min in 2x SSC, 0.1% (w/v) SDS; twice for 5 min in 0.2x

SSC and finally for 5 min in 0.1x SSC. Slides were dried using an airgun.
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5.5.4. Scanning and data analysis

Hybridised slides were scanned at 10 µm resolution with a GenePix 4000 laser scanner

(Axon, USA) at a wavelength of 532 nm. Fluorescent images were analyzed with the

GenePix software (Axon, USA). Micosoft Excel was used for statistical analysis and

presentation of results.

Results were normalised to a positive control. The hybridisation signal for each probe was

expressed as a percentage of the signal (median of signal minus background) of the positive

control probe mtrof173 on the same array (Bodrossy et al., 2003). As each slide contained

triplicate arrays, normalised signal intensities of the triplicate spots on a slide were used to

determine average results and standard deviations. Hybridisation between a probe and a

target was considered positive if the signal was at least 5% of the strongest signal obtained

for that probe with the validation set of reference strains/clones. For probes where no perfect

match reference target was available or the strongest signal was less than 60 (% of the signal

obtained for mtrof173), this reference value was arbitrarily set to 60. This was found to

minimize false positive calls while not creating any false negative calls (Stralis-Pavese et al.,

2004).

The current version of the pmoA array contains 199 oligonucleotide probes targeting pmoA of

methanotrophs, amoA (encoding a subunit of ammonia monooxygenase) of ammonia

oxidisers and other functionally-related bacteria (Stralis-Pavese et al., 2011). A selection of

the probes used can be found in Appendix Table 0.1.
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6. Microcosm experiments and stable isotope probing of

phospholipid fatty acids (PLFA-SIP)

6.1. PLFA-SIP

New Zealand samples

10 g of field-moist 5.6-mm sieved soils (n=18 for Puruki-Native; n=6 for each Turangi-47

and Turangi-67) were transferred into 125-mL Wheaton glass serum bottles (Sigma-Aldrich,

UK), and left overnight in the dark at 20ºC. The following day, bottles were sealed and

injected through the rubber septum with 1.25 mL of 13C-CH4 (>99 atom%, CK Gas, UK)

from a ~5,000 ppm in order to have a starting headspace concentration of ~50 ppm. Soils

were incubated in the dark at 20ºC for 14 days (Tate et al., 2007). 13C-CH4 concentration in

the headspace was measured at the start and end of the experiment to monitor the level of

incorporation. After incubation was complete, 13C-enriched soils were kept frozen at -20ºC.

Scottish samples

10 g of field-moist 5.6-mm sieved soils were transferred into 125-mL Wheaton glass serum

bottles (Sigma-Aldrich, UK), and left overnight in the dark at 20ºC. The following day,

bottles were sealed and injected through the rubber septum with 2.5 mL of 13C-CH4 (>99

atom%, CK Gas, UK) from a ~5,000 ppm in order to have a starting headspace concentration

of ~100 ppm. Soils were incubated in the dark at 20ºC.

PLFA-SIP was performed on the autumn and summer soils only, and on all chamber replicate

soils (n=4) from each habitat from each site (total n=88). The autumn samples were all

incubated for 14 days whereas the summer samples were incubated until >90% of 13C-CH4

had been incorporated (between 4 and 32 days depending on the activity of the soils).

After incubation was complete, 13C-enriched soils were kept frozen at -20ºC.
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6.2. PLFA extraction

A sub-sample (between 0.25 and 1 g) of the 13C-enriched soils was freeze-dried, milled and

used for extracting PLFAs following the method described by Singh et al. (2007) and Tate et

al. (2007). Briefly, the extraction of total lipids was achieved by subjecting the soil

preparation to the solvents chloroform and methanol and a citrate buffer (1:2:0.8). After

fractionation of the total lipids by acid chromatography, the polar lipids were trans-esterified

using a mild alkaline methanolysis (0.2 M KOH), producing PLFA methyl esters

(PLFAMEs), and derivatisation was performed using dimethyl disulfide. During the process,

a pure C19:0 methyl ester internal standard was added for quality control and calculation

purposes (Frostegård et al., 1991; 1993b).

6.3. Compound-specific isotope analysis via gas chromatography-combustion-

isotope ratio mass spectrometry (GC-C-IRMS)

The isotopic composition of individual PLFAs was determined using a Trace Ultra GC with

combustion column attached via a GC Combustion III to a Delta V Advantage isotope ratio

mass spectrometer (all Thermo Finnigan, Germany). Samples (2 µL) were injected in

splitless mode onto a J&W Scientific HP-5 column [L = 50 m x ID = 0.2 mm, 0.33 µm-film

thickness] (Agilent Technologies Inc, USA). The oven temperature was programmed,

following an isothermal hold at 100C for 1 min, to 190C at a rate of 20C.min-1, then to

235C at 1.5C.min-1, then to 295C at 20C.min-1, followed by an isothermal hold for 10

min. Other running conditions were as described by Paterson et al. (2007). The C isotope

ratios were calculated with respect to a CO2 reference gas injected with every sample and

traceable to International Atomic Energy Agency reference material NBS 19 TS-Limestone.
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Repeated analysis, over a two-month period, of the δ13C value of a C19:0 FAME internal

standard gave a standard deviation of 1.11‰ (n=18).

Standard nomenclature was used for PLFAs (Frostegård et al., 1993b). The number before

the colon is the number of C atoms in the molecule, the number after the colon gives the

number of double bonds and their location (ω) from the methyl end of the molecule. Prefixes 

Me, cy, i and a indicate methyl-, cyclopropyl-groups, and iso-, anteiso-branching,

respectively.

Quantification of PLFA contents was based on the normalised peak area of each PLFA,

which were compared to the peak area of the C19:0 PLFA internal standard, accounting for

the weight of soil used for the PLFA extraction (personal communication from Dr Barrie

Thornton).
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7. Data analysis

7.1. New Zealand experiment

We compared the data from this experiment (Turangi-47, Turangi-67 and Puruki-Native)

with data from three previous studies (Singh et al., 2007; Singh et al., 2009; Tate et al., 2007)

using the same (Puruki) or nearby (Turangi) sites but different land-use types (Table 2.5).

Although the sampling campaigns from the different sites and land uses occurred during

different years, this always happened in the warmer months of the year (from October to

February, as shown below).

Table 2.5: Description of the different sites and land uses of the comparative analysis.

Site a Land use
Name used in

this study b Description
Date of

sampling
Reference

Turangi

Pasture

Pasture (5)
(n=4)

Pasture adjacent to a 5-
year-old pine forest

January 2007 Singh et al.
(2009)

Pasture (10)
(n=4)

Pasture adjacent to a 10-
year-old pine forest

Pine forest
(Pinus radiata)

Pine (5)
(n=4)

5-year-old pine forest

Pine (10)
(n=4)

10-year-old pine forest

Shrubland

Turangi-47
(n=6)

47-year-old shrubland

February 2008 This study
Turangi-67

(n=6)
67-year-old shrubland

Puruki

Pasture
Pasture (7)

(n=3)
Pasture adjacent to a 7-

year-old pine forest
October 2004

Singh et al.
(2007)

Tate et al.
(2007)

Pine forest
(Pinus radiata)

Pine (7)
(n=3)

7-year-old pine forest

Native forest
Puruki-Native

(n=9)
Mature native forest January 2008 This study

a Soil physical data from Puruki-Native were compared to data from Pasture (7) and Pine (7). The soil chemical
properties, net CH4 fluxes, PLFA composition, T-RF abundance and clone sequences were also compared
between the different land uses for both Turangi and Puruki sites.
b The age of the pasture and pine stands (y) is shown in brackets. The pastures correspond to the adjacent
pasture of each pine stand. The number of samples used for each habitat is also shown.
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7.2. T-RFLP data processing

Raw data from GeneMapper™ were exported to be used with T-REX (T-RFLP analysis

EXpedited), online software for the processing and analysis of T-RFLP data

(http://trex.biohpc.org/) developed by Culman et al. (2009). The software allows for

simultaneous processing of large number of sample files and to clean raw data from fragment

analysis. The T-RFLP data were subjected to several quality control procedures: for the New

Zealand samples, noise filtering (peak area, standard deviation multiplier = 1), T-RF

alignment (clustering threshold = 2 bp) and T-RFs omitted if they occur in less than 2% of

samples; whereas for the Scottish samples, no noise filtering was used.

T-REX software also permits the use of several functions such as definition of replicates in

order to observe variability in T-RFs; construction of two-way data matrices based on T-RF

presence, (relativised) peak height or (relativised) peak area; and analysis of a data matrix

using the additive main effect and multiplicative interaction (AMMI) model based on

analysis of variance (ANOVA) as discussed by Culman et al. (2008). In brief, the AMMI

model, also called doubly-centered principal component analysis (PCA), is interfaced with

MATMODEL 3.0 (Gauch, 2007) and uses a two-way ANOVA. First, it will partition the

variation into ‘main effects’ and ‘interactions’, and then applies PCA to the interactions

(IPCAs) in order to analyse the ‘interaction effects’ (Gauch, 1992). Only the first four

dimensions of the IPCA are used to capture the interaction signal variation. Therefore,

AMMI focuses on the differential responses of the T-RFs to the environment (or treatment)

instead of examining the overall variability of the data (Culman et al., 2008). Conceptually, if

the percentage of main effects is high, this means that the environments being investigated

(e.g. land-uses, seasonal changes) display similar bacterial communities. Inversely, very

dissimilar microbial communities will be characterised by a high interaction effect

component. This is displayed by T-REX software in a summary table including the percentage
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of variation of the main and interaction effects, the latter showing variations due to pattern

and noise when using replicated data. Also given are the percentages of variation of the

predicted interaction signal captured by the four axes of the IPCA.

Raw peak heights only (no binary data used in this study) were relativised to account for

uncontrolled differences in the quantity of DNA between samples (Culman et al., 2008). The

relative abundance of a detected T-RF within a given T-RFLP profile was calculated as the

respective signal height of each peak divided by the total peak height of all the peaks of the

T-RFLP profile. Only the T-RFs that were considered “true” by the T-REX analysis were

used for subsequent analysis.

7.3. Statistical tests

The significance of differences in soil characteristics, net CH4 fluxes and relative abundance

of the dominant T-RFs was determined by nested ANOVA in order to test the effect of

habitat (land-use change) as well as seasonal changes within each habitat. Regression

analysis was used to explore the linear relationship between the methanotroph community

(IPC scores) in each habitat and the corresponding net CH4 fluxes. The effect of land-use

change on the methanotroph population was assessed by changes in the hybridisation

intensity of the microarray probes, which were investigated by one-way ANOVA using

habitat as factor. PCA was also applied on the positive microarray probes to observe shifts

associated with land-use changes. ANOVA and MANOVA were then used on the PC scores

to confirm the significance of these shifts. Similarly, nested ANOVA and MANOVA were

utilised on the IPC scores from the T-REX analysis. Before ANOVA/MANOVA,

environmental data were checked for normality. When a Gaussian distribution was not

observed, the relevant sets of data were log- or square root-transformed. All ANOVAs were

followed by Tukey’s test for multiple pairwise comparisons between the different treatments.
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Finally, following the square root transformation of the PLFA data (% of total enriched

PLFA content), cluster analysis, based on a Bray-Curtis similarity matrix, was performed

using the group average linking method in order to affiliate the active methanotroph

population present in the soils with published methanotrophs. The above statistical analyses

were carried out using GenStat® 11th edition software (VSN International Limited, UK).

However, the following statistical analyses were performed using CANOCO for Windows

version 4.53 (Biometris, The Netherlands). Detrended correspondence analysis (DCA) was

first applied on the 15 most abundant (pmoA) T-RFs in order to estimate the gradient length

of the T-RF diversity. Redundancy analysis (RDA) was then applied on the T-RFs to

investigate the effect of some environmental variables on the individual T-RFs. This resulted

in a triplot showing the scores of the samples, T-RF species and environmental variables.

Results of soil properties and biochemical and molecular analyses are presented as means,

together with standard errors of the means (S.E.M.) for Turangi (n=6), Puruki (n=9) and the

Scottish samples (n=4); unless otherwise stated.
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Chapter 3 Experimental results (1)

PCR optimisation for the detection of a functional gene (pmoA)

using the Taguchi methods

1. Brief introduction

Originally, the Taguchi methods were formulated for the optimisation of industrial processes,

where several factors (3 to 50) of complex multifactorial experiments were tested at different

levels (Taguchi, 1986). The Taguchi methods use orthogonal arrays to organise the ‘control’

parameters/factors affecting a process and the levels at which they should vary in order to

predict the optimum conditions of a process, whilst accounting for performance variations

due to ‘noise’ factors beyond the control of the design (Taguchi, 1986). Also, in a normal

factorial strategy, every parameter should be individually tested at several levels, thus

becoming extremely time-consuming, labour-intensive and expensive. By using an

orthogonal array and a particular algorithm (quadratic loss function), only a few

combinations are tested, therefore dramatically decreasing the total number of experiments

and simultaneously identifying the optimum condition of several factors. For example, if four

parameters were to be tested at three different levels, a factorial design would require

performing 81 experiments (34), whereas with Taguchi methods, only nine would be needed.

Nowadays, the Taguchi methods are widely employed in different areas of biotechnology as

reviewed by Rao et al. (2008).
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Because some functional genes are present only in small fractions of microbial communities,

and only few copies can be present in each genome, their detection by classical PCR methods

can be challenging. Optimisation of the experimental conditions of a PCR requires the same

approach as an industrial process because several factors can be controlled simultaneously.

They include the different components of the reaction mix (concentrations of salt, primers,

enzyme, DNA template, etc.) as well as the cycling features (time and temperature of the

denaturation, annealing and extension steps, number of cycles, etc.). Therefore, the optimum

experimental conditions of a PCR should be investigated every time a new gene is under

investigation. To date, the Taguchi methodology has seldom been applied to the optimisation

of PCR (Ballantyne et al., 2008; Ballantyne et al., 2010; Caetano-Anollés, 1998; Cobb &

Clarkson, 1994). However, this approach has never been applied to the optimisation of the

detection by PCR of functional genes of non-cultivable microorganisms present in

environmental samples. Furthermore, although only one previous study (Caetano-Anollés,

1998) optimised both the concentrations of the master mix components and the cycling

parameters, none attempted to optimise a touchdown PCR.

The aim of this chapter was to test the different parameters involved in a (touchdown) PCR

and estimate the optimum settings for the detection of the functional gene pmoA. It is the

gene coding for the putative active site of the particulate methane monooxygenase, involved

in the oxidation of methane by the methanotrophs (Hanson & Hanson, 1996).
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2. The Taguchi methodology: the theoretical background and

experimental approaches

The optimisation of a process using the Taguchi methods involves several steps:

 Determining the appropriate experimental matrix

 Performing the necessary experiments

 Analysing the optimisation data

 Validating the optimised conditions

2.1. Defining the experimental matrix

The Taguchi approach uses a number of progressive trials/experiments in which only a few

permutations are explored, instead of testing every possibility. These are organised into an

orthogonal array (OA). First, the ‘control’ factors – that is the parameters that have a direct

impact on the process – have to be chosen along with the number of levels to explore –

hence, the range at which these factors vary must be known. Therefore, the number of

experiments that are needed will vary. Thus, the type of OA to use will change. Appendix

Table 0.2 shows how to select an array according to the factors and levels to be tested.

2.2. Conducting the designed experiments

Once the OA has been selected, the experiments should be performed according to the

specifications of the chosen OA. Table 3.1 describes the organisation of a L9 OA. Each

experiment should be performed in duplicate or triplicates to account for noise interferences,

thus reducing experimental error and also to observe the variance of each parameter. The

output value of each experiment (and their replicates) should then be recorded and organised

for data analysis.
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Table 3.1: Taguchi orthogonal array L9
* for 4 factors at 3 levels (A, B and C) each.

Factor

Experiment [1] [2] [3] [4]

1 A A A A

2 A B B B

3 A C C C

4 B A B C

5 B B C A

6 B C A B

7 C A C B

8 C B A C

9 C C B A

* The subscript number next to the letter L corresponds to the number of experiments required (see Appendix
Table 0.2).

2.3. Analysing the experimental data

The literature offers two approaches to the calculation of the effect of a factor: the classical

Taguchi method and a modified one.

2.3.1. Classical Taguchi approach

The Taguchi approach uses several types of quadratic loss functions to calculate the effect of

a factor on the process under investigation. It is called a signal-to-noise (SN) ratio. If the aim

of the Taguchi approach is to maximise the performance characteristic, which in the case of a

PCR is equivalent to the PCR product yield, then the objective is to maximise the PCR

product yield and the type of SN ratio to use is thus “larger-the-better” (LBT). The classical

Taguchi approach was not used here but more information can be found in Rao et al. (2008).
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2.3.2. Modified Taguchi approach

A modified Taguchi approach was developed by Cobb & Clarkson (1994). It differs from the

classical Taguchi approach in the method for calculating the SN ratios. Instead of calculating

the SN ratio from the averaged replicates of an experiment, factor effects are estimated by

analysis of the replicate means (not the individual replicates). In other words, the SN ratio is

calculated from the averaged means of each experiment level, as an alternative to averaging

the SN ratio of each experiment level. Equation 3.1 shows the algorithm to use for

estimating the optimum conditions of a process.

Equation 3.1: The modified Taguchi loss function for LBT signal-to-noise ratio calculation of a given
factor level.

SN୴,୵ = −10 log൥
1

n
෍ ൬

1

Y୵
ଶ
൰

୬

୵ ୀଵ

൩

where SN is the signal-to-noise ratio of the factor level; v the factor number; w the level number; n the number

of levels; and Y the mean value of the performance characteristic (or PCR product yield in the case of a PCR) at

the level w.

First, the average value of the performance characteristic of the replicates is calculated

(Table 3.2). Then, the means of the performance characteristic of the experiments sharing the

same levels (see Table 3.1 and Table 3.2) are pooled (Table 3.3). For example, the SN ratio

for the level A of the factor [1] (SN[1],A) is calculated by averaging the SN ratio of the

experiments 1, 2 and 3 (SN1, SN2 and SN3, respectively). Similarly, the SN ratio for level C

of the factor [4] (SN[4],C) is the average of SN3, SN4 and SN8.
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Table 3.2: Means of the performance characteristic (Y) for each experiment of a L9 OA.

y is the output value of the performance characteristic for each individual replicate.

Replicate
Mean

Experiment a b c

1 ya,1 yb,1 yc,1 Y1

2 ya,2 yb,2 yc,2 Y2

3 ya,3 yb,3 yc,3 Y3

4 ya,4 yb,4 yc,4 Y4

5 ya,5 yb,5 yc,5 Y5

6 ya,6 yb,6 yc,6 Y6

7 ya,7 yb,7 yc,7 Y7

8 ya,8 yb,8 yc,8 Y8

9 ya,9 yb,9 yc,9 Y9

Table 3.3: Pool of the performance characteristic means for each factor and level.

Factor

Level [1] [2] [3] [4]

A
Y1

Y2

Y3

Y1

Y4

Y7

Y1

Y6

Y8

Y1

Y5

Y9

B
Y4

Y5

Y6

Y2

Y5

Y8

Y2

Y4

Y9

Y2

Y6

Y7

C
Y7

Y8

Y9

Y3

Y6

Y9

Y3

Y5

Y7

Y3

Y4

Y8

A tabulated version of the averaged SN ratio is built (Table 3.4), and the range (∆) of the SN 

ratios for each factor is calculated from the difference between the highest and lowest SN

ratios. Therefore, each factor can be ranked according to the importance of its effect on the

output of the process. If looking at larger-the-better effect, the factor with the largest range
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will be the one having the biggest effect on the process. Also, the level with the highest SN

ratio will constitute the optimum condition of each factor (SNopt,v).

Table 3.4: SN ratios (SNv,w) for each factor and level, and calculated from the pooled means.

Factor

Level [1] [2] [3] [4]

A SN[1],A SN[2],A SN[3],A SN[4],A

B SN[1],B SN[2],B SN[3],B SN[4],B

C SN[1],C SN[2],C SN[3],C SN[4],C

∆ ∆[1] ∆[2] ∆[3] ∆[4]

Rank

2.3.3. Analysis of variance and regression analysis

As well as calculating the SN ratios, an ANOVA test can be performed to quantify more

accurately the contribution of each factor to the overall effect (Caetano-Anollés, 1998). The

results from Table 3.4 only give an indication of which level of a factor gives the best effect

by choosing the SNopt,v. If a polynomial regression is performed for each factor using the SN

ratios of the different levels, the shape of the trendline can be used to maximise the SN ratio

for each factor (SNmax,v); and thus estimate the optimum level value even if not tested (Cobb

& Clarkson, 1994).

2.4. Validation experiment and verification test

In the Taguchi methods, an additive model is used to predict the influence of the ‘control’

factors on the response. The model refers to the sum of the individual factor effects. One

major purpose of the validation experiment is to provide evidence demonstrating that the
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additive equation applies and that interactions are low. If the result (calculated SN) of an

experiment – using the optimised factor values – is similar to the predicted result, that

experiment is considered successful. If the result of a verification test differs widely from the

prediction, it is obvious that interactions are significant. The interaction must be discovered

and eliminated, and the experimental procedure must be planned again (Taguchi, 1986).

Practically, the verification test involves using what is called a predictive equation (Caetano-

Anollés, 1998). First, the overall experimental average SN ratio (SNexp) is calculated

accounting for all SNv,w (Equation 3.2).

SN ୶ୣ୮ =
∑ SN୴,୵
୵
୴

n୴,୵

where nv,w is the total number of factors (nv) and levels (nw). Therefore, nv,w = nv x nw.

Then, the difference between SNexp and the optimum SN ratio of each factor (SNopt.v) is

calculated. If polynomial regressions are used, the maximum SN ratio predicted (SNmax,v) can

also be used instead of SNopt.v. As a result, that difference represents the predicted

improvement in SN ratio for each factor (SNpred,v, Equation 3.3).

SN୮୰ୣ ୢ,୴ = SN୫ ୟ୶,୴− SN ୶ୣ୮

Since the Taguchi methodology uses an additive model, the predictive equation defines the

overall improvement of the SN ratio (SNpred, Equation 3.4) as the sum of the SNexp

(Equation 3.2) and the SNpred,v (Equation 3.3) of each factor.

SN୮୰ୣ ୢ = SN ୶ୣ୮ + ෍ SN୮୰ୣ ୢ,୴

୬

୴ୀଵ

where n is the number of factors and v the factor level.

Equation 3.2

Equation 3.3

Equation 3.4
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Finally, SNtest represents the SN ratio calculated after the validation experiment is run using

the optimum conditions. The above terms and the verification test of the validation

experiment are shown in Table 3.5.

Table 3.5: Verification test after validation experiment.

Factor

Level [1] [2] [3] [4]

A SN[1],A SN[2],A SN[3],A SN[4],A

B SN[1],B SN[2],B SN[3],B SN[4],B
Overall
average

C SN[1],C SN[2],C SN[3],C SN[4],C SNexp

SNopt,v

or SNmax,v

SNopt,[1]

or SNmax,[1]

SNopt,[2]

or SNmax,[2]

SNopt,[3]

or SNmax,[3]

SNopt,[4]

or SNmax,[4]

SNpred,v SNpred,[1] SNpred,[2] SNpred,[3] SNpred,[4] SNpred

SNtest

2.5. Summary of the Taguchi methodology

The general procedure for the optimisation of the pmoA genes using the Taguchi

methodology was as follows:

1. Defined the appropriate experimental OA for the variables to be investigated.

2. Conducted subsequent experiments after choosing the appropriate range of each level.

3. Analysed the experimental data using the modified Taguchi approach

4. Performed a polynomial regression on each variable investigated to estimate the

maximum SN ratios and optimum settings (no ANOVA was used).

5. Carried out a validation experiment followed by a verification test (based on the

SNmax instead of SNopt).
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3. Optimisation of the detection of pmoA genes

3.1. Primer sets

Three sets of primers were tested. The forward primer was always pmo189F (Holmes et al.,

1995), whereas the reverse primers were pmo682R (Holmes et al., 1995), pmo661R (Costello

& Lidstrom, 1999) or pmo650R (Bourne et al., 2001). All three reverse primers are valid and

have been widely used, except that some differences were observed related to the

methanotrophs they are able to detect. The primer pmo682R, along with primer pmo189F,

also allows the detection of some nitrifying bacteria due to a strong conserved sequence

between the pmoA and amoA genes (Holmes et al., 1995). The pmo189F-pmo661R and

pmo189F-pmo650R primer sets on the other hand only target the pmoA genes. However, the

pmo189F-pmo661R primer set fails to detect high-affinity methanotrophs related to the

“upland soil cluster alpha” (Bourne et al., 2001). The characteristics of the three primer sets

are presented in Appendix Table 0.3. The pmo189F-pmo650R primer set was used in the

optimisation process presented here.

3.2. Pre-optimisation work

Several approaches were tested and a summary of the different stages is presented below:

 The three above primer sets were tested using similar PCR conditions as the ones

described in the original publications. Only the use of the primer set pmo189F-pmo682R

allowed the observation of faint bands, including some smearing, on an agarose gel.

 The use of a touchdown (TD) approach improved the results a little for the primer set

pmo189F-pmo682R, though smearing was stronger. Unfortunately, no PCR products

were obtained with the primer sets pmo189F-pmo661R and pmo189F-pmo650R.
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 A nested PCR was tested. The primer set pmo189F-pmo682R was used in the first

round of PCR with TD conditions. The PCR products were then used as template for the

second round of PCR. Amplification was performed with the primer sets pmo189F-

pmo661R or pmo189F-pmo650R. Contaminations in the negative controls were

observed and could not be avoided due to the nature of the experiment. Indeed, on one

hand, methanotrophs were detected in the negative control of the second round of PCR

using the negative control of the first round as template (which was not contaminated).

On the other hand, no contamination was present in the negative control of the second

round of PCR (similar as a first round PCR negative control). This proves that there was

no problem due to contaminated PCR reagents.

Because of all the above failed attempts, a whole different approach was decided, using the

Taguchi methodology. The method employed was actually the modified Taguchi approach

(see section 2.3.2).

3.3. Quantification of PCR product yields

Firstly, 5µL of PCR amplicon were mixed with 5µL of 2x loading buffer (sucrose-based

solution) and then loaded on a 1% (w/v) agarose gel stained with ethidium bromide. After

capture by a UV camera, the picture was analysed with the ImageJ software (version 1.42q,

National Institute of Health, USA). A box was formed around each band representing the

pmoA gene, and ImageJ calculated their maximum brightness. The background intensity was

also measured and its value was used as blank. Finally, the resulting values were used to

represent the relative PCR product yields.
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3.4. Optimisation of the master mix components for the amplification of the

pmoA genes using the primer set pmo189F-pmo650R

3.4.1. Protocol

Six components (or factors) of the PCR master mix, out of seven, were tested at three

different concentrations (or levels) as shown in Table 3.6. The component that was not tested

was the concentration of the NH4
+ buffer. The main reason behind this choice was based on

personal experience that variation in the buffer concentration would negatively impact on the

performance of the PCR. Thus, the final concentration of the NH4
+ buffer was always 1x.

Table 3.6: Concentration levels for the components of the master mix for the amplification of pmoA.

Factor

Level
BSA

(µg.µL-1) *
MgCl2

(mM)
dNTPs
(µM)

Enzyme
(U.µl-1)

Primer
(µM)

DNA template
(ng.µL-1)

A 0.2 1 50 0.005 0.1 1

B 0.4 4 100 0.013 0.2 2.5

C - 8 300 0.025 0.4 5

* Only two concentrations of BSA were tested as required from the Taguchi array (Appendix Table 0.4)

In order to test six factors each at three levels, a L18 orthogonal array was needed (see

Appendix Table 0.2). The 18 experiments were prepared in 18 individual reaction tubes with

the appropriate concentration of each component as shown in Appendix Table 0.4. Yet, the

18 reactions were run simultaneously on the same thermocycler using an optimised TD PCR

program. Prior to the optimisation of the master mix, the cycling parameters of the TD PCR

were also optimised using the Taguchi approach, but the results are not shown. However, the

optimised values of the cycling conditions are presented in Appendix Table 0.5.

Additionally to duplicated environmental samples, the reactions were performed on positive

and negative controls for quality assurance purposes.
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3.4.2. Results and discussion

The PCR product yields of the replicates and their mean are presented in Table 3.7. Already,

it shows that the concentrations used for the components in experiment #5 produced the

highest yield with 0.2 µg.µL-1 of BSA, 4 mM of MgCl2, 100 µM of dNTPs, 0.013 U.µL-1 of

Taq enzyme, 0.4 µM of each primer and 5 ng.µL-1 of DNA template.

Table 3.7: PCR product yields after experimental optimisation of the TD PCR master mix using a L18 OA.

Replicate
Mean PCR

product yield
Correction *

Experiment a b

1 0 0 0 1

2 14 4 9 9

3 0 0 0 1

4 116 100 108 108

5 148 142 145 145

6 26 68 47 47

7 74 74 74

8 28 76 52 52

9 110 84 97 97

10 46 42 44 44

11 0 0 0 1

12 0 0 0 1

13 46 126 86 86

14 58 80 69 69

15 86 68 77 77

16 66 2 34 34

17 12 18 15 15

18 10 10 10 10

* The SN ratio analysis requires a minimum product yield of 1. Consequently, a yield of 0 was arbitrarily
changed to 1.
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Table 3.8 shows the pool of the performance characteristic of the experiments sharing the

same levels, as explained in Table 3.3, which was used to calculate the SN ratios of each

component of the master mix (Table 3.10). The concentration of BSA had no effect on the

PCR product yields (Δ=0). Thus, an intermediate concentration of 0.3 µg.µL-1 was chosen for

the optimised master mix. The concentration of MgCl2 and DNA template had the strongest

effect on the PCR product yield.

Table 3.8: Pool of the TD PCR product yields for each optimised component of the master mix.

Factor

Level BSA * MgCl2 dNTPs Enzyme Primer DNA template

A

1
9
1

108
145
47
74
52
97

1
9
1

44
1
1

1
108
74
44
86
34

1
108
97
1

77
15

1
47
74
1

69
10

1
47
52
1

86
15

B

108
145
47
86
69
77

9
145
52
1

69
15

9
145
74
1

86
10

9
108
52
1

77
34

9
108
97
44
69
10

44
1
1
86
69
77
34
15
10

C

74
52
97
34
15
10

1
47
97
1

77
10

1
47
52
44
69
34

1
145
97
44
86
15

1
145
74
1

77
34

* Only two concentrations of BSA were tested, as previously mentioned.

In order to visualise and estimate which concentration of each component was the optimum

value that gave the highest yield, polynomial regressions were plotted (Figure 3.1). Since we

were interested in the highest yield possible, the optimum concentration of a component was

the highest point of the curve, i.e. the concentration that corresponded to the highest SN ratio
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on the trendline (SNmax). Table 3.9 provides the estimated optima for the master mix

components.

Figure 3.1: Effects of the components of the master mix on the SN ratios for the amplification of the pmoA
genes with a TD PCR.
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Table 3.9: Original and optimum conditions for the master mix used for the amplification of pmoA.

Components of master mix Original concentration Optimum concentration SNmax
**

NH4+ buffer 1x 1x -

BSA (µg.µL-1) 0.4 0.3 6.50

MgCl2 (mM) 2 6 41.00

dNTPs (µM) 200 50 7.77

Enzyme (U.µL-1) 0.025 0.020 8.10

Primer (µM) 0.4 0.3 8.50

DNA template (ng.µL-1) (1 µL) * 3 25.50

* Originally, 1µL of DNA template was added to the PCR reaction (50 µL total volume); with no respect of the
concentration of DNA in the sample.
** Maximum SN obtained from the polynomial regressions in Figure 3.1.

The validation experiment involved observing the yield of PCR products after running a PCR

using the master mix with the optimised concentration of the components compared to the

original conditions (Figure 3.2). With the original conditions of the PCR (Figure 3.2, top

gel), the environmental samples had less smearing and no primer-dimer formation when

using the optimised master mix. However, the signal was weaker with the optimised master

mix. For the positive control, a non-specific product >1,000 bp was observed with the

original master mix but was absent when using the optimised master mix. This was surprising

and was the reason for using the TD approach.

With the optimised TD PCR (Figure 3.2, bottom gel), the original master mix produced

bands that were shorter than expected, as well as some smearing. However, the use of the

optimised master mix removed some of the smearing and also produced thinner bands.

Furthermore, the optimised master mix did not allow for the amplification of the non-specific

product (>1,000 bp) in the positive control. Overall, the use of the optimised master mix, in

conjunction to the TD PCR, had a positive effect on the detection of the pmoA genes. This

was confirmed by the verification test (see below).
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Figure 3.2: Differences in PCR
amplification of the pmoA genes.

The top gel represents the PCR yields of the environmental samples when using the original cycling parameters
of the basic PCR. The bottom gel represents the same samples but run with the optimised cycling conditions of
the TD PCR. The effect of using the optimised master mix is also shown.
MW = molecular weight markers

The PCR product yields for the optimised reaction were used for the verification test to

calculate the SNtest of this validation experiment. The SN
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ix improved the PCR product yield.
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Table 3.10: Verification test for the optimisation of the master mix for the TD PCR used for the
amplification of the pmoA genes.

Factor

Level BSA MgCl2 dNTPs Enzyme Primer DNA

A 6.50 1.75 7.77 4.76 4.75 4.76

B 6.50 37.37 7.71 7.68 7.72 24.11 SNexp

C - 25.75 4.75 7.77 7.76 4.77 10.13

∆ 0.01 35.62 3.03 3.01 3.01 19.36

Rank 5 1 3 4 4 2

SNmax,v
* 6.50 41.00 7.77 8.10 8.50 25.50 SNpred

SNpred,v -3.63 30.87 -2.36 -2.03 -1.63 15.37 46.73

SNtest 43.05

* SN estimated from the polynomial regressions (Figure 3.1) and displayed in Table 3.9.
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3.5. Conclusion

The Taguchi optimisation was useful to adjust the concentration of the different components

of the master mix, in particular MgCl2, dNTPs and DNA template. It was also used to

effectively optimise the cycling parameters of the TD PCR program (data not shown).

The experimental settings for the amplification of the pmoA genes were optimised, increasing

by several folds the yields of amplicons after a single round of PCR where a nested PCR

approach was previously required (Singh et al., 2007; 2009). However, a touchdown method

had to be used to improve the specificity of the detection. It was observed that the use of the

calculated optimum SN ratios (SNopt) would give enough information but the maximum SN

ratios (SNmax) estimated from the polynomial regressions added more accuracy and flexibility

for refining PCR conditions. The Taguchi methodology for the optimisation of the PCR

conditions was very useful, and its application saved a lot of time and money after several

months of unsuccessful attempts. The optimised PCR conditions presented in Appendix

Table 0.5 (cycling parameters) and Table 3.9 (master mix components) were applied to the

samples from New Zealand (Chapter 4) and Scotland (Chapter 5 and Chapter 6) for the

detection of the pmoA genes.
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Chapter 4 Experimental results (2)

Response of methanotrophic communities to afforestation and

reforestation in New Zealand 1

1. Brief introduction

A previous study showed that New Zealand forest soils, especially from a pristine temperate

forest, displayed strong atmospheric CH4 sinks compared to most Northern Hemisphere

forest soils (Price et al., 2003). This was attributed to New Zealand’s isolation, the low rate of

atmospheric nitrogen deposition, as well as limited anthropogenic soil disturbance. Indeed,

changes in land use and management are known to alter the composition of the methanotroph

community and, therefore, limit CH4 oxidation (MacDonald et al., 1997; Ojima et al., 1993).

Smith et al. (2000) calculated that the global soil CH4 sink had declined by 71% due to the

conversion of natural soils for agricultural use. They also estimated that it could take >100

years for the soil CH4 sink strength of an afforested soil in Northern Europe to recover from

disturbance by land-use change (Smith et al., 2000).

In this study, two sites were selected: a regenerating native forest (shrubland) after burning

(Turangi) and an indigenous forest adjacent to pasture and exotic pine trees (Pinus radiata)

(Puruki). Pastures and pine forests near the Turangi site, and at Puruki, were studied

previously (Singh et al., 2007; Singh et al., 2009; Tate et al., 2007). Refer to Table 2.3 in the

1 This chapter has been published as a short communication in the ISME Journal, and can be found in the
Appendix Section. Reference: Nazaries L., Tate K.R., Ross D.J., Singh J., Dando J., Saggar S., Baggs E.M.,
Millard P., Murrell J.C. & Singh B.K. (2011). Response of methanotrophic communities to afforestation and
reforestation in New Zealand. ISME Journal, In Press.
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Materials and Methods section (Chapter 2) for a summary of the different land uses in the

two sites, as well as the names used in this study. Although the sampling campaigns from the

different sites and land uses occurred during different years, this always happened in the

warmer months of the year (October to February).

After sampling of the soils, net CH4 flux measurements were performed at 20°C in a constant

temperature room using closed PVC chambers. Sieved soils (sampled in autumn and

summer) were then incubated with 13C-CH4 (~50 ppm) to isolate active populations, from

which PLFA extraction and analysis of levels of enrichment by GC-C-IRMS were performed.

Molecular biological work (T-RFLP analysis) allowed identification of the methanotroph

community structure under each habitat. Cloning/sequencing analysis of the pmoA gene was

also performed to identify the methanotrophs present and to investigate the effect of land-use

change. Refer to Chapter 2 (sections 1.1, 2.1, 3.1, 4, 5.1 to 5.4, and 6) for more details.

The objectives were to:

1) Determine the time required after reforestation for soils to achieve high CH4 oxidation

rates comparable to a mature native forest soil.

2) Determine if the change in CH4 oxidation rates related to a shift in methanotrophic

communities at the ecosystem level.
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2. Soil physical and chemical properties

Soils at the Puruki-Native site were better aerated (lower bulk density and WFPS, and greater

porosity) than the adjacent soils under pine and pasture (P<0.001, Table 4.1). In fact there

was a trend toward better aeration in forest soils compared to pasture soils at both sites (data

not shown).

Table 4.1: Selected physical properties of the soils from the Puruki site.

Data are means (S.E.M. in brackets) of the averages from soils in each chamber. Before ANOVA, the
appropriate transformations were performed on data sets that did not have a normal distribution. Results
followed by different letters (a, b, c) within a column are statistically different according to the multiple pairwise
comparison test (P<0.05).

Vegetation Bulk density (g.cm-3) Porosity (%) WFPS (%)

Pasture 1 0.53 (0.01) a 75.5 (0.3) a 65.3 (2.0) a

Pine (7) 1 0.46 (0.01) b 79.2 (0.6) b 53.6 (1.4) b

Puruki-Native 0.33 (0.03) c 84.4 (1.1) c 30.3 (2.1) c

1 data taken from Tate et al. (2007). The ages of the pine stand (y) is shown in brackets.

Selected chemical properties for soils from both Turangi and Puruki sites are summarised in

Table 4.2. Similar observations could be made from both sites: land-use change, and more

specifically forests, significantly decreased soil moisture content (P=0.011 at Turangi,

P=0.017 at Puruki) and concentrations of NO3
--N (P<0.001 at Turangi, P=0.003 at Puruki)

as well as total N (P<0.001 at Turangi, P=0.024 at Puruki). Also, C:N ratio increased with

afforestation (P<0.001 at both sites) whereas total C and NH4
+-N concentrations and pH were

not influenced by it.
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Table 4.2: Selected chemical properties of the soils at the Turangi and Puruki sites.

The data are means (S.E.M. in brackets) of the averages from soils in each jar/chamber. Before ANOVA, the appropriate transformations were performed on data sets that did
not have a normal distribution. For each site, results followed by different letters (a, b, c) within a column are statistically different according to the multiple pairwise
comparison test (P<0.05).

1, 2 data respectively taken from Singh et al. (2009) and Tate et al. (2007). The age of the pasture and pine stands (y) is shown in brackets. The pastures correspond to the
adjacent pasture of each pine stand.

Site Land use pH
Total C Total N

C:N
NH4

+-N NO3
--N Moisture

(g.kg-1) (g.kg-1) (mg.kg-1) (mg.kg-1) (g.kg-1)

Turangi

Pasture (5) 1 5.5 (0.06) a 77 (2) ab 5.8 (0.2) ab 13 (0.2) a 43 (26) a 1.0 (0.5) ab 510 (23) ab

Pine (5) 1 5.6 (0.07) a 66 (2) b 5.1 (0.2) a 13 (0.1) a 5.2 (1.0) b 2.2 (0.6) b 503 (12) ab

Pasture (10) 1 5.5 (0.05) a 86 (5) a 6.2 (0.3) b 14 (0.3) a 8.1 (2.9) ab 2.1 (0.4) b 575 (21) a

Pine (10) 1 5.4 (0.07) a 74 (6) ab 5.0 (0.3) a 15 (0.3) a 6.8 (1.0) ab 2.1 (0.4) b 600 (41) a

Turangi-47 5.5 (0.08) a 71 (1) ab 3.4 (0.1) c 21 (0.6) b 6.7 (0.9) ab 0.2 (0.09) ac 490 (49) ab

Turangi-67 5.4 (0.04) a 63 (1) b 3.1 (0.07) c 20 (0.7) b 4.7 (1.6) ab 0.04 (0.03) c 439 (23) b

Puruki

Pasture (7) 2 5.4 (0.04) a 133 (4) a 11 (0.5) a 12 (0.1) a 21 (3) a 26 (4) a 1186 (28) a

Pine (7) 2 5.2 (0.1) a 116 (8) a 5.6 (0.2) b 21 (0.9) b 13 (2) a 8.4 (2.8) ab 1091 (42) b

Puruki-Native 5.0 (0.3) a 174 (35) a 9.8 (1.5) b 17 (0.9) c 21 (4) a 7.1 (2.7) b 825 (109) b
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3. Methane fluxes

Soil atmospheric CH4 oxidation rates were significantly influenced by afforestation/

reforestation at both Turangi and Puruki sites (P<0.001) (Figure 4.1). At Turangi, the soil

CH4 oxidation in Pine (5) and Pine (10) were not significantly different from rates in the

adjacent pastures (Figure 4.1A). In contrast, atmospheric CH4 oxidation rates were much

higher at Turangi-47 and Turangi-67 than in all other land uses (Figure 4.1A). At Puruki,

CH4 oxidation rates in Puruki-Native were significantly higher than those in the adjacent

Pasture (7) and Pine (7) (Figure 4.1B). The atmospheric CH4 oxidation rates were

significantly lower at Turangi-47 and Turangi-67 compared to Puruki-Native (P<0.001).
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Figure 4.1: Mean net CH4 fluxes from the different land uses at Turangi (A) and Puruki (B).

Data of the pastures and pines at Turangi were taken from Singh et al. (2009), whereas net CH4 fluxes of pasture
and pine at Puruki were from Tate et al. (2007). For this study, means of the CH4 oxidation rates come from the
field-based chambers (Turangi-47 and Turangi-67) or from the paired intact cores in the closed chambers
(Puruki-Native). The errors bars represent the S.E.M. For each figure, land uses followed by different letters
within a dataset (series) are statistically different according to the multiple pairwise comparison test (P<0.05).
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4. Methanotroph community structure in soils

4.1. T-RFLP data

pmoA genes from the different soils were detected by PCR. Digestion of the PCR products of

the pmoA genes produced two dominant T-RFs of 26 and 77 bp with the restriction enzyme

MspI, and three main T-RFs (T-RF 33, T-RF 129 and T-RF 245) with HhaI (Table 4.3).

Table 4.3: Most abundant T-RFs (>80%) produced after digestion of the pmoA genes with the restriction
enzymes MspI and HhaI for the Turangi and Puruki sites.

The differences between similar T-RFs were due to analytical drifts and were all within a range of expected
discrepancies of ±2 bp.

2, 1 data taken from Singh et al. (2007; 2009), respectively. N/A means that no data were available due to
differences in experimental design.

In previous studies (Singh et al., 2007; 2009) and also in the present study, the T-RFs 33 and

129 (digestion with HhaI) were found to be related to Methylocapsa spp. (see section 4.2).

The relative abundance of these two T-RFs was combined in order to show the general trend

of the dominant population related to type II methanotrophs. Likewise, the T-RF 245 was

used to describe the general trend of type I-related methanotrophs as identified for

Methylococcus capsulatus-like pmoA sequences (Singh et al., 2007; 2009). Based on the

relative abundance of the three dominant T-RFs, the relative dominance of type II-related

methanotrophs (T-RFs 33 and 129) increased with the age of the forest at the expense of type

I-related methanotrophs (T-RF 245) (Figure 4.2, P<0.001).

Site Turangi Puruki

Land use
Pasture (5
and 10) 1

Pine (5
and 10) 1

Turangi-
47

Turangi-
67

Pasture (7) 2 Pine (7) 2 Puruki-
Native

Restriction
enzyme

MspI N/A N/A
T-RF 26
T-RF 77

T-RF 26
T-RF 77

N/A N/A
T-RF 26
T-RF 77

HhaI
T-RF 35

T-RF 128
T-RF 245

T-RF 35
T-RF 128
T-RF 245

T-RF 33
T-RF 129

T-RF 33
T-RF 129

T-RF 127
T-RF 244

T-RF 127
T-RF 244

T-RF 33
T-RF 129
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Figure 4.2: Means (S.E.M.) of the relative abundance of the dominant T-RFs in soils under the different
land uses at (A) Turangi (n=6) and (B) Puruki (n=9).

Type I methanotrophs were related to Methylococcus capsulatus (T-RF 245) and type II methanotrophs to
Methylocapsa acidiphila (T-RF 33 and T-RF 129). Values for each land use did not add up to 100% because the
graph only displays the contribution of the T-RFs 33, 129 and 245. In particular, soils under pasture at Puruki
(Pasture-7) contained a high proportion (~30%) of the T-RF 81, which was identified as an OTU related to
Methylocystis and Methylosinus spp. (Singh et al., 2009). Data for the pastures and pines at Turangi were taken
from Singh et al. (2009), whereas CH4 fluxes of pasture and pine at Puruki were from Tate et al. (2007). Data
for Turangi-47, Turangi-67 and Puruki-Native are from this study. For each figure, land uses followed by
different letters within a dataset (series) are statistically different according to the multiple pairwise comparison
test (P<0.05).
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Regression analysis suggested that there was a strong relationship between the relative

dominance of type II-related methanotrophs and the rate of atmospheric CH4 oxidation

(P=0.004 at Turangi and P=0.003 at Puruki) (Figure 4.3).

Figure 4.3: Relationship between net CH4 flux and methanotroph community structure at (A) Turangi
(n=28); and (B) Puruki (n=15).

The polynomial regression is based on the angular transformation (arcsine of the square root) of the proportion
of the relative abundance of the dominant type II-related T-RFs (T-RF 33 + T-RF 129) over the total relative
abundance of the three dominant T-RFs (T-RFs 33, 129 and 245). Relative abundance was calculated as a
percentage of the total number of T-RFs from each profile produced after digestion of the PCR products for
pmoA genes with the enzyme HhaI. Atmospheric CH4 oxidation rates are those of the different land uses, as
displayed in Figure 4.1. Data for the pastures and pines at Turangi were taken from Singh et al. (2009), whereas
CH4 fluxes of pasture and pine at Puruki were from Tate et al. (2007). Data for Turangi-47, Turangi-67 and
Puruki-Native are from this study. For each figure, land uses followed by different letters within a dataset are
statistically different according to the multiple pairwise comparison test (P<0.05).
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The T-RFLP profiles of pmoA were analysed with T-REX online software using the AMMI

model. Guidelines for the interpretation of the AMMI model results are as such: a low

interaction effect between the T-RFs means that the environments being investigated (the

land uses in this study, i.e. Turangi-47, Turangi-67 and Puruki-Native) display similar

bacterial communities, and inversely, very dissimilar bacterial communities will be

characterised by a low percentage of the main effect component of the ANOVA output

(Culman et al., 2008). To summarise for this study, no significant differences were found in

the T-RF composition between the different sites (Turangi-47, Turangi-67 and Puruki-

Native), based on the T-RF presence/absence and T-RF relative abundance (Table 4.4).

Table 4.4: Similarity analysis of T-RFLP profiles of soils under shrubland (47- and 67-year old stands)
and native forest.

Results presented are the ANOVA output after analysis using the AMMI model of T-REX online software
(http://trex.biohpc.org/). The data used were the T-RFLP profiles obtained from the digestion of the pmoA
genes with the restriction enzyme HhaI.

Main effects Binary Height

T-RFs 81.36% 91.32%

Environments 0.97% 0.03%

Interaction effects

Pattern 4.70% 1.34%

Noise 12.97% 7.31%

4.2. Cloning and sequencing

The pmoA clone sequences from the pasture soils were related to pmoA from type I

methanotrophs, more specifically close relatives (99% similarity) of pmoA genotypes from

Methylococcus capsulatus, whereas clone sequences from soils under the pine forests (5, 7

and 10 years), shrublands and native forest were all distantly related (98% similarity) to

pmoA genotypes from Methylocapsa acidiphila, a type II methanotroph (Figure 4.4).
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Methylocapsa-related microorganisms are part of the RA14/USCα clade as described by 

Holmes et al. (1999) and Knief et al. (2003). The in silico digestion of the pmoA sequences

with HhaI predicted two T-RFs of 38 and 130 bp, present in most of the sequences in the

forested soils except for one clone from Puruki-Native (c9Pur) for which an in silico T-RF of

248 bp was predicted. Although the theoretical T-RFs 38, 130 and 248 were slightly different

in size from the experimental T-RFs (T-RFs 33, 129 and 245; Table 4.3), this was considered

to be a normal drift due to capillary migration during electrophoresis and the lack of precision

of the GeneMapper™ software to estimate accurately T-RF sizes below 50 bp. Nonetheless,

the in silico digests confirmed the identity of the T-RF 33 and T-RF 129 as being two distinct

operational taxonomic units (OTUs) distantly related to Methylocapsa sp., one belonging to

the USCα clade (T-RF 38) and the other one being related to it (T-RF 130) and often called 

Cluster 5 (Dörr et al., 2010; Knief et al., 2005), as shown in Figure 4.4. This is also supported

by the in silico digestion of the same pmoA gene sequences with MspI, which predicted two

T-RFs of 33 and 79 bp in all clone sequences but one. The exception was c9Pur (Puruki-

Native), which predicted a T-RF of 114 bp. Again, these predicted T-RFs are similar in size

to the experimental T-RFs (T-RFs 26 and 77) of the digestion of the pmoA genes with MspI

(Table 4.3). Furthermore, the clone sequences predicting the T-RF 38 with HhaI also

predicted the T-RF 33 with MspI. Similarly, the clone sequences predicting the T-RF 130

with HhaI also predicted the T-RF 79 with MspI. The Puruki-Native clone (c9Pur) that

predicted a T-RF 247 with HhaI also predicted a T-RF 114 with MspI. This was identified on

the phylogenetic tree as being distantly related to pmoA from type I methanotrophs (Figure

4.4). Further analysis of the clone sequences using REMA software suggests that, following

in silico digestion with HhaI, sequences from pastures produce T-RF 248 while clones from

the forests (pine, shrub and native) produce T-RFs 38 and 130. Only dominant T-RFs were

identified by this approach as only a small number of clones (16 per site) was sequenced.
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Figure 4.4: Phylogenetic relationships of selected amino acid sequences of PmoA derived from partial 

pmoA sequences retrieved from different soils to PmoA sequences from the public domain.  

Clone sequences from pasture and pine forest soils were retrieved from Singh et al. (2007; 2009). The amino 

acid sequence of each clone was aligned to selected sequences from the GenBank database using MEGA 5 

software. The phylogenetic tree was constructed with MEGA 5 using the neighbour-joining method with 1,000 

bootstrap replicates. The evolutionary distances were computed using the Poisson correction method and are in 

the units of the number of amino acid substitutions per site. The analysis involved 48 amino acid sequences. The 

scale bar represents 5% dissimilarity between amino acid positions. The tree was rooted to the amoA (ammonia 

monooxygenase) gene of Nitrosomonas europaea.  

Clone sequences in the tree can be identified as such: full shapes represent clones from Turangi, whereas empty 

shapes represent clones from Puruki. Clone sequences from the different types of land uses are identified by 

squares (Turangi-47, Turangi-67 and Puruki-Native), triangles (Pine-5, Pine-7 and Pine-10) and circles (Pasture-

5, Pasture-7 and Pasture-10). Clone sequences in bold were retrieved from soils under natural forests and 

afforested sites in Germany, Thailand and Brazil (Dörr et al., 2010; Knief et al., 2003; Knief et al., 2005).   

USCα 

clade 

Cluster 5 
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4.3. PLFA-SIP data

The percentages of 13C-labelled PLFAs indicated that the most enriched fatty acid was

18:1ω7 (a signature of type II methanotrophs) at all sites (Figure 4.5). A high enrichment of

the PLFA ai17:0 in the pastures and pine forests was observed previously (Singh et al., 2007;

Singh et al., 2009; Tate et al., 2007) and reported to be characteristic of uncultivable

methanotrophic bacteria. This particular fatty acid was not dominant in Turangi-47, Turangi-

67 and Puruki-Native, although it showed a good incorporation (17-29% enrichment) of 13C

from applied 13C-CH4 (Appendix Figure 0.1).

Figure 4.5: Percentage labelling of 13C into each of the most dominant PLFAs extracted from soil
following incubation with ~50 ppm of 13C-CH4.

Each bar represents the amount of 13C in each PLFA fraction as a percentage of the total 13C in all fractions.
Error bars are S.E.M.
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5. Discussion

5.1. Reforestation/afforestation of pasture and net CH4 fluxes

Both afforestation and reforestation are still common land-use changes in New Zealand

(Trotter et al., 2005). Changes in the aeration status of soils undergoing these land-use

changes can be assessed by measuring soil physical properties. Singh et al. (2009) found that

afforestation of pasture with Pinus radiata at Turangi did not show an improvement of soil

aeration in Pine (5), whereas the difference became significant in Pine (10) with lower bulk

density and higher porosity. Similarly, at Puruki, soils from Pine (7) showed minor change in

soil aeration status, due in part to the lack of major physical disturbance during harvesting the

previous tree crop (Tate et al., 2007). In the current study, soils in Puruki-Native were better

aerated (lower bulk density and WFPS, and higher porosity), indicating that afforestation of

pastures and reforestation may have improved soil aeration (Tate et al., 2007). The

relationship between improvement of soil aeration and increased atmospheric CH4 oxidation

rate was previously reported (Ball et al., 1997; MacDonald et al., 1996). While my results are

consistent with these previous studies, they also reflect the fact that the naturally open

structure of volcanic soils strongly favour high atmospheric CH4 oxidation rates (Tate et al.,

2007). Although Singh et al. (2009) observed a small (non-significant) increase in CH4

oxidation rates at Pine (10), the results indicate higher atmospheric CH4 oxidation rates in the

soils at Turangi-47 and Turangi-67 (Figure 4.1A) despite being lower than those in the

Puruki-Native soils (Figure 4.1B). Nonetheless, our data suggest that CH4 oxidation rates

stabilised in Turangi shrubland after 47 years of reforestation as there was no apparent

subsequent change over 20 years. Shrublands dominated by manuka and kanuka at previously

disturbed sites are often seral communities, and in the absence of fire are succeeded over 150-

500 years by a permanent cover of tall forest (Ross et al., 2009). However, it is likely that
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local climo-edaphic factors including very high annual rainfall (ca. 2500 mm) that

periodically limits soil aeration, and very low N availability (Ross et al., 2009), may be

limiting further changes at the Turangi site. At the Puruki site (ca. 1500 mm of rainfall), CH4

oxidation rates measured using large field chambers following clear-cutting of the nearby 24-

year-old pine (Tate et al., 2006) were comparable with rates in the Puruki-Native soil. This

suggests that with minimal soil disturbance and high aeration status, soil CH4 oxidation rates

under second rotation pine (Pine (7), see Table 2.5) can reach those of a mature forest in as

little as 31 years (first rotation to clear-cut, 24 years plus second rotation, 7 years). The high

CH4 oxidation rate from the Puruki-Native soil was also comparable to that of another

pristine forest soil at Craigieburn in New Zealand South Island (Price et al., 2003).

5.2. Shifts in the methanotroph community structure

Comparison with the previous studies (Table 4.3) confirmed the dominance of type II-related

methanotrophs (represented here by T-RF 33 and T-RF 129) in forest and shrubland soils.

These are distantly related to Methylocapsa spp. and belong to the RA14/USCα clade. The 

results also showed the absence of type I methanotrophs (T-RF 245) related to Methylococcus

capsulatus, in Turangi-47, Turangi-67 and Puruki-Native suggesting that Methylococcus-

related type I methanotrophs are progressively replaced in soils by Methylocapsa-related type

II methanotrophs due to afforestation and reforestation (Figure 4.2). This observation was

associated with a progressive increase in soil net atmospheric CH4 oxidation (Figure 4.3).

Conversely, a recent study showed a shift from type II methanotrophs of the Beijerinckiaceae

towards type I methanotrophs of the Methylococcaceae occurring during deforestation

(conversion of forest to farmland) (Dörr et al., 2010).
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The AMMI analysis, based on T-RF comparison, confirmed that the shrubland and native

forest soil methanotroph communities were similar, which was further supported by cloning

and sequencing data. Furthermore, the community structure in Turangi-47 and Turangi-67

was similar to each other and to Puruki-Native. The data of this study provide evidence that

the increase in atmospheric CH4 oxidation rates in afforested and reforested sites are linked to

a shift in population of methanotrophic bacteria towards a dominance of type II-related

methanotrophs (Figure 4.3), as previously suggested (Dörr et al., 2010; Singh et al., 2009).

The data may also suggest that the soil methanotrophic community recovered first after land-

use changes followed by the CH4 oxidation rates. Indeed, the relative abundance of the type

II-related methanotrophs in the 10-year-old pine forest was already close to that found in the

older forests (Figure 4.2), while CH4 oxidation rate appeared to be at an intermediate stage

(Figure 4.1).

Also, it seems that there was a triggering effect in the increase of CH4 oxidation rates. Indeed,

although the soils under pine were already dominated by the presence of type II-related

methanotrophs similar to the ones observed in the old-growth shrubs and native forest (Figure

4.4), the oxidation rates were not as high as in Turangi-47, Turangi-67 and Puruki-Native

(Figure 4.1). The trigger for higher oxidation rates could be a significant change in the soil

physical and chemical properties, or, more likely, a threshold in the proportion of type II-

related methanotrophs (or the complete disappearance of type I-related methanotrophs).

Figure 4.2 shows that soils under Pine (10) contained about 80% of Methylocapsa sp. (and

less than 10% of Methylococcus capsulatus) suggesting that this could be a threshold for

inducing high CH4 sink activity as displayed in Figure 4.3. The shift towards a dominance of

type II-related methanotrophs in afforested soils appears consistent throughout New Zealand

(Singh et al., 2007; Singh et al., 2009; Singh & Tate, 2007; Tate et al., 2007). This combined

set of data also suggests that Methylococcus capsulatus and two distant relatives of
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Methylocapsa sp. may be three of the most dominant phenotypes across New Zealand soils;

however, to prove this conclusively, in-depth sampling across the country will be needed.

The pmoA-based cloning and sequencing data confirmed the identity of the two OTUs

producing the T-RF observed with the T-RFLP data, i.e. dominance of two distinct types of

bacteria, both distantly related to Methylocapsa acidiphila (98% amino acid similarity), in the

forest soils (Figure 4.4). The use of the pmoA gene did not allow for the detection of bacteria

belonging to the genera Methylocella and Methyloferula – the only known methanotrophs

that do not possess the pMMO enzyme (Dedysh et al., 2000; Vorobev et al., 2010) – but the

phylogenetic analysis of the 16S rRNA gene sequences of type II methanotrophs showed that

only two clones (12.5%) were closely related to Methylocella sp. (99% gene identity, see

Appendix Table 0.6). Yet, this could be a strong evidence for the long-term survival and

establishment of active Methylocapsa-related cells in soils undergoing reforestation and

afforestation.

A limitation of these findings was that the soils used were sampled at different times. Based

on a previous study (Price et al., 2003), changes in soil moisture rather than temperature were

responsible for most of the observed seasonal changes in soil CH4 oxidation. In these volcanic

soils, a combination of good aeration and moisture storage characteristics generally ensures

these seasonal changes are quite small (Tate et al., 2006). Consequently to minimise any

seasonality effects, all soils in this study were sampled in summer (October to February).

The phylogenetic analysis of amino acid sequences of pmoA (Figure 4.4) suggested that the

microorganisms responsible for the oxidation of atmospheric CH4 in New Zealand soils were

a genotype related to an uncultivable Methylocapsa acidiphila. Such pmoA sequences were

also found in forest soils from both temperate (Germany) and tropical (Thailand, Brazil)
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regions (Dörr et al., 2010; Knief et al., 2003; Knief et al., 2005). The presence of this pmoA

genotype was reported from soils under various natural forests and sites afforested with

different tree species. Yet, interestingly, when compared to the New Zealand clone

sequences, all pmoA sequences appeared to be closely related, and they all clustered into the

two OTUs producing the virtual T-RFs 38 and 130 after in silico digestion of the pmoA genes

with the restriction enzyme HhaI (Figure 4.4). This finding suggests that the two genotypes

(T-RFs 38 and 130) are dominant in these forest soils irrespective of the tree species.

5.3. Identifying active methanotrophs by PLFA-SIP

Most of the 13C was incorporated in the PLFA 18:1ω7 (Figure 4.5), which is the main PLFA 

signature in forest soils for the type II methanotrophs of the genera Methylocapsa and

Methylocella (Crossman et al., 2005; Singh & Tate, 2007). This result was confirmed by the

observation of a similar PLFA signature in the Turangi and Puruki sites afforested with pines

in previous studies (Singh et al., 2009; Tate et al., 2007). Overall, it confirms previous

finding that most soil microbial oxidation of atmospheric CH4 is by type II-related

methanotrophs (Knief et al., 2006; Kolb, 2009; Singh & Tate, 2007). Also, this result shows

that most of the atmospheric CH4 oxidation activity observed in Figure 4.1 was performed by

Methylocapsa-related methanotrophs, as validated by the phylogenetic analysis (Figure 4.4).
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6. Conclusions

In this study, the effect of land-use change, and more particularly, reforestation and

afforestation of pastures were analysed. Enhancement of the soil CH4 sink was favoured by

improved soil aeration and accompanied by a shift in the community structure of the soil

methanotrophic bacteria. Type I methanotrophs related to Methylococcus capsulatus were

progressively replaced by type II methanotrophs related to the Methylocapsa genus, which

were involved in the oxidation of atmospheric CH4 (Knief et al., 2006; Singh et al., 2009).

This study shows that this process was observed since afforestation occurred and was

stronger in the older forests. It also potentially demonstrated that, in these soils, less than 47

years upon afforestation were needed for soils to become as active as under a native forest

and this was linked to a shift in the methanotrophic community.

Together, changes in net CH4 fluxes, soil characteristics and microbial community diversity,

as well as PLFA signature of methanotrophs, were identical in the shrubland and native forest

soils. This suggests that New Zealand soils and their associated methanotroph community are

highly resilient and that although land-use change to pasture lowered the capacity of soils to

oxidise CH4, subsequent afforestation or reforestation (after forest burning) appeared to allow

native type II-related methanotroph populations to become dominant and active again.

However, local climo-edaphic factors appear to be limiting methanotroph activity. The data

further suggest a niche-specific adaptation, and microbial control of the observed changes in

soil CH4 oxidation. The mechanism associated would require the prior establishment of a

type II-related methanotrophic community before significant increase in CH4 oxidation rates

could occur. These significant findings need to be taken into consideration in future

prediction of changes in CH4 emissions due to afforestation and reforestation.
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Chapter 5 Experimental results (3)

Effect of afforestation of a peatland and grassland into pine forest

on the mitigation of CH4 and the shift in methanotrophic diversity

1. Brief introduction

Scotland’s contribution to GHG emissions in the UK is 8.6%, while CH4 emissions in

Scotland represent 12.9% of total GHG and have fallen by 43.1% since 1990 mainly due to

significant reductions in CH4 emissions from waste disposal and coal mining (Sneddon et al.,

2010). It is also possible to increase atmospheric CH4 sinks by changing land use. Although

grasslands can be net CH4 sinks, their afforestation with pine trees can enhance CH4

oxidation rates (Singh et al., 2007; Singh et al., 2009). In contrast, wetlands such as peat bogs

are responsible for the emission of large amounts of CH4 (Conrad, 1996; Glatzel & Bareth,

2006). Grassland pasture (or improved grassland) and bogs represent respectively 13% and

25% of the broad habitat area in Scotland (McGowan et al., 2002), whereas coniferous

woodlands cover only 12% of Scotland. Therefore, improving the pine woodland cover from

the conversion of grassland and bog could help to further improve atmospheric CH4 sinks.

For this study, two sites were selected in Scotland: a peatland bog and grassland (pasture),

which are predicted to be net emitters of CH4. The bog (Bad à Cheo) was dominated with

peat moss (Sphagnum spp.), and had two adjacent forests, afforested with lodgepole pine

(Pinus contorta) about 20 and 40 years ago (called young pine and old pine forest hereafter).

The grassland (Glensaugh) was a grazing field, and had only one adjacent afforested area of
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Scots pine (Pinus sylvestris), aged ~20 years (called young pine forest). Refer to Chapter 2

(sections 1.2, 2.2, 3.2, 4, 5.1 to 5.3, 5.5 and 6) for more details.

The objectives were to:

1) Examine changes in atmospheric CH4 oxidation rates due to afforestation of peatland

and grassland with pine trees.

2) Link soil methanotrophic composition with the observed changes in atmospheric CH4

oxidation rates.

The hypothesis was that afforestation with pine should have a positive effect on the net CH4

oxidation, which would be correlated with a shift in the structure of the methanotrophic

community. Such changes in process and community structure should also be independent of

the sites and the original land-use type.
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2. Environmental variables

2.1. Chemical properties

The effects of afforestation as well as seasonal variations on some chemical properties of the

soils from the different habitats of the two sites are presented in Table 5.1 and Table 5.2.

Although the data were not always statically significant and consistent between habitats and

sites, trends could be identified. Afforestation consistently decreased soil pH (P<0.001).

Total C and N concentrations were significantly lower in summer compared to autumn in the

bog and grassland (P<0.001, except for total N in the bog). A similar but non-significant

trend was observed in the forested areas, apart from the total N in the young pine forest at

Bad à Cheo (P<0.001). Total C and N concentrations also significantly decreased with

afforestation at both sites, except for total C concentration at Bad à Cheo, which remained

unchanged. C:N ratio was weakly affected by afforestation, with a little (but significant)

increase at Glensaugh (P=0.007), although the trend was not significant (P=0.063) at Bad à

Cheo. This increase in C:N ratio was due to a decrease in the concentration of NH4
+-N

observed at both sites (P<0.001). However, NH4
+-N concentration was higher in summer

compared to winter (with intermediate values in autumn and spring) in the bog (P=0.01) and

grassland (P<0.001). In contrast, afforestation had no effect on the NO3
--N concentration at

both sites. A similar pattern was observed with the moisture level, except that it was

statistically lower in the old pine forest at Bad à Cheo (P<0.001).
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Table 5.1: Selected chemical soil properties from the Bad à Cheo site.

The data are means ± S.E.M. of each season for each habitat. Within each column, statistical differences between seasons within each habitat are indicated by different
Roman letters (a, b, c), while Greek letters (α, β, γ) indicate statistical differences between habitats, according to multiple pairwise comparison (P<0.05). N/A means that no
data were available.

Habitat Season pH †
Total C † Total N †

C:N ratio †
NH4

+-N NO3
--N Moisture

(g.kg-1) (g.kg-1) (mg.kg-1) (mg.kg-1) (%)

Bog

Autumn
3.5±
0.00

a

α 

99±3 a

α 

3.4±
0.13

a α 

30±2

a α 

141
±29

a

α 

178
±23

a

α 

87±1 a

α 
Spring N/A N/A N/A N/A

165
±27

a
160
±19

a 87±1 a

Summer
3.7±
0.04

b 88±1 b
2.9±
0.15

30±2
203
±33

a
122
±35

a 89±1 a

Winter N/A N/A N/A N/A
106
±16

b
209
±42

b 85±2 b

Young Pine

Autumn
3.5±
0.02

a β 

93±2

a α 

3.3±
0.18

a

αβ 

28±1

a α 

84±7

a β 

140
±8

a

α 

87±0

a α 
Spring N/A N/A N/A N/A 69±9

112
±4

a 88±1

Summer
3.6±
0.07

88±2
2.6±
0.12

b 34±2 92±14
125
±34

a 89±0

Winter N/A N/A N/A N/A
110
±20

190
±19

b 87±1

Old Pine

Autumn
3.4±
0.03

a

γ 

94±1

a α 

2.8±
0.10

a β 

33±1

a α 

90±8

a β 

157
±13

a

α 

75±1 a

β 
Spring N/A N/A N/A N/A 41±3 86±5 b 79±1 ab

Summer
3.0±
0.02

b 90±1
2.6±
0.06

34±1 84±5 71±14 c 82±0 b

Winter N/A N/A N/A N/A
109
±7

215
±15

a 79±1 ab

† Analysis performed on autumn and summer samples only.
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Table 5.2: Selected chemical soil properties from the Glensaugh site.

The data are means ± S.E.M. of each season for each habitat. Within each column, statistical differences between seasons within each habitat are indicated by different
Roman letters (a, b, c), while Greek letters (α, β) indicate statistical differences between habitats, according to multiple pairwise comparison (P<0.05). N/A means that no
data were available.

Habitat Season pH †
Total C † Total N †

C:N ratio †
NH4

+-N NO3
--N Moisture

(g.kg-1) (g.kg-1) (mg.kg-1) (mg.kg-1) (%)

Grassland

Autumn
4.1±
0.03

a α 

8.0±
1.04

a

α 

0.76±
0.08

a

α 

10±0

a α 

45±8 a

α 

125
±55

a α 

34±2 ab

α 
Spring N/A N/A N/A N/A 16±1 b

168
±34

31±1 ab

Summer
4.2±
0.09

3.8±
0.21

b
0.40±
0.02

b
9.7±
0.3

38±4 a
120
±50

28±1 c

Winter N/A N/A N/A N/A 20±1 b
109
±27

35±1 a

Young Pine

Autumn
3.9±
0.07

a β 

4.6±
0.27

a β 

0.43±
0.02

a β 

11±0

a β 

20±1

a β 

217
±26

a

α 

31±1

a α 
Spring N/A N/A N/A N/A 14±1

105
±20

ab 28±2

Summer
3.9±
0.05

3.4±
0.09

0.29±
0.01

11±0 18±1
210
±10

a 30±2

Winter N/A N/A N/A N/A 15±2
60
±4

b 32±1

† Analysis performed on autumn and summer samples only.
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2.2. Physical properties

Afforestation of the bog and the grassland had little effect on soil physical properties (Table

5.3). Indeed, afforestation did not improve the soil aeration because the porosity, WFPS or

bulk density were not affected at either site. However there was a non-significant trend

towards a reduced WFPS at both sites. There was a significant effect of afforestation on soil

particle size at both sites, with bigger particles found in the pine forest soils at Bad à Cheo

(P=0.011). However, the age of the pine forest had no influence. At Glensaugh, the trend was

different, with afforestation decreasing the abundance of large-sized particles (P=0.023).

Table 5.3: Selected physical soil properties from Bad à Cheo and Glensaugh.

The data are means ± S.E.M (n=3) of each habitat during the summer only. Within each column, results followed
by different Greek letters (α, β) are statistically different for each habitat, according to multiple pairwise 
comparison (P<0.05).

Site Habitat

Particle size (% of total)
Bulk

density
Porosity

WFPS at field capacity
(at 50 kPa)

0.02-2.00
µm

2-20 µm
20-2000

µm
(g.cm-3) (%) (%)

Bad à Cheo

Bog
1.5±
0.32

α
21
±3

α
77
±3

α 
0.18±
0.03

α 
98
±4

α 76±6 α

Young
Pine

0.38±
0.14

β
10
±2

β
90
±2

β 
0.12±
0.02

α 
98
±2

α 71±8 α

Old Pine
0.40±
0.17

β
10
±2

β
90
±2

β 
0.16±
0.001

α 
99
±3

α 66±6 α

Glensaugh

Grassland
3.8±
0.38

α
34
±1

α
63
±2

α 
0.65±
0.03

α 
68
±7

α 72±6 α 

Young
Pine

4.6±
0.31

α
39
±1

β
56
±2

β 
0.73±
0.06

α 
71
±3

α 59±3 α 
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3. Methane fluxes

The effect of afforestation and seasonal variations on the net CH4 flux of the soils from the

different habitats and sites were investigated (Figure 5.1). Afforestation of the bog and

grassland significantly improved the CH4 sink in soils (P<0.001), although the age of the pine

forest did not make a difference at Bad à Cheo. Also, seasonal variations did not influence net

CH4 flux at either site.

Figure 5.1: Net CH4-C fluxes from soils from Bad à Cheo (A) and Glensaugh (B).

A positive value means that a production of CH4 occurs, whereas a negative flux denotes a sink of CH4. The data
are means (error bars are S.E.M.) of each season for each habitat from the closed-chamber experiment. For each
site, statistical differences between seasons within each habitat are indicated by different Roman letters (a, b),
while Greek letters (α, β) indicate statistical differences between habitats, according to multiple pairwise 
comparison (P<0.05).
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4. Methanotrophic community structure in soils

4.1. Characterisation by molecular methods

The detection of methanotrophs in soils under different habitats was performed by T-RFLP

using two genes: pmoA (specific to all methanotrophs except Methylocella and Methyloferula

spp.), and 16S rRNA of both type I and type II methanotrophs. All T-RFLP profiles were

analysed with T-REX software using the raw data exported from GeneMapper software.

However, it should be noted that, for pmoA analysis, the overall fluorescence detected for the

samples from the old pine forest at Bad à Cheo was very low due to the quality of the soil and

the difficulty to extract the DNA. Thus, results from the old pine forest at Bad à Cheo were

not presented. The pmoA microarray was used to confirm the results from the pmoA-based T-

RFLP analysis, and to identify the methanotroph species present in the soils.

4.1.1. T-RFLP analysis of the pmoA genes

The T-RFLP profiles obtained following digestion of the pmoA genes with the restriction

enzymes HhaI and MspI were processed through the T-REX software. T-RFs which relative

abundance was less than 3% were removed from the analysis. At Bad à Cheo, six HhaI and

five MspI unique T-RFs were identified, representing most of the total T-RF relative

abundance (>87% and >91%, respectively). At Glensaugh, seven HhaI and four MspI unique

T-RFs were identified, representing, respectively, >82% and >95% of the total T-RF relative

abundance. Nested ANOVA was applied in order to investigate the effect of seasonal

variations, within each habitat, on individual T-RFs (Appendix Table 0.7 to Appendix Table

0.10). Seasons only had an effect on some T-RFs but no consistent seasonal pattern could be

demonstrated at either sites (Appendix Figure 0.2 and Appendix Figure 0.3), as confirmed

later by the AMMI analyses (see below). Therefore, the annual average of the T-RFLP

profiles of methanotrophs was also presented (Figure 5.2).
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Figure 5.2: T-RFLP profiles of methanotrophs (pmoA) at Bad à Cheo (A) and Glensaugh (B).

The total relative abundance (annual average ± S.E.M.) of the T-RFs (n=16) generated by HhaI or MspI is
accounted for separately. The letter G (green) represents the colour of the dye.
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At Bad à Cheo (Figure 5.2A), soils from the bog were characterised by the presence of the T-

RFs 37 and 266 (digestion with HhaI) and the T-RFs 196, 293 and 444 (digestion with MspI)

(P<0.05), although their relative abundance was very low, ranging ~3-7%. T-RFs Hha-32,

Hha-81 and Hha-129 (related to type II methanotrophs, see below) were equally present in the

soils under the bog and young pine forest, although there was a trend towards an increase of

their relative abundance in the young forest. Also, soils under the young pine forest were

characterised by the presence of a lower abundance of the T-RF Msp-242 (P=0.002) and a

higher abundance of the T-RF Msp-499 (P<0.001).

At Glensaugh (Figure 5.2B), only soils under grassland contained the T-RFs Hha-179 and

Hha-200 (P=0.005 and P=0.004, respectively) whereas the T-RFs Hha-134, Hha-252 and

Msp-403 were only found in the young pine forest soils (P=0.003) although their relative

abundance was low, ranging ~5-8%. Also, T-RF Msp-25 was significantly more abundant in

soils under grassland than under the young pine forest (P=0.008). The soils under grassland

and young pine forest had similar abundance of the type II methanotroph T-RFs Hha-32,

Hha-81, Hha-128 and Msp-76, as well as the T-RF Msp-499, although, like at Bad à Cheo,

there was a trend towards an increased abundance in the young forest.

T-RFs related to type II methanotroph were present in high abundance in soils from Bad à

Cheo and Glensaugh (Table 5.4). Microorganisms distantly related to Methylocystis sp.

constituted ~35% (T-RF Hha-81) or ~15% (T-RF Msp-242) of all methanotrophs present at

Bad à Cheo, whereas bacteria related to Methylocapsa sp. (T-RFs Hha-32 and Hha-129) were

dominant (>70%) at Glensaugh.
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Table 5.4: Phylogenetic affiliation of the most abundant T-RFs (digestion of pmoA with HhaI and MspI)
found in soils from Bad à Cheo and Glensaugh.

Site
T-RF ID

(enzyme-bp)
T-RF relative

abundance (%)
Associated organism Reference

Bad à Cheo

Hha-32
Hha-129

~20
~30

Distant relative of
Methylocapsa acidiphila

Singh et al. (2009)

Hha-81 ~35
Distant relative of

Methylocystis sp. and
Methylosinus sp.

Singh et al. (2009)

Msp-242 ~15 Methylocystis sp. Horz et al. (2001)

Msp-499 65-85 Unknown N/A

Glensaugh

Hha-32
Hha-128

~65
~10

Distant relative of
Methylocapsa acidiphila

Singh et al. (2009)

Hha-81 <5
Distant relative of

Methylocystis sp. and
Methylosinus sp.

Singh et al. (2009)

Msp-25
Msp-76

<20
~2

Distant relative of
Methylocapsa acidiphila

Chapter 4,
section 4.2

Msp-499 ~80 Unknown N/A

Data were further analysed to understand the influence of different environmental variables

on individual T-RFs. First, DCA gave a gradient length of 0.975 (Bad à Cheo) and 1.241

(Glensaugh) on the first axis, which suggested that RDA was suitable for the analysis of

relationships of T-RFs with environmental variables. No environmental variables were found

to significantly influence the T-RFs. However, C:N ratio and porosity showed a weak

influence at, respectively, Bad à Cheo (P=0.066) and Glensaugh (P=0.060), on the T-RFs

related to Methylocapsa sp. (T-RFs Hha-32, Hha-129 and Msp-25).

The AMMI analysis of the T-RFs generated from the digestion with the restriction enzymes

HhaI and MspI, using habitats and seasons as environments, found a small difference in the

methanotrophic community structure. Indeed, the interaction effect was ~11% (at Bad à

Cheo) and ~15% (at Glensaugh) of the total variation, which is indicative of an interaction
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between the pattern of the T-RFs and their respective environments (or treatment, i.e. habitat

and/or season). This was confirmed by the MANOVA on the four IPC scores of the AMMI

analysis which gave an overall significant effect (P<0.001) of land-use change at both sites

(Table 5.5).

Table 5.5: Effects of afforestation and seasonal changes on the methanotrophic community at Bad à Cheo
and Glensaugh (digestion of pmoA with HhaI and MspI).

The data are P values corresponding to the first four IPC scores of the AMMI analyses, and were obtained by
nested ANOVA and MANOVA. Within each column, statistical differences between seasons within each habitat
are indicated by different Roman letters (a, b), while Greek letters (α, β) indicate statistical differences between 
habitats, according to multiple pairwise comparison (P<0.05).

IPC 1 IPC 2 IPC 3 IPC 4 MANOVA

Bad à Cheo

% variation 42.0 26.5 14.2 9.3

Habitat 0.008 0.374 0.088 0.007 <0.001

Habitat/Season 0.755 0.295 0.239 0.386 0.390

Bog

Autumn

a α a α a α a α   
Spring

Summer

Winter

Young Pine

Autumn

a β a α a α a β
Spring

Summer

Winter

IPC 1 IPC 2 IPC 3 IPC 4 MANOVA

Glensaugh

% variation 55.8 23.2 8.0 5.1

Habitat 0.840 0.044 0.003 0.027 <0.001

Habitat/Season 0.476 0.011 0.208 0.507 0.014

Grassland

Autumn

a α 

a

α a α a α   
Spring a

Summer b

Winter a

Young Pine

Autumn

a α a β a β a β   
Spring

Summer

Winter
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The differences in community structure can be seen on the graphical representation of the IPC

scores (Figure 5.3). Afforestation – but not seasonal variations – had a significant effect on

the community structure when considering the IPCs 1 and 4 at Bad à Cheo (Table 5.5 and

Figure 5.3A). In contrast, a seasonal effect was found on the second dimension only

(P=0.011) at Glensaugh (Table 5.5) where the grassland had a statistically different

methanotrophic structure in summer. This result was not correlated to a significant change in

net CH4 flux (see Figure 5.1). Community structure was affected by afforestation on the last

three IPCs at Glensaugh (cumulated effect <37% of the total variation detected) (Table 5.5

and Figure 5.3B).

Figure 5.3: Methanotrophic community structure at Bad à Cheo (A) and Glensaugh (B) after analysis of
the T-RFLP profiles (digestion of pmoA with HhaI and MspI) with the AMMI model.

The data points within each habitat represent the averages over replicates (n=4) of the IPC scores of each season.
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4.1.2. Analysis of the 16S rRNA genes of type II and type I methanotrophs

The AMMI analysis, using habitats and seasons as environments (replicates were averaged),

found a difference in the community structure of type II and type I methanotrophs. The

interaction effects were ~26% and ~17% at Bad à Cheo for type II and type I, respectively.

They were ~22% and ~12% at Glensaugh (type II and type I, respectively). This means there

was some interaction of the T-RFs with their environment (or treatment). This was confirmed

by the MANOVAs on the four IPC scores of the AMMI analyses which showed that the

effect of afforestation and season on type II and type I methanotrophs was significant at both

sites (P<0.001), except for the type I methanotrophs at Glensaugh (P=0.063) (Table 5.6).

These differences were observed on the graphical representation of the IPC scores of the

AMMI models (Figure 5.4).

At Bad à Cheo, afforestation and the age of the forest had a significant effect on the structure

of both type II and type I methanotrophic communities on, at least, the first two dimensions

(Table 5.6, P<0.001; and Figure 5.4A1 and B1). There was also a seasonal effect with type

II and type I microbial communities being most dissimilar in winter and summer, with

transitional state in spring and autumn (Appendix Table 0.11 and Appendix Table 0.12). At

Glensaugh, afforestation did not have such a strong effect on the structure of type II (IPC 1,

P<0.001; IPC 2 P=0.168) and type I (IPC 1, P<0.001; IPC 2, P=0.035) methanotrophic

communities (Figure 5.4A2 and B2). However, seasonal differences were observed in type II

methanotrophs under grassland in autumn and under young pine forest in spring-summer

(IPCs 1 and 2, P<0.001), whereas a difference in type I methanotrophs was only detected on

the fourth IPCA, which represent ~8% of the total variation (Appendix Table 0.11 and

Appendix Table 0.12).
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Table 5.6: Effects of afforestation and seasonal changes on the methanotrophic community at Bad à Cheo
and Glensaugh (16S rRNA of type II methanotrophs – digestion with MboI and MspI; 16S rRNA of type I
methanotrophs – digestion with HhaI and MspI).

The data are P values corresponding to the first four IPC scores of the AMMI analyses. A more detailed version
of this table, including multiple pairwise comparisons, can be found in Appendix Table 0.11 and Appendix
Table 0.12.

Type II IPC 1 IPC 2 IPC 3 IPC 4 MANOVA

Bad à Cheo

% variation 73.2 19.4 5.0 1.0

Habitat <0.001 <0.001 0.067 0.751 <0.001

Habitat/Season 0.682 0.002 0.034 0.273 0.014

Glensaugh

% variation 55.1 22.8 13.4 4.2

Habitat <0.001 0.168 0.374 0.568 <0.001

Habitat/Season <0.001 <0.001 0.031 0.009 <0.001

Type I IPC 1 IPC 2 IPC 3 IPC 4 MANOVA

Bad à Cheo

% variation 71.0 9.1 5.8 4.4

Habitat <0.001 <0.001 0.004 0.720 <0.001

Habitat/Season 0.063 0.006 0.012 0.007 <0.001

Glensaugh

% variation 41.2 17.6 15.2 8.1

Habitat <0.001 0.035 0.013 0.249 <0.001

Habitat/Season 0.860 0.550 0.321 0.002 0.063
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Figure 5.4: Type II (A) and type I (B) methanotroph community structure at Bad à Cheo (1) and Glensaugh (2) after analysis of the T-RFLP profiles (16S rRNA of
type II methanotrophs – digestion with MboI and MspI; 16S rRNA of type I methanotrophs – digestion with HhaI and MspI) with the AMMI model.

The data points within each habitat represent the averages over replicates (n=4) of the IPC scores of each season. The circles show seasons that were statistically different
within each habitat.
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4.1.3. Diagnostic pmoA microarray

Type I methanotrophs were not detected at either sites (Figure 5.5), which confirms the

pmoA-based T-RFLP findings (see Table 5.4). However, one soil sample from the old pine

forest at Bad à Cheo contained type Ib methanotrophs related to Methylococcus sp. (probe

Mc396) and Methylohalobius sp. (probe Mh-500) – type Ib methanotrophs are only

thermophilic and halophilic (Stralis-Pavese et al., 2004). Neither nitrifiers nor any

Methylocapsa sp. were detected at either sites (Figure 5.6). Also, no novel pmoA genes of

type II methanotrophs were present except in one soil sample from the old pine forest, which

contained a novel pmoA gene related to Methylocystis/Methylosinus (probe LP21-232).
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Figure 5.5: Type I methanotrophic community analysis at Bad à Cheo and Glensaugh using the pmoA microarray (n=4 for each habitat).

Within each habitat, each row represents a replicate. The results were first normalised to positive control probe mtrof173, then to the reference values determined individually
for each probe (Bodrossy et al., 2003). Colour coding is as such: red colour indicates maximum achievable signal for an individual probe, while blue colour indicates that no
detectable PCR product hybridised to that probe. The colour gradient between blue and red reflects the proportion of hybridisation.
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Type II methanotrophs related to the RA14 cluster (probes RA14-299, RA14-594 and RA14-

591) were detected in Glensaugh (Figure 5.6) but afforestation had no significant influence

on their abundance. Overall, the soil methanotrophic community in Glensaugh was similar

between the grassland and the young pine forest (Table 5.7). This is in contradiction with the

community shift observed with the pmoA-based T-RFLP analysis (see Figure 5.3B). One soil

sample from the grassland contained a peat-related uncultivated type II methanotroph (probe

Peat264) and one related to the Watershed 1 clade (probe Wsh1-566).

At Bad à Cheo, the type II methanotrophic community consisted of Methylocystis/

Methylosinus (probes Mcy459, Mcy522 and Msi232), peat-related type II methanotrophs

(probe Peat264) and watershed-clade (probe Wsh1-566) organisms (Figure 5.6).

Methylocystis-related bacteria (probes Mcy413 and McyM309) were only present in the soil

under the bog (P<0.001 and P=0.012, respectively), whereas methanotrophs of the RA14

(probe RA14-591) and Wsh2 (probe Wsh2-491) clades were only detected in the soil under

the old pine forest (P=0.038 and P=0.007, respectively) (Table 5.7). Overall, PCA and

subsequent MANOVA indicated that afforestation and the age of the forest changed the soil

methanotrophic community at Bad à Cheo (P=0.003), but not at Glensaugh (P=0.299)

(Table 5.8).



Chapter 5 Effect of afforestation with pine trees

143

Table 5.7: Effects of afforestation on the methanotrophic community at Bad à Cheo and Glensaugh (pmoA microarray).

The data presented are some of the pmoA probes that showed higher levels of hybridisation, and their statistical difference (Greek letters [α, β, γ]) between each habitat, 
according to multiple pairwise comparison (P<0.05).

Site Habitat

Probe

Mc396 Mha500 Mcy413 McyM309 Peat264 Msi232 RA14-591 Wsh1-566 Wsh2-491

Bad à Cheo

Bog α α α α α α α α α 

Young pine α α β β α α α β α 

Old pine α α β β α α β γ β 

Probe

Mc396 Peat264 RA14-299 RA14-594 RA14-591 Wsh1-566 Wsh2-491

Glensaugh
Grassland α α α α α α α 

Young pine α α α α α α α 
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Table 5.8: Effects of afforestation on the methanotrophic community at Bad à Cheo and Glensaugh (PCA
from the pmoA microarray).

The data are P values corresponding to the first five PC scores of the probe hybridisation intensities, and were
obtained by MANOVA. Within each column, results followed by different Greek letters (α, β, γ) are statistically 
different for each habitat, according to multiple pairwise comparison (P<0.05).

PC 1 PC 2 PC 3 PC 4 PC 5 MANOVA

Site/Habitat
% variation 74.23 15.93 6.07 2.22 0.66

P <0.001 0.215 0.469 0.640 0.695 0.003

Bad à Cheo

Bog α α α α α 

Young pine β α α α α 

Old pine γ α α α α 

Site/Habitat
% variation 63.88 34.65 1.170 0.230 0.050

P 0.934 0.003 0.821 0.811 0.598 0.299

Glensaugh
Grass α α α α α 

Young pine α β α α α 

4.2. Linking community structure with function

This was first investigated by simple linear regression analysis (Figure 5.7) between the

pmoA IPCA scores of each habitat from section 4.1.1 and the corresponding net CH4 flux

values from section 3. At both sites, afforestation and change in net CH4 flux were

significantly related to a shift in the community structure (P=0.022 at Bad à Cheo; P=0.027

at Glensaugh). However, the relationship was stronger at Bad à Cheo (R2=0.6478) when

considering the first dimension, which accounted for 42% of the variation (Figure 5.7A). At

Glensaugh, the correlation between CH4 and community structure was significant only on the

third dimension (R2=0.5473), which accounted for only 8% of the variation (Figure 5.7B).

When working with the second dimension (23%), linear regression analysis was still

significant (P=0.032) but with a R2 of 0.0289 (Appendix Figure 0.4).
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Figure 5.7: Relationship between net CH4 flux and methanotrophic community structure at Bad à Cheo
(A) and Glensaugh (B).

The data points represent the IPCA scores displayed in Figure 5.3 and the net CH4 fluxes from Figure 5.1.
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Seasonal averages of the enriched PLFA content (% of 13C-incorporation, Figure 5.8) were
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Beijerinckiaceae family (containing Methylocella/Methylocapsa spp.). The methanotrophs

involved in the atmospheric oxidation of CH4 in the soils under the old pine forest (Bad à

Cheo), the grassland and young pine forest (Glensaugh) were more distantly related (<75%

similarity) to the above methanotrophs. Afforestation of the bog and the grassland did not

impact on the active methanotrophic community capable of oxidising atmospheric CH4. The

most enriched PLFA was always 18:1ω7 (Figure 5.8).

Figure 5.8: Percentage of incorporation of 13C within the PLFAs after incubation with ~100 ppm of 13C-
CH4 at Bad à Cheo (A) and Glensaugh (B).

The data are seasonal average ± S.E.M. (n=8) of the enriched PLFA content.
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Figure 5.9: Cluster analysis of the PLFA profiles (based of % of 

13
C-incorporation) of methanotrophs in 

the enriched soils (~100 ppm 
13

C-CH4) from Bad à Cheo and Glensaugh (n=4). 

The dendrogram was built using data from this study, combined with data from the literature (Bodelier et al., 

2009). A Bray-Curtis similarity matrix was used, from the square root-transformation of the PLFA data (see 

Figure 5.8), to perform a group average linking cluster analysis with GenStat® software. 
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5. Discussion

5.1. Effect of seasonal changes and afforestation on abiotic properties

The chemical properties of the soils were not always statistically consistent with the season

and land use (Table 5.1 and Table 5.2). The moisture data were in contradiction between the

two sites, with moisture levels in winter being the lowest at Bad à Cheo but the highest in

Glensaugh, compared to the other seasons. Although no heavy rains occurred while sampling,

it is not possible to say if it rained (and for how long) in the days prior to sampling. This

could have affected the results and it may be an explanation for the lack of consistency or

pattern between the seasons. Therefore, one could assume that the seasonal variations

observed could be due to experimental variations. However, total C and N concentrations

were lower in summer compared to autumn in the non-forested areas maybe as a result of a

higher growth of microbial communities and plants in summer due to a higher demand of N.

Also, forest total C may have been degraded at a slower rate in summer in comparison to

grassland and peatland.

The effect of afforestation on the chemical properties was not always the same at each site.

Nevertheless, afforestation had some impact on the C and N cycles and soil pH. Firstly, pH

decreased with afforestation as well as with the age of the forest. This was expected since tree

planting results in soil acidification due to increased organic acid inputs, soil respiration or

cation redistribution (Jobbágy & Jackson, 2003). Secondly, a decrease in soil moisture was

expected due to water uptake by trees. However, the results did not support this, except in the

old pine forest on the peatland site. Similarly, only a non-significant trend towards an

increased porosity and reduced WFPS was observed (Table 5.3). This may suggest that, these

types of soils (peatland, grassland) in Scotland may take >20 years to achieve significant
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changes in these soil properties. This observation is in contrast to findings in New Zealand

where only <10 years after afforestation resulted in significant changes in soil properties

(Tate et al., 2007). Finally, afforestation had little effect on the C:N ratio. This was because

total C and N concentrations both decreased simultaneously with afforestation. The decrease

of total N was concomitant with a decrease in the concentration of NH4
+-N, and NO3

--N

(although non-significant). That is not surprising since available N may have been removed

from soil due to increased activity of above ground vegetation. The total C content in the

peatland site (Bad à Cheo) was about 15 times higher than could be measured in the grassland

site (Glensaugh). That is not surprising since peat contains a lot of stored C (Harrison et al.,

1995). If we consider the soil C loss that can occur when a land-use change occurs (Post &

Kwon, 2000), the small change in these soil properties would suggest that afforestation did

not have a major impact on C losses, even with the peatland. Another explanation could be

that the forest soils recovered from disturbance within 20 years. Paul et al. (2002) concluded

that, depending on original land use, site preparation and tree species present, forest soils

could take over 30 years to recover from a change from pastoral or agricultural use. Several

studies on the effect of land management (fertilisation, drainage, thinning, tree species

selection, forest rotation length) and land use (land conversion, afforestation, reforestation)

on soil C were reviewed (Harrison et al., 1995; Jandl et al., 2007; Johnson, 1992; Paul et al.,

2002) and forests were always found to recover from C losses and improve C sequestration,

although short forest rotations (30 years) should be avoided. Therefore, the present data show

a potential for the mitigation of atmospheric CH4 of through afforestation of bogs (see below)

while preserving the long-term sequestration of C.
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5.2. Effect of seasonal changes and afforestation on the net CH4 fluxes

Seasons did not affect the measured net CH4 fluxes from the soils at either site (Figure 5.1),

which is in contradiction with several other studies reporting a seasonal variation of net CH4

fluxes mostly associated with a change in soil temperature and/or moisture (Castro et al.,

1995; Saggar et al., 2007). Yet, some reports exist that do not place temperature as a strong

controller of CH4 oxidation (Smith et al., 2003). The present study suggests that CH4

oxidation rates were influenced by soil moisture and WFPS rather than by air temperature

since no effect of seasons was observed.

Afforestation played a major role in inverting the net CH4 fluxes. However, the initial site

preparation at Glensaugh (i.e. drainage of bog before tree planting) may have played a role in

facilitating the establishment of aerobic conditions. At both sites, young pine forest soils were

oxidising CH4 at very high rates compared to bog and grassland. A study on a similar

afforested blanket peat at a site near Bad à Cheo measured a CH4 sink only when the soil

moisture was significantly lower than in the bog (MacDonald et al., 1996), which is the trend

observed at Bad à Cheo. Many studies confirmed the positive impact of grassland

afforestation on CH4 sink (Hütsch et al., 1994; MacDonald et al., 1996; Saggar et al., 2008;

Tate et al., 2007). Soil physical factors such as bulk density and gas diffusivity (related to

WFPS and therefore porosity) were proposed as a strong controller of CH4 oxidation rates

(Ball et al., 1997; Castro et al., 1995; Saggar et al., 2008; Smith et al., 2003). In particular,

CH4 uptake was increased with better soil aeration (increased porosity, decreased WFPS).

Although no statistically significant changes of these parameters occurred at either site, a

trend was obvious, which could correlate the flux data.

Because there was no difference between the 20- and 40-year-old-pine forests at Bad à Cheo,

it may indicate that 20 years were sufficient for turning previously non-forested areas
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producing CH4, into efficient CH4 sinks; and for reaching stable oxidation rates. Fluxes in the

pine forests ranged from -32 to -69 µg.m-2.h-1, which is within range of CH4 oxidation rates

measured in several countries of Northern Europe, including Scotland (Smith et al., 2000).

5.3. Effect of seasonal changes on the methanotrophic community structure

It was difficult to find a pattern in pmoA T-RF abundance. When concentrating on the most

abundant T-RFs, no major seasonal effect was observed in any of the habitats. Again, more

extensive seasonal sampling might help observing seasonal pattern of particular species.

The structure of the methanotrophic community in the soils was affected by seasonal

variations to some extent. The pmoA-based T-RFLP analysis failed to detect a community

shift, while analysis of the 16S rRNA genes did not. In general, the methanotrophic

community structure was different in winter compared to summer (Figure 5.4). This was

probably as a consequence of a change in soil moisture and O2 availability for

methanotrophic activity rather than an effect of season (Reay et al., 2005; Smith et al., 2003).

5.4. Effect of afforestation on the methanotrophic community structure

The different analytical techniques used gave reasonably consistent results. Firstly, no type I

methanotrophs were detected in the soils either by pmoA-based T-RFLP analysis or the pmoA

diagnostic microarray. Yet, the T-RFLP analysis of 16S rRNA genes detected the presence of

type I methanotrophs and that afforestation changed their structure (Figure 5.4B1 and B2).

The primers used for the amplification of the 16S rRNA genes of type I methanotrophs were

specifically designed to use with landfill soils which contain high quantities of low-affinity

methanotrophs (Chen et al., 2007). Since forest soils are not expected to contain high

numbers of methanotrophs, non-specific amplification might have occurred. Cloning would

help confirming the identity of the organisms identified.
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Secondly, bacteria related to type II methanotrophs were found to be dominant with both

pmoA-based T-RFLP and microarray analyses (Table 5.4 and Figure 5.6). The most abundant

T-RFs were all related to Methylocapsa sp. and to members of Methylocystaceae, while the

highest hybridisations were with probes related to Methylocystis/Methylosinus and peat-

characteristic type II methanotrophs that were identified as being related to Methylosinus sp.

(Chen et al., 2008); as well as members of the RA14 group (USCα) and Watershed cluster –

related to RA14 (Chen et al., 2008) – which are thus all capable of oxidising atmospheric

CH4 (Holmes et al., 1999; Ricke et al., 2005).

The PLFA-SIP profiles of the soil methanotrophs under the different habitats were related to

the Beijerinckiaceae family and Methylosinus sporium (Figure 5.9), which matches the

molecular findings. However, methanotrophs under the old pine forest at Bad à Cheo, as well

as under the grassland and young pine forest at Glensaugh, were very distantly related to

Methylocapsa sp. and Methylosinus sp. This can be explained by the complete lack of 13C-

CH4 incorporation (~20% at Bad à Cheo and ~50% at Glensaugh, data not shown) during the

enrichment experiment. This could explain the lower levels of the labelled PLFA C18:1ω7 

observed in these soils (Figure 5.8) and thus why they were distantly related to Methylocapsa

acidiphila. Nonetheless, this confirms that the active oxidation of atmospheric CH4 was

performed by organisms related to high-affinity methanotrophs commonly found in upland

soils (see Chapter 4, section 5.3).

Interestingly, the effect of afforestation on community structure was evident at Bad à Cheo

with both T-RFLP and microarray analyses while it was not at Glensaugh because T-RFLP

analysis of the two genes (16S rRNA and pmoA) found a significant difference (P<0.001) but

the pmoA microarray did not (P=0.299). The lack of consistency at Glensaugh is not that
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surprising since the effect of grassland afforestation on community structure detected by the

AMMI analysis of the pmoA genes was only weak (Figure 5.3). It was unexpected though

that a more pronounced effect was not observed since other similar studies detected a clear

shift of type I methanotrophs towards type II methanotrophs when pastoral grasslands were

afforested with pine trees (Knief et al., 2005; Singh et al., 2007; 2009). But since no type I

methanotrophs were detected at Glensaugh such evident change could not occur. Instead, the

soils under grass and pine at Glensaugh were dominated with members of the RA14 cluster.

At Bad à Cheo, Methylocystaceae members were present in the soil under bog only while

Methylocapsa-related cells were characteristic of the forest soils. This predominance of type

II-related methanotrophs, in particular members of the USCα, in upland forest soils seems to 

be a world-wide trend, independent of the tree species, as discussed in Chapter 4, section 5.4.

5.5. Effect of community structure on net methane flux

Figure 5.7 explicitly shows that the change in net CH4 flux associated with land-use change

was related to a shift in the methanotrophic community structure. Although other studies

investigated the relationship between land-use change and CH4 oxidation rates (Smith et al.,

2000), or between land-use change and methanotrophic communities involved (Singh et al.,

2007), this is the first time that such relationship is characterised. Yet, the correlation was

rather weak at Glensaugh because the third dimension of the AMMI analysis was used,

representing 8% of the total interaction.

No transitional state was observed in the young pine forest, in terms of CH4 sink capacity

while the age of the forest showed an influence on the methanotrophs, as detected with the

microarray. Thus, this would suggest that net CH4 flux rates recovered from soil disturbance

faster than the methanotrophs did, which is in contradiction with the findings of Chapter 4

(section 5.2).
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6. Conclusions

Afforestation/reforestation has become a common practice in several countries for increasing

financial return via the wood industry but also “carbon farming”, which helps increasing

national C sinks under the Kyoto Protocol guidelines (Trotter et al., 2005; UNFCCC, 1998).

The present study indicated a trend suggesting that afforestation of peatland and pasture with

pine trees not only had the potential to improve the atmospheric CH4 sinks, but also that soil

C stocks seemed unchanged <20 years after disturbance following land-use change.

Associated to the change in CH4 oxidation rates was a shift of the soil methanotrophic

community structure. This shift was more pronounced after 20 years when considering

afforestation of a bog (Bad à Cheo) compared to afforestation of grassland (Glensaugh). The

improvement of the CH4 sinks was within range of many temperate forests of the Northern

Hemisphere (Smith et al., 2000). Contrary to other international studies where afforestation

led to a shift of type I methanotrophs towards type II methanotrophs, the data presented here

indicate that at these sites in Scotland, afforestation induced a community change within type

II methanotrophs only, more specifically Methylocystaceae cells were replaced by USCα 

microbes. The community structure change was correlated to the soil structure, in particular

porosity and WFPS. Finally, the site (or original land use before afforestation) played a part

in the type of methanotrophs present but not on the efficiency of sinking atmospheric CH4.

This suggests the community of methanotrophs established itself in soils under pine slower

than the CH4 sinks because high-affinity methanotrophs were found before CH4 sinks

occurred. This may be due to a slower improvement of forest soil moisture and aeration.

This study identified the strong relationship between land-use change (afforestation),

enhancement of CH4 sinks and methanotrophic community shift. This could have a

consequence on the policies regarding land-use change as it shows the primordial role of the

soil methanotrophs and how they can be affected by a land use and their effect on the net CH4
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flux. Moreover, this indicates that functional ecology and the understanding of the microbial

processes involved in the life cycle of GHGs, such as CH4, should not be overlooked by the

models studying the effects of climate change.
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Chapter 6 Experimental results (4)

Effect of invasion of heathland with birch trees on the mitigation

of CH4 and the shift in the methanotrophic diversity

1. Brief introduction

Although important decreases in CH4 emissions in the United Kingdom were achieved in

recent years (Sneddon et al., 2010), it is also possible to increase atmospheric CH4 sinks by

changing land uses. Soils under hardwood trees such as birch are estimated to oxidise higher

levels of atmospheric CH4 compared to soils under coniferous species (Borken et al., 2003;

Menyailo et al., 2010; Menyailo & Hungate, 2003). Heathland represents 12% of the broad

habitat area in Scotland (McGowan et al., 2002), whereas birch woodlands cover only 4% of

Scotland. Therefore, improving the birch woodland cover from the conversion of heathland

could help to further improve atmospheric CH4 sinks.

Two sites were selected (Craggan and Tulchan) and constituted the same vegetation: a

heathland (Calluna-dominated moorland), and its two adjacent woodlands, colonised with

birch trees (Betula pubescens). The chronosequence in the forests was as such: 62- and 88-

year-old stands at Craggan; and 55- and 65-year-old stands at Tulchan. For each site, the

respective tree stands were referred to as “young birch” and “old birch” forests. The main

difference resided in the heathland at Craggan being on a slope, whereas the moorland at

Tulchan was on a flat terrain with a constant boggy state. The sampling procedure was
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identical as in the Bad à Cheo and Glensaugh sites (see Chapter 5). Experimental work was

similar to the analyses described in Chapter 5.

The objectives were to:

1) Examine changes in atmospheric CH4 oxidation rates with changes in land use from

heathland to birch trees.

2) Link soil methanotrophic composition with the observed changes in atmospheric CH4

oxidation rates.

The hypothesis was that birch invasion should have a positive effect on the net CH4

oxidation, which would be correlated with a shift in the structure of the methanotrophic

community. Such changes in process and community structure should also be independent of

the sites. Furthermore, there should be a transition state in the so-called “young birch” forests

with net CH4 fluxes and methanotrophic structure intermediate to the ones observed in the

heathland and “old birch” forests.
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2. Environmental variables

2.1. Chemical properties

The effects of tree invasion as well as seasonal variations on some chemical properties of the

soils from the different habitats of the two sites are presented in Table 6.1 and Table 6.2. The

seasonal data were not significantly different for most soil properties and not consistent either

between habitats or sites. At Craggan, total C and N and NH4
+-N concentrations were

significantly higher in summer in the young and old birch forests (P<0.001 for total C and

NH4
+-N; P=0.012 for total N). Tree invasion had a consistent effect on all the variables at

both sites. There was a trend towards a small increase of soil pH in the birch forest soils

(P=0.013 at Tulchan; only a small non-significant increase at Craggan). All the other soil

properties (total C and N concentrations, C:N ratio, NH4
+-N and NO3

--N concentrations and

moisture) significantly decreased with afforestation, without any effect of the age of the

forest.
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Table 6.1: Selected chemical soil properties from the Craggan site.

The data are means ± S.E.M. of each season for each habitat. Within each column, statistical differences between seasons within each habitat are indicated by different
Roman letters (a, b, c), while Greek letters (α, β) indicate statistical differences between habitats, according to multiple pairwise comparison (P<0.05). N/A means that no
data were available.

Craggan Season pH †
Total C † Total N †

C:N ratio †
NH4

+-N NO3
--N Moisture

(g.kg-1) (g.kg-1) (mg.kg-1) (mg.kg-1) (%)

Moorland

Autumn
3.4±
0.05

a α 

73±6

a α 

2.9±
0.20

a α 

25±0

a α 

50±8

a α 

16±3 a

α 

75±2

a α 
Spring N/A N/A N/A N/A 94±26 63±9 b 80±2

Summer
3.4

0.05
78±8

2.8±
0.26

28±2
109
±26

95±6 c 79±1

Winter N/A N/A N/A N/A 79±2
110
±8

c 82±0

Young Birch

Autumn
3.3

0.04

a α 

35±6 a

β 

1.6±
0.23

a

β 

22±1

a β 

64±9 a

αβ 

18±3

a β 

63±4

a β 
Spring N/A N/A N/A N/A 90±7 ab 29±2 62±4

Summer
3.5

0.04
54±11 b

2.5±
0.42

b 23±1
159
±35

b 41±9 68±5

Winter N/A N/A N/A N/A
108
±10

ab 50±10 73±2

Old Birch

Autumn
3.5

0.01

a α 

52±3 a

α 

2.4±
0.12

a

α 

21±1

a β 

83±2 a

β 

13±4

a β 

69±1

a β 
Spring N/A N/A N/A N/A

110
±12

a 47±8 67±3

Summer
3.4

0.02
75±1 b

3.6±
0.36

b 22±2
191
±26

b 55±18 70±2

Winter N/A N/A N/A N/A 81±12 a 34±8 72±2

† Analysis performed on autumn and summer samples only.
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Table 6.2: Selected chemical soil properties from the Tulchan site.

The data are means ± S.E.M. of each season for each habitat. Within each column, statistical differences between seasons within each habitat are indicated by different
Roman letters (a, b, c, d), while Greek letters (α, β, γ) indicate statistical differences between habitats, according to multiple pairwise comparison (P<0.05). N/A means that
no data were available.

Tulchan Season pH †
Total C † Total N †

C:N ratio †
NH4

+-N NO3
--N Moisture

(g.kg-1) (g.kg-1) (mg.kg-1) (mg.kg-1) (%)

Moorland

Autumn
3.5±
0.05

a α 

72±7

a α 

2.9±
0.43

a α 

25±1

a α 

74±24

a α 

41±11 a

α 

79±3

a α 
Spring N/A N/A N/A N/A 43±7

109
±11

bc 86±1

Summer
3.6±
0.02

87±1
3.4±
0.17

25±1
112
±41

136
±8

c 88±1

Winter N/A N/A N/A N/A
107
±9

235
±22

d 89±0

Young Birch

Autumn
3.6±
0.06

a β 

7.9±
1.12

a β 

0.44±
0.06

a β 

18±0

a β 

36±11

a β 

24±2

a β 

39±2

a β 
Spring N/A N/A N/A N/A 30±6 26±8 36±2

Summer
3.7±
0.06

5.3±
0.85

0.27±
0.04

20±2 24±7 12±2 30±3

Winter N/A N/A N/A N/A 31±5 32±4 43±5

Old Birch

Autumn
3.6±
0.03

a αβ 

6.7±
1.23

a β 

0.40±
0.04

a β 

17±2

a β 

41±10

a β 

56±25

a β 

37±2

a β 
Spring N/A N/A N/A N/A 23±3 24±4 51±5

Summer
3.6±
0.06

15±8
0.63±
0.30

22±2 52±11 23±9 43±8

Winter N/A N/A N/A N/A 38±13 27±5 37±6

† Analysis performed on autumn and summer samples only.
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2.2. Physical properties

Heathland colonisation by birch appeared to have had some effects on soil physical properties

(Table 6.3). The soil aeration was significantly changed by afforestation due to increased bulk

density (P=0.001 at Tulchan but a non-significant trend at Craggan), decreased porosity

(P=0.037 at Craggan and P=0.012 at Tulchan) and increased WFPS (at Craggan only;

P=0.014) in the soils under birch forest. The soil compaction was also modified at Tulchan,

with birch invasion favouring the presence of small- and medium sized particles while

decreasing the abundance of large-sized particles (P<0.001). A similar (non-significant) trend

was observed at Craggan. Overall, the age of the forest had no effect, except for a transitional

state in the young birch forest when considering the WFPS at Craggan and the porosity at

both sites.

Table 6.3: Selected physical soil properties from Craggan and Tulchan.

The data are means ± S.E.M (n=3) of each habitat during the summer only. Within each column, results followed
by different Greek letters (α, β) are statistically different for each habitat, according to multiple pairwise 
comparison (P<0.05).

Site Habitat

Particle size (% of total)
Bulk

density
Porosity

WFPS at field capacity
(at 50 kPa)

0.02-2.00
µm

2-20 µm
20-2000

µm
(g.cm-3) (%) (%)

Craggan

Moorland
1.8±
0.27

α
20
±3

α
78
±4

α 
0.17±
0.03

α 
102
±1

α 60±3 α 

Young
Birch

3.5±
0.42

α
36
±3

α
60
±3

α 
0.18±
0.00

α 
95
±2

αβ 69±2 αβ 

Old Birch
2.9
0.69

α
33
±8

α
64
±8

α 
0.23±
0.02

α 94±2 β 72±1 β 

Tulchan

Moorland
0.55±
0.17

α
11
±2

α
88
±2

α 
0.12±
0.01

α 
96
±3

α 64±3 α 

Young
Birch

3.9±
0.05

β
28
±3

β
68
±3

β 
0.46±
0.04

β 
87
±2

αβ 62±5 α 

Old Birch
3.1±
0.45

β
24
±2

β
73
±2

β 
0.69±
0.10

β 
75
±5

β 62±9 α 
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3. Methane fluxes

The effect of tree invasion and seasonal variations on the net CH4 flux of the soils from the

different habitats and sites was investigated (Figure 6.1). Birch invasion of the heathland

significantly increased the CH4 sink in soils (P<0.001), with no influence of the age of the

birch forest. Seasonal variations did not influence net CH4 flux at Craggan (P=0.092).

However, at Tulchan, significantly higher net CH4 fluxes were observed in the moorland and

higher CH4 sinks in the young birch forest (P<0.001) during summer.

Figure 6.1: Net CH4-C fluxes from soils from Craggan (A) and Tulchan (B).

A positive value means that a production of CH4 occurs, whereas a negative flux denotes a sink of CH4. The data
are means (error bars are S.E.M.) of each season for each habitat from the closed-chamber experiment. For each
site, statistical differences between seasons within each habitat are indicated by different Roman letters (a, b),
while Greek letters (α, β) indicate statistical differences between habitats, according to multiple pairwise 
comparison (P<0.05).
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4. Methanotrophic community structure in soils

4.1. Characterisation by molecular methods

The detection of the methanotrophs in soils was described in Chapter 5, section 4.

4.1.1. T-RFLP analysis of the pmoA genes

The T-RFLP profiles obtained following digestion of the pmoA genes with the restriction

enzymes HhaI and MspI were processed through the T-REX software. T-RFs which relative

abundance was less than 3% were removed from the analysis. At Craggan, six HhaI and five

MspI unique T-RFs were identified, representing most of the total T-RF relative abundance

(>86% and >84%, respectively). At Tulchan, six HhaI and six MspI unique T-RFs were

identified, representing >88% of the total T-RF relative abundance. Nested ANOVA was

applied in order to investigate the effect of seasonal variations, within each habitat, on

individual T-RFs (Appendix Table 0.13 to Appendix Table 0.16). Seasons had no effect on

the T-RFs at either sites (Appendix Figure 0.5 and Appendix Figure 0.6), as confirmed later

by the AMMI analyses (see below). However, it should be noted that the T-RFs Hha-81 and

Msp-242 were significantly more abundant in the old birch forest at Tulchan during spring.

But this was based on the analysis of only one sample. Therefore, the annual average of the T-

RFLP profiles of methanotrophs was also presented (Figure 6.2).

A dominant and significant trend was observed at both sites (Figure 6.2). The establishment

of forests increased the relative abundance of the T-RFs Hha-32 and Msp-25 (P<0.001),

while it decreased for the T-RFs Hha-81 (P=0.006 at Craggan and P<0.001 at Tulchan),

Msp-242 (non-significant trend at Craggan but P<0.001 at Tulchan), Hha-128 (P=0.038 at

Craggan and P=0.001 at Tulchan), and Msp-451 (P=0.001 at Craggan and a non-significant

trend at Tulchan), as well as Hha-50 (P=0.007, present at Craggan only). Also, the relative

abundance of T-RF Msp-499 was always the lowest in the soils under moorland and other T-
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RFs were characteristics of the heathland: Hha-191, Msp-314, Hha-73 (only at Craggan) and

Msp-444 (only at Tulchan). However, these averaged 3-8% of the total T-RF abundance.

Similarly, the T-RFs Hha-247 and Hha-359 were only found in the soils under old birch

forest at Tulchan.

Figure 6.2: T-RFLP profiles of methanotrophs (pmoA) at Craggan (A) and Tulchan (B).

The total relative abundance (annual average ± S.E.M.) of the T-RFs (n=16) generated by HhaI or MspI is
accounted for separately. The letter G (green) represents the colour of the dye.
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T-RFs related to type II methanotrophs were present in high abundance in soils from Craggan

and Tulchan. They were the same as the methanotrophs detected at Bad a Cheo and

Glensaugh (see Chapter 5, Table 5.5). Although the relative abundance of the T-RFs produced

after digestion of the PCR products with HhaI did not match those of their MspI-digested

counterparts, birch invasion had a strong effect on specific OTUs. Indeed, at both sites,

microorganisms distantly related to Methylocystis sp. and Methylosinus sp. (T-RFs Hha-81

and Msp-242) were dominant in soils under moorland whereas bacteria related to

Methylocapsa sp./USCα clones (T-RFs Hha-32 and Msp-25) were dominant in soils under

birch forest (Figure 6.2). This was also confirmed by the microarray data (see section 4.1.3).

Data were further analysed to understand the influence of different environmental variables

on individual T-RFs. First, DCA gave a gradient length of 1.663 (Craggan) and 1.633

(Tulchan) on the first axis, which suggested that RDA was suitable for the analysis of

relationships of T-RFs with environmental variables (data not shown). At Craggan, only soil

porosity was found to significantly influence the T-RFs (P=0.020) by having a positive

impact on the T-RFs related to Methylocystaceae (T-RFs Hha-81and Msp-242) and T-RF

Msp-451; and a negative impact on the T-RFs related to Methylocapsa sp. (T-RFs Hha-32 and

Msp-25). At Tulchan, soil moisture and the age of the birch forest significantly influenced the

T-RFs (P=0.010). Soil moisture had a positive impact on the T-RFs related to Methylocystis

/Methylosinus spp. (Hha-81 and Msp-242) as well as on T-RFs Msp-444 and Msp-451; while

it had a negative impact on the T-RFs related to Methylocapsa sp. (Hha-32 and Msp-25).
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The AMMI analysis of the T-RFs generated from the digestion with the restriction enzymes

HhaI and MspI, using habitats and seasons as environments, found a difference in the

methanotrophic community structure. Indeed, the interaction effect was ~37% (at Craggan)

and ~32% (at Tulchan) of the total variation, which is indicative of an interaction between the

pattern of the T-RFs and their respective environments (or treatment, i.e. habitat and/or

season). This was confirmed by MANOVA on the four IPC scores of the AMMI model which

gave an overall significant effect (P<0.001) of land-use change at both sites (Table 6.4).

The differences can be seen on the graphical representation of the IPC scores of the AMMI

model (Figure 6.3). Tree invasion and the age of the birch forest appeared to have had a

significant effect on the community structure, and resulted in the detection of a different

methanotrophic community structure in each habitat. Furthermore, there was no seasonal

effect on the methanotrophic structure, except in spring in the heathland at Craggan (IPC 4,

P=0.007) although it represented only 7% of the total variation detected. It can be noted that,

in Figure 6.3B, the score for the old birch forest in spring was very different due to the fact

that only one sample was available.
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Table 6.4: Effects of birch invasion and seasonal changes on the methanotrophic community at Craggan
and Tulchan (digestion of pmoA with HhaI and MspI).

The data are P values corresponding to the first four IPC scores of the AMMI analyses, and were obtained by
nested ANOVA and MANOVA. Within each column, statistical differences between seasons within each habitat
are indicated by different Roman letters (a, b), while Greek letters (α, β) indicate statistical differences between 
habitats, according to multiple pairwise comparison (P<0.05).

IPC 1 IPC 2 IPC 3 IPC 4 MANOVA

Craggan

% variation 47.9 24.5 10.8 7.2

Habitat <0.001 0.001 0.063 0.089 <0.001

Habitat/Season 0.116 0.334 0.852 0.007 0.019

Moor

Autumn

a α a α a α 

a

α   
Spring b

Summer ab

Winter a

Young Birch

Autumn

a α a β a α a α   
Spring

Summer

Winter

Old Birch

Autumn

a β a β a α a α   
Spring

Summer

Winter

IPC 1 IPC 2 IPC 3 IPC 4 MANOVA

Tulchan

% variation 75.7 11.4 6.8 2.2

Habitat <0.001 0.060 0.037 0.026 <0.001

Habitat/Season 0.053 0.341 0.411 0.389 0.233

Moor

Autumn

a α a α a αβ a αβ   
Spring

Summer

Winter

Young Birch

Autumn

a β a α a α a α   
Spring

Summer

Winter

Old Birch

Autumn

a β a α a β a β   
Spring

Summer

Winter
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Figure 6.3: Methanotrophic community structure at Craggan (A) and Tulchan (B) after analysis of the T-
RFLP profiles (digestion of pmoA with HhaI and MspI) with the AMMI model.

The data points within each habitat represent the averages over replicates (n=4) of the IPC scores of each season,
except for the spring season of the old birch forest at Tulchan for which only one sample was available.
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4.1.2. Analysis of the 16S rRNA genes of type II and type I methanotrophs

The AMMI analysis, using habitats and seasons as environments (replicates were averaged),

found a small difference in the community structure of type II and type I methanotrophs. The

interaction effects were only ~7% and ~6% at Craggan for type II and type I, respectively.

They were ~12% and ~8% at Tulchan (type II and type I, respectively). This means there was

some interaction of the T-RFs with their environment (or treatment). This was confirmed by

the MANOVAs on the four IPC scores of the AMMI analyses which showed an overall

significant effect on type II and type I methanotrophs at both sites (IPCs 1 and 2, P=0.001)

(Table 6.5). Some seasonal effects were also detected. These differences were observed on

the graphical representation of the IPC scores of the AMMI models (Figure 6.4).

Like with the pmoA genes, afforestation and the age of the birch forest had a significant effect

on the community structure (P<0.001), and resulted in the detection of a different

methanotrophic community structure in each habitat (Figure 6.4). There was also an

inconsistent seasonal effect between habitats and sites with type II microbial communities

being similar in spring-summer under young birch at both sites; and type I methanotrophs

being similar in spring-summer under heath at Craggan and under old birch at Tulchan

(Appendix Table 0.17 and Appendix Table 0.18).
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Table 6.5: Effects of birch invasion and seasonal changes on the methanotrophic community at Craggan
and Tulchan (16S rRNA of type II methanotrophs – digestion with MboI and MspI; 16S rRNA of type I
methanotrophs – digestion with HhaI and MspI).

The data are P values corresponding to the first four IPC scores of the AMMI analyses. A more detailed version
of this table, including multiple pairwise comparisons, can be found in Appendix Table 0.17 and Appendix
Table 0.18.

Type II IPC 1 IPC 2 IPC 3 IPC 4 MANOVA

Craggan

% variation 56.0 25.3 7.8 4.5

Habitat <0.001 <0.001 0.004 0.162 <0.001

Habitat/Season <0.001 0.066 0.051 0.046 <0.001

Tulchan

% variation 57.0 20.9 8.7 5.9

Habitat <0.001 0.002 0.526 0.039 <0.001

Habitat/Season 0.001 0.115 0.032 0.078 <0.001

Type I IPC 1 IPC 2 IPC 3 IPC 4 MANOVA

Craggan

% variation 35.7 18.7 11.0 9.9

Habitat <0.001 <0.001 0.427 <0.001 <0.001

Habitat/Season 0.010 0.866 <0.001 0.430 0.006

Tulchan

% variation 44.6 22.0 9.3 7.7

Habitat <0.001 0.001 0.009 0.003 <0.001

Habitat/Season 0.008 0.057 0.202 0.304 <0.001
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Figure 6.4: Type II (A) and type I (B) methanotrophic community structure at Craggan (1) and Tulchan (2) after analysis of the T-RFLP profiles (16S rRNA of
type II methanotrophs – digestion with MboI and MspI; 16S rRNA of type I methanotrophs – digestion with HhaI and MspI) with the AMMI model.

The data points within each habitat represent the averages over replicates (n=4) of the IPC scores of each season. The circles show seasons that were statistically different
within each habitat.
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4.1.3. Diagnostic pmoA microarray

Type I methanotrophs were not detected at either site (data not shown). Also, neither nitrifiers

nor any Methylocapsa acidiphila were found at either sites (Figure 6.5).

Similarly, no novel pmoA genes of type II methanotrophs were present. The probes detected

the presence of the exact same type II methanotrophs at both sites (Table 6.6). Tree invasion

and the age of the birch forest also influenced their relative abundance in a similar fashion: in

the soils under moorland at Tulchan, the type II methanotrophic community consisted mainly

of Methylocystis/Methylosinus spp. (probes Mcy413, Mcy459, Mcy522 and Msi232;

P=0.001), peat-related type II methanotrophs (probe Peat264; P=0.040) and watershed 1

clade (probe Wsh1-566; P=0.014) organisms (Table 6.6). However, these species were not

exclusively detected in the moorland soils at Craggan. Conversely, type II methanotrophs

related to the RA14 cluster (probes RA14-299, RA14-594 and RA14-591) were never

detected in the soils under the heathland at both sites or under the young birch forest at

Craggan but they were present in the old birch forest soils at Craggan (P<0.001) (Figure

6.5). In contrast, the probes of the RA14 cluster were detected in the soils under both young

and old birch forests at Tulchan (P<0.045) (Table 6.6) but the age of the birch forest had no

significant influence on their abundance. PCA and subsequent MANOVA on the first five

PCs indicated that birch invasion changed the methanotrophic community in the soils at

Craggan (P=0.002) and Tulchan (P<0.001) (Table 6.7). However, it was only detected on

the third PC at Craggan (P<0.001), which represented ~3% of the total variation, whereas the

first PC (~90% of total variation) on the Tulchan data was sufficient to detect an effect of

birch invasion (P=0.011).
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Table 6.6: Effects of birch invasion on the methanotrophic community at Craggan and Tulchan (pmoA microarray).

The data presented are some of the pmoA probes that showed higher levels of hybridisation, and their statistical difference (Greek letters [α, β]) between each habitat, 
according to multiple pairwise comparison (P<0.05).

Site Habitat

Probe

Mcy522 Mcy459 Mcy413 Msi232 Peat264 RA14-594 RA14-591 RA14-299 Wsh1-566

Craggan

Moor α α α α α α α α α 

Young birch α α α α α α α αβ α 

Old birch α α α α α β β β α 

Tulchan

Moor α α α α α α α α α 

Young birch β β β β β β β β β 

Old birch β β β β αβ αβ αβ αβ β 
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Table 6.7: Effects of birch invasion on the methanotrophic community at Craggan and Tulchan (PCA
from the pmoA microarray).

The data are P values corresponding to the first five PC scores of the probe hybridisation intensities, and were
obtained by MANOVA. Within each column, results followed by different Greek letters (α, β) are statistically 
different for each habitat, according to multiple pairwise comparison (P<0.05).

PC 1 PC 2 PC 3 PC 4 PC 5 MANOVA

Site/Habitat
% variation 90.4 6.09 2.62 0.66 0.15

P 0.601 0.559 <0.001 0.125 0.758 0.002

Craggan

Moor α α α α α 

Young birch α α α α α 

Old birch α α β α α 

Site/Habitat
% variation 89.71 5.27 3.65 1.04 0.21

P 0.011 0.501 0.482 0.064 0.762 <0.001

Tulchan

Moor α α α α α 

Young birch β α α α α 

Old birch β α α α α 

4.2. Linking community structure with function

This was first investigated by simple linear regression analysis (Figure 6.6) between the

pmoA IPCA scores of each habitat from section 4.1.1 and the corresponding net CH4 flux

values from section 3. At both sites, birch invasion and change in net CH4 flux were

significantly related to a shift in the community structure (P=0.027 at Craggan; P=0.015 at

Tulchan). However, the relationship was stronger at Tulchan (R2=0.5444) when considering

the first dimension, which accounted for 76% of the variation (Figure 6.6B). At Craggan, the

correlation between CH4 and community structure was significant only on the second

dimension (R2=0.2426), which accounted for only 25% of the variation (Figure 6.6A). The

relationship was still significant (P=0.012) using the IPCA 1 (48%) but the R2 was 0.1113

(Appendix Figure 0.7).
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Figure 6.6: Relationship between net CH4 flux and methanotrophic community structure at Craggan (A)
and Tuchan (B).

The data points represent the IPCA scores displayed in Figure 6.3 and the net CH4 fluxes from Figure 6.1.
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community in a similar fashion as observed with the pmoA microarray: at Craggan, the

community structure was comparable in the soils under the moorland and young birch forest,

while it was different in the soil under the old birch forest. In contrast, at Tulchan, the

community structure in the moorland soil was different from the one in the young and old

birch forest soils (Figure 6.8).

Figure 6.7: Percentage of incorporation of 13C within the PLFAs after incubation with ~100 ppm of 13C-
CH4 at Craggan (A) and Tulchan (B).

The data are seasonal average ± S.E.M. (n=8) of the enriched PLFA content.
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Figure 6.8: Cluster analysis of the PLFA profiles (based of % of 

13
C-incorporation) of methanotrophs in 

the enriched soils (~100 ppm 
13

C-CH4) from Craggan and Tulchan (n=4). 

The dendrogram was built using data from this study, combined with data from the literature (Bodelier et al., 

2009). A Bray-Curtis similarity matrix was used, from the square root-transformation of the PLFA data (see 

Figure 6.7), to perform a group average linking cluster analysis with GenStat® software. 

  



Chapter 6 Effect of birch invasion

180

5. Discussion

5.1. Effect of seasonal changes and birch invasion on abiotic properties

Contrary to the pine-afforested sites (Chapter 5), seasonal effects on soil chemical properties

were more consistent. In fact, they were consistently not significant except in the birch forests

at Craggan where total C and N and NH4
+-N concentrations were increased in summer (Table

6.1 and Table 6.2), probably due to a higher activity of plants and N2-fixing bacteria. In

particular, total C increased greatly (~50%) between autumn (2008) and summer (2009).

Such a large and fast difference was surprising and may be due to experimental variation.

Like most of the other measurements, a seasonal replication would have been better, as well

as replication of autumn sampling in 2009 in order to look for year-to-year consistency.

In contrast, colonisation by birch trees had important consequences on all the physico-

chemical properties investigated and at both sites. Similar variations (e.g. increased pH and

bulk density, decreased C:N ratio, moisture and porosity in the birch forests) were observed

in other studies using the same sites (Keith et al., 2006; Mitchell et al., 2007; 2010; Nielsen

et al., 2008). The effect of the age of the forest was also congruent. Surprisingly, there was a

90% loss of C and N in the birch forests at Tulchan. A previous study at the same site

detected a 50% decrease of these variables in the soil under birch woodland, when sampling

at a depth of 5 cm (Dr U. Nielsen, private communication). I sampled soils to a depth of 10

cm where the mineral nature of the soil was obvious, in particular due to the presence of

many stones. Considering this and the fact that the organic horizon in the birch forests at

Tulchan was very shallow, one could assume an even lower C and N content in the 10 cm-

deep profile compared to the 5-cm horizon. A similar but not as pronounced discrepancy in
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total C and N concentration in the birch forests at Craggan was compared to a previous report

by Mitchell et al. (2007), and could also be explained by a difference in the sampling depth.

Thus, this would indicate that birch invasion of heathland induces large losses of C storage.

This is confirmed by the work of Nielsen et al. (2010) who measured an important loss of C

from 12 sites (heathland-birch woodland) around Scotland. The lower total C concentration

was still observed in the old birch stands, which would suggest that soil C stocks under birch

forests as old as 88 years never recover from soil disturbance.

It could be argued that birch invaded heathland because soil characteristics had started to

change. However, Hester et al. (1991) thoroughly analysed the succession from heather

moorland to birch woodland on the same Craggan and Tulchan sites. A natural

chronosequence of birch invasion was available with ages of birch forests of ca. 17, 28, 36

and 63 years (at the time of the study). Vegetation (and soil properties) progressively changed

with heather being replaced by bilberry as the birch canopy closes, and later, the

establishment of grass as the woodland matures and the canopy opens out (Hester et al.,

1991). Therefore, it can be assumed that the changes observed (soil characteristics, as well as

CH4 fluxes and methanotrophic community structure – see below) were due to the

establishment of birch woodland rather than the possibility that birch trees invaded heather

due to more favourable soil properties.

5.2. Effect of afforestation on the net CH4 fluxes

In line with the results of Chapter 5, birch invasion had a strong effect in inverting the net

CH4 fluxes so that birch forest soils became strong CH4 sinks (Figure 6.1). This is in

agreement with another study (Kruse & Iversen, 1995) investigating the invasion of a

heathland with oak trees, which are hardwood trees like birch trees. The CH4 oxidation rates

observed were also in range with those in the oak woodland. Surprisingly, the improvement
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in CH4 sink by soils under birch forests was correlated to a lower soil aeration (increased bulk

density, decreased porosity) and contrastingly to a lower soil compaction (decreased

proportion of large-sized particles, which is usually associated to increased porosity) (Table

6.3). This lack of correlation between soil aeration and structure is unexpected since both

help with gas diffusivity and therefore with net CH4 flux, as discussed in Chapter 5. Finally,

no improvement of CH4 sinks was observed after 62 years as oxidation rates were similar at

both sites and compared to the old birch forest at Craggan which was 88-years old. This

indicates a better recovery time of disturbed soils compared to the 100-year estimate by

Smith et al. (2000).

5.3. Effect of seasonal changes on the methanotrophic community structure

Little seasonal effect was observed, especially with the pmoA-based T-RFLP. Again, T-RFLP

analysis of the 16S rRNA genes detected shifts in the methanotrophic community but a lack

of consistency was apparent. As an example, the type II community structure was statistically

different in summer and spring in the soil under young birch forest at Tulchan (Figure

6.4A2), which could be correlated to the significant increase in CH4 oxidation rates observed

in summer but not in spring (Figure 6.1). A similar shift was also identified at Craggan

(Figure 6.4A1) though no seasonal effect was concomitantly observed on CH4 sinks. The

same could be applied to the type I community shift at Craggan under moorland in summer

and the lack of significant difference in net CH4 flux. Yet, this might indicate that changes in

CH4 oxidation rates during seasonal succession could be driven by a shift in the community

of the methanotrophic bacteria.
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5.4. Effect of afforestation on the methanotrophic community structure

As in Chapter 5, the different analytical techniques applied gave fairly consistent results. No

type I methanotrophs were detected in the soils either by pmoA-based T-RFLP analysis or

with the pmoA diagnostic microarray. Nevertheless, the T-RFLP analysis of 16S rRNA genes

indicated the presence of type I methanotrophs and that afforestation change their structure

(Figure 6.4B1 and B2) (see Chapter 5, section 5.4). Microbes related to type II methanotrophs

– namely the Methylocystaceae family, RA14 group (USCα) and Watershed 1 cluster – were 

found to be dominant with both pmoA-based T-RFLP and microarray analyses (Figure 6.3

and Figure 6.5). They were the same species detected in Chapter 5 (see section 5.4).

Interestingly, the effect of birch invasion on the community structure was evident at Craggan

and Tulchan with both AMMI and microarray analyses. However, the pmoA microarray was

less efficient in detecting a community shift at Craggan. Firstly, a significant difference was

only observed on the third dimension of the PCA, which represented 3% of the total variation

(Table 6.7), whereas AMMI analysis of the pmoA gene detected a shift on the first two

dimensions which captured a cumulated ~73% (Table 6.4). Secondly, the pmoA microarray

did not detect a difference between the heathland and young birch forest while the AMMI

analysis of the two genes (16S rRNA and pmoA) identified a dissimilar community in the

soils under both birch stands. Finally, both pmoA-based techniques showed an increase in the

abundance of RA14 cluster members in the birch forests but the pmoA microarray failed to

detect a change in Methylocystaceae cells while pmoA-based T-RFLP identified a decrease in

these methanotrophs in the birch stands (Figure 6.2 and Table 6.6). A similar trend in

community shifts was observed at Tulchan except that the results of both techniques were

congruent. PLFA-SIP data were matching the pmoA microarray, but both approaches have a

lower resolution compared to T-RFLP. Nonetheless, all three techniques confirmed the
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presence of active bacteria oxidising CH4 at atmospheric levels. Overall, these findings on the

effect of birch invasion were in agreement with the community shifts reported in Chapter 5.

5.5. Effect of community structure on net methane flux

As in Chapter 5, Table 6.5 unequivocally identifies a strong relationship between land-use

changes, change in CH4 oxidation rates and shift in methanotrophic community structure. It

was also evident that the age of the forest did not affect the CH4 sinks and community

structure since no transitional state was observed in the young birch forests. In contrast to the

findings of Chapter5, this suggests that net CH4 flux rates and methanotrophs recovered

concomitantly from soil disturbance within the time-frame (55 years) of the study sites.

Changes may also have been due to a modification in the methanogenic activity.
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6. Conclusions

The present study confirmed and strengthened some of the findings from Chapter 4 and

Chapter 5. The conversion of heathland to birch forests greatly improved the atmospheric

CH4 sinks and was associated with a shift in the soil methanotrophic community structure.

The increase in CH4 oxidation rates was fast in comparison to the 100-year estimate from

Smith et al. (2000) and appeared to be stable 55 years after invasion of the moorland with

birch started. As with afforestation with pine, a shift within the type II methanotrophic

community was detected and consisted of the replacement of members of the

Methylocystaceae family by bacteria of the USCα cluster. This seems to be uniquely 

associated to Scottish soils. The close association of change in net CH4 flux with shift in the

methanotrophic structure was unambiguously identified and was dependent on land-use

change rather than being site-dependant. Changes in methanogenesis may have occurred in

parallel but this was not investigated in this study.

However, a significant disturbance in soil C storage was identified which suggests than

heather moorland colonisation with birch trees might not be recommended, despite the

improvements in CH4 oxidation rates induced by this land-use change.
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Chapter 7 General discussion

1. Afforestation and reforestation enhance the atmospheric

CH4 sink in temperate forest soils

The study sites explored were situated in temperate regions of the Northern (Scotland) and

Southern (New Zealand) Hemispheres. The land uses investigated were various and included

non-forested (pasture, bog, heathland) and forested (pinewood, birchwood, shrubland and

native forest) habitats over different types of soils (volcanic ash, peat, mineral). All sites

showed a drastic improvement in the CH4 consumption rates apparently induced by

forestation, which is a phenomenon observed in many other studies (Dobbie & Smith, 2010;

Dörr et al., 2010; MacDonald et al., 1996; Singh et al., 2007; Singh et al., 2009). Smith et al.

(2000) estimated that 100 years should be needed for Northern European forest soils to revert

to original CH4 oxidation rates after soil disturbance. In contrast, New Zealand forests

displayed higher rates of CH4 consumption (Price et al., 2003; Singh & Tate, 2007) and were

shown to potentially recover twice as fast (<47 years – see Chapter 4). This may have been

caused by the relatively lower anthropogenic impact and presence in New Zealand. The sites

investigated in Scotland also showed reasonably fast recovery time of net CH4 fluxes since

they seemed to have reached stable CH4 oxidation rates after 20 years in the pine-afforested

sites (Bad à Cheo, Glensaugh – see Chapter 5) and 55 years in the birch-colonised sites

(Craggan, Tulchan – see Chapter 6).

The net CH4 fluxes from the seasonal measurements of each habitat in Scotland were

upscaled to a yearly estimate (Figure 7.1; also see section 3 for calculation method). This



Chapter 7 General discussion

188

clearly showed how the non-forested habitats were net CH4 emitters, while their conversion

to forests turned them into net CH4 sinks. These sink estimates are above the European

average of 1.6 kg CH4.ha-1.yr-1 calculated by Smith et al. (2000) but within range of UK

forests estimates (Priemé et al., 1997; Smith et al., 2000). The results suggest that there was

no difference in annual net CH4 fluxes between the birch and pine forests, whereas other

studies found that soils under hardwood trees were better sinks than soils under softwood

trees (Borken et al., 2003; Menyailo et al., 2010; Menyailo & Hungate, 2003). The grassland

site (Glensaugh) was a net emitter of CH4 which does not agree with other studies showing

that pastoral lands contribute to sinking CH4 (Singh et al., 2007; Singh et al., 2009; Smith et

al., 2000). This is probably because the pasture site is treated yearly with fertilisers which are

known to inhibit methanotrophy (Hütsch et al., 1994; Mosier et al., 1991). Maxfield et al.

(2008) detected a 70% inhibition of high-affinity methanotrophs in an agricultural soil treated

with inorganic fertiliser. It may explain the lack of atmospheric CH4 sink in grassland soils.

Figure 7.1: Methane fluxes from the non-forested and forested habitats.

Each histogram represents the net CH4 flux average ± S.E.M. of the yearly estimate for each season (n=4), based
on the upscaling of the net CH4 flux measurements displayed in Chapter 5 (Figure 5.1) and Chapter 6 (Figure
6.1). Data from the four sampling sites (Craggan, Tulchan, Bad à Cheo and Glensaugh) which had similar land
uses (heathland, bog, grassland, pine forest or birch forest) were combined during upscaling. Method used for
upscaling was detailed in section 3. Land uses followed by different Greek letters (α, β, γ) are statistically 
different as per the multiple pairwise comparison test (P<0.05).
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Effects on soil C stock and strategies for afforestation/reforestation

The presence of trees may have had an important impact on total C concentrations. As

discussed previously, the birch invasion of heathland (Chapter 6) suggested potentially

important and long-term C losses from soils, at least in the sites investigated in Scotland. This

is in contradiction with the results of Paul et al. (2002) who found that in Australia deciduous

hardwood tree soils accumulated C better than softwood trees did. Their results disagree with

this study again since conversion of grassland and bog into pine forests preserved the soil C,

or soil recovered from C losses within 20 years (Chapter 5). Other studies (Hargreaves et al.,

2003; Harrison et al., 1995) reported that afforested peatland were beneficial in term of C

sequestration. Yet, because the capacity of peatland for long-term storage of C is much higher

than that which can be added by growing trees (Cannell et al., 1993), it was suggested that 30

to 60-year tree rotations could maintain net C sinks in afforested peatlands (Hargreaves et al.,

2003; Jandl et al., 2007; Paul et al., 2002).

Regulation by climo-edaphic factors

Climate, in particular rainfall, may have had some effect at the shrubland site in New Zealand

by limiting the improvement of the CH4 sinks. This was due to reduced soil aeration from

increased soil moisture. This is the main process that makes wetlands (bog and heathland)

CH4 emitters (and CO2 sequesters). When peatlands are drained and planted with trees, the

water table is lowered and the new oxic environment induces soil to stop emitting CH4 but as

a consequence, soil C is oxidised and released as CO2. After a transitional growth phase, the

trees start accumulating C through plant biomass and primary production (Dawson & Smith,

2007; Jandl et al., 2007). Soil structure (pore size, water content, bulk density) is related to

gas diffusivity (CH4 flow and O2 availability), hence these soil characteristics may strongly
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influence CH4 oxidation rates. This was not the case in most of the soils in Scotland where

statistical significance was not always detected with some variables but trends were obvious.

Soils with higher porosity and lower WFPS were consistently found to favour CH4 sinks in

forests compared to non-forested areas, as previously reported (Ball et al., 1997; Singh et al.,

2009; Smith et al., 2003; Tate et al., 2007).

2. Land-use change triggers a shift in the soil methanotrophic

community

Whenever afforestation/reforestation occurred, this induced a change in the structure of the

methanotrophic community, except at Glensaugh. This was likely caused by modification of

the soil properties due to tree planting. In particular, pH, porosity, WFPS and water content

were affected by forest growth. However, only a trend or weak significance were observed

for these variables. Whether it was in New Zealand or in Scotland, the change in rates of CH4

oxidation were correlated to shifts in the structure of the methanotrophic community. The

results from New Zealand identified the progressive effect of the age of the forest, while in

Scotland the effect of different types of afforestation/reforestation on different type of habitat

was demonstrated. A stable community structure was established in forest soils 10 years after

planting in New Zealand which is close to what was observed in Scotland (20 years). To my

knowledge, there are no other studies investigating the time a soil methanotrophic community

takes to recover from soil disturbance and establish subsequent strong CH4 oxidation rates

(see section 1).
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USCα as major atmospheric CH4 oxidiser in forested areas 

It seems that the general trend is that high-affinity type II methanotrophs distantly related to 

Methylocapsa sp. dominate many forest soils worldwide (see Discussion in Chapter 4). All 

the sites of this project had acidic soils, which constitute the preferred environment for type II 

methanotrophs involved in the oxidation of atmospheric CH4 (Kolb, 2009). These are usually 

members of the so-called RA14 cluster, also known as USCα (Holmes et al., 1999; Knief et 

al., 2003). In this project, afforestation/reforestation always favoured USCα cells over type I 

methanotrophs (New Zealand) or over members of the Methylocystaceae family (Scotland). 

Figure 7.2 shows for the first time the strong relationship between increase of net CH4 uptake 

rates and dominance of USCα in forested areas compared to non-forested areas, except at 

Glensaugh (see Discussion in Chapter 5). It also shows an effect of the age of the forest at 

Craggan, or rather that the community was slower to adapt to land-use change at this site. 

 

 

Figure 7.2: Relationship between the proportion of methanotrophs of the USCα cluster and changes in 

net CH4 fluxes associated with land-use change in Scotland (n=4). 

The proportion of USCα microorganisms was calculated as the ratio of the relative abundance of the T-RFs 

specific to Methylocapsa sp./USCα (T-RFs Hha-32, Hha-128 and Msp-25) to the sum of the T-RFs specific to 

USCα and the Methylocystaceae family (T-RFs Hha-81 and Msp-242). Refer to Appendix Figures 0.2, 0.3, 0.5 

and 0.6 for T-RF reference values. The associated CH4 oxidation rates correspond to the seasonal averages 

displayed in Figure 5.1 in Chapter 5 and Figure 6.1 in Chapter 6. For each habitat, n=4. Land uses followed by 

different Greek letters (α, β, γ) are statistically different according to the multiple pairwise comparison test 

(P<0.05). 
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Mechanisms of methanotrophic community shift during afforestation/reforestation

A recent study demonstrated that methanotrophic community composition was linked to CH4

oxidation in a pine forest soils (Bengtson et al., 2009). However, the authors based their

community structure analysis on PLFA-SIP, whereas the use of T-RFLP analysis gave a

higher degree of precision in this study. Furthermore, Bengston et al. (2009) did not look at

the change of CH4 oxidation due to a change in land-use. Figure 7.2 clearly identifies clusters

in the proportion of USCα for each habitat investigated. In particular, the switch between net 

CH4 emission and sink occurs when the relative abundance of USCα is about the same as 

Methylocystaceae (50/50). A similar threshold was observed in New Zealand except that

USCα had to represent ~80% of the methanotrophs to observe significantly higher CH4

consumption rates (see Chapter 4, Figure 4.3). As well as the proportion of USCα 

methanotrophs, other climo-edaphic factors had some influence on the net CH4 fluxes due to

afforestation/reforestation.

Finally, it appears that methanotrophs were adapted to different ecological niches. USCα 

cells were predominant in all forested sites in New Zealand and Scotland, irrespective of tree

species. However, Kolb (2009) suggested that deciduous forests favoured the presence of

Methylocystis spp. while coniferous tree species may promote their absence. This was not the

case in this project. The non-forested habitats were more heterogeneous: type I

methanotrophs were found in soils made of volcanic ash (New Zealand) but not in Scotland.

In contrast, non-forested soils in Scotland also contained members of the Methylocystaceae

family, except under grassland at Glensaugh.
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3. Mitigation of the Scottish CH4 budget through afforestation/

reforestation: a preliminary prediction by bottom-up approach

Steps of the upscaling process

The net CH4 flux measurements from each site and from each habitat were used (see Chapter

5 and Chapter 6). The data from each seasonal sampling were upscaled to a yearly estimate

and then averaged (Figure 7.1). Finally, the contribution of each of the five habitats under

study (grassland, bog, heathland, pine and birch forests) to the Scottish national CH4 budget

were estimated based on the total surface area that each habitat covers in Scotland (Figure

7.3). The results are displayed in Figure 7.4A and discussed below.

Figure 7.3: Proportions of the major habitats found in Scotland (81,550 km2).

Adapted from McGowan et al. (2002).
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Findings

Variations in the contribution of each habitat to the national CH4 budget were compared

based on the theoretical conversion to forest of 50% of each of the non-forested areas (Figure

7.4). Before simulation started, i.e. using the net CH4 flux estimates from the habitats with

their actual surface area, the comparison of net CH4 fluxes from non-forested and afforested

areas showed a balance between sources and sinks in favour of a positive emission of CH4

(+4.9 kilotonnes) from non-forested areas (Figure 7.4A). Conversion of 50% of grassland

into pine forests still resulted in a net CH4 emissions (+1.0 kt) from non-forested areas

(Figure 7.4B). Heathland conversion into birch woodland changed the balance into a net sink

of CH4 (-1.7 kt) in forested areas (Figure 7.4C). This effect was stronger (-3.8 kt) with the

conversion of peatland bogs into pine forests (Figure 7.4D). These data show the positive

impact that forestation could have on the mitigation CH4 emissions. More specifically, this

gives evidence that forestation and the subsequent improvement of CH4 sinks in forest soils

would have the potential to neutralise CH4 emissions from other natural habitats at the

national level. Bog afforestation with Pinus radiata trees was the most potent at offsetting

CH4 emissions in Scotland.
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Figure 7.4: Contribution of different land-use changes to national CH4 budget (300 kt) in Scotland before
land conversion (A), after afforestation of grassland with pine trees (B), after conversion of heathland to
birch forest (C) and after afforestation of bogs with pine trees (D).

Data indicate CH4 emissions (positive values) and sinks (negative values) in kilotonne (kt) based on the
upscaled net CH4 fluxes (Figure 7.1) and on the area that each habitat represents in Scotland (Figure 7.3). The
balance between CH4 emissions and sinks in, respectively, the non-forested and forested areas is also indicated.

Limitations and perspectives

Firstly, the yearly estimates are based on one seasonal sampling during each of the four

seasons. Although no seasonal effect on the net CH4 fluxes was detected, except at Tulchan

in summer, more regular sampling would add accuracy. Secondly, spatial variability of net

CH4 fluxes might be criticised since CH4 emissions can vary considerably within a site,

especially in wetlands (Minkkinen & Laine, 2006; Van den Pol-van Dasselaar et al., 1999).

This might be true for the bog or grassland sites since no other replicate site was used.

Nevertheless, the sampling of soils under heathland at two different sites did not show a
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significant difference in CH4 emissions during most seasonal replications. A similar

observation was made with site-to-site comparison of the net CH4 fluxes from the (young and

old) birch stands at Craggan and Tulchan and from the young pine forests at Bad à Cheo and

Glensaugh. This site-to-site comparison was useful in giving more homogeneity to the yearly

flux estimates (Figure 7.1) and to the contribution of each land use to the national CH4 budget

(Figure 7.4).

An identical bottom-up study was applied for estimating the positive potential on CH4 sinks

of afforestation/reforestation in New Zealand under provision of the Article 3.3 of the Kyoto

Protocol (Scott et al., 2001; Tate et al., 2005). A more accurate approach was conducted by

Glatzel & Bareth (2006), in which they accounted for the interaction between land use and

soil type to estimate regional CH4 emissions. However, because of the global over-estimation

of the results, they acknowledged the need to link ecosystem approaches to process-based

models, in which specific soil processes such as C and N cycles and their impact on net CH4

fluxes are considered. The process-based model DNDC (DeNitrification and DeComposition)

requires detailed information on site climate (daily precipitation and temperature), soil

properties (texture, porosity, clay content, moisture) and land management (crop,

fertilisation) (Li et al., 1992a; 1992b; 2000). It was applied to estimate N2O emissions from

arable sites in the USA (Li et al., 1996), China (Li et al., 2001), Germany (Butterbach-Bahl et

al., 2001), Canada (Smith et al., 2002) and the UK (Brown et al., 2002). Recently, the DNDC

model was adapted to New Zealand (“NZ-DNDC”) for the modelling of N20 emissions from

grazed pastures (Saggar et al., 2004) and was also successfully applied to the modelling of

CH4 consumption (Saggar et al., 2007). However, these models do not account for the role of

microorganisms in the soil processes responsible for CH4 consumption, i.e. methanotrophy.

Therefore, a new model including site/soil properties and information on the soil
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methanotrophic community structure may significantly increase the precision of the estimates

for national contributions to CH4 budget.

Finally, it should be kept in mind that, in this study, the hypothetical change of 50% of one

land use (i.e. peatland bog) into a (pine) forest is not feasible, at least on the short term. Also,

the loss of peatland compared to the gain of forest should be considered since peatland are

useful with respect to energy production, building and isolation, tourism, etc. but particularly

ecological biodiversity whereas the main advantage of forestry would be wood trade.

Furthermore, peatland conversion would be costly in terms of site preparation and in

particular when looking at C fluxes. Although it was discussed in Chapter 5 that long forest

rotation may preserve high C losses, the release of CO2 after drainage of the bog, due in

particular to the increase of the processes of soil organic matter decomposition and

heterotrophic respiration, may have a bigger impact on the global GHG budget (Singh et al.,

2010; Smith, 2008). Therefore, the net CO2 fluxes should have been investigated too in order

to estimate the importance of the impact of such land-use change and thus to assess which

GHG would be the most affected. Overall, it is essential to understand how GHG-emitting

microbes influence the global GHG budget and how they could contribute to the mitigation of

climate change. The importance of microorganisms to climate change through their

contribution to carbon cycling and feedback responses to the main GHG (CO2, CH4 and N20)

was discussed in very interesting reviews from Bardgett et al. (2008) and Singh et al. (2010).
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4. Conclusions

This project demonstrated the positive effect of afforestation/reforestation on atmospheric

CH4 sinks. In particular, through a preliminary upscaling approach, it helped to predict the

national CH4 production and consumption from the five main habitats in Scotland

(cumulative surface area of 66%). The bottom-up procedure showed that the hypothetical

conversion of 50% of the pastoral land to pine forest was not sufficient to reverse the natural

net CH4 emissions, whereas the colonisation of heathland and afforestation of bog were.

However, birch invasion in Scotland proved to induce important (50-90%) and permanent

losses in soil C stocks, therefore making it a poor candidate for CH4 mitigation. In contrast,

afforestation of bogs with pines seemed to be effective in creating strong CH4 sinks while

preserving C sequestration in soils within 20 years after forest growth started. Site

preparation for afforestation and forest management should not be overlooked in order to

optimise the conditions for atmospheric CH4 oxidation and C sequestration. Afforestation/

reforestation in Scotland and shrubland regeneration after fire burning in New Zealand

showed quicker recovery time (20-55 years) from soil disturbance than previously estimated.

The project also revealed a better understanding of the mechanisms underlying

methanotrophy. Shifts in the methanotrophic community structure were clearly correlated to

changes in CH4 oxidation rates associated with various land-use changes. Specifically, the

relative proportion of high-affinity (uncultivable) methanotrophs belonging to the USCα 

group – responsible for the oxidation of atmospheric levels of CH4 – in a particular habitat

was a strong predictor of whether a soil was a net CH4 emitter or a net CH4 sink. This was

confirmed by the combined use of molecular methods (T-RFLP, diagnostic microarray and

cloning/sequencing) and activity-specific techniques (PLFA-SIP). Finally, a niche-specific

adaptation of the methanotrophs was suggested, which may be influenced by the sole

presence of trees and/or the soil characteristics.
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5. Future works

Impact of land-use change on the methanogenic community structure

Because the net CH4 fluxes measured from the intact cores in the closed chamber were a

combination of the methanotrophic and methanogenic activities, it is postulated that these

were also influenced by changes in the structure of the methanogenic community due to land-

use change. Therefore, a similar molecular approach should be applied to the study of

methanogens. This would involved T-RFLP analysis of genes such as mcrA and 16S rRNA.

Furthermore, for the global upscaling of this result, shifts in the methanotrophic community

structure and their influence on the net CH4 fluxes should be expanded to include

investigation of:

 Effect of other land-use changes such as in arable, set-aside or deforested sites

 Effect of other forest types (oak, mixed)

 Effect of altitude and/or water table

 Effect of climate change (elevated CO2, increased temperature, altered precipitation)

Modelling CH4 emissions/sinks in Scotland in relation to methanotroph community structure

The DNDC and other models could be adapted to Scotland and the UK to improve the

prediction of net CH4 fluxes. This could be achieved by including in-depth information about

the methanotrophic (and methanogenic) community structure, specifically the dominance of

particular species in relation to the nature and structure of the soil of the different habitats.
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Appendix Table 0.1: Selection of oligonucleotide probes used in the microarray for the detection of pmoA genes.

Melting temperatures were calculated by the nearest neighbour method (Stralis-Pavese et al., 2004). M.bacter = Methylobacter, M.monas = Methylomonas, M.microbium =
Methylomicrobium, M.sarcina = Methylosarcina, M.coccus = Methylococcus, M.thermus = Methylothermus, M.caldum = Methylocaldum. Probes are organised according to
the class of methanotrophs they hybridise with, as follows: type Ia methanotrophs, type Ib methanotrophs, type II methanotrophs, novel pmoA of type II methanotrophs,
RA14 cluster, watershed cluster, Methylococcus capsulatus, universal methanotrophs, ammonia-oxidising bacteria. Representatives of Crenothrix, Clonothrix and
Methylacidiphylum are not included. Adapted from Stralis-Pavese et al. (2011)

Methanotroph class Name a Intended specificity Sequence (5' to 3') b Length (bp) GC% Tm

Type Ia
methanotrophs

MbA557 Methylobacter CAATGGCATGATGTTCACTCTGGCT 25 48.0 61.5

MbA486 Methylobacter AGCATGACATTGACAGCGGTTGTT 24 45.8 61.6

Mb460 Methylobacter GACAGTTACAGCGGTAATCGGTGG 24 54.2 60.9

Mb_LW12-211 Methylobacter CGTCTTTGGGTTACTGTTGTGCC 23 52.2 60.0

Mb_SL#3-300 Methylobacter GGCGCTGTTGTTTGTGTATTGGGT 24 50.0 62.2

Jpn284 clone Jpn 07061 ACCGTATCGCATGGGGTG 18 61.1 58.0

BB51-302 Methylobacter CGGTTGTTTGTGTCTTAGGTCTG 23 47.8 57.2

Mb267 Methylobacter GCATGCTTGTGGTTCCGTTAC 21 52.4 58.1

Mb292 Methylobacter CCGTTACCGTCTGCCTTTCG 20 60.0 59.1

Mb282 Methylobacter TTACCGTCTGCCTTTCGGC 19 57.9 58.6

Mb_URC278 Methylobacter GTTCCGTTACAGACTGCCTTTCGG 24 54.2 61.3

511-436 Methylobacter GTTTTGATGCTGTCTGGCAG 20 50.0 55.5

511-436L Methylobacter 511 group GUUUUGAUGCUGUCUGGCAGCA 22 50.0 60.0

LP10-424 Methylobacter LP 10 group GTACTTGATTGTATCTTGATGCTGTCAG 28 39.3 55.7

LF1a-456 Methylobacter LF 1a group CATGGTATTGACTGCTGTTATCGGTG 26 46.2 57.7
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Mb_C11-403 Methylobacter CAAACTTCATGCCTGGTGCTATCGT 25 48.0 61.4

Mb380 M.bacter broad group A universal CAGTAAATTTCTGCTTCCCTTCAAATCT 28 35.7 55.8

Mb271 Methylobacter TTGTGGTGGCGTTACCGT 18 55.6 58.0

S14m2-270 Marine type Ia cluster, S14m#2 CTTATGGTACCGTTACAGATTGCCTTA 27 40,7 56.4

S14m2-406 Marine type Ia cluster, S14m#2 TTAATTCCTGGTGCAATTGCACTTGAC 27 40.7 58.3

PS80-291 clone PS-80 ACCAATAGGCGCAACACTTAGT 22 45.5 58.3

MS1-440 Marine type Ia cluster, Marine sediment #1 TGATGTTGTCTGGTAGCTTCACATTAAC 28 39.3 57.1

Mm_pel467 Methylomicrobium pelagicum ACTGCGGTAATCGATGGTTTGGC 23 52.2 61.6

Kuro18-205 Marine type Ia cluster, Kuro18 AGACGTTTGTGGGTGACAGTTGC 23 52.2 60.0

DS1-401 Deep sea cluster #1 GCGCGGTAGTTTGTGTTATGGCT 23 52.2 61.7

Mm531 Methylomonas CTCCATTGCACGTGCCTGTAGA 22 54.5 60.7

Mm_M430 Methylomonas TGGACGTGATTTTGATGTTGGGCAA 25 44.0 61.6

Mm_RS311 M.monas methanica, RS clade(10-286) CTGTTGTTGCTCTGATGCTGGG 22 54.5 58.6

Mm_ES294 Methylomonas CCAATCGGTGCAACAATTTCTGTAGT 26 42.3 59.8

Mm_ES543 Methylomonas GTGCCAGTTGAGTATAACGGCATGA 25 48.0 60.9

Mm_ES546 Methylomonas CCAGTTGAGTATAACGGCATGATGAT 26 42.3 58.7

Mm_MV421 Methylomonas CTATCGTGCTGGATACAATCCTGATGT 27 44.4 60.0

Mm451 Methylomonas CTGATGTTGGGTAACAGCATGACT 24 45.8 58.8

Mm275 Methylomonas GTGGTGGAGATACCGTTTGCC 21 57.1 59.2

Alp7-441 Alpine soil Methylomonas, Alp#7 (10-282) GATGTTAGGTAACAGCATGACACTGAC 27 44.4 57.4

peat_1_3-287 Methylomonas-related peat clones AACTGCCTTTAGGCGCTACC 20 55.0 58.6
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Est514 Methylomicrobium-related clones AATTGGCCTATGGTTGCGCC 20 55.0 59.9

Mmb259 Methylomicrobium album + Landfill M.microbia CTGTTCAAGCAGTTGTGTGGTATCG 25 48.0 59.8

Mmb303 Methylomicrobium album CAATGCTGGCTGTTCTGGGC 20 60.0 60.3

Mmb304 M.microbium album + Landfill M.microbia and related ATGCTGGCTGTTCTGGGCTTG 21 57.1 60.6

LW14-639 Methylomicrobium LW14 group AAAAGGUACUUGGAGAACCUUCGGU 25 44.0 60.0

Mmb_RS2-443 Methylomicrobium, Mmb_RS2 TGCTGGGCAACAGCATGCAGT 21 57.1 62.8

Mmb562 M.microbium album and Methylosarcina ATGGTAATGACCCTGGCTGACTTG 24 50.0 60.6

Mm229 Deep-branching M.monas group CCAATCGTTGGAATCACTTTCCCAGC 26 50.0 60.2

MsQ290 M.sarcina quisquilliarum-related TGCCATTCGGCGCTGTAATTTCAGTA 26 46,2 60.8

MsQ295 M.sarcina quisquilliarum CGGCGCGGTTCTTTCTGTACTG 22 59.1 60.6

LP20-644 Methylomicrobium-related clones GTACACTGCGTACTTTCGGTAA 22 45.5 56.0

LP20-607 LP20 group (Type Ia, deep branching-M.microbium) ACTGGTATGCCTGAATACATCCGTA 25 44.0 57.4

Ia193 Type Ia (M.bacter – M.monas – M.microbium) GACTGGAAAGATAGACGTCTATGGG 25 48.0 57.8

Ia575
Type Ia (M.bacter – M.monas – M.microbium-

M.sarcina)
TGGCTGACTTGCAAGGTTACCAC 23 52.2 61.3

Type Ib
methanotrophs

501-375
Methylococcus-related marine and freshwater sediment

clones
CTTCCCGGTGAACTTCGTGTTCC 23 56.5 61.3

501-286
Methylococcus-related marine and freshwater sediment

clones
GTCAGCCGTGGGGCGCCA 18 77.8 66.7

USC3-305 Upland soil cluster #3 CACGGTCTGCGTTCTGGC 18 66.7 59.5

Mc396 Methylococcus CCCTGCCTCGCTGGTGCC 18 77.8 64.4

MclT272 Methylocaldum tepidum GGCTTGGGAGCGGTTCCG 18 72.2 61.9

MclG281 Methylocaldum gracile AAAGTTCCGCAACCCCTGGG 20 60.0 61.5
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MclS402 Methylocaldum szegediense GCGCTGTTGGTTCCGGGT 18 66.7 61.8

MclS394 Methylocaldum szegediense and related TTCCCGGCGCTGTTGGTTCC 20 65.0 63.3

MclS400 Methylocaldum szegediense and related CGGCGCTGTTGGTTCCGGGT 20 70.0 65.7

MclE302 Methylocaldum E10 CGCAACCATGGCCGTTCTG 19 63.2 60.3

Mcl404
M.caldum tepidum – M.caldum gracile – M.caldum

szegediense and related
TTTTGGTTCCGGGTGCGATTT 21 47.6 58.0

Mcl408 Methylocaldum GGTTCCGGGTGCGATTTTG 19 57.9 57.8

JHTY1-267 JH-TY#1 TTGGTTGTGGGAAAACTTCCGT 22 45.5 57.4

JRC4-432 Japanese rice cluster #4 GACGTTGTCCTGGCTCTGAG 20 60.0 58.3

OSC220 Finnish organic soil clones and related TCACCGTCGTACCTATCGTACTGG 24 54.2 60.8

OSC300 Finnish organic soil clones and related GGCGCCACCGTATGTGTACTG 21 61.9 61.4

JRC3-535 Japanese Rice Cluster #3 CGTTCCACGTTCCGGTTGAG 20 60.0 59.3

LK580 fw-1 group + Lake Konstanz sediment cluster CCGACATCATTGGCTACAACTATGT 25 44.0 58.7

RSM1-419 RSM#1 CCATTCTGCTCGACGTGGTTCT 22 54.5 59.4

JHTY2-562 JH-TY#2 ATGCTGTTGTCGATCGCCGACTTGC 25 56.0 63.6

JHTY2-578 JH-TY#2 CCGACTTGCAAGGCTACAACTATGTC 26 50.0 59.5

JRC2-447 Japanese Rice Cluster #2 CTGAGCACCAGCTACCTGTTCA 22 54.5 60.2

LW21-374 LW21 group CTACTTCCCGATCACCATGTGCT 23 52.2 60.2

LW21-391 LW21 group TGTGCTTCCCCTCGCAGATC 20 60.0 60.5

M90-574
M.coccus – M.caldum related marine and freshwater

sediment clones
ATCGCCGACCTGCTGGGTTA 20 60.0 62.2

M90-253
M.coccus – M.caldum related marine and freshwater

sediment clones
GCTGCTGTACAGGCGTTCCTG 21 61.9 61.7
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Mth413 Methylothermus CACATGGCGATCTTTTTAGACGTTG 25 44.0 58.3

Mha-500 Methylohalobius – M.thermus and related TGATGTACCCGGGCAACTGGC 21 61.9 62.3

DS3-446 Deep sea cluster #3 AGCTGTCTGGCAGTTTCCTGTTCA 24 50.0 62.5

PmoC640 PmoC AAGGGAACGCTTCGTACGTTTGG 23 52.2 59.8

PmoC308 PmoC CCTGTGTGCTGGCGATTCTGCT 22 62.3 59.1

Ib453 Type I b (M.thermus – M.coccus – M.caldum and related) GGCAGCTACCTGTTCACCGC 20 65.0 61.7

Ib559 Type I b (M.thermus – M.coccus – M.caldum and related) GGCATGCTGATGTCGATTGCCG 22 59.1 62.5

Type II
methanotrophs

McyB304 M.cystis B (parvus/echinoides/strain M) CGTTTTCGCGGCTCTGGGC 19 68.4 62.7

Mcy255 M.cystis B (parvus/echinoides/strain M) GGCGTCGCAGGCTTTCTGG 19 68.4 62.3

Mcy459 Methylocystis GTGATCACGGCGATTGTTGGTTC 23 52.2 60.2

Mcy264 Methylocystis CAGGCGTTCTGGTGGGTGAA 20 60.0 61.0

Mcy270 Methylocystis TTCTGGTGGGTGAACTTCCGTCT 23 52.2 61.8

Mcy413 Methylocystis TTCCGGCGATCTGGCTTGACG 21 61.9 63.2

Mcy522 Methlocystis A + peat clones GGCGATTGCGGCGTTCCA 18 66.7 62.3

Mcy233 Methylocystis ATTCTCGGCGTGACCTTCTGC 21 57.1 60.9

McyM309 M.cystis strain M and related GGTTCTGGGCCTGATGATCGG 21 61.9 61.0

Peat264 peat clones GGCGTTTTTCTGGGTCAACTTCC 23 52.2 60.3

MsS314 Methylosinus sporium GGTTCTGGGTCTGCTCATCGG 21 61.9 60.8

MsS475 Methylosinus sporium TGGTCGGCGCCCTGGGCT 18 77.8 68.3

Msi263
Methylosinus sporium + 1 M.sinus trichosporium

subclaster
GGCGTTCCTGTGGGAGAACTTC 22 59.1 61.2
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Msi423 Methylosinus CTGTGGCTGGACATCATCCTGC 22 59.1 61.4

MsT214 Methylosinus trichosporium OB3b and related TGGCCGACCGTGGTTCCG 18 72.2 63.5

MsT343 Methylosinus trichosporium OB3b and related TCAACCGCTACTGCAACTTCTGG 23 52.2 60.9

MM_MsT343
Methylosinus trichosporium OB3b and related – MM

control probe!
TCAACCGCTACTTCAACTTCTGG 23 47.8 58.5

Msi520 Methylosinus trichosporium GCGATCGCGGCTCTGCA 17 70.6 61.6

Msi269 Methylosinus trichosporium TCTTCTGGGAGAACTTCAAGCTGC 24 50.0 60.6

Msi294 Methylosinus GTTCGGCGCGACCTTCGC 18 72.2 62.5

ARC2-518
Deep branching type II clade ARC2 – Methylosinus

trichosporium 15-084 group
GGCCGGCGATTGGTCAGTATCA 22 59.1 61.7

Msi232
M.sinus + most M.cystis – considered as additional type

II probe
ATCCTGGGCGTGACCTTCGC 20 65.0 63.3

II509 Type II CGAACAACTGGCCGGCGAT 19 63.2 61.7

II630 Type II CATGGTCGAGCGCGGCAC 18 72.2 62.4

Novel pmoA of type
II methanotrophs

Alp8-468 Type II novel pmoA, Alpine cluster Alp#8 CGCGCTCCTTGGCTCGTTGG 20 70.0 64.0

xb6-539
Novel pmoA copy of type II and related environmental

clones
AGGCCGCCGAGGTCGAC 17 76.5 63.0

LP21-190
Novel pmoA copy of type II and related environmental

clones
ATCGACTTCAAGGATCGCCG 20 55.0 58.2

LP21-260
Novel pmoA copy of type II and related environmental

clones
CGCAGTCCTTCTTCTGGACG 20 60.0 58.6

NMcy1-247 Novel pmoA copy of M.cystis #1 TCGACATCGTGCTGATGATCTCGG 24 54.2 62.1

NMsi1-469 Novel pmoA copy of M.sinus GCGCTGGTCGGCTCCATGG 19 73.7 64.3
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NMcy2-262 Novel pmoA copy of M.cystis #2 CAGTCCTTCTTCTGGCAGAAGTTCC 25 52.0 60.9

LP21-436 Mcy + Msi novel pmoA #1 groups GTGCTGATGATGTCGGGCAGCTGGC 25 64.0 66.1

NMsiT-271 Novel pmoA copy of M.sinus trichpsporium AGCGCTTCCGTCTGCCGAT 19 63.2 62.9

LP21-232
Novel pmoA copy of type II and related environmental

clones
ATCGTCGCCATGTGCTTCGC 20 60.0 61.9

RA14 cluster RA14-299 RA14 related clones GCGCGACGTTCCTTTGTGTC 20 60.0 59.5

RA14-594 RA14 related clones CCACAACGTTCGTACCTCGA 20 55.0 57.9

RA14-591 RA14 related clones GGCTTCCACAACGTTCGTACCT 22 54.5 60.9

Watershed cluster Wsh1-566 Watershed + flooded upland cluster 1 GCTCATGAGCTTGGCCGACATC 22 59.1 61.8

Wsh2-491 Watershed + flooded upland cluster 2 TCATTTGGCCAACCTCTCTCATTCC 25 48.0 60.9

Wsh2-450 Watershed + flooded upland cluster 2 CAAGAGCTGGATCATCACGATG 22 50.0 56.8

Methylocapsa
acidiphila

B2rel251 Methylocapsa-related clones CCGCCGCGGCCCAGTATTA 19 68.4 63.4

B2-400 Methylocapsa ACCTCTTTGGTCCCGGCTGC 20 65.0 63.4

B2-261 Methylocapsa TCAGGCCTATTTCTGGGAAAGCT 23 47.8 58.3

B2all343 Methylocapsa and related clones AACCGCTACACCAATTTCTGGGG 23 52.2 61.2

B2all341 Methylocapsa and related clones TCAACCGCTACACCAATTTCTGGG 24 50.0 61.1

Universal
methanotrophs

mtrof173 Universal GGbGACTGGGACTTCTGG 18 66.7 57.4

mtrof362-I Methanotrophs TGGGGCTGGACCTACTTCC 19 63.2 59.5

mtrof661 Methanotrophs GGTAARGACGTTGCKCCGG 19 63.2 60.4

mtrof662-I Methanotrophs GGTAAGGACGTTGCGCCGG 19 68.4 61.9

mtrof656 Methanotrophs ACCTTCGGTAAGGACGT 17 52.9 53.2



Appendices

237

Ammonia-oxidising
bacteria

NmNc533 Nitrosomonas – Nitrosococcus CAACCCATTTGCCAATCGTTGTAG 24 45.8 58.6

Nsm_eut381 Nitrosomonas eutropha CCACTCAATTTTGTAACCCCAGGTAT 26 42.3 59.0

PS5-226 Nitrosomonas – Nitrosococcus-related clones ACCCCGATTGTTGGGATGATGTA 23 47.8 59.9

Pl6-306 Nitrosomonas – Nitrosococcus-related clones GGCACTCTGTATCGTATGCCTGTTAG 26 50.0 60.5

NsNv207 Nitrosospira – Nitrosovibrio TCAATGGTGGCCGGTGG 17 64.7 58.5

NsNv363 Nitrosospira – Nitrosovibrio TACTGGTGGTCGCACTACCC 20 60.0 59.6

SV308 Svalbard clade TGAGCATCTCTGGGCTTGTCGT 22 54.5 60.7

SVrel583 Svalbard clade and related TACATGGGATTCACATTTGTGAGGAC 26 42.3 57.0

Nit_rel471 AOB-related clones/probably methanotrophs CGTTCGCGATGATGTTTGGTCC 22 54.5 60.1

Sed585 Ssedi#1 GGGCATTCGCGATGATGTTTTATCCGA 27 48.1 61.2

Sed422 Ssedi#1 and related TGATCCTAGACTGCACCCTGTTG 23 52.2 58.5

Nit_rel223 AOB-related clones/probably methanotrophs GTCACACCGATCGTAGAGGT 20 55.0 56.9

Nit_rel417 Arctic soil related #1, subgroup CGCGTTGATCTTTGATTGCACCCTGTT 27 48.1 61.8

Nit_rel419 Arctic soil related #1, subgroup CGTTGATCCTTGATTGCACCCTGTT 25 48.0 59.8

Nit_rel526 JRC#1+CCd#1 groups GCCATCAACCATTGGTTGCGGA 22 54.5 60.8

Nit_rel652 Arctic soil MOB CGTACATTCGGTGGTCACACTG 22 54.5 57.9

a Numbers at the end of the probe names refer to their relative position on the Methylococcus capsulatus (Bath) pmoA gene.
b sequences are of the sense strand.
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Appendix Table 0.2: Taguchi orthogonal array selector.

The subscript number next to the letter L corresponds to the number of experiments required. For example, a L9

(34) array is capable to examine 4 factors at 3 levels each by performing 9 experiments instead of 81 (34).

Number of factors

3 4 5 6 7 8 9

N
u

m
b

er
o

f
le

v
el

s

2 L4 L8 L8 L8 L8 L12 L12

3 L9 L9 L18 L18 L18 L18 L27

5 L25 L25 L25 L25 L50 L50 L50

Appendix Table 0.3: Summary of the characteristics of the three primer sets used for the detection of
aerobic methanotrophs.

Primer set for pmoA genes

Primer
conditions

pmoA189F/
pmoA682R

pmoA189F/
pmoA661R

pmoA189F/
pmoA650R

Primer sequence
GGNGACTGGGACTTCTGG/
GAASGCNGAGAAGAASGC

GGNGACTGGGACTTCTGG/
CCGGMGCAACGTCYTTACC

GGNGACTGGGACTTCTGG/
ACGTCCTTACCGAAGGT

Primer length
(bp) a

18
18

18
19

18
17

GC content (%) a 63.9
58.4

63.9
53.2

63.9
52.9

Melting temp.
(ºC) a,b

61.2/62.5/64.5
60.3/61.6/63.6

61.2/62.5/64.5
63.0/65.1/67.7 ºC

61.2/62.5/64.5
60.1

Mean Tm (ºC) c 62 64 61

Fragment size
(bp)

542 513 500

Reference Holmes et al. (1995) Costello & Lidstrom (1999) Bourne et al. (2001)

a Characteristics calculated using the OligoAnalyzer tool from the Integrated DNA technologies website at
www.idtdna.com.
b Values are respectively minimum/mean/maximum Tm.
c Calculated as the average of the mean Tm of each primer.
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Appendix Table 0.4: Taguchi orthogonal array L18 for the optimisation of six components of the PCR
master mix, each at three concentrations (A, B and C).

Factor

Experiment BSA * MgCl2 dNTPs Enzyme Primer DNA template

1 A A A A A A

2 A A B B B B

3 A A C C C C

4 A B A A B B

5 A B B B C C

6 A B C C A A

7 A C A B A C

8 A C B C B A

9 A C C A C B

10 B A A C C B

11 B A B A A C

12 B A C B B A

13 B B A B C A

14 B B B C A B

15 B B C A B C

16 B C A C B C

17 B C B B C A

18 B C C A A B

* Only two concentrations of BSA were tested. The letters A, B and C can also be replaced by the numerical
values found in Table 3.6.
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Appendix Table 0.5: Cycling parameters of the original basic PCR and optimised TD PCR for
amplification of the pmoA genes.

Cycle step Original basic PCR Optimised TD PCR

Initial denaturation time (s) 300 420

Initial denaturation temperature (°C) 95 95

TD denaturation time (s) 60 60

TD denaturation temperature (°C) 94 94

TD annealing time (s) 60 90

TD (starting) annealing temperature (°C) 60 65

TD extension time (s) 60 60

TD extension temperature (°C) 72 72

Temperature decrement (°C/cycle) - 0.8

TD number of cycles 30 15

Post-TD denaturation time (s) - 60

Post-TD denaturation temperature (°C) - 94

Post-TD annealing time (s) - 90

Final TD annealing temperature (°C)
or Post-TD annealing temperature (°C)

- 53 *

Post-TD extension time (s) - 60

Post-TD extension temperature (°C) - 72

Post-TD number of cycles - 20

Final extension time (s) 600 600

Final extension temperature (°C) 72 72

* The post-TD annealing temperature for the TD programme was calculated based on a TD (starting) annealing
temperature of 65°C and a temperature decrement of 0.8°C/cycle for 15 cycles.
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Appendix Figure 0.1: Relative incorporation of 13C (incubation with ~50 ppm of 13C-CH4) within the
PLFAs extracted from soils under the shrublands (Turangi) and native forest (Puruki).

The bars represent the PLFA abundance. Error bars are S.E.M.
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Appendix Table 0.6: 16S rRNA clones of type II methanotrophs from the soils under shrublands (Turangi) and native forest (Puruki).

Clones were matched against the GenBank database.

Site Clone AC Gene Match Total (%)

Turangi

c1Tur GU731305.1 Bacterium enrichment culture clone heteroC61_4W 16S ribosomal RNA gene, partial sequence 514 519 99

c2Tur DQ823224.1 Uncultured bacterium clone ORCA-17N121 16S ribosomal RNA gene, partial sequence 518 522 99

c3Tur EU459446.1 Uncultured bacterium clone CAP_aah97c04 16S ribosomal RNA gene, partial sequence 476 520 91

c4Tur GU205291.1 Uncultured alpha proteobacterium clone RSC_CP2A02 16S ribosomal RNA gene, partial sequence 513 518 99

c5Tur DQ977627.1 Uncultured bacterium clone HC_0-5#5 16S ribosomal RNA gene, partial sequence 518 519 99

c6Tur DQ823224.1 Uncultured bacterium clone ORCA-17N121 16S ribosomal RNA gene, partial sequence 520 522 99

c7Tur GQ918782.1 Uncultured soil bacterium clone 19_45KE10 16S ribosomal RNA gene, partial sequence 517 521 99

c8Tur AM992777.1 Uncultured bacterium partial 16S rRNA gene, clone QL4-6 511 518 98

c9Tur EF018692.1 Uncultured Hyphomicrobiaceae bacterium clone Amb_16S_985 16S ribosomal RNA gene, partial seq. 517 523 98

c10Tur EU449617.1 Uncultured Sphingomonadaceae bacterium clone Plot4-2H12 16S ribosomal RNA gene, partial sequence 515 519 99

c11Tur NR_025596.1 Methylocella tundrae strain T4 16S ribosomal RNA, partial sequence 518 522 99

c12Tur EF212393.1 Uncultured bacterium clone RCL_RII_28 16S ribosomal RNA gene, partial sequence 508 521 97

c13Tur GU731305.1 Bacterium enrichment culture clone heteroC61_4W 16S ribosomal RNA gene, partial sequence 519 521 99

c14Tur EF019191.1 Uncultured Hyphomicrobiaceae bacterium clone Amb_16S_1862 16S ribosomal RNA gene, partial seq. 515 520 99

c15Tur DQ823224.1 Uncultured bacterium clone ORCA-17N121 16S ribosomal RNA gene, partial sequence 521 522 99

Puruki

c1Pur AM162434.1 Uncultured bacterium partial 16S rRNA gene, clone B112 505 520 97

c2Pur AM085995.1 Phyllobacterium sp. STM1417 partial 16S rRNA gene 515 518 99

c3Pur FJ024546.1 Uncultured bacterium clone U000130368 16S ribosomal RNA gene, partial sequence 480 491 97

c4Pur CP001280.1 Methylocella silvestris BL2, complete genome 517 522 99

c5Pur EF019169.1 Uncultured Methylocystaceae bacterium clone Amb_16S_1821 16S ribosomal RNA gene, partial seq. 512 522 98

c6Pur GU731305.1 Bacterium enrichment culture clone heteroC61_4W 16S ribosomal RNA gene, partial sequence 519 521 99

c8Pur AY913613.1 Uncultured forest soil bacterium clone DUNssu474 16S ribosomal RNA gene, partial sequence 511 516 99

c9Pur EU445211.1 Uncultured bacterium clone R26 16S ribosomal RNA gene, partial sequence 507 519 97

c10Pur FM253573.1 Uncultured alpha proteobacterium 16S rRNA gene, clone A10-1 510 523 97

c11Pur AM180661.1 Uncultured bacterium partial 16S rRNA gene, isolate 4pt 512 521 98

c12Pur EF212388.1 Uncultured bacterium clone RCL_RII_10 16S ribosomal RNA gene, partial sequence 517 521 99

c14Pur GU393529.1 Uncultured bacterium clone NPR-T7-26 16S ribosomal RNA gene, partial sequence 511 514 99

c15Pur EU445211.1 Uncultured bacterium clone R26 16S ribosomal RNA gene, partial sequence 505 517 97

c16Pur GQ402766.1 Uncultured bacterium clone PW362 16S ribosomal RNA gene, partial sequence 512 521 98
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Appendix Table 0.7: Relative abundance of the most abundant T-RFs after digestion of pmoA with HhaI
(Bad à Cheo, n=4).

The data are means ± S.E.M. of each season for each habitat. Within each column, statistical differences between
seasons within each habitat are indicated by different Roman letters (a, b), while Greek letters (α, β) indicate 
statistical differences between habitats, according to multiple pairwise comparison (P<0.05).

Habitat Season
Terminal restriction fragment relative abundance (%)

T-RF 32 T-RF 37 T-RF 81 T-RF 129 T-RF 266

Bog

Autumn 17±6

a α 

2.7±
2.37

a α 

30±6

a α

30±3

a α 

4.5±
1.63

a

α 

Spring 17±3
4.0±
1.21

33±5 25±2
9.2±
1.34

ab

Summer 19±2
4.3±
2.04

26±6 28±7 17±10 b

Winter 17±3
1.9±
1.20

34±7 33±6
0.35±
0.35

a

Young Pine

Autumn 12±4

a α 

0

a β 

31±8

a α

34±6

a α 

0

a β 

Spring 15±7 0 48±12 29±7
1.9±
1.17

Summer 23±8 0 38±5 36±3 0

Winter 34±7 0 35±5 19±5
7.5±
3.56
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Appendix Table 0.8: Relative abundance of the most abundant T-RFs after digestion of pmoA with MspI
(Bad à Cheo, n=4).

The data are means ± S.E.M. of each season for each habitat. Within each column, statistical differences between
seasons within each habitat are indicated by different Roman letters (a, b), while Greek letters (α, β) indicate 
statistical differences between habitats, according to multiple pairwise comparison (P<0.05).

Habitat Season
Terminal restriction fragment relative abundance (%)

T-RF 196 T-RF 242 T-RF 293 T-RF 444 T-RF 499

Bog

Autumn
2.9±
1.46

a α 

19±5 ab

α 

3.2±
1.09

ab

α 

3.6±
1.36

a α 

64±9

a α 

Spring
2.6±
0.60

11±2 ab
8.4±
1.20

ab
2.0±
0.43

70±5

Summer
4.9±
2.62

9±2 a 12±7 b
2.5±
0.60

61±8

Winter 0 23±3 b 0 a
4.0±
0.95

62±7

Young Pine

Autumn 0

a β 

11±2

a β 

0

a β 

1.5±
0.53

a β 

85±3

a β 

Spring 0 10±1
1.7±
1.04

2.5±
1.08

84±2

Summer 0
8.4±
2.50

0 0 90±2

Winter
1.6±
0.97

8.2±
1.14

6.0±
2.75

0.90±
0.51

81±5
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Appendix Table 0.9: Relative abundance of the most abundant T-RFs after digestion of pmoA with HhaI (Glensaugh, n=4).

The data are means ± S.E.M. of each season for each habitat. Within each column, statistical differences between seasons within each habitat are indicated by different
Roman letters (a, b), while Greek letters (α, β) indicate statistical differences between habitats, according to multiple pairwise comparison (P<0.05).

Habitat Season

Terminal restriction fragment relative abundance (%)

T-RF 32 T-RF 81 T-RF 128 T-RF 134 T-RF 179 T-RF 200 T-RF 252

Grassland

Autumn 58±21

a α 

12±12

a α 

15±8

a α 

0

a α 

0 a

α 

0 a

α 

0

a α 

Spring 51±6
1.8±
1.75

8.7±
3.26

0
7.6±
2.75

b
7.4±
2.62

b 0

Summer 74±21 0
3.4±
3.40

0 0 a 0 a 0

Winter 62±10
2.2±
2.16

8.7±
3.82

0
7.4±
2.95

b
8.0±
3.12

b 0

Young Pine

Autumn 75±8

a α 

2.7±
2.73

a α 

9.4±
1.33

a α 

5.2±
3.47

a β 

0

a β 

0

a β 

5.8±
3.86

a β 

Spring 65±25 0
8.2±
4.08

1.2±
1.20

0 0
1.8±
1.81

Summer 69±4 0 10±2
8.6±
1.53

0 0 12±2

Winter 74±8 0 16±4
4.6±
4.64

0 0
5.4±
5.36
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Appendix Table 0.10: Relative abundance of the most abundant T-RFs after digestion of pmoA with MspI
(Glensaugh, n=4).

The data are means ± S.E.M. of each season for each habitat. Within each column, statistical differences
between seasons within each habitat are indicated by different Roman letters (a, b), while Greek letters (α, β) 
indicate statistical differences between habitats, according to multiple pairwise comparison (P<0.05).

Habitat Season

Terminal restriction fragment relative abundance (%)

T-RF 25 T-RF 76 T-RF 229 T-RF 403 T-RF 499

Grassland

Autumn 18±10 ab

α 

0

a α 

0

a α 

0

a α 

69±9

a α 

Spring 12±1 b 0
1.6±
1.62

0 82±3

Summer
8.2±
4.80

b 0 0 0 92±5

Winter 36±8 a
4.6±
2.66

0 0 56±11

Young Pine

Autumn
9.7±
1.36

a β 

1.9±
0.71

a α 

5.3±
3.93

a α 

5.0±
3.57

a β 

78±2

a α 

Spring
3.5±
2.00

1.4±
0.79

0.4±
0.43

0.9±
0.90

94±4

Summer
8.6±
1.16

3.4±
0.10

1.4±
1.35

8.6±
1.47

78±1

Winter 11±2
0.9±
0.94

6.7±
3.31

9.8±
6.63

69±8
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Appendix Figure 0.2: T-RFLP profiles of the methanotrophs (pmoA) for each season at Bad à Cheo.

The total relative abundance of the T-RFs (n=4) generated by HhaI or MspI is accounted for separately. The
letter G (green) represents the colour of the dye.
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Appendix Figure 0.3: T-RFLP profiles of the methanotrophs (pmoA) for each season in Glensaugh.

The total relative abundance of the T-RFs (n=4) generated by HhaI or MspI is accounted for separately. The
letter G (green) represents the colour of the dye.
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Appendix Table 0.11: Effects of afforestation and seasonal changes on the methanotrophic community at
Bad à Cheo and Glensaugh (digestion of 16S rRNA of type II methanotrophs with MboI and MspI).

The data are P values corresponding to the first four IPC scores of the AMMI analyses, and were obtained by
nested ANOVA and MANOVA. Within each column, statistical differences between seasons within each
habitat are indicated by different Roman letters (a, b), while Greek letters (α, β, γ) indicate statistical differences 
between habitats, according to multiple pairwise comparison (P<0.05).

IPC 1 IPC 2 IPC 3 IPC 4 MANOVA

Bad à Cheo

% variation 73.2 19.4 5.0 1.0

Habitat <0.001 <0.001 0.067 0.751 <0.001

Habitat/Season 0.682 0.002 0.034 0.273 0.014

Bog

Autumn

a α 

a

α a α a α
Spring b

Summer b

Winter a

Young Pine

Autumn

a α 

a

β 

a

α a α
Spring b a

Summer b b

Winter a a

Old Pine

Autumn

a β a γ 

a

α a α
Spring b

Summer b

Winter a

IPC 1 IPC 2 IPC 3 IPC 4 MANOVA

Glensaugh

% variation 55.1 22.8 13.4 4.2

Habitat <0.001 0.168 0.374 0.568 <0.001

Habitat/Season <0.001 <0.001 0.031 0.009 <0.001

Grassland

Autumn a

α 

a

α a α 

a

α   
Spring b b a

Summer b b b

Winter b b a

Young Pine

Autumn a

β 

a

α 

a

α a α   
Spring b b ab

Summer a b b

Winter a a a
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Appendix Table 0.12: Effects of afforestation and seasonal changes on the methanotrophic community at
Bad à Cheo and Glensaugh (digestion of 16S rRNA of type I methanotrophs with HhaI and MspI).

The data are P values corresponding to the first four IPC scores of the AMMI analyses, and were obtained by
nested ANOVA and MANOVA. Within each column, statistical differences between seasons within each
habitat are indicated by different Roman letters (a, b, c), while Greek letters (α, β, γ) indicate statistical 
differences between habitats, according to multiple pairwise comparison (P<0.05).

IPC 1 IPC 2 IPC 3 IPC 4 MANOVA

Bad à Cheo

% variation 71.0 9.1 5.8 4.4

Habitat <0.001 <0.001 0.004 0.720 <0.001

Habitat/Season 0.063 0.006 0.012 0.007 <0.001

Bog

Autumn

a α 

ab

α 

a

α a α   
Spring a a

Summer ab a

Winter b b

Young Pine

Autumn

a α 

a

β a β a α   
Spring a

Summer b

Winter a

Old Pine

Autumn

a β 

ab

γ a α 

a

α 
Spring ab b

Summer a b

Winter b a

IPC 1 IPC 2 IPC 3 IPC 4 MANOVA

Glensaugh

% variation 41.2 17.6 15.2 8.1

Habitat <0.001 0.035 0.013 0.249 <0.001

Habitat/Season 0.860 0.550 0.321 0.002 0.063

Grassland

Autumn

a α a α a α 

a

α   
Spring a

Summer b

Winter a

Young Pine

Autumn

a β a β a β 

a

α   
Spring b

Summer c

Winter b
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Appendix Figure 0.4: Relationship between net CH4 flux and methanotrophic community structure at
Glensaugh.

The data points represent the IPCA 2 scores displayed in Figure 5.3 and the net CH4 fluxes from Figure 5.1.
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Appendix Table 0.13: Relative abundance of the most abundant T-RFs after digestion of pmoA with HhaI
(Craggan, n=4).

The data are means ± S.E.M. of each season for each habitat. Within each column, statistical differences
between seasons within each habitat are indicated by different Roman letters (a, b, c), while Greek letters (α, β) 
indicate statistical differences between habitats, according to multiple pairwise comparison (P<0.05).

Habitat Season
Terminal restriction fragment relative abundance (%)

T-RF 32 T-RF 50 T-RF 73 T-RF 81 T-RF 128 T-RF 191

Moor

Autumn 14±3

a α 

8.9±
1.35

a α 

4.4±
2.81

a α 

25±3

a αβ 

19±4

a α 

18±4 a

α 

Spring 29±0 23±23 0
35±
35

0 0 b

Summer 19±2 10±6
3.9±
3.9

59±7
3.7±
2.16

1.6±
1.61

b

Winter 15±2 13±7
8.4±
4.02

25±8 14±4 11±5 c

Young
Birch

Autumn 19±7

a β 

7.0±
3.25

a αβ 

0

a β 

67±2

a α 

4.6±
2.67

a β 

2.0±
2.04

a β 

Spring 42±8 12±4 0 43±8
3.0±
2.95

0

Summer 46±22
5.5±
3.25

0 49±19 0 0

Winter 81±15 0 0 16±16
2.7±
2.71

0

Old
Birch

Autumn 64±19

a β 

1.64±
1.64

a β 

0

a β 

13±8

a β 

4.2±
4.20

a αβ 

0

a β 

Spring 37±18
1.35±
1.35

0 25±16
8.4±
8.40

0

Summer 65±5 0 0 12±10 13±6 0

Winter 68±22 0 0 17±11
6.4±
3.71

0
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Appendix Table 0.14: Relative abundance of the most abundant T-RFs after digestion of pmoA with MspI
(Craggan, n=4).

The data are means ± S.E.M. of each season for each habitat. Within each column, statistical differences
between seasons within each habitat are indicated by different Roman letters (a, b), while Greek letters (α, β) 
indicate statistical differences between habitats, according to multiple pairwise comparison (P<0.05).

Habitat Season
Terminal restriction fragment relative abundance (%)

T-RF 25 T-RF 242 T-RF 314 T-RF 451 T-RF 499

Moor

Autumn
2.1±
2.11

a α 

13±2

a α 

18±4 a

α 

17±3

a α 

30±6

a α 

Spring 0 11±11 0 b 33±33 39±39

Summer 0 18±3
1.3±
1.33

b 18±10 60±7

Winter
1.8±
1.83

12±4
8.1±
3.36

b 23±8 39±10

Young Birch

Autumn 0

a α 

13±1

a α 

2.2±
2.21

a β 

12±3

a αβ 

72±3

a β 

Spring
3.7±
2.11

4.4±
2.55

0 19±4 73±4

Summer
6.0±
3.71

9.3±
5.78

0
7.8±
4.51

77±7

Winter
8.5±
4.65

2.9±
2.85

0
2.3±
2.26

87±3

Old Birch

Autumn 23±5

a β 

2.1±
2.06

a α 

0

a β 

2.1±
2.13

a β 

72±6

a β 

Spring 26±6 14±10 0
1.7±
1.65

52±10

Summer 17±3
4.0±
4.02

0
2.3±
1.14

75±7

Winter 11±6
8.0±
6.26

0
4.2±
3.55

77±8
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Appendix Table 0.15: Relative abundance of the most abundant T-RFs after digestion of pmoA with HhaI
(Tulchan, n=4).

The data are means ± S.E.M. of each season for each habitat. Within each column, statistical differences
between seasons within each habitat are indicated by different Roman letters (a, b), while Greek letters (α, β) 
indicate statistical differences between habitats, according to multiple pairwise comparison (P<0.05).

Habitat Season

Terminal restriction fragment relative abundance (%)

T-RF 32 T-RF 81 T-RF 129 T-RF 190 T-RF 247 T-RF 359

Moor

Autumn 10±5

a α 

58±8

a α 

13±2

a α 

4.5±
4.51

a α 

0.51±
0.51

a αβ 

0

a α 

Spring 21±12 53±18
9.8±
3.40

2.1±
1.74

2.3±
2.04

1.9±
1.91

Summer
6.5±
1.79

73±6 14±6
0.58±
0.58

0.34±
0.34

0

Winter 14±2 38±6 18±3 13±6
1.2±
1.23

0

Young
Birch

Autumn 70±21

a β 

27±19

a β 

2.8±
1.62

a β 

0

a β 

0

a α 

0

a α 

Spring 70±20 22±15
4.5±
3.03

0 0 0

Summer 98±1 0
1.9±
1.00

0 0 0

Winter 95±3
0.94±
0.94

1.4±
1.39

0 0 0

Old
Birch

Autumn 58±13

a β 

7.7±
7.65

a

β 

12±6

a β 

0

a β 

3.4±
1.73

a β 

4.8±
3.10

a β 

Spring † 0 90 b 0 0 0 0

Summer 68±19
3.1±
3.07

a 12±6 0
4.2±
2.12

7.5±
4.49

Winter 73±11
5.3±
4.32

a 10±5 0
3.2±
2.29

5.1±
4.09

† Only one sample was available.
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Appendix Table 0.16: Relative abundance of the most abundant T-RFs after digestion of pmoA with MspI
(Tulchan, n=4).

The data are means ± S.E.M. of each season for each habitat. Within each column, statistical differences
between seasons within each habitat are indicated by different Roman letters (a, b), while Greek letters (α, β, γ) 
indicate statistical differences between habitats, according to multiple pairwise comparison (P<0.05).

Habitat Season

Terminal restriction fragment relative abundance (%)

T-RF 25 T-RF 242 T-RF 314 T-RF 444 T-RF 451 T-RF 499

Moor

Autumn 0

a α 

33±7

a α 

2.1±
2.12

a

α 

4.8±
1.91

a α 

0 a

α 

43±11

a α 

Spring
3.1±
3.12

15±6
1.7±
1.35

a
3.7±
1.28

8.1±
3.03

b 63±7

Summer 0 17±2
0.8±
0.81

a
3.4±
0.54

1.8±
1.11

ab 74±2

Winter
2.2±
2.15

19±1
8.4±
2.54

b
3.3±
0.33

0.70±
0.70

ab 47±12

Young
Birch

Autumn
8.7±
3.02

a β 

7.3±
5.83

a β 

0

a β 

0.9±
0.89

a β 

1.0±
1.02

a α 

81±4

a β 

Spring
7.0±
2.38

2.9±
1.98

0.4±
0.37

1.1±
1.10

2.1±
2.14

85±3

Summer
8.5±
0.74

0 0 0 0 89±1

Winter 12±2 0 0 0
2.2±
1.24

86±2

Old
Birch

Autumn 18±7

a γ 

4.0±
4.01

a

β 

0

a β 

0 a

β 

2.0±
1.24

a α 

59±12

a α 

Spring † 0 39 b 0 11 b 0 50

Summer 18±13
1.0±
1.01

a 0 0 a 0 75±16

Winter 26±4
1.7±
1.71

a 0 0 a 0 67±7

† Only one sample was available.
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Appendix Figure 0.5: T-RFLP profiles of the methanotrophs (pmoA) for each season at Craggan.

The total relative abundance of the T-RFs (n=4) generated by HhaI or MspI is accounted for separately. The
letter G (green) represents the colour of the dye.
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Appendix Figure 0.6: T-RFLP profiles of the methanotrophs (pmoA) for each season in Tulchan.

The total relative abundance of the T-RFs (n=4) generated by HhaI or MspI is accounted for separately. The
letter G (green) represents the colour of the dye.
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Appendix Table 0.17: Effects of birch invasion and seasonal changes on the methanotrophic community
at Craggan and Tulchan (16S rRNA of type II methanotrophs – MboI and MspI).

The data are P values corresponding to the first four IPC scores of the AMMI analyses, and were obtained by
nested ANOVA and MANOVA. Within each column, statistical differences between seasons within each
habitat are indicated by different Roman letters (a, b, c), while Greek letters (α, β) indicate statistical differences 
between habitats, according to multiple pairwise comparison (P<0.05).

IPC 1 IPC 2 IPC 3 IPC 4 MANOVA

Craggan

% variation 56.0 25.3 7.8 4.5

Habitat <0.001 <0.001 0.004 0.162 <0.001

Habitat/Season <0.001 0.066 0.051 0.046 <0.001

Moor

Autumn

a α a α a α a α
Spring

Summer

Winter

Young Birch

Autumn a

β a α a β a α
Spring b

Summer c

Winter a

Old Birch

Autumn

a β a β a αβ 

a

α
Spring b

Summer b

Winter a

IPC 1 IPC 2 IPC 3 IPC 4 MANOVA

Tulchan

% variation 57.0 20.9 8.7 5.9

Habitat <0.001 0.002 0.526 0.039 <0.001

Habitat/Season 0.001 0.115 0.032 0.078 <0.001

Moor

Autumn

a α a α a α a α   
Spring

Summer

Winter

Young Birch

Autumn a

β a β 

ab

α a β   
Spring ab ab

Summer b a

Winter ab b

Old Birch

Autumn a

β a α a α a α   
Spring b

Summer ab

Winter a
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Appendix Table 0.18: Effects of birch invasion and seasonal changes on the methanotrophic community
at Craggan and Tulchan (16S rRNA of type I methanotrophs – HhaI and MspI).

The data are P values corresponding to the first four IPC scores of the AMMI analyses, and were obtained by
nested ANOVA and MANOVA. Within each column, statistical differences between seasons within each
habitat are indicated by different Roman letters (a, b), while Greek letters (α, β, γ) indicate statistical differences 
between habitats, according to multiple pairwise comparison (P<0.05).

IPC 1 IPC 2 IPC 3 IPC 4 MANOVA

Craggan

% variation 35.7 18.7 11.0 9.9

Habitat <0.001 <0.001 0.427 <0.001 <0.001

Habitat/Season 0.010 0.866 <0.001 0.430 0.006

Moor

Autumn a

α a α 

a

α a α   
Spring ab b

Summer b ab

Winter ab ab

Young Birch

Autumn

a β a β a α a β   
Spring

Summer

Winter

Old Birch

Autumn

a γ a β 

ab

α a β 
Spring a

Summer ab

Winter b

IPC 1 IPC 2 IPC 3 IPC 4 MANOVA

Tulchan

% variation 44.6 22.0 9.3 7.7

Habitat <0.001 0.001 0.009 0.003 <0.001

Habitat/Season 0.008 0.057 0.202 0.304 <0.001

Moor

Autumn

a α a α a α a α   
Spring

Summer

Winter

Young Birch

Autumn

a β a β a β a β   
Spring

Summer

Winter

Old Birch

Autumn a

α a β a β a α   
Spring b

Summer b

Winter a
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Appendix Figure 0.7: Relationship between net CH4 flux and methanotrophic community structure at
Craggan.

The data points represent the IPCA 1 scores displayed in Figure 6.3 and the net CH4 fluxes from Figure 6.1.
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