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Tag der mündlichen Prüfung: 20. September 2017

D 17
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Kurzfassung

Die vorliegende Doktorarbeit beschäftigt sich mit kooperativen Netzwerken mit

mehreren Aufgaben. Kooperative Netzwerke bestehen aus einer Sammlung von Agenten

mit Adaptions- und Lernfähigkeiten. Die Idee, Daten zwischen benachbarten Agenten

auszutauschen, ist das grundlegende Mittel, um verteilte Algorithmen für kooperative

Netzwerke ohne Fusionszentrum zu entwerfen. Dieses Schlüsselverfahren wurde durch

das kollektive Verhalten diverser Tiergruppen, wie beispielsweise Bienenschwärme, Bak-

terienkolonien, Staren- und Fischschwärme, inspiriert. In diesen und vielen anderen

Fällen weist die Gruppe als Ganzes ein Verhalten auf, das an den Individuen selbst

nicht beobachtet werden kann. Diesem organisierten Verhalten kann auf den Grund

gegangen werden, wenn man die Vielzahl an Interaktionen zwischen den Agenten be-

trachtet.

In vielen Netzwerkanwendungen ist es erforderlich, verschiedene, in der Umgebung

präsente Modelle zu erkennen und zu verfolgen. In unserer Forschung konzentrieren wird

uns auf Netzwerke mit mehreren Aufgaben, in denen die einzelnen Agenten Interesse

an unterschiedlichen Zielen haben können. Eine Schwierigkeit in solchen Netzwerken

ist die Tatsache, dass die Agenten im Vorhinein nicht wissen, welche Modelle von ihren

Nachbarn beobachtet werden. Außerdem ist ihnen die Gesamtzahl der beobachteten

Modelle sowie deren Indizes nicht bekannt. Wir schlagen ein adaptives und verteiltes

Gruppierungsverfahren vor, das es den Agenten ermöglicht, von eingehenden Daten-

strömen zu lernen und darauf basierend auf robuste Weise zu gruppieren. Sobald Grup-

pen gebildet wurden, kann die Kooperation zwischen den Agenten mit gleichem Ziel

die Leistung des Schätzverfahrens steigern. Basierend auf der Gruppenbildung können

die ungenutzten Verbindungen zwischen Agenten mit unterschiedlichen Zielen genutzt

werden, um Agenten mit demselben Ziel aber ohne direkte Verbindung zu verknüpfen.

Wir analysieren die Leistung des Gruppierungsprozesses and zeigen, dass die Fehler-

wahrscheinlichkeiten bei der Gruppenbildung exponentiell zu Null abfallen. Ferner

untersuchen wir die mittlere quadratische Leistung des vorgestellten Gruppierungsver-

fahrens und schlagen ein verteiltes Kennzeichnungssystem vor, das jeder Gruppe einen

eindeutigen Index für ihr beobachtetes Modell zuweist.

Bestimmte Tiergruppen, wie beispielsweise Bienenschwärme, bestehen aus informierten

und uninformierten Agenten und nur erstere sammeln Informationen über die Umge-

bung. Wir betrachten ein Netzwerk, in dem die informierten Agenten unterschiedliche

Modelle beobachten und Informationen über Ihre Beobachtungen an die uninformierten

Agenten übermitteln. Jeder uninformierte Agent antwortet einem informierten und tritt
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dessen Gruppe bei. Wir schlagen ein adaptives und verteiltes Gruppierungs- und Par-

titionsverfahren vor, das die informierten Agenten basierend auf ihren beobachteten

Modellen in verschiedene Gruppen einteilt. Anschließend wenden wir eine verteilte

Strategie an, um die uninformierten Agenten in etwa gleich große Gruppen um die

informierten Gruppen herum zu verteilen.

In manch anderen Situationen müssen sich die Agenten zwischen mehreren Optionen,

wie z.B. welche Nahrungsquelle sie verfolgen sollen, entscheiden. Wir stellen ein Ver-

fahren zur verteilten Entscheidungsfindung in adaptiven Netzwerken vor, in dem die

Agenten Daten von verschiedenen Modellen sammeln. Die Agenten müssen sich für ein

Modell entscheiden, das sie schätzen und verfolgen. Sobald sich das Netzwerk auf ein

gewünschtes Modell geeinigt hat, verbessert die Kooperation zwischen den Agenten die

Schätzleistung, indem Daten über das Netzwerk weitergeleitet werden.

Wir untersuchen alle Szenarien und Methoden sowohl in statischen als auch in mo-

bilen Netzwerken. Die Simulationen veranschaulichen die Leistung der vorgestellten

Strategien und vergleichen diese mit dem aktuellen Stand der Forschung.
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Abstract

This PhD thesis focuses on cooperative multi-task networks. Cooperative networks

consist of a collection of agents with adaptation and learning abilities. The idea of

sharing data among the neighboring agents is the basic tool for designing distributed

algorithms for cooperative networks without a fusion center. This key technique is

inspired by the collective behavior of some animal groups such as bee swarms, bacteria

colonies, starling flocks, and fish schools. In these cases and in many more, the group

of individuals as a whole exhibits a behavior that cannot be accessed at the individual

members. This organized behavior can be understood by considering the large amount

of interactions among agents.

There arises the need in many network applications to infer and track different models

of interest in an environment. In our research, we focus on multi-task networks where

the individual agents might be interested in different objectives. One challenge in

these networks is that the agents do not know beforehand which models are being

observed by their neighbors. Furthermore, the total number of the observed models

and their indices are not available to them, either. We propose a distributed clustering

technique that allows the agents to learn and form their clusters from streaming data

in a robust manner. Once clusters have been formed, cooperation among agents with

similar objectives can increase the performance of the inference task. Based on the

cluster formation, the unused links among the agents that track different models are

exploited to link the agents that are interested in the same model but do not have direct

links between each other. We analyze the performance of the clustering scheme and

show that the clustering error probabilities decay exponentially to zero. In addition, we

examine the mean-square performance of the proposed clustering scheme. Furthermore,

we propose a distributed labeling system, which ensures that each cluster has a unique

index for its observed model.

Certain types of animal groups, such as bee swarms, consist of informed and uninformed

agents where only the informed agents collect information about the environment. We

consider a network where the informed agents observe different models and send infor-

mation about them to the uninformed ones. Each uninformed agent responds to one

informed agent and joins its group. We suggest an adaptive and distributed cluster-

ing and partitioning approach that allows the informed agents in the network to be

clustered into different groups according to the observed models; then we apply a de-

centralized strategy to split the uninformed agents into groups of approximately equal

size around the informed agents.
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In some other situations, the agents in the network need to decide between multiple

options, for example, to track only one of multiple food sources. We propose a dis-

tributed decision-making approach over adaptive networks where agents in the network

collect data generated by different models. The agents need to decide which model

to estimate and track. Once the network reaches an agreement on one desired model,

the cooperation among the agents enhances the performance of the estimation task by

relaying data throughout the network.

We investigate all scenarios and approaches in both cases: static and mobile networks.

The simulations illustrate the performance of the proposed strategies and compare them

with state-of-the-art approaches.
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state (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.24 Transient mean-square deviation (MSD). . . . . . . . . . . . . . . . . . . 120

5.25 Statistical noise and signal profiles over the mobile network. . . . . . . . . . 121

5.26 Maneuver of the agents with four sources in time instants i=1 (a), i=200 (b),

i=500 (c), and i=1000 (d). The unit length of the x- and y-axis is the body

length of the agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



XIV LIST OF FIGURES

5.27 Transient mean-square deviation (MSD) of the mobile network. . . . . . . . 122



XV

List of Tables

5.1 Decision-making success rate Rr and the average time required to achieve

agreement Tr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Decision-making success rate for different C. . . . . . . . . . . . . . . . . . 119





1

Chapter 1

Introduction

‘The beginning is the most important
part of the work.’

Plato

Lately, biological multi-agent systems have been adopted as a source of inspiration

for self-organizing systems. Self-organizing has been studied in biology showing a rich

variety of collaborative behaviors and presenting interesting characteristic such as scal-

ability and fault tolerance [1]. One example of these self-organizing systems are fish

swarms. A fish swarming system consists of a large number of homogenous, simple

agents that interacting locally among themselves resulting in an interesting global be-

havior without any central control.

Apart from that, modern applications increasingly rely on small and wireless devices,

such as mobile phones, laptops, and sensors, that interact each other. The steadily

increasing number of these devices in daily life provides powerful basis. These emerging

structures allow the implementation of a wide range of new application and services,

such as rescue applications, disaster prevention, and monitoring applications. Some

situations such as excluding or including agents in the network, time-varying network

topologies, and unpredictable changes in the environment, cannot be handled by cen-

tralized design [1]. Bio-inspired algorithms are capable of providing low-cost and fast

solutions to several problems [1–4]. The main idea of these algorithms is that the in-

dividual simple agents can overcome their individual limitations through collaboration

to achieve complex tasks in a distributed manner.

Adaptive networks are suitable to model the complex and self-organized behavior of

biological systems [5–7]. They consist of spatially distributed agents that are linked

together through a topology and cooperate with each other through local interactions

to solve distributed inference problems in real-time. Two classes of fully decentralized

strategies have been studied in the literature, namely, consensus and diffusion strategies.

The consensus strategies were proposed in the context of distributed optimization and

estimation problems [8]. While diffusion strategies were introduced to solve distributed

estimation and adaptation problems [9–16].

In this thesis, decentralized approaches that mimic and simulate selective interesting

collective behaviors of animal groups are considered. We explain each approach with
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the data and network model. We propose some error measurements for evaluation.

Moreover, we provide some theoretical performance analysis of the proposed algorithms

and validate them with practical simulations.

1.1 Contributions

- Decentralized Clustering and Linking by Networked Agents:

We consider the problem of decentralized clustering and estimation over multi-

task networks, where the agents infer and track different models of interest. The

agents do not know beforehand which model is generating the data they sense.

They also do not know which agents in their neighborhood belong to the same

cluster. We propose a decentralized clustering algorithm aimed at identifying

and forming clusters of agents of similar objectives, and at guiding cooperation to

enhance the inference performance. While links between agents following different

objectives are ignored in the clustering process, we show how to exploit these links

to relay critical information across the network for enhanced performance [17–19].

Moreover, the agents do not know the index of their observed models. We propose

a labeling system that depends on an electing process to elect a master agent for

each cluster. This master agent provides a label for its cluster, thus ensuring that

each cluster has a unique model index.

- Decentralized Partitioning Over Inhomogeneous Multi-Agent Net-

works:

We propose a decentralized partitioning technique aimed at implementing a dy-

namic multi-task network using adaptation and learning in the presence of in-

formed and uninformed agents. The algorithm ensures a fair partitioning process

to distribute the uninformed agents among the groups that are interested in sev-

eral objectives. Moreover, the decentralized technique has a self-organizing feature

that endows the network with a learning ability in stationary and non-stationary

environments. We have applied the proposed technique in both static and mobile

networks and shown that the size of the groups matches the centralized partition-

ing size well [20].

- Decentralized Decision-Making Over Adaptive Networks:

We consider a distributed mean-square-error estimation problem over a multi-task

network. Two definitions are introduced: the observed model, i.e., to the one, from

which an agent collects data, and the desired model, i.e., the one towards which

the agent decides to move. The agents do not know which model generated the
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data they collect; they also do not know which other agents in their neighborhood

sense data arising from the same model. Therefore, each agent needs to determine

the subset of its neighbors that observes the same model. The objective is to reach

an agreement among all agents in the network on one common model to estimate

and track [21].

1.2 Publications

The period of doctoral candidacy has culminated in the following publications:

Internationally Refereed Journal Articles

- S. Khawatmi, A. H. Sayed, and A. M. Zoubir, “Decentralized decision-making

over multi-task networks,” (under review), 2017.

- S. Khawatmi, A. H. Sayed, and A. M. Zoubir, “Decentralized clustering and

linking by networked agents,” IEEE Trans. Signal Processing, vol. 65, pp. 3526–

3537, July 2017.

Internationally Refereed Conference Papers

- S. Khawatmi, X. Huang, and A. M. Zoubir, “Distributed decision-making over

mobile adaptive networks,” in Proc. IEEE Int. Conf. Acoust. Speech Signal

Process. (ICASSP), (New Orleans, USA), March 2017, pp. 3864–3868.

- S. Khawatmi and A. M. Zoubir, “Decentralized partitioning over adaptive net-

works,” in Proc. IEEE International Workshop on Machine Learning for Signal

Processing (MLSP), (Vietri sul Mare, Salerno, Italy), September 2016, pp. 1–6.

- S. Khawatmi, A. M. Zoubir, and A. H. Sayed, “Decentralized clustering over

adaptive networks,” in Proc. 23rd European Signal Processing Conference (EU-

SIPCO), (Nice, France), September 2015, pp. 2745–2749.

- S. Khawatmi, “Signal processing over multi-task networks,” in Proc. 23rd Euro-

pean Signal Processing Conference (EUSIPCO), (Nice, France), September 2015,

p. 1562.
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1.3 Dissertation Overview

Following this introduction, the dissertation is organized as follows:

An introduction to learning and optimization over multi-agent networks relating to

state-of-the-art in this field is considered in Chapter 2.

Chapter 3 presents decentralized clustering and linking algorithms by networked

agents. We first explain the algorithms. Then, the performance analysis and the sim-

ulation results are provided. Finally, we propose an approach to label models over

multi-task networks.

In Chapter 4 a partitioning approach over multi-task networks is considered. We

demonstrate the partitioning procedure and the simulation results for both static and

mobile networks.

Chapter 5 describes the third contribution, decentralized decision-making over multi-

task networks. A decision-making technique that deals with multiple models over net-

works is proposed. We illustrate the motion scheme of the mobile networks with the

decision-making technique. Then, we explore the convergence of the process of achiev-

ing the agreement over the network theoretically and practically.

Finally, Chapter 6 concludes and summarizes the thesis.
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Chapter 2

Fundamentals and Related Work

‘If I have seen further it is by
standing on the shoulders of giants.’

Isaac Newton

In this chapter we review the optimization problem of agents over networks for both

single-task and multi-task networks [7, 22–25]. We present the gradient-descent algo-

rithm, which is commonly used for adaptation, learning, and optimization problems

by stand-alone single agents and networked agents. The case of real-valued arguments

and constant step-sizes is considered. In addition, we explain the motion mechanism

for mobile adaptive networks. Finally, the state-of-the-art in the field of multi-task

networks is highlighted1.

Notation:

We use lowercase letters to denote vectors, uppercase letters for matrices, plain letters

for deterministic variables, and boldface letters for random variables. The superscript

◦ is used to indicate true values. The letter E denotes the expectation operator. The

Euclidean norm is denoted by ‖ · ‖. The symbols 1 and I denote the all-one vector and

the identity matrix of appropriate sizes, respectively. We write (·)⊺, (·)−1, and Tr(·)

to denote transposition, matrix inversion, and matrix trace, respectively. The diag(·)

operator extracts the diagonal entries of its matrix argument and stacks them into a

column.

2.1 Risk and Loss Functions

Let J(w) ∈ R denote a real-valued cost function of a real-valued vector argument,

w ∈ RM . The cost function J(w) is the expectation of some loss function Q(w;x):

J(w) = E Q(w;x). (2.1)

1This chapter presents the fundamentals of adaptation, learning, and optimization over networks
mostly based on the book [22].
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We denote the gradient vectors of J(w) relative to w and w⊺ by the following vectors:

∇wJ(w) ,

[
∂J(w)

∂w1

∂J(w)

∂w2
· · ·

∂J(w)

∂wM

]
, (2.2)

∇w⊺J(w) ,
[
∇wJ(w)

]⊺
, (2.3)

respectively, where ∇wJ(w) is a row vector, while ∇w⊺J(w) is a column vector. The

individual entries of w are given by

w , col{w1, w2, . . . , wM}. (2.4)

We define the Hessian matrix of J(w) with respect to w as follows:

∇2
wJ(w) , ∇w⊺J(w)

[
∇wJ(w)

]
= ∇wJ(w)

[
∇w⊺J(w)

]
(2.5)

where ∇2
wJ(w) is an M ×M symmetric matrix. Quadratic costs are widely used in

estimation and adaptation problems.

Mean-square-error cost [22]:

Let d denote a zero-mean scalar random variable with variance σ2
d = E d2 and let u

denote a zero-mean 1 ×M random vector with covariance matrix Ru = E u⊺u > 0.

The variables {d,u} represent the random variable x mentioned in (2.1). The cross

covariance vector is denoted by rdu = E du⊺. The idea is to seek the vector w◦ that

minimizes the following cost function:

J(w) , E (d− uw)2 = σ2
d − 2r⊺duw + w⊺Ruw. (2.6)

This quadratic cost function corresponds to the following loss function:

Q(w;x) , (d− uw)2 = d2 − 2duw + w⊺u⊺uw. (2.7)

The gradient vector and Hessian matrix of J(w) are given by

∇wJ(w) = 2(Ruw − rdu)
⊺, (2.8)

∇2
wJ(w) = 2Ru. (2.9)

Figure 2.1 shows an illustration of the mean-square-error cost for the two-dimensional

case, where M = 2. The individual entries of w ∈ RM are given by w = col{w1, w2}.

2.2 Optimization via Gradient-Descent

Stochastic gradient algorithms are powerful iterative methods for solving optimization

problems of the following form:

w◦ = arg min
w

J(w). (2.10)
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Figure 2.1. Quadratic cost function for the two-dimensional case, M = 2.

To proceed in solving the optimization problem we assume the following conditions on

the cost function:

1. The cost function J(w) is twice–differentiable.

2. The cost function J(w) is ν–strongly convex and satisfies – for some positive

parameters ν ≤ δ:

0 < νIM ≤ ∇2
wJ(w) ≤ δIM . (2.11)

3. The gradient vector of J(w) is required to be δ–Lipschitz:

‖∇wJ(w2)−∇wJ(w1)‖ ≤ δ‖w2 − w1‖. (2.12)

In this thesis we focus on the gradient-descent algorithm, which requires knowledge of

the actual gradient vector and has the following form for a constant step-size µ > 0:

wi = wi−1 − µ∇w⊺J(wi−1) (2.13)

where i ≥ 0 is the index of time (iteration). Assume that the cost function J(w)

satisfies the conditions (2.11) and (2.12). It then holds that for any initial iterate w−1

the gradient-descent algorithm (2.13) generates iterates wi that converge exponentially

fast to the global minimizer, w◦, if the step-size µ satisfies

0 < µ <
2ν

δ2
. (2.14)
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We denote the error vector at time instant i by w̃i and calculate it as

w̃i = w◦ − wi. (2.15)

We can write

‖w̃i‖
2 ≤ α‖w̃i−1‖

2 (2.16)

where 0 ≤ α < 1 is a real-valued scalar and given by

α = 1− 2µν + µ2δ2. (2.17)

Mean-square-error cost [22]:

For the quadratic cost example, the Hessian matrices in the example of the mean-

square-error cost satisfy (2.11), where

2λmin(Ru)IM ≤ ∇2
wJ(w) ≤ 2λmax(Ru)IM (2.18)

where λmin(Ru) (λmax(Ru)) is the minimum (maximum) eigenvalue of the matrix Ru.

This implies that: δ = 2λmax(Ru) and ν = 2λmin(Ru). By setting the gradient vector

in (2.8) to zero, the minimizer w◦ is given by the unique solution to the equations

Ruw
◦ = rdu. Substituting (2.8) to the gradient vector into the step (2.13), leads to the

following iterative algorithm

wi = wi−1 − 2µ(rdu − Ruwi−1). (2.19)

The iterates wi generated by this recursion will converge to w◦ at an exponential rate

for any step-size satisfying condition (2.14), which is given by

µ <
λmin(Ru)

λ2max(Ru)
. (2.20)

2.2.1 Stochastic Gradient-Descent

As mentioned before, the gradient-descent algorithm requires knowledge of the actual

gradient vector of the cost function. Since in the context of adaptation and learning

this information is not available beforehand, we need to approximate it. We do so by

replacing the true gradient with an approximate gradient leading to stochastic gradient

algorithms. This approximation causes a gradient error that interferes with the oper-

ation of the algorithm. Therefore, it is important to evaluate resulting performance

degradation. Jointly, the stochastic approximation step provides a tracking property

into the operation of the gradient-descent algorithm. The stochastic gradient-descent
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is able to track drifts in the minimizer location. This is because stochastic gradient

implementations approximate the gradient vector from streaming data and, therefore,

the drifts in the signal models will be reflected in these realizations.

Let J(w) ∈ R denote the real-valued cost function of a real-valued vector argument

w ∈ RM and consider the following minimization problem:

w◦ = arg min
w

J(w). (2.21)

We assume that J(w) is twice-differentiable and satisfies conditions (2.11) and (2.12).

Again, the cost function J(w) is the expectation of some loss function Q(w;xi) and is

given by

J(w) = E Q(w;xi) (2.22)

where the expectation is taken over the distribution of xi. The traditional gradient-

descent algorithm for solving (2.22) was described by (2.13) as follows:

wi = wi−1 − µ∇w⊺J(wi−1). (2.23)

The true gradient vector, ∇w⊺J(wi−1), in (2.23) is not available. The exact form of J(w)

is also unknown since the expectation of Q(w;xi) cannot be computed. Therefore, we

replace the true gradient vector∇w⊺J(wi−1) by an instantaneous approximation denoted

by ∇̂w⊺J(wi−1). This replacement leads to the following stochastic-gradient recursion:

wi = wi−1 − µ∇̂w⊺J(wi−1). (2.24)

Mean-square-error cost (LMS) [22]:

Let d(i) denote a streaming sequence of zero-mean random variables with variance

σ2
d = E d(i)2. Let ui denote a streaming sequence of 1 ×M independent zero-mean

random vectors with covariance matrix Ru = E u
⊺
iui > 0. Both processes {d(i),ui} are

assumed to be jointly wide-sense stationary. The cross-covariance vector of {d(i),ui}

is given by rdu = E d(i)u⊺
i . The processes {d(i),ui} are related via a linear regression

model of the form

d(i) = uiw
◦ + v(i) (2.25)

for some unknown vector w◦. We assume that the noise process v(i) is zero-mean white

with power σ2
v = E v(i)2 and independent of uj for all i, j. We seek to estimate w◦ by

minimizing the following mean-square error cost:

J(w) = E (d(i)− uiw)
2 (2.26)

where the processes {d(i),ui} represent the random data xi in (2.24). The gradient-

descent recursion that is given by (2.19) requires knowledge of the second-order mo-

ments Ru and rdu. This information is not available beforehand. Instead, the adaptive
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agent senses realizations {d(i),ui}, the statistical distributions of which have moments

{rdu, Ru}. We can use these realizations to approximate the moments and the true

gradient vector. Different constructions for this purpose lead to different adaptive

algorithms. One option is to use the data {d(i),ui} to compute instantaneous approx-

imations for the unavailable moments at every time instant i as follows:

rdu ≈ d(i)u
⊺
i , Ru ≈ u

⊺
iui. (2.27)

The true gradient vector is approximated by:

∇̂w⊺J(w) = 2(u⊺
iuiw − u⊺

id(i)). (2.28)

Using the approximations in (2.27) leads to the following least-mean-squares (LMS)

algorithm:

wi = wi−1 − 2µ u⊺
i (d(i)− uiwi−1). (2.29)

2.2.2 Gradient Noise Process

The approximate gradient vector in (2.24) introduces disturbances that are not present

in the original recursion in (2.23). We refer to the perturbation as gradient noise, which

is defined as

si(wi−1) , ∇̂Jw⊺(wi−1)−∇Jw⊺(wi−1). (2.30)

In the presence of the noise disturbance si(wi−1) the stochastic iterate wi will not

converge to the minimizer w◦ using constant step-sizes. Some decay in performance

occurs because the iterate wi will fluctuate close to w◦ in steady-state.

Let the symbol Fi−1 represent the collection of all possible random events generated

by the past iterates {wj} up to time (j ≤ i − 1). The filtration Fi−1 represents the

information about {wj} that is available up to time (i− 1),

Fi−1 = filtration{w−1,w0,w1, . . . ,wi−1}. (2.31)

Some conditions on the stochastic property of the gradient noise process (2.30) are

assumed in order to examine the convergence and performance of the stochastic-gradient

recursion in (2.24).

It is assumed that the first and second-order conditional moments of the gradient noise

process satisfy the following conditions for any w ∈ Fi−1:

E [si(w) |Fi−1] = 0 (2.32)

E
[
‖si(w)‖2 |Fi−1

]
≤ β̄2‖w‖2 + σ̄2

s (2.33)
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for some non-negative scalars β̄2 and σ̄2
s . Conditions (2.32) and (2.33) imply that

E [si(wi−1) |Fi−1] = 0 (2.34)

E
[
‖si(wi−1)‖

2 |Fi−1

]
≤ β2‖w̃i−1‖

2 + σ2
s (2.35)

where β2 and σ2
s are non-negative scalars given by

β2 = 2β̄2 (2.36)

σ2
s = 2β̄2‖w◦‖2 + σ̄2

s . (2.37)

The error vector w̃i−1 is given by

w̃i−1 = w◦ −wi−1. (2.38)

Taking the expectation of (2.34) and (2.35) implies that the gradient noise process

satisfies

E si(wi−1) = 0 (2.39)

E ‖si(wi−1)‖
2 ≤ β2 E ‖w̃i−1‖

2 + σ2
s . (2.40)

2.2.3 Stability of First, Second, and Fourth-Order Error Mo-
ments

In this section we study the convergence of the stochastic-gradient recursion from (2.24)

in the mean-square-error sense.

2.2.3.1 Mean-Square Stability

Assume that the conditions (2.11), (2.12), (2.32), and (2.33) on the cost function and

the gradient noise process hold. Consider the non-negative scalars in (2.36) and (2.37).

For any step-size value, µ, satisfying

µ <
2ν

δ2 + β2
(2.41)

it holds that E‖w̃i‖2 converges exponentially and for sufficiently small step-sizes it holds

that

lim sup
i→∞

E ‖w̃i‖
2 = O(µ). (2.42)
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w◦

J
(w

)

(a)

w◦

(b)

Figure 2.2. Illustration of the impact of the step-size for two cases: µ is not sufficiently small
(a) and µ is sufficiently small (b).

2.2.3.2 Fourth-Order Moment Stability

To establish the convergence of the fourth-order moment E‖w̃i‖4 to a bounded region.

It is assumed that the first and fourth-order conditional moments of the gradient noise

process satisfy the following conditions for any w ∈ Fi−1:

E [si(w) |Fi−1] = 0 (2.43)

E
[
‖si(w)‖4 |Fi−1

]
≤ β̄2‖w‖4 + σ̄4

s (2.44)

for some non-negative scalars β̄2 and σ̄2
s .

Assume the conditions (2.11), (2.12), (2.43), and (2.44) on the cost function and the

gradient noise process hold, for sufficiently small step-sizes it holds that

lim sup
i→∞

E ‖w̃i‖
2 = O(µ) (2.45)

lim sup
i→∞

E ‖w̃i‖
4 = O(µ2). (2.46)

In the following example we will explain the impact of step-size µ on the learning

process. Let M = 1 as shown in Fig. 2.2. Using a step-size µ that is not sufficiently

small leads to the case (a) where it is not possible to hit the minimum value w◦ of the

cost function J(w) with a small error. However, choosing step-size µ sufficiently small

allows the gradient-decent process to converge to the minimum value w◦ of the cost

function J(w) with a small error as shown in case (b).
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Figure 2.3. Simulated second-order error moment, E ‖w̃i‖2, using two different step-sizes,
µ1 and µ2.

Figure 2.3 depicts the simulated second-order error moment E ‖w̃i‖2 for two cases:

µ1 = 0.1 and µ2 = 0.05. With a large step-size the error curve converges faster but

with a higher steady-state error. However, with a sufficiently small step-size the error

curve converges slower but reaches a lower level in steady-state.

The term steady-state refers to the operation of the stochastic-gradient implementation

after sufficient iterations have elapsed, i.e., as i→ ∞.

2.2.3.3 Mean Stability

To establish the convergence of the first-order moment ‖E w̃i‖ to a bounded region, we

assume the following smoothness conditions: It is assumed that the Hessian matrix of

the cost function, J(w), and the noise covariance matrix defined by

Rs,i(w) , E
[
si(w)s⊺i (w) | Fi−1

]
(2.47)

are locally Lipschitz continuous in a small region around w = w◦, i.e.,

‖∇2
wJ(w

◦ +∆w)−∇2
wJ(w

◦)‖ ≤ κ1‖∆w‖ (2.48)

‖Rs,i(w
◦ +∆w)− Rs,i(w

◦)‖ ≤ κ2‖∆w‖
γ (2.49)
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for a small ‖∆w‖ ≤ ǫ and for some constants κ1 ≥ 0, κ2 ≥ 0, and 0 < γ ≤ 4.

Now, assume the conditions (2.11), (2.12), (2.43), (2.44), and (2.48) on the cost function

and the gradient noise process hold. Then, for sufficiently small step-sizes it holds that

lim sup
i→∞

‖E w̃i‖ = O(µ). (2.50)

We assume that the covariance matrix in (2.47) approximates a constant value in the

limit if we evaluate it at w◦. This covariance matrix is given by

Rs , lim
i→∞

E
[
si(w

◦)s⊺i (w
◦) | Fi−1

]
. (2.51)

2.2.4 Long-Term Error Dynamics

Assume the conditions (2.11), (2.12), (2.43), (2.44), and (2.48) on the cost function

and the gradient noise process hold. After sufficient iterations the error dynamics of the

stochastic-gradient algorithm in (2.24) can be approximated by the following model:

w̃
′
i = (I − µH)w̃′

i−1 + µsi(wi−1) (2.52)

where H is a constant, symmetric, and positive-definite matrix defined as the value of

the Hessian matrix at the minimizer w◦, i.e.,

H , ∇2
wJ(w

◦). (2.53)

It is easy to work with the recursion (2.52) because its dynamics are driven by the

constant matrix H compared to the random matrixH i−1 in the original error recursion:

w̃i = (I − µH i−1)w̃i−1 + µsi(wi−1). (2.54)

However, we will explore the mean-square-error expression of the long-term model (2.52)

to provide an accurate representation of the mean-square-error of the original stochastic-

gradient algorithm.

2.2.4.1 Mean-Square Stability of the Long-Term Model

Assume the conditions (2.11) and (2.12) on the cost function and the gradient noise

process hold. For sufficiently small step-sizes µ, iterate w′
i which is generated by the

long-term model (2.52), satisfies

lim sup
i→∞

E ‖w̃′
i‖

2 = O(µ). (2.55)
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2.2.4.2 Mean Stability of the Long-Term Model

Assume the conditions (2.11), (2.12), (2.43), and (2.44) on the cost function and the

gradient noise process hold. For sufficiently small step-sizes, iteratew′
i is asymptotically

zero-mean, i.e.,

lim
i→∞

E w̃
′
i = 0. (2.56)

2.2.4.3 Approximation Error

The approximation error refers to the difference between the original error recur-

sion (2.54) and the long-term error recursion (2.52).

Assume the conditions (2.11), (2.12), (2.43), and (2.44) on the cost function and the

gradient noise process hold. For sufficiently small step-sizes it holds that

lim sup
i→∞

E ‖w̃i − w̃
′
i‖

2 = O(µ2) (2.57)

lim sup
i→∞

E ‖w̃i‖
2 = lim sup

i→∞
E ‖w̃′

i‖
2 +O(µ3/2). (2.58)

2.2.5 Performance Metrics

2.2.5.1 Mean-Square Deviation (MSD)

The mean-square deviation measure is defined as follows:

MSD , µ

(
lim
µ→0

lim sup
i→∞

1

µ
E ‖w̃i‖

2

)
. (2.59)

For sufficiently small step-sizes, we use the following definition for the mean-square

deviation measure:

MSD , lim
i→∞

E ‖w̃i‖
2. (2.60)
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2.2.5.2 Excess-Risk (ER)

We define the excess-risk (ER), which is called the excess-mean-square-error (EMSE)

in the adaptive filtering literature [5, 7] as follows:

ER , µ

(
lim
µ→0

lim sup
i→∞

1

µ
E {J(wi−1)− J(w◦)}

)
. (2.61)

Again, we write the definition for the ER more simply for sufficiently small step-sizes

as

ER = lim
i→∞

E ‖w̃i−1‖
2
H/2 (2.62)

where the operation ‖ · ‖2Σ is the weighted squared Euclidean norm.

MSD and ER for the mean-square performance are given, by [22, pp. 391, 397]

MSD =
µ

2
Tr(H−1Rs) (2.63)

ER =
µ

4
Tr(Rs) (2.64)

respectively, where H and Rs are defined as in (2.51) and (2.53).

Performance of LMS:

We have H = 2Ru and Rs = 4σ2
vRu for the LMS recursion (2.29). For sufficiently small

step-sizes, MSD and ER of the LMS filter are given by

MSD = µ M σ2
v (2.65)

ER = µ σ2
v Tr(Ru) (2.66)

respectively. Both of which are of order O(µ).

2.3 Optimization in Stand-Alone Single Agents

2.3.1 Network Model

Figure 2.4 shows an example of a multi-agent network. We assume that the individual

agents, k = 1, 2, . . . , N , act without any cooperation among each other. The objective

is to determine the unique minimizer w◦ of the aggregate cost

Jglob(w) ,
N∑

k=1

Jk(w) (2.67)

where each individual cost function Jk(w) satisfies (2.11) and (2.12). In this non-

cooperative case, each agent k runs the following stochastic-descent algorithm:

wk,i = wk,i−1 − µ∇̂w⊺Jk(wk,i−1). (2.68)
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1

2

Figure 2.4. Network with stand-alone agents.

2.3.2 Stand-Alone LMS Networks

Each agent k receives the following streaming data {dk(i),uk,i} at each time isntant i.

We assume the data at each agent satisfies the statistical properties (2.11) and (2.12)

and admits the linear regression model

dk(i) = uk,iw
◦ + vk(i) (2.69)

where k = 1, 2, . . . , N . We denote the statistical moments of the data at agent k by

σ2
v,k = E | vk(i) |

2, Ru,k = E u
⊺
k,iuk,i > 0 (2.70)

Assuming that all Ru,k are equal across agents, i.e., Ru,k = Ru, the mean-square-error

cost for each agent k is given by

Jk(w) = E | dk(i)− uk,iw |2 . (2.71)

Each agent k satisfies the condition:

0 < νIM ≤ ∇2
wJk(w) ≤ δIM (2.72)

with δ = 2λmax(Ru) and ν = 2λmin(Ru). Agents seek to estimate w◦ by running the

LMS learning method which is described by the following recursion:

wk,i = wk,i−1 − 2µu⊺
k,i(dk(i)− uk,iwk,i−1). (2.73)

Agent k has an individual MSD performance that is given by

MSDno,k = µ M σ2
v,k. (2.74)

The overall network MSD performance is given by:

MSDno,net = µ M

(
1

N

N∑

k=1

σ2
v,k

)
. (2.75)

Consequently, agents with a larger noise variance perform worse and have larger MSD

than agents with a smaller noise variance.



18 Chapter 2: Fundamentals and Related Work

Figure 2.5. Network with a fusion center.

2.4 Optimization in Centralized Networks

2.4.1 Network Model

In this section we consider centralized networks. At every time instant i each agent

transmits its data {dk(i),uk,i} to a fusion center for processing as shown in Fig. 2.5.

The objective is to seek the unique minimizer w◦ of the aggregate cost

Jglob(w) ,
N∑

k=1

Jk(w). (2.76)

In the centralized solution and under some conditions on the aggregate cost Jglob(w) [22,

p.414], it is sufficient for at least one of these costs {Jk(w)} to be strongly-convex.

while the remaining costs can be convex. This ensures the aggregate cost Jglob(w) to

be strong-convexity as well.

To seek the minimizer w◦, the fusion center runs the following stochastic-gradient al-

gorithm at each time instant i:

wi = wi−1 −
µ

N

N∑

k=1

∇̂w⊺Jk(wi−1). (2.77)

2.4.2 Centralized LMS Networks

The fusion center runs a stochastic-gradient algorithm after receiving data from the

agents as follows:

wi = wi−1 + µ

(
1

N

N∑

k=1

2u⊺
k,i(dk(i)− uk,iwi−1)

)
. (2.78)
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The MSD performance of the centralized LMS is given by,

MSDcen = µ M
1

N

(
1

N

N∑

k=1

σ2
v,k

)
. (2.79)

Note that MSDcen is proportional to 1/N times the average noise power across all agents

in (2.74). Thus, it holds for sufficiently small step-sizes that

MSDcen

MSDno,net

≤
1

N
. (2.80)

2.5 Optimization in Distributed Networks

Central control has several disadvantages such as the lack of robustness to fusion center

failure, the lack of scalability, and the waste of communication resources. Distributed

networks are useful in several contexts where scalability, robustness, and low power

consumption are desirable. Here the agents do not need to have access to information

from all other agents. Instead, they only interact with a limited number of neighbors.

This limited cooperation is sufficient to attain a performance that is comparable to that

of the centralized scheme [26–30].

Distributed optimization and estimation over networks without a fusion center has

received interest in recent years, culminating in diffusion adaptation strategies and

incremental adaptive strategies [9–12, 14, 15, 31–33].

2.5.1 Network Model

Consider a connected network of N agents. The network is represented by a graph

consisting of N nodes and a set of edges connecting the nodes to each other. These

nodes are labeled by k = 1, 2, . . . , N . An edge that connects a node to itself is called a

self-loop. Nodes connected by edges are called neighbors. The neighborhood of agent

k is denoted by Nk and it consists of all agents that are connected to k by an edge,

including k itself. We introduce the N ×N adjacency matrix Y = [yℓk], whose elements

are either zero or one depending on whether the agents are linked by an edge or not as

depicted in Fig 2.6. Specifically,

yℓk =

{
1, ℓ ∈ Nk,

0, otherwise.
(2.81)

Agents that are linked by an edge can share information. For emphasis, in Fig 2.6 we

represent the edges between agents k and ℓ by two separate directed arrows with yℓk

and ykℓ.
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Figure 2.6. Distributed network without a fusion center. The neighborhood of agent k is
denoted by Nk.

Figure 2.7. A fully-connected network.

2.5.1.1 Fully-Connected Networks

Figure 2.7 shows an example of a fully-connected network where the size of each neigh-

borhood is equal to the network size, i.e., nk = N , where k = 1, 2, . . .N . Each agent k

has access to the data from all other agents. Therefore, each agent k runs the following

centralized stochastic-gradient step:

wk,i = wk,i−1 −
µ

N

N∑

ℓ=1

∇̂w⊺J ℓ(wk,i−1). (2.82)

2.5.1.2 Combination Matrix

Consider an N ×N matrix A with non-negative real entries aℓk satisfying

aℓk = 0 if ℓ /∈ Nk, 1
⊺A = 1

⊺. (2.83)
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Figure 2.8. Distributed network where the weights {aℓk, akℓ} represent the amount of data
that can flow through the links between agents.

Figure 2.8 shows the scale of the data exchange between agents k and ℓ. There are

several ways by which the combination weights can be selected. We can see that the

combination weights are dictated by the sizes of the neighborhoods (or by the degrees

of the agents). Note that when the neighborhoods vary with time, the degrees will also

vary. The following rules are some of the popular ones and satisfy condition (2.83), for

ℓ ∈ Nk [9]:

1. Averaging rule (uniform): generates a left-stochastic matrix where each entry

aℓk is given by

aℓk =

{
1
nk
, ℓ ∈ Nk,

0, otherwise.
(2.84)

2. Laplacian rule: generates a symmetric and doubly-stochastic matrix with the

entries {aℓk} given by

aℓk =





1
nmax

, ℓ 6= k, ℓ ∈ Nk,

1− nk−1
nmax

, ℓ = k,

0, otherwise

(2.85)

where nmax is the maximum agent degree over the network.

3. Maximum degree rule: generates a symmetric and doubly-stochastic matrix

with the entries {aℓk} given by

aℓk =





1
N
, ℓ 6= k, ℓ ∈ Nk,

1− nk−1
N

, ℓ = k,

0, otherwise.

(2.86)
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4. Metropolis rule: generates a symmetric and doubly-stochastic matrix with the

entries {aℓk} given by

aℓk =





1
max(nk ,nℓ)

, ℓ 6= k, ℓ ∈ Nk,

1−
∑

m∈N−
k
amk, ℓ = k,

0, otherwise.

(2.87)

5. Relative degree: gives more weight to agents that are better connected. This

rule generates a left-stochastic matrix with the entries {aℓk} given by

aℓk =

{
nℓ∑

m∈Nk
nm
, ℓ ∈ Nk,

0, otherwise.
(2.88)

6. Relative degree-variance: assumes that the noise variances of the agents are

known, or can be estimated from the data. The relative degree-variance rule

generates a left-stochastic matrix where each entry aℓk is given by

aℓk =





nℓ σ
2

v,ℓ∑
m∈Nk

nm σ2v,m
, ℓ ∈ Nk,

0, otherwise.
(2.89)

There are other methods to design the combination weights adaptively and opti-

mally [34, 35]. In this thesis we focus only on the static design rules. However, the

topology itself, the number of neighbors, and the distribution of the agents affect the

performance of the network [36].

2.5.1.3 Network Objective

We associate a twice-differentiable individual cost function Jk(w) ∈ R with each agent.

The objective of the network is to seek the unique minimizer of the aggregate cost

function Jglob(w) defined by

Jglob(w) ,
N∑

k=1

Jk(w). (2.90)

It is assumed that the individual cost functions {Jk(w)} are each twice-differentiable

and convex with at least one of them being νd–strongly convex. The aggregate cost

function Jglob(w) is also twice-differentiable and satisfies

0 < νdIM ≤ ∇2
wJ

glob(w) ≤ δdIM (2.91)
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for νd ≤ δd. Under these conditions, the cost Jglob(w) has a unique minimizer denoted

by w◦. It is not required that all individual costs Jk(w) should be strongly convex.

It is sufficient to assume that at least one of these costs is νd–strongly convex while

the remaining costs are simply convex. This condition ensures that Jglob(w) will be

strongly convex as well.

There are several distributed strategies that can be used to seek the minimizer of (2.90),

i.e.,

w◦ = arg min
w

N∑

k=1

Jk(w). (2.92)

We consider three distributed strategies, namely, the consensus and the two diffusion

strategy ATC and CTA.

2.5.2 Consensus Strategy

In this strategy, at each time instant i every agent k performs the following two steps:

ψk,i−1 =

N∑

ℓ=1

aℓkwℓ,i−1 (2.93)

wk,i = ψk,i−1 − µk∇̂w⊺Jk(wk,i−1). (2.94)

Each agent aggregates the iterates from its neighbors and updates this aggregate value

by the gradient vector evaluated at its existing iterate wk,i−1. The intermediate iterate

that results from the neighborhood combination is denoted by ψk,i−1.

Consensus LMS:

For the mean-square-error network example the consensus strategy is given by the

following form:

ψk,i−1 =

N∑

ℓ=1

aℓkwℓ,i−1 (2.95)

wk,i = ψk,i−1 + 2µku
⊺
k,i(dk(i)− uk,iwk,i−1). (2.96)

2.5.3 Diffusion Strategies

The consensus strategy consists of two asymmetrically steps, namely, the decentraliza-

tion step (2.94) and the cooperation term (2.93), which involves a convex combination.
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The asymmetry in the consensus update is problematic when the strategy is used for

adaptation and learning over networks, where it can cause an unstable growth of the

state of the network (see [22, pp. 568,569]). However, diffusion strategies solve the

asymmetry problem.

There are several types of distributed diffusion strategies [11, 12, 16, 37–39]. Two pop-

ular ones strategies are called Adapt-then-Combine (ATC) and Combine-then-Adapt

(CTA) [40, 41].

2.5.3.1 Adapt-Then-Combine Diffusion Strategy (ATC)

In the ATC diffusion strategy, the first operation is the adaptation step where agent

k uses its approximate gradient vector to update wk,i−1 to the intermediate estimate

ψk,i. The agents perform the adaptation step simultaneously to update their iterates

wk,i−1 to the intermediate iterates ψk,i by using information from their neighbors. The

second step is an aggregation step where agent k combines the intermediate iterates

{ψℓ,i} from its neighbors to obtain its updated iterate wk,i.

To summarize, at each time instant i every agent k performs the following two steps:

ψk,i = wk,i−1 − µk∇̂w⊺Jk(wk,i−1) (2.97)

wk,i =
N∑

ℓ=1

aℓkψℓ,i. (2.98)

2.5.3.2 Combine-Then-Adapt Diffusion Strategy (CTA)

On contrast of ATC, the first operation in the CTA diffusion strategy is an aggregation

step where each agent k combines the existing iterates from its neighbors {wℓ,i−1} to

obtain the intermediate iterateψk,i−1. The second operation is an adaptation step where

each agent k approximates its gradient vector and uses it to update its intermediate

iterate to wk,i. In summary, at each time instant i every agent k performs the following

two steps:

ψk,i−1 =

N∑

ℓ=1

aℓkwℓ,i−1 (2.99)

wk,i = ψk,i−1 − µk∇̂w⊺Jk(ψk,i−1). (2.100)
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Note that the gradient vector in the diffusion strategies is now evaluated at ψk,i−1 [40].

In addition, other forms of diffusion strategies are possible by enlarging the cooperation

among the agents through, for instance exchanging the gradient vector approximations

(see Appendix A.1).

2.5.3.3 Diffusion LMS Networks

For the mean-square-error network example, the ATC diffusion strategy is given by the

following form:

ψk,i = wk,i−1 + 2µku
⊺
k,i(dk(i)− uk,iwk,i−1) (2.101)

wk,i =
N∑

ℓ=1

aℓkψℓ,i. (2.102)

In contrast, the CTA diffusion strategy is given by

ψk,i−1 =

N∑

ℓ=1

aℓkwℓ,i−1 (2.103)

wk,i = ψk,i−1 + 2µku
⊺
k,i(dk(i)− uk,iψk,i−1). (2.104)

2.5.4 Stability of First, Second, and Fourth-Order Error Mo-
ments

We describe the non-cooperative, consensus, and diffusion strategies by means of a

single description as follows:

φk,i−1 =
N∑

ℓ=1

a1,ℓkwℓ,i−1 (2.105)

ψk,i =

N∑

ℓ=1

a0,ℓkφℓ,i−1 − µk∇̂w⊺Jk(φk,i−1) (2.106)

wk,i =
N∑

ℓ=1

a2,ℓkψℓ,i (2.107)

where the N ×N matrices A0, A1, and A2 are left-stochastic and satisfy

A⊺
01 = 1, A⊺

11 = 1, A⊺
21 = 1. (2.108)

Furthermore, the left-stochastic matrix P is defined by

P , A1A0A2. (2.109)
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We assume that P is a primitive matrix (see Appendix A.2). Now, different choices of

{A0, A1, A2} correspond to different distributed strategies as follows:

non-cooperative: A1 = A0 = A2 = I → P = I (2.110)

consensus: A0 = A, A1 = A2 = I → P = A (2.111)

ATC diffusion: A2 = A, A0 = A1 = I → P = A (2.112)

CTA diffusion: A1 = A, A0 = A2 = I → P = A. (2.113)

In addition, the aggregate cost in (2.90) and the individual costs Jk(w) satisfy condi-

tions (2.11) and (2.12) as well as the smoothness condition (see [22, p. 546]) are assumed

to hold. Moreover, we assume that the first and second-order moments of the gradient

noise process satisfy the conditions in [22, pp. 496, 497]. Then, for sufficiently small

step-sizes it holds that

lim sup
i→∞

‖E w̃k,i‖ = O(µmax) (2.114)

lim sup
i→∞

E ‖w̃k,i‖
2 = O(µmax) (2.115)

lim sup
i→∞

E ‖w̃k,i‖
4 = O(µ2

max) (2.116)

where µmax is the maximum step-size over the network and k = 1, 2, . . . , N .

2.5.5 Simulations

We present a simulation example of an MSE network. The network consists of N = 30

agents. Figure 2.9 depicts the statistical profile showing how the signal and noise power

vary across the agents. The regressors are of size M = 2, zero-mean Gaussian, inde-

pendent in time and space and have covariance matrices {Ru,k}. The noise variance

of each agent k is denoted by σ2
v,k. Figure 2.10 shows the learning curves for different

diffusion LMS algorithms, the non-cooperation case, and the global (centralized) solu-

tion in terms of EMSE (ER) and MSD. We use µ = 0.05 for all agents and the uniform

rule to generate the diffusion matrix A. The results are averaged over 100 independent

experiments.

2.6 Optimization in Mobile Networks

Mobility allows agents to move to more appropriate locations to improve the quality of

their local observations and towards the desired location when the network is tracking a

target. The objective of this section is to present and study mobile adaptive networks.
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Figure 2.9. Statistical noise and signal profiles over the network.
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cooperative case, ATC, CTA, and the global (centralized) solution.
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Collective motion has been observed in several natural phenomena where animals move

together in amazing synchrony. The individual agents in these groups tend to have

similar speeds and move in parallel while keeping a safe distance from their neighbors

to avoid collisions. Example for this are fish schools [42–46], honeybees swarming

towards a hive [47], birds flying in V-formations [45, 46], and bacteria motility [48, 49].

The works in [50] mimic several collective behaviors of animals groups in fixed and

dynamic topologies.

When applying adaptive diffusion techniques to guide the self-organization pro-

cess, considering harmonious motion and collision avoidance is proposed in many

works [42–46, 51]. The works in [42, 52] developed a diffusion algorithm for mobile

adaptive networks that can move coherently towards a target of unknown location.

In [43, 44] a diffusion adaptation model to simulate the behavior of fish schools in the

presence of predators was proposed. The authors of [53] developed an algorithm for fish

to form a school while foraging for food. The works in [54,55] study adaptive networks

where only a fraction of the agents are assumed to be informed, while the remaining

agents are uninformed. Informed agents collect data and perform the network tasks,

while the uninformed agents only follow and support the informed ones. Furthermore,

in [56] a modified ATC diffusion algorithm for mobile adaptive networks is proposed

where the individual agents are allowed to move in pursuit of a target.

In the following we present diffusion strategies for mobile networks that (i) possess

distributed adaptation abilities and (ii) exhibits collective patterns of motion. The

strategies involve two diffusion steps: one for estimating the location of a target and

another for tracking the centeral velocity of the network. The strategies include velocity

and location control mechanisms to control the motion of the agents in a distributed

manner. We will show via some simulations how the algorithms mimic the coherent

motion of fish schools and let the agents avoid the obstacles.

2.6.1 Network Model

The goal is to estimate a target location w◦ and let the agents move coherently towards

this target. At each time instant i every agent k has access to a scalar measurement

dk(i) and a 1×M regression data vector uk,i. The measurements across all agents are

assumed to be related via the linear regression model:

dk(i) = uk,iw
◦ + nk(i) (2.117)

where nk(i) is a noise process that is assumed to be zero-mean white and independent of

all other variables; all other random process are assumed to be stationary. Figure 2.11
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Figure 2.11. Distance and direction of the target w◦ from agent k at location xk,i. The true
unit direction vector u◦k,i points towards the target w◦.

Figure 2.12. The noise variance over the region of interest.
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shows the illustration of the data in the mobile environment. The true distance between

the target located at w◦ and agent k located at xk,i at time instant i is given by

d◦k(i) = u◦k,i(w
◦ − xk,i) (2.118)

where u◦k,i denotes the true unit direction vector pointing from xk,i to w
◦. This vector

is given by

u◦k,i =
(w◦ − xk,i)

⊺

‖w◦ − xk,i‖
. (2.119)

The gents observe noisy measurements of u◦k,i and d
◦
k(i). Starting from [42], the noisy

location of the target is denoted by qk,i and given by

qk,i = xk,i + dk(i)u
⊺
k,i = w◦ + ηk,i (2.120)

where ηk,i is assumed to be a zero-mean random process with covariance matrix

Πk(i) = ρ‖w◦ − xk,i‖
2IM (2.121)

for some small constant ρ > 0. Furthermore, the noise variance is given by σ2
k(i) =

Tr(Πk(i)). Figure 2.12 shows an example of the noise variance values around the target

location. The closer the agent is to the target location, the lower is the influence of the

noise level. Note that we include a region of high noise, which the agents will have to

avoid and navigate around in the simulations.

2.6.2 Motion Mechanism

Each agent k updates its location vector according to the following relation:

xk,i+1 = xk,i +∆t · vk,i+1 (2.122)

where ∆t is a positive time step. vk,i+1 is the velocity vector of agent k and is computed

as

vk,i+1 = λ · h(wk,i − xk,i) + α ·
gk,i
‖gk,i‖

+ β · vgk,i + γ · δk,i (2.123)

where {λ, α, β, γ} are non-negative weighting factors. Figure 2.13 shows some terms of

the velocity equation. The first term of (2.123) allows the agent to move towards the

target where vbk,i = v
g
k,i. The function h(·) is defined in [42] as follows:

vak,i = h(wk,i − xk,i) =

{
wk,i − xk,i, if ‖wk,i − xk,i‖ ≤ s,

s ·
wk,i−xk,i

‖wk,i−xk,i‖ , otherwise
(2.124)

where s is some positive scaling factor used to bound the speed in pursuing the target.

wk,i is the local estimate of the target’s location. The second term relates to moving
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Figure 2.13. Illustration of the main terms of the velocity equation.

towards regions with lower noise level to improve the estimation performance. The

vector gk,i is given by

gk,i = −
∑

ℓ∈N−
k,i

(
σ2
ℓ (i)− σ2

k(i)
) xℓ,i − xk,i
‖xℓ,i − xk,i‖

(2.125)

where N−
k,i is the set of neighbors of the agent k, excluding k. Note that the network

topology is not fixed and changes over time. The term related to the vector vgk,i, which

is the local estimate of the central velocity of the network, is needed for allowing the

agents to adjust their velocities to be consistent with the average displacement vector

in the neighborhood in harmonic motion. Finally, the last term allows the agents to

maintain a safe distance r between each other to avoid collisions. The vector δk,i is

given by

vck,i = δk,i =
∑

ℓ∈N−
k,i

(‖xℓ,i − xk,i‖ − r)
xℓ,i − xk,i
‖xℓ,i − xk,i‖

. (2.126)

The vectors vgk,i and wk,i are estimated using the diffusion strategy as will be explained

in the next chapters.

2.6.3 Mean-Square-Errors

We are interested in three error quantities when considering mobile networks:

1. The network mean-square deviation MSD for estimating the target location, which

is given by

MSDw(i) ,
1

N

N∑

k=1

E ‖w̃k,i‖
2 (2.127)
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Figure 2.14. Tracking behavior of a mobile network in the far and near fields.

where

w̃k,i = w◦ −wk,i. (2.128)

2. The network mean-square-error for estimating the velocity of the network mass,

which is given by

MSEv(i) ,
1

N

N∑

k=1

E ‖ṽgk,i‖
2 (2.129)

where

ṽ
g
k,i = v◦i − v

g
k,i. (2.130)

The average velocities of all agents in the network is denoted by v◦i .

3. The network mean-square disagreement on velocity (the velocity of agent k rela-

tive to the velocity of the network mass), which is given by

Dv(i) ,
1

N

N∑

k=1

E ‖ṽk,i‖
2 (2.131)

where

ṽk,i = v◦i − vk,i. (2.132)

The performance of motion and velocity are measured in the far field, while the steady-

state performance of the target location estimation is measured in the near field, see

Fig. 2.14.
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2.6.4 Simulations

Fish schooling:

We simulate the motion of mobile networks with 50 agents using the method and the

parameters proposed in [42].

Figure 2.15 illustrates the maneuver of a mobile network over time. The unit length is

the body length of an agent. The green square denotes the target of interest. We place a

region with high noise variance along the way to the target as shown in Fig. 2.12. When

the network approaches the region with high noise, the swarm splits and navigates

around it. Afterwards, the agents regroup again to continue the schooling process.

Finally, the network successfully arrives at the target.

Figures 2.16, 2.17, and 2.18 show the network mean-square-errors which are evaluated

using different values of the parameter λ for the ATC diffusion algorithm and the non-

cooperative case.

2.7 Optimization in Multi-Task Networks

In the previous sections, the agents seek a common objective to find the global minimizer

for some cost function. However, there are important situations where different agents in

a network are interested in different objectives [57–60]. These situations arise frequently

in clustering problems where a subset of the agents belongs to one cluster and another

subset belongs to a second cluster. Cooperation among agents with different objectives

leads to undesired results. Therefore, the agents need to figure out which subset of their

neighbors share their objective.

In this section, we present multi-task networks. Single-task networks are those where

all agents are interested in the same objective and sensing data is generated by only

one source, while the agents in multi-task networks sense data generated by different

sources and they are, therefore, interested in different objectives. We explain later how

to design the combination weights such that the agents are able to cluster and cooperate

only with neighbors that share the same objective.

2.7.1 Network Model

Consider a network with N agents connected by a graph. In addition, assume that

there are C clusters, denoted by C1, C2, . . . , CC , where each Cm represents the set of
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Figure 2.15. Maneuver of a fish school moving towards one food source over time. The length
unit of the x- and y-axis is the body length of the agents.
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Figure 2.18. Transient network mean-square disagreement of the velocities in the far field.

agent indices in that cluster, m ∈ {1, 2, . . . , C}. We associate an unknown column

vector of size M × 1 with each cluster, denoted by w◦
Cm ∈ RM .

Each agent k wishes to recover the model for its cluster; the unknown model for agent

k is denoted by {w◦
k}. Figure 2.19(a) presents a network with only one task (objective),

while Fig. 2.19(b) shows a multi-task network with three clusters represented by three

different colors. All agents in the same cluster are interested in estimating the same

parameter vector. The cluster information is not known to the agents beforehand.

2.7.2 Cost Function

We associate with each agent k a strongly-convex and twice-differentiable individual

cost function, denoted by Jk(w) ∈ R with a unique minimum at w◦
k. The objective of

the network is to seek the minimizer of the aggregate cost function Jglob(w) over the

vectors {wk}. The aggregate cost function is defined by

Jglob(w1, w2, . . . , wN) ,
N∑

k=1

Jk(wk). (2.133)



2.7 Optimization in Multi-Task Networks 37

(a) (b)

Figure 2.19. Example of a distributed single-task network (a) and a distributed multi-task
network (b).

Since agents from different clusters do not share the same minimizers, the aggregate

cost can be rewritten as follows:

Jglob(wC1, . . . , wCC ) ,
C∑

m=1

∑

k∈Cm
Jk(wk) (2.134)

where the model of agent k agrees with the model of the cluster that k belongs to, i.e.,

w◦
k = w◦

Cm if k ∈ Cm.

2.7.3 State-of-the-Art in Multi-Task Networks

There have been several useful works in the literature on the solution of inference

problems for multi-task networks, i.e., for networks with multiple unknown models

(tasks) — see, e.g., [30, 33, 58, 61–67] and the references therein.

In the solutions developed in [64–66], clustering is achieved by relying on adaptive com-

bination strategies, whereby weights on edges between agents are adapted and their

size becomes smaller for unrelated tasks. In these earlier works, there still exists the

possibility that valid links between agents belonging to the same cluster may be over-

looked, mainly due to errors during the adaptation process. The work in [33] assumed

that all agents know a priori the relationship between their tasks and the tasks of their

neighbors, where some of these tasks are local and some are global for the whole agents.

The related version of this work in [58] instead assumes node-specific parameters. The

approach in this work is motivated by results from [67] where the clustering and learn-

ing operations were decoupled from each other. In this way, tracking errors do not

influence the clustering mechanism and the resulting distributed algorithm enables the
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agents to identify their clusters and to attain improved learning accuracy. The work

in [67] evaluated the error probabilities of types I and II, i.e., of false alarm and mis-

detection for their proposed scheme and showed that these errors decay exponentially

with the step-size. This means that the probability of correct clustering can be made

arbitrarily close to one by selecting sufficiently small step-sizes. Still, it is preferable to

merge the clustering and learning mechanisms rather than have them run separately of

each other. Doing so reduces the computational burden and, if successful, can also lead

to an enhancement in clustering accuracy relative to the earlier approaches [64–66].

In contrast, the works in [63, 68, 69] employ diffusion strategies to develop distributed

algorithms that address clustered multi-task problems by minimizing an appropriate

mean-square-error criterion with the regularization concept. In the same context, pa-

per [13] introduces grouping into diffusion adaptation to take advantage of structural

similarities between parameter vectors that are estimated over the multi-task network.

For some multi-task networks, the agents need to reach an agreement on only one

common objective. In the earlier works [62, 70], the agents are subject to data arising

from two different models and the aim of the network is to reach an agreement to track

only one of these two observed sources in a distributed manner. The scheme of the

algorithm proposed in [62] is based on binary labeling. This implies that the algorithm

can be applied for only two different observed models.

Moreover, applying [62] in a mobile environment leads to some undesired scenarios,

e.g., splitting the network into two sub-networks before reaching an agreement. The

classification scheme proposed in [62], which determines the subset of neighbors that

observes the same model, has some disadvantages. First, the performance of this scheme

depends on the initial location of the network and the location of the models. Second,

since the decision-making objective depends on the classification output, errors made

in the classification process have an impact on the global decision. Therefore, a fast

clustering technique that lets the agents distinguish between the neighbors in real-time

is needed in mobile networks because the topology changes quickly due to the movement

of the agents. Third, changes in the topology over time imply that the network may

be separated into two groups before reaching the agreement on one model. Groups

moving far away from each other towards their different desired models would lose the

connections between each other. This means that the decision-making process will have

to fail to ensure that the network converges to only one desired model. In the presence

of multiple targets, another situation is considered in [71] where the agents switch the

target they are tracking and form distinct clusters. The resulting clusters split up while

moving and pursue their distinct target over time.
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To proceed with multi-task networks, the first step is to provide an effective, accurate,

and fast decentralized clustering algorithm aimed at identifying and forming clusters

of agents of similar objectives, and at guiding cooperation to enhance the inference

performance in real-time. In the sequel, we propose decentralized clustering and linking

algorithms by networked agents [17, 18].
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Chapter 3

Decentralized Clustering and Linking by
Networked Agents

‘If you can’t explain it simply, you
don’t understand it well enough.’

Albert Einstein

We consider the problem of decentralized clustering and estimation over multi-task

networks, where agents infer and track different models of interest. The agents do not

know beforehand which model is generating their own data. They also do not know

which agents in their neighborhood belong to the same cluster. We propose a decentral-

ized clustering algorithm aimed at identifying and forming clusters of agents of similar

objectives, and at guiding cooperation to enhance the inference performance. One key

feature of the proposed technique is the integration of the learning and clustering tasks

into a single strategy. We analyze the performance of the procedure and show that the

error probabilities of types I and II decay exponentially to zero. While links between

agents following different objectives are ignored in the clustering process, we neverthe-

less show how to exploit these links to relay critical information across the network for

enhanced performance. Simulation results illustrate the performance of the proposed

method in comparison to other state-of-the-art techniques1.

3.1 Introduction

Distributed learning is a powerful technique for extracting information from networked

agents (see, e.g., [22, 26, 27, 29–31] and the references therein). In this chapter, we

consider a network of agents connected by a graph. Each agent senses data generated

by some unknown model. It is assumed that there are clusters of agents within the

network, where agents in the same cluster observe data arising from the same model.

However, the agents do not know which model is generating their own data. They also

do not know which agents in their neighborhood belong to the same cluster. Scenarios

1This chapter is based on the journal article: S. Khawatmi, A. H. Sayed, and A. M. Zoubir,
“Decentralized clustering and linking by networked agents,” IEEE Trans. Signal Processing, vol. 65,
pp. 3526–3537, July 2017.
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of this type arise, for example, in tracking applications when a collection of networked

agents is tasked with tracking several moving objects [71–73]. Clusters end up being

formed within the network with different clusters following different targets. The quality

of the tracking/estimation performance will be improved if neighboring agents following

the same target know of each other to promote cooperation. It is not only cooperation

within clusters that is useful, but also cooperation across clusters, especially when

targets move in formation and the location of the targets are correlated. Motivated

by these considerations, the main objective of this work is to develop a distributed

technique that enables agents to recognize neighbors from the same cluster and promotes

cooperation for improved inference performance.

A useful strategy for clustering over adaptive networks was proposed in [64], relying

on the use of adaptive combination weights. This strategy was further refined in [65]

to reduce its sensitivity to initial conditions. In order to avoid this difficulty and

obtain a more robust method, the authors in [67] proposed an alternative construction

where the clustering and inference tasks are separated from each other. For sufficiently

small step-sizes, this approach was shown to lead to probabilities of error that decay

exponentially to zero. Motivated by [67], we propose a modified strategy where we

merge the clustering and inference tasks, thus reducing the computation burden while

enhancing the accuracy of the clustering step compared to [64, 65].

The solutions developed in [64–66], clustering is achieved by relying on adaptive com-

bination strategies. In these works, there still exists the possibility that valid links

between agents belonging to the same cluster may be overlooked, mainly due to errors

during the adaptation process. The clustering and learning operations in [67] were de-

coupled from each other. In this way, tracking errors do not influence the clustering

mechanism and the resulting distributed algorithm enables the agents to identify their

clusters and to attain improved learning accuracy.

In this chapter, we merge the clustering and learning mechanisms rather than have

them run separately of each other. Doing so reduces the computational burden and, if

successful, can also lead to enhancement in clustering accuracy compared to the earlier

approaches [64–66].

We showed in [18] that this is indeed possible for a particular class of inference problems

involving mean-square-error risks. In this chapter, we generalize the results and devise

an integrated clustering-learning approach for general-purpose risk functions. Addition-

ally, and motivated by the results from [62] on adaptive decision-making by networked

agents, we further incorporate a smoothing mechanism into our strategy to enhance the

belief that agents have about their clusters. We also show how to exploit the unused
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links among neighboring agents belonging to different clusters to relay useful informa-

tion among agents. We carry out a detailed analysis of the resulting framework, and

illustrate its superior performance by means of computer simulations.

The organization of this chapter is as follows. The network and data model are described

in Sec. 3.2, while the integrated clustering and inference framework is developed in

Sec. 3.3. The network error recursions are derived in Sec. 3.4, and the probabilities

of erroneous decision are derived in Sec. 3.5. In Secs. 3.6 and 3.7 we illustrate two

additional techniques for linking agents and labeling models, respectively. Finally, we

present some simulation results in Sec. 3.8.

3.2 Network and Data Model

3.2.1 Network Overview

We consider a network with N agents connected by a graph. It is assumed that there

are C clusters, denoted by C1, C2, . . . , CC , where each Cm represents the set of agent

indices in that cluster. We associate an unknown column vector of size M×1 with each

cluster, denoted by w◦
Cm ∈ RM . The aggregation of all these unknowns is denoted by

w◦
C , col{w◦

C1, w
◦
C2 , . . . , w

◦
CC}, (CM × 1). (3.1)

Each agent k wishes to recover the model for its cluster; the unknown model for agent

k is denoted by {w◦
k}. Obviously, this model agrees with the model of the cluster that

k belongs to, i.e., w◦
k = w◦

Cm if k ∈ Cm. We stack all {w◦
k} into a column vector:

w◦ , col{w◦
1, w

◦
2, . . . , w

◦
N}, (NM × 1). (3.2)

Figure 3.1 illustrates a network with C = 3 clusters represented by three colors. All

agents in the same cluster are interested in estimating the same parameter vector. We

denote the set of neighbors of an agent k by Nk. Observe in this example that the

neighbors of agent k belong to different clusters. The cluster information is not known

to the agents beforehand. For instance, agent k would not know that its neighbors are

sensing data arising from different models. If we allow the network to perform indis-

criminate cooperation, then performance will degrade significantly. For this reason, a

clustering operation is needed to allow the agents to learn which neighbors to cooper-

ate with towards the same objective. The technique developed in this work will allow
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(a)

(b)

Figure 3.1. (Top) Example of a network topology involving three clusters, represented by
three different colors. (Bottom) Clustered topology that will result for the network shown on
top.

agents to emphasize links to neighbors in the same cluster and to disregard links to

neighbors from other clusters. The outcome would be a graph structure similar to the

one shown in the bottom part of the same figure, where unwarranted links are repre-

sented by dotted lines. In this way, the interference caused by different objectives is

avoided and the overall performance for each cluster will be improved. Turning off a

link between two agents means that there is no more sharing of data between them.

Still, we will exploit these “unused” links by assigning to them a useful role in relaying

information across the network.

3.2.2 Topology Matrices

In preparation for the description of the proposed strategy, we introduce the N × N

adjacency matrix Y = [yℓk], whose elements are either zero or one depending on whether
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agents are linked by an edge or not. Specifically,

yℓk =

{
1, ℓ ∈ Nk,

0, otherwise.
(3.3)

We assume that each agent k belongs to its neighborhood set, k ∈ Nk. The set N−
k

excludes k. Agents know their neighborhoods but they do not know which subset of

their neighbors is subjected to data from the same model. In order to devise a procedure

that allows agents to arrive at this information, we introduce a second N×N clustering

matrix, denoted by Ei at time instant i, in a manner similar to the adjacency matrix

Y , except that the value at location (ℓ, k) will be set to one if agent k believes at time

instant i that its neighbor ℓ belongs to the same cluster:

eℓk(i) =

{
1, if ℓ ∈ Nk and k believes that w◦

k = w◦
ℓ ,

0, otherwise.
(3.4)

The entries of Ei will be learned online. At every time instant i, we can then use

these entries to infer which neighbors of k are believed to belong to the same cluster

as k; these would be the indices of the nonzero entries in the k−th column of Ei. We

collect these indices into the neighborhood set, N k,i; this set is a subset of Nk and it

evolves over time during the learning process. At any time instant i, agent k will only

be cooperating with the neighbors within N k,i. We will describe in the sequel how Ei

is learned.

3.2.3 Problem Formulation

We associate with each agent k a strongly-convex and differentiable risk function Jk(wk),

with a unique minimum at w◦
k. In general, each risk Jk(wk) : R

M → R, is defined as

the expectation of some loss function Qk(·), say,

Jk(wk) = E Qk(wk; zk) (3.5)

where zk denotes random data sensed by agent k and the expectation is over the dis-

tribution of this data. The network of agents is interested in estimating the minimizers

of the following aggregate cost over the vectors {wk}:

Jglob(w1, w2, . . . , wN) ,
N∑

k=1

Jk(wk). (3.6)

Since agents from different clusters do not share the same minimizers, the aggregate

cost can be rewritten as

Jglob(wC1, . . . , wCC ) ,
C∑

m=1

∑

k∈Cm
Jk(wk) (3.7)
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where w◦
k = w◦

Cm . We collect the gradient vectors of the risk functions across the network

into the aggregate vector

∇J(w) , col{∇J1(w1), . . . ,∇JN(wN)}. (3.8)

These gradients will not be available in most cases since the distribution of the data is

not known to enable evaluation of the expectation of the loss functions. In stochastic-

gradient implementations, it is customary to replace the above aggregate vector by the

following approximation where the true gradients of the risk functions are replaced by

∇̂J(w) , col{∇̂J1(w1), . . . , ∇̂JN(wN)} (3.9)

where each ∇̂Jk(wk) is constructed from the gradient of the respective loss function

∇̂Jk(wk) = ∇Qk(wk; zk) (3.10)

evaluated at the corresponding data point, zk.

3.2.4 Assumptions

In this section, we list the assumptions that are needed to drive the analysis. These

assumptions are typical in the analysis of stochastic-gradient algorithms, and most of

them are automatically satisfied by important cases of interest, such as when the risk

functions are quadratic or logistic — see, e.g., [22, 67].

We thus assume that each individual cost function Jk(wk) is twice-differentiable and

τk−strongly convex [22, 24], for some τk > 0. We also require the gradient vector of

Jk(wk) to be ζk−Lipschitz, i.e.,

‖∇Jk(wk1)−∇Jk(wk2)‖ ≤ ζk‖wk1 − wk2‖ (3.11)

for any wk1, wk2 ∈ RM . Thus, the Hessian matrix function ∇2Jk(wk) is bounded by

τkIM ≤ ∇2Jk(wk) ≤ ζkIM (3.12)

where τk ≤ ζk. Each Hessian matrix function is also assumed to satisfy the Lipschitz

condition:

‖∇2Jk(wk1)−∇2Jk(wk2)‖ ≤ κk‖wk1 − wk2‖ (3.13)

for some κk ≥ 0 and any wk1, wk2 ∈ RM . The network gradient noise is denoted by

si(wi−1) which is the random process defined by

si(wi−1) , col{s1,i(w1,i−1), . . . , sN,i(wN,i−1)} (3.14)
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where the gradient noise at agent k at time instant i is given by

sk,i(wk,i−1) , ∇̂Jk(wk,i−1)−∇Jk(wk,i−1). (3.15)

Here we are denoting the iterates w in boldface notation to indicate that they will

actually be stochastic variables due to the approximation of the true gradients.

We let {Fk,i; i ≥ 0} denote the filtration that collects all information up to time instant

i. We then denote the conditional covariance matrix of sk,i(wk,i−1) by

Rk,i(wk,i−1) , E
[
sk,i(wk,i−1)s

⊺
k,i(wk,i−1) | Fk,i−1

]
. (3.16)

It is assumed that the gradient noise process satisfies the following properties for any

wk,i−1 in Fk,i−1 [22]:

1.Martingale difference [22, 67]:

E [sk,i(wk,i−1) |Fk,i−1] = 0 (3.17)

2.Bounded fourth-order moment [22, 67]:

E
[
‖sk,i(wk,i−1)‖

4 |Fk,i−1

]
≤ β2

k‖w
◦
k −wk,i−1‖

4 + ρ4k (3.18)

for some β2
k , ρ

4
k ≥ 0.

3.Lipschitz conditional covariance function [22, 67]:

‖Rk,i(w
◦
k)− Rk,i(wk,i−1)‖ ≤ θk‖w

◦
k −wk,i−1‖

ηk (3.19)

for some θk ≥ 0 and 0 < ηk ≤ 4.

4.Convergent conditional covariance matrix [22, 67]:

Rk , lim
i→∞

Rk,i(w
◦
k) > 0 (3.20)

where Rk is symmetric and positive definite.

3.2.5 Data Model

We assume that each agent k runs an independent stochastic gradient-descent algorithm

of the form:

ψk,i = ψk,i−1 − µk∇̂Jk(ψk,i−1) (3.21)
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where µk > 0 is a small step-size parameter, and ψk,i denotes the intermediate estimate

for w◦
k at time instant i. Cooperation among agents will be limited to neighbors that

belong to the same cluster. Therefore, following the update (3.21), ideally, agent k

should only share data with agent ℓ if w◦
k = w◦

ℓ . The agents do not know which agents

in their neighborhood belong to the same cluster; this information is learned in real-

time. Therefore, agent k will only share data with agent ℓ if it believes that w◦
k = w◦

ℓ .

Specifically, agent k will combine the estimates from its neighbors in a convex manner

as follows:

wk,i =

N∑

ℓ=1

aℓk(i)ψℓ,i (3.22)

where the non-negative combination coefficients {aℓk(i)} satisfy

akk(i) > 0, aℓk(i) = 0 for ℓ /∈ N k,i,

N∑

ℓ=1

aℓk(i) = 1. (3.23)

In the next section, we explain how the combination coefficients {aℓk(i)} are selected

in order to perform the combined tasks of estimation and clustering.

3.3 Clustering Scheme

Let δ > 0 denote the smallest distance among the cluster models, {w◦
Cm}. For any

distinct a, b ∈ {1, . . . , C}, it then holds that

‖w◦
Ca − w◦

Cb‖ ≥ δ. (3.24)

We introduce an N×N trust matrix F i; each entry f ℓk(i) ∈ [0, 1] of this matrix reflects

the amount of trust that agent k has in neighbor ℓ ∈ N−
k belonging to its cluster. The

entries {f ℓk(i)} are constructed as follows. Agent k first computes the Boolean variable:

bℓk(i) =

{
1, if ‖ψℓ,i −wk,i−1‖2 ≤ α,

0, otherwise
(3.25)

where α is a threshold value. The trust level f ℓk(i) is smoothed as follows:

f ℓk(i) = νf ℓk(i− 1) + (1− ν)bℓk(i) (3.26)

where the forgetting factor, 0 < ν < 1, determines the speed with which trust in

neighbor ℓ accumulates over time. Once f ℓk(i) exceeds some threshold γ, agent k

declares that neighbor ℓ belongs to its cluster and sets the corresponding entry eℓk(i)

in matrix Ei to the value one:

eℓk(i) =

{
1, if f ℓk(i) ≥ γ,

0, otherwise
(3.27)
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where 0 < γ < 1. For completeness, we set for any agent k, bkk(i) = f kk(i) = ekk(i) = 1.

Observe that the computation of the binary variable bℓk(i) couples the variables ψ and

w. Therefore, by using smoothed values {f ℓk(i)} for the trust variables, we are able to

couple the clustering and inference procedures into a single iterative algorithm rather

than run them separately. The smoothing reduces the influence of erroneous clustering

decisions on the inference task. The following listing summarizes the proposed strategy.

Algorithm 1 (Distributed clustering scheme)

Initialize F−1 = B−1 = E−1 = I and ψ−1 = w−1 = 0.
for i ≥ 0 do

for k = 1, . . . , N do

ψk,i = ψk,i−1 − µk∇̂Jk(ψk,i−1) (3.28)

for ℓ ∈ N−
k do

bℓk(i) =

{
1, if ‖ψℓ,i −wk,i−1‖2 ≤ α

0, otherwise
(3.29)

f ℓk(i) = νf ℓk(i− 1) + (1− ν) bℓk(i) (3.30)

update eℓk(i) according to (3.27)

end for

select {aℓk(i)} according to (3.23) and set

wk,i =

N∑

ℓ=1

aℓk(i)ψℓ,i (3.31)

end for

end for

3.4 Mean-Square-Error Analysis

We now examine the mean-square performance of the proposed scheme.

We collect the estimates from across the network into the block vectors:

ψi , col{ψ1,i,ψ2,i, . . . ,ψN,i}, (3.32)

wi , col{w1,i,w2,i, . . . ,wN,i}, (3.33)

and define the matrices

Ai , Ai ⊗ IM , M , diag{µ1, µ2, . . . , µN} ⊗ IM , (3.34)
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where Ai = [aℓk(i)]. From (3.21) we find that the network vector ψi evolves over time

according to

ψi = ψi−1 −M∇J(ψi−1)−Msi(ψi−1) (3.35)

where ∇J(·) and si(·) are defined in (3.8) and (3.14). Likewise, from (3.22) we find

that

wi = A⊺
iψi. (3.36)

To proceed, we introduce the error vectors

ψ̃k,i , w◦
k −ψk,i, w̃k,i , w◦

k −wk,i, (3.37)

and collect them from across the network into

ψ̃i , col{ψ̃1,i, ψ̃2,i, . . . , ψ̃N,i}, (3.38)

w̃i , col{w̃1,i, w̃2,i, . . . , w̃N,i}. (3.39)

We further define the network mean-square deviation (MSD) before and after the fusion

step at the time instant i by

MSDψ(i) , E ‖ψ̃i‖
2, (3.40)

MSDw(i) , E ‖w̃i‖
2, (3.41)

respectively.

3.4.1 Error Dynamics

Appealing to the mean-value theorem [22, p. 327] we can write

∇J(ψi−1) = −Hi−1ψ̃i−1 (3.42)

where

Hi−1 , diag{Hk,i−1}
N
k=1 (3.43)

and each matrix Hk,i−1 is given by

Hk,i−1 ,

∫ 1

0

∇2Jk(w
◦
k − tψ̃k,i−1)dt. (3.44)

Substituting (3.42) into (3.35) yields

ψi = ψi−1 +MHi−1ψ̃i−1 −Msi(ψi−1). (3.45)

By subtracting w◦ defined in (3.2) from both sides, we get

ψ̃i = (INM −MHi−1)ψ̃i−1 +Msi(ψi−1) (3.46)
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which means that the error recursion for each individual agent k is given by

ψ̃k,i = (IM − µkHk,i−1)ψ̃k,i−1 + µksk,i(ψk,i−1). (3.47)

It is argued in [22, p. 347] that for step-sizes µk satisfying

0 < µk <
2τk

ζ2k + β2
k

(3.48)

the mean-square-error quantity E ‖ψ̃k,i‖
2 converges exponentially according to the

recursion:

E ‖ψ̃k,i‖
2 ≤ ξk E ‖ψ̃k,i−1‖

2 + µ2
kρ

2
k (3.49)

where 0 ≤ ξk < 1 and is given by

ξk = 1− 2µkτk + µ2
k(ζ

2
k + β2

k). (3.50)

It is further shown in [22, pp. 352, 378] that for small step-sizes satisfying (3.48),

the error recursion (3.46) has bounded first, second, and fourth-order moments in the

following sense:

lim sup
i→∞

‖E ψ̃i‖ = O(µmax) (3.51)

lim sup
i→∞

E ‖ψ̃i‖
2 = O(µmax) (3.52)

lim sup
i→∞

E ‖ψ̃i‖
4 = O(µ2

max) (3.53)

where µmax is the maximum step-size across all agents.

We further introduce the constant block diagonal matrix:

H , diag{H1, H2, . . . , HN}, Hk , ∇2Jk(w
◦
k), (3.54)

and replace (3.46) by the approximate recursion

ψ̃
′
i = (INM −MH)ψ̃

′
i−1 +Msi(ψi−1) (3.55)

where the random matrix Hi−1 is replaced by H. It was also shown in [22, pp. 382, 384]

that, for sufficiently small step-sizes, the error iterates that are generated by this recur-

sion satisfy:

lim
i→∞

E ψ̃
′
i = 0 (3.56)

lim sup
i→∞

E ‖ψ̃
′
i‖

2 = O(µmax) (3.57)

lim sup
i→∞

E ‖ψ̃i − ψ̃
′
i‖

2 = O(µ2
max) (3.58)

lim sup
i→∞

E ‖ψ̃
′
i‖

2 = lim sup
i→∞

E ‖ψ̃i‖
2 +O(µ3/2

max). (3.59)

These results imply that, for large enough i, the errors ψ̃ and ψ̃
′
are close to each other

in the mean-square-error sense.
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3.4.2 One Useful Property

The above construction guarantees one useful property if the clustering process does

not incur errors of type II, meaning that links that should be disconnected are indeed

disconnected. This implies that w◦
ℓ = w◦

k whenever aℓk(i) > 0. Using (3.23), it follows

that
N∑

ℓ=1

aℓk(i)w
◦
ℓ = w◦

k (3.60)

or, equivalently,

A⊺
iw

◦ = w◦. (3.61)

Subtracting w◦ from both sides of (3.36) yields

w◦ −wi = w◦ −A⊺
iψi. (3.62)

Using (3.61) we rewrite (3.62) as:

w̃i = A⊺
i ψ̃i. (3.63)

Taking the block maximum norm [7, p. 435] of both sides and using the sub-

multiplicative property of norms implies that

‖w̃i‖b,∞ ≤ ‖A⊺
i ‖b,∞ ‖ψ̃i‖b,∞ = ‖ψ̃i‖b,∞ (3.64)

since Ai is left-stochastic and, therefore, ‖A⊺
i ‖b,∞ = 1. It follows that

E ‖w̃i‖b,∞ ≤ E ‖ψ̃i‖b,∞. (3.65)

Results (3.64) and (3.65) ensure that the size of the error in the w domain is bounded by

the size of the error in the ψ domain if there are no errors of type II during clustering.

3.5 Performance Analysis

We are ready to examine the behavior of the probabilities of erroneous decisions of

types I and II for each agent k, namely, the probabilities that a link between k and one

of its neighbors will be either erroneously disconnected (when it should be connected)

or erroneously connected (when it should be disconnected):

Type-I: w◦
ℓ = w◦

k and aℓk(i) = 0, (3.66)

Type-II: w◦
ℓ 6= w◦

k and aℓk(i) 6= 0 (3.67)
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for any ℓ ∈ Nk. After long enough i, these probabilities are denoted respectively by:

PI = Pr (f ℓk(i) < γ | w◦
ℓ = w◦

k), (3.68)

PII = Pr (f ℓk(i) ≥ γ | w◦
ℓ 6= w◦

k). (3.69)

Assessing the probabilities (3.68) and (3.69) is a challenging task and needs to be

pursued under some simplifying conditions to facilitate the analysis. This is due to

the stochastic nature of the clustering and learning processes, and due to the coupling

among the agents. Our purpose is to provide insights into the performance of these

processes after sufficient learning time has elapsed. The analysis that follows adjusts

the approach of [62] to the current setting. Different from [62] where it is assumed that

there are only two models and all agents were trying to converge to one of these two

models, we now have a multitude of clusters and agents that are trying to converge to

their own cluster model.

3.5.1 Smoothing Process

In order to determine bounds for PI and PII we study the probability distribution of

the trust variable f ℓk(i). We have from (3.26) that:

f ℓk(i) = νi+1f ℓk(−1) + (1− ν)

i∑

j=0

νjbℓk(i− j) (3.70)

where bℓk(i) is modelled as a Bernoulli random variable with success probability p:

bℓk(i) =

{
1, with probability p,

0, with probability (1− p).
(3.71)

We already know from (3.49) that, after sufficient time, the iterates ψk,i converge to

the true models w◦
k in the mean-square-error sense. Hence, it is reasonable to assume

that the value of p becomes largely time-invariant and corresponds to the probability

of the event described by

‖ψℓ,i −wk,i−1‖
2 ≤ α, for large i. (3.72)

We denote the probabilities of true and false assignments by

Pd = Pr (bℓk(i) = 1 | w◦
ℓ = w◦

k), (3.73)

Pf = Pr (bℓk(i) = 1 | w◦
ℓ 6= w◦

k). (3.74)
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These probabilities also satisfy

(1− Pd) = Pr (‖ψℓ,i −wk,i−1‖
2 > α | w◦

ℓ = w◦
k), (3.75)

Pf = Pr (‖ψℓ,i −wk,i−1‖
2 ≤ α | w◦

ℓ 6= w◦
k). (3.76)

After a sufficient number of iterations, the influence of the initial condition in (3.70) can

be ignored and we can approximate f ℓk(i) by the following random geometric series:

f ℓk(i) ≈ (1− ν)

i∑

j=0

νjbℓk(i− j). (3.77)

As explained in [62], although it is generally not true, we can simplify the analysis

by assuming that, for large enough i, the random variables {bℓk(m)} in (3.77) are

independent and identically distributed. This assumption is motivated by the fact that

the models observed by the different clusters are assumed to be sufficiently distinct

from each other by virtue of (3.24).

Now, recall that Markov’s inequality [74, p. 47] implies that for any non-negative ran-

dom variable x and positive scalar u, it holds that:

Pr (x ≥ u) = Pr (x2 ≥ u2) ≤
E x2

u2
. (3.78)

To apply (3.78) to the variable f ℓk(i), we need to determine its second-order moment.

For this purpose, we follow [62] and introduce the change of variable:

b◦ℓk(i− j) ,
bℓk(i− j)− p√

p(1− p)
. (3.79)

It can be verified that the variables {b◦ℓk(m)} are i.i.d. with zero mean and unit variance.

As a result, we rewrite (3.77) for large i as:

f ℓk(i) ≈ p+
√
p(1− p)f ◦

ℓk(i) (3.80)

where

f ◦
ℓk(i) , (1− ν)

i∑

j=0

νjb◦ℓk(i− j) (3.81)

has zero mean and its variance is given by

Var [f ◦
ℓk(i)] = E

[
f ◦
ℓk(i)

]2
−
[
E f ◦

ℓk(i)
]2

=
1− ν

1 + ν
(1− ν2(i+1)) ≈

1− ν

1 + ν
. (3.82)
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Returning to (3.68) we now have, with p replaced by Pd:

PI ≈ Pr (f ℓk(i) < γ | w◦
ℓ = w◦

k)

≤ Pr

(
|f◦

ℓk(i)| >
Pd − γ√
Pd(1− Pd)

∣∣∣∣ w◦
ℓ = w◦

k

)

≤
1− ν

1 + ν
·
Pd(1− Pd)

(Pd − γ)2
(3.83)

where we applied (3.78) and the fact that, for any two generic events B1 and B2, if B1

implies B2, then the probability of event B1 is less than the probability of event B2 [75].

Similarly, by replacing p by Pf , we obtain

PII ≤
1− ν

1 + ν
·
Pf(1− Pf)

(γ − Pf)2
. (3.84)

In expressions (3.83) and (3.84), it is assumed that the size of the threshold value γ used

in (3.27) satisfies γ < Pd and γ > Pf . Since we usually desire the probability of false

alarm to be small and the probability of detection to be close to one, these conditions

can be met by γ ∈ (0, 1). We show in the next section that this is indeed the case.

Results (3.83) and (3.84) provide bounds on the probabilities of errors I and II. We

next establish that Pd → 1 and Pf → 0 to conclude that PI → 0 and PII → 0.

3.5.2 The Distribution of the Variables

After a sufficient number of iterations and for small enough step-sizes, it is known that

each ψℓ,i exhibits a distribution that is nearly Gaussian [32, 38, 76–79]:

ψℓ,i ∼ N (w◦
ℓ , µℓΓℓ) (3.85)

where the matrix Γℓ is symmetric, positive semi-definite, and the solution to the fol-

lowing Lyapunov equation [76]:

HℓΓℓ + ΓℓHℓ = Rℓ (3.86)

where the Hessian matrix Hℓ is defined by (3.54) and Rℓ is the steady-state covariance

matrix of the gradient noise at agent ℓ defined by (3.20). We next introduce the vector

w̄◦
k,i ,

N∑

ℓ=1

aℓk(i)w
◦
ℓ . (3.87)

which should be compared with expression (3.22). The vector (3.87) is the result of

fusing the actual models using the same combination weights available at time instant
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i. It follows that wk,i exhibits a distribution that is nearly Gaussian since the iterates

{ψℓ,i} can be assumed to be independent of each other due to the decoupled nature of

their updates:

wk,i ∼ N (w̄◦
k,i,Ωk,i) (3.88)

where Ωk,i is symmetric, positive semi-definite, and given by

Ωk,i ,
N∑

ℓ=1

µℓ a
2
ℓk(i)Γℓ. (3.89)

Let

gℓk,i , ψℓ,i −wk,i−1 (3.90)

and note that gℓk,i is again approximately Gaussian distributed with

gℓk,i ∼ N (ḡi,∆ℓk,i) (3.91)

where

ḡi , w◦
ℓ − w̄

◦
k,i−1 (3.92)

and ∆ℓk,i is symmetric, positive semi-definite, and bounded by (in view of Jensen’s

inequality [22, p. 769]2):

∆ℓk,i ≤ 2
(
µℓΓℓ +Ωk,i−1

)
. (3.93)

From (3.89), (3.93) and for any ℓ and k it holds that:

∆ℓk,i = O(µmax). (3.94)

3.5.3 The Statistics of ‖gℓk,i‖
2

We now examine the statistics of the main test variable for our algorithm from (3.25),

namely, ‖gℓk,i‖
2. Let {Ak,i−1; i > 0} denote the filtration that collects all {aℓk(i − 1)}

information up to time instant i− 1. Then, note that

E
[
‖gℓk,i‖

2| Ak,i−1

]
= E

[
Tr
(
gℓk,ig

⊺
ℓk,i

)∣∣ Ak,i−1

]

= ‖ḡi‖
2 + Tr (∆ℓk,i). (3.95)

2Since E (a + b)2 ≤ 2E a2 + 2E b2.
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Since gℓk,i is Gaussian, it holds that

E
[
‖gℓk,i‖

4| Ak,i−1

]

= E
[
‖gℓk,i − ḡi + ḡi‖

4| Ak,i−1

]

= E

[(
‖gℓk,i − ḡi‖

2 + 2(gℓk,i − ḡi)
⊺ḡi + ‖ḡi‖

2
)2∣∣ Ak,i−1

]

= E
[
‖gℓk,i − ḡi‖

4| Ak,i−1

]

+ 2E
[
‖gℓk,i − ḡi‖

2‖ḡi‖
2| Ak,i−1

]
+ ‖ḡi‖

4

+ 4ḡ⊺iE
[
(gℓk,i − ḡi)(gℓk,i − ḡi)

⊺| Ak,i−1

]
ḡi

= E
[
‖gℓk,i − ḡi‖

4| Ak,i−1

]
+ 2 Tr (∆ℓk,i)‖ḡi‖

2

+ ‖ḡi‖
4 + 4‖ḡi‖

2
∆ℓk,i

(3.96)

where all odd order moments of (gℓk,i − ḡi) are zero. Likewise,

(
E
[
‖gℓk,i‖

2| Ak,i−1

] )2

=
(
E
[
‖gℓk,i − ḡi + ḡi‖

2| Ak,i−1

] )2

=
(
E
[
‖gℓk,i − ḡi‖

2| Ak,i−1

]
+ ‖ḡi‖

2
)2

= [ Tr (∆ℓk,i) ]
2 + 2 Tr (∆ℓk,i)‖ḡi‖

2

+ ‖ḡi‖
4. (3.97)

According to Lemma A.2 of [5, p. 11], we have

E
[
‖gℓk,i − ḡi‖

4| Ak,i−1

]

= [ Tr (∆ℓk,i) ]
2 + 2 Tr (∆2

ℓk,i). (3.98)

Using (3.96) and (3.98), the variance of ‖gℓk,i‖
2 is given by

Var
[
‖gℓk,i‖

2| Ak,i−1

]

= 4‖ḡi‖
2
∆ℓk,i

+ 2 Tr (∆2
ℓk,i). (3.99)

Note from (3.95) that the mean of ‖gℓk,i‖
2 is dominated by ‖ḡi‖

2 for sufficiently small

step-sizes. It follows from the Chebyshev’s inequality [80, p. 455] that:

Pr

(∣∣‖gℓk,i‖2 − E
[
‖gℓk,i‖

2| Ak,i−1

] ∣∣ ≥ u

∣∣∣∣ Ak,i−1

)

≤
Var

[
‖gℓk,i‖

2| Ak,i−1

]

u2
= O(µmax) (3.100)

for any constant u > 0, which implies that the variance of ‖gℓk,i‖
2 is in the order of

µmax. Therefore, when w
◦
ℓ = w◦

k the probability mass of ‖gℓk,i‖
2 will concentrate around

E(‖gℓk,i‖
2), which is in the order ofO(µmax) ≈ 0. On the other hand, when w◦

ℓ 6= w◦
k, the

probability mass of ‖gℓk,i‖
2 will concentrate around E(‖gℓk,i‖

2) ≈ ‖ḡi‖
2 > 0. Obviously

the threshold should be chosen as: 0 < α < δ2, where δ is the clustering resolution.
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3.5.4 Error Probabilities

It is seen from (3.75) and (3.76) that 1 − Pd corresponds to the right tail probability

of ‖gℓk,i‖
2 for w◦

ℓ = w◦
k, and Pf corresponds to the left tail probability of ‖gℓk,i‖

2 for

w◦
ℓ 6= w◦

k. To examine these probabilities, we follow arguments similar to [67] and apply

them to the current context. We introduce the eigen-decomposition

∆ℓk,i = U iΛiU
⊺
i (3.101)

where U i is orthonormal and Λi is diagonal and non-negative-definite. We further

introduce the normalized variables:

xi , Λ
−1/2
i U

⊺
i gℓk,i, (3.102)

x̄i , Λ
−1/2
i U

⊺
i ḡi (3.103)

and it follows from (3.91), (3.102), and (3.103) that

xi ∼ N (x̄i, IM). (3.104)

Note also from (3.102) that

‖gℓk,i‖
2 = x⊺

iΛixi =
M∑

h=1

λh,ix
2
h,i (3.105)

where xh,i denotes the h−th element of xi and λh,i denotes the h−th diagonal element

of Λi.

The probability 1− Pd:

It follows from the inequality

‖gℓk,i‖
2 = x⊺

iΛixi ≤ ‖∆ℓk,i‖ · ‖xi‖
2, (3.106)

that the following relation is satisfied

{‖gℓk,i‖
2 > α} ⊆ {‖∆ℓk,i‖ · ‖xi‖

2 > α}. (3.107)

Defining

αk(i) , α/‖∆ℓk,i‖, (3.108)

we can write using (3.107)

Pr (‖gℓk,i‖
2 > α | w◦

ℓ = w◦
k) ≤ Pr (‖xi‖

2 > αk(i) | x̄i = 0). (3.109)

We know from (3.104) that

‖xi‖
2 ∼ X 2

M (3.110)
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where X 2
M denotes the Chi-square distribution with M degrees of freedom and its mean

value is M . According to the Chernoff bound for the central Chi-square distribution

with M degrees of freedom3 we have

Pr
(
‖xi‖

2 > αk(i)
∣∣ x̄i = 0

)

= Pr

(
‖xi‖

2 >
M ·αk(i)

M

∣∣∣∣ x̄i = 0

)

≤ exp
[
−
M

2

(αk(i)
M

− log
(
1 +

αk(i)

M
− 1
))]

=
(αk(i) · e

M

)M/2

· exp
[
−
αk(i)

2

]
(3.111)

where e is Euler’s number. For small enough step-sizes we conclude from (3.94), (3.108),

and (3.111) that after a sufficient number of iterations, it holds that:

(1− Pd) ≤ O(e−c1/µmax) (3.112)

for some constant c1 > 0.

The probability Pf :

The approximate characteristic function of ‖gℓk,i‖
2 [67, Eq. (118)] for w◦

ℓ 6= w◦
k is given

by

c‖gℓk,i‖2(t) ≈ e
jt‖w◦

ℓ
−w◦

k
‖2−2t2‖w◦

ℓ
−w◦

k
‖2
Λi (3.113)

which implies that, for sufficiently small µmax, we have

‖gℓk,i‖
2 ∼ N (‖w◦

ℓ − w◦
k‖

2, 4‖w◦
ℓ − w◦

k‖
2
Λi
). (3.114)

Therefore, from [67]4 we obtain that

Pr (‖gℓk,i‖
2 < α |w◦

ℓ 6= w◦
k ) ≈ Q

(
‖w◦

ℓ − w◦
k‖

2 − α

2‖w◦
ℓ − w◦

k‖Λi

)

≤
1

2
exp

[
−

(‖w◦
ℓ − w◦

k‖
2 − α)2

8‖w◦
ℓ − w◦

k‖
2
Λi

]
(3.115)

where the letter Q refers here to the traditional Q−function (the tail probability of the

standard Gaussian distribution). For small enough step-sizes, after a sufficient number

of iterations and from (3.94), (3.101), and (3.115), it holds that

Pf ≤ O(e−c2/µmax) (3.116)

for some constant c2 > 0. It is then seen that the probabilities PI and PII are expected

to approach zero exponentially fast for vanishing step-sizes.

3Let y ∼ X 2
r . According to the Chernoff bound for the central Chi-square distribution with r degrees

of freedom, for any ǫ > 0 it holds that [81, p. 2501]: Pr (y > r(1 + ǫ)) ≤ exp [− r
2
(ǫ− log(1 + ǫ))].

4Let y ∼ N (0, 1). According to the Chernoff bound for the Gaussian error function it holds

that [82]: Q(y) ≤ 1

2
exp [−y

2

2
].
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3.6 Linking Application

3.6.1 Clustering With Linking Scheme

In this section we propose an additional mechanism to enhance the performance of

each cluster by using the unused links to relay information. Figure 3.2 shows the

linked topology that results for the same example shown earlier in Fig. 3.1(b). The

figure shows that the links which are supposed to be unused for sharing data among

neighbors belonging to different clusters, are now used to relay data among agents.

We assume in this section that the links among agents are symmetric, i.e., if ℓ ∈ Nk ⇐⇒

k ∈ Nℓ. Under normal operation, each agent k will be receiving and processing iterates

only from those neighbors that it believes belong to the same cluster as k.

We modify this operation by allowing k to receive iterates from all of its neighbors. It

will continue to use the iterates from neighbors in the same cluster to update its weight

estimate wk,i. The iterates that arrive from neighbors that may belong to other clusters

are not used during this fusion process. Instead, they will be relayed forward by agent

k as follows. For each of its neighbors ℓ ∈ Nk agent k will send ψk,i and another vector

φkℓ,i. The vector φkℓ,i is constructed as follows. Agent k chooses from among all the

iterates it receives from its neighbors, that iterate that is closest to ψℓ,i:

φkℓ,i = arg min ‖ψm,i −ψℓ,i‖
2.

{k,m}
∀m∈Nk , m/∈Nℓ

(3.117)

Observe that the minimization is over k and all neighbors of k that are not neighbors

of ℓ. This condition is important to avoid receiving the same information multiple

times. Note that under this scheme, agent k will need to receive the iterates from all

of its neighbors (those that it believes belong to its clusters and those that do not); it

also needs to receive information about their neighborhoods, i.e., the Nℓ for each of its

neighbors ℓ.

The following steps describe the clustering with linking algorithm. We collect all {φℓk,i}

into a matrix Φi. By setting γ = 0.5 in Eq. (3.27) the operation of setting each entry

eℓk(i) becomes rounding to the nearest integer and is denoted by ⌊·⌉.
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Figure 3.2. Clustered and linked topology that will result for the network shown in Fig. 3.1.
The bold dashed lines depict the links used for relaying data among agents.

Algorithm 2 (Clustering with linking scheme)

Initialize F−1 = B−1 = E = I, Φ−1 = 0, and ψ−1 = w−1 = 0.
for i ≥ 0 do

for k = 1, . . . , N do

ψk,i = ψk,i−1 − µk∇̂Jk(ψk,i−1) (3.118)

for ℓ ∈ N−
k do

send ψk,i and φkℓ,i−1

receive ψℓ,i and φℓk,i−1

bℓk(i) =

{
1, if ‖φℓk,i−1 −wk,i−1‖2 ≤ α

0, otherwise
(3.119)

f ℓk(i) = νf ℓk(i− 1) + (1− ν)bℓk(i) (3.120)

eℓk(i) = ⌊f ℓk(i)⌉ (3.121)

end for

select {aℓk(i)} according to (3.23) and set

wk,i =

N∑

ℓ=1

aℓk(i)φℓk,i−1 (3.122)

update {φkℓ,i} according to (3.117)

end for
end for

Agent k does not pick φℓk,i−1 by itself, agent ℓ will choose it for k instead. Agent ℓ
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(a) (b)

(c) (d)

(e)

Figure 3.3. Examples of the linking situations. Solid links among agents depict the topology
links, i.e., matrix Y .
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needs ψk,i (to perform (3.117)) and needs the indices of k neighbors Nk. Nk is needed

to avoid receiving the same information multiple times. Thus, we assume the symmetric

links among agents.

Note that in the linking scheme, agents need only one data exchange step during each

iteration. That is the reason of using the time instant (i − 1) for φℓk,i−1 through the

algorithm scheme.

Examples:

Figure 3.3 shows some different examples to explain how the algorithm is working.

After enough iterations (we drop the time index of the intermediate estimates and

combination weights for simplicity), the situation of the links from agent ℓ’s perspective

and according to agent k converges as following:

(a) aℓk > 0, because ℓ will pick ψm to send it as φℓk. With time the trust between

ℓ and k will be built (3.119) because w◦
m = w◦

k. That means, agent k will accept

having data through agent ℓ.

(b) aℓk = 0, where ℓ will not pick ψm to send it as φℓk because m ∈ Nk. That means

φℓk = ψℓ (there are no other neighbors to pick their ψ’s). This φℓk will always

fail during the test (3.119) and will not build any trust between ℓ and k. That

means agent k will not accept having any data through agent ℓ.

(c) aℓk > 0, where ℓ picks either ψm or ψℓ to send it as φℓk because w◦
m = w◦

k = w◦
ℓ .

(d) aℓk = 0, because ℓ will pick either ψm or ψℓ to send it as φℓk. This φℓk will

always fail in the test (3.119).

(e) From agent k’s perspective and according to agent ℓ: akℓ > 0, because k will pick

ψm to send it as φkℓ.

From agent k’s perspective and according to agent m: akm > 0, because k will

pick ψℓ to send it as φkm.

3.6.2 Computational Complexity

From the steps of the algorithm, the computational complexity of the clustering scheme

of agent k at each time instant is O(nk). Likewise, the computational complexity of

the clustering with linking scheme for agent k at each time instant is also O(nk).

Regarding the transmission complexity, the clustering with linking scheme requires

double transmission lines. This is because each agent k sends two vectors ψk,i and φkℓ,i
to each neighbor ℓ instead of sending only one vector ψk,i in the clustering scheme case.
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Figure 3.4. Network topology with connected clusters.

3.7 Master Election Application

From the fact that the total number of the models and their indices are not available

by the agents, it is useful to have a distributed labeling system. The agents over the

network do not know the indices of their observed models. In this section we propose

a labeling system over multi-task networks by electing a master agent for each cluster.

We assume that all agents belonging to the same cluster are connected. The master

agent provides its index to label its cluster. Hence, we ensure that each cluster has a

unique index.

Figure 3.4 shows the network structure where agents with the same color observe the

same model. The unknown models are denoted by {w◦
C1, . . . , w

◦
CC}, each of size M × 1.

During the clustering process, each cluster elects one master agent. The election criteria

is that the agent with the smallest index in each cluster will be selected as the master

agent of its cluster. Then, each master agent picks its index as a label of its observed

model. Figure 3.5 shows the clustered topology and the master election result.

Each agent k denotes the index of the master agent of its cluster at time instant i by

nm,k(i). The initial value of nm,k(i) at time instant i = −1 is given by

nm,k(−1) = k. (3.123)

Then, agent k searches for the smallest index of the master agents that they are elected

by N k,i. If agent k finds a smaller index than its current master index, it will change its

master index to this smaller one. Moreover, agent k denotes the index of the (source)
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M

M

M

Figure 3.5. Clustered topology and the master election result.

agent that has the information about the smallest master index by ns,k(i). Similarly,

the initial value of ns,k(i) at time instant i = −1 is given by

ns,k(−1) = k. (3.124)

At each time instant i agent k verifies whether the source of its information still has the

same master agent or if it is changed. In case it is changed, agent k will reset the value

of the master index and the information source to the initial values again. Otherwise,

if the source of the information still has the same master index as agent k, agent k

searches again for the smallest index of the master agents that are elected by N k,i. The

election process occurs only within the clustered topology N k,i.

Note that the algorithm tracks the drifters. If any failure occurs in the network struc-

ture, the agents will elect the new master agents in a proper and distributed way.

Algorithm 3 summarizes the process of the master agent election.

3.8 Simulation Results

We consider a connected network with 50 randomly distributed agents. The agents

observe data originating from three different models (C = 3). Each model w◦
Cm ∈ RM×1

is generated as follows: w◦
Cm = [wr1 , . . . , wrM ]⊺, with entries wrc ∈ [1,−1]. In our

example we set M = 2; larger values of M are generally easier for clustering and,

therefore, we illustrate the operation of the algorithm for M = 2. The assignment of

the agents to models is random. Agents having the same color belong to the same

cluster. The maximum number of neighbors is nmax = 6.

Every agent k has access to a scalar measurement dk(i) and a 1×M regression vector

uk,i. The measurements across the agents are assumed to be generated via the linear



66 Chapter 3: Decentralized Clustering and Linking by Networked Agents

Algorithm 3 (Master agent election scheme)

for k = 1 : N do

p = ns,k(i) (3.125)

if nm,p(i) = nm,k(i) then
for ℓ ∈ N k,i do

if nm,k(i) > nm,ℓ(i) then

nm,k(i) = nm,ℓ(i) (3.126)

ns,k(i) = ℓ (3.127)

end if
end for

else

nm,k(i) = k (3.128)

ns,k(i) = k (3.129)

end if
end for

Agent index, k
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Figure 3.6. Statistical noise and signal profiles over the network.
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(a)

 

 

(b)

Figure 3.7. Network topology (a) and clustered topology at steady-state (b).

regression model

dk(i) = uk,iw
◦
k + vk(i) (3.130)

where vk(i) is measurement noise assumed to be a zero-mean white random process

that is independent over space. It is also assumed that the regression data uk,i is

independent over space and independent of vℓ(j) for all k, ℓ, i, j. All random processes

are assumed to be stationary. The statistical profile of the noise across the agents for

k = 1, . . . , N is shown in Fig. 3.6(a). The regressors are of size M = 2 and have

diagonal covariance matrices Ru,k as shown in Fig. 3.6(b). We set {µ, α, ν, δ, γ} =

{0.05, 0.015, 0.98, 0.17, 0.5}. We use the uniform combination policy to generate the

coefficients {aℓk(i)}.

3.8.1 Clustering Application

Figure 3.7(a) shows the topology of one of 100 Monte Carlo experiments. Figure 3.7(b)

presents the final topology after applying the clustering technique. Figure 3.8(a) depicts

the simulated transient mean-square deviation (MSD) of the network compared to other

clustering methods. The model assignments change at time instant i = 400. The

convergence of the curves shows the ability of the algorithm to track drifts in the

models.
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Figure 3.8. Transient mean-square deviation (MSD) using different approaches.
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Figure 3.9. Normalized clustering errors of types I and II over the network.
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(a) (b)

Figure 3.10. Clustered network topology at steady-state (a) and clustered and linked topology
at steady-state (b).

The normalized clustering errors of types I and II by each agent k at time instant i are

given, respectively, by

vI,k(i) ,
(1− [Ei]:,k)

⊺ × ([E◦]:,k − [Ei]:,k)

(nk − 1)
(3.131)

vII,k(i) ,
[Ei]

⊺
:,k × ([Ei]:,k − [E◦]:,k)

(nk − 1)
(3.132)

where E◦ is the true clustering matrix. Figures 3.9(a) and 3.9(b) depict the normalized

clustering errors vI and vII over the network. The practical error probabilities go to

zero at the steady-state.

3.8.2 Linking Application

Using the same setup of the previous example, Fig. 3.10(a) shows the topology of

one experiment with the clustering technique only. Figure 3.10(b) presents the final

topology when we apply the clustering with linking technique. Figure 3.11 indicates

the simulated transient mean-square deviation (MSD) of the agents with and without

the linking technique. The normalized clustering errors over the network are shown in

Fig. 3.12.
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Figure 3.11. Transient mean-square deviation with and without applying the linking tech-
nique.
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Figure 3.13. Network topology (a) and clustered topology with the master agents represented
by squares (b).
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Figure 3.14. Number of the master agents in the network over time.
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3.8.3 Master Election Application

We use the same setup of the previous example with the condition that the agents

which belong to the same cluster are connected.

Figure 3.13(a) shows the topology of connected clusters. Figure 3.13(b) presents the

final topology after applying the clustering technique and the master election process.

Three master agents are selected and presented by squares. These three masters have

the smallest indices among their cluster members.

Figure 3.14 depicts the number of the master agents in the network over time. This

curve starts with N master agents because at time instant i = −1 all agents are master

agents. The curve converges to the number of the observed model C = 3 at steady-state.
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Chapter 4

Decentralized Partitioning Over
Inhomogeneous Multi-Agent Networks

‘Divide each difficulty into as many
parts as is feasible and necessary to
resolve it.’

René Descartes

Certain types of animal groups, such as bee swarms, consist of informed and unin-

formed agents where only the informed agents collect information about the environ-

ment. Moreover, in many situations agents can be subjected to data from different

sources [30, 33, 42, 62, 63, 83].

In this chapter we consider a set of agents that are informed and observe different

models. We propose a decentralized partitioning technique aimed at implementing a

dynamic multi-task network using adaptation and learning in the presence of informed

and uninformed agents. The algorithm ensures a fair partitioning process to distribute

the uninformed agents among the groups that are interested in several objectives. Fur-

thermore, the decentralized technique has a self-organizing feature that endows the

network with a learning ability in stationary and non-stationary environments. We

apply the proposed technique in both static and mobile networks and show that the

size of the groups matches the centralized partitioning size well1.

4.1 Introduction

Informed agents are defined as those agents that are capable of evaluating their gradient

vector approximation continuously from streaming data and of performing the two tasks

of adapting their iterates and consulting with their neighbors. Uninformed agents are

incapable of performing adaptation but can still participate in the consultation process

with their neighbors. The informed agents send information to the uninformed ones to

1This chapter is based on the conference paper: S. Khawatmi and A. M. Zoubir, “Decentralized
partitioning over adaptive networks,” in Proc. IEEE International Workshop on Machine Learning
for Signal Processing (MLSP), (Vietri sul Mare, Salerno, Italy), September 2016, pp. 1–6.
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Informed agents

Uninformed agent

Neighborhood

Figure 4.1. Network topology with three different clusters.

create a group supported by some uninformed agents. Each uninformed one responds

to one informed agent and joins its group. In this case the first step is to cluster the

informed agents. Then, groups are formed with respect to each model. To this end,

we apply a clustering technique proposed in Sec. 3.3. The objective of the clustering

step is to form groups of agents that observe the same model, share model information

among one another, and ignore data from agents observing different models. After the

informed agents cluster according to their respective models, each uninformed agent is

assigned to one informed agent, joining its group and obtaining its model information.

In this chapter we formulate and solve the group allocation problem by designing the

combination weights. The combination weights control the flow and exchange of data

among agents to enable group formation. Our approach ultimately consolidates three

processes: clustering, group formation, and estimation of the model parameters. We

present some examples to illustrate our contributions. Furthermore, the algorithm is

applied on mobile networks.

The chapter is organized as follows: we describe the network and data model in Sec. 4.2.

Then, we illustrate in Sec. 4.3 the group forming technique. Finally, we present the

simulation results in Sec. 4.4.

4.2 Network and Data Model

Consider a connected network consisting of N s informed agents performing some tasks

and sending information to the N r uninformed agents (N s ≤ N r). Each uninformed

agent responds to one of the informed agents according to the information it receives.
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The set of neighbors of agent k including k itself is denoted by Nk. Two agents are

considered neighbors if there is a direct connection between them. Figure 4.1 shows

the network structure where agents with the same color observe the same model. We

represent the network topology by means of the N ×N adjacency matrix E, the entries

eℓk of which are defined as follows:

eℓk =

{
1, ℓ ∈ Nk,

0, otherwise.
(4.1)

Group Gc,i is the set of informed and uninformed agents that wish to estimate the

same model parameters w◦
Cc at time instant i, where c ∈ {1, . . . , C} is the index of the

observed model. It is assumed that C ≤ N s. In each group the agents perform the task

of estimating a common observed model vector in real-time. The unknown models are

each of size M × 1 and given by

w◦
C , col{w◦

C1 , w
◦
C2, . . . , w

◦
CC}. (4.2)

The superscript ◦ is used to indicate true parameter values. At each time instant i,

every informed agent k has access to a scalar measurement dk(i) and a 1×M regression

vector uk,i. The measurements across all agents are assumed to be generated via the

linear regression model:

dk(i) = uk,iw
◦
k,i + vk(i). (4.3)

All random processes are assumed to be stationary. Moreover, vk(i) is zero-mean white

measurement noise that is independent over space and has variance σ2
v,k. It is assumed

that the regression data uk,i is a zero-mean Gaussian process, independent over time

and space, and independent of vℓ(j) for all k, ℓ, i, j. We denote the covariance matrix

of uk,i by Ru,k , Eu
⊺
k,iuk,i. The unknown models {w◦

k,i} in Eq. (4.3) arise from the C

models, i.e., w◦
k,i = w◦

Cc for some c ∈ {1, . . . , C} and k = {1, . . . , N}. We stack the w◦
k,i

into a column vector:

w◦
i , col{w◦

1,i, w
◦
2,i, . . . , w

◦
N,i}. (4.4)

Note that the time index in w◦
k,i is important for the uninformed agents because their

desired models change over time according to the partitioning process. The general

tasks of the whole system at each time instant are as follows: the informed agents

observe different models and start to cluster themselves accordingly. They form groups

and send information to pull the uninformed agents to their groups. The latter are each

attracted to the informed agent exerting the strongest force.
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(a)

(b)

Figure 4.2. Clustered network (a) and group formation (b).

Figure 4.2 shows the clustered network and the groups in the network. Every informed

agent is identified as being informed by all its neighbors by setting

nin,k =

{
1, k ∈ N s,

0, k ∈ N r.
(4.5)

where nin , col{nin,1, nin,2, . . . , nin,N}. From [18] each agent k runs the following LMS

steps:

ψk,i =ψk,i−1 + µku
⊺
k,i(dk(i)− uk,iψk,i−1) (4.6)

wk,i =

N∑

ℓ=1

aℓk(i)ψℓ,i (4.7)

where µk > 0 is a small step-size and µk = 0 when k ∈ N r. The current intermediate

estimate of the parameter vector is denoted by ψk,i while wk,i is the current estimate of

the parameter vector. The non-negative combination coefficients {aℓk(i)} in Eq. (4.7)

are seen to be time-dependent and should satisfy:

aℓk(i) = 0 for ℓ /∈ N k,i,
N∑

ℓ=1

aℓk(i) = 1. (4.8)
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Observe that the combination coefficient aℓk(i) is non-zero only if agent k wishes to

share data received from agent ℓ. The group information is retrieved from matrix Ei

the entries of which are updated continuously according to

eℓk(i) =

{
1, ℓ ∈ N k,i,

0, otherwise.
(4.9)

The coefficients {eℓk(i)} and {aℓk(i)} are selected as explained next.

4.3 Group Formation

Clustering is the process of computing the combination weights among the informed

agents. Partitioning is the process of computing the combination weights among the

informed and uninformed agents. The latter weights govern the data flow from the

informed agents to the uninformed ones. Uninformed agents do not transmit data.

The uninformed agents adjust their combination weights in attempt to achieve the

following goal: at steady-state all groups are required to have approximately the same

size (fair partitioning), i.e., as

|G1,i| ≈ |G2,i| ≈ . . . ≈ |GC,i| as i→ ∞. (4.10)

The size of each group is determined by the entries of the matrix Ai.

4.3.1 Clustering Scheme

The informed agents try to collectively enhance the inference performance of the whole

network in a distributed and cooperative manner. We apply the clustering technique

proposed in Sec. 3.3 to create the estimated clustering matrix F i of size N × N as

follows. We initialize ψk,−1 = 0 and B−1 = F−1 = E−1 = IN . Each entry aℓk(i) is

designed using the clustering algorithm proposed in Sec. 3.3, where k, ℓ ∈ N s:

bℓk(i) =

{
1, if ||ψℓ,i −wk,i−1||2 ≤ α,

0, otherwise
(4.11)

f ℓk(i) = ν × f ℓk(i− 1) + (1− ν)× bℓk(i) (4.12)

eℓk(i) = ⌊f ℓk(i)⌉ (4.13)

where α > 0, 0 ≤ ν ≤ 1, and the notation ⌊·⌉ denotes rounding to the nearest integer.
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In the following, we will introduce some quantities that have to be estimated in order

to accomplish the partitioning process. For each agent k ∈ N s the estimated number

of the informed agents within its group at time instant i is given by

gin,k(i) = [Ei]
⊺
:,k1. (4.14)

The estimated number of groups at time instant i by agent k ∈ N s is given by ggr,k(i).

To estimate the number of groups in the network, each agent k counts how many

different estimation vectors wℓ,i its neighbors ℓ ∈ Nk have. The estimated number of

the desired uninformed agents by agent k ∈ N s is given by

nz,k(i) =
⌊ N − |N s ∩ Nk|

ggr,k(i)× gin,k(i)

⌉
. (4.15)

The actual number of uninformed agents that are following agent k ∈ N s is given by

nf,k(i) = [Ei]k,:(1− nin,i). (4.16)

Therefore, the estimated number of needed uninformed agents by agent k at time instant

i is given by

ge,k(i) = nz,k(i)− nf,k(i). (4.17)

In case ge,k(i) < 0, agent k has too many uninformed followers.

4.3.2 Partitioning Scheme

Each uninformed agent decides which informed agent it will follow and receive infor-

mation from. Matrix Ai determines the data flow among agents. Uninformed agents

alter their group membership adaptively until convergence. Ultimately, each agent k

will belong to one group. Consider an N s ×N matrix Si with non-negative real entries

sℓk(i), each representing the force with which the informed agent ℓ pulls the uninformed

agent k. Every entry sℓk(i) is given by

sℓk(i) =

{
g
e,ℓ(i)∑

n∈Nk∩N s |ge,n(i)| , ℓ ∈ N s ∩Nk,

0, otherwise.
(4.18)

Each entry f ℓk(i) of the matrix F i, where ℓ ∈ N s and k ∈ N r, is adjusted using the

following relation:

f ℓk(i) = (1− bℓk(i))eℓk(i− 1) + bℓk(i)sℓk(i). (4.19)

The next step is to clip the negative values at zero:

f ℓk(i) =

{
f ℓk(i), if f ℓk(i) > 0,

0, otherwise.
(4.20)
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In Eq. (4.19) the factor bℓk(i) ensures fair partitioning and solves the oscillation problem.

The latter occurs when there is an equilibrium state between two forces impacting the

same agent. This problem hinders convergence. bℓk(i) is given as

bℓk(i) =





1, if ge,ℓ(i) > 0 AND eℓk(i− 1) = 0 AND (4.22),

λ, if ge,ℓ(i) < 0 AND eℓk(i− 1) = 1 AND (4.23),

0, otherwise

(4.21)

where 0 < λ < 1. For n ∈ N s ∩ Nk conditions (4.22) and (4.23) are defined as follows:

{∃n : enk(i− 1) = 1 AND ge,n(i) < 0} OR {ekk(i− 1) = 1}. (4.22)

The idea behind this condition is that agent ℓ may try to pull agent k in two cases:

either if agent k is not following any agent yet, i.e., ekk(i − 1) = 1, or when agent n

which agent k follows has too many followers, i.e., ge,n(i) < 0. Condition (4.23) is given

by

{∃n : enk(i− 1) = 0 AND ge,n(i) > 0}. (4.23)

If ge,ℓ(i) < 0 AND eℓk(i − 1) = 1, agent ℓ will not push agent k directly, but rather

smooths the value with the previous eℓk(i − 1). Each entry eℓk(i) of matrix Ei repre-

senting group membership is adjusted using the following relation:

eℓk(i) =

{
1, if f ℓk(i) = max([F i]:,k) AND ge,ℓ(i) > 0,

0, otherwise.
(4.24)

In case two (or more) f ℓ1k(i) = f ℓ2k(i) = max([F i]:,k), the uninformed agent k randomly

chooses only one of them to follow.

4.4 Simulation Results

4.4.1 Static Network

We consider a network with 40 randomly distributed agents. Figure 4.3 shows the

statistical profile of the regressors and noise across the informed agents. The regressors

are of size M = 2 as well as zero-mean Gaussian, independent in time and space, and

have diagonal covariance matrices Ru,k. We chose {α, µ, ν, λ} = {0.02, 0.05, 0.02, 0.6},

and |Nk| = 20. We impose a priority for informed agents to be assigned as neighbors

even if some other uninformed agents are closer, as long as they are within the radius

rnei = 2. The first 10 agents are informed and denoted by big circles. Agents having
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Figure 4.3. Statistical profiles of the informed agents.

the same color belong to the same group. The informed agents observe data originating

from three different models C = 3. Each model w◦
Cc ∈ RM×1 is generated as follows:

w◦
Cc = [wr1, . . . , wrM ]⊺ where wrm ∈ [1,−1]. The assignment of agents to models is

random. We use a uniform combination policy to generate the coefficients {aℓk(i)}.

The simulation results are obtained by averaging over 1000 independent Monte Carlo

runs. Figure 4.4 shows the topology of one of these experiments and the final struc-

ture after clustering and partitioning. Figure 4.5(a) depicts the transient mean-square

deviation (MSD) of informed agents at each time instant i ginen by

MSD(i) ,
1

N s

∑

k∈N s

E‖w◦
k −wk,i‖

2. (4.25)

Figure 4.5(b) depicts the estimated number of groups over time. The normalized clus-

tering errors over the network are presented in Figure 4.5(c). The respective normalized

clustering errors of each agent k at time instant i are given by

v1,k(i) ,
(1− [Ei]:,k)

⊺ × ([E◦]:,k − [Ei]:,k)

(nk − 1)
(4.26)

v2,k(i) ,
[Ei]

⊺
:,k × ([Ei]:,k − [E◦]:,k)

(nk − 1)
(4.27)

where nk is the number of agent k’s informed neighbors and E◦ is the true clustering

matrix. Figure 4.5(d) shows the estimated group size where fair partitioning leads to

10 uninformed agents per group.
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Figure 4.4. Network topology before (a) and after group formation (b), N = 40.
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Figure 4.5. Network MSD (a), estimated number of groups (b), network clustering errors
(c), and estimated group size (d).
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Figure 4.6. Network MSD (a), estimated number of groups (b), network clustering errors
(c), and estimated group size (d).
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Figure 4.7. Network topology before (a) and after group formation (b), N = 60.
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Figure 4.6 shows results for the case in which the model assignments change at time

instant i = 400 for a network of size N = 60. The corresponding network topology is

given in Fig. 4.7.

This simulation demonstrates the algorithm’s ability to track drifts in the models. Some

groups may have greater group size than the others because the remainder after the

division operation does not equal to zero, i.e., remainder{N
r

C
} 6= 0.

4.4.2 Mobile Network

We consider a network with 40 randomly distributed mobile agents [42]. Agents having

the same color belong to the same group. The first 10 agents are informed and denoted

by triangles. The uninformed ones are denoted by circles as shown in Fig. 4.9. The

informed agents observe data originating from three different models (sources) C = 3,

where wrm ∈ [100,−100]. The models are represented by squares. The agents wish to

estimate and track these sources in groups. Every agent k updates its location vector

xk,i according to the rule:

xk,i+1 = xk,i +△t · vk,i+1 (4.28)

where △t = 0.5 is a positive time step and vk,i+1 is the updated velocity vector of agent

k given by

vk,i+1 = β · vak,i+1 + γvbk,i+1, (4.29)

where β and γ are non-negative weighting factors satisfying β + γ = 1. The velocity

vector vak,i+1, which allows agent k to move towards the desired model is given by

vak,i+1 =

{
wk,i − xk,i, if ||wk,i − xk,i|| ≤ δ,

δ ·
wk,i−xk,i

||wk,i−xk,i|| , otherwise
(4.30)

where we use δ = 1 to bound the agent’s speed. The agents should keep a safe distance,

ξ = 3, from their neighbors to avoid collision during the movement. The velocity vector

vbk,i+1 of agent k is given by

vbk,i+1 =
1

|N−
k,i ∩ Gc,i|

∑

ℓ∈N−
k,i

∩ Gc,i

(
1−

ξ

||xℓ,i − xk,i||

)
(xℓ,i − xk,i) (4.31)

where w◦
k,i = w◦

Cc , N−
k,i is the neighborhood of agent k excluding itself. We choose

{α, β, γ, rnei} = {1, 0.9, 0.1, 20}.

Figure 4.8 represents the simulation results which are obtained by averaging over 1000

independent Monte Carlo runs. Figure 4.9 shows the maneuver of the agents with

three sources over time. The groups reach these sources supported by equal size of

uninformed agents.
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Figure 4.8. Network MSD (a), estimated number of groups (b), network clustering errors
(c), and estimated group size (d).
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Figure 4.9. Maneuver of the agents with three sources in time instants i=1 (a), i=50 (b),
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agents.
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Chapter 5

Decentralized Decision-Making Over
Adaptive Networks

‘If you want to go fast, go alone. If
you want to go far, go together.’

African Proverb

In multi-task networks agents are interested in different objectives and do not know

beforehand which models are being observed by their neighbors. We have proposed in

Chapter 3 a distributed clustering technique that allows the agents to learn and form

their clusters from streaming data in a robust manner. In some situations, the agents

need to decide between multiple options, e.g., to track only one of multiple sources.

In the works [62, 70], the agents are subject to data arising from two different models

and the aim of the network is to reach an agreement to track only one of these two

observed sources in a distributed manner. Applying [62] in a mobile environment leads

to some undesired scenarios, e.g., splitting the network into two sub-networks before

reaching an agreement. The performance of this scheme depends on the initial location

of the network and the location of the models. In Sec. 5.1 we replace the proposed

classification scheme in [62] by the clustering algorithm proposed in Chapter 3 to ensure

a fast and accurate clustering. Moreover, changes in topology over time involve that the

network may be separated into two groups before reaching the agreement on one model.

Consequently, the decision-making process fails to ensure that the network converges to

only one desired model. We add a new term to the velocity control to keep the network

moving in a cohesive manner.

In addition, the scheme of the algorithm proposed in [62] is based on binary labeling.

This implies that the algorithm can be applied for only two different observed models. In

Sec. 5.2, we propose a distributed decision-making approach for more than two models,

where agents are subject to data arising from more than two different models. The

agents need to decide which model to estimate and track. Once the network reaches

an agreement on one desired model, the cooperation among the agents enhances the

performance of the estimation task by relaying data over the network.
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5.1 Decentralized Decision-Making Over Mobile

Adaptive Networks

5.1.1 Introduction

Inspired by distinctive biological phenomena, several algorithms are designed to mimic

the behavior of animal groups that move together in an amazing coherence, such as bee

swarms, birds flying in formation, and schools of fish [42, 45–48]. The agents in some

networks need to decide between multiple options, for example, to track only one of

two food sources [62].

We consider a distributed mean-square-error estimation problem over an N -agent net-

work. The connectivity of the agents is described by a graph (see Fig. 5.4). Data sensed

by any particular agent can arise from one of two different models. The objective is

to reach an agreement among all agents in the network on one model to estimate and

track. Two definitions are introduced: the observed model, which refers to the one,

from which an agent collects data, and the desired model, which refers to the one the

agent decides to move towards. The agents do not know which model generated the

data they collect; they also do not know which other agents in their neighborhood sense

data arising from the same model. Therefore, each agent needs to determine the subset

of its neighbors that observes the same model1.

The desired scenario is shown in Fig. 5.1, where all agents converge to only one model.

The proposed classification scheme in [62], which determines the subset neighbors that

observes the same model, has some demerits. The performance of this scheme depends

on the initial location of the network and the location of the models. These demerits

lead to some undesired scenarios, such as, converging to some non-existing model in

the middle between the models (see Fig. 5.2).

Since the decision-making objective depends on the classification output, errors made

in the classification process have an impact on the global decision. Several clustering

algorithms have been proposed in [18, 66, 67]. A fast clustering technique that lets

the agents distinguish the neighbors in real-time is needed in mobile networks because

the topology changes quickly due to the movement of the agents. In this section, we

replace the proposed classification scheme in [62] by the clustering algorithm in Sec. 3.3.

Changes in topology over time imply that the network may be separated into two groups

1This section is based on the conference paper: S. Khawatmi, X. Huang, and A. M. Zoubir, “Dis-
tributed decision-making over mobile adaptive networks,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process. (ICASSP), (New Orleans, USA), March 2017, pp. 3864–3868.
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Figure 5.1. Network reaches an agreement among all agents and tracks only one source,
where the observed models are represented by two colors. Sources are represented by stars.

Figure 5.2. Network does not reach an agreement among agents and tracks some non-existing
source in the middle between the sources.

Figure 5.3. Network does not reach an agreement among agents and splits into two groups
to track the sources.
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Figure 5.4. Illustration of the network model with two observed models represented by two
colors.

before reaching agreement on one model (see Fig. 5.3). Now, while groups are moving

far away from each other towards different desired models, they will lose the connections

between each other. This means that the decision-making process fails to ensure that

the network converges to only one desired model. We add a new term to the velocity

control, this term helps to keep the network moving in a cohesive manner, even if agents

move and do not make a decision yet.

We present the network and data model in Sec. 5.1.2. Then, we illustrate the decision-

making algorithm and the motion mechanism technique in Secs. 5.1.3 and 5.1.4 , re-

spectively. Finally, we demonstrate the method by simulations in Sec. 5.1.5.

5.1.2 Network and Data Model

Consider a collection of N agents distributed in space. Figure 5.4 shows the network

structure where agents with the same color observe the same model. The unknown

models are denoted by {z◦1 , z
◦
2} each of size M × 1. We denote the set of neighbors of

agent k at time instant i by Nk,i of size nk,i (i.e, the number of neighbors of agent k).

While the set of neighbors of agent k excluding k itself is denoted by N−
k,i. We represent

the network topology at time instant i by means of the N × N adjacency matrix Ei

whose entries eℓk(i) are defined as follows:

eℓk(i) =

{
1, ℓ ∈ Nk,i,

0, otherwise.
(5.1)

We consider an N × N combination matrix Ai whose (ℓ, k)th entry contains the com-

bination weight aℓk(i), i.e., the weight that agent k assigns to data received from agent
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ℓ. The entries of the combination matrix Ai are non-negative real-valued, satisfying

aℓk(i) = 0 for ℓ /∈ Nk,i,

N∑

ℓ=1

aℓk(i) = 1. (5.2)

Furthermore, we define the agents observed model vector by

w◦ , col {w◦
1, w

◦
2, . . . , w

◦
N}, w◦ ∈ RMN×1. (5.3)

Figure 5.4 shows that agent k collects data from model z◦1 , i.e., w◦
k = z◦1 , while

agent ℓ collects data from model z◦2 which implies w◦
ℓ = z◦2 . We denote the esti-

mate vector of the desired model at time instant i of agent k by wk,i. We define

wi , col {w1,i, w2,i, . . . , wN,i}. The objective of the network is to have all wk,i converge

to only one model, either z◦1 or z◦2 . We can write that for each agent k ∈ {1, 2, . . . , N}

wk,i → z◦j as i→ ∞ (5.4)

where j is either 1 or 2. The agents seek to estimate the vector parameter z◦j , which

leads to the situation that agents with w◦
k = z◦j track their own observed model, but

others with w◦
k 6= z◦j do not track their own observed model, but track z◦j instead,

although they do not have any streaming data from z◦j . The aggregate cost function

Jglob(w) is defined as

Jglob(w) =
N∑

k=1

||wk,i − z◦j ||
2. (5.5)

The location and velocity vectors of agent k at time instant i are denoted by xk,i and

vk,i, respectively. The modified diffusion strategy in [62] is given by the following steps:

ψk,i = wk,i−1 + µ(qk,i −wk,i−1) (5.6)

wk,i =
∑

ℓ∈Nk,i

(ȧℓk(i)ψℓ,i + äℓk(i)wℓ,i−1) (5.7)

where µ is a positive step-size parameter and qk,i is the noisy location of the model

that agent k observes and is given by

qk,i = w◦
k + ηk,i (5.8)

where ηk,i is a zero-mean white random process with variance σ2
k(i) = κ||w◦

k − xk,i||2,

for κ > 0 (see Figs. 5.5 and 5.6).

The combination coefficients {ȧℓk(i)} and {äℓk(i)} are two sets of non-negative entries

in the combination matrices Ȧi and Äi which satisfy:

Ȧi + Äi = Ai. (5.9)
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Figure 5.5. Illustration of the intermediate estimate ψi for some agents in the network.

Figure 5.6. Illustration of the noisy location qk,i (qℓ,i) of the model that agent k (ℓ) observes.



5.1 Decentralized Decision-Making Over Mobile Adaptive Networks 95

The design method of the matrices Ȧi and Äi is detailed in Sec. 5.1.3. We define the

central location and velocity of the network at time instant i by averaging location and

velocity of all agents over the network, respectively, as

x◦i ,
1

N

N∑

k=1

xk,i, v◦i ,
1

N

N∑

k=1

vk,i. (5.10)

The central network location x◦i and velocity v◦i are estimated using the diffusion strat-

egy in a distributed manner by considering the following global cost functions:

Jx(xg) =

N∑

k=1

||xgk,i − x◦i ||
2, Jv(vg) =

N∑

k=1

||vgk,i − v◦i ||
2. (5.11)

Applying the diffusion strategy structure to estimate xgk,i and vgk,i, respectively, we

obtain

θk,i = x
g
k,i−1 + µ(xk,i − x

g
k,i−1) (5.12)

x
g
k,i =

∑

ℓ∈Nk,i

aℓk(i)θℓ,i (5.13)

φk,i = v
g
k,i−1 + µ(vk,i − v

g
k,i−1) (5.14)

v
g
k,i =

∑

ℓ∈Nk,i

aℓk(i)φℓ,i. (5.15)

Note that we estimate the central network location and velocity using matrix Ai rather

than Ȧi or Äi due to the fact that the agents are required to share velocity and location

information with all neighbors, regardless of their observed models.

Let the true clustering matrix, which gives information about the observed model and

is not known beforehand, be denoted by F ◦
i . The assignment of the (ℓ, k)th entry to

one means

f ◦
ℓk(i) = 1 ⇒ {ℓ ∈ Nk,i and w

◦
k = w◦

ℓ}. (5.16)

We apply the clustering technique proposed in Sec. 3.3 to create the estimated clustering

matrix F i of size N×N . Each agent k runs the following steps for the clustering process:

ψc
k,i = ψ

c
k,i−1 + µk(qk,i −ψ

c
k,i−1) (5.17)

wc
k,i =

∑

ℓ∈N ′
k,i

a′
ℓk(i)ψ

c
ℓ,i (5.18)

ψc
k,i and w

c
k,i both converge to the observed model w◦

k without being affected by the

decision process. We set ψc
k,−1 = 0 and B−1 = S−1 = F−1 = IN . The combination

matrix A′
i is designed using the following steps [18]:

bℓk(i) =

{
1, if ||ψc

ℓ,i −w
c
k,i−1|| ≤ ǫ,

0, otherwise
(5.19)
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Figure 5.7. Example of agent’s k neighbors with the combination weights {aℓk(i)}.

Figure 5.8. Example of the clustered neighbors of agent k that observe the same model.

sℓk(i) = ξ × sℓk(i− 1) + (1− ξ)× bℓk(i) (5.20)

f ℓk(i) = ⌊sℓk(i)⌉ (5.21)

for ǫ > 0, 0 ≤ ξ ≤ 1, and 0 < ζ ≤ 1. The combination coefficients {a′
ℓk(i)} satisfy

a′
ℓk(i) = 0, if ℓ /∈ N ′

k,i,
N∑

ℓ=1

a′
ℓk(i) = 1 (5.22)

where N ′
k,i consists of neighbors believing that they belong to the same cluster, i.e.,

f ℓk(i) = 1 implies ℓ ∈ N ′
k,i (see Figs. 5.7 and 5.8).

5.1.3 Selection of Combination Matrices

Applying the strategy in [62], we use matrix Gi of size N ×N to estimate the desired

model of each agent. Agent k assigns the value of the (ℓ, k)th entry for each agent
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ℓ ∈ N−
k,i according to (5.24). The meaning of the value is as follows:

{
gℓk(i) = 1 : wℓ,i → w◦

k,

gℓk(i) = 0 : wℓ,i 6→ w◦
k.

(5.23)

Since agent k has access to the desired models of its neighbors gℓℓ(i), it adjusts its

estimate for desired model of agent ℓ, gℓk(i), according to the following rule:

gℓk(i) =

{
gℓℓ(i− 1), if f ℓk(i) = 1,

1− gℓℓ(i− 1), otherwise.
(5.24)

Each diagonal entry gkk(i) indicates whether agent k wishes to track its own observed

model or not, i.e., {
gkk(i) = 1 : wk,i → w◦

k,

gkk(i) = 0 : wk,i 6→ w◦
k

(5.25)

where agent k updates its desired model gkk(i) according to:

gkk(i) =

{
gkk(i− 1), with probability pk(i),

1− gkk(i− 1), with probability 1− pk(i)
(5.26)

and pk(i) is given by

pk(i) =
[ngk(i)]

K

[ngk(i)]
K + [nk(i)− n

g
k(i)]

K
(5.27)

for a positive constant K. Figure 5.9 shows examples for the probability pk(i) using

different values of K. ngk(i) is the size of the set N
g
k,i that contains the subset of agents

that are in the neighborhood of agent k and have the same desired model as agent k at

time instant i− 1. That is, N g
k,i is constructed as follows:

N g
k,i = {ℓ|ℓ ∈ Nk,i, gℓk(i) = gkk(i− 1)}. (5.28)

The entries of Ȧi and Äi are set according to the following rules:

ȧℓk(i) =

{
aℓk(i), if ℓ ∈ Nk,i and f ℓk(i) = gkk(i),

0, otherwise.
(5.29)

äℓk(i) =

{
aℓk(i), if ℓ ∈ Nk,i and f ℓk(i) 6= gkk(i),

0, otherwise.
(5.30)

As a result, in Eq. (5.7) agent k combines ψℓ,i if it wishes to estimate w◦
ℓ , otherwise it

combines wℓ,i−1 instead, where ℓ ∈ Nk,i, (see Figs. 5.10 and 5.11).
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Figure 5.9. Probability pk(i) for different values of K.

Figure 5.10. Data types that agent k combines from its neighbors in case that the desired
model of agent k is z◦1 .

Figure 5.11. Data types that agent k combines from its neighbors in case that the desired
model of agent k is z◦2 .
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Figure 5.12. Illustration of the main terms of the velocity equation.

5.1.4 Motion Model

Every agent k updates its location vector according to the rule

xk,i+1 = xk,i +△t · vk,i+1 (5.31)

where △t is a positive time step and vk,i+1 is the updated velocity vector of agent k.

Several factors influence the determination of the velocity vk,i+1 of agent k, such as: the

desire to move towards the desired model z◦j , the desire to move in coordination with

other agents, and the desire to avoid collision. Figure 5.12 shows four velocity factors.

The velocity vector vak,i+1, which allows agent k to move towards the desired model, is

given by

vak,i+1 =

{
wk,i − xk,i , if ||wk,i − xk,i|| ≤ δ,

δ ·
wk,i−xk,i

||wk,i−xk,i|| , otherwise
(5.32)

where δ is a positive scaling factor used to bound the agent’s speed. To move in a

harmonious manner, the velocity vector vbk,i+1 of agent k is updated as, vbk,i+1 = v
g
k,i.

Agents should keep a safe distance r from their neighbors to avoid collisions during the

movement. The velocity vector vck,i+1 of agent k is given by

vck,i+1 =
1

nk(i)− 1

∑

ℓ∈N−
k,i

(
1−

r

||xℓ,i − xk,i||

)
(xℓ,i − xk,i). (5.33)

Before reaching agreement on one desired model, the network might become separated

into two groups, each group moving towards its desired model. If these two groups

move away from each other and lose connections, the decision-making process fails. To

resolve this issue, we define an N × 1 vector ιi, each entry ιk(i) is given by

ιk(i) =

{
1, if pk(i) > 0.5 AND n

g
k(i) < nk(i),

0, otherwise.
(5.34)
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The condition in Eq. (5.34) implies that Nk,i does not agree yet on one desired model

and pk(i) > 0.5 (i.e., agent k will keep its previous decision). If ιk(i) = 1, an additional

action has to be taken by agent k, where ιk(i) controls the term vdk,i+1 that enforces

agent k to move towards the center of the network in order to keep the network cohesive.

Herein, vdk,i+1 is given by

vdk,i+1 =
x
g
k,i − xk,i

||xgk,i − xk,i||
. (5.35)

Finally, for the non-negative weighting factors λ and β satisfying: λ+β = 1, each agent

adjusts its velocity according to the following rule:

vk,i+1 =
[
1− ιk(i)

]
·
[
λ · vak,i+1 + βvbk,i+1

]

+ ιk(i)v
d
k,i+1 + vck,i+1.

(5.36)

5.1.5 Simulation Results

We consider a connected network with 40 randomly distributed agents. The maximum

number of neighbors of every agent k is nk,i = 7, as long as they are within radius

R = 15. Agents observe data originating from two different models: z◦1 = [−10; 10]

and z◦2 = [10; 10]. The assignment of agents to the models is random. We use a

uniform combination policy to generate the coefficients {aℓk(i)} and {a′ℓk(i)}. The

clustering parameters are set as follows: {ǫ, ξ} = {5, 0.6}. The velocity parameters are

set as follows: {λ, β, r,∆t, δ} = {0.2, 0.8, 3, 0.1, 1} and {µ, κ,K} = {0.05, 0.02, 20}. The

simulation results are obtained by averaging over 1000 independent experiments with

different setup of the initial network location.

Table 5.2 displays the success rate Rr of the decision-making to agree on one model

and the average time required to achieve this agreement Tr. Obviously, the proposed

strategy provides better performance with almost 100% success rate while on average

needing compared to [62] fewer iterations to achieve agreement.

Tr(sec) Rr(%)
Strategy [62] 72 64.2%

Proposed strategy 58 99.3%

Table 5.1. Decision-making success rate Rr and the average time required to achieve agree-
ment Tr .

The transient network mean-square deviation (MSD) at each time instant i is defined

by

MSDd(i) ,
1

N

N∑

k=1

||z◦d −wk,i||
2 (5.37)
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Figure 5.13. Transient network mean-square deviation MSD (a). Transient network mean-
square error MSEv (b).

where z◦d is the desired model. Figure 5.13(a) depicts two curves and shows how the

network converges to z◦d. By substituting the undesired model z◦
d̄
in (5.37), we obtain

the second curve MSDd̄ that is shown in Fig. 5.13(a). Figure 5.13(b) shows the transient

network mean-square-error of estimating the central velocity v◦i which is given by

MSEv(i) ,
1

N

N∑

k=1

||v◦i − v
g
k,i||

2. (5.38)

The learning curve indicates that the network moves coherently.

Figure 5.14 depicts the maneuver of fish schools with two food sources over time where

the agents agree on the model z◦1 .
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Figure 5.14. Maneuver of fish schools with two food sources in time instants i = 10 (a),
i = 30 (b), i = 100 (c), and i = 500 (d). The length unit of the x- and y-axis is the body
length of the agents.
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5.2 Decentralized Decision-Making Over Multi-

Task Networks

5.2.1 Introduction

In many multi-task networks that have multiple objectives, agents need to decide be-

tween these multiple objectives and reach an agreement to have only one objective of

the network. In the works [21, 62] agents in the network are subject to data arising

from two different models and the aim of the network is to reach agreement to track

only one of these two observed sources in a distributed manner. The strategy of the

algorithm proposed in [62] is based on binary labeling which implies that the algorithm

can only be applied for two different observed models. In this section, we propose an

approach for scenarios, where agents are subject to data arising from more than two

different models2.

We consider a distributed mean-square-error estimation problem over an N -agent net-

work. The connectivity of the agents is described by a graph (see Fig. 5.15). Data

sensed by any particular agent can arise from one of different models. The objective

is to reach an agreement among all agents in the network on one common model to

estimate. We recall the following definitions: the observed model, which refers to the

one from which an agent collects data, and the desired model, which refers to the one

the agent decides to estimate. The agents do not know which model generated the data

they collect; they also do not know which other agents in their neighborhood sense data

arising from the same model. Therefore, each agent needs to determine the subset of

its neighbors that observes the same model. The distinguishing process of the neigh-

bors is called the clustering process. Since the decision-making objective depends on

the clustering output, errors made during the clustering process have an impact on the

global decision. We apply the clustering scheme proposed in [18] to ensure an accurate

clustering output.

We describe the network and data model in Sec. 5.2.2. Then, we illustrate the local

labeling system and the decision-making algorithm with the performance analysis of

the algorithm in Secs. 5.2.3, 5.2.4, and 5.2.5, respectively. In Sec. 5.2.6 we extend

the algorithm to a special case when the whole network follows the model of a specific

agent. Finally, simulation results and discussions are presented in Sec. 5.2.7.

2This section is based on the journal paper: S. Khawatmi, A. H. Sayed, and A. M. Zoubir, “Decen-
tralized decision-making over multi-task networks,” (under review), 2017.
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Figure 5.15. Example of a network topology, agents with the same color observe the same
model.

5.2.2 Network and Data Model

Consider a collection of N agents distributed in space, as illustrated in Fig. 5.15. We

represent the network topology by means of an N×N adjacency matrix E whose entries

eℓk are defined as follows:

eℓk =

{
1, ℓ ∈ Nk,

0, otherwise
(5.39)

where Nk is the set of neighbors of agent k (we denote its size by nk). We also write

N−
k to denote the same neighborhood excluding agent k.

Figure 5.15 shows the network structure where agents with the same color observe the

same model. We denote the unknown models by {z◦1 , . . . , z
◦
C}, each of size M ×1 where

C ≤ N . Each agent k observes data generated by one of these C unknown models. We

denote the model observed by agent k by w◦
k. Figure 5.15 shows that agent k collects

data from model z◦1 , in which case w◦
k = z◦1 . For any other agent ℓ observing the same

model z◦1 , it will hold that w◦
ℓ = z◦1 . We stack the {w◦

k} into a column vector:

w◦ , col {w◦
1, w

◦
2, · · · , w

◦
N}, w◦ ∈ RMN×1. (5.40)

At every time instant i, every agent k has access to a scalar measurement dk(i) and a

1 ×M regression vector uk,i. The measurements across all agents are assumed to be

generated via linear regression models of the form:

dk(i) = uk,iw
◦
k + vk(i). (5.41)

All random processes are assumed to be stationary. Moreover, vk(i) is a zero-mean

white measurement noise that is independent over space and has variance σ2
v,k. The
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regression data uk,i is assumed to be a zero-mean Gaussian process, independent over

time and space, and independent of vℓ(j) for all k, ℓ, i, j. We denote the covariance

matrix of uk,i by Ru,k = E u
⊺
k,iuk,i.

Agents do not know which model is generating their data. They also do not know which

models are generating the data of their neighbors. Still, we need to apply a learning

strategy that will allow the agents to converge to their individual driving models, while

also learning which of their neighbors share the same model. Using the algorithm

proposed in [18], each agent k repeats the following steps involving an LMS adaptation

update followed by an aggregation step:

ψk,i =ψk,i−1 + µku
⊺
k,i(dk(i)− uk,iψk,i−1) (5.42)

φk,i =
N∑

ℓ=1

aℓk(i)ψℓ,i (5.43)

where µk is the step-size used by agent k. The intermediate estimate vector and the

estimate vector of the observed model by agent k at time instant i are denoted by

ψk,i and φk,i, respectively. We collect the estimated vectors across all agents into the

aggregate vector:

φi , col {φ1,i,φ2,i, · · · ,φN,i}. (5.44)

In a manner similar to [18], we introduce a clustering matrix Ei. Its structure is similar

to the adjacency matrix E, with ones and zeros, except that the value at location (ℓ, k)

will be set to one if agent k believes at time instant i that its neighbor ℓ belongs to the

same cluster, i.e., observes the same model

eℓk(i) =

{
1, if ℓ ∈ Nk and k believes that w◦

k = w◦
ℓ ,

0, otherwise.
(5.45)

These entries help define the neighborhood set N k,i, which consists of all neighbors at

time instant i that agent k believes share the same model. The entries {aℓk(i)} in (5.43)

are non-negative scalars that satisfy

aℓk(i) = 0 for ℓ /∈ N k,i,

N∑

ℓ=1

aℓk(i) = 1. (5.46)

Although there is a multitude of models generating the data that is feeding into the

agents, namely, {z◦1 , z
◦
2 , . . . , z

◦
C}, the objective is to develop a strategy that will allow

all agents to converge towards one of these models. We refer to this particular choice

as the desired model and denote it by z◦d.

In this way, an agent whose source (observed) model agrees with the desired model,

i.e., w◦
k = z◦d, it will end up tracking its own source. On the other hand, an agent whose
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source model is not the desired model, i.e., w◦
k 6= z◦d, it will track z

◦
d instead although it

is sensing data generated by a different model. We define the estimate vector of agent’s

k desired model by wk,i. The reason behind indicating wk,i as the estimate vector of

agent’s k desired model instead of the network’s desired model is that the agents may

have different desired models before the convergence (steady-state). Once the agents

reach the agreement among each other on only one model, we can refer to wk,i as the

estimate vector by agent k of the network’s desired model. For the initialization at

time instant i = 1, each agent assigns wk,0 = ψk,1 (i.e. at time instant i = 1 the

desired model of each agent is its own source model). The decision-making process

drives the desired models of all agents to converge to only one model. For example,

if the agents observe C = 5 different models, the number of the desired models in the

network will decrease with iterations gradually form 5 models till only one model. This

is achieved by switching the estimate wk,i of some agents during the decision-making

process according to some conditions that are explained later. However, agents do not

know which models are desired by their neighbors at each time instant i. Thus, we

need to develop a learning strategy that allows the agents to distinguish the individual

desired models of their neighbors.

It turns out that, in order for the objective of the network to be met, it is important

for agents to combine the estimates of their neighbors in a judicious manner because,

unbeknown to the agents some of their neighbors may be wishing to estimate different

models. If cooperation is performed blindly with all neighbors, then performance can

deteriorate with agents converging to non-existing locations. For this reason, and moti-

vated by the discussion from [62], we add the step (5.47) below after (5.42) and (5.43),

which involves two sets of combination coefficients from two matrices Ȧi and Äi. There

are two main ideas behind the construction (5.47). First, is to let each agent k coop-

erate only with the subset of the neighbors that share the same desired model as it

does. Second, is to let each agent k combine φℓ,i if the desired model of agent k at time

instant i is the same as ℓ’s observed model. Otherwise, agent k combines the previous

value of wℓ,i−1 from agent ℓ that has the same desired model at time instant i as agent

k:

wk,i =

N∑

ℓ=1

ȧℓk(i)φℓ,i +

N∑

ℓ=1

äℓk(i)wℓ,i−1. (5.47)

Note that the matrices Ȧi and Äi are not constructed from matrix Ai. The selection

of the non-negative coefficients {ȧℓk(i)} and {äℓk(i)} is explained in Sec. 5.2.4.

We summarize the main five steps of the approach:

1. Learning the observed models of the neighbors. This step is performed by building
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the matrix Ei in step (5.45). The information provided by each entry eℓk(i) is

whether the corresponding agents ℓ and k have the same observed model or not.

2. Learning and labeling the desired model of the neighbors at each time instant i.

This step allows the agents to distinguish the individual desired models of their

neighbors at time instant i. The information provided by this step is the number

of different models that are desired by neighbors and how many each model is

repeated at time instant i among neighbors.

3. Decision-making step by switching the desired model of some agents to let the

network converge to only one model.

4. Learning the desired models of the neighbors after the switching step. This step is

performed by building the matrixH i in step (5.54) in Sec. 5.2.4. The information

provided by each entry hℓk(i) is whether the corresponding agents ℓ and k have

the same desired model or not after the switching step.

5. Updating the estimate vectors {wk,i} by sharing data thoughtfully with the subset

of the neighbors that share the same desired model.

5.2.3 Local Labeling

Each agent needs to learn the desired models of its neighbors to proceed with the

decision-making process and let the network converge to only one model. In this step

instead of only estimating whether two agents have the same desired model or not, the

construction involves a local labeling procedure that enables every agent to estimate in

real-time how many different models are desired by its neighborhood.

For this purpose, we associate with each agent k an nk × nk matrix Y k
i with entries

{ykℓm(i)} given by:

ykℓm(i) =

{
1, if ‖wm,i−1 −wℓ,i−1‖

2 ≤ β,

0, otherwise
(5.48)

for some small threshold β > 0. Whenever ykℓm(i) = 1, agent k believes at time instant

i that its neighbors ℓ and m wish to estimate the same desired model. On account of

that the variables wm,i−1 and wℓ,i−1 which are used in the test (5.48) are presenting

the current desired model of agents m and ℓ, respectively. It is clear from (5.48) that

the matrix Y k
i is symmetric and has ones on the diagonal. An example is depicted

in Fig. 5.16 where agents having the same inner color observe the same model, while

the outer color indicates the current model in which the agent is interested (or towards
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Figure 5.16. Example of an agent k and its neighborhood Nk. The inner color indicates the
observing model while the outer one indicates the current desired model.

which the agent is moving in mobile networks). The corresponding matrix Y k
i has the

following entries:

Y k
i =

k
ℓ
m
n
o
q

k ℓ m n o q


1 0 0 1 0 1
0 1 1 0 0 0
0 1 1 0 0 0
1 0 0 1 0 1
0 0 0 0 1 0
1 0 0 1 0 1



. (5.49)

From (5.49) agents that share the same desired model, they have identical columns in

matrix Y k
i , namely, if agents m and ℓ have the same desired model at time instant i,

this implies that: [Y k
i ]:,m = [Y k

i ]:,ℓ. We denote the local label of each agent ℓ ∈ Nk

by agent k as lkℓ (i). The local label lkℓ (i) is updated at each time instant i using the

following relation:

lkℓ (i) = B([Y k
i ]:,ℓ) (5.50)

where B(·) is a function that converts the input sequence from binary to decimal. For

the example in (5.49), we have

lkk(i) = B(100101) = 37,

lkℓ (i) = B(011000) = 8,

lkm(i) = B(011000) = 8,

lkn(i) = B(100101) = 37,

lko(i) = B(000010) = 2,

lkq (i) = B(100101) = 37.
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We define the number of the different desired models within Nk at time instant i

by Ck(i). After updating matrix Y k
i and generating the local labels {lkℓ (i)}, agent

k counts how many models are desired by its neighborhood to update Ck(i). In the

example (5.49), agent k distinguishes at time instant i three desired models, i.e., Ck(i) =

3. Where agent k labels these three different models locally by: {37, 8, 2}.

In addition, agent k determines which model of these Ck(i) models has the maximum

number of followers. A follower of a model is an agent that wishes to estimate and

track this model. We define the largest set of agents belonging to Nk and following

the same desired model at time instant i by Qk,i. In the example, agent k assigns the

majority set at time instant i as follows: Qk,i = {k, n, q} which has the label 37 and is

repeated three times among the other labels.

5.2.4 Decision-Making Scheme

Using the information provided by matrix Y k
i , agent k can capture how many agents

within its neighbors follow the same desired model at time instant i. According to the

matrix Y k
i structure, once agent k and its neighbors have agreed to one common desired

model, the corresponding matrix Y k
i has the following entries:

Y k
i =

k
ℓ
m
n
o
q

k ℓ m n o q


1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1



. (5.51)

We define the degree of the agreement by each agent k among its neighbors Nk as

pk(i) =
[Y k

i ]k,:1

nk
. (5.52)

Equally, having pk(i) = 1 means that agent k and its neighbors have agreed to one

common desired model. On the other hand, if pk(i) 6= 1, then the following switching

step is applied:

wk,i−1 =





wℓ,i−1, if k /∈ Qk,i ∀ ℓ ∈ Qk,i,

wn,i−1, if k ∈ Qk,i AND Ck(i) = 2 ∀n ∈ Nk,

wk,i−1, otherwise.

(5.53)

The main idea of the switching step is for each agent k to make a new decision or to

keep the previous one. The first case of (5.53) implies that agent k does not belong to
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Figure 5.17. Example of the equilibrium case. All agents within Nk belong to the majority sets
among their neighbors.

the majority desired model set Qk,i at time instant i, therefore, agent k in this case

changes its decision and switches into the desired model of the majority set Qk,i. The

second case in (5.53) is applied to prevent the balanced situation, i.e., the equilibrium.

The problem of an equilibrium might arise when two desired models remain among

Nk. In this case, if all agents in Nk belong to a majority set of one of these different

two desired models, this leads to a situation in which no agent in Nk will change its

decision anymore. An example is shown in Fig. 5.17 where the outer color of the agents

indicate the desired model, we emphasize only the desired model of agent’s k neighbors

and their neighbors. Fig. 5.17 shows that all agents within Nk belong to a majority set

and no agent in Nk will change its decision anymore, e.g. agents q and ℓ belong to the

majority set among their neighbors as well as agents k, m, n, and o. Namely,

k ∈ Qk,i, m ∈ Qm,i, n ∈ Qn,i, and o ∈ Qo,i (with z◦1),

ℓ ∈ Qℓ,i and q ∈ Qq,i (with z◦2).

To break the equilibrium, an agent that recognizes these two models picks randomly

one of these two desired models.

From (5.53), logically, we can conjecture that the network will probably converge to

the most observable model, since the initial desired model by each agent is its own

observed model. This fact remains true even with the random switching in the second

case of (5.53), because in that case the more repeated desired model within Nk has the

highest probability to be picked.

To proceed with the cooperation and sharing information among the agents within the

subset that has the same desired model at time instant i, we define an N × N matrix
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H i. The coefficients {hℓk(i)} are updated after the switching step (5.53) using a test

that is quite similar to (5.48) and is applied between each agent k and its neighbors as

following:

hℓk(i) =

{
1, if ‖wk,i−1 −wℓ,i−1‖2 ≤ β,

0, otherwise.
(5.54)

According to matrix H i, each agent knows which subset of its neighbors has the same

desired model as it does after the switching step at time instant i. Having hℓk(i) = 1

means that ℓ and k have the same desired model at time instant i. We define an N ×N

combination matrix Gi as follows:

Gi = F(H i) (5.55)

where F(·) is some function which satisfies

gℓk(i) = 0 if hℓk(i) = 0,
N∑

ℓ=1

gℓk(i) = 1 (5.56)

Matrix Gi by itself does not have enough information for proceeding and updating the

estimate wk,i. The agents still need knowledge about which data to be combined from

each neighbor. Therefore, matrix Gi is splitted into two matrices Ȧi and Äi. The

weight of the entry gℓk(i) goes to ȧℓk(i) if the desired model of agent k at time instant

i is the same as ℓ’s observed model. Otherwise, äℓk(i) obtains the weight gℓk(i). The

coefficients {ȧℓk(i)} and {äℓk(i)} for ℓ ∈ Nk are updated using the following steps:

ȧℓk(i) =

{
gℓk(i), if ‖wk,i−1 −ψℓ,i‖

2 ≤ β,

0, otherwise.
(5.57)

äℓk(i) =

{
gℓk(i), if ȧℓk(i) = 0,

0, otherwise.
(5.58)

In (5.57), the case that ψℓ,i is close to wℓ,i−1 implies that the observed model of agent

ℓ is the same as the desired model of agent k at time instant i. The estimate wk,i is

updated using (5.47). Algorithm 4 summarizes the steps of the decision-making scheme.
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Algorithm 4 (Decision-making scheme)

Initialize A0 = Ȧ0 = Ä0 = E0 =H0 = G0 = I
Initialize ψ0 = φ0 = 0 and p0 = 0
for i > 0 do

for k = 1, . . . , N do

ψk,i = ψk,i−1 + µku
⊺
k,i(dk(i)− uk,iψk,i−1) (5.59)

assign wk,0 = ψk,1 at i = 1
update {aℓk(i)} according to [18]

φk,i =

N∑

ℓ=1

aℓk(i)ψℓ,i (5.60)

update Y k
i according to (5.48)

find Qk,i and Ck(i)
update pk(i) according to (5.52)
if pk(i) 6= 1 then

switch wk,i−1 according to (5.53)
resend wk,i−1

end if

for ℓ ∈ Nk do

update {hℓk(i)} according to (5.54)
update {gℓk(i)} according to (5.55)
update {ȧℓk(i)} according to (5.57)
update {äℓk(i)} according to (5.58)

end for

wk,i =
N∑

ℓ=1

ȧℓk(i)φℓ,i +
N∑

ℓ=1

äℓk(i)wℓ,i−1 (5.61)

end for

end for

5.2.5 Convergence of Decision-Making Process

Agents achieve the agreement on one desired model over the network when,

p1(i) = p2(i) = · · · = pN(i) = 1. (5.62)

The decision-making process can be modeled as a Markov chain with N +1 states {Vi}

corresponding to the number of agents whose pk(i) = 1. For a given vector pi−1 we
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have,

Vi−1 =
N∑

k=1

⌈pk(i− 1)⌉ (5.63)

where ⌈·⌉ denotes the ceiling operation. Eq. (5.63) aims at counting only {pk(i − 1)}

that equal to one.

To compute the transition probability vn,m from the state Vi−1 = n to the state Vi = m,

let the set of vectors

P = {⌈p1⌉, ⌈p2⌉, . . . , ⌈pN⌉}, (5.64)

whose entries are either 1 or 0 and add up to n be denoted by Gn. We can write

vn,m =
∑

pi−1
∈Gn

Pr(pi−1)
∑

pi∈Gm

N∏

k

Pr(pk(i)|pk(i− 1)) (5.65)

where Pr(pi−1) is a priori probability and the probability Pr(pk(i)|pk(i−1)) is controlled

by the switching step (5.53). The case of n = N implies that for each agent k it holds

that

Qk,i ≡ Nk. (5.66)

This leads to the status that the desired model of the whole network will not be changed

anymore. The state Vi = N is called an absorbing state. It has the following probability

transitions:

vN,N = 1, vN,n = 0 ∀n ∈ {1, . . . , N − 1}. (5.67)

The transition probability matrix V of the Markov chain can be written as

V =

[
V̆ c
0 1

]
(5.68)

where the matrix V̆ is of size N × N . According to the Theorem 11.3 in [84, p. 417],

it holds that for a Markov process with an absorbing state the probability that the

process will be absorbed is 1, namely,

V̆ j → 0 as j → ∞. (5.69)

Consequently, the Markov chain of the decision-making process converges to the ab-

sorbing state Vi = N regardless of the initial transient state with the convergence rate

ρ(V̆ ).
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Figure 5.18. Final decision of a network after following the model of the specific agent m.
The inner color indicates the observing model while the outer one indicates the desired model.
The arrows represent the spreading process of ψm,i through the network.

(a) (b) (c)

Figure 5.19. Example of the spreading process of ψm,i from agent m to agent k over time. The
inner color indicates the observing model while the outer one indicates the desired model.

5.2.6 Following the Observed Model of a Specific Agent

In this section the goal is to let the whole network follow the observed model of some

specific agent m, as shown in Fig. 5.18 where agent m observes the model z◦3 (red),

therefore, the network converges in a distributed manner to estimate the model z◦3 .

The first step is to spread the ψm,i among agents and keep updating it over time. This

step aims at having a copy (reference) of ψm,i by all agents in the network. Agents

keep updating the copy of ψm,i for two reasons. First, to have a more accurate version

of the vector ψm,i which indicates the desired model of the network. Second, to endow

the algorithm to work in non-stationary situations, if a drift is happening in agent m’s

model.

We denote the copy vector of ψm,i by agent k by ψ̆k,i and denominate it the anchor
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vector. Agents are informed beforehand about the index m of the specific agent that

they should follow its model. If m ∈ Nk, this implies that agent k receives the anchor

vector directly from agent m. If not, i.e., m /∈ Nk, then agent k depends on another

agent ℓ ∈ Nk that has already a copy of ψm,i to provide it with ψm,i. Agent k stores

the index of this source agent. The index of the source agent of agent k is denoted by

sk(i). Note that the anchor vector ψ̆k,i is not the final estimate of the desired model.

The circulation process of ψm,i in a distributed manner needs the cooperation among

agents. In case that agent k has no direct link to reach data from agent m, i.e., m 6∈ Nk,

agent k gets one of the ψ̆ℓ,i−1 provided that sℓ(i) 6= 0. If sℓ(i) 6= 0 this implies that

agent ℓ has already a source to update its ψ̆ℓ,i, regardless whether m ∈ Nℓ or not. In

other words, sℓ(i) 6= 0 means that agent ℓ finds a direct or indirect link to agent m.

Therefore, it is important for each agent k to store the agent’s index of its source that

agent k depends on to update its anchor vector. An example is shown in Fig. 5.19

where m ∈ Nℓ but m /∈ Nk. First, the anchor vectors and the source agents for agents

k and ℓ at time instant i = 0 (Fig. 5.19(a)) are given, respectively, by

ψ̆k,0 = 0, sk(0) = 0, ψ̆ℓ,0 = 0, sℓ(0) = 0.

The anchor vectors and the source agents for agents k and ℓ at time instants i = {1, 2}

(Fig. 5.19(b) and (c)) are given, respectively, by

ψ̆k,1 = 0, sk(1) = 0, ψ̆ℓ,1 = ψm,1, sℓ(1) = m,

ψ̆k,2 = ψ̆ℓ,1, sk(2) = ℓ, ψ̆ℓ,2 = ψm,2, sℓ(2) = m.

Agents update their anchor vectors {ψ̆k,i} at each time instant i by the following step:

ψ̆k,i =





ψm,i, if m ∈ Nk,

ψ̆ℓ,i−1, if ℓ ∈ Nk AND sk(i) = 0 AND sℓ(i) 6= 0,

ψ̆ℓ,i−1, if ℓ ∈ Nk AND sk(i) = ℓ,

ψ̆k,i−1, otherwise

(5.70)

where ψ̆m,i = ψm,i for agent m itself. The source of the anchor vector is updated

simultaneously as follows:

sk(i) =





m, if m ∈ Nk,

ℓ, if sk(i) = 0 AND sℓ(i) 6= 0,

sk(i− 1), otherwise.

(5.71)

Similarly to the previous section, the next step is to update the coefficients {hℓk(i)}

using the following test:

hℓk(i) =

{
1, if sℓ(i) 6= 0 AND sk(i) 6= 0,

0, otherwise.
(5.72)
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Again, having sk(i) 6= 0 leads to the situation that agent k has the anchor vector and has

been informed about the decision of the network, therefore, agent k can start sharing

information with the other agents whose sℓ(i) 6= 0 as well to estimate the desired model.

The matrix Gi will be generated using (5.55). Agents update the coefficients of both

matrices Ȧi and Äi using the following steps:

ȧℓk(i) =

{
gℓk(i), if ‖ψ̆k,i −ψℓ,i‖

2 ≤ β,

0, otherwise.
(5.73)

äℓk(i) =

{
gℓk(i), if ȧℓk(i) = 0,

0, otherwise.
(5.74)

Then, the estimate wk,i is updated using Eq. (5.47). According to (5.73) and (5.47)

agent k combines φℓ,i if the desired model of the network (which is represented by

the anchor vector ψ̆k,i of agent k) is close to the observed model of agent ℓ that is

represented by ψℓ,i. Algorithm 5 summarizes the steps of the algorithm for following

the observed model of a specific agent m.

5.2.7 Simulation Results

5.2.7.1 Static Network

We consider a connected network with 80 randomly distributed agents. The agents

observe data originating from C = 3 different models, each model z◦j ∈ RM×1 is gen-

erated as follows: z◦j = [zr1 , . . . , zrM ]⊺ where zrm ∈ [1,−1], M = 2. The assignment of

the agents to models is random. The maximum number of neighbors is nk = 7. We

set {α, β, ν, µ} = {0.04, 0.08, 0.005, 0.01}. We use the uniform combination policy to

generate the coefficients {aℓk(i)} and {gℓk(i)}.

Figure 5.20 shows the statistical profile of the regressors and noise across the agents.

The regressors are of size M = 2 zero-mean Gaussian, independent in time and space,

and have diagonal covariance matrices Ru,k. Figure 5.21 shows the topology of one of

100 Monte Carlo experiments. Agents having the same inner color observe the same

model, while the outer color indicates the desired model at steady-state.

The transient network mean-square deviation (MSD) regarding each observed model z◦j
at each time instant i is defined by

MSDj(i) ,
1

|Cj |

∑

k∈Cj
||z◦j − φk,i||

2 (5.78)
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Algorithm 5 (Following the observed model of a specific agent)

Initialize A0 = Ȧ0 = Ä0 = E0 =H0 = G0 = I
Initialize ψ0 = ψ̆0 = φ0 = 0 and s0 = 0

for i > 0 do

for k = 1, . . . , N do

ψk,i = ψk,i−1 + µku
⊺
k,i(dk(i)− uk,iψk,i−1) (5.75)

assign wk,0 = ψk,1 at i = 1
update {aℓk(i)} according to [18]

φk,i =

N∑

ℓ=1

aℓk(i)ψℓ,i (5.76)

update ψ̆k,i according to (5.70)
update sk(i) according to (5.71)

for ℓ ∈ Nk do

update {hℓk(i)} according to (5.72)
update {gℓk(i)} according to (5.55)
update {ȧℓk(i)} according to (5.73)
update {äℓk(i)} according to (5.74)

end for

wk,i =
N∑

ℓ=1

ȧℓk(i)φℓ,i +
N∑

ℓ=1

äℓk(i)wℓ,i−1 (5.77)

end for

end for
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Figure 5.20. Statistical noise and signal profiles over the network.

(a) (b)

Figure 5.21. Network topology (a) and final decision of the agents where the bold (dashed)
links represent {ȧ(i)} ({ä(i)}) at steady-state (b).
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Figure 5.22. Transient mean-square deviation (MSD).

where j = 1, . . . , C and each MSDj is computed for agents belonging to Cj . The

transient network mean-square deviation (MSD) for the whole network regarding the

desired model at each time instant i is defined by

MSDd(i) ,
1

N

N∑

k=1

||z◦d −wk,i||
2 (5.79)

where z◦d is the desired model when the whole network agrees on one common desired

model, i.e., MSDd(i) is only computed at the instants when {pk(i)} = 1 for all agents.

Figure 5.22 depicts the simulated transient mean-square deviation (MSD) of the network

for all observed models and for the network desired model. Table 5.2 displays the success

rate of the decision-making to agree on one model for different numbers of observed

model, C ∈ {2, 3, 4, 5}. The proposed strategy provides almost 100% success rate.

C 2 3 4 5
Success rate 99% 98% 99% 99%

Table 5.2. Decision-making success rate for different C.

Regarding the application of following the observed model of a specific agentm, Fig. 5.23

shows the topology of one case of 100 different experiments. Agents are observing C = 4

different models. The agent m = 10, which is presented by a square, is the specific
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Figure 5.23. Network topology (a) and final decision of the agents to follow the model of
agent m where the bold (dashed) links represent {ȧ(i)} ({ä(i)}) at steady-state (b).
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Figure 5.24. Transient mean-square deviation (MSD).
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Figure 5.25. Statistical noise and signal profiles over the mobile network.

agent whose observed model the whole network wishes to follow. Figure 5.24 shows the

transient mean-square deviation MSD of 100 different experiments when a change in

the model assignments occurs suddenly at time instant i = 600. The success rate of

the decision-making to agree on the observed model of agent m is always 100%.

5.2.7.2 Mobile Network

We consider a network with 80 randomly distributed mobile agents [42]. The agents

observe data originating from four different models (sources) C = 4, where wrm ∈

[50,−50]. The objective of the network is to have all agents track and move towards

only one model (source). Figure 5.25 shows the statistical profile of the regressors and

noise across the agents. Every agent k updates its location according to the motion

mechanism proposed in [21].

Figure 5.26 shows the maneuver of the agents over time where the models (sources)

are represented by squares. Figure 5.27 represents the transient network mean-square

deviation (MSD) obtained by averaging over 100 independent Monte Carlo experiments.
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Figure 5.26. Maneuver of the agents with four sources in time instants i=1 (a), i=200 (b),
i=500 (c), and i=1000 (d). The unit length of the x- and y-axis is the body length of the
agents.
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Figure 5.27. Transient mean-square deviation (MSD) of the mobile network.
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Chapter 6

Conclusions

‘What you seek is seeking you’

Jalaluddin Rumi

In this thesis, we proposed several decentralized approaches that mimic and simulate

interesting collective behaviors of animal groups. We focus on multi-task networks

where agents are interested in different objectives.

In Chapter 3 we proposed a distributed algorithm that carries out the tasks of es-

timation and clustering simultaneously with exponentially decaying error probabilities

for false decisions. We showed how agents choose subset of their neighbors to cooper-

ate with and turn off suspicious links. The simulations illustrate the performance of

the proposed strategy compared with other related works. To make the problem more

flexible and efficient we have not assumed connected clusters. Therefore, we proposed

an additional step to enhance the performance by linking, as much as possible, the

agents that belong to the same cluster and do not have direct links to connect them.

Obviously, for a special case with connected clusters there is no need for the linking

procedure.

The proposed decentralized partitioning technique in Chapter 4 aims to implement a

dynamic multi-task network using adaptation and learning in the presence of informed

and uninformed agents. The algorithm ensures fair partitioning to distribute the un-

informed agents among the groups that are interested in different tasks. Moreover,

the decentralized technique has a self-organizing feature that endows the network with

learning ability in stationary and non-stationary environments. We applied the pro-

posed technique in both static and mobile networks and showed that the group sizes

match well the centralized partitioning size.

A distributed decision-making approach over mobile adaptive networks is studied in

Chapter 5. We showed that our proposed clustering technique reduces the error that

affects the decision-making process. We added a new term to the motion equation

to ensure that the nodes move coherently without fragmentation. Simulation results

showed that the proposed strategy is insensitive to the initial network location with

almost 100% success rate of decision-making.
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Furthermore, in Chapter 5 we proposed a distributed algorithm that allows agents in

multi-task networks to follow only one common model. Agents use a local labeling step

to distinguish the multiple desired models of their neighbors. The decision-making pro-

cess depends on the majority of the neighbors that decided to follow the same model.

We showed that after sufficient iterations the decision-making process converges to an

agreement on one model over the network. In addition, we investigated another tech-

nique that guides the whole network to follow a specific agent’s model in a distributed

way. Simulation results showed that the proposed strategy provides almost 100% suc-

cess rate of decision-making in both static and mobile networks.

As open problems and for future work, it will be useful to provide the convergence rate of

the decision-making process of the approach proposed in Chapter 5. Moreover, having

a linking mechanism to link agents for more than only one step as it was proposed in

Chapter 3 might provide a better estimation accuracy.
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Appendix

A.1 Diffusion Strategies With More Cooperation

Let us define the [N × N ] right-stochastic matrix C where the coefficients {cℓk} are

non-negative scalars that satisfy the following conditions for all agents k = 1, 2, . . . , N :

cℓk ≥ 0,

N∑

k=1

cℓk = 1, and cℓk = 0 if ℓ /∈ Nk. (A.1)

Each row of C should add up to one, i.e.,

C1 = 1. (A.2)

The combination coefficients {cℓk} aggregate the gradient terms from neighbors. The

ATC algorithm with more cooperation among agents has the following form:

ψk,i = wk,i−1 − µk

N∑

ℓ=1

cℓk∇̂w⊺Jℓ(wk,i−1) (A.3)

wk,i =
N∑

ℓ=1

aℓkψℓ,i. (A.4)

Likewise, the CTA algorithm is given by

ψk,i−1 =

N∑

ℓ=1

aℓkwℓ,i−1 (A.5)

wk,i = ψk,i−1 − µk

N∑

ℓ=1

cℓk∇̂w⊺Jℓ(ψk,i−1). (A.6)

A.2 Properties of Stochastic Matrices

An N ×N matrix A is called a doubly-stochastic matrix if its column entries and row

entries add up to one

1A⊺ = 1, A1 = 1. (A.7)

The following properties hold for any doubly-stochastic matrix A:

1. The spectral radius of A is equal to one,

ρ(A) = 1. (A.8)
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2. All eigenvalues of A lie inside the unit disc.

3. Matrix A may have multiple eigenvalues with magnitude equal to one.

4. If A is a primitive matrix, then matrix A has a single eigenvalue that is equal to

one.
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List of Acronyms

MSE Mean Square Error

EMSE Excess Mean Square Error

ER Excess Risk

MSD Mean Square Deviation

LMS Least Mean Square

ATC Adapt-then-Combine

CTA Combine-then-Adapt

i.i.d. independent and identically distributed

pdf probability density function
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List of Symbols

x Boldface notation denotes random variables

X Capital letters denote matrices

x Small letters denote vectors or scalars

α Greek letters denote scalars

x(i) Scalar quantities are indexed using parenthesis

xi Vector quantities are indexed using subscripts

xk k−th element of vector x

xk,i k−th element of vector x at time instant i

xℓk Element of matrix X[
X
]
k,:

Vector corresponding to the k−th row of matrix X
[
X
]
:,k

Vector corresponding to the k−th column of matrix X

X > 0 Positive definite matrix

X ≥ 0 Non-negative definite matrix

x◦ True value of the estimate xi

x̃i Error vector at time instant i

x̄i Mean value

1 Vector of ones

I Identity matrix

R Set of real numbers

RM Set of vectors of size M on R

E(·) Expectation operator

(·)⊺ Transpose of a vector or matrix

(·)∗ Conjugate of a scalar, vector, or matrix

(·)−1 Inverse of a matrix

Tr(·) Trace of a matrix

ρ(·) Spectral radius of a matrix

λmin(·) Minimum eigenvalue of a matrix

λmax(·) Maximum eigenvalue of a matrix

‖ · ‖ Euclidean norm or 2-norm of a vector

‖ · ‖∞ Maximum absolute row sum of a matrix

‖x‖2Σ Weighted squared Euclidean norm of x, x⊺Σx
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diag{·} Returns a diagonal matrix when the argument is a vector, or returns
a vector containing the elements of the main diagonal when the argu-
ment is a matrix

col{·} Column vector formed by stacking the input entries

| · | Absolute value of a scalar

⌊·⌉ Rounds to the nearest integer

exp(·) Natural exponential function

log(·) Natural logarithm function

e Base of the natural logarithm

O(·) Complexity order of the argument

arg max
x

y Returns the value of x that maximizes y

arg min
x

y Returns the value of x that minimizes y

x , y x is defined as y

x ≡ y x is identically equal to y

X ⊗ Y Kronecker product of X and Y

lim sup
i→∞

xi Limit superior of the sequence xi as i approaches infinity

∇xJ(x) Gradient of scalar or vector function J(x) with respect to vector x

N(0, σ2) Gaussian distribution with mean 0 and variance σ2

Q(·) Right-tail Gaussian probability function, Q(x) = 1√
2π

∫∞
x
e−

t2

2 dt

µ Step-size

µmax Maximum step-size over the network

w◦ Optimal weight vector

d(i) Reference signal at time instant i

ui Regressor at time instant i (row vector)

v(i) Measurement noise at time instant i

Ru Covariance matrix of the regression data

σ2
v Noise variance

wi Weight estimate at time instant i

w̃i Weight-error vector at time instant i

Nk Neighborhood of agent k

N−
k Neighborhood of agent k excluding k itself

nk Neighborhood size of agent k

A Combination matrix

aℓk Weight used by agent k to scale the data it received from agent ℓ
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dk(i) Reference signal of agent k at time instant i

uk,i Regressor of agent k at time instant i (row vector)

vk(i) Measurement noise of agent k at time instant i

wk,i Weight estimate of agent k at time instant i

w̃k,i Weight-error vector of agent k at time instant i

Ru,k Covariance matrix of the regression data of agent k

σ2
v,k Noise variance of agent k
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