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A teraryl monomer containing a 1,4-dithiin-furan central unit has been synthesised and characterised

by single crystal X-ray crystallography. The di(thienyl)furan monomer 11 was successfully polymerised

electrochemically and shown to possess a lower electrochemical band gap than its terthiophene

analogue (1.97 eV cf. 2.11 eV). The electrochromic properties of this polymer proved to be superior to

PEDOT, with fast switching and reversible colour transformation at high colour contrast (CE ¼
212 cm2 C�1 cf. 183 cm2 C�1 for PEDOT at 95% optical switch).

Introduction

Over the past four decades, organic macromolecules with

extended p-conjugation have been employed in many applica-

tions such as optical displays,1,2 solar cells,3–5 organic field-effect

transistors,6,7 batteries8,9 and sensors.10 Organic electrochromic

materials offer key advantages over existing inorganic materials,

namely high colouration efficiency,11 enhanced stability, faster

response times, flexibility, a wider colour range and wide

absorption characteristics from UV to near IR.12–14 Electro-

chromic materials have the ability to undergo a reversible visible

switch upon electrochemical doping. During a redox process,

the applied potential breaks and rearranges p-bonds within the

material, causing a change in the electronic structure of the

molecule, which in turn affects the absorption characteristics of

the polymer.15,16 These smart materials have the potential to be

employed in many applications, such as anti-glare mirrors in

cars,12 smart windows,17,18 reusable labels,19 electrochromic

sunglasses,20 adaptive camouflage,21,22 near-IR telecommunica-

tion23 and displays.18,24

Electrochromic devices can be fabricated from a range of

materials, but conjugated polymers excel in the properties out-

lined above.2,18,25 These simple organic molecules can provide

exceptional materials for the fabrication of full-colour

electrochromic devices1,10,26 using various processes.27,28 The

optical and physical properties of organic materials can be fine-

tuned through structural modification, such as, the introduction

of various substituents; alkyl-chain side groups aid solubility,

whilst the presence of electron-withdrawing or donating groups

can alter the band gap.29,30 Polyheterocyclic polymers such as

polypyrrole,23 polythiophene,31,32 polyselenophene33–35 and their

derivatives have been extensively studied since they possess

chemical and electrical stability in both neutral and doped states.25

The electrical and optical properties of these polymers are highly

influenced by the change in electronegativity of the heteroatom.36

Polyfurans have not been intensively investigated as an elec-

trochromic material, despite possessing many similar character-

istics to thiophene.37–40 These furan derivatives are naturally

occurring materials and are readily biodegradable.41,42 Unfortu-

nately, furans are known to have a high oxidation potential (ca.

2 V), but with band gap engineering via the introduction of

electron-rich systems or extension of conjugation, this problem

can be overcome.43,44

Bendikov et al. have shown oligofurans to have increased

fluorescence, a higher HOMO, better packing, greater rigidity

and efficient processability compared to their thiophene

analogues.38,45,46 These oligofurans can be used as p-type semi-

conductors in OFETs, showing similar field effect mobilities to

the thiophene analogue,47 leading to the development of new

‘green’ organic semiconductors.48 Fr�echet et al. have been

pursuing this idea and recently revealed a bulk heterojunction

solar cell fabricated from furan-containing polymers and

PC71BM with a power conversion efficiency of 5%.42 The

incorporation of furan units into a conjugated backbone has

been shown to enhance the solubility of mixed thiophene–furan

oligomers compared to the all-thiophene analogues.49 Addi-

tionally, the morphological properties of the polymer would

differ due to the presence of the smaller, more electronegative

oxygen atom in place of the larger sulfur atom.43
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Recently, we reported two polymers, Poly1 50 and Poly2,51

which were structurally designed as electrochromic materials (see

Fig. 1). Poly1 bears a quinoxaline heterocycle fused to the central

thiophene ring of the repeat unit via a 1,4-dithiin bridge. This

polymer was found to have superior switching speeds than

poly(3,4-ethylenedioxythiophene) (PEDOT) (DT 44% optical

change in 1 s, cf. 2.2 s for PEDOT). The fast switching response

of Poly1 is a result of the non-planar nature of the repeat units,

facilitated by the boat conformation of the non-aromatic dithiin

rings.51 This suggests that the loosely packed polymer allows

efficient ingression/egression of ions throughout the film during

chemical redox processes and hence improves switching speeds.

It is anticipated that the marriage of furan and a dithiin ring

within a conjugated polymer would provide interesting chemical

and physical properties compared to the all-thiophene

analogue.51 This report describes a general synthetic route to

three novel furan monomer units, 7, 8 and 11, together with the

successful electropolymerisation of monomer 11 to form Poly3.

This polymer is studied further as an electrochromic material.

Results and discussion

Synthesis

Monomers 7, 8 and 11 were prepared according to Scheme 1.

Initially, cycloaddition of alkyne 1 52 with 1,3-dithiole-2,4,5-tri-

thione oligomer (DMIT) 2,53 using a literature-based method,54

was followed by reduction of the resulting aldehyde 3 to give

alcohol 4. The acid-catalysed cyclisation55 of the alcohol 4 gave

the furan derivative 5 in an 87% yield. Thione 5 was further

transchalcogenated into the corresponding carbonyl derivative 6

in high yield, which was subsequently converted to the dithiolate

and alkylated to give bis(methylthio)dithiino furan 7 or bis(h-

exylthio)dithiino furan 8. Compound 7 was further functional-

ised by bromination withN-bromosuccinimide and subsequently

used for Stille cross-coupling with stannylated thiophene 10 to

afford monomer 11 in 22% yield.

Absorption spectroscopy and electrochemistry of monomers

The electronic absorption spectra for the three monomers were

recorded in dichloromethane solution (see Table 1). As expected,

the absorption maxima for monomers 7 and 8 are similar

given their near identical structures (268 and 267 nm, respec-

tively). However, as anticipated the increase in conjugation

length to a teraryl unit in monomer 11 leads to a p–p* transition

at 342 nm.

In cyclic voltammetry (CV) experiments, the structurally

similar monomers 7 and 8 showed one quasi-reversible, anodic

oxidation peak at +0.55 and +0.65 V and a second irreversible

anodic oxidation peak at +0.91 and +0.98 V, respectively (see

Fig. 2 and Table 1). The CV of di(thienyl)furan monomer 11

revealed two anodic oxidation processes at +0.76 and +1.11 V

with the latter being irreversible. The electrochemical HOMO–

LUMO gaps of the monomers were calculated from the differ-

ence in the onset of the first oxidation and reduction peaks. The

increase in the electrochemical HOMO–LUMO gap of monomer

11 is unexpected in comparison to monomer 7 and 8 (2.98 V

compared to 2.42 V and 2.37 V respectively). All three monomers

retain similar HOMO levels whilst monomer 11 shows the

LUMO level to have moved towards vacuum. This rise in

LUMO of monomer 11 can be rationalised by the inductive

effect of the thiophene ring pushing electron density towards the

central furan core and thus making monomer 11 a poor electron

acceptor. The spectral and electrochemical properties of all three

monomers clearly reveal significant differences when comparing

their optical and electrochemical HOMO–LUMO gaps. It can be

hypothesised that the 1,4-dithiin ring side group shows some

reductive electroactivity that is independent from the heterocy-

clic core.50

Electropolymerisation

Electrochemical oxidative polymerisation of monomers 7 and 8

was unsuccessful despite continuously cycling over both redox

peaks and this is explained later. However, monomer 11 poly-

merised readily onto a carbon-working electrode during repeti-

tive cycling over the first oxidation peak. The growth trace is

displayed in Fig. 3. Once Poly3 was deposited on the carbon-

working electrode, it was dedoped to neutral by repetitive cycling

in a region of no electroactivity (�0.4 to +0.1 V), before its

electrochemistry was investigated in monomer-free acetonitrile

solution (see Fig. 4). When a polymeric species is formed the

conjugation length is increased, giving rise to a new lowerFig. 1 Structures of Poly1, Poly2 and Poly3.

Scheme 1 Synthetic route to furan-containing monomers 7, 8 and 11.
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oxidation peak. The oxidation of Poly3 exhibits a large broad

reversible wave at +0.63 V, compared to the all-thiophene

analogues Poly1 50 at +0.40 V and Poly2 51 at +0.60 V. This

broad redox wave could be due to the simultaneous oxidation of

the 1,4-dithiin and bithiophene units, which are both electro-

active. UV-Vis absorption of Poly3 revealed a significant bath-

ochromic shift compared to monomer 11 (474 nm for Poly3 cf.

342 nm for monomer 11, see Fig. 4), a result of the increased

effective conjugation length. The onset of the absorption edge for

the longest wavelength band is at 650 nm, giving an optical band

gap of 1.90 eV. This value corresponds closely to the electro-

chemical band gap of Poly3 obtained by cyclic voltammetry

(1.97 eV, see Table 2).

Interestingly, we have shown the furan-based Poly3 to have

both a lower electrochemical and optical band gap when

compared to its thiophene analogue Poly2 (see Table 2). Recent

reports by Bunz have demonstrated bithiophene rings to twist by

22.6� with respect to one another, whilst bifuran monomers were

found to be planar.38 Their study pointed to steric hindrance

between the larger sulfur atom and the 30-hydrogen of the

adjacent ring, which was not evident in bifuran due to the smaller

oxygen atoms.38 Additionally, the difference in electronegativity

and less aromatic character of the furan ring cf. thiophene

contributes to the narrower band gap of Poly3.

X-ray crystallography

The structure of monomer 11 was determined by single crystal

X-ray diffraction. In general, dithiin rings are known to adopt

a boat conformation, with the degree of bending in the ring

expressed as a folding along the S/S vector (see Fig. 5); the

hinge angle along the S/S vector is 137� and 133� for the two

independent molecules. Monomer 11 retains a high degree of

planarity between the adjacent thiophene units bound to the

furan core. Two molecular conformers are present within the

unit cell – one conformer shows both peripheral thiophene units

to be anti to the furan (torsion angles O1–C1–C9–S2 169(2)�,
O1–C4–C5–S1 176(2)�), forming close S/S intramolecular

contacts with the 1,4-dithiin ring on the furan (S2/S4 3.43, S1/
S3 3.33 �A). The other conformer within the unit cell exists with

one peripheral thiophene unit in the anti conformation with

respect to the furan (O1a–C4a–C5a–S11a ¼ �176(2)�,

Table 1 HOMO and LUMO values are calculated from the onset of the first peak of the corresponding redox wave and referenced to ferrocene, which
has a HOMO of �4.8 eV. Electronic absorption spectra all recorded in CH2Cl2

Monomer Eox1
a/Eox1

b (V) Eox2 (V) Ered (V) HOMO (eV) LUMO (eV)
HOMO �
LUMO (eV)

UV-Vis
lmax (nm)

Optical
gap (eV)

7 0.55c/0.48 0.91d �2.07 �5.34 �2.92 2.42 268 —
8 0.65c/0.57 0.98d �2.08 �5.28 �2.91 2.37 267 —
11 0.76c/0.67 1.11d �2.36 �5.43 �2.45 2.98 342 3.07

a Anodic peak. b Cathodic peak. c Quasi-reversible peak. d Irreversible peak.

Fig. 2 Cyclic voltammograms: (A) oxidations and (B) reductions of

monomers 7, 8, 11 in CH2Cl2 solution (glassy carbon working electrode,

silver wire pseudoreference, TBAPF6 as the supporting electrolyte (0.1

M), substrate concentration 10�4 M, scan rate 100 mV s�1). The data was

referenced to the Fc/Fc+ redox couple.

Fig. 3 Electrochemical growth of monomer 11 using a glassy carbon

working electrode, Ag wire pseudo-reference electrode, platinum counter

electrode, TBAPF6 as supporting electrolyte (0.1 M), substrate concen-

tration 10�4 M, oxidative voltage sweep ran from 0 to 1 V over 150 cycles.

The scan rate was 100 mV s�1.

This journal is ª The Royal Society of Chemistry 2012 Polym. Chem., 2012, 3, 2277–2286 | 2279
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S11a/S3a ¼ 3.39 �A) and the other to be either in the anti or cis

conformation in a 1 : 1 ratio (O1a–C1a–C9a–S2a ¼ 173(2)�,
O1a–C1a–C9a–S2a ¼ �7(3)�, S2a/S4a ¼ 3.35 �A for the anti

conformation). There is some sign of disorder between the cis

and trans conformation for the other thiophene rings but to

a much lesser degree and it was not modelled.

Theoretical calculations

The unsuccessful electropolymerisation of monomers 7 and 8

can be explained via molecular modelling calculations.

Computational calculations were performed using density

functional theory (DFT) at the B3LYP/6-31G* level

(Spartan’10) on monomer 7. The HOMO is situated predomi-

nantly over the dithiin ring, with a small contribution on the

furan ring (Fig. 6). The 1,4-dithiin ring is a better electron donor

than the furan fragment and is most likely to donate the first

electron upon oxidation. The LUMO resides across the four

sulfur atoms and two sp2 carbons between the heteroatoms.

Examination of the SOMO (the radical cation of monomer 7)

reveals that electron spin density is localised within the dithiin

ring. To initiate successful radical polymerisation of monomer 7

the system requires electron spin density on either the 2- or 5-

position of the furan ring. Thus, it would appear that successful

electropolymerisation of monomer 7 (or 8) does not occur at

potentials below that which would cause monomer decomposi-

tion (>2 V).

Spectroelectrochemistry

The UV-Vis spectroelectrochemical measurements of the

neutral Poly3 film deposited on an ITO glass substrate were

investigated in monomer-free acetonitrile solution with the same

electrolyte concentration as before (see Fig. 7). Spectroelec-

trochemical studies improve our understanding of transient

chemical species generated in situ during redox reactions

occurring at the electrode surface.56,57 The spectroelec-

trochemical plot shows the generation of new absorption waves

forming at +0.9 V in the wavelength region of 600–1100 nm

alongside the concomitant loss of intensity of the p–p* band at

474 nm. The optical transition observed at ca. 600 nm is

evidence of the formation of positively delocalised polaron

species within the polymer chain and, upon further oxidation,

a broader optical transition near 900–1100 nm represents the

Fig. 4 (A) Oxidation of Poly3 film after dedoping of polymer in MeCN

solution. The data is referenced to the Fc/Fc+ redox couple. The Eg gap

was calculated from the onset of the first peak of the corresponding redox

wave (reduction process not shown here) and referenced to ferrocene,

which has a HOMO of �4.8 eV. (B) Electronic absorption spectrum of

Poly3 deposited as a thin film on ITO glass.

Table 2 Electrochemical and absorption spectroscopy data for thin films of Poly3 compared to the analogous polymer Poly2 and Poly1

Polymer Eox1 (V) Eox2 (V) Ered (V) HOMO (eV) LUMO (eV) Eg (eV)
UV-Vis
lmax (nm)

Optical
gap (eV)

Poly150 +0.40 1.20 �1.87 — — 1.85 467 1.90
Poly251 +0.60 0.83 �1.93 �5.30 �3.19 2.11 450 2.00
Poly3 +0.63a/+0.22b — �2.14 �5.02 �3.05 1.97 474 1.90

a Broad quasi-reversible anodic peak. b Peak onset.

Fig. 5 View showing the crystal structure of one of the two independent

molecules of monomer 11, viewed along the a-axis.

2280 | Polym. Chem., 2012, 3, 2277–2286 This journal is ª The Royal Society of Chemistry 2012
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propagation of doubly charged bipolaron species.56 These

spinless bipolaron species are thermodynamically stable when

structurally manipulating the polymer chain from its aromatic

structure and adopting the quinoidal polymer form.56,58 The

bond length between neighbouring heterocycles is contracted

when in the quinoidal form, which allows efficient orbital

overlap and charge delocalisation.56,57 Additionally, the 1,4-

dithiin pendant groups of the conjugated polymer oxidise at

lower potentials as illustrated in cyclic voltammograms for

monomers 7, 8, 11 and Poly3 (see Fig. 2 and Fig. 4). However,

the oxidised 1,4-dithiin rings are not spectroscopically detected

due to the weak sulfur n–p* transitions. Fig. 7 (bottom), illus-

trates the spectro-electrochemical studies of Poly3 in a 2D plot

and clearly shows the formation of polarons and bipolarons

upon increasing potentials. At higher oxidation potentials (>1.4

V) the spectral profile differs and shows the formation of a new

absorption wave at ca. 400 nm. This signifies the polymer

morphology has changed and is possibly due to an over pop-

ulation of the bipolaron species, which increases the polymers

electrophilicity and susceptibility to nucleophilic attack by water

molecules/OH� ions or other nucleophilic impurities that may

be present in the investigating medium.58,59 Thus, it would result

in non-reversible formation of the polymer with shorter conju-

gation lengths. To overcome such issues, polymer films can be

encapsulated into devices or supported with a gel electrolyte

coating.57,60 Spectroelectrochemical studies have clearly illus-

trated Poly3 undergoing reversible redox changes at oxidation

potentials lower than 1.4 V with different optical responses from

visible to the NIR region.

Switching studies

The switching ability of Poly3 was studied by measuring the

wavelength at which the greatest absorbance change is experi-

enced when stimulated between two different potentials. The

potential switch from 0 to +1.3 V causes a change in the poly-

meric state from neutral to p-doped. The rate of change in

transmittance upon oxidation/reduction provides a direct indi-

cation of the switching ability of a material, an important

property for display industries. Poly3 was grown on ITO glass

and dedoped. The transmittance was monitored at 705 nm as the

potential was switched between 0 and +1.3 V (vs. Ag wire) using

Fig. 6 Top: HOMO, middle: LUMO and bottom: SOMO plots of

monomer 7.

Fig. 7 Top: 3D absorption spectroelectrochemical plot; bottom: 2D

absorption spectroelectrochemical plot of oxidation of Poly3 in aceto-

nitrile solvent.
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square wave potentiometry, as shown in Fig. 8. The switching

characteristics of the polymer were followed over cycles of 10, 5,

2.5, 1.25, 0.5, 0.25 s and the change in transmittance was 83.9,

79.8, 72.9, 62.4, 39.8 and 23.8%, respectively. One reason for this

fast optical change is the bent 1,4-dithiin ring conformation,

a feature of both Poly2 and Poly3, which distorts the p–p

stacking and creates an open morphology, thus allowing the

efficient flow of counterions into and out of the polymer film.51

However, Poly3 shows a faster and greater change compared to

the analogous terthiophene Poly2 (see Table 3). The single

difference being that Poly3 contains one furan to every two

thiophene units. It is not clear why, but the subtle incorporation

of an oxygen atom, providing a less aromatic furan ring,

improves the switching properties compared to the all thiophene

analogue.

Colorimetry

The CIE colour coordinates of Poly3 electrochemically deposited

on ITO were measured in monomer-free acetonitrile solution

with the same electrolyte concentration as previously stated. The

analysis is reported via the 1931 (Yxy) CIE and 1964 (L*a*b*)

CIE representation of colour space as recommended by the

‘‘Commission Internationale de L’Eclairage’’ (CIE).61 The

measurements recorded were using a 10� standard observer and

Source C illuminant (overcast daylight, CIE 1964, 6770 K). Y is

defined as the luminance of the CIE XYZ tristimulus values,

which are assigned to the red, green and blue curves respec-

tively.62 The L* coordinates represent the brightness of the

material ranging from 0–100. A positive a* value represents the

redness; whilst the negative a* value represents the greenness of

the sample.63 Complementary, a positive b* is yellow and

a negative b* is blue in colour. The polymer film was subjected to

constant applied potential at 0 V then +1.3 V for a duration of 90

seconds to achieve the neutral and doped state, whilst the colour

coordinates were measured to determine the colour trans-

formation, see Table 4.

The optical change experienced can be seen by the naked eye.

Poly3 shows a reversible transition from salmon-red to a beige

tan colour (see inset in Fig. 9), whilst the closely related polymer

Poly2 shows an optical change from red to yellow.51

Colouration efficiency (chronocoulometry)

Colouration efficiency (CE) is a parameter, which characterises

the ability of the material to change absorbance upon

injecting electric charge during oxidation (or reduction). CE is

expressed as:64

h ¼ DOD(l)/Qd (1)

DOD ¼ log[%Tb(l)/%Tc(l)] (2)

The optical density at a specific wavelength (lmax) was deter-

mined by using %T values of bleached (%Tb) and coloured films

(%Tc) using eqn (2). The colouration efficiency (h) of the material

can be calculated by using eqn (1), where DOD(l) is the change in

optical absorbance, and Qd is the charge density which causes

DOD(l).64

Chronocoulometry studies were performed on neutral state

Poly3, electrochemically deposited onto an ITO slide in mono-

mer-free acetonitrile solution. This film was subjected to a low

current through the film, leading to a colour transformation over

a 30 second interval.65,66 Fig. 9 shows the simultaneous

measuring of % change in transmittance of the film, and charge

flow during a complete switch. The electrochromic film was

monitored at lmax ¼ 705 nm as the voltage was pulsed for a 10

second step between the neutral state (0 V) and the oxidised state

(+1.3 V), see Fig. 9.

According to eqn (1) and (2), the CE of Poly3 was calculated

to be 212 cm2 C�1 at 95% of full switch (lmax ¼ 705 nm), which is

higher than that of closely packed PEDOT film (183 cm2 C�1),

Fig. 8 Both graphs (A) and (B) show change in absorbance upon p-

doping at various switching rates for Poly3 in acetonitrile solution.

Absorbance was monitored at 705 nm between potentials of 0 and

+1.3 V.

Table 3 Switching times and percentage change in absorbance

Time (s)

10 5 2.5 1.25 0.5 0.25

DT% Poly3 83.9 79.8 72.9 62.4 39.8 23.8
DT% Poly2a 79.8 66.2 51.6 39.3 19.0 9.3

a Absorbance was measured at 755 nm between potentials of �0.4 and
1.5 V of Poly2 in acetonitrile solution.51
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but slightly lower than that of PProDOT (285 cm2 C�1),67 see

Fig. 9 and Table 5. Comparatively, Poly1 (possessing large

quinoxaline pendant groups) shows superior CE of 381 cm2 C�1

measured at 650 nm for a 95% full switch.50 Colouration

efficiency studies highlight how subtle structural modifi-

cation in organic polymers can influence electrochromism

performance.67

Conclusions

Three new furan-based monomers were synthesised and char-

acterised by absorption spectroscopy and cyclic voltammetry.

Monomer 11 was successfully electropolymerised to form Poly3

and investigated by UV-Vis spectroelectrochemistry and elec-

trochromic switching studies. Poly3 exhibited a lower electro-

chemical band gap of 1.97 eV and superior switching speeds than

its corresponding terthiophene analogue.51 This is explained by

the lower aromaticity of furan systems over thiophene analogues

with Poly3 possessing efficient charge delocalisation across the

polymer backbone than the previously published analogues.38

Poly3 showed a reversible optical transformation from a red

salmon colour when neutral, to a beige tan colour in the doped

form, with a higher colour contrast than PEDOT67 (212 cm2 C�1

cf. 183 cm2 C�1 at 95% full switch). The incorporation of a furan

unit has improved the electrochromic properties compared to its

all-thiophene analogue.51

Experimental

General

1H and 13C NMR spectra were recorded on a Bruker Avance

AV3 400 or DRX 500 apparatus at either 500.13 and 125.76

MHz or 400.13 and 100.61 MHz, in CDCl3. Chemical shifts are

given in ppm; all J values are in Hz. Elemental analyses were

obtained on a Perkin-Elmer 2400 analyzer. Electron absorption

spectra were measured on a Unicam UV 300 spectrophotometer.

MS LDI-TOF spectra were run on a Shimadzu Axima-CFR

spectrometer (mass range 1–150 000 Da). IR spectra were

recorded an ATR Microlab PAL spectrometer. Melting points

were taken using a Stuart Scientific SMP1 Melting Point appa-

ratus and are uncorrected. Column chromatography was per-

formed with commercially available solvents and using VWR

silica gel (40–63 mm). Thin layer chromatography (TLC) was

performed using aluminium plates precoated with Merck silica

gel 60 (F254) and visualised by ultra-violet radiation and/or

iodine vapor. All reagents were purchased from Sigma-Aldrich

or Alfa Aesar and were used without further purification, unless

stated otherwise. Anhydrous solvents were obtained from

a PureSolv solvent purification system.

Table 4 CIE Yxy 1931 and L*a*b* 1964 colour space for Poly3 in the neutral and doped form using 10� standard observer and Source C illuminant

X Y Z x y z L* a* b*

Poly3 neutral 55.45 50.56 45.48 0.3660 0.3338 0.3002 76.41 16.21 13.01
Poly3 doped 55.78 57.50 54.84 0.3318 0.3420 0.3262 80.46 �0.42 10.57

Fig. 9 (A): colouration efficiencies (chronocoulometry) experiments of

Poly3 film on ITO, switched from fully neutral (0 V) to fully oxidised state

(+1.3 V) and back to neutral state, 3 steps for 10 second pulse and

transmittance measured at lmax ¼ 705 nm. (B) graph shows various %

optical changes from which to calculate CEs. Inset: Adobe Photoshop

images to represent Poly3’s colour switch, images created by conversion

of CIE Lab to CIE XYZ coordinates.

Table 5 Colouration efficiencies determined for Poly3 at various % optical changes of complete colour switch

DTa,b (%)
%
Change Tc

a (%) Tb
a (%) s (s) Q (C) Qd

c (C cm�2) DODd he (cm2 C�1)

40.91 100 45.51 86.42 5.36 3.02 � 10�3 1.34 � 10�3 0.279 207.45
38.86 95 45.51 84.37 3.86 2.84 � 10�3 1.26 � 10�3 0.268 212.39
36.82 90 45.51 82.33 3.76 2.74 � 10�3 1.12 � 10�3 0.257 211.41
34.77 85 45.51 80.28 3.68 2.66 � 10�3 1.18 � 10�3 0.247 208.51
32.73 80 45.51 78.24 3.61 2.60 � 10�3 1.16 � 10�3 0.235 203.64

a Transmittance measured at lmax ¼ 705 nm. b DT% ¼ Tb% � Tc%
c Qd ¼ Q/A, where A (Electrode area) ¼ 2.25 cm2 d DOD ¼ log[%Tb/%Tc]

e h ¼
DOD(l)/Qd.
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X-ray crystallography

Data for 11 were collected on an Enraf Nonius Kappa CCD

using Mo-Ka radiation, as f scans and u scans to fill the Ewald

sphere. Data collection, cell refinement and data reduction were

carried out using COLLECT68 and DENZO.69 The structure

solution was obtained by direct methods (SHELXS-97)70 and

a full-matrix least-squares refinement on F2 was performed on all

reflections by SHELXL-97 70 in the OLEX2 environment.71

Crystal structure determination of monomer 11

Crystal data. C16H12OS6, M ¼ 412.61, monoclinic, a ¼
22.338(3), b ¼ 4.7901(7)�, c ¼ 17.757(3)�A, b ¼ 113.326(7)�, U ¼
1744.7(4)�A3, T ¼ 120 K, space group Pc (no. 7), Z ¼ 4, 11 738

reflections measured, 5748 unique (Rint ¼ 0.142) which were used

in all calculations. The final wR(F2) was 0.265,R1¼ 0.12 for 3919

observed data. The CCDC deposition number is: 879413.

Electrochemistry

CV measurements were performed on a CH Instruments 660A

electrochemical workstation with iR compensation using anhy-

drous dichloromethane or acetonitrile as the solvent. The elec-

trodes were glassy carbon, platinum wire, and silver wire. All

solutions were degassed (Ar) and contained monomer substrates

in concentrations of ca. 10�4 M, together with TBAPF6 (0.1 M)

as the supporting electrolyte. All measurements are referenced

against the E1/2 of the Fc/Fc+ redox couple. Spectroelec-

trochemical, switching and colouration efficiency experiments

were conducted on ITO glass. Absorption and CIE coordinates

were recorded on a UNICAM UV 300 instrument.

Synthesis

Compounds 5 and 6 were prepared using the procedure of Ber-

ridge et al.72

6-(Dimethoxymethyl)-2-thioxo-[1,3]dithiolo[4,5-b][1,4] dithiine-

5-carbaldehyde (3)

To a solution of 4,4-dimethoxybut-2-ynal 1 (4.30 g, 0.034 mol,

3.50 ml) in 500 ml of dry toluene, oligo trithioxo-1,3-dithiole

(DMIT) 2 (6.50 g, 0.50 mol) was added and this mixture was

refluxed for 2 h. The solvent was removed under reduced pres-

sure and the crude product was purified by column chromatog-

raphy using toluene as eluent to give a red-orange solid 3 (7.64 g,

70%); 1H NMR (400 MHz, CDCl3): dH 3.46 (6H, s, 2 � CH3),

5.58 (1H, s, CHO(CH3)2), 10.02 (1H, s, CHO); 13C NMR

(100 MHz): dC 53.8, 99.8, 126.9, 128.5, 134.1, 154.7, 181.7 ppm;

MS: m/z GC/CI: 324.01 Da; EACalc: C, (33.31%); H, (2.49%); S,

(49.41%); EAFound: C, (33.19%); H (2.31%); S (49.30%).

nmax ATR-IR/cm�1: 2958, 2833, 1669, 1552, 1496 and 1069; Mpt:

128–130 �C.

5-(Dimethoxymethyl)-6-(hydroxymethyl)-[1,3]dithiolo[4,5-b]

[1,4]dithiine-2-thione (4)

Sodium borohydride (2.94 g, 0.074 mol) was added to a stirred

solution of aldehyde 3 (3.00 g, 9.25 mmol dissolved in 100 ml of

THF) at room temperature. After 2 min, the reaction mixture

was poured into 100 ml of saturated aqueous NaHCO3, KBr

(19.5 g) was added and the product was extracted with ethyl

acetate (3 � 100 ml). The extract was dried over MgSO4 and

evaporated in vacuo to dryness affording the product 4 as

a brown/yellow oil (2.94 g, 97%), which was used in the next step

without further purification; 1H NMR (400 MHz, CDCl3): dH
2.11 (1H, s, OH), 3.39 (6H, s, 2 � CH3), 4.48 (2H, s, H2C), 5.24

(1H, s, CH); MS: MALDI-TOF, matrix used THAP: 345 Da and

295 Da.

2,3-Bis(methylthio)-[1,4]dithiino[2,3-c]furan (7)

To a cold (�15 �C) mixture of carbonyl derivative 6 (0.333 g, 1.36

mmol) in THF (20 ml) was added sodium methoxide (25%,

4.37 M, 0.22 ml) dropwise. The mixture was stirred for 30 min

whilst under nitrogen. Then iodomethane (0.70 ml, 10.8 mmol)

was added dropwise and the mixture allowed to reach room

temperature and left to stir overnight. The solvent was removed

under reduced pressure, and the residue was dissolved in chlo-

roform, filtered and, after removal of the solvent, the crude

product was subjected to column chromatography on silica gel

using 20% dichloromethane in hexane as eluent. The product was

isolated as a yellow crystalline solid (0.245 g, 46%); 1H NMR

(400 MHz, CDCl3): dH 2.46 (6H, s, S(CH3)2), 7.26 (2H, s, (Ar-

H)); 13C NMR (125 MHz): dC 18.4, 119.2, 128.8, 137.2 ppm. MS:

m/z GC/CI: 248.9 Da; EACalc: C, (38.68%); H, (3.25%); S,

(51.63%); EAFound: C, (39.06%); H (3.23%); S (51.15%); nmax

ATR-IR/cm�1: 3120, 2922, 1537, 1410, 1032, 873 and 842; Mpt:

67–69 �C.

2,3-Bis(hexylthio)-[1,4]dithiino[2,3-c]furan (8)

To a cold (�15 �C) mixture of carbonyl derivative 6 (0.140 g, 53.4

mmol) in dry THF (30 ml) was added sodium methoxide (25%,

4.37 M, 0.52 ml) dropwise. The mixture was stirred for 30 min

whilst under constant flow of nitrogen gas. 1-Bromohexane

(0.62 ml, 3.2 mmol) was added drop wise and the mixture was

allowed to reach room temperature and stirred overnight. The

solvent was removed under reduced pressure, and the residue was

treated with chloroform, filtered and after removal of solvent, the

crude product was subjected to column chromatography on silica

gel using 1 : 1 dichloromethane : hexane as eluent. The product

was isolated as a yellow oil (0.167 g, 81%); 1H NMR (400 MHz,

CDCl3): dH 0.87 (6H, t, J ¼ 6.6 Hz, 2 � CH3), 1.26 (8H, m,

–CH2CH2), 1.38 (4H, quintet, J ¼ 7.4 Hz –CH2(CH2)2), 1.56

(4H, quintet, J ¼ 7.4 Hz, (–CH2(CH2)3Me)2), 2.92 (4H, t, J ¼
7.3 Hz, (SCH2(CH2)4Me)2), 7.25 (2H, s, Ar-H); 13C NMR

(100 MHz): dC 13.5, 21.9, 27.8, 29.2, 30.8, 34.5, 119.3, 128.7,

136.6 ppm; MS: m/z HRMS/EI: theoretical mass: 388.1023,

found mass: 388.1021 Da; nmax ATR-IR/cm�1: 3114, 2954, 2924,

2853, 1500, 1226, 1125, 1032 and 955.

5,7-Dibromo-2,3-bis(methylthio)-[1,4]dithiino[2,3-c]furan (9)

Compound 7 (0.100 g, 4.00 mmol) was dissolved in dichloro-

methane (20 ml) and treated with N-bromosuccinimide (0.150 g,

0.841 mmol). This mixture was stirred for 4 h at room temper-

ature then quenched with water (50 ml) and the organic phase

was separated. The organic layer was further washed with satu-

rated sodium sulfite solution (50 ml), water (50 ml), before drying

2284 | Polym. Chem., 2012, 3, 2277–2286 This journal is ª The Royal Society of Chemistry 2012

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

St
ra

th
cl

yd
e 

on
 2

3 
A

ug
us

t 2
01

2
Pu

bl
is

he
d 

on
 1

1 
Ju

ne
 2

01
2 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
2P

Y
20

27
7H

View Online

http://dx.doi.org/10.1039/c2py20277h


with MgSO4. The solvent was removed under reduced pressure

and the crude product was purified by passing through a plug of

silica gel with 10% dichloromethane/hexane eluent to afford

a brown semi solid (0.146 g, 91%). This was used immediately

further without further purification; 1H NMR (400 MHz,

CDCl3): dH 2.46 (6H, s, S(CH3)2);
13C NMR (125 MHz): dC 18.6,

29.7 (traces of hexane), 117.1, 120.8, 127.5 ppm; MS: m/zGC/EI,

monoisotopic peak: 404.01 Da.

2,3-Bis(methylthio)-5,7-di(thiophen-2-yl)-[1,4]dithiino[2,3-c]

furan (11)

Tetrakis(triphenylphosphine) palladium(0), (46 mg, 0.4 mmol,

10% mol) was added to a mixture of compound 9 (150 mg, 4.0

mmol) and 2-(tributylstannyl)thiophene 10 (0.3 ml, 8.9 mmol),

dissolved in tetrahydrofuran (20 ml). The reaction mixture was

refluxed under N2 for 24 h. The mixture was then cooled,

quenched with water (200 ml) and extracted with dichloro-

methane (3 � 100 ml). The organic phases were combined and

dried over MgSO4 and the solvent removed under reduced

pressure. The residue was purified by column chromatography

on silica gel, using 20% dichloromethane in hexane as eluent, to

give a yellow crystalline solid (37 mg, 22%); 1H NMR (500 MHz,

CDCl3): dH 2.51 (6H, s, 2 � CH3), 7.12 (1H, d, 3J ¼ 3.5 Hz, Ar-

H), 7.13 (1H, d, 3J ¼ 3.5 Hz, Ar-H), 7.36 (2H, dd, 3J ¼ 5.3 Hz, 4J

¼ 1.0 Hz, Ar-H), 7.42 (2H, dd, 3J ¼ 3.8 Hz, 4J ¼ 1.0 Hz, Ar-H);
13C NMR (100 MHz): dC 18.2, 114.8, 123.9, 124.0, 125.2, 128.1,

130.7, 141.3 ppm; MS: m/z LDI: 412.0 Da; nmax ATR-IR/cm�1:

3101, 2915, 1466, 1418, 1257, 1080, 1045, 1030 and 989. MS:

HRMS/EI: theoretical mass: 411.9212, found mass: 411.9213.

Mpt: 97–98 �C.
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