
Strathprints Institutional Repository

Banasiak, Jacek and Lamb, Wilson (2012) The discrete fragmentation equations : semigroups,
compactness and asynchronous exponential growth. Kinetic and Related Models, 5 (2). pp. 223-
236. ISSN 1937-5093

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9257512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


Kinetic and Related Models doi:10.3934/krm.2012.5.223
c©American Institute of Mathematical Sciences
Volume 5, Number 2, June 2012 pp. 223–236

THE DISCRETE FRAGMENTATION EQUATION:

SEMIGROUPS, COMPACTNESS AND ASYNCHRONOUS

EXPONENTIAL GROWTH

Jacek Banasiak

School of Mathematical Sciences, UKZN, Durban, South Africa

and

Institute of Mathematics, Technical University of  Lódź,  Lódź, Poland
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Abstract. In this paper we present a class of fragmentation semigroups which
are compact in a scale of spaces defined in terms of finite higher moments.

We use this compactness result to analyse the long time behaviour of such

semigroups and, in particular, to prove that they have the asynchronous growth
property. We note that, despite compactness, this growth property is not

automatic as the fragmentation semigroups are not irreducible.

1. Introduction. The process of cluster fragmentation occurs in many areas of
pure and applied science such as depolymerisation, rock fracture and droplet breakup.
When it is assumed that each cluster of size n ∈ N (an n-mer) in a system of particle
clusters is composed of n identical fundamental units (monomers), then the mass
of each cluster is simply a positive integer multiple of the mass of the monomer. By
appropriate scaling, each monomer can be assumed to have unit mass. This leads
to a discrete model of the fragmentation process, in which the evolution of clusters
is described by

d

dt
un(t) = −anun(t) +

∞∑
k=n+1

bn,k ak uk(t), t > 0, un(0) =
◦
un, n = 1, 2, 3, . . . .

(1)
In (1), un(t) represents the concentration of n-mers at time t, an ≥ 0 is the average
break-up rate of an n-mer and bn,k is the average number of n-mers produced upon
the break-up of a k-mer. Clearly we require bn,k = 0 for all n ≥ k. Moreover, for
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224 JACEK BANASIAK AND WILSON LAMB

the total mass in the system to be a conserved quantity, the coefficients an and bn,k
are constrained by the conditions

a1 = 0 and

k−1∑
n=1

nbn,k = k, (k = 2, 3, . . .). (2)

A simple calculation then shows that, formally,

d

dt

∞∑
n=1

nun(t) = 0. (3)

In a number of previous rigorous mathematical investigations into (1), a typical
strategy has been to consider finite-dimensional truncations to which standard
methods from the theory of ordinary differential equations can be applied. This
yields a sequence of solutions to the truncated equations and compactness ar-
guments then establish that there is a subsequence that converges to a solution
u(t) = (u1(t), u2(t), u3(t), . . .) of an integral version of the fragmentation equation.
This approach has been used, for example, by Laurençot in [14] for the system (1),
and by Ball & Carr [2] and da Costa [9] for the case of discrete binary fragmentation.
In contrast to this truncation-limit procedure, an alternative method involving the
theory of semigroups of operators has also been used in several papers [5, 6, 15, 18].
This operator-based approach enables existence and uniqueness results to be estab-
lished for strongly differentiable (strict) solutions of the abstract Cauchy problem
(ACP) associated with (1).
One very recent development in the application of semigroup techniques to frag-
mentation and coagulation equations has been the discovery that, in certain cases,
the underlying semigroup can be shown to have additional desirable properties.
For example, in [6], the ACP associated with (1) is posed in certain weighted
Banach spaces (moment spaces) Xp := `1p of sequences f = (fn)∞n=1 for which∑∞
n=1 n

p |fn| < ∞. Sufficient conditions on the fragmentation coefficients bn,k are
given under which the fragmentation semigroup is analytic in Xp provided that
p > 1. Properties of analytic semigroups are then exploited to prove the existence
and uniqueness of solutions to the related coagulation-fragmentation equation under
less restrictive conditions on the coagulation coefficients than the usual boundedness
required in other semigroup-based investigations.
Our aim in the current paper is to continue with this theme of establishing and
utilising additional properties of semigroups associated with discrete fragmentation
equations. More specifically, we concentrate on the compactness of the semigroups
and show that this property can then be used to obtain information on the asymp-
totic behaviour of solutions. Not surprisingly, solutions ultimately reach a steady
state in which only monomers are present in the system. When the semigroup is
also known to be compact, we prove that this decay to steady state must occur in
an exponential manner for a large class of initial data. We emphasize that this is
not a standard application of say, [11, Theorem 3.5] or [8, Theorem 8.17], as the
fragmentation semigroup is not irreducible. For the same reason, as the steady state
of the fragmentation process is not strictly positive, powerful probabilistic methods
based on the theory of Harris operators and the Fougel alternative, see [16, 17], also
are not directly applicable.
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2. The Fragmentation Semigroup. It is convenient at this stage to give a brief
summary of some results proved recently in [5, 6, 15, 18] using the theory of sub-
stochastic semigroups [3, Chapter 6]. We begin by expressing the initial-value prob-
lem (IVP) (1) more concisely as

u′(t) = Fu(t), u(0) =
◦
u, (4)

where u(t) = (un(t))
∞
n=1 is a time-dependent sequence whose components un(t), n =

1, 2, . . . , give the number of n-mers in the system and(
Fu(t)

)∞
n=1

:=

(
−anun(t) +

∞∑
i=n+1

bn,i ai ui(t)

)∞
n=1

.

To enable semigroup techniques to be applied, the IVP (4) must be expressed as an
ACP in some Banach space X. Since mass is expected to be a conserved quantity,
the most appropriate Banach space to work in is the weighted `1 space given by
X1 = `11 := {f = (fn)∞n=1 : ‖f‖1 :=

∑∞
n=1 n |fn| < ∞}. However, our aim here is

not only to state conditions for the existence and uniqueness of physically relevant
solutions, but also to determine the asymptotic behaviour of solutions. For this
we require the semigroup associated with the ACP to have additional properties,
such as analyticity and compactness. Although the arguments used to prove [18,
Theorems 3.4 and 3.5] can easily be adapted to establish that these properties hold
within the framework of the space X1 for the specific case when

an = n− 1, bn,k = 2/(k − 1),

the problem of determining more general sufficient conditions under which the semi-
group is analytic and compact on X1 remains open. For this reason we follow the
approach used in [6] and introduce the following class of Banach spaces

Xp = `1p := {f = (fn)∞n=1 : ‖f‖p :=

∞∑
n=1

np |fn| <∞}, p ≥ 1.

In the sequel, when Z ⊆ Xp is a given set of sequences, Z+ will denote the subset
of Z consisting of all nonnegative sequences in Z. Note that any f ∈ (Xp)+ will
possess moments

Mr(f) :=

∞∑
n=1

nrfn (5)

of all orders r ∈ [0, p ]. Although some of the results that we state, such as the
existence of a strongly continuous semigroup of contractions associated with the
ACP, hold in Xp for all p ≥ 1, other important properties will require p > 1.
For each p ≥ 1, we define operators Ap and Bp in Xp by

Ap f := (anfn)
∞
n=1 , D(Ap) := {f ∈ Xp :

∞∑
n=1

np an|fn| <∞}; (6)

Bp f :=

( ∞∑
k=n+1

bn,k akfk

)∞
n=1

, D(Bp) := D(Ap). (7)

Throughout, we assume that the coefficients an and bn,k satisfy the mass conserva-
tion conditions in (2). A routine calculation [6, Equation (2.3)] then leads to

‖Bp f‖p ≤ ‖Ap f‖p, ∀ f ∈ D(Ap),

showing that Bp is well defined on D(Ap).
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Theorem 2.1. For each p ≥ 1 and k = 2, 3, . . . , let

∆
(p)
k := kp −

k−1∑
n=1

np bn,k. (8)

Then

: (a) the closure (−Ap +Bp, D(Ap)) =: (Fp, D(Fp)) generates a positive semi-
group of contractions (SFp

(t))t≥0 on Xp, which satisfies

d

dt
‖SFp(t)

◦
u ‖p = −cp (SFp(t)

◦
u),

◦
u∈ D(Fp)+, (9)

where

cp (f) :=

∞∑
k=2

ak∆
(p)
k fk, f ∈ D(Fp)+; (10)

: (b) Fp = −Ap +Bp whenever

lim inf
k→∞

∆
(p)
k

kp
> 0. (11)

Proof. See [6, Theorem 2.1].

Note that ∆
(p)
k > 0 for all p > 1 and k = 2, 3, . . ., but ∆

(1)
k = 0 for all k [6, Equation

(2.4)] and so (11) is not satisfied when p = 1. However, if (11) holds for some
p0 > 1, then it holds for any p ≥ p0.

Remark 1. We note that for p = 1 the right hand side of (9) is zero. Thus, since
the norm ‖ · ‖1 of a nonnegative distribution gives the total mass of the ensemble,
(9) expresses the principle of the conservation of mass.

It follows immediately from Theorem 2.1 that the ACP

d

dt
u(t) = Fp u(t), t > 0; u(0) =

◦
u, (12)

has a unique, nonnegative strict solution u : [0,∞) → Xp given by u(t) = SFp
(t)
◦
u

for each
◦
u∈ D(Fp)+. Moreover, from [5, Lemma 1] and [6, Lemma 2.1], an ex-

plicit representation of the semigroup (SFp(t))t≥0 on Xp is provided by the matrix
function t→ S(t) = [sin(t)]1≤i,n<∞ where

snn(t) = e−ant, n ≥ 1, sin(t) = 0 whenever n < i, (13)

and

sin(t) = ane
−ant

n−1∑
k=i

bk,n

∫ t

0

si,k(τ)eanτ dτ, i ≥ 1, n ≥ i+ 1. (14)

From the definition of the spaces Xp, it is obvious that the natural embedding
J : Xp → X1 defined by J f = f , f ∈ Xp, is in B(Xp , X1) for each p ≥ 1 with
‖f‖1 ≤ ‖f‖p ∀ f ∈ Xp. Furthermore, arguing as in [15, Lemma 5.2], if we define the
finite-rank operators Jr ∈ B(Xp , X1) by

Jrf :=

r∑
k=1

fk, f ∈ Xp , r = 1, 2, . . . ,

then

‖Jf − Jrf‖1 ≤ (r + 1)1−p ‖f‖p ∀ f ∈ Xp ,
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and so

‖J − Jr‖ ≤ (r + 1)1−p → 0 as r →∞, ∀p > 1.

Thus, Xp is compactly embedded in X1 for each p > 1 and, since (Fp, D(Fp)),
p > 1, can be interpreted as a restriction of the operator (F1, D(F1)) in X1, the
solution of (12) will also be the unique strict solution u : [0,∞)→ X1 of

d

dt
u(t) = F1 u(t), t > 0; u(0) =

◦
u∈ D(Fp)+. (15)

3. Convergence to Steady State. On physical grounds we expect all solutions
of the IVP (4) to decay to the equilibrium state

ũ := M1(
◦
u)e1 , (16)

where e1 = (1, 0, 0, . . .) and M1(
◦
u), defined via (5), is the initial mass in the system.

This was initially established in [7, Theorem 4.1] using a proof which is technically
quite involved. An alternative proof, involving the theory of substochastic semi-
groups in the space X1, can be found in [5, Section 2]. Our aim in this section is to
show that the arguments used in [5] can easily be adapted to prove that the result
holds in the space Xp for any p ≥ 1.
Henceforth, we assume that

an > 0 ∀ n ≥ 2. (17)

As in [5], we examine a reduced version of (1) in which only the unknowns u2, u3, . . .
feature. Let Yp be the closed subspace of Xp defined by

Yp := {g = (gn)∞n=1 ∈ Xp : g1 = 0}. (18)

Clearly we can decompose Xp into the direct sum

Xp = Yp ⊕ Zp,

where Zp = {h = (hn)∞n=1 ∈ Xp : hn = 0 ∀n ≥ 2}, and therefore we can write

f = Qp f + (I −Qp)f ∀f ∈ Xp,

where Qp is the projection from Xp onto Yp defined by

Qp f := (0, f2, f3, . . .), f = (fn)∞n=1 ∈ Xp. (19)

Let Ap denote the restriction of Ap to D(Ap) := D(Ap)∩Yp and define Bp on D(Ap)
by

(Bp g)n :=


0 for n = 1,
∞∑

k=n+1

bn,k akgk for n ≥ 2.

By definition, the ranges of Ap and Bp are both contained within Yp. To show that

the closure (−Ap + Bp, D(Ap)) =: (Fp, D(Fp)) generates a substochastic semigroup
(SFpt))t≥0 on Yp, we adapt the Arlotti extension based arguments [3, Chapter 6]
which were used for the case p = 1 in [5, Section 2]. First we note that, for
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g ∈ D(Ap)+, by changing the order of summation,

∞∑
n=1

np ((−Ap + Bp)g)n

= −
∞∑
n=2

np angn +

∞∑
k=3

(
k−1∑
n=1

np bn,k

)
akgk −

∞∑
k=3

b1,k akgk

= −
∞∑
k=2

ak∆
(p)
k gk −

∞∑
k=2

b1,k akgk

= − cp(g)− (Bpg)1 =: −Cp(g).

Moreover, using a1 = 0 and again changing the order of summation,

N∑
n=1

(
−np angn +

∞∑
k=n+1

np bn,kakgk

)

= −
N∑
n=2

np angn +

N+1∑
k=3

(
akgk

k−1∑
n=2

np bn,k

)
+

N∑
n=2

( ∞∑
k=N+2

np bn,k akgk

)

= −
N∑
n=2

an∆(p)
n gn −

N∑
n=2

b1,n angn + aN+1fN+1

N∑
n=2

np bn,N+1

+

N∑
n=2

( ∞∑
k=N+2

np bn,k akgk

)
.

It follows that, for sequences g such that −Apg + Bpg ∈ Yp and −Cp(g) exists,

lim
N→∞

N∑
n=2

(
−npangn +

∞∑
k=n+1

np bn,k akgk

)
≥ −Cp(g),

and therefore, from [3, Theorem 6.22] (as used in [3, Section 7.4]), it follows that

the operator Fp = (−Ap + Bp, D(Ap)) has the desired property of being the infini-
tesimal generator of a substochastic semigroup (SFp

t))t≥0 on Yp. Furthermore,

d

dt
Mp (SFp

(t)
◦
v) = −Cp (SFp

(t)
◦
v), for

◦
v∈ D(Fp)+. (20)

By integrating each side of (20) and then using density arguments, we obtain

Mp (SFp
(t)
◦
v) = Mp (SFp

(0)
◦
v)−

∫ t

0

Cp (SFp
(s)
◦
v) ds, ∀ ◦v∈ (Yp)+. (21)

For each fixed integer N ≥ 2 and sequence g ∈ Yp, let PNg be defined by

(PN g)
∞
n=1 :=

{
gn for n ≤ N,
0 for n > N.

(22)

Clearly, PN is a projection from Yp onto the finite-dimensional closed subspace
PN (Yp) of Yp for each p ≥ 1, and PNg → g in Yp as N → ∞ for any g ∈ Yp.
Moreover, we can identify PN (Yp) with the space Yp,N of finite sequences (gNn )Nn=2

equipped with the norm induced from Yp. Similarly, we can identify the bounded
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operators ApPN and BpPN with operators Ap,N and Bp,N on Yp,N , and consider
the finite-dimensional system of equations

d

dt
vN,k(t) = −Ap,N vN,k(t) + Bp,N vN,k(t), t > 0, vN,k(0) =

◦
vN,k, k = 2, 3, . . . N.

(23)

When (
◦
vN,k)Nk=2 = (δk,n)Nk=2, where δk,n is the Kronecker delta, the solution of (23)

is given by

vN,n(t) = (s2n(t), . . . , snn(t), 0, . . . , 0),

where the components sin(t) are defined by (13) and (14). Hence, by linearity, the

solution of (23) for a general
◦
vN∈ Yp,N is

vN (t) = SN (t)
◦
vN , SN (t) = [sin(t)]2≤i,n≤N . (24)

By uniqueness of solutions,

SFp
(t)(PNg) = S̃N (t)(PNg), ∀N ≥ 2, g ∈ Yp

where, on the right-hand side, g is regarded as an infinite column vector and S̃N (t)
is the infinite matrix

s22(t) s23(t) . . . s2N (t) 0 . . . ,
0 s33(t) . . . s3N (t) 0 . . . ,
...

...
...

...
...

...
0 0 . . . SNN (t) 0 . . .
0 0 . . . 0 0 . . .
...

...
...

...
...

...


.

This leads to an explicit representation of the semigroup (SFp
(t))t≥0 on Yp being

provided by the matrix function t→ S̃(t) = [sin(t)]2≤i,n<∞. Note also that

S̃N (t)(PNg)→ SFp(t)g in Yp as N →∞, ∀g ∈ (Yp)+, (25)

where the convergence is monotonic in N for any t, and uniform in t on bounded
time intervals.

Lemma 3.1. Let α ≥ 0 and f ∈ (Xp)+ be fixed and let Qp f ∈ Yp be defined via
(19). Then

lim
t→∞

eαt‖SFp
(t)f −M1(f)e1‖p = 0⇔ lim

t→∞
eαt‖SFp

(t)Qp f‖p = 0.

Proof. The proof relies on the simple observation that

SFp
(t)f = µf (t)e1 + SFp

(t)Qp f , (26)

where

µf (t) =

∞∑
k=1

s1k(t)fk.

It follows from (26) that

‖SFp
(t)f −M1(f)e1‖p = |µf (t)−M1(f)|+

∥∥SFp
(t)Qpf

∥∥
p
, (27)

and therefore an exponential decay to 0 of the left-hand side implies the same for
each term on the right-hand side and, in particular, the decay of ‖SFp(t)Qp f‖p to
0 at the same rate.
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To prove the result in the opposite direction, we again use (26), together with the
hypothesis, to obtain

‖eαtSFp
(t)f − eαtµf (t)e1‖p = eαt‖SFp

(t)Qp f‖p → 0 as t→∞.
Now, by ‖ · ‖p ≥ ‖ · ‖1 and the reverse triangle inequality∥∥eαtSFp

(t)f − eαtµf (t)e1

∥∥
p
≥

∥∥eαtSFp
(t)f − eαtµf (t)e1

∥∥
1

≥
∣∣∣‖eαtSFp

(t)f‖1 − ‖eαtµf (t)e1‖1
∣∣∣

= eαt|M1(f)− µf (t)|.
Consequently,

eαt|M1(f)− µf (t)| → 0 as t→∞,
and the result follows from (27).
We can now prove the main result of this section.

Theorem 3.2. For any p ≥ 1 we have

lim
t→∞

‖SFp
(t)
◦
u −M1(

◦
u)e1‖p = 0

for any
◦
u ∈ (Xp)+ if and only if an 6= 0 for all n ≥ 2.

Proof. Let
◦
u∈ (Xp)+ and consider Qp

◦
u∈ (Yp)+. From (24), the solution of the

truncated system (23), with initial conditions
◦
vk= (PNQp

◦
u)k, k = 2, 3, . . . , N , may

be expressed in terms of an (N−1)×(N−1) matrix, SN (t), whose only eigenvalues
are exponentials with negative exponents. Consequently, if, for ease of notation, we

denote S̃N (t)(PNQp
◦
u) and SFp

(t)(Qp
◦
u) by vN (t) and v(t) respectively, and define

Mp,N (t) :=

N∑
k=1

kp vk,N (t) = Mp(vN (t)),

then
lim
t→∞

Mp,N (t) = 0.

On the other hand, from (21),

Mp,N (t) = Mp,N (0)−
∫ t

0

Cp(vN (s)) ds, (28)

and therefore

lim
t→∞

∫ t

0

Cp(vN (s)) ds = Mp,N (0).

Since vN (t) increases monotonically to v(t) and Cp is nonnegative, we obtain from
(21),

Mp (v(t)) = Mp (v(0))−
∫ t

0

Cp (v(s)) ds ≤Mp (v(0))−
∫ t

0

Cp(vN (s)) ds.

Now, for any ε > 0, we can find N such that |Mp (v(0)−Mp,N (0)| ≤ ε. Hence

0 ≤ lim
t→∞

Mp(v(t)) ≤ ε+ lim
t→∞

∣∣∣∣Mp,N (0)−
∫ t

0

Cp(vN (s)) ds

∣∣∣∣ = ε.

Since ε is arbitrary, limt→∞Mp(v(t)) = 0, and, on applying Lemma 3.1 with α = 0,
we deduce that

lim
t→∞

‖SFp
(t)
◦
u −M1(

◦
u)e1‖ = 0.
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Conversely, if aN = 0 for some N ≥ 2 and we take
◦
u= (δNj)

∞
j=1, then the solution

u(t) will have uN (t) = 1 for all t, showing that convergence to e1 cannot occur.
Our aim in the next section is to show that the decay to equilibrium is exponentially
fast for a large class of fragmentation models.

4. Compactness of the Fragmentation Semigroup and AEG. We know from
Section 2 that Fp is the generator of a semigroup of contractions on Xp and therefore
the resolvent R(λ, Fp) exists as a bounded operator on Xp for each λ > 0. If we
interpret f ∈ Xp as an infinite column vector, then it can be shown [6, Lemma 2.2]
that R(λ, Fp) is the realization on Xp of a matrix function

R(λ,F) = [ri,n(λ)]1≤i,n<∞ , (29)

where
rn,n(λ) = 1/(λ+ an) for n ≥ 1, ri,n(λ) = 0 for n < i, (30)

and

ri,n(λ) =
an

λ+ an

n−1∑
k=i

ri,k(λ)bk,n, n ≥ i+ 1, i ∈ N. (31)

Moreover if there exist a positive sequence (φk)∞k=1 and a positive constant C such
that

φkbk,n ≤ C
k∑
i=1

ibi,n, 1 ≤ k ≤ n− 1, for any n ≥ n0, (32)

where n0 ≥ 2 is some fixed positive integer, then it can be shown [6, Lemma 3.1]
that

|rk,n(λ)| ≤ Cn

|λ+ ak|φk
∀n > k. (33)

This matrix representation of the resolvent, together with the estimates (33), can
be exploited to establish the following analyticity and compactness results.

Theorem 4.1. Let the coefficients bk,n satisfy (11) for some p0 > 1. Then
(SFp

(t))t≥0 is an analytic semigroup on Xp for each p > p0.

Proof. Originally, the result was proved in [6, Theorem 3.1] under the additional
assumption that the coefficients bk,n satisfy (32) for some sequence (φk)∞k=1 with a
growth rate of at least k2 as k → ∞. However, it is known that −Ap is resolvent
positive and generates an analytic semigroup. Also, Bp is positive on D(Ap) and,
under assumption (11), −Ap+Bp is resolvent positive. Therefore the analyticity of
(SFp(t))t≥0 can be obtained directly from [1, Theorem 1.1].

Theorem 4.2. Let ak → ∞ and let (φk)∞k=1 be a positive sequence such that (32)
is satisfied and (

1

akφk

)∞
k=2

∈ X1.

Then R(λ, Fp) is a compact operator on Xp for any λ > 0 and p ≥ 1.

Proof. For each fixed n ∈ N, let Pn be defined on Xp by

Pnf = (f1, f2, . . . , fn, 0, . . .) (34)

and let Rn(λ) = PnR(λ, Fp). Then

(R(λ, Fp)f −Rn(λ)f)i =

 0 for 1 ≤ i ≤ n,
∞∑
k=i

ri,k(λ)fk for i ≥ n+ 1.
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Taking λ > 0, and noting that, from (33),

ri,k(λ) ≤ Ck

(λ+ ai)φi
≤ Ck

aiφi
, k > i,

we obtain

‖R(λ, Fp)f −Rn(λ)f‖p ≤
∞∑

i=n+1

ip ri,i(λ)|fi|+
∞∑

i=n+1

ip

( ∞∑
k=i+1

ri,k(λ)|fk|

)

≤ ( sup
i≥n+1

a−1
i ) ‖f‖p +

∞∑
k=n+2

kp |fk|

(
1

kp

k−1∑
i=n+1

ip ri,k(λ)

)

≤ ( sup
i≥n+1

a−1
i ) ‖f‖p + C

∞∑
k=n+2

kp |fk|

(
1

kp−1

k−1∑
i=n+1

ip

aiφi

)
≤ ωn‖f‖p,

where

ωn :=

(
sup
i≥n+1

a−1
i + C

∞∑
i=n+1

i

aiφi

)
.

Hence, if ai →∞ as i→∞ and (i(aiφi)
−1)i≥2 is summable, then ωn → 0 as n→∞

and we see that Rn(λ) converges to R(λ, Fp) in the uniform operator topology
as n → ∞. As each Rn(λ) is a finite rank operator, it follows that R(λ, Fp) is
compact.
We note that if both Theorems 4.1 and 4.2 can be applied with some p0 > 1, then
for p ≥ p0, (SFp

(t))t≥0 is an analytic semigroup on Xp, whose generator Fp has a
compact resolvent R(λ, Fp) for all λ > 0. As any analytic semigroup is immediately
norm continuous, it follows from [10, Theorem II.4.29] that SFp(t) is compact on
Xp for each t > 0; i.e. (SFp(t))t≥0 is immediately compact on Xp. A discussion
of specific classes of coefficients an and bk,n satisfying the assumptions of both
theorems is given in Remark 2.
The relevance of the previous result to determining the asymptotic behaviour of
solutions of the discrete fragmentation equation will become apparent after the
following theorem.

Theorem 4.3. If the fragmentation semigroup (SFp(t))t≥0 is immediately compact
on Xp, then it has the asynchronous exponential growth property (AEG) on Xp;

that is, there exists α > 0 such that for any
◦
u∈ Xp

‖SFp
(t)
◦
u −M1(

◦
u)e1‖ ≤ Ke−αt, (35)

for some K > 0.

Proof. The assumption that (SFp(t))t≥0 is immediately compact implies that Fp
has compact resolvent [10, Theorem II.4.29]. Hence, from [10, Corollary V3.2],
σ(Fp) is at most countable and consists only of poles of R(·, Fp) of finite algebraic
multiplicity. Since Fp e1 = −Ap e1 + Bp e1 = 0 e1, we deduce that 0 is an isolated
eigenvalue of Fp of finite algebraic multiplicity (i.e. a pole of R(·, Fp)). Moreover,
(SFp

(t))t≥0 is a positive semigroup with essential growth bound ωess(Fp) = −∞
and so it follows from [4, Theorems 48 and 49] that the peripheral spectrum is finite
and additively cyclic and so consists of the single point s(Fp), where s(Fp) denotes
the spectral bound of Fp. In this case, the spectral bound coincides with the growth
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bound ω0(Fp) of the semigroup and so the peripheral spectrum consists only of 0,
showing that λ1 = 0 is the dominant eigenvalue of Fp; i.e. Reλn < 0 for all other
eigenvalues, λn, n = 2, 3, . . . , of Fp. By [10, Corollary V.3.2], we can write

SFp
(t) = S

(1)
Fp

(t) +R(1)(t)

where, for every ε > 0, there exists Mε > 0 such that

‖R(1)(t)‖ ≤Mεe
(ε+Reλ2)t, t ≥ 0, (36)

λ2 being the eigenvalue which, after λ1 = 0, has the next largest real part. The

operator S
(1)
Fp

(t) has finite rank, and is given by

S
(1)
Fp

(t) =

eλ1t
k1−1∑
j=0

tj

j!

P (1) =

k1−1∑
j=0

tj

j!

P (1), (37)

where k1 is the order of the pole λ1 = 0 and P (1), the corresponding residue, is
the spectral projection onto a finite-dimensional subspace of Xp whose dimension
is given by the algebraic multiplicity, ma, of the eigenvalue 0. We shall prove that
k1 = ma = 1.
By choosing ε sufficiently small, we can write (36) as

‖R(1)(t)‖ ≤Mαe
−αt t ≥ 0, (38)

where α > 0. Now (S
(1)
Fp

(t))t≥0 is a finite-dimensional semigroup generated by an

operator which has only 0 as a spectral value. Consequently, both (S
(1)
Fp

(t))t≥0 and

(SFp
(t))t≥0 are bounded and therefore we must have k1 = 1, as otherwise an initial

condition
◦
u can be found leading to a solution SFp

(t)
◦
u with polynomial growth.

To establish that ma = 1, we examine the adjoint operator F ∗p . For each p ≥ 1, we
can, under identification, regard the dual space of Xp as

X∗p = {f∗ : ‖f∗‖
X∗

p
:= sup

k≥1
k−p |f∗k | <∞},

in which case the action of f∗ ∈ X∗p on f ∈ Xp is given by

〈f∗, f〉 :=

∞∑
i=1

f∗i fi.

For f ∈ Xp and suitably restricted f∗p ∈ X∗p , routine calculations show that, for each
fixed N ∈ N,

〈f∗, Fp PN f〉 = 〈f∗, (Ap +Bp)PN f〉 =

N∑
j=2

fj aj

(
−f∗j +

j−1∑
i=1

bi,jf
∗
i

)
, (39)

where PN is the projection operator on Xp defined by (34). Motivated by this, we
consider the operator F∗p defined by

(F∗pf∗)1 := 0, (F∗pf∗)j := aj

(
−f∗j +

j−1∑
i=1

bi,jf
∗
i

)
, j = 2, 3, . . . , (40)

with domain

D(F∗p ) :=

{
f∗ ∈ X∗p : sup

j≥2
j−p aj

∣∣∣∣∣
(
−f∗j +

j−1∑
i=1

bi,jf
∗
i

)∣∣∣∣∣ <∞
}
. (41)
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In terms of F∗p , we have

〈f∗, Fp PN f〉 = 〈F∗p f∗, PN f〉, ∀ f∗ ∈ D(F∗p ), N = 1, 2, . . . (42)

If we consider initially the case when f ∈ D(Ap), then PN f → f and Ap PN f → Ap f
in Xp as N → ∞. Moreover, since ‖Bp f‖p ≤ ‖Ap f‖p for all f ∈ D(Ap), it follows
from (42) that

〈f∗, (Ap +Bp)f〉 = 〈F∗p f∗, f〉, ∀ f ∈ D(Ap), f
∗ ∈ D(F∗p ),

and, since Fp is the closure of (Ap +Bp, D(Ap)), we obtain

〈f∗, Fp f〉 = 〈F∗p f∗, f〉, ∀ f ∈ D(Fp), f
∗ ∈ D(F∗p ).

This shows that F∗p ⊆ F ∗p . To establish the reverse inclusion, we use the fact that,
if f∗ ∈ D(F ∗p ), then, on replacing PN f by eN , (39) becomes

(F ∗p f∗)N

=〈F ∗p f∗, eN 〉 = 〈f∗, (Ap +Bp)eN 〉 = aN

(
−f∗N +

N−1∑
i=1

bi,Nf
∗
i

)
, N = 2, 3, . . .

Since

|〈F ∗p f∗, eN 〉| ≤ ‖F ∗p f∗‖
X∗

p
‖eN‖p = ‖F ∗p f∗‖

X∗
p
Np,

we deduce that f∗ ∈ D(Fp).
Now suppose that e∗ is an eigenvector of F ∗p corresponding to the eigenvalue 0 and,
without loss of generality, set e∗1 = 1. Since aj > 0 for all j ≥ 2, we must have

e∗j =

j−1∑
i=1

bi,je
∗
i , j = 2, 3, . . .

Hence

e∗2 = b1,2e
∗
1 = b1,2 = 2, e∗3 = b1,3e

∗
1 + b2,3e

∗
2 = b1,3 + 2b2,3 = 3,

where we have used the mass conservation condition (2). An inductive argument
leads to e∗n = n for all n ∈ N and therefore the geometric multiplicity of λ1 = 0
for F ∗p is at most 1. Hence, by [13, Remark 6.23], λ1 = 0 is a simple dominating
eigenvalue of Fp with corresponding eigenvector e1. The one-dimensional projection

operator P (1) will therefore take the form

P (1)f = Cfe1,

where Cf is a constant which depends on f . However, P (1) is also given by

P (1)f =
1

2πi

∫
Γ1

R(λ, Fp)fdλ

where Γ1 is a circle, centred at 0, with sufficiently small radius. By invariance,
P (1)(PN f) is the spectral projection for the corresponding truncated N -dimensional
problem, and by standard linear algebra [12, pp.42–43], this leads to

P (1)(PN f) =

(
N∑
k=1

kfk

)
e1.

On letting N →∞, we obtain
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S
(1)
Fp

(t)f = P (1)f =

( ∞∑
k=1

kfk

)
e1.

Remark 2. An extensive discussion of coefficients bk,n satisfying (11) and (32) is
given in the Appendix of [6]. Here, for the sake of completeness , we summarize the
main results. First we note that (32) is trivially satisfied for φk = k for k = 1, 2, . . ..
In many models of fragmentation processes, it is often assumed that a fragmenting
parent particle will always split into exactly two daughter particles; for example, see
[2, 9]. In such binary processes, fragmentation can be characterized by a symmetric
infinite matrix (ψi,j)i,j≥1, where, in our notation,

bj,n =
ψj,n−j
an

, an =
1

2

n−1∑
j=1

ψj,n−j , n ≥ 2, 1 ≤ j ≤ n− 1. (43)

In the study of degradation of polymers common forms for ψi,j are

ψi,j = (i+ j)β or ψi,j = (ij)β , β > −1. (44)

It follows, [6, Proposition 6.2], that if the coefficients an and bk,n are given by (43),
where ψi,j takes either of the forms in (44), then (11) and (32), with φk = k2, are
satisfied. Consequently, in both cases identified in (44), the corresponding binary
fragmentation semigroups will have the AEG property provided

an ∼ nδ for some δ > 0 and large n. (45)

In the more general multiple fragmentation case, it is physically realistic to assume
that the coefficients bk,n are non-increasing with respect to k for any n. This
assumption also leads, [6, Proposition 6.1], to (11) and (32) being satisfied with
φk = k2 and so once again the fragmentation semigroup will have the AEG property
whenever (45) is satisfied.
On the other hand, let us consider a binary fragmentation process defined by

b1,2 = 2, and b1,n = bn−1,n = 1, bi,n = 0, n ≥ 2, 2 ≤ i ≤ n− 2. (46)

Then ∆
(p)
n = np − (1 + (n − 1)p) = o(np) and so (11) is not satisfied. Indeed,

[6, Proposition 6.3], for the fragmentation rates defined by a1 = 0 and an = n

for n ≥ 2, we have (Fp, D(Fp)) = (−Ap +Bp, D(Ap)) 6= (−Ap + Bp, D(Ap)) and
{SFp

(t)}t≥0 is not analytic.
From the physical point of view, it seems that a fragmentation process generates an
analytic and compact semigroup if the distribution of daughter particles is uniform
or shifted towards smaller particles so that there is no domination of large particles
as in the last example. Indeed, one can then think that the former are close to finite
dimensional, and thus regular, fragmentation processes.
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[14] P. Laurençot, The discrete coagulation equations with multiple fragmentation, Proc. Edin-

burgh Math. Soc. (2), 45 (2002), 67–82.

[15] A. C. McBride, A. L. Smith and W. Lamb, Strongly differentiable solutions of the discrete
coagulation-fragmentation equation, Physica D, 239 (2010), 1436–1445.
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