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Abstract
A quadrupole Penning trap is used to confine electrons in weak magnetic fields.
Perturbations due to space charge and imperfections in the trap geometry, as well as
collisions with the background gas molecules, lead to loss of the electrons from the
trap. We present in this work the results on measurements of the electron confinement
time and its dependence on the magnetic field in a quadrupolar Penning trap. We
describe a method to measure the confinement time of an electron cloud under weak
magnetic fields (0.01 T - 0.1 T). This time is found to scale as τ ∝ B1.41 in variance with
the theoretically expected confinement time that scales as τ ∝ B2 for trapped
electrons that are lost through collisions with the neutrals present in the trap. A
measurement of the expansion rate of the electron plasma in the trap through
controlled variation of the trap voltage, yields expansion times that depend on the
energy of escaping electrons. This is found to vary in our case in the scaling range B0.32

to B0.43. Distorting the geometry of the trap, results in a marked change in the
confinement time’s dependence on the magnetic field. The results indicate that the
confinement time of the electron cloud in the trap is limited by both, effects of
collisions and perturbations that result in the plasma loss through expansion in the trap.

Keywords: Non-neutral plasma, Confinement time, Anharmonicity, Quadrupole
penning trap

Introduction
An essential requirement of ion traps is to confine electrons or ions for longer peri-
ods of time under minimal perturbations, in order to carry out studies on them [1–4].
However, the confinement time is finite due to several reasons that include collisions
with the surrounding neutrals, anharmonicities in the trap potential induced by devia-
tions from the ideal geometry of the trap, and in situations involving a large number of
charged particles, space charge effects in the trap [5]. Inhomogeneity in the external mag-
netic fields in case of Penning traps is an additional perturber and contributes to loss of
ions [1, 6]. Confinement times of long durations are realized for high precision measure-
ments after incorporating techniques that restrict these perturbations to minimum levels
[2, 7, 8]. In a series of pioneering experiments [9, 10] electron confinement in cylindri-
cal Penning traps (CPT) have been investigated. According to a confinement theorem
[11–14], an azimuthally symmetric trap cannot exert a net torque on the trapped electron
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cloud and the total angular momentum must remain a constant. This limits the radial
expansion of the electron cloud. Furthermore, the electrons or ions cannot escape in the
axial direction due to the harmonic potential minimum. Notwithstanding the restrictions
on losses imposed by the confinement theorem, losses do occur due to the reasons cited
earlier.
In measuring the confinement time of an electron plasma in a CPT it is shown that

the confinement time departs from the expected B2 dependence at low pressures and is
governed by other loss mechanisms apart from elastic binary collisions with background
neutrals present [9, 14]. Induced asymmetries have been applied to investigate plasma
confinement time [10] and these lead to a different dependence on the magnetic field.
In work examining the background pressure’s effect in addition to the applied magnetic
field, B, measurements of the variation of the radial density of trapped electrons at the
centre of the trap [12, 15] reveal that the confinement time varies with B and pressure,
P, as τ ∝ B3/2/P. In CPTs asymmetries induced by application of patch potentials limit
the confinement time and the latter has been studied as a function of plasma column
length and applied magnetic field [16]. Stoneking et. al, have used E×B drifts to establish
equilibrium in a purely toroidal electron plasma and confinement times of ∼ 3 s have
been obtained [17].
In this work, we carry out investigations of the dependence of the confinement time of

an electron plasma on the external magnetic field in a different trap geometry, namely,
that of the Quadrupole Penning Trap (QPT). The CPT geometry and electrode struc-
ture allows for trapping higher densities of plasma and combination of oppositely charged
species, as in anti hydrogen production [18, 19]. The QPT provides for greater stability
when fewer particles are trapped and thus has seen wide applications in tests of QED
involving single ions [1, 13, 14, 20]. Unlike in the CPT, the QPT has electrodes that are
hyperboloids of revolution. When a larger number of ions are trapped in a QPT, such as
in our situation with electrons, it is of interest to examine the confinement time’s depen-
dence on B and whether the B3/2 dependence as seen in CPTs is reproducible in a QPT.
Our measurements yield a confinement time, τ ∝ B1.41. This is a departure from the
expected scaling τ ∝ B2 obtained taking into account collisional interactions alone with
the external neutrals in the trap [9, 10, 16], and differs from the scaling law as in CPTs. As
a complement to these studies, we have also measured the expansion rate of the plasma
cloud, through a controlled variation of the trap potential. These measurements point to
the influence of collisions as well as plasma diffusion in determining the dependence of
τ on B. We have also carried out measurements with a trap where the internal geometry
is altered. This sharply modifies the confinement time’s dependence on B suggesting that
anharmonicities induced by geometric distortions play a significant role in determining
the scaling law.
The paper is organized as follows: After a discussion of the basic theory governing single

particle motion, we present a heuristic argument that establishes the dependence of τ

on B in the presence of collisions with background gases in the trap. We then present a
technique based on LabVIEW for measuring the same. This is followed by results from a
technique that estimates the plasma expansion time and the dependence on the magnetic
field of this expansion. Further, we have carried out measurements of τ ’s dependence on B
when the internal geometry of the trap is perturbed. We summarize the results and draw
conclusions based on the results.
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Theory
Penning traps are widely used as devices for confining non-neutral plasmas and fabri-
cated in many geometrical shapes. An abundance of literature exists on Penning traps and
their applications for different geometries [21–23]. We briefly summarize the principle
of single charged particle confinement in a Penning trap [1]: A quadrupole Penning trap
confines charged particles through combining a static electric potential with a uniform
magnetic field B along the symmetry axis of the trap. The quadrupole potential governing
single particle motion is described by

Φ(x, y, z) = U0

r20 + 2z20

(
2z2 − x2 − y2

)
(1)

Where U0 is the applied potential; r and z are the radial and axial coordinates respec-
tively; and d is the characteristic dimension of the trap given by d2 = r20+2z20, r0 being the
radius of the ring electrode and z0, is half the distance between the two end cap electrodes.
Figure 1 shows the electric and magnetic field lines in the trap. The degrees of freedom
in the x and y directions (radial motion) are coupled, resulting in coupled equations of
motion of the electron. On the other hand, motion of the electron along the z-direction
(axial motion) is uncoupled. The solutions of the equations are obtained by a frame trans-
formation yielding the characteristic frequencies (ωz,ω′

c,ωm) of motion for a single ion
or electron [1, 2], where ωz is the axial oscillation frequency of motion due to the har-
monic potential, ω′

c is the modified cyclotron frequency. ωm is the magnetron frequency
representing a drift in the radial plane around the centre of the trap. Note that the axial
oscillation has no dependence on the magnetic field and for stable solutions we require
that ωc ≥ √

2ωz, ωc being the cyclotron frequency. In a QPT collisions with the back-
ground neutrals lead to instabilities and an expansion in the radial plane (Fig. 2). In a real
trap with a cloud of electrons the radial and axial motion of the electrons are coupled due
to Coulomb interactions as well as perturbations in the trap potential that originate from
imperfections in the trap geometry. This leads to the presence of higher order frequen-
cies measured as the motional resonances, in addition to the single particle frequencies
described here [1, 2, 24, 25]. The trapped electrons with temperature corresponding to a
few eV, constitutes a non-neutral weakly coupled plasma with Coulomb coupling param-
eter ∼ 10−4, number density ∼ 10+15 m−3, Debye length ∼ 0.1 mm and plasma cloud
of radius ∼ 4 mm. Thus, an independent particle model can be employed in our trapped
electron plasma conditions for analysis.
Since the kinetic energy of trapped electrons is a few eV and comparable to the typical

trap depths which is also a few eV, this leads to a high rate of loss of electrons [26]. The
hotter electrons collide more frequently with the background molecules of the gas in the
trap and consequently, are lost more easily than the colder electrons. Theoretical calcula-
tions based on transport theories [27] in the case of Malmberg Penning traps reveal that
collisions cause plasma expansion and the rate is proportional to B−2. We present here
a simple argument to illustrate the dependence of the confinement time on the applied
magnetic field. The linear frequency of cyclotron motion may be written as

fc = qB
2πm

(2)

fc ∝ B (3)
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Fig. 1 Quadrupole penning trap, where r0 = 7 mm and z0 = 5 mm

The expression for the angular frequency of magnetron motion is given by

ωm = ωc
2

−
√

ω2
c
4

− ω2
z
2

(4)

Since ωz � ωc we can write up to first order,

ωm ≈ ω2
z

2ωc
(5)

Therefore the linear frequency of magnetron motion

fm ∝ 1
B

(6)

Increasing the magnetic field thus, increases the cyclotron frequency and decreases the
magnetron frequency. As the magnetic field increases, the radius of the cyclotron orbit
decreases due the conservation of angular momentum. Therefore,

B ∝ 1
rc

(7)

Fig. 2 Single particle motion in QPT. Collisions lead to radial expansion of the particle. rm & r′c ≈ rc are
respectively the radii of the magnetron and cyclotron motion
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The frequency of collisions, f , of a single electron in a cycle of the magnetron motion,

f ∝ rc′rm (8)

where rc′ and rm are respectively, the radii corresponding to the (modified) cyclotron and
magnetron motions (Fig. 2).
The energy associated with the single particle motion is given by [28, 29]

H = 1
2
mω1ωc′r2c′ − 1

2
mω1ωmr2m + 1

2
mω1ω

2
z r

2
z (9)

where ω1 = √
ω2
c − 2ω2

z . Note that the contribution to the energy of the particle due to
the magnetron motion is negative, implying that collisions will increase rm resulting in
particle loss [30, 31]. In order to reduce the second term in Eq.9, ωm has to be decreased
(Eq.6), by increasing B.
Thus,

f ∝ 1
fc

× fm (10)

or,

τ ∝ 1
f

∝ fc
fm

∝ B2 (11)

Thus, collisions alone should limit the confinement time in a manner that determines
the variation of the confinement time as illustrated. However asmentioned earlier, a cloud
of electron plasma is subject to loss due to expansion of the cloud on account of trap
conditions that cause instabilities [9–16]. The total canonical angular momentum must
be conserved, therefore the like-particle interactions which are complex and non-linear
cannot expand the plasma radially. Torques may arise from collisions with neutral atoms,
angular asymmetries in magnetic field or the containment vessel may act to change the
total canonical angular momentum and expand the plasma radially.

Experimental details
Measurement of confinement time

Detection of the trapped electrons is through an electronic tank circuit weakly coupled
to the trap. The details of this technique may be found in previous work [1, 24, 25, 32].
The electrons generated from a thoriated tungsten filament are loaded into the trap and
the filament current is then switched off while simultaneously setting the storage voltage,
U0, that is applied between the end cap and ring electrodes. After a fixed duration of 10
ms, starting from the moment the loading of electrons stops, U0 is ramped down (Fig. 3a
and c). This duration is chosen to be greater than the time for electrons to achieve equilib-
rium (10 μs) [33]. At the voltage value where the corresponding axial frequency coincides
with the tank circuit frequency, resonant energy transfer from the circuit to the oscillat-
ing electrons results in a dip in the demodulated DC output of the circuit. The extent of
the dip is proportional to the number of electrons axially oscillating, for weak excitation
of the circuit oscillation. This sequence is then repeated for different time steps. We thus
obtain the loss curve of the trapped electrons as a function of time. However the fila-
ment current fluctuates, and hence identical loading of electrons into trap in each trial is
not assured, apart from the situation here where each timing and detection cycle results
in only a single data point in this case. In a different approach (Fig. 3c), the ramp cycle
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a c

b d

Fig. 3 (a) Schematic diagram of single ramp scanning mode (b) Electron signal fall-off with single ramp
yields τ = 72.89 ms at a magnetic field of 0.05 T (c) Schematic diagram of continuous ramps scanning mode
(d) Electron signal fall-off with time for continuous ramping yields τ = 72.32 ms at a magnetic field of 0.05 T

is continuously repeated at the same ramp frequency soon after loading of electrons is
stopped. This results in the collection of a larger set of data points for a single loading
event and excludes any variations induced by possible differences in the electron load-
ing. The confinement time of trapped electrons is measured by acquiring the resonance
absorption signal. The resonance absorption signal of the trapped electrons was acquired
at fixed intervals of time.
The trapped electrons are continuously sampled over time steps of 10 ms. The disad-

vantage in this manner of probing for stored electrons is in the repetitive detection cycles
that may result in perturbative losses due to the excitation from the coupled tank cir-
cuit, weak as it may be, overriding the intrinsic loss mechanisms. However, a comparison
of data obtained through both methods yielded no significant differences in measure-
ment of the signal fall off features as shown in Fig. 3b and d. Hence, the latter method is
adopted as it yields more data points for a single loading detection event. The area under
the signal is plotted against the time interval. The measurement of confinement time by
the single ramp as well as continuous ramping yield almost the same values, as shown in
Fig. 3b and d.
The magnetic field at the position of the trap between the poles of the electromagnet

was obtained through a measurement of the cyclotron frequency of the electrons in the
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trap by excitation of the motional spectrum through external RF excitation. The proce-
dure for obtaining themotional spectrum is described elsewhere and wewill not elaborate
this here [24, 25, 32]. The magnetic field obtained by measurement of the cyclotron fre-
quency is plotted against the current in the electromagnet for a few measurements. This
yields the magnetic field at the trap center for all currents (Fig. 4). The dimensions of the
trap extend 7 mm radially and 5 mm axially from the trap center. The magnetic field is
measured using a hall probe along the X, Y and Z axes from the centre of the pole pieces
of the electromagnet. The magnetic field can be considered to be homogeneous within
the dimensions of the trap, within a small variation. Figure 5 shows the magnetic field’s
variation in space around the center of the pole pieces of electromagnet. The variation in
any axis was found to be less than 0.6%. The background pressure in the trap was 2×10−8

torr, for all measurements.

Measurement of expansion rate of the electron plasma

The trapped non neutral plasma undergoes losses both through collisions and torques
induced on the plasma cloud due to anharmonicities present in the trap. As the con-
finement time is limited by both, collisions with background neutrals, as well as by the
inherent instability of the electron plasma, we measure the expansion rate of the plasma
as a function of the magnetic field as described in the following section [12, 15, 27, 34]:
The trap voltage is set at a higher value such as 10V to ensure that the entire energy

spectrum of electrons is confined by the potential. Loading of the electrons is stopped

Fig. 4 Magnetic fields obtained from the motional spectrum shown as a function of the current in the
electromagnet. Inset shows the dip corresponding to the cyclotron frequency from the motional resonance
spectrum
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Fig. 5 Homogeneity of magnetic field along X , Yand Z axes

and simultaneously the storage voltage is reduced to zero. This results in the escape of
electrons, with electrons energies greater than eV exiting the trapping region faster than
the lower energy (less than eV) electrons that are confined within the potential. After
a certain time, the voltage is ramped up rapidly to a certain voltage V ′. This results in
recapture of the electrons that are still in the trapping region with energy range around
V ′. The schematic of this sequence is shown in Fig. 6 and shows results of the dwell time
measurements before stepping up V ′ to different levels. The time increases as the step
up voltage, as expected, since higher step up voltages, results in the recapture of a wider
energy range of electrons, whereas lower step up voltages result in capturing only the
electrons of energies less than the range corresponding to the lower voltage.
As the axial energy distribution measurements we have carried out indicate, the

electron energies are centered around 5V, the bias on the electron source [33]. This mea-
surement also points to the dependence of the electron cloud expansion rate on the energy
range of the electrons, i.e. diffusion of lower energy electrons from the centre of trap is
slower than their higher energy counterparts.
The experiment was performed at different magnetic fields and for different times, until

the signal cannot be detected at any step up voltage, V ′. The signal decay versus time for
different magnetic fields is shown in the Fig. 7 and shows the expansion rate for different
magnetic fields for step up voltages of 2V, 4V and 5V. One can note that in all situations
measuring the electron loss as a function of time, the signal is initially constant and then
sharply drops. The absence of an exponential fall off pattern throughout themeasurement
time, we conjecture, has to do with the electrons gaining velocity and hence collision fre-
quency as they diffuse out of the trap. The trapped non neutral plasma undergoes losses
both through collisions and torques induced on the plasma cloud due to anharmonicities
present in the trap. The latter results in the expansion of the plasma [12, 15, 26, 27].
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Fig. 6 Schematic diagrams showing electron signal along with variation of storage potential in different
steps where, TV ′=0 is the time for which the storage potential is zero

Results and discussion
Dependence onmagnetic field

Figure 3b shows the decay of signal area with dwell time recorded in the single ramp
mode. All data was recorded at the lowest pressure attainable under normal operat-
ing conditions of our setup (low 10−8 Torr). Figure 8 shows the dependence of B on τ

revealing that τ ∝ B1.41±0.04.

Fig. 7 Electron signal fall off with scanning time at step up voltages of 5V, 4V and 2V yielding different
confinement times
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Fig. 8 Confinement time dependence on magnetic field showing τ ∝ B1.41±0.04

Plasma expansion rate dependence onmagnetic field

When the storage potential is made zero, the plasma expands and is lost from the trap in
the axial direction primarily, although the nonlinear couplings in the degrees of freedom
result in radial expansion as well. The coupling between the radial and axial degrees of
freedom leads to a dependence on the magnetic field of the plasma expanding primarily
in the axial direction, in this set of experiments.
The slope of the plot of B – τ on a logarithmic scale yield slopes of 0.32 ± 0.02 and

0.43±0.04, for step up voltages of 2V and 4V respectively, as shown in Fig. 9. Therefore B
– τ graphs show that the plasma expansion time depends on magnetic field in the range
B0.32±0.02 – B0.43±0.04, indicating the dependence of this expansion on the kinetic energy
range of the electrons.
For a strongly magnetized plasma ω2

ce 	 ω2
pe, where ωce and ωpe are the cyclotron

frequency and the plasma frequency of electron plasma respectively [11] and the plasma
expands on a time scale given by the diffusion time, τdiff ∼

(
ω2
peνen/ω

2
ce

)−1
[1, 12, 32].

For an electron density of 1015 m−3 and magnetic field of 0.05 T, we obtain the electron-
neutral collision frequency νen ∼ 100 s−1 and τdiff ∼ 65 ms, which is of the order of the
expansion times that we measure.

Induced geometric distortions and confinement time

A distortion in the trap geometry is induced by pushing the electron filament tip 1 mm
into the volume of the trap, so that it protrudes in as shown in Fig. 10. The confinement
time is measured as before for this condition inside the trap:
Figure 11 shows a much reduced power dependence on the magnetic field than in the

case without the filament tip protruding into the trap. This points to the sensitive depen-
dence of the confinement time on the geometry of the trap. Further distortion of the trap
geometry by pushing the filament tip a little more resulted in no confinement for any
magnetic field.
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Fig. 9 Expansion time dependence on magnetic field showing the plasma expansion rate (red) for step up of
4V and (black) for step up of 2V

Conclusion
We have presented results on measurements of the confinement time of an electron
plasma in a quadrupole Penning trap, and the dependence of the same on external mag-
netic fields. The confinement time departs from the B2 dependence that is expected for
a few particles confined in harmonic traps. Here, an electron plasma of a few eV energy
and density of 1015 m−3 is trapped and this situation enhances space charge effects on

Fig. 10 End cap of trap fitted with protruding filament in the trap volume
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Fig. 11 Confinement time dependence on magnetic field with induced geometric distortions

the individual electron’s degrees of freedom [5, 33, 35]. For a quadrupole Penning trap, we
report a τ dependence ∝ B1.41±0.04. Controlled expansion of the plasma through varying
the trap potential results in axial expansion of the plasma. The magnetic field dependence
on this has been studied as well, and this depends on the kinetic energy range of the con-
fined electrons. We have demonstrated through perturbing the internal geometry of the
trap that the confinement time’s dependence on the magnetic field reduces significantly
and was measured to be τ ∝ B0.26±0.02. Further disturbance of the trap geometry through
pushing the filament tip further into the trap resulted in no confinement of the electrons
within the magnetic field range used in our experiments, leading us to conclude that the
scaling law seems to depend on the nature and extent of the perturbations. Further work
to build a theoretical model incorporating higher order perturbative terms in the poten-
tial in order to predict the confinement time scaling with B, would help in designing traps
that can minimize these perturbative terms [36, 37].
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