
Approximation Algorithms using Allegories and
Coq

Durjay Chowdhury

Supervisor:
Dr. Michael Winter

Submitted in partial fulfilment

of the requirements for the degree of
Master of Science

Department of Computer Science

Brock University
St. Catharines, Ontario

c©Durjay Chowdhury, 2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brock University Digital Repository

https://core.ac.uk/display/92480545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

In this thesis, we implement several approximation algorithms for solving optimization

problems on graphs. The result computed by the algorithm may or may not be optimal.

The approximation factor of an algorithm indicates how close the computed result is to an

optimal solution. We are going to verify two properties of each algorithm in this thesis.

First, we show that the algorithm computes a solution to the problem, and, second, we

show that the approximation factor is satisfied. To implement these algorithms, we use the

algebraic theory of relations, i.e., the theory of allegories and various extension thereof.

An implementation of various kinds of lattices and the theory of categories is required for

the declaration of allegories. The programming language and interactive theorem prover

Coq is used for the implementation purposes. This language is based on Higher-Order

Logic (HOL) with dependent types which support both reasoning and program execution.

In addition to the abstract theory, we provide the model of set-theoretic relations between

finite sets. This model is executable and used in our examples. Finally, we provide an

example for each of the approximation algorithm.
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Chapter 1

Introduction

An optimization problem is a problem in which one tries to find the best among the feasi-
ble solutions to a problem. As an example consider the traveling salesman problem. This
problem consists of a number of cities and distances among those. A solution to the prob-
lem is a tour through all cities. Obviously, one is interested in the best solution, i.e., a tour
with the least overall distance to travel. Often it is not feasible to find an optimal solution
of an optimization problem. For example, the traveling salesman problem is known to be
NP-complete so that computing an optimal solution for a large input, i.e., a large net of
cities, may need more time than available.

Approximation algorithms are used to find the feasible solution for an optimization prob-
lem. This solution may or may not be an optimal one. The ratio between the result com-
puted by the approximation algorithm and the optimal solution is called the approximation
factor. The approximation factor tells us how close the result that we get using the algo-
rithm is to an optimal solution.

The goal of this thesis is to construct a common framework for the implementation and ver-
ification of approximation algorithms on graphs. Using the framework we will implement
several approximation algorithms and show that our implementation is logically correct,
i.e., that the algorithm terminates and produces a solution to the problem. Furthermore, we
will also verify the approximation factor of the algorithm formally.

Verification of the software is an important area of computer science. The method works
by providing a formal proof that a program satisfies all properties that are supposed to be
satisfy. In the case of approximation algorithms the approximation factor is one of the
essential properties of the algorithm that needs to be verified. In this thesis we use the

1



CHAPTER 1. INTRODUCTION 2

abstract theory of binary relations to models graphs and to verify the required properties
of the algorithms. Concretely, we will use a categorical approach using allegories and var-
ious extension thereof. In order to handle approximation factors we will use an abstract
cardinality function on binary relations, i.e., a function that assigns to every element of an
allegory, i.e, every relation, an element of a suitable monoid.

Since one of our goals is to perform formal reasoning about programs, we need a language
that provides means for verification. Unfortunately, most of the general purpose program-
ming languages do not support formal reasoning about programs. On the other hand, some
functional programming languages, in particular languages that are based on type theory
encoding Higher-Order Logic (HOL), are rich enough for programming as well as verifi-
cation. The programming language Coq [20] is one of the examples of such languages.
In our application, we will use this language. Coq is a French-developed proof assistant
implementing a functional programming language and tactic-based theorem proving. In
Coq, programming and verification is possible using the same language, which is the pri-
mary advantage of that language. This language is very popular among mathematicians
and computer scientists as it supports natural deduction style reasoning.

First, we define the abstract theory of allegories and its various extensions including car-
dinality functions. Then we provide a concrete model of this theory by implementing set-
theoretic relations between finite sets. This model also serves as the basis for executing our
algorithms on concrete examples. We also show some basic properties of relations within
that theory. Each approximation algorithm is then defined and verified using the abstract
theory. The main advantage of this approach is that the assumptions for an algorithm to
work correctly become very apparent. As a further consequence, each algorithm is correct
for every model of the theory including the aforementioned model of binary relations be-
tween finite sets.

Besides the main goal of the thesis it is interesting to discuss some mathematical relation-
ships within the theory of allegories, its implementation in type-theory, and their relation-
ship to programming languages. We will often refer to these issues during the planning and
development of the framework and the implementation of the algorithms.

This thesis is not the first attempt to use relation-algebraic methods for approximation algo-
rithms [1]. There are at least two major differences between the approach taken in [1] and
this thesis. First of all, this thesis takes a more abstract approach by only requiring prop-



CHAPTER 1. INTRODUCTION 3

erties that are needed for the algorithm at hand. For example, [1] assumes the so-called
Tarski-rule and the point axiom as basic axioms. This thesis does not use the point axiom
at all and any usage of the Tarski-rule is made explicit whenever it is needed. In addition,
in [1] the cardinality function is assumed to return a natural number. As a consequence, the
order on cardinalities is linear, subtraction is available and all relations are finite. In partic-
ular, any recursion or loop based on removing a pair from a relation in each iteration will
terminate. In this thesis the cardinality function returns a value from an arbitrary ordered
monoid. This includes non-linear ordered monoids, monoids without subtraction, and does
not imply that relations are finite. As a consequence we make explicit whenever finiteness
is required by explicitly assuming that the inclusion order on relations is well-founded.
Secondly, [1] uses a imperative language, i.e., loops, to implement the algorithms. An im-
plementation of the Floyd-Hoare calculus is used to show partial correctness. Termination
is shown as a separate theorem. This thesis uses the internal functional language of Coq to
implement the algorithms. Obviously, this implies that the programs are recursive. In addi-
tion, since all Coq programs need to terminate, we have to prove termination as an integral
part of the implementation and not as a separate theorem. Last but not least, we want to
mention that some algorithms in [1] compute auxiliary results such as a matching, that are
convenient to use in the correctness proofs but definitely not necessary. The algorithms in
this thesis avoid computing these values.

The implementation of our framework for categories of relations is different from the one
that developed by Damien Pous [23]. His library does not use the class system of Coq in
order to implement hierarchies of algebras, categories and theories. He declared all op-
erations and constants, i.e., meet, join, converse, complement, residual etc., at once as a
record structure in Coq. This structure has a bit string like parameter that can be used to
select a subset of the operations to work with, i.e., the hierarchy of structure is encoded
using the bit string. During the declaration of a particular property, the bit string has to be
chosen to include those operators which are used in the property together with their axioms
selected from a similar record with the same bit string. In our implementation, we strongly
rely on the class hierarchy of Coq, which means that we only declare those operators and
axioms which are needed by that particular property or structure. The main advantage of
using classes is that it gives a direct representation of the hierarchy of the mathematical
structures in question.



CHAPTER 1. INTRODUCTION 4

The thesis is organized as follows. Before addressing details of the implementation of
several algorithms, we will discuss mathematics preliminaries in Chapter 2. Then we will
introduce categories and allegories in Chapter 3. In Chapter 4, we talk about approximation
algorithms, approximation factors, and solutions of approximation problems. The follow-
ing chapter will be about the programming language Coq and its functionality. Details
about the development of a common framework, the implementation of several approxima-
tion algorithms and their proof of correctness will follow in Chapter 6 and 7. An example
for each approximation problem that uses the concrete model of set-theoretic relations be-
tween finite sets is provided in Chapter 7. Finally, in Chapter 8, we will give concluding
remarks and some basic outlines for the future work.



Chapter 2

Preliminaries

In this section we define the basic concepts such as lattices and set-theoretic relations that
are needed throughout the thesis.

2.1 Partially-Ordered Sets

A (partially) ordered set is a very basic concept within mathematics and computer science.
It formalizes the idea that some elements are smaller than others.

Definition 2.1.1. A binary relation ď is called an ordering (or an order relation) on a set

A iff1 for all a, b, c P A we have,

Reflexive : a ď a

Antisymmetric : if a ď b and b ď a then a “ b

Transitive : if a ď b and b ď c then a ď c

The pair pA,ďq is called a poset.

We will visualize a finite ordered set usually by its Hasse-Diagram (see example below).
In such diagram a line that goes upward from an element y to an element x indicates that y

is strictly smaller than x, i.e., y ď x and y , x, and there is no element between the two.

1We use the abbreviation iff for if and only if.

5



CHAPTER 2. PRELIMINARIES 6

Example 2.1.1. Suppose we have D = {1, 2, 3, 4, 6, 12}. The order relation on D is given

by the property of dividing evenly. For example, 2 divides 4 evenly so that 2 ď 4 but

neither does 6 divide 4 nor does 4 divide 6 evenly. The ordering is visualized in below as a

Hasse-Diagram.

12

4

2

1

3

6

In the remainder of this section we will use the example above to illustrate important con-
cepts.

2.1.1 Upper and Lower Bounds

Upper bounds of a subset of elements are based on the concept of being greater or equal
than all elements of the subset. We obtain the following definition.

Definition 2.1.2. Let pL,ďq be a poset and A Ď L. Then an upper for A is an element u P L

so that x ď u for all x P A.

Note that a subset does not necessarily have upper bounds. In addition, it may have more
than one upper bound as the following example shows.

Example 2.1.2. Upper bounds not need to be unique. There may be more than one upper

bound. In Figure 2.1, the upper bounds of {2,3} are 6 and 12. On the other hand, the set

{4.6} has only one upper bound, the element {12}.

Lower bounds are defined dually, i.e., they are upper bounds of the reversed order.

Definition 2.1.3. Let pL,ďq be a poset and A Ď L. Then an lower for A is an element u P L

so that u ď x for all x P A.

Example 2.1.3. Similar to upper bounds, lower bounds also need not to be unique. In

Figure 2.1, the lower bound of 12 will be {1, 2, 3, 4, 6} and the lower bound of {2, 3} will

be {1}.
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2.1.2 Greatest and Least Element

Besides upper bounds a subset may provide a greatest element.

Definition 2.1.4. Let pL,ďq be a poset and A Ď L. Then a greatest element of A is an

upper bound g of A so that g P A.

Again, a greatest element may not exist.

Example 2.1.4. Greatest elements may not exist but if they do, they are unique. In Figure

2.1, the set {4,6} does not have a greatest element, and the greatest element of {1,2,3,6} is

6.

Similar to lower bounds a least element is dually defined to a greatest element.

Definition 2.1.5. Let pL,ďq be a poset and A Ď L. Then a least element of A is an lower

bound g of A so that g P A.

Example 2.1.5. Similar to greatest elements least elements are also unique. In Figure 2.1,

the set {4,6} does not have a least element, and the least element of {1,2,3,6} is 1.

2.1.3 Join and Meet

Among the upper bounds the least upper bound might be of interest.

Definition 2.1.6. Let pL,ďq be a poset and A Ď L. The least upper bound or join for A is

the least element of the set of upper bounds of A.

Example 2.1.6. Consider the set {2,3} of the example above. The set of upper bounds is

{6,12} among which 6 is the smallest, i.e., 6 is the least upper bound of {2,3}.

The least element of poset will be the join of the empty subset and the least upper bound
of the whole poset will be the greatest element of a poset if it exists. The join is denoted
by

Ů

S . If S is a set with two elements, i.e., if S “ tx, yu, then we write x \ y instead
of
Ů

S . In this case we have z “ x\y iff x ď z and y ď z and if x ď v and y ď v, then z ď v.

Dually, we define greatest lower bounds.

Definition 2.1.7. Let pL,ďq be a poset and A Ď L. The greatest lower bound or meet for

A is the greatest element of the set of lower bounds of A.

Example 2.1.7. Again, let us consider the set {2,3}. The set of lower bounds is {1} so that

1 is the greatest lower bound of {2,3}.
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�
S denotes the meet. If S is a set with two elements, i.e., if S “ tx, yu, then we write

x [ y instead of
�

S . In this case we have z “ x [ y iff x ě z and y ě z and if x ě v and
y ě v, then z ě v.

2.1.4 Upper and Lower Semilattices

An upper semilattice is a poset which has a join for every pair of elements. Alternatively,
an upper semilattice can be defined algebraically as follows. [3]

Definition 2.1.8. A structure pL,\) is a upper semilattice if and only if for all x, y and z in

L,

1. x\ y “ y\ x (commutativity)

2. px\ yq \ z “ x\ py\ zq (associativity)

3. x\ x “ x (idempotency)

A lower semilattice is poset which has a meet for any pair of elements. It can also be
defined algebraically [3].

Definition 2.1.9. A structure pL,[q is a lower semilattice if and only if for all x, y and z in

L,

1. x[ y “ y[ x (commutativity)

2. px[ yq [ z “ x[ py[ zq (associativity)

3. x[ x “ x (idempotency)

2.2 Lattices

According to order theory, a lattice is a poset where for every two elements there exists a
unique least upper bound and a greatest lower bound.
The algebraic definition of the lattice is given below:

Definition 2.2.1. A structure pL,[,\q is a lattice if and only if, L is both upper semilattice

and lower semilattice and also for all x, y in L,

x[ px\ yq “ x and x\ px[ yq “ x (absorption)

Both the algebraic and order-theoretic definition are equivalent [3]. Any one of the def-
initions can be used depending on which one is more convenient. Using the algebraic
definition the order of the lattice can be defined by x ď y ðñ x[ y “ x for all x, y P L.
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2.2.1 Distributive Lattice

A lattice is a distributive lattice if both operations join and meet distribute over each other.

Definition 2.2.2. L is a distributive lattice if following properties holds for all x, y, z in L,

x\ py[ zq “ py\ zq [ py\ zq

We can also distribute meet operation over the join operation which is an exact dual of our
defined one. Both of those properties can obtain from one another.

2.2.2 Bounded Lattice

A bounded lattice is a lattice that has a greatest and a least element denoted by 1 and 0,
respectively. The algebraic definition is as follows.

Definition 2.2.3. A lattice L is a bounded lattice if for all x in L,

x\ 0 “ x and x[ 1 “ x

A Lattice L is a bounded distributive lattice if it is a distributive and bounded lattice.

Definition 2.2.4. A Lattice L with 0 is 0-distributive if for all x, y, z in L,

px^ yq “ 0[ px^ zq “ 0 ñ x^ py_ zq “ 0

Definition 2.2.5. A Lattice L with 1 is 1-distributive if for all x, y, z in L,

px_ yq “ 1[ px_ zq “ 1 ñ x_ py^ zq “ 1

If a lattice is both 0-distributive and 1-distributive is called 0-1 distributive lattice [13].

2.3 Heyting Algebras

In this section, we discuss a different class of lattice called Heyting algebras. We use
additional binary implication operation for defining Heyting algebras. This implication op-
eration is denoted by Ñ. A Heyting algebra is a bounded lattice equipped with this binary
operation. This binary implication also represents a weak form of complementation which
is known as relative pseudo-complement.

The formal definition of Heyting algebra is given below:

Definition 2.3.1. A Heyting algebra is a bounded lattice L with a binary operation Ñ so

that for all x, y, z P L and x, y, z in L,

1. x Ñ x “ 1
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2. x[ px Ñ yq “ x[ y

3. y[ px Ñ yq “ y

4. x[ py Ñ zq “ px Ñ yq [ px Ñ zq

According to [19], the implication operation of a Heyting algebra also be characterized by
the equivalence, z Ď x Ñ y ðñ x[ z Ď y for all x, y, z in L,

Heyting algebras are less often called pseudo-Boolean algebras, or even Brouwer lattices
[19]. As lattices, Heyting algebras are distributive.

Theorem 2.3.1. Every Heyting algebra is distributive.

Note that a finite lattice is always complete so that joins distribute over arbitrary meets and
vice versa in a finite Heyting algebra.

A Heyting algebra gives rise to a pseudo-complement operation defined as x :“ x Ñ 0.
This element can be characterized by x[ y “ 0 iff y Ď x. In particular, we have x[ x “ 0.
On the other hand, x\ x “ 1 might not be true.

2.4 Boolean Algebras

A Boolean algebra is a complemented distributive lattice. This type of structure hold es-
sential properties both for logic and set operation. Its elements can be viewed as a general-
ization of truth tables. Boolean algebras are also a particular case of de Morgan algebras.
The formal definition of Boolean algebra is given below:

Definition 2.4.1. A Boolean operation algebra is a Heyting algebra with,

x\ x “ 1 for all elements x P L

As every finite Boolean algebra is isomorphic to a lattice of a subset of a finite set, the
number of elements for every finite Boolean algebra is a power of two. So any poset with
a different number of elements is not a Boolean algebra.

2.5 Set-theoretic Relations

A relation defines a connection or a relationship between elements. In mathematics, a
relation is a set of ordered pairs defining a relationship between the elements of each pair.
If A is a set and B is another set, then a relation R between them is a subset of Aˆ B , i.e.,
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R Ď Aˆ B. If pa, bq P R, then will often write aRb where a P A and b P B. Furthermore, if
R is a relation between A and B we will indicate this also by R : A Ñ B.

Example 2.5.1. In this example we want to define a relation S between seasons and coun-

tries. Therefore we define the first set as S EAS = {Summer, Rainy, Fall, Late Autumn,

Winter, Spring} and the second set as CNTRY = {Bangladesh, Canada, Colombia}. The

relation S : S EAS Ñ CNTRY indicates in which country a particular season exists:

S = {(Summer, Bangladesh), (Rainy, Bangladesh), (Fall, Bangladesh), (Winter, Bangladesh),

(Late Autumn, Bangladesh), (Spring, Bangladesh), (Summer, Canada), (Fall, Canada),

(Winter, Canada), (Spring, Canada), (Summer, Colombia), (Rainy, Colombia)}

2.5.1 Matrix Representation

A relation between two finite sets can be represented by a Boolean matrix (see [15]). There-
fore, we assume a linear order on the elements of each set. Usually we use the order given
by sequence in which we presented the elements of the corresponding set. If there is a
relationship between two elements pa, bq, then the matrix will have a 1 (for true) in the
row-column entry corresponding to a and b. The entry will be 0 if there is no relationship
between the elements. Please note that 0 and 1 are not integers. The operations are based
on the Boolean interpretation. This kind of matrix representation is one of the best ways to
visualize a relation between the elements of two sets.

For example, we can present the relation S from the previous example as a Boolean matrix
as follows:

S “

S ummer Rainy Fall LateAutumn Winter S pring
¨

˚

˝

˛

‹

‚

1 1 1 1 1 1 Bangladesh

1 0 1 0 1 1 Canada

1 1 0 0 0 0 Colombia

After removing the label following the convention mentioned above, the actual matrix rep-
resentation of relation S becomes:

S “

¨

˚

˝

1 1 1 1 1 1
1 0 1 0 1 1
1 1 0 0 0 0

˛

‹

‚
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This type of representation is convenient when elements of two set are finite and reasonably
small in number. We use matrix representation for most of the examples that we discuss
later.

2.5.2 Basic operations

Since set-theoretic relations are sets of pairs, the usual set operations such as meet, join
and complement are available for relations as well. Because all relations between two sets
form a Boolean algebra we will use the notation of Boolean algebras to denote these opera-
tions. In terms of matrices, these operations can be performed componentwise by applying
the Boolean operations and, or, and not to the corresponding entries in the matrices. For
example, if P and Q are the following matrices:

P “

¨

˚

˝

1 1 1 1 1 1
1 0 0 1 1 1
0 0 1 0 1 0

˛

‹

‚
,Q “

¨

˚

˝

1 1 1 0 0 1
1 1 0 1 0 0
1 1 1 0 0 1

˛

‹

‚

Then the operation P[ Q will return following matrix:

P[ Q “

¨

˚

˝

1 1 1 0 0 1
1 0 0 1 0 0
0 0 1 0 0 0

˛

‹

‚

The operation P\ Q will return following matrix:

P\ Q “

¨

˚

˝

1 1 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1

˛

‹

‚

The operation P will return following matrix:

P “

¨

˚

˝

0 0 0 0 0 0
0 1 1 0 0 0
1 1 0 1 0 1

˛

‹

‚

We can also express the implication operation (Ñ) using the operations ¨ and \ , i.e., we
have P Ñ Q “ P \ Q. Consequently, the operation P Ñ Q will give us the following
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matrix.

P Ñ Q “

¨

˚

˝

1 1 1 0 0 1
1 1 1 1 0 0
1 1 1 1 0 1

˛

‹

‚

The empty set is the set that does not contain any elements. The empty relation is the empty
set (of pairs). We can represent the empty relation by the constant 0-matrix, i.e., the matrix

¨

˚

˝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

˛

‹

‚

The universal relation on a set A is the set A ˆ A. In a universal relation, all the pairs of
elements are included. The matrix representation of a universal relation will be:

¨

˚

˝

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

˛

‹

‚

2.5.3 Converse Relation

Assume two sets A and B and a relation relation R from A to B. The converse of R is
denoted by R˘and a relation from B to A. Its formal definition is as follows:

Definition 2.5.1. If R Ď Aˆ B, then R˘ :“ tpb, aq | pa, bq P Ru.

In terms of matrices the converse of R is represented by the transposed matrix of R. For
example, the matrix for P˘is

P˘“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 1 0
1 0 0
1 0 1
1 1 0
1 1 1
1 1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚
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2.5.4 Identity Relation

The identity relation on set A is the set tpx, xq | x P Au. The matrix representation of the
identity relation is given below:

¨

˚

˝

1 0 0
0 1 0
0 0 1

˛

‹

‚

2.5.5 Composition of Relations

Assume three sets X, Y and Z, a relation R from X to Y , and a relation S from Y to Z. The
composition of relation R and S , denoted by R; S , is defined as follows:

Definition 2.5.2. R; S :“ tpx, zq | Dy : ppx, yq P R^ py, zq P S qu.

The composition of two relations represented as Boolean matrix can be computed similar
to the matrix multiplication known from linear algebra. Instead of multiplication we use
the Boolean and, and instead of summation we use the Boolean or.

Let assumes two relations P and Q with

P “

¨

˚

˝

1 0 1
0 0 1
1 0 0

˛

‹

‚
Q “

¨

˚

˝

0 0 1
1 0 0
0 0 1

˛

‹

‚

The operation P; Q will return the following matrix:

¨

˚

˝

0 0 1
0 0 1
0 0 1

˛

‹

‚

Note that each operation of this chapter can effectively be computed if the relations are
finite. This is the basis of our implementation of set-theoretic relations between finite sets
in Chapter 6.



Chapter 3

Categories and Allegories

In this chapter, we focus on different types of categories and allegories. We also discuss
several constructions within categories or allegories that we need for our framework.

3.1 Category Theory

Category theory is an alternative to set theory. It formalizes mathematical structures using
the concepts of a collection of objects and arrows. A category has a fundamental com-
position operation on arrows (or morphisms) that is associative. Beside this, there exists
an identity morphism for each object. Morphisms should be considered as maps between
mathematical structures. The formal definition of a category is given below:

Definition 3.1.1. A category C is defined by,

1. a collection of objects denoted by Ob jc,

2. a collection of morphisms CrX,Ys, for every pair of objects X and Y,

3. an operation ; mapping an f in CrX,Ys and a g in CrY,Zs to a morphism f ; g in

CrX,Zs which is associative,

4. an identity morphism for every object Y denoted by IY ,such that for all f in CrX,Ys

and g in CrY,Zs we have f ; IY “ f and IY ; g “ g.

Some computer scientists and mathematicians are very familiar with categories. They are
widely used to describe systems such as databases and models of theoretical physics. Cat-
egories of matrices can also be used to obtain an abstract approach to linear algebra.

15
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3.2 Allegories

An allegory is a category where the morphisms are considered to be binary relations. They
are an abstraction of the category of set-theoretic relations between sets.

Definition 3.2.1. A category R is an allegory satisfying the following,

1. Every RrA, Bs is a lower semilattice. [ and Ď are use to denote meet and induced

ordering respectively. Elements in RrA, Bs are called relations.

2. There is a montone operation ˘ ,i.e, such that for all relations Q : A Ñ B and S : B

Ñ C the following holds:

pQ; S q ˘= S ˘; Q˘ and pQ˘)˘= Q.

3. Q; R [ S Ď Q; pR [ Q˘;S ) for all relations Q : AÑ B,R : BÑ C and S : AÑ C.

4. Q; pR [ S q Ď Q; R [ Q; S for all relations Q : AÑ B and R, S : BÑ C.

For an allegory, the property pQ [ Rq˘“ Q˘[ R˘ is satisfied. In [19], there are some other
properties that can be shown by using the axioms of an allegory.

Lemma 3.2.1. Let R be an allegory, A,B,C be objects of R and Q,R : A Ñ B, S : B Ñ

C,T : A Ñ C, and U,V : A Ñ A. Then we have

1. IA˘“ IA,

2. pQ[ Rq; S Ď Q; S [ R; S ,

3. For both argument ; is monotone,

4. Q; S [ T Ď pQ[ T ; S q̆; S

5. Q; S [ T Ď pQ[ T ; S q̆; pS [ Q ;̆ T q,

6. Q Ď Q; Q ;̆ Q,

7. IA [ pU [ Vq; pU [ Vq˘“ IA [ U; V˘“ IA [ V; U ,̆

8. Q “ pIA [ Q; Q q̆; Q “ Q; pIB [ Q ;̆ Qq.

Some specific relations are defined in [19].

Definition 3.2.2. Let R be an allegory where Q : A Ñ B. Then we call

1. Q is univalent if and only if Q ;̆ Q Ď IB,

2. Q is total if and only if IA Ď Q; Q,̆

3. Q is map if and only if Q is univalent and total,

4. Q is injective if and only if Q˘ is univalent,

5. Q is surjective if and only if Q˘ is total,
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6. Q is bijective if and only if Q˘ is map,

7. Q is bijection if and only if Q is a bijective map,

8. Q is symmetric if and only if Q “ Q.̆

In [19], some interesting properties for univalent relation are shown.

Lemma 3.2.2. Let R be an allegory, A,B,C be objects of R and Q : A Ñ B, R, S : B Ñ

C,T : C Ñ A, and U : C Ñ B. If Q is univalent, then

1. Q; pR[ S q “ Q; R[ Q; S ,

2. T ; Q[ U “ pT [ U; Q q̆; Q.

The dual properties of Lemma 3.2.2 i.e., by reversing the order in the composition, also
hold. The following lemma holds for mappings [19].

Lemma 3.2.3. Let R be an allegory, A,B,C be objects of R and Q : A Ñ B, R : A Ñ C, S :
D Ñ B be arbitrary relations and f : B Ñ C and g : A Ñ D be mappings. Then we have

1. Q; f Ď R i f f Q Ď R; f ,̆

2. g ;̆ Q Ď S i f f Q Ď g; S ,

Definition 3.2.3. Let R be an allegory and A an object. A relation R : A Ñ A is called a

partial identity if and only if R Ď IA.

The following properties hold for partial identities as shown in [19].

Lemma 3.2.4. Let R be an allegory, A,B,C objects of R and S ,T : B Ñ B partial identity

Q,U : A Ñ B, and R,V : B Ñ C arbitrary relation. Then we have

1. S ˘“ S ,

2. S ; S “ S ,

3. S ; T “ S [ T,

4. Q; pS [ T q “ Q; S [ Q; T and pS [ T q; R “ S ; R[ T ; R,

5 pQ[ Uq; pS [ T q “ Q; S [ U; T and pS [ T q; pR[ Vq “ S ; R[ T ; V.

We use all those lemmas and axioms for proving other lemmas and theorems.

3.3 Distributive Allegories

In a distributive allegory every RrA, Bs is a distributive lattice with a least element. The
formal definition is:

Definition 3.3.1. An allegory R is a distributive allegory if it satisfies the following:
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1. Every RrA, Bs is a distributive lattice with least element where we denote union and

the least element by \ and KKAB respectively.

2. Q; pR\ S q “ Q; R\ Q; S , for all Q : A Ñ B, R, S : B Ñ C.

3. Q;KKBC “KKAC, for all Q : A Ñ B.

According to [19], the following lemma is a consequence of the definition of distributive
allegories.

Lemma 3.3.1. Let R be a distributive allegory. If Q,R : A Ñ B and S : B Ñ C, we have,

1. KK ĂB “KKBA,

2. KKCA; Q “KKCB,

3. pQ\ Rq˘“ Q˘\ R ,̆

4. pQ\ Rq; S “ Q; S [ R; S .

3.4 Division Allegories

According to the hierarchy of allegories, the next step after distributive allegories are divi-
sion allegories. In the division allegories ; is a lower adjoint.

Definition 3.4.1. A distributive allegory R is called division allegory iff for all relations

R : B Ñ C and S : A Ñ C there is a left residual S {R : A Ñ B such that for all relation

Q : A Ñ B the following holds:

Q; R Ď S ðñ Q Ď S {R.

There also exists an upper right adjoint for ; in a division allegory which is called a right
residual. For relations Q : A Ñ B and S : A Ñ C the right residual Q \S is defined by
pS {̆Q q̆ .̆
A symmetric version of the residuals can be defined as syQpQ,Rq :“ pQ\Rq[pQ {̆R q̆. The
following lemmas were shown in [19]:

Lemma 3.4.1. Let R be a division allegory. If Q,Q1,Q2 : A Ñ B , R,R1,R2 : B Ñ C, and

S , S 1, S 2 : A Ñ C, then we have,

1. Q Ď pQ; Rq{R and R Ď Q\pQ; Rq,

2. pS {Rq; R Ď S and Q; pQ\S q Ď S ,

3. S {pQ\S q Ď Q and pS {Rq \S Ď R,
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4. Q2 Ď Q1,R2 Ď R1 and S 2 Ď S 1 implies S 1{R1 Ď S 2{R2 and Q1 \S 1 Ď Q2\S 2,

5. pS 1 [ S 2q{R “ pS 1{Rq [ pS 2{Rq and Q\pS 1 [ S 2q “ pQ\S 1q [ pQ \S 2q,

6. S {pR1 \ R2q “ pS {R1q \ pS {R2q and pQ1 \ Q2q\S “ pQ1\S q \ pQ2 \S q.

Lemma 3.4.2. Let R be a division allegory. If Q : A Ñ B , R : B Ñ C, S : A Ñ C,

F : D Ñ A, and G : C Ñ E then we have,

1. S {IC “ S and IA\S “ S ,

2. F; pS {Rq Ď pF; S q{R and pQ\S q; G Ď Q\pS ; Gq,

3. If F and G˘are mappings, then in both properties of (2) equality holds,

4. S {R Ď pS ; Gq{pR; Gq and Q\S Ď pF; Qq\pF; S q,

5. If G and F˘are total and injective, then in both properties of (4) equality holds.

The following lemma shows some fundamental properties of symmetric quotients [19].

Lemma 3.4.3. Let R be a division allegory. If Q : A Ñ B , R : A Ñ C, S : A Ñ D are

arbitrary relations and f : D Ñ B is a mapping. Then we have

1. f ; syQpQ,Rq “ syQpQ; f ,̆Rq,

2. syQpQ,Rq˘“ syQpR,Qq,

3. syQpQ,Rq; syQpR, S q Ď syQpQ, S q,

3.5 Heyting Categories

A Heyting category is a division allegory in which every RrA, Bs is a Heyting algebra.

Definition 3.5.1. A division allegory R is called Heyting category iff every RrA, Bs is a

Heyting algebra. We denote the greatest element by

|ù

AB.

The next lemma will state some properties of the greatest element in Heyting categories in
[19].

Lemma 3.5.1. Let R be a Heyting category with objects A and B. Then we have,

1.

|ù

ĂB “

|ù

BA,

2.

|ù

AA;

|ù

AB “

|ù

AB;

|ù

BB “

|ù

AB,

2.

|ù

AB “

|ù

AB;

|ù

BA;

|ù

AB.

The next lemma summarize some additional properties of relations in Heyting categories
[19].
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Lemma 3.5.2. Let R be a Heyting category with some relations, Q : A Ñ B,R : B Ñ C,S :
A Ñ D, and T : D Ñ C. Then we have,

1. pQ[ S ;

|ù

DBq; R “ Q; R[ S ;

|ù

DC,

2. Q; pR[

|ù

BD; T q; R “ Q; R[

|ù

AD; T,

3. IA [ Q; Q˘“ IA [ Q;

|ù

BA “ IA [

|ù

AB; Q,̆

4. Q is total iff Q;

|ù

BC “

|ù

AC, for all objects C.

For partial identities, there are some other properties in a Heyting category. The next lemma
summarizes these properties [19].

Lemma 3.5.3. Let R be a Heyting category, R : C Ñ A, U : A Ñ B be relations, and

S : A Ñ A be a partial identity. Then we have,

1. S “ IA [ S ;

|ù

AA “ IA [

|ù

AA; S ,

2. R; S “ R[

|ù

CA; S and S ; U “ U [ S ;

|ù

AB.

3.6 Schröder Categories

We are now switching from Heyting algebras to Boolean algebras as the underlying lattice
structure of relations.

Definition 3.6.1. A Heyting category whereRrA, Bs is a Boolean algebra, is called Schröder

category.

In the next theorem is the demonstration of the so-called Schröder equivalences. In [15]
they are used as a basic axiom for relations. In the presence of the other axioms of a
Schröder category, the Schröder equivalences are equivalent to the modular law of alle-
gories.

Theorem 3.6.1. (Schröder equivalences) Let R be a Schröder category with relation Q :
A Ñ B, R : B Ñ C, and S : A Ñ C. Then we have,

Q; R Ď S ðñ Q ;̆ S̄ Ď R̄ ðñ S̄ ; R˘Ď Q̄

In the presence of complements the residuals can be defined using composition, converse,
and complement. The next lemma is shown in [19].

Lemma 3.6.1. Let R be a Schröder category with relation Q : A Ñ B, R : B Ñ C, and

S : A Ñ C. Then we have,

1. Q\S “ Q ;̆ S̄ ,

2. S {R “ S̄ ; R .̆
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Sometimes the so-called Tarski-rule is needed. It emphasizes that relations are based on a
two-valued logic.

Definition 3.6.2. Let R be a Schröder category with objects A, B,C,D and a relation R :
A Ñ B. The Tarski-ruke is the following axiom:

|ù

CA; R;

|ù

BD “

|ù

CD if R ,KKAB

We use this rule for proving several lemmas and also for algorithm verification.

3.7 Unit Object

A unit is an object. It is an abstract version of a singleton set, i.e., a set with exactly one
element.

Definition 3.7.1. An object 1 is called a unit if

|ù

11 = I1 and

|ù

A1 is total for every object A.

Lemma 3.7.1.

|ù

A, 1;

|ù

1, A “

|ù , for all objects A.

If we represent a relation v : A Ñ 1 by a Boolean matrix we obtain a matrix similar to
a vector in linear algebra. Such a relation can be seen as a subset of A. For example, if
A “ t1, 2, 3, 4, 5u then v is a vector representing the subset { 1, 3, 5 }.

v “

¨

˚

˚

˚

˚

˚

˚

˝

1
0
1
0
1

˛

‹

‹

‹

‹

‹

‹

‚

Definition 3.7.2. A relation v : A Ñ 1 is called a vector.

An element of A can be represented by a singleton subset of A. Therefore, we obtain the
following definition of a point.

Definition 3.7.3. A point (or element) is a surjective and injective vector.

3.8 Cardinality of Relations

In mathematics, cardinality is used to measure the number of element in a set. For example,
the set A “ t1, 3, 5u has three element, i.e., its cardinality is 3. There two ways of defining
cardinality - one is comparing the sets using bijections and injections, and another way is
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using cardinal numbers.

In [6] Kawahara investigates the cardinality for set-theoretic relations. The primary out-
come is a formula which is called Dedekind inequality. That is used for calculation with
cardinalities of relations, and later as an axiom for an algebraic characterization of a cardi-
nality function in [1]. The algebraic definition of a cardinality function uses the notion of
an ordered monoid.

A algebraic structure pM,`q of a set M and an associative operation` is called semigroup.
A monoid is a semigroup together with a neutral element 0, i.e., x ` 0 “ 0` x “ x for all
x P M. A monoid in which ` is commutative is called commutative monoid.

Definition 3.8.1. An ordered monoid is a monoid M together with a partial order Ď so that

` is monotonic, i.e., v` x Ď w` y if v Ď w and x Ď y for all v,w, x, y P M.

Sometimes it is convenient to have a notation for adding an element multiples times.

Definition 3.8.2. If M is a monoid, n P N, and x P M, then we define the multiplication

n ¨ x recursivley as

0 ¨ x :“ 0,
pn` 1q ¨ x :“ x` n ¨ x.

Definition 3.8.3. A cardinality function |.| is a map assigning to every relation R an element

|R| of an ordered monoid such that

1. |R| “ 0 iff R “KK,

2. |R| “ |R |̆,

3. |R\ S | ` |R[ S | “ |R| ` |S |,

4. If Q is univalent, then |R[ Q ;̆ S | Ď |Q; R[ S |,

5. If Q is univalent, then |Q[ S ; R |̆ Ď |Q; R[ S |.

Some properties of a cardinality function are listed in the next few lemmas. A proof can be
found in [1]. If the allegory has a unit, then we define 1 :“ |

|ù

11|. Please note that 1 is an
element of M.

Lemma 3.8.1. If R : A Ñ B is univalent and S : B Ñ C is a mapping, then |R; S | “ |R|.

Lemma 3.8.2. Let R : A Ñ A be symmetric and P,Q : A Ñ C with P injective and Q

univalent, then we have |R[ P; Q |̆ “ |R; P[ Q|.

Lemma 3.8.3. If q : A Ñ 1 is a point, then |q| “ 1.

Lemma 3.8.4. Let relations R, S : A Ñ B. Then R Ď S ñ |R| Ď |S |.

Lemma 3.8.5. | KK | “ 0.
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3.9 Direct Product

Elements from two sets X,Y can form pairs which are the elements of the Cartesian product
X ˆ Y . We denote a pair by px, yq P X ˆ Y where x P X and y P Y .

Let assume two sets, one of them students name and another set is the marks they may
obtain, e.g., X “ tAdam, Jack,Kellyu and a Y “ t80, 75, 70u. The direct product of sets is
the set of all pairs:

X ˆ Y = {(Adam,80), (Adam,75), (Adam,70),(Jack,80), (Jack,75), (Jack,70),(Kelly,80),
(Kelly,75), (Kelly,70)}

3.9.1 Projections

The projection functions allow retrieving the two components from a pair. The first projec-
tion obtaining the first element from a pair is denoted by π and second projection is denoted
by ρ.Seen as relation in an allegory they have the following source and target:

π : X ˆ Y Ñ X and ρ : X ˆ Y Ñ Y .

3.9.2 Algebraic Properties of the Projection Relations

Algebraists and computer scientists have been investigating products and their property
abstractly. A significant part of [15] is dedicated to several aspects of this subject. Math-
ematicians obtained a set of algebraic rules are always satisfied. In [15], these rules led to
the following abstract definition of a direct product.

Definition 3.9.1. An object A ˆ B together with two relations π : A ˆ B Ñ A and ρ :
Aˆ B Ñ B are said to form a direct product if

1. π ;̆ π “ I,
2. ρ ;̆ ρ “ I,
3. π; π˘[ ρ; ρ˘“ I,
4. π ;̆ ρ “

|ù .

Note that π, ρ are mappings. For first two conditions require π, ρ to be univalent and sur-
jective and third condition implies that π, ρ are total. The fourth condition implies that for
every element in A and B there exists exactly one pair in Aˆ B. There are some interesting
constructions defined in [15],
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Definition 3.9.2. Let R : A Ñ B and S : A Ñ Y be relations, then the strict fork operation

between R and S , denoted by A Ñ Bˆ Y, is defined by,

pR < S q :“ R; π˘[ S ; ρ .̆

Definition 3.9.3. Let R : B Ñ A and S : Y Ñ A, then the strict join operation between

relation R and S denoted by Bˆ Y Ñ A, is defined by,

pR = S q :“ π; R[ ρ; S .

Definition 3.9.4. Let R : A Ñ B and S : X Ñ Y, then the Kronecker product between

relation R and S denoted by Aˆ X Ñ Bˆ Y, is defined as the following,

pR
Â

S q :“ π; R; π1̆ [ ρ; S ; ρ1̆ .

The next three lemmas present some important properties of these operations using the
algebraic definition of a direct product [15].

Lemma 3.9.1. Let R : A Ñ B, S : X Ñ Y be relations and π : Aˆ X Ñ A , ρ : Aˆ X Ñ X

and π1 : Bˆ Y Ñ B, ρ1 : Bˆ Y Ñ Y be projections. Then following properties hold:

1. pR
Â

S q; π1 “ π; R[ ρ; S ;

|ù

YB Ď π; R,

2. pR
Â

S q; ρ1 “ ρ; S [ ρ; R;

|ù

BY Ď ρ; S ,

3. pR
Â

S q; pP
Â

Qq Ď pR
Â

Pq; pS
Â

Qq.

Lemma 3.9.2. If pR<S q : A Ñ BˆY is the strict fork of R : A Ñ B and S : A Ñ Y. Then

pR < S q; π “ R[ S ;

|ù and pR < S q; ρ “ S [ R;

|ù .

Analogously, if pR = S q : Bˆ Y Ñ A is the strict join of R : B Ñ A and S : Y Ñ A. Then

π ;̆ pR = S q “ R[

|ù ; S and ρ ;̆ pR = S q “ S [

|ù ; R.

Lemma 3.9.3. With the assumptions of Lemma 3.9.1 and Lemma 3.9.2 , the following prop-

erties hold:

1. If S is total then pR
Â

S q; π1 “ π; R,

2. If R is total then pR
Â

S q; ρ1 “ ρ; S ,

3. If S is total then pR < S q; π “ R,

4. If R is total then pR < S q; ρ “ S ,

5. If S is surjective then π ;̆ pR = S q “ R,

6. If R is surjective then ρ ;̆ pR = S q “ S ,
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3.10 Direct Sum

The direct sum of two sets is a set that combines the elements of the two sets. It is the
smallest set which contains the elements from both sets without losing the information
from which set an element originated. As a consequence, elements that are in both sets will
occur twice in the sum, one copy originating from the first set and one copy originating
from the second set. Assume we have two sets, one is for cricket playing countries, and
another is for soccer playing countries, i.e., Cricket = {Bangladesh, England, Australia,
South Africa} and Soccer = {Argentina, Germany, England}. The direct sum of this two set
denoted by Cricket + Soccer is the set. So,

Cricket + Soccer = {Bangladeshc, Englandc, Australiac, South Africac, Argentinas, Germanys,
Englands}

Note that the index of each element in Cricket+Soccer indicates from which set the element
originated. All elements from both sets are present here. England plays both Cricket and
Soccer. Therefore England appears twice on the set of the direct sum.

3.10.1 Injections

Similar to the projection of a direct sum comes with two functions that inject the elements
from each set into the direct sum. Seen as relations of an allegory the injections ι and κ
have the following source and target:

ι : X Ñ X ` Y and κ : Y Ñ X ` Y .

3.10.2 Algebraic Properties of Injection Relations

According to [15] we can define direct sum as follows.

Definition 3.10.1. An object A` B together with two relations ι : A Ñ A` B and κ : B Ñ

A` B is said to form a direct sum if

1. ι; ῐ “ I,
2. κ; κ˘“ I,
3. ῐ ; ι\ κ ;̆ κ “ I,
4. ι; κ˘“KK.

Now we state some lemmas according to [15].
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Lemma 3.10.1. Let R : C Ñ A and S : C Ñ B be relations, then following properties

hold:

1. pR; ι\ S ; κq; ῐ “ R,

2. pR; ι\ S ; κq; κ˘“ S ,

Lemma 3.10.2. Let R : A Ñ C and S : B Ñ C be relations, then following properties

hold:

1. ι; pῐ ; R\ κ ;̆ S q “ R,

2. κ; pῐ ; R\ κ ;̆ S q “ S ,

Lemma 3.10.3. Let R : A Ñ B, S : X Ñ Y be relations, then following properties hold:

1. pῐ ; R; ι1 \ κ ;̆ R; κ1q; ι1̆ “ ῐ ; R,

2. pῐ ; R; ι1 \ κ ;̆ R; κ1q; κ1̆ “ κ ;̆ S ,

3.11 Relational Atoms and Edges

In the set-theoretic model, an atom is a relation that consists single pair. If the relation is
the incidence relation of a directed graph, then we can say that an atom is a single edge in
the graph. An atom can be characterized abstractly as follows.

Definition 3.11.1. A relation R : A Ñ B is a atom, if

1. R ,KK,

2. R ;̆

|ù ; R Ď I,

3. R;

|ù ; R˘Ď I,

Please note that every point is an atom among the vectors [16, Proposition 2.4.5].

In an undirected graph an edge is a connection between two nodes. Seen as relation there
is a directed edge from x to y and a directed edges from y to x.

Definition 3.11.2. An edge e is a relation so that there is an atom a with e “ a\ a .̆

Example 3.11.1. Let assume a set of nodes X “ t1, 2, 3, 4u. The following relation R can

be seen as an undirected graph on X. For example, there is an edge between 1 and 2 be-

cause the two entries in the 1-row and 2-column resp. 2-row and 1-column are 1.
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R “

1 2 3 4
¨

˚

˚

˚

˝

˛

‹

‹

‹

‚

0 1 1 0 1
1 0 1 1 2
1 1 0 0 3
0 1 0 0 4

a “

1 2 3 4
¨

˚

˚

˚

˝

˛

‹

‹

‹

‚

0 1 0 0 1
0 0 0 0 2
0 0 0 0 3
0 0 0 0 4

e “

1 2 3 4
¨

˚

˚

˚

˝

˛

‹

‹

‹

‚

0 1 0 0 1
1 0 0 0 2
0 0 0 0 3
0 0 0 0 4

The relation a is an atom contained R. This atom leads to the edge e between 1 and 2 as

defined above.



Chapter 4

Approximation Algorithms

The world is now dealing with massive amount of data, and it is ubiquitous in today’s
society to make a choice by shifting data. We use computer to make a decision rapidly..
Routing a vehicle, organizing data for efficient retrieval are some examples of the real word
problems where we use programming for making a decision. Discrete optimization is the
field of computer science where we discuss how to achieve the best solution regarding mak-
ing a decision. Unfortunately, most of the optimization problem are NP-hard. That means
there is no efficient algorithm to find the best solution. We might be able to compute a
solution in polynomial time, but the solution may or may not be an optimal one.

We always have to consider two criteria when we develop a software solution to a problem;
complexity and correctness. We cannot always have an algorithm which gives an optimal
solution and also runs in polynomial time. When we are dealing with an NP-hard optimiza-
tion problem, we need to relax one of that requirement.

Approximation algorithms are algorithms that compute an approximate solution of the op-
timization problem at hand. As mentioned before, this kind of algorithm may not compute
an optimal solution, but we can determine how close the solution is to an optimal solution.
The ratio between the result obtained from the algorithm and an optimal solution is called
approximation factor. The approximation factor indicates how close the solution is to an
optimal solution.

The correctness of a program is always a concern. There are several ways of testing soft-
ware such as security testing, unit testing, etc. Verification, i.e., a formal proof, ensures that
the program satisfies all conditions that are supposed to be satisfied. We say an approxi-
mation algorithm is logically correct if it computes a solution to the problem and satisfies

28
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a given approximation factor.

In this chapter, we discuss several optimization problems. These problems are the vertex
cover, hitting set, maximum independent set, and the maximum cut problem.

4.1 Vertex Cover

Finding a minimum vertex cover is a typical optimization problem in computer science. It is
an NP-hard optimization problem. However, there is a sufficient approximation algorithm.
A vertex cover is a set of vertices or nodes so that every edge pu, vq of the graph satisfy
that u or v is in vertex cover. The standard input for this problem will be a graph itself and
output will be a vertex cover.

4.1.1 Pseudo Code of Approximation Algorithm for the Vertex Cover
Problem

The procedure for solving a vertex cover problem is given below:

(1) In the beginning the result is empty and E is the set of edges of the graph.
(2) Do the following until E is empty

(3a) First take out an arbitrary edge pu, vq from set E.
(3b) Add u and v to the result.
(3c) Remove all edges from E which start or end with u or v.

(3) Return result.
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4.1.2 Example

Let us consider a graph with the set of vertices V “ t1, 2, 3, 4, 5, 6, 7, 8u and the list of
edges E “ tpp1, 2q, p1, 4q, p2, 3q, p2, 5q, p3, 6q, p5, 6q, p3, 7q, p3, 8qu. Figure 4.1 shows a rep-
resentation of the initial graph.

Figure 4.1: Initial Graph

Now if we select an edge (2,3) then we need to remove all edges that start with or end
with vertices 2 and 3. So the edges (1,2), (2,5), (2,3), (3,6), (3,7), (3,8) will be removed
automatically and the graph will look like Figure 4.2 where the current result is highlighted
in red.

Figure 4.2: Graph after selecting edge (2,3)

Now we need to select the (1,4) and then (5,6) since all other edges have been removed and
neither 1,4,5 nor 6 are covered yet. So the output of the vertex cover will be t1, 2, 3, 4, 5, 6u.

If we select edge (1,2) instead of edge (2,3) in the initial step of the algorithm, then we can
remove the edges (1,2), (1,4), (2,3), and (2,5). Figure 4.3 shows that graph.
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Figure 4.3: Graph after selecting edge (1,2)

Now if we select an edge (3,6) then we can remove all other edges in that graph. So in that
case, the output of the vertex cover will be t1, 2, 3, 6u, which is an optimal solution. Figure
4.4 shows this optimal vertex cover of the graph.

Figure 4.4: Graph after selecting edge (3,6)

4.1.3 Algorithm for the Minimum Vertex Cover Problem

We assume that graph is undirected for this problem. The graph has a non-empty and finite
set X of vertices and set of edges called E. Each element in the set E is a pair of two dif-
ferent elements from X. We can represent the graph G “ pX, Eq by its adjacency relation
R : X Ñ X where xRy means that there is an edge from x to y. Since G is undirected, R is
symmetric.

We present the algorithm in two versions. The first version is an imperative version used
in [1]. The second version is a functional, and, hence, recursive version. We present the
second version in an ML-like syntax. Please note that the actual version in Coq will include
additional parameters ensuring termination of the algorithm (see Chapter 7).

For our program, we will take R as an input where we use following formula as a pre-
condition, PrepRq of the program which means R is symmetric.

R “ R˘
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The output of a vertex cover of G is a set of vertices c, i.e., a vector c : X Ñ 1. Here c is a
vertex cover of G if and only if R Ď c;

|ù

\ pc;

|ù

q˘where

|ù : 1 Ñ X. The formula can be
read as follows. Every edge of R is included in all potential edges starting in c or ending
in c. The cardinality of vertex cover c obtained by the approximation algorithm of Garvil
and Yannakakis described above is always less then or equal to twice the cardinality of a
minimum vertex cover. Therefore, the conjunction of the following two formulas are the
post-condition PostpR, cq of the program.

(1) R Ď c;

|ù

\ pc;

|ù

q˘ p2q@d : X Ñ 1|R Ď d;

|ù

\ pd;

|ù

q˘ñ |c| ď 2 ¨ |d|

The approximation algorithm of Garvil and Yannakakis is given below:

c, S :“KKX1,R

while S ,KK do

e :“ edgepsq

c, S :“ c\ e;

|ù

, S [ e;
|ù

[

|ù ; e

According to algorithm, c is of type X Ñ 1 which is initialized with the empty relation.
The relation S is initialized by R and its type can be obtained from R. After that, we extract
the first edge and store it in e. Some basic function like union, intersection, complement
are used to update the value of c and S . This procedure is repeated until S is empty.

The following lemmas holds the invariant properties(Inv) for the algorithm that described
above.

Lemma 4.1.1. PrepRq implies InvpR,KKx1,Rq.

Lemma 4.1.2. Let R, S : X Ñ X such that InvpR, c, S q is satisfied and S ,KK then we have

InvpR, c\ e;

|ù

, S [ e;

|ù

[

|ù ; eq, for all edges e : X Ñ X with e Ď S .

Lemma 4.1.3. If R, S : X Ñ X and C : X Ñ 1 satisfy InvpR, c, S q and S “KK then

PostpR, cq holds.

The following lemma are stated in [1] indicate the loop termination.

Lemma 4.1.4. Let S : X Ñ X with S ,KK , then S [ e;

|ù

[

|ù ; e @ S , for all edges

e : X Ñ X with e Ď S .
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In our work, we use a recursive version of the algorithm because Coq does not support
looping. Below we present a functional version of that algorithm.

vertexCoverpRq “

i f R “ KK then KK

else let e :“ edgepsq in pe;

|ù

q \ vertexCoverpS [ e;

|ù

[

|ù ; eqq

The following lemma shows that our algorithm is correct.

Lemma 4.1.5. If R : X Ñ X satisfies PrepRq, then c “ vertexCover R p satisfies PostpR, cq.

For a proof of the previous lemma we refer to the corresponding proof in Coq.

4.2 Adaption to Hitting Sets

In this section we apply the approximation algorithm of the previous section for the hyper-
graphs. In a hypergraph an edge can join any number of vertices. This kind of edges are
called hyperedges.

Figure 4.5: Hyper Graph

In Figure 4.5 colors are edges and the nodes within a colored region are incident to that
edge. We also notice that node v3 is a node of the edges e1, e2, e3 and node v7 is not a node
of any edges.

Let assume a hypergraphs G “ pX, Eq Here X is the non-empty set of vertices and E is the
set of hyperedges. According to [16], an incidence relation I : X Ñ E is used to represent
G. Here xIe if and only if x P X, and e P E , and the edge e is incident to the node x.

The cardinality of a maximal hyperedges of G is called the rank of G, which is can be
computed relation-algebraically by maxt|I; p| | p : E Ñ 1 pointu. We take the incident
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relations I as a input for the relational program [1] and return a vector c : E Ñ 1 as output,
which is a vertex cover in the hypergraph. In the context of hypergraphs a vertex cover is
called a hitting set. The cardinality of output c of the program will be less then or equal
to k-times the cardinality of any hitting set of G where k is the the rank of G. We use the
conjunction of following two formulae as the pre-condition PrepI, kq.

(1) I Ď I ;̆ I p2qk “ maxt|I; p| | p : E Ñ 1 pointu.

The first formula requires that I is surjective, which means all hyperedges are a non-empty
set of vertices. The second formula states that k is the rank of G.

A short calculation using the incidence relation shows that c : E Ñ 1 is a hitting set of G if
and only if

|ù

“ I ;̆ c. The following formula, denoted by Postpi, k, cq, is the post-condition
of the program. It is the conjunction of c being a hitting set and our desired approximation
bound.

(1)

|ù

“ I ;̆ c p2q@d : X Ñ 1,

|ù

“ I ;̆ d ñ |c| ď k ¨ |d|.

The program which is the adaptation of the vertex cover, to hitting sets and incidence rela-
tion is given below.

c, s :“KKE1,

|ù

while s ,KKE1 do

p :“ pointpsq

c, s :“ c\ I; p, s[ I ;̆ I; p

The typing s, p : E Ñ 1 can be derived from the type of incidence relation I, initialization
of c and the typing rules of the relational operations. Also, we get the type of

|ù

,KK : E Ñ 1
by the same procedure. In the program, p “ pointpsq is used instead of e “ edgepsq to
select a new hyperedge. As a result a new relational-algebraic specification s [ I ;̆ I; p is
used to remove all the hyperedges incident to selected one from the set of hyperedges.

Conjunction of following formulas is the loop invariant InvpI, k, c, sq of the program above,
which is used to prove the correctness of program with respect the to pre-condition PrepI, kq

and the post-condition PostpI, k, cq.
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p1qPrepI, kq, p2q s̄ Ď I ;̆ c p3q@d : X Ñ 1, I ;̆ I; s Ď I ;̆ d ñ |c| ď k ¨ |d|.

In [1], the following lemma is shown indicating the termination of the loop.

Lemma 4.2.1. Let s : E Ñ 1 with S ,KK, then s[ I ;̆ I; p @ s, for all edges p : E Ñ 1 with

p Ď s.

Similar to the corresponding lemmas for the vertex cover problem, the following three
lemmas show that the algorithm is correct with respect to PrepI, kq and PostpI, k, cq.

Lemma 4.2.2. For a relation I : X Ñ E and k P N, PrepI, kq implies InvpI, k,KKX1,

|ù

X1q.

Lemma 4.2.3. For a relation I : X Ñ E, s, c : E Ñ 1, and k P N, s ,KKE1 and InvpI, k, c, sq,

implies InvpI, k, c\ I; p, s[ I ;̆ I; pq for all points p with p Ď s.

Lemma 4.2.4. InvpI, k, cq and s “KK implies PostpI, k, cq.

The following recursive algorithm is the version that we will implement to solve the hitting
set problem. The implementation uses a recursive function hittingSets’ with the additional
parameters c and s. The function hittingSets calls hittingSets’ with the initial values KK and

|ù for c and s, respectively.

hittingSets’(I,c,s) =

i f s “KK then c

else let p :“ pointpsq in hittingSets’ I pc\ I; pq ps[ I ;̆ I; pq

hittingSets(I) = hittingSets’ I KK

|ù .

Here I is the incidence relation which represent a hypergraphs G “ pX, Eq. The following
two lemmas indicate that our recursive algorithm is correct with respect to the pre-condition
PrepI, kq and the post-condition PostpI, k, cq.

Lemma 4.2.5. For a relation I : X Ñ E, k P N InvpI, k, cq implies InvpI, k, c1q where c1 =

hittingSets’ I c s.

Lemma 4.2.6. For a relation I : X Ñ E and k P N we have that PrepI, kq implies

PostpI, k, cq where c = hittingSets I.
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4.3 Maximum Independent Sets

In graph theory, an independent set is a set of vertices where any two vertices are not con-
nected by an edge, i.e., they are not adjacent. Equivalently there is only one end point in
that set for each edge in the graph. Independent sets also called stable sets.

An independent set with a maximum number of vertices in a graph is called maximum
independent set. Searching for such a set is called maximum independent set problem.
Similar to the previous problems this is an NP-hard optimization problem.

(a) Independent Set (b) Maximum Independent Set

Figure 4.6: Example of Independent Sets

4.3.1 Relational Approximation of Maximum Independent Sets

Let assume a non-empty set of vertices X, for an undirected graph G “ pX, Eq. We rep-
resent the graph by an irreflexive and symmetric adjacency relation R : X Ñ X similar to
the vertex cover problem. Therefore, both vertex cover and the maximum independent set
problem have almost same preconditions. The approximation bound will be determined
by maximum degree k of graph G. So we use a conjunction of these three formulae as
pre-condition PrepR, kq for the program that we use as the solution of the maximum inde-
pendent set problem.

p1qR Ď I p2qR “ R˘ p3qk “ maxt|R; p| | p : X Ñ 1 pointu.

A vector s : X Ñ 1 is an independent set if all node adjacent to nodes in s are outside
of s, i.e., if R; s Ď s. The cardinality of maximum independent set that we calculate from
the program must be less then or equal to 1

k`1 times the cardinality of any independent sets.
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So the approximation bound for the program that we use 1
k`1 . The conjunction of following

two formulae will be the post-condition PostpR, ksq.

p1qR; s Ď s̄ p2q@t : X Ñ 1,R; t Ď t̄ ñ |t| ď pk ` 1q ¨ |s|.

We will justify the following program with respect to pre-condition PrepR, kq and post-
condition PostpR, k, sq. This program is based on Wei’s approximation algorithm described
in [18].

s, v :“KK,KKX1

while v ,

|ù do

p :“ pointpv̄q

s, v :“ s\ p, v\ p\ R; p

From the program we can deduce that the type for the variables s, v, p is X Ñ 1. Therefore,
the type of

|ù should be X Ñ 1 as well. The vector v contains the independent set s com-
puted so far plus all node that are adjacent to s. Therefore, any new node that we would
like to add to s must be outside v.

The conjunction of following formulas will be used as the loop invariant InvpR, k, s, vq

when proving the correctness of program with respect to pre-condition PrepR, kq and the
post-condition PostpR, k, sq.

PrepR, kq, p4qR; s Ď s̄ p5qR; s[ s “ v

p6q@t : X Ñ 1,R; t Ď t̄ ñ |t| ď |s| ¨ pk ` 1q.

Following lemma showed in [1], indicate the termination of the loop.

Lemma 4.3.1. Given v : X Ñ 1 with v ,

|ù and for all points p : X Ñ 1 with p Ď v̄, we

have v @ v\ p\ R; p.

The next three lemmas verify that the program is correct with respect to the pre- and post-
condition. In particular, Lemma 4.3.1 shows that the precondition establishes the loop in-
variant, Lemma 4.3.2 shows that the invariant is indeed invariant, and Lemma 4.3.3 shows
that the invariant and the complement of the loop condition establishes the post-condition.

Lemma 4.3.2. PrepR, kq implies InvpR, k,KKX1,KKX1q.
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Lemma 4.3.3. v ,

|ù

X1 and InvpR, k, s, vq implies InvpR, k, s\ p, v\ p\R; pq for all points

p with p Ď v̄.

Lemma 4.3.4. v “

|ù

X1 and InvpR, k,KKX1,KKX1q implies PostpR, k, sq.

Similar to hitting set we use the same procedure to declare the recursive algorithm for the
maximum independent set problem. After that show the lemma that will prove the correct-
ness of our stated algorithm.

maxIS 1pR, s, vq “

i f v “

|ù then s

else let p :“ pointpsq in maxIS 1 R ps\ pq pv\ p\ R; pq

maxIS pRq “ maxIS 1pRq KK KK.

Lemma 4.3.5. For a relation R : X Ñ X and k P N InvpR, k, s, vq implies InvpR, k, s1, vq

where s1 “ maxIS 1 R s v.

Lemma 4.3.6. For a relation R : X Ñ X and k P N we have that PrepR, kq implies

PostpR, k, sq where s “ maxIS R.

Similar to the previous two algorithms we refer to the Coq implementation for a proof of
these lemmas.

4.4 Maximum Cut

A cut c in a graph is subset of vertices. The weight of a cut is defined as the number of
edges between c and its complement. A maximum cut is a cut with maximal weight, and,
hence, the maximum cut problem is the problem of finding a maximum cut. The size of a
maximum cut is at least the size of any other cut. As in the previous problems the maximum
cut problem is an NP-hard, i.e., there is no polynomial algorithm for computing an optimal
solution. The Figure 4.7 shows an example of a maximum cut.

4.4.1 Relational Approximation of Maximum Cuts

Let us assume an undirected loop-free graph G “ pX, Eq. X is the set of non-empty vertices
and E is the set of edges between those vertices. As before the graph is given relation-
algebraically by symmetric and irreflexive adjacency relation R : X Ñ X. The conjunction



CHAPTER 4. APPROXIMATION ALGORITHMS 39

Figure 4.7: A Maximum cut : The vertices {1,5,3}

of following two formulas is the pre-condition PrepRq of the algorithm.

R Ď I R “ R˘

We get two disjoint subsets if we apply cut on graph G. With respect to relation R we get a
vector s : X Ñ 1 and its complement. In [1], they provide an approximation algorithm for
the maximum cut. The relation R[ pc; c̄˘\ c̄; c˘q restrict the graph to those edges that start
in c and end in the complement of c or vice versa. Therefore, its cardinality is the weight
of the cut c. The approximation bound of the algorithm is 1

2 . This leads to the following
post-condition PostpR, sq where a cut is computed in s:

@c : X Ñ 1, |R[ pc; c̄˘\ c̄; c˘q| ď 2 ¨ |R[ ps; s̄˘\ s̄; s˘q|.

With other words, the post-condition says the weight of the computed cut s is less than
or equal to twice the weight of any cut. The following relational program is correct with
respect to the pre-condition PrepRq and post-condition PostpR, sq.

v, s, t :“

|ù

X1,KK,KK

while v ,KK do

p :“ pointpvq

i f |R; p[ s| ă |R; p[ t|

then v, s :“ v[ p̄, s\ p

else v, t :“ v[ p̄, t \ p

The type of v, s, t and p is X Ñ 1 due to the initialisation of v. The program computes
a cut s and its complement with respect to the nodes already visited in t. In each iteration
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the number of edges between the current node p and the two set s and t are compared. p

is added to the set with fewer edges to p. This approach was mentioned in [12], which is
specialization of the approximation algorithm for maximum cut problem published in [14].

The conjunction of following three formulas are considered as loop invariant InvpR, v, s, tq

for the program.

p1q s[ t “KK p2q s\ t “ v̄ p3q|R[ps; s˘\ t; t q̆| ď |R[ps; t˘\ t; s q̆|.

The first two formulas state that s and t are a partition of v, i.e., t is the complement of s
with respect to the nodes already visited. Formula (3) says that the number of edges be-
tween the set s and t is greater than the number of edges connecting vertices of the set s or t.

The following lemma, stated in [1], shows the termination of the loop.

Lemma 4.4.1. Given v : X Ñ 1 with v ,KK, then for all p : X Ñ 1 with p Ď v, v[ p̄ @ v.

Again, the following lemmas [1] verify that the program is correct with respect to PrepRq

and InvpR, v, s, tq.

Lemma 4.4.2. If R : X Ñ X satisfies PrepRq, then InvpR, Lx1,KK,KKq holds.

Lemma 4.4.3. For all points p : X Ñ 1 with p Ď v, the following two properties hold if

PrepRq and InvpR, v, s, tq are satisfied:

(1) If |R; p[ s| ă |R; p[ t|, then we have InvpR, v[ p̄, s[ p, tq.

(2) If |R; p[ t| ď |R; p[ s|, then we have InvpR, v[ p̄, s, t [ pq.

Lemma 4.4.4. If R : X Ñ X and v, s, t : X Ñ 1 such that v “KK and InvpR, v, s, tq are

satisfied then PostpR, sq holds.

Finally, we give the recursive version of the algorithm for the maximum cut problem. Sim-
ilar to the previous two sections, this algorithm is implemented using two functions. We
also prove that our defined algorithm is correct.

maxCut1pR, v, s, tq “

i f v “KK then s

else let p :“ pointpsq in

i f |R; p[ s| ă |R; p[ t| then maxCut1 pv[ p̄q ps\ pq t

else maxCut1 pv[ p̄q s pt \ pq
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maxCutpRq “ maxCut1 R

|ù

KK KK.

Lemma 4.4.5. For a relation R : X Ñ X InvpR, v, s, tq implies InvpR, v, s1, tq where s1 “

maxCut1 R v s t.

Lemma 4.4.6. For a relation R : X Ñ X we have that PrepRq implies PostpR, sq where

s “ maxCut R.



Chapter 5

The Coq Proof Assistant

Coq[20] is simultaneously a functional programming language and an interactive proof
system. It uses a mathematically high level language called Gallina which is based on the
calculus of inductive construction – an expressive formal language. It supports higher-
order logic and strongly-typed functional programming. Coq allows to specify theories,
their implementation and to prove their correctness. It allows translating certified programs
to languages such as Haskel, Objective Caml or Scheme. Coq provides interactive proof
methods, decision and semi-decision algorithms and a tactic language as a proof devel-
opment system. It also provides high-level notations, implicit contents and various other
useful tools for the formalization of mathematics or the development of programs.

In this section, we describe some basic feature of Coq that we use frequently. We also
give some examples during the discussion. There are lots of other features which are not
used and henceforth we did not discuss those features. Details of Coq are available in [20].

5.1 Set, Prop and Type

There are three kinds of types in Coq, and collectively these types are called sorts. These
three kinds are S et, Prop and Type. Prop is the universe of logical propositions. Every
theorem is a logical proposition. S et is the universe of specifications and programs. Type

is the combined type of S et and Prop. Type contain small sets like Boolean, natural num-
bers, product types and function types over small sets.

The Coq command Check is used to obtain the type of a term during an interactive ses-
sion. Every term has exactly one type.

42
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Check true.

true : bool

Check True.

True : Prop

Check 5.

5 : nat

Check mult.

mult : natÑ natÑ nat

We need use a period at the end of the statement to terminate that statement.

Check forall a b, a * b = b * a.

forall a b : nat, a * b = b * a : Prop

As we mention before, every theorem or property P is of type Prop, i.e., P : Prop. A
proof of p of the property P has type P, i.e., p : P. The type of a and b in the example
above is determined by the type of functions applied to a and b so that we do not have to
provide their type in the quantification. However, it is good practice to specify the type of
all variables, i.e. instead of f orall ab we should write f orall pab : natq.

5.2 Proofs and Tactics

Coq provides a formal language to write proofs, almost similar to a programming language.
For humans it can be tough to read formal proofs, but for a computer system this is usually
not a problem. Human errors can be eliminated by verifying the correctness of a formal
proof. This is the major advantage of this approach.

Proofs are done by using tactics and already established facts. In our work, we use induc-
tion and substitution rules more frequently. Using the tactic induction does not mean that
we are proving the goal actually by induction all the time. Sometimes, especially if the
data type involved is not recursive, we use this tactic to distinguish all cases induced by the
constructors of the data type. In some cases, it is obvious to prove the goal by induction,
especially when lists are involved with the goal.

Often substitution, i.e., replacing a term by another term, is required to move forward
towards the goal. Examples include replacing a term using associativity, commutativity,
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distributivity and other rules. Let us consider the following proof where we apply some
simple tactics to prove the goal.

Lemma Hello Proof : forall (A B : Prop), AÑ (AÑ B)Ñ B.

1 subgoals

—————————————————–(1/1)
forall A B : Prop, AÑ (AÑ B)Ñ B

In the first line, we declare the lemma. After the announcement of the lemma, Coq gener-
ates the goal, shown in second and third line. Now we begin assuming an arbitrary A using
intro the rule.

intro A.

1 subgoals

A : Prop

——————————————————(1/1)
forall B : Prop, AÑ (AÑ B)Ñ B

The output above shows the assumption A : Prop above the line and the new goal below
the line. Now we use the same rule for assuming an arbitrary B.

intro B.

1 subgoals

A : Prop

B : Prop

——————————————————(1/1)
AÑ (AÑ B)Ñ B

Again we use the same rule for assuming the left-hand side A of the implication, i.e., we
assume that A is true. Note that this actually means that we assume that we have a proof of
A due to the type-theoretic interpretation of properties in Coq. In applying the tactic intro

we also provide a name for that proof explicitly.
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intro proof of A.

1 subgoals

A : Prop

B : Prop

proof of A : A

——————————————————(1/1)
(AÑ B)Ñ B

Again we use the same rule for A Ñ B.

intro A implies B.

1 subgoals

A : Prop

B : Prop

proof of A : A

intros A implies B : AÑ B

——————————————————(1/1)
B

Now we are done with introducing all the variables and hypotheses. The current goal is
just the property B. To prove that goal we can apply the hypothesis A implies B .

apply A implies B.

1 subgoals

A : Prop

B : Prop

proof of A : A

intros A implies B : AÑ B

——————————————————(1/1)
A

Now the goal is A but this is already a hypothesis within our proof named proo f o f A. We
could apply that hypothesis or simply use the tactic trivial, which checks whether the goal
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is among the hypotheses.

trivial.

No more subgoals.

Finally we have no more goals, which means that our lemma has been shown. We use the
tactic Qed to finish the proof.

Qed.

Hello Proof is defined

As lemma Hello Proo f is defined, we can use that lemma in a different proof similar to a
function call. Now we give another example where we prove the commutativity law of `
for natural number.

Lemma Plus Comm : forall x y , x + y = y + x.

1 subgoals

—————————————————–(1/1)
forall x y : nat, x + y = y + x

This time we use the tactic intros which will apply intro as often as possible. In our exam-
ple it will assume two arbitrary elements x, y of type nat.

intros.

1 subgoals

x : nat

y : nat

—————————————————–(1/1)
x + y = y + x

Now we proceed by applying induction on x.



CHAPTER 5. THE COQ PROOF ASSISTANT 47

induction x.

2 subgoals

y : nat

—————————————————–1/2)
0 + y = y + 0

—————————————————–(2/2)
S x + y = y + S x

If we apply induction to x, then we get two goals. One is for the base case x “ 0, and
another is for the recursive case where x is the successor of a natural number. Here S

denotes the successor function. Proving the first goal is easy. If we apply the tactic auto,
then system tries to solve the current goal by using a combination of applying hypotheses,
introduction and reduction rules.

auto.

1 subgoals

y : nat

IHx : x + y = y + x

—————————————————–(1/1)
S x + y = y + S x

We are left with the induction step. The system has automatically added the induction
hypothesis IHx while executing the tactic induction. Now we use the tactic simpl which
simplifies an expression by using the definition of the elements and functions in the term.

simpl.

1 subgoals

y : nat

IHx : x + y = y + x

—————————————————–(1/1)
S (x + y) = y + S x

To make progress towards the goal, we now want to use the hypothesis IHx. We use the
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rewrite tactic for that purpose. The tactic rewrite can be used if the property is an equation.
The tactic will replace any occurrence of the term on the left-hand side of the property by
the right-hand side in the goal. After rewriting IHx we would like to use the tactic auto to
finish the current goal. We can combine these to steps into one step by using ;.

rewrite IHx;auto.

No more subgoals.

Finally, we use Qed again to finish the proof.

Qed.

Plus Comm is defined

Declaration and summary of that lemma are given, followed by confirmation that lemma
has been successfully defined.

Lemma Plus Comm : forall a b, a + b = b + a.

intros.

induction a.

auto.

simpl.

rewrite IHa;auto.

Qed.

Plus Comm is defined

Beside these tactics, there are lots of other tactics (see [20]). Every tactic is used for
different purpose.

5.3 Classes

Overloading is one of the important concepts of object-oriented programming. This fea-
ture allows using the same name for different implementations of an element. In Coq, the
concept of overloading can be implemented using type classes.
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A type class is a collection of elements declarations. Every instance of the class has to
provide an implementation of each declaration. The concept of classes is used widely in
several functional programming languages like Haskell and Isabelle. Next, we will show
how to declare a class in Coq.

Class Name pA1 : T1qpA2 : T2q......pAN : TNq := {

F1 : Q1,

F2 : Q2,

.

.

.

FN : QN

}.

After declaring a class followed by a name, we need to provide a type for each component
of the class. Note that a class can be parametric, i.e., the class depends on the parameters
A1, . . . , AN . Now we can declare an instance of that class in the following way:

Instance Name t1 t2......tN := {

F1 :“ B1,

F2 :“ B2,

.

.

.

FN :“ BN

}.

A simple example is given below in which the class requires a Boolean valued comparison
operation on the type Ob. The type Ob is a parameter of the class. First, we declare a class
and then provide instance for the data type bool of Boolean values.

Class EqualDec (Ob : Type) := {

eqD : ObÑ ObÑ bool

}.
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Instance EqualDecBool : EqualDec bool := {

eqD := fun x yñ if (bool dec x y) then true else false

}.

Function bool dec takes two Booleans b1 and b2 as a parameter and returns tb1 “ b2u `
tb1 ăą b2u.

5.4 Functions

The function is the standard feature for almost all programming languages. It is the funda-
mental principal for a functional programming language. Coq allows defining a function
similar to other programming languages. In Coq, functions are normally declared in cur-
ried form, i.e., a function f taking two parameters of type A and B returning a value of type
C will normally have the type f : A Ñ B Ñ C. Here we give an example below:

Definition inner {a : Type} : (a Ñ bool) Ñ nat Ñ a Ñ nat := fun p n x ñ if p x then n+1

else n-1.

If we consider the function above, then we can see that the declaration of any entity starts
with keyword De f inition. After that, we need to provide a name for the entity, which is
then followed by a type. In our case, the name is inner. Providing the type is optional. Note
that the type of inner should be inner : f orall pa : Typeq : pa Ñ boolq Ñ nat Ñ a Ñ nat.
In this example, we have decided to make the parameter a implicit. This means that we
do not have to provide the parameter explicitly when calling inner. The system will try to
infer what a is. Besides A the function inner takes three parameters. The first parameter
is a predicate on a, i.e., a function that returns a Boolean for every element of type a. The
next parameter is a natural number, and the third parameter is of type a. The keyword f un

followed by three variables name p, n, x is a lambda abstraction defining a function with
parameter names p, n, x of the corresponding type. Alternatively, we could have defined
inner as follows avoiding the lambda abstraction syntactically.

Definition inner {a : Type} (p : aÑ bool) (n : nat) (x : a) : nat := if p x then n+1 else n-1.

Both declarations are equivalent.
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5.4.1 Fixpoint

To define a recursive function in Coq we have to use the keyword Fixpoint. Coq enforces
termination, so that the value of the argument in the recursive call should be decreasing.
If we define a function using the keyword Fixpoint this means that the parameter must be
smaller in terms of the declaration of the data type of the parameter. For example, if we
define a function recursively on nat, the recursive case has to be defined for a successor
number S x and the recursive call has to be on x. Let us consider the following example
which also indicates inductive pattern matching.

Fixpoint fibonacci (n:nat) : nat :=

match n with

| Oñ 1

| (S n1)ñ

match n1 with

| Oñ 1

| (S n2)ñ (fibonacci n2) + (fibonacci n1)

end

end.

A Fibonacci number is a number which is the summation of previous two Fibonacci num-
ber. So we need to do pattern matching twice. One on the original parameter of the function
and a second on the predecessor of that parameter in the case that it was not zero. For each
matching we consider two cases for the natural number - either 0 or successor of some
number. In both base cases we return 1 and in the inductive case, we recursively call func-
tion f ibonacci twice on the smaller elements n1 and n2. Induction and recursion are used
a lot through our work, particularly when lists are involved.

5.5 Infix Operators

It is more user-friendly to use operator symbols instead of function names or properties. In
Coq, infix operators can be declared as follows,

Infix ”+” := plus (at level 50, left associativity).
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Here ` is the left-associative operator for function plus where precedence level is 50. In
Coq, ”right associativity” is used after the level declaration if we want right associativity
for an operator, i.e., if we want that parsing a sequence of several additions is treated as if
brackets are inserted to the right. A lower level indicates a higher precedence of the opera-
tor.

In order to declare a postfix operator the keyword Notation is used.

Notation ”n !” := (factorial n) (at level 50).

Here n is the variable with an appropriate type which is use as a parameter for the function
that is mentioned on the right-hand side of the notation declaration.

5.6 Prop vs. bool

According to [20], Prop is the universe of a logical Proposition. Properties or reasoning
about program constructions is usually done within Prop. With other words, the type Prop

is the type of all logical propositions. Therefore Prop has infinitely many elements. Each
element of Prop is said to be true iff it is provable.

Some properties about Prop are not provable without taking any additional assumption.

Lemma isPropEqual : forall (x y : Prop), x = y z{ x ăą y.

This lemma states that, x is either equal to y or not for all proposition x and y.

We cannot apply a case analysis on Prop since Prop is not defined inductively. In addition
some propositions cannot be proved either true or false. The reason is that Coq implements
constructive logic in which law of excluded middle does not hold, i.e., x z{ x cannot be
shown for all propositions x.

The type bool consists of exactly two elements, the values true and f alse. Therefore, case
analysis on bool is possible.
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Lemma isPropBoolean : forall (x y : bool), x = y z{ x ăą y.

In our implementation, we handle similar types of problems. So the relationship between
bool and Prop needs to be understood.

5.7 Well-Founded Recursion

In most traditional languages we can call a recursive function without knowing whether the
function will terminate or not. One of the significant properties of Coq is termination of
every program. This is necessary because of the type-theoretic interpretation. Recall that
an element P of type Prop is considered true if there is a proof of P. A proof of P is an ele-
ment of P, i.e., a program of type P. If we allow non-terminating programs, then for every
type there is a program with that type, namely the infinite loop. This would imply that all
propositions are true. To check completion of all recursive definitions, Coq provides a set
of conservative, syntactic criteria which is not sufficient to support natural encodings of a
variety of important programming idioms.

In essence, a recursive program will be terminate if there is no infinite chain of nested re-
cursive calls. Coq uses the idea of a well-founded relation to implementing more complex
recursions. This technique in Coq is called well-founded recursion. In many cases, we need
to provide such a well-founded relation in order to guarantee termination. Please not that
the Fixpoint construction uses the syntactic subterm relation which is always well-founded.

To define a well-founded relation we need to know about following terms.

Print well founded.

well founded = fun (A : Type) (R : AÑ AÑ Prop)ñ forall a : A, Acc R a

According to the implementation above, we need to show that every element a is accessible
in R (AccRa) in order to verify that R is well-founded. The implementation of Acc is as
follows.

Print Acc.
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Inductive Acc (A : Type) (R : A Ñ A Ñ Prop) (x : A) : Prop := Acc intro : (forall y : A, R

y xÑ Acc R y)Ñ Acc R x

According to the declaration of Acc, an element x is accessible for a relation R if every
element less than x according to relation R is also accessible. Since Acc is defined induc-
tively this implies that only finite chains are considered. As a consequence only relations
for which every chain downwards is finite can be well-founded.

Given a well-founded relation R we can use this relation to define a recursive function. The
function Fix of the standard libraries of Coq is used to define such a recursive function.

Check Fix.

Fix

: forall (A : Type) (R : AÑ AÑ Prop),

well founded R

forall P : AÑ Type,

(forall x : A, (forall y : A, R y xÑ P y)Ñ P x)Ñ

forall x : A, P x

If we want to call Fix we have to provide a relation R and a proof that R is well-founded.
The second parameter is only important if we define a dependently typed function recur-
sively. Since we are not using this feature, we will not go into details. The following line
is an encoding of the body of the function. The input x stands for function argument and
the second one is the recursive call with any element smaller than x. Using these two pa-
rameters we have to compute the result for x. Note that using a recursive call require to
provide and element of type Ryx, i.e., a proof that y is less than x with respect to R. Last
but not least, f orall x : A, P x is the type of the recursive function defined by applying Fix

to the appropriate parameters. Note that this is a dependently typed function. If P does not
depend on x, then f orall x : A, P x is simply A Ñ P.

There is another library theorem called Fix eq which will be used in our implementation.
This theorem is used in order to show that a recursively defined function is equal to the
function obtained by unfolding the recursion once. This seems to be an obvious fact but
needs additional work within Coq since does not support functional extensionality by de-
fault. For details we refer to [22,23].
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Check Fix eq

Fix eq

: forall (A : Type) (R : AÑ AÑ Prop) (Rwf : well founded R)

(P : AÑ Type)

(F : forall x : A, (forall y : A, R y xÑ P y)Ñ P x),

(forall (x : A) (f g : forall y : A, R y xÑ P y),

(forall (y : A) (p : R y x), f y p = g y p)Ñ F x f = F x g)Ñ

forall x : A,

Fix Rwf P F x = F x (fun (y : A) ( : R y x)ñ Fix Rwf P F y)

We also need proper induction principle for recursively defined function using a well-
founded relation. Coq provides this kind of principle. This important library theorem
called well f ounded induction which is use to prove the correctness of the recursive pro-
gram.

Check well founded induction.

well founded induction

: forall (A : Type) (R : AÑ AÑ Prop),

well founded RÑ

forall P : AÑ Set,

(forall x : A, (forall y : A, R y xÑ P y)Ñ P x)Ñ

forall a : A, P a

More details about well-founded recursion are available in [22].



Chapter 6

Relational Framework

In this chapter, we discuss the implementation of our framework in Coq. We cover both
declaration of abstract theory and their implementation as a binary relation. We have sep-
arated the proofs of required properties accordingly since we are using a different kind of
allegories. To define allegories we first need to define categories, Boolean algebras and
other kinds of lattices. In the next chapter, we will use this framework to define the algo-
rithms from the previous chapter and to prove their correctness. We will not go through the
details of proving the various theorems in this document. Our complete source code will
be found in the online/digital appendix.

6.1 Implementation of Lattices

There two ways of defining lattices. One is according to order theory, and another is an
algebraic way. We implement both definitions for our framework.

6.1.1 Order-theoretic Definition of Lattices

Before defining an ordered type in Coq, we need to provide the signature for an order, i.e.,
a type that has an order relation. We define the signature as follows:

Class OrderSig {A : Type} := {

leq : AÑ AÑ Prop

}.

Class OrderS ig take a parameter A which is a type. The function leq represent the actual
signature for pĎq. We use following infix operator to represent leq.

56
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Infix ” Ď” := (leq) (at level 70).

We also define a notation for the reversed order.

Notation ”x Ě y” := (y Ď x) (at level 70, only parsing).

Furthermore, any partial order leads to a corresponding strict order, i.e., to the relationship
smaller but not equal.

Definition lt ‘{S : OrderSig} := fun x yñ (x pĎq y) ^ (x ăą y).

Again, we introduce proper notation for lt and its reversed relation.

Infix ”@” := (lt) (at level 70).

Notation ”x A y” := (y @ x) (at level 70, only parsing).

The following class implements Definition 2.1.1. Note that the definition below uses the
predefined properties Re f lexive and Transitive of Coq.

Class Order ‘(S : OrderSig) := {

leq refl :ą Reflexive leq;

leq trans :ą Transitive leq;

leq anti : forall(x y : A), x Ď yÑ y Ď xÑ x = y

}.

Now we declare following lemmas in Coq regarding orders.

Lemma lt leq ‘{A : Order} : forall x y, x @ yÑ x Ď y.

Theorem Equal ‘O : Order : forall (x y : A), x = y ắ ą (forall (z : A), z Ď x ắ ą z Ď y).

We need a signature for meet operations. After that, we will denote a meet function by [.

Class MeetSig {A : Type} := {
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meet : AÑ AÑ A

}.

Infix ”[” := (meet) (at level 60, right associativity).

Using the signature for meet operations, we implement an order type with binary meet as
follows.

Class MeetOrder ‘(O : Order) (MS : MeetSig) := {

meet axiom : forall (x y z : A), z Ď x [ y ắ ą z Ď x ^ z Ď y

}.

we define the signature for join operations called JoinS ig, the notation \, and JoinOrder
similarly.

Infix ”\” := (join) (at level 60, right associativity).

Now we implement order definition of join using join signature.

Class JoinOrder ‘(O : Order) (JS : JoinSig) := {

join axiom : forall (x y z : A), x \ y Ď z ắ ą x Ď z ^ y Ď z

}.

In [23], Damien Pouse used a Boolean string, implemented by a record named level of
Booleans, to encode the algebraic hierarchy. His implementation uses a record ops that
contains all operations of the hierarchy. This record is parametric in a level in order to se-
lect the operations that are available in the current structure. For meet and join, this record
level has two components called has cap, and has cup, respectively. Later, he defines
CAP and CUP as concrete levels in which the corresponding bit is set to true. A similar
approach is taken for all operations in the algebraic hierarchy.

Finally, we use all the previous declared classes to define order definition of the lattice.

Class LatticeOrder ‘{O : Order} {MS : MeetSig} (MO : MeetOrder O MS) {JS : JoinSig}

(JO : JoinOrder O JS).
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These definitions allow us to prove the following two theorems.

Theorem MeetExpand ‘{MO : MeetOrder} : forall (x y : A), x [ y Ď x.

Theorem JoinExpand ‘JO : JoinOrder : forall (x y : A), x Ď x \ y.

6.1.2 Algebraic Definition of Lattices

Before implementing the algebraic definition of a lattice, we need to define upper semilat-
tices and lower semilattices. We implement both upper and lower semilattices by dividing
each into two classes. In the first class we require we associativity and commutativity, and
the second class we add the idempotent law. The reason for this separation is that a semi-
lattice requires the idempotency law which will follow from the absorption law in a lattice.

Class LSemiLattice’ ‘(MS : MeetSig) := {

meet assoc : forall (x y z : A), (x [ y) [ z = x [ (y [ z);

meet comm : forall (x y : A), x [ y = y [ x

}.

Class LSemiLattice ‘(LSL’ : LSemiLattice’) := {

meet idemp : forall (x : A), x [ x = x

}.

Class USemiLattice’ ‘(JS : JoinSig) := {

join assoc : forall (x y z : A), (x \ y) \ z = x \ (y \ z);

join comm : forall (x y : A), x \ y = y \ x

}.

Class USemiLattice ‘(USL’ : USemiLattice’) := {

join idemp : forall(x : A), x \ x = x

}.

Now we can implement the algebraic definition of a lattice using the class US emiLattice,
and LS emiLattice.

Class Lattice {A : Type} {MS : MeetSig (A:=A)} (LSL’ : LSemiLattice’ MS) {JS : JoinSig
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(A:=A)} (USL’ : USemiLattice’ JS) := {

meet absorp : forall(x y : A), x [ (x \ y) = x;

join absorp : forall(x y : A), x \ (x [ y) = x

}.

Similar to the record ops Damien Pous [23] defines a record laws that contains all axioms
of the algebraic hierarchy. Again, a parameter of type level is used to select the appropriate
axioms.

Next, we declare a theorem where we prove that the order induced by either the meet oper-
ation or the join operation are equivalent.

Theorem OrderEquivDefs ‘{L : Lattice} : forall (x y : A), x [ y = x ắ ą x \ y = y.

Now we provide that instances where we show that every lattice is a lower semilattice and
also an upper semilattice. As a part of these proofs we verify that lattices are indeed imde-
potent as already mentioned above.

Instance LatticeIsLSemiLattice ‘(L : Lattice) : LSemiLattice LSL’.

Instance LatticeIsUSemiLattice ‘(L : Lattice) : USemiLattice USL’.

6.1.3 Equivalence of the two Definitions

In the first part, we prove that the algebraic definition of a lattice is equivalent to order-
theoretic definition of the lattice. For this purpose, we need to provide an instance of
OrderS ig.

Instance MeetSigToOrderSig ‘(MS : MeetSig) : OrderSig := {

leq := fun (x y : A)ñ x [ y = x

}.

Now we provide two instances where we show that every lower semilatice is an order, in
particular, an order with a meet operation.
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Instance LSemiLatticeToOrder ‘(LSL : LSemiLattice) : Order (MeetSigToOrderSig MS).

Instance LSemiLatticeToMeetOrder ‘(LSL : LSemiLattice) : MeetOrder (LSemiLatticeTo-

Order LSL) MS.

Using these two instances we can verify that a lattice is also an order with a meet operation.

Instance LatticeToOrder ‘(L : Lattice) : Order (MeetSigToOrderSig MS) := LSemiLattice-

ToOrder (LatticeIsLSemiLattice L).

Instance LatticeToMeetOrder ‘(L : Lattice) : MeetOrder (LatticeToOrder L) MS.

We can easily prove that a lattice is also an order with a join operation using Lemma Or-
derEquivDefs.

Instance LatticeToJoinOrder ‘(L : Lattice) : JoinOrder (LatticeToOrder L) JS.

Finally, we can show that every algebraically defined lattice is also a order-theoretic lattice.

Instance LatticeToLatticeOrder ‘(L : Lattice) : LatticeOrder (LatticeToMeetOrder L) (Lat-

ticeToJoinOrder L).

In the second part, we want to verify the opposite implication, i.e., that every order-
theoretically defined lattice satisfies the algebraic laws. To show this, we need to establish
that order with a meet operation is a lower semilattice, similarly, that every order with a
join operation is an upper semilattice.

Definition MeetOrderToLSemiLattice’ ‘(MO : MeetOrder) : LSemiLattice’ MS.

Definition MeetOrderToLSemiLattice ‘(MO : MeetOrder) : LSemiLattice (MeetOrderToLSemi-

Lattice’ MO).

Definition JoinOrderToUSemiLattice’ ‘(JO : JoinOrder) : USemiLattice’ JS.

Definition JoinOrderToUSemiLattice ‘(JO : JoinOrder) : USemiLattice (JoinOrderToUSemi-

Lattice’ JO).
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Now we can easily show our main theorem of this section.

Definition LatticeOrderToLattice ‘(LO : LatticeOrder) : Lattice (MeetOrderToLSemiLat-

tice’ MO)(JoinOrderToUSemiLattice’ JO).

Following auxiliary lemma helpful for proving other several lemmas. We can prove that
lemma by using axiom meet axiom and lemma MeetExpand.

Lemma LSLLemma ‘{LSL : LSemiLattice} : forall (x y : A), x Ď yÑ x [ y = x.

6.1.4 Distributive Lattices

First we declare the distributivity property for two arbitrary functions.

Class Distributive {A : Type} (f g : AÑ AÑ A) :=

distr : forall (x y z : A), f x (g y z) = g (f x y) (f x z).

The next two theorems show that one inclusion of the distributivity laws is always satisfied
in a lattice. This is usually called sub-distributivity.

Theorem SubDistrMeet ‘{L : Lattice} : forall (x y z : A), x [ y \ x [ z Ď x [ (y \ z).

Theorem SubDistrJoin ‘{L : Lattice} : forall (x y z : A), x \ (y [ z) Ď (x \ y) [ (x \ z).

We prove an important theorem where we show that the two distributivity laws are equiva-
lent in every lattice.

Theorem EquivDistrLaws ‘{L : Lattice} : Distributive meet join ắ ąDistributive join meet.

Before defining a distributive lattice, we define lattices with only one of the two distributive
laws. A distributive lattice will require both laws.

Class MDistrLattice ‘(L : Lattice) :=

mdistr : Distributive meet join.
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Class JDistrLattice ‘(L : Lattice) :=

jdistr : Distributive join meet.

Class DistrLattice ‘(L : Lattice) := {

meet distr : Distributive meet join;

join distr : Distributive join meet

}.

We already know from Theorem EquivDistrLaws that one of the distributivity laws would
be sufficient. However, we have added both laws to a lattice for convenience. With the
following instance declarations it will be sufficient to only prove one of the laws when cre-
ating an actual instance of a distributive lattice.

Instance ConstrMDistrLattice ‘(ML : MDistrLattice) : DistrLattice L.

Instance ConstrJDistrLattice ‘(JL : JDistrLattice) : DistrLattice L.

Now we prove a valuable property of distributive lattices that we turns out to be useful in
proving other properties.

Theorem UniqueCompl ‘{L : DistrLattice} : forall (x y a : A), a [ x = a [ y _ a \ x = a \

yÑ x = y.

6.1.5 Declaration of Bounded Lattice

Recall that a bounded lattice is a lattice with a least and greatest element. In our imple-
mentation the least element is denoted by Zero and the greatest element by One. For our
convenience, we first define a lattice with a least element and show some related theorems.
Then we declare a lattice with a greatest element.

First, we need to specify a signature for a least element.

Class LESig {A : Type} := {

Zero : A

}.
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The following class implements exactly Definition 2.2.3 restricted to the least element.

Class LELattice ‘(L : Lattice) (LES : LESig) := {

le axiom : forall(x : A), x \ Zero = x

}.

Now we prove the following two important theorems.

Theorem LEProp ‘{LEL : LELattice} : forall (x : A), Zero Ď x.

Theorem LEZeroProp ‘{LEL : LELattice} : forall (x : A), x [ Zero = Zero.

The case of a greatest element is handled analogously.

Class GESig {A : Type} := {

One : A

}.

Class GELattice ‘(L : Lattice) (GES : GESig) := {

ge axiom : forall(x : A), x [ One = x

}.

Theorem GEProp ‘{GEL : GELattice} : forall (x : A), x Ď One.

Theorem GEOneProp ‘{GEL : GELattice} : forall (x : A), x \ One = One.

A bounded lattice can be defined by declarations above.

Class BoundedLattice ‘{L : Lattice} {LES : LESig} (LEL : LELattice L LES) {GES : GESig}

(GEL : GELattice L GES).

We can also define bounded distributive lattices by combining the declarations of a dis-
tributive lattice and the definitions above.

Class BoundedDistrLattice ‘{L : Lattice} (DL : DistrLattice L) {LES : LESig} {LEL : LELat-
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tice L LES} {GES : GESig} {GEL : GELattice L GES} (BL : BoundedLattice (L:=L) LEL

GEL).

6.1.6 Heyting algbera

As before we are going to define a signature for the implication operation of a Heyting
algbera. We use the notation „ą to refer to this operation.

Class PCSig {A : Type} := {

implies : AÑ AÑ A

}.

Infix ”„ą” := (implies) (at level 65).

Now, we define a Heyting algbera as follows.

Class PCLattice ‘(L : Lattice) (PCS : PCSig) := {

pc axiom : forall (x y z : A), z Ď x „ą y ắ ą x [ z Ď y

}.

Now we declare an instance where we prove that every Heyting algebra is a distributive
lattice.

Instance PCLatticeToDistrLattice ‘(pl : PCLattice) : DistrLattice L.

In addition, every Heyting algebra has a greatest element which we formalized by the fol-
lowing instance declarations.

Instance PCLatticeToGESig ‘(PCL : PCLattice) (a : A) : GESig := {

One := a „ą a

}.

Instance PCLatticeToGELattice ‘(PCL : PCLattice) (a : A) : GELattice L (PCLatticeTo-

GESig PCL a).

Now we combine the results above for convenience.
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Class PCLELattice ‘{L : Lattice} {PCS : PCSig} (PCL : PCLattice L PCS) {LES : LESig}

(LEL : LELattice L LES).

Instance PCLELatticeToGESig ‘(PCLE : PCLELattice) : GESig := PCLatticeToGESig

PCL Zero.

Instance PCLELatticeToGELattice ‘(PCLE : PCLELattice) : GELattice L (PCLELattice-

ToGESig PCLE) := PCLatticeToGELattice PCL Zero.

Instance PCLELatticeToBoundedLattice ‘(PCLE : PCLELattice) : BoundedLattice LEL

(PCLELatticeToGELattice PCLE).

Instance PCLELatticeToBoundedDistrLattice ‘(PCLE : PCLELattice) : BoundedDistrLat-

tice (PCLatticeToDistrLattice PCL) (PCLELatticeToBoundedLattice PCLE).

The implication operation gives rise to a pseudo-complement defined by x„ąZero.

Definition complement ‘{PCL : PCLELattice} := fun x : Añ x „ą Zero.

Notation ”x „” := (complement x) (at level 50, left associativity).

Now we prove several important theorems.

Theorem ComplementAnd ‘{PCL : PCLELattice} : forall (x : A), x [ x „= Zero.

Theorem DoubleComplementRel ‘{PCL : PCLELattice} : forall (x : A), x Ď x „„.

Theorem complement more ‘{PCL : PCLELattice} : forall (x y : A), y Ď xÑ x „Ď y „.

Theorem DoubleComplClo1 ‘{PCL : PCLELattice} : forall (x : A), x „= x „„„.

Theorem DoubleComplClo2 ‘{PCL : PCLELattice} : forall (x y : A), (x \ y) „= x „[ y „.

Theorem DoubleComplClo2a ‘{PCL : PCLELattice} : forall (x y : A), x „\ y „Ď (x [ y)
„.
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Theorem DoubleComplClo3 ‘{PCL : PCLELattice} : forall (x y : A), (x [ y) „„= x „„[ y
„„.

6.1.7 Boolean Algebras

We declare a class called BooleanAlgebra which takes a Heyting algebra as parameter. In
this declaration we follow exactly Definition 2.4.1.

Class BooleanAlgebra ‘(PCL : PCLELattice) := {

ba axiom : forall (x : A), x \ x „= One

}.

We declare and prove following important theorems.

Theorem EqualityBooleanAlgebra ‘{BA : BooleanAlgebra} : forall (x : A), x = x „„.

Theorem DoubleComplClob ‘{BA : BooleanAlgebra} : forall (x y : A), x „\ y „= (x [ y)
„.

Lemma neg join ‘{BA : BooleanAlgebra} : forall x y, x „Ď y ắ ą x \ y = One.

Lemma convertMeetComplement ‘{BA : BooleanAlgebra} : forall a b c, a [ b „Ď cÑ a Ď

b \ c.

Lemma convertUTA ‘{BA : BooleanAlgebra} : forall a Q R, a Ď Q \ R ắ ą a [ Q „Ď R.

Lemma LTOA ‘{BA : BooleanAlgebra} : forall a, (forall R, R Ď aÑ R = Zero _ R = a)Ñ

forall Q R, a Ď Q _ a Ď R ắ ą a Ď Q \ R.

Lemma NotZero ‘{BA : BooleanAlgebra} : Zero „= One.

Theorem complement more lt ‘{BA : BooleanAlgebra}: forall (x y : A), (x @ y) ắ ą (y „Ď

x „).

Theorem EqualityBooleanAlgebra GR ‘{BA : BooleanAlgebra} : forall (x : A), x „„= x.
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6.1.8 Binary Relation

In this section, we define the type of set-theoretic relations and provide implementation
of the various lattice structures on that type. A relation is implemented as a characteristic
function, i.e., it is a function taken parameters from two types a and b returning a Boolean.
We have chosen the type bool instead of Prop because we will be using relations in our
algorithms, and, hence, we need that it is decidable whether a pair is in the relation or not.

Definition Rel a b := aÑ bÑ bool.

In Chapter 2, we have already defined the lattice operations on set-theoretic relations. We
will follow these definitions closely. Please note that && and || are Coq functions imple-
menting and and or on Booleans. These will be used in order to define meet and join on
relations.

Definition Meet Rel {a b : Type} : Rel a bÑ Rel a bÑ Rel a b := fun (r s : Rel a b) (x : a)

(y : b)ñ r x y && s x y.

Definition Join Rel {a b : Type} : Rel a bÑ Rel a bÑ Rel a b := fun (r s : Rel a b) (x : a)

(y : b)ñ r x y || s x y.

Definition Zero Rel {a b : Type} : Rel a b := fun (x : a) (y : b)ñ false.

Definition One Rel {a b : Type} : Rel a b := fun (x : a) (y : b)ñ true.

For negation, Coq provides an operator called negb. We can define our implication relation
as follows.

Definition Implies Rel {a b : Type} : Rel a bÑ Rel a bÑ Rel a b := fun (r s : Rel a b) (x :

a) (y : b)ñ (negb (r x y)) || s x y.

Now we can provide an instance for every signature that we need when we instantiate each
of the lattice classes.

Instance MyRelMeetSig (a b : Type) : MeetSig (A := Rel a b) := {

meet := Meet Rel

}.
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Instance MyRelJoinSig (a b : Type) : JoinSig (A := Rel a b) := {

join := Join Rel

}.

Instance MyRelLESig (a b : Type) : LESig (A := Rel a b) := {

Zero := Zero Rel

}.

Instance MyRelGESig (a b : Type) : GESig (A := Rel a b) := {

One := One Rel

}.

Instance MyRelPCSig (a b : Type) : PCSig (A := Rel a b) := {

implies := Implies Rel

}.

Following two lemmas are used in the following instance declarations. To prove the first
lemma, we use the Lemma f unction extensionality (module FunctionalExtensionality).
More information about this module can be found in [21].

Lemma Rel Ext (a b : Type) : forall(f g : Rel a b), f = g ắ ą (forall x y, f x y = g x y).

Lemma implb lem : forall (x y z : bool), z && (negb x || y) = z ắ ą x && z && y = x && z.

Finally, we provide an instance for every lattice structure based on binary relations.

Instance MyRelLSemiLattice’ (a b : Type) : LSemiLattice’ (MyRelMeetSig a b).

Instance MyRelLSemiLattice (a b : Type) : LSemiLattice (MyRelLSemiLattice’ a b).

Instance MyRelUSemiLattice’ (a b : Type) : USemiLattice’ (MyRelJoinSig a b).

Instance MyRelLattice (a b : Type) : Lattice (MyRelLSemiLattice’ a b) (MyRelUSemiLat-

tice’ a b).
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Instance MyRelDistrLattice (a b : Type) : DistrLattice (MyRelLattice a b).

Instance MyRelLELattice (a b : Type) : LELattice (MyRelLattice a b) (MyRelLESig a b).

Instance MyRelGELattice (a b : Type) : GELattice (MyRelLattice a b) (MyRelGESig a b).

Instance MyRelPCLELattice (a b : Type) : PCLELattice (MyRelPCLattice a b) (MyRelLE-

Lattice a b).

Instance MyRelBooleanAlgebra (a b : Type) : BooleanAlgebra (MyRelPCLELattice a b).

6.2 Categories and Allegories

In this section, we focus on implementing categories and various allegories. During the
declaration, we maintain the hierarchy of allegories.

6.2.1 Categories

We need to provide a signature for composition and the identity as we need those during
the declaration of a category. Please note that the signature will depend on two parameters.
The first parameter is the type of the objects of the category. The second parameter pro-
vides the type of morphisms between to given objects.

Class CategorySig {Obj : Type} (Mor : ObjÑ ObjÑ Type) := {

comp : forall {a b c : Obj}, Mor a bÑ Mor b cÑ Mor a c;

ident : forall {a: Obj}, Mor a a

}.

We use notation id to represent ident and 0 to represent composition.

Notation ”id” := (ident).

Infix ”0” := (comp) (at level 55, right associativity).

The following implements Definition 3.1.1.
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Class Category ‘(CS : CategorySig) := {

assoc: forall(a b c d : Obj) (f: Mor a b) (g: Mor b c) (h: Mor c d),

(f 0 g) 0 h = f 0 (g 0 h);

idl law : forall (a b : Obj) (f : Mor a b), id 0 f = f;

idr law : forall (a b : Obj) (f : Mor a b), f 0 id = f

}.

6.2.2 Allegories

According to Definition 3.2.1 an operation called converse is part of an allegory so that we
need to define a signature and appropriate notation for this operation.

Class AllegorySig ‘(C : Category) := {

converse : forall {a b: Obj}, Mor a bÑ Mor b a

}.

Notation ” ˘ ” := (converse x) (at level 50, left associativity).

For implementing the definition of allegories from Chapter 3, we need to provide an imple-
mentation of the a category, the signature for an allegory, and the signature and of a lower
semilattice structure for each collection of morphisms.

Class Allegory ‘(C : Category)

(MS : forall a b : Obj, MeetSig (A := Mor a b))

(LSL’ : forall a b : Obj, LSemiLattice’ (MS a b))

(LSL : forall a b : Obj, LSemiLattice (LSL’ a b))

(AS : AllegorySig C) := {

axiom 2a: forall (a b : Obj) (Q R : Mor a b), Q Ď RÑ Q ˘ Ď R ˘ ;

axiom 2b: forall(a b c : Obj) (Q : Mor a b) (S : Mor b c), (Q 0 S) ˘ = S ˘ 0 Q ˘ ;

axiom 2c: forall(a b : Obj) (Q : Mor a b), Q ˘ ˘ = Q;

axiom 3: forall(a b c : Obj) (Q : Mor a b) (R : Mor b c) (S : Mor b c),

Q 0 (R [ S) Ď Q 0 R [ Q 0 S;

axiom 4: forall(a b c : Obj) (Q : Mor a b) (R : Mor b c) (S : Mor a c),

Q 0 R [ S Ď Q 0 (R [ Q ˘ 0 S)

}.
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We have shown Lemma 3.2.1 in Coq. In addition we have the following.

Theorem Monotony ‘{A : Allegory} : forall{a b c : Obj} (P Q : Mor a b) (R S : Mor b c), (P

[ Q) 0 (R [ S) Ď P 0 R [ Q 0 S.

Our next task is to implement Definition 3.2.2.

Definition univalent ‘{A : Allegory} {a b : Obj} (Q : Mor a b) := Q ˘ 0 Q Ď id.

Definition total ‘{A : Allegory} {a b : Obj} (Q : Mor a b) := id Ď Q 0 Q ˘ .

Definition map Rel ‘{A : Allegory} {a b : Obj} (Q : Mor a b) := (univalent Q) ^ (total Q).

Definition injective ‘{A : Allegory} {a b : Obj} (Q : Mor a b) := univalent (Q ˘ ).

Definition surjective ‘{A : Allegory} {a b : Obj} (Q : Mor a b) := total(Q ˘ ).

Definition bijective ‘{A : Allegory} {a b : Obj} (Q : Mor a b) := map Rel (Q ˘ ).

Definition bijection ‘{A : Allegory} {a b : Obj} (Q : Mor a b) := bijective (Q ˘ ).

Definition symmetric ‘{A : Allegory} {a : Obj} (Q : Mor a a) := Q ˘ = Q.

Using those definitions, we implemented Lemma 3.2.2 and 3.2.3. In addition, the following
Lemmas show that the dual properties of Lemma 3.2.2 also holds.

Theorem DualUnivalent1 ‘{A : Allegory} : forall (a b c : Obj) (Q: Mor b c) (R S: Mor a b),

injective QÑ (R [ S) 0 Q = R 0 Q [ S 0 Q.

Theorem DualUnivalent2 ‘{A : Allegory} : forall (a b c : Obj) (Q: Mor b a) (T: Mor a c)

(U: Mor b c), injective QÑ Q 0 T [ U = Q 0 (T [ Q ˘ 0 U).

Now we implement partial identities according to Definition 3.2.3 and also prove Lemma
3.2.4 that related to partial identities.
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Definition PartialIdentities ‘{A : Allegory} {a : Obj} (R : Mor a a) := R Ď id.

In Coq, we can use term coercions when one class resides in another class. In our im-
plementation, we first prove that categories reside in allegories and then we declare the
corresponding coercion.

The advantage of coercion is that Coq will use this information automatically while typing
expressions.

Instance AllegoryToCategory ‘(A : Allegory) : Category .

Coercion AllegoryToCategory : Allegory ą-ą Category.

6.2.3 The Category and Allegory of Binary Relations

In order to implement composition of two set-theoretic relations we need that the existen-
tial quantifier in Definition 2.5.2 ranges over finitely many elements. This implies that we
have to restrict ourselves to relations between finite types. A type can be made finite by
providing a list of its elements and requiring a proof that all elements are actually included
in this list. In addition, we will need to compare elements of each type. For example, this
is necessary to define the identity relation. Last but not least, we want that every type is
not empty. All these requirements are summarized in the class FNT DType of finite, non-
empty types with a decidable equality.

Class FNTDType := {

A : Type;

elements : list A;

finite pr : forall(x : A), In x elements;

non empty pr : elements ăą nil;

Deq : forall x y : A, x = y + x ăą y;

CDeq x y := if Deq x y then true else false

}.

The component Deq requires a proof that equality on the type A is decidable. This proof
is converted by CDeq into a Boolean valued function that compares two elements of type A.
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We prove two individual lemmas, which are useful in the rest of the implementation.

Theorem CDeq true {A : FNTDType}: forall (x y : A), CDeq x y = true ắ ą x = y.

Theorem CDeq false {A : FNTDType}: forall (x y : A), CDeq x y = false ắ ą x ăą y.

Now we define the identity relation and the operations of composition, converse and com-
plement. All the definitions are base on the Boolean relation. We get the exactly same
result that describes in chapter 2 using following definitions.

Definition ID Rel (a : FNTDType): Rel a a := fun (x y : A)ñ CDeq x y.

Definition Comp Rel (a b c : FNTDType): Rel a b Ñ Rel b c Ñ Rel a c := fun Q R x z ñ

existsb (fun yñ (Q x y) && (R y z)) elements.

Definition Converse Rel (a b : FNTDType): Rel a bÑ Rel b a := fun R x yñ (R y x).

Definition Complement Rel (a b : FNTDType) : Rel a b Ñ Rel a b := fun (r : Rel a b) (x :

a) (y : b)ñ negb (r x y).

Now we provide an instance for both the signature of categories and allegories. In both
cases we have to prove that all axioms of categories respectively allegories are satisfied.

Instance MyRelCategorySig : CategorySig (Obj := FNTDType) Rel:= {

comp := Comp Rel;

ident := ID Rel

}.

Instance MyRelCategory : Category (MyRelCategorySig).

Instance MyRelAllegorySig : AllegorySig MyRelCategory := {

converse := Converse Rel

}.

Instance MyRelAllegory : Allegory MyRelCategory MyRelMeetSig MyRelLSemiLattice’
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MyRelLSemiLattice MyRelAllegorySig.

6.3 Implementation of Distributive Allegories

According to the definition of distributive allegories in Chapter 3, we need the join oper-
ation and a least element. To fulfil those condition, we need to use the classes of lattices
with a least element.

A distributive allegory is an allegory so that the corresponding class uses a parameter of
type Allegory. The implementation of Definition 3.3.1 is given below.

Class DistributiveAllegory ‘(A : Allegory)

(JS : forall a b : Obj, JoinSig (A := Mor a b))

(USL’ : forall a b : Obj, USemiLattice’ (JS a b))

(USL : forall a b : Obj, USemiLattice (USL’ a b))

(L : forall a b : Obj, Lattice (LSL’ a b) (USL’ a b))

(DL : forall a b : Obj, DistrLattice (L a b))

(LES : forall a b : Obj, LESig (A := Mor a b))

(LEL : forall a b : Obj, LELattice (L a b) (LES a b)) := {

axiom LE: forall (a b c : Obj) (Q : Mor a b),

(Q 0 (Zero : (Mor b c))) = (Zero : (Mor a c));

axiom Dstr: forall (a b c : Obj) (Q : Mor a b) (R S : Mor b c),

Q 0 (R [ S) = Q 0 R \ Q 0 S

}.

Now we provide an implementation of Lemma 3.3.1. These properties are important be-
cause we use those characteristics several times to prove other lemmas.

Since the class Allegory resides on Class DistributiveAllegory, we provide he correspond-
ing coercion.

Instance DistributiveAllegoryToAllegory ‘(DisA : DistributiveAllegory) : Allegory .

Coercion DistributiveAllegoryToAllegory : DistributiveAllegory ą´ą Allegory.
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6.3.1 The Distributive Allegory of Binary Relations

We have already implemented all structures required to make our version of set-theoretic
relations an instance of the class DistributiveAllegory. In the declaration below it remains
to verify the additional axioms.

Instance MyRelDistributiveAllegory : DistributiveAllegory MyRelAllegory MyRelJoinSig

MyRelUSemiLattice’ MyRelUSemiLattice MyRelLattice MyRelDistrLattice MyRelLESig MyRel-

LELattice.

6.4 Implementation of Division Allegories

According to hierarchy, our next step is to implement division allegories. In the definition
of division allegories in Chapter 3, an additional operation called left residual is used. So
we need to declare the signature for this operation.

Class DivisionAllegorySig ‘(DA : DistributiveAllegory) := {

leftResidual : forall {a b c : Obj}, Mor a cÑ Mor b cÑ Mor a b

}.

Infix ”//” := (leftResidual) (at level 55, right associativity).

Now we are ready to implement Definition 3.4.1. Obviously, the definition of the class
DivisionAllegory uses a parameter of type DivisionAllegoryS ig.

Class DivisionAllegory ‘(DAS : DivisionAllegorySig) := {

axiom Division: forall (a b c : Obj) (Q : Mor a b) (R : Mor b c) (S : Mor a c),

Q 0 R Ď S ắ ą Q Ď (S // R)

}.

In Chapter 3, we have discussed the right residual and the symmetric. We define these two
operations in Coq accordingly.

Definition rightResidual ‘{DA : DivisionAllegory} := fun {a b c : Obj} (Q : Mor a b) (S :

Mor a c)ñ (S ˘ // Q ˘ ) ˘ .
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Infix ”zz” := (rightResidual) (at level 55, right associativity).

Definition syQ ‘{DA : DivisionAllegory} := fun {a b c : Obj} (Q : Mor a b) (R : Mor a c)ñ

(Q zz R) [ (Q ˘ // R ˘ ).

The next step is to prove Lemma 3.4.1, 3.4.2 and 3.4.3 in Coq. We have omitted this here.
The code can be found in the library. Last but not least, we establish the coercion between
division and distributive division allegory and distributive allegory.

Instance DivisionAllegoryToDistributiveAllegory ‘(DA : DivisionAllegory) : DistributiveAl-

legory .

Coercion DivisionAllegoryToDistributiveAllegory : DivisionAllegory ą-ą DistributiveAl-

legory.

6.4.1 The Division Allegory of Binary Relations

Our implementation of the left residual follows Lemma 3.6.1.

Definition LeftResidual Rel (a b c : FNTDType): Rel a c Ñ Rel b c Ñ Rel a b := fun (S

: Rel a c) (R : Rel b c) ñ Complement Rel (Comp Rel (Complement Rel S)

(Converse Rel R)).

Instance MyRelDivisionAllegorySig : DivisionAllegorySig MyRelDistributiveAllegory := {

leftResidual := LeftResidual Rel

}.

In order to instantiate the class DivisionAllegory by set-theoretic relations we need the fol-
lowing lemma. It relates the two Boolean valued function existsb and f orallb on list from
the Coq library.

Lemma negb existsb: forall (A : Type) (f : AÑ bool) (l : list A), negb (existsb f l) = forallb

(fun xñ negb (f x)) l.



CHAPTER 6. RELATIONAL FRAMEWORK 78

Now we are ready to create the instance.

Instance MyRelDivisionAllegory : DivisionAllegory MyRelDivisionAllegorySig.

6.5 Implementation of Heyting Categories

Following Definition 3.5.1 the class HeytingCategory requires a division allegory and a
greatest element for each hom-set.

Class HeytingCategory ‘(DA : DivisionAllegory)

(PCS : forall a b : Obj, PCSig (A := Mor a b))

(PCL : forall a b : Obj, PCLattice (L a b) (PCS a b))

(PCLE : forall a b : Obj, PCLELattice (PCL a b) (LEL a b)).

Below we have listed the Coq version of Lemma 3.5.2, Lemma 3.5.3 and an additional
property that turned out to be useful in other proofs.

Lemma RtoLR ‘{HC : HeytingCategory} : forall a b: Obj (Q : Mor a b), Q Ď Q 0 One.

Lemma extra lemma ‘{HC : HeytingCategory} : forall a b: Obj (A : Mor a b), A Ď One 0

A.

Lemma extra lemma2 ‘{HC : HeytingCategory} : forall a b: Obj (A : Mor a b), A ˘ Ď A ˘
0 One.

Lemma extra lemma3 ‘{HC : HeytingCategory} : forall a: Obj (A : Mor a a), A 0 A Ď One

0 A.

Lemma extra lemma4 ‘{HC : HeytingCategory} : forall a: Obj (A : Mor a a), A 0 A Ď A 0

One.

Theorem P422 2v ‘{HC : HeytingCategory} : foralla b : Obj (Q R: Mor a b), univalent Q

Ñ R Ď QÑ Q 0 (One : Mor b b) Ď R 0 (One : Mor b b)Ñ R = Q.

Finally, we establish the coercion between Heyting categories and division allegories.
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Instance HeytingCategoryToDivisionAllegory ‘(HC : HeytingCategory) : DivisionAllegory

.

Coercion HeytingCategoryToDivisionAllegory : HeytingCategory ą-ą DivisionAllegory.

6.5.1 The Heyting Category of Binary Relations

This time it is sufficient to provide the corresponding instance declaration. No proof is
needed.

Instance MyRelHeytingCategory : HeytingCategory MyRelDivisionAllegory MyRelPCSig

MyRelPCLattice MyRelPCLELattice.

6.6 Implementation of Schröder Categories

In order to implement Definition 3.6.1 we just need to provide a Boolean algebra structure
on each hom-set.

Class SchroderCategory ‘(HC : HeytingCategory) (BA : forall a b : Obj, BooleanAlgebra

(PCLE a b)).

Lemma ConvNeg ‘{S : SchroderCategory} a b : Obj : forall (R : Mor a b), R„ ˘ = R ˘ „.

The Tarski rule that we define chapter 3 (Definition 3.6.2) can be defined as follows.

Class TarskiRule ‘(SC : SchroderCategory) := {

tarski axiom : forall (a b c d : Obj) (R : Mor a b), R ăą ZeroÑ

(One : Mor c a) 0 R 0 (One : Mor b d) = (One : Mor c d)

}.

Next, we establish the coercion between Schröder and Heyting categories.

Instance SchroderCategoryToHeytingCategory ‘(SC : SchroderCategory) : HeytingCate-

gory .
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Coercion SchroderCategoryToHeytingCategory : SchroderCategoryą-ąHeytingCategory.

6.6.1 The Schröder Category of Binary Relations

Since we did not use any additional signature in the Coq implementation of a Schröder
category we can provide the instance declaration immediately as follows:

Instance MyRelSchroderCategory : SchroderCategory MyRelHeytingCategory

MyRelBooleanAlgebra.

Next we will prove that our implementation of binary relations also satisfies the Tarski rule.
Similar to other instance declarations and lemmas we also omit the body.

Instance MyRelTarskiRule : TarskiRule MyRelSchroderCategory.

6.7 Implementation of a Unit

In order to implement a predicate indicating that a Heyting category has a unit object we
will require the category and the unit object as parameters of the predicate. The following
declaration and Definition 3.11.1 are analog. After that, we also provide an implementation
of Lemma 3.11.1.

Definition hasUnit ‘(HC : HeytingCategory) (one : Obj) : Prop := (One : Mor one one) =

id ^ forall (a : Obj), total (One : Mor a one).

Lemma CompLL ‘{HC : HeytingCategory} {one : Obj} : hasUnit HC one Ñ forall {a :

Obj}, (One : Mor a one) 0 (One : Mor one a) = One.

6.7.1 The Unit Object of Binary Relations

The abstract declaration of the predicate hasUnit uses an object as parameter. Therefore,
we need to provide an instance of FNT DType that serves as the unit. Coq already has a
singleton data type called unit with element tt, i.e., tt : unit. Coq also provides decidability
for the unit data type. It remains to show two properties. First, we need a lemma showing
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that all elements of unit are contained in rtts, and then we need to verify that rtts is not
empty.

Lemma Finite proof : forall(x : unit), In x [tt].

Lemma Empty proof : [tt] ăą [].

Now we can define a FNT DType element based on unit.

Instance myOne : FNTDType := {

A := unit;

elements := [tt];

finite pr := Finite proof;

non empty pr := Empty proof;

Deq := unit eqdec

}.

Finally, we can show that our concrete Heyting category has a unit.

Theorem MyRelhasUnit : hasUnit MyRelHeytingCategory myOne.

6.8 Implementation of Cardinality Functions

Before we can implement cardinality functions we need to define a class for monoids. We
provide a signature for plus inside the class declaration. The appropriate axioms have been
added as we need those to prove several lemmas. We use the infix operator `. We also
define a coercion between the monoids and the underlying type A1 of the monoid. This
allows us to treat the monoid as A1, i.e., a notation x : M where M is a monoid instead of
x : A1 becomes possible.

Class Monoid :={

A1 : Type;

zero : A1;

plusM : A1Ñ A1Ñ A1;

left neutrality : forall x, plusM zero x = x;
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right neutrality : forall x, plusM x zero = x;

associativity : forall x y z, plusM x (plusM y z) = plusM (plusM x y) z;

commutativity : forall x y, plusM x y= plusM y x

}.

Coercion A1 : Monoid ą-ą Sortclass.

Infix ”+” := (plusM) (at level 55, right associativity).

Now we need to declare a recursive function for multiplication as defined in Definition
3.8.2. Our declaration is given below.

Fixpoint nmult {M: Monoid} (n : nat) : A1Ñ A1 :=

match n with

| 0ñ fun ñ zero

| S nñ fun xñ (nmult n x) x

end.

We use pattern matching on the natural number n in the function nmult. There are two
cases for a natural number. Either the number is 0 or this number is the successor of the
previous number. If the number is 0 then it will return zero otherwise function call itself
recursively.

Now we are going to implement ordered monoids. In that class, we require monotonicity
of plus as an axiom. The declaration is given below.

Class OrderedMonoid (M : Monoid) (OS : OrderSig (A := M)) (O : Order OS) :={

le axiom monoid : forall x, zero Ď x;

plus mono : forall (x1 x2 y1 y2 : M), x1 Ď x2Ñ y1 Ď y2Ñ x1 + y1 Ď x2 + y2

}.

In the following we have given several lemmas related to ordered momoids.
Lemma MPlus ‘(OM : OrderedMonoid): forall (x y : M), x Ď x + y.

Lemma MPlus ‘(OM : OrderedMonoid): forall (x y : M), x Ď x + y.
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Lemma twomult ‘(OM : OrderedMonoid) : forall (x :M), nmult 2 x = x + x.

Lemma nmmult ‘(OM : OrderedMonoid) : forall (n : nat) (x y:M), (nmult n x) + (nmult n

y)= nmult n (x + y).

Lemma nmultMono ‘(OM : OrderedMonoid) : forall (n : nat) (x y:M), x Ď y Ñ nmult n x

Ď nmult n y.

Lemma singleMult ‘(OM : OrderedMonoid) : forall (k : nat) (x : M), x + nmult k x = nmult

(k + 1) x.

In order to implement cardinality functions we need to provide a distributive allegory, an
ordered monoid and a signature for the cardinality function. The following declaration is
an exact implementation of Definition 3.7.1.

Definition hasCardinality ‘(DA : DistributiveAllegory)

‘(OM : OrderedMonoid)

(Card : forall {a b : Obj}, Mor a bÑ A1) : Prop :=

(forall (x y : Obj) (R : Mor x y), (Card R) = zero ắ ą R = Zero)

^ (forall (x y : Obj) (R : Mor x y), (Card R) = (Card (R ˘ )))

^ (forall (x y : Obj) (R S : Mor x y), (Card (R \ S)) (Card (R [ S))= (Card R) +

(Card S))

^ (forall (x y z : Obj) (Q : Mor z x) (R : Mor x y) (S : Mor z y), univalent QÑ (Card

(R [ (Q ˘ 0 S)))Ď (Card ((Q 0 R) [ S)))

^ (forall (x y z : Obj) (Q : Mor z x) (R : Mor x y) (S : Mor z y), univalent QÑ (Card

(Q [ (S 0 R ˘ )))Ď (Card ((Q 0 R) [ S))).

We have defined a new tactic in order to unfold the definition of a cardinality function. It
replaces the an assumption of the form H : hasCardinality DAOM f by the the individual
axioms as separate assumptions named C1,C2,C3,C4a and C4b.

Ltac destCardinality H := unfold hasCardinality in H; destruct H as [C1 H]; destruct H as

[C2 H]; destruct H as [C3 H]; destruct H as [C 4a C 4b].

We proved Lemma 3.7.1 to 3.7.5 in Coq. To prove Lemma 3.7.2 we needed to prove fol-
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lowing lemma.

Theorem hC42 Sub ‘{DA : DistributiveAllegory} ‘{OM : OrderedMonoid} {Card : forall (a

b : Obj),Mor a bÑ A1} : hasCardinality DA OM CardÑ forall (x y z : Obj) (Q : Mor x y)

(R : Mor y z) (S : Mor x z), (univalent Q) ^ (univalent R)Ñ Card (Q 0 R [ S) = Card

(Q [ S 0 R ˘ ).

6.8.1 The Cardinality of Binary Relations

In order to define a cardinality function for set-theoretic relations need to provide an in-
stance of the class Monoid. In this case, the type will the type nat of natural numbers. Coq
already provides a module called Arith where we get all the properties that we need for our
instance declaration.

Instance myMonoid : Monoid := {

A1 := nat;

zero := 0;

plusM := plus;

left neutrality := plus O n;

right neutrality := fun x : natñ (eq sym) (plus n O x);

associativity := plus assoc;

commutativity := plus comm ;

}.

Next, we need to provide an instance of the signature of an order, and in our case, this will
be the order of natural number. Then we need to provide an instance of class Order. these
two instance to make the monoid of natural numbers an instance of the OrderedMonoid

class. The implementation of this three instance as follows.

Instance myMonoidOrderSig : (OrderSig (A := myMonoid)) := {

leq := le

}.

Instance myMonoidOrder : Order myMonoidOrderSig := {

leq refl := le refl;
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leq trans := le trans;

leq anti := le antisym;

}.

Instance myOrderedMonoid : (OrderedMonoid myMonoid myMonoidOrderSig myMonoidOrder)

:= {

le axiom monoid := le 0 n;

plus mono := plus le compat;

}.

Now we need to implement the cardinality function for set-theoretic relations. Our defini-
tion will return total number pairs in a relation.

Definition inner {a : Type}: (a Ñ bool) Ñ nat Ñ a Ñ nat := fun p n x ñ if p x then n+1

else n.

Definition myCard (a b : FNTDType) : Rel a b Ñ myMonoid := fun R ñ fold left (inner

(prod curry R)) (nodup (pairDeq Deq Deq) (list prod elements elements)) 0.

Several lemmas and definitions are required to prove that cardinality function satisfies the
required axioms.

Lemma fold left plus {a : Type}: forall (l : list a) (f : nat Ñ a Ñ nat) (m : nat), (forall (x :

a) (n : nat), f (m + n) x = m + f n x)Ñ forall (n : nat), fold left f l (m+n) = m + (fold left f

l n).

Lemma inner prop {a : Type}: forall (m : nat) (p : aÑ bool) (x : a) (n : nat), inner p (m +

n) x = m + inner p n x.

Lemma fold inner plus {a : Type}: forall (l : list a) (m n : nat) (p : a Ñ bool), fold left

(inner p) l (m+n) = m + fold left (inner p) l n.

Lemma empty has none {a : Type}: forall (l : list a) (p : a Ñ bool), fold left (inner p) l 0

= 0Ñ (forall (x : a), In x lÑ p x = false).

Lemma has none empty {a : Type}: forall (l : list a) (p : a Ñ bool), (forall x, In x l Ñ p x
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= false)Ñ fold left (inner p) l 0 = 0.

Lemma in prop preserved {a b : Type} : forall (f : a Ñ b) (l : list a) (l1 l2 : list b) (y : a)

(def : a Ñ Prop), (forall (x y : a), def x Ñ def y Ñ f x = f y Ñ x = y) Ñ (forall (x : a), def

xÑ In x (y :: l)Ñ In (f x) (l1 ++ f y :: l2))Ñ NoDup (y::l)Ñ def yÑ forall (x : a), def x

Ñ In x lÑ In (f x) (l1 ++ l2).

Lemma myCard Ext {a b : Type}: forall (f : a Ñ b) (l1 : list a) (p : a Ñ bool) (q : b Ñ

bool),(forall (x y : a), p x = true Ñ p y = true Ñ f x = f y Ñ x = y) Ñ (forall (x : a), p x =

true Ñ q (f x) = true) Ñ NoDup l1 Ñ forall (l2 : list b), (forall (x : a), p x = true Ñ In x

l1Ñ In (f x) l2)Ñ fold left (inner p) l1 0ð fold left (inner q) l2 0.

Definition swap {a b : Type}: a*bÑ b*a := fun pñ (snd p,fst p).

Lemma swap inj {a b : Type}: forall (p1 p2 : a*b), swap p1 = swap p2Ñ p1 = p2.

Lemma swap list {a b : Type}: forall (p : a*b) (l1 : list a) (l2 : list b), In p (list prod l1 l2)

Ñ In (swap p) (list prod l2 l1).

Definition fProp4 a b c : Type (l : list a) (Q : Rel a b) (S : Rel a c) (default : a): b*cÑ a*c

:= fun pñ match (find(fun (x : a)ñ (Q x (fst p)) && (S x (snd p))) l) with

| Some a1ñ (a1, snd p)

| Noneñ (default, snd p)

end.

Lemma uni concrete {a b : FNTDType}: forall (Q : Rel a b) (x : a) (y0 y1 : b), univalent

(A:=MyRelAllegory) Q Q x y0 = true Q x y1 = true y0 = y1.

Lemma fProp4 Prop1 {a b c : FNTDType}: forall (Q : Rel a b) (R : Rel b c) (S : Rel a c)

(default : a), univalent (A:=MyRelAllegory) Q Ñ forall p : b*c, prod curry (Meet Rel R

(Comp Rel (Converse Rel Q) S)) p = trueÑ prod curry (Meet Rel (Comp Rel

Q R) S) (fProp4 elements Q S default p) = true.

Lemma fProp4 rel inj {a b c : FNTDType}: forall (Q : Rel a b) (R : Rel b c) (S : Rel

a c) (default : a), univalent (A:=MyRelAllegory) Q Ñ forall (p1 p2 : b*c),(prod curry

(Meet Rel R (Comp Rel (Converse Rel Q) S))) p1 = trueÑ (prod curry (Meet Rel
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R (Comp Rel (Converse Rel Q) S))) p2 = trueÑ fProp4 elements Q S default p1 =

fProp4 elements Q S default p2Ñ p1 = p2.

Definition fProp5 {a b c : FNTDType} (l : list c) (R : Rel b c) (S : Rel a c) (default : c): a*b

Ñ a*c := fun (p : a*b)ñ swap (fProp4 l (Converse Rel R) (Converse Rel S) default

(swap p)).

Lemma fProp5 Prop1 {a b c : FNTDType}: forall (Q : Rel a b) (R : Rel b c) (S : Rel a c)

(default : c), univalent (A:=MyRelAllegory) Q Ñ forall p : a*b, prod curry (Meet Rel Q

(Comp Rel S (Converse Rel R))) p = true Ñ prod curry (Meet Rel (Comp Rel

Q R) S) (swap (fProp4 elements (Converse Rel R) (Converse Rel S) default (swap

p))) = true.

Lemma fProp5 rel inj {a b c : FNTDType}: forall (Q : Rel a b) (R : Rel b c) (S : Rel

a c) (default : c), univalent (A:=MyRelAllegory) Q Ñ forall (p1 p2 : a*b), (prod curry

(Meet Rel Q (Comp Rel S (Converse Rel R)))) p1 = trueÑ (prod curry (Meet Rel

Q (Comp Rel S (Converse Rel R)))) p2 = true Ñ (swap (fProp4 elements (Con-

verse Rel R) (Converse Rel S) default (swap p1))) = (swap (fProp4 elements (Con-

verse Rel R) (Converse Rel S) default (swap p2)))Ñ p1 = p2.

Lemma fExt {a : Type}: forall (f g h : nat Ñ a Ñ nat) (l : list a), (forall (x : a), f 0 x = g 0

x + h 0 x)Ñ (forall (x : a) (n m : nat), f (m + n) x = m + f n x)Ñ (forall (x : a) (n m : nat),

g (m + n) x = m + g n x) Ñ (forall (x : a) (n m : nat), h (m + n) x = m + h n x) Ñ fold left

f l 0 = fold left g l 0 + fold left h l 0.

Finally, we declare an instance of hasCardinality called MyRelhasCardinality. To prove
the required properties, we use all these lemmas that we have stated previously.

Theorem MyRelhasCardinality : hasCardinality MyRelDistributiveAllegory myOrdered-

Monoid myCard.

6.9 Implementation of Atom and Edge

Using the properties of Heyting categories we define the predicate isAtom as follows:

Definition isAtom ‘{HC : HeytingCategory} {a b: Obj} (A : Mor a b) := (A ăą Zero) ^ ((A
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˘ 0 One 0 A) Ď id) ^ ((A 0 One 0 A ˘ ) Ď id).

Within our algorithms we need to extract an atom from a relation using a function called
atom. The following predicate tells us whether this is possible and what properties are sat-
isfied by atom R.

Definition hasAtom ‘(HC : HeytingCategory) (atom : forall {a b : Obj}, Mor a b Ñ Mor a

b) : Prop := forall (a b: Obj) (R : Mor a b), R ăą ZeroÑ ((isAtom (atom R)) ^ ((atom R)

Ď R)).

Now we define the edge predicate according to Definition 3.10.2.

Definition edge ‘{HC : HeytingCategory} {atom : forall {a b : Obj}, Mor a b Ñ Mor a b}

(hA : hasAtom HC (@atom)) {a : Obj} : Mor a aÑMor a a := fun (R : Mor a a)ñ (atom

R) [ (atom R) ˘ .

As before we define a tactic to destruct the predicate isAtom.

Ltac destAtom H := unfold isAtom in H; destruct H as [atomAxiom1 H]; destruct H as

[atomAxiom2 atomAxiom3].

Now we provide some lemmas about atoms.

Lemma iA3 univalence ‘{HC : HeytingCategory} : forall {a b: Obj} (A : Mor a b), isAtom

AÑ (A ˘ 0 A) Ď id.

Lemma iA3 injectivity ‘{HC : HeytingCategory} : forall {a b: Obj} (A : Mor a b), isAtom A

Ñ (A 0 A ˘ ) Ď id.

Lemma iA3 transitivity ‘{HC : HeytingCategory} : forall {a: Obj} (A : Mor a a), isAtom A

Ñ (A 0 A) Ď A.

Lemma iA3 2 4 ‘{HC : HeytingCategory} : forall {a: Obj} (A : Mor a a), isAtom A Ñ (A 0

A) Ď id.

Similarly, we prove some lemmas about edges.
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Lemma iA33 symmetry ‘{HC : HeytingCategory} {atom : forall {a b : Obj}, Mor a b Ñ

Mor a b} {hA : hasAtom HC (@atom)} {a : Obj} : forall (R : Mor a a) ,(edge hA R) = (edge

hA R) ˘ .

Lemma iA33 2 ‘{HC : HeytingCategory} {atom : forall {a b : Obj}, Mor a b Ñ Mor a b}

{hA : hasAtom HC (@atom)} {a : Obj} : forall (R : Mor a a), isAtom (atom R)Ñ (edge hA

R) 0 (edge hA R) Ď id.

Lemma atomIsMap ‘(TR : TarskiRule) (atom : forall {a b : Obj}, Mor a b Ñ Mor a b) (hA

: hasAtom HC (@atom)) {a b one: Obj} : forall (R : Mor a b), hasUnit HC one wedge R

ăą ZeroÑ map Rel (((atom R) 0 (One : Mor b one)) ˘ ).

Lemma atomIsMap1 ‘(TR : TarskiRule) (atom : forall {a b: Obj}, Mor a bÑMor a b) (hA

: hasAtom HC (@atom)) {a one: Obj} : forall (R : Mor a a), hasUnit HC one wedge R ăą

ZeroÑ map Rel (((atom R) ˘ 0 (One : Mor a one)) ˘ ).

6.9.1 Implementation of Atoms for Binary Relations

Our implementation of the function atom for set-theoretic relations simply returns the first
pair. By the first pair we mean the first pair that is in the relation by using the two lists of
elements provided by each finite type.

Definition myRelAtom : forall (a b : FNTDType), Rel a bÑ Rel a b := fun a b Rñ

match (find (fun (p : (a*b))ñ ((prod curry R) p)) (list prod elements elements)) with

| Some pñ fun x yñ CDeq (fst p) x && CDeq (snd p) y

| Noneñ R

end.

Finally, we can define an instance of the class hasAtom where we prove that our implemen-
tation of atom satisfies all required axioms.

Theorem MyRelhasAtom : hasAtom MyRelHeytingCategory myRelAtom.
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6.10 Implementation of Direct Products

Similar to the previous section, we implement products as a predicate on Heyting algebras.
This predicate takes as input the category in question and three functions. The first function
maps two objects to the direct product, and the second and third functions return the first
and second projection from the direct product to the objects in question, respectively. In
other words the predicate hasProduct indicates that every pair of objects has a direct prod-
uct. Please note that the implementation of hasProduct is an immediately implementation
of Definition 3.8.1.

Definition hasProduct ‘(HC : HeytingCategory)

(ProdObj : ObjÑ ObjÑ Obj)

(π : forall (a b : Obj), Mor (ProdObj a b) a)

(ρ : forall (a b : Obj), Mor (ProdObj a b) b) : Prop :=

(forall (a b : Obj), (π a b) ˘ 0 (π a b) = id)

^ (forall (a b : Obj), (ρ a b) ˘ 0 (ρ a b) = id)

^ (forall (a b : Obj), ((π a b) 0 (π a b) ˘ ) [ ((ρ a b) 0 (ρ a b) ˘ ) = id)

^ (forall (a b : Obj), (π a b) ˘ 0 (ρ a b) = One).

We need a lemma which states that the composition of the converse of ρ and π is also equal
to the greatest element.

Theorem ConverseAxiom4 ‘{HC : HeytingCategory} : forall (ProdObj : ObjÑObjÑObj)

(π : forall (a b : Obj), Mor (ProdObj a b) a) (ρ : forall (a b : Obj), Mor (ProdObj a b) b),

hasProduct HC ProdObj π ρÑ forall(a b : Obj), (ρ a b) ˘ 0 (π a b) = One.

In the Coq implementation we have also provided proofs of the Lemmas 3.8.1, 3.8.2 and
3.8.3 which We omit them here. We did not define the strict fork operation, strict join op-
eration, and Kronecker product. Therefore, we will use their definition the corresponding
symbol.

6.10.1 The Direct Product for Binary Relations

First, we need to define the product object. Since objects in our Heyting category of finite
relations are instances of the class FNT DType we have to provide an appropriate type
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with a decidable equality, a list of its elements, and proofs that this list contains all ele-
ments and is not empty. The type will be the type a ˆ b of pairs from a and b, of course.
In order to produce a list of its elements we apply the Coq function list prod to the two
lists of elements in a and b. Below we have listed the two lemmas required to show that
list prod elements elements satisfies the required properties. Furthermore, we provide the
declaration of the function pairDeq that maps proofs of the detectability of the equality on
a and b to a proof of the decidability of the equality on a ˆ b. For details of this function
we refer to the implementation.

Lemma Finite proof myProd {a b : FNTDType} : forall(x : a ˚ b), In x (list prod elements

elements).

Lemma empty prod {a b : Type} (l1 : list a) (l2 : list b) : l1ăą []Ñ l2ăą []Ñ (list prod

l1 l2) ăą [].

Definition pairDeq {A B : Type}: (forall x y : A, {x = y} + {x ăą y}) Ñ (forall x y : B, {x =

y} + {x ăą y})Ñ forall x y : A ˚ B, {x = y} + {x ăą y}.

Now we are ready to make the type aˆ b an instance of FNT DType.

Instance myProdObj (a b : FNTDType) : FNTDType := {

A := a * b;

elements := list prod elements elements;

finite pr := Finite proof myProd;

non empty pr := empty prod elements elements non empty pr non empty pr;

Deq := pairDeq Deq Deq

}.

Below we have listed the definition of the first and second projection as a set theoretic re-
lation.

Definition myPi (a b : FNTDType) : Rel (myProdObj a b) a := fun p zñ CDeq (fst p) z.

Definition myRho (a b : FNTDType) : Rel (myProdObj a b) b := fun p zñ CDeq (snd p) z.

The following theorem shows that the Heyting category of set theoretic relations with the
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definitions above has direct products.

Theorem MyRelhasProduct : hasProduct MyRelHeytingCategory myProdObj myPi myRho.

6.11 Implementation of Direct Sum

Similar to the previous section we define a predicate hasS um that indicates that a Heyting
category has a direct sum for each pair of objects. In its implementation we follow Defini-
tion 3.9.1.

Definition hasSum ‘(HC : HeytingCategory)

(SumObj : ObjÑ ObjÑ Obj)

(ι : forall (a b : Obj), Mor a (SumObj a b))

(κ : forall (a b : Obj), Mor b (SumObj a b)) : Prop :=

(forall (a b : Obj), (ι a b) 0 (ι a b) ˘ = id)

^ (forall (a b : Obj), (κ a b) 0 (κ a b) ˘ = id)

^ (forall (a b : Obj), ((ι a b) ˘ 0 (ι a b)) \ ((κ a b) ˘ 0 (κ a b)) = id)

^ (forall (a b : Obj), (ι a b) 0 (κ a b) ˘ = Zero).

Similar to projections we show that κ and converse of ι is equal to least element.

Theorem ConverseAxiom4 Sum ‘{HC : HeytingCategory} : forall (SumObj : ObjÑ ObjÑ

Obj) (ι : forall (a b : Obj), Mor a (SumObj a b)) (κ : forall (a b : Obj), Mor b (SumObj a

b)), hasSum HC SumObj ι κÑ forall(a b : Obj), (κ a b) 0 (ι a b) ˘ = Zero.

We also proved Lemmas 3.9.1, 3.9.2 and 3.9.3 which we omit in this thesis.

6.11.1 The Direct Sum for Binary Relations

Similar to the direct product we have to create an instance of the class FNT DType based
on the sum a ` b of two types a and b. Unfortunately, Coq does not provide a function
similar to list prod for sums.

Definition SumProd {a b : Type} : list aÑ list bÑ list (a + b) := fun xs ysñ (map inl xs)
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++ (map inr ys).

Function S umProd takes two lists as a parameters and returns a list where the type of each
element is the sum of provided types. Please note that inl and inr are the Coq implementa-
tions of the injections.

As before the following declarations are needed in order to make a ` b an instance of
FNT DType, which follows immediately after.

Lemma in sum {a b : Type} (l1:list a) (l2:list b) : (forall(x : a), In x l1)Ñ (forall (y : b), In

y l2)Ñ forall (z : a + b), In z (SumProd l1 l2).

Lemma empty sum {a b : Type} (l1 : list a) (l2 : list b) : l1ăą []Ñ l2ăą []Ñ (SumProd

l1 l2) ăą [].

Definition sumDeq {A B : Type}: (forall x y : A, {x = y} + {x ăą y}) Ñ (forall x y : B, {x =

y} + {x ăą y})Ñ forall x y : A + B, {x = y} + {x ăą y}.

Instance mySumObj (a b : FNTDType) : FNTDType := {

A := a + b;

elements := SumProd elements elements;

finite pr := in sum elements elements finite pr finite pr;

non empty pr := empty sum elements elements non empty pr non empty pr;

Deq := sumDeq Deq Deq

}.

After defining the injections as relations below we verify that the Heyting category of set
theoretic relations has directed sums.

Definition myIota (a b : FNTDType) : Rel a (mySumObj a b) := fun z sñ CDeq s (inl z).

Definition myKappa (a b : FNTDType) : Rel b (mySumObj a b) := fun z sñ CDeq s (inr z).

Theorem MyRelhasSum : hasSum MyRelHeytingCategory mySumObj myIota myKappa.
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6.12 Well-Founded Inclusion Order of Relations

In order to apply our algorithms to set theoretic relations, we have to show that the inclu-
sion order and its reversed order are well-founded. The following two definitions provide
the proof term for these facts.

Definition well founded Relation ‘(A : Allegory): Prop := forall (x y : Obj),well founded

(fun (R S : Mor x y)ñ R @ S).

Definition well founded Relation gr ‘(A : Allegory): Prop := forall (x y : Obj),well founded

(fun (R S : Mor x y)ñ R A S).

In order to implement the second definition we need several additional lemmas and theo-
rems establishing the fact the converse of every well-founded relation on A is also well-
founded if there is an order reversion and involutive function f on A. We refer to the Coq
implementation for details.

6.12.1 Well-Founded Inclusion Order of Binary Relations

We would like to use the fact that the natural numbers are well-ordered while verifying
that the inclusion order on set theoretic relations is also well-ordered. This will be possible
since the cardinality function relates the inclusion order with the order on the natural num-
bers. For that purpose we have shown three lemmas relating a well-founded relation on the
image of a function f to a well-founded relation on the domain of f .

Lemma Acc invImage f {A B : Type} {R : relation A} {S : relation B} {f : A Ñ B} : (forall x

y, R x yÑ S (f x) (f y))Ñ forall y, Acc S yÑ forall x:A, y = f xÑ Acc R x.

Lemma Acc invImage {A B : Type} {R : relation A} {S : relation B} f : AÑ B : (forall x y, R

x yÑ S (f x) (f y))Ñ forall x, Acc S (f x)Ñ Acc R x.

Lemma wf invImage {A B : Type} {R : relation A} {S : relation B} {f : A Ñ B} : (forall x y,

R x yÑ S (f x) (f y))Ñ well founded SÑ well founded R.

In order to use Lemma w f invImage for the cardinality function we need to verify that if R

is strictly included in S , then the cardinality of R is strictly smaller than the cardinality of
S . Essential for this proof is to provide a pair p that is in S but not in R. All of this is done
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in the following sequence of lemmas.

Lemma neq Rel find {x y : FNTDType} {R S : Rel x y} : R ăą S Ñ find (fun p ñ negb

(eqb ((prod curry R) p) ((prod curry S) p))) (nodup (pairDeq Deq Deq) (list prod elements

elements)) ăą None.

Lemma lt Rel Witness {x y : FNTDType} {R S : Rel x y} : R @ S Ñ exists a b, R a b = false

^ S a b = true.

Lemma myCardSubMono {x y : FNTDType} {R S : Rel x y} : forall l, R Ď S Ñ fold left

(inner (prod curry R)) l 0 ă“ fold left (inner (prod curry S)) l 0.

Lemma ltTOle : (forall n m : nat, n ă m ă-ą n ă“ m ^ n ăą m).

Lemma myCardSubStrictMono {x y : FNTDType} {R S : Rel x y} : forall l, R Ď SÑ (exists

a b, In (a,b) l ^ R a b = false ^ S a b = true) Ñ fold left (inner (prod curry R)) l 0 ă

fold left (inner (prod curry S)) l 0.

Lemma myCardStrictMono {x y : FNTDType} : forall (R S : Rel x y), R @ S Ñ myCard

R ă myCard S.

When we use myCardS trictMono as an argument for w f invImage, then we will get a
goal where we need to prove that ă is an well-order on the natural numbers. Coq provides
Lemma well f ounded lto f which shows exactly that. Together this gives us the following:

Theorem MyRel well founded Relation : well founded Relation MyRelAllegory.

Now we can use Lemma w f le ge to show the following:

Theorem MyRel well founded Relation GR : well founded Relation gr MyRelAllegory.

6.13 Decidability of Equality of Relations

The algorithms will require that the equality on relations is decidable. Therefore, we would
like to establish this property for our category of set theoretic relations. First, we define a
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class that adds a proof of decidability to a Schröder category.

Class EqDec eq Rel ‘(SC : SchroderCategory) := eq dec Rel : forall {a b: Obj} (R S : Mor

a b), {R = S} + {R ăą S}.

The next class adds the decidability of the equality of the cardinality of two relations to a
distributive allegory.

Class EqDecCard ‘(DA : DistributiveAllegory) ‘(OM : OrderedMonoid) (Card : forall (a b

: Obj),Mor a b Ñ A1) := Dec Type : forall {a b: Obj} (R S : Mor a b), {Card R = Card

S} + {Card R ăą Card S}.

Similarly, the next class requires that it is decidable whether the cardinality of one relation
is strictly smaller that the cardinality of another relation.

Class LtDec eq card ‘(DA : DistributiveAllegory) ‘(OM : OrderedMonoid) (Card : forall

(a b : Obj),Mor a b Ñ A1) := lt dec card : forall {a b: Obj} (R S : Mor a b), {Card R@

Card S} + {„(Card R @ Card S)}.

Last but not least, the following class requires that less or equal than on the cardinality of
two relations is decidable.

Class LECard ‘(DA : DistributiveAllegory) ‘(OM : OrderedMonoid) (Card : forall (a b :

Obj),Mor a b Ñ A1) := LE Card Axiom: forall {a b: Obj} (R S : Mor a b), (Card R Ď

Card S) _ (Card S Ď Card R).

In order to show that the equality for finite set theoretic relations is decidable, we imple-
ment a function f indbool that implements equality as a Boolean valued function.

Definition findbool {a b: FNTDType} : Rel a bÑ Rel a bÑ bool := fun R Sñ forallb (fun

p : (a ˚ b)ñ eqb ((prod curry R) p) ((prod curry S) p)) (list prod elements elements).

Using the previous function we can immediately show the next theorem and instantiate the
class EqDec eq Rel from above.

Theorem RelationEqual {a b: FNTDType} (R : Rel a b) (S : Rel a b) : findbool R S = true



CHAPTER 6. RELATIONAL FRAMEWORK 97

ă-ą R = S.

Instance MyRelEqDec eq Rel : EqDec eq Rel MyRelSchroderCategory.

Coq provides two theorems that show the decidability of“ andă on natural numbers called
eq nat decide and lt dec. We use these theorem in the following instance declarations.

Instance MyRelEqDecCard : EqDecCard MyRelDistributiveAllegory myOrderedMonoid

myCard.

Instance MyRelLtDec eq card : LtDec eq card MyRelDistributiveAllegory myOrdered-

Monoid myCard.

In order to provide and instance of the class LECard we use almost same technique as in
the instance declaration MyRelLtDec eq card. It requires just an additional case distinc-
tion.

Instance MyRelLECard : LECard MyRelDistributiveAllegory myOrderedMonoid myCard.



Chapter 7

Implementation of Approximation
Algorithms

Using the framework from the previous chapter we are going to implement each algorithm
in Coq, verify its correctness, and apply it to an example in this chapter.

7.1 Vertex Covers Problem

7.1.1 Abstract Implementation of the Algorithm

In this section, we implemented the recursive version of the algorithm outlined in the in
Section 4.1.3 in Coq. Since all algorithms in Coq have to terminate we first have to estab-
lish this property by requiring an adequate category of relations.

We have decided to list those requirements by defining variables or parameters of the Coq
module that provide the corresponding property. In the following we have listed the essen-
tial requirements. For a full list we refer to the Coq implementation.

Variable SC : SchroderCategory HC BA.

Variable TR : TarskiRule SC.

Variable hU : hasUnit HC one.

Variable Card : forall {a b : Obj}, Mor a bÑ A1.

Variable hC : hasCardinality DA OM Card.

Variable hA : hasAtom HC (@atom).

Variable eqDec : EqDec eq Rel SC.

Variable WFR : well founded Relation A.

98
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To summarize the list above we require a Schröder that satisfies the Tarski rule, has a unit,
has a cardinality and atom function, and for which equality is decidable and the order is
well-founded.

The next two lemmas show that each recursive call will use a strictly smaller argument and
that the property of S being symmetric is preserved.

Lemma Decreasing : forall {a : Obj} (S e: Mor a a), S ˘ = SÑ S ăą ZeroÑ e = edge hA

SÑ S [ ((e 0 One) \ (One 0 e)) „@ S.

Lemma SymPreserved : forall {a : Obj} (S e: Mor a a), S ˘ = S Ñ e = edge hA S Ñ (S [

(e 0 One \ One 0 e)„) ˘ = S [ (e 0 One \ One 0 e)„.

The following code implements the algorithm in Coq. Please note that we use the two lem-
mas above as parameters of Fix in order to guarantee termination.

Definition vertexCover {a : Obj} (S : Mor a a) : S ˘ = SÑ Mor a one :=

Fix (WFR a a) (fun (S : Mor a a)ñ S ˘ = SÑ Mor a one)

(fun (S : Mor a a)

(vertexCover : forall R : Mor a a, R @ SÑ R ˘ = RÑ Mor a one)

ñ match eqDec S Zero with

| left ñ fun ñ Zero

| right nñ fun symñ let e := edge hA S in

let S’ := S [ (e 0 One \ One 0 e)„in

(e 0 One) \ vertexCover S’ (Decreasing S e sym n (eq refl e))

(SymPreserved S e sym (eq refl e))

end ) S.

Please note that if all information and parameters concerning termination is removed from
the code we obtain exactly the recursive algorithm from Section 4.1.3.

After proving some auxiliary lemmas we prove the following theorem which is the Coq
analog of Theorem 4.1.5, i.e., proving the correctness of the algorithm.

Theorem approxVC {a : Obj} (R : Mor a a): forall (c : Mor a one) (p : R ˘ = R), c =



CHAPTER 7. IMPLEMENTATION OF APPROXIMATION ALGORITHMS 100

vertexCover R p Ñ R Ď c 0 One \ (c 0 One) ˘ ^ forall (d : Mor a one), R Ď d 0 One \ (d

0 One) ˘ Ñ Card c Ď nmult 2 (Card d).

In order to prove this theorem, we use well f ounded induction as discussed in Chapter 5.

7.1.2 Example

In this section, we implement Example 4.1.2. First, we define a simple enumeration type
Nodes in Coq with elements a, . . . , h. This data type will serve as the set of nodes of the
graph. Then we create an instance of the class FNT DType based on Nodes. Last but not
least, we define the graph as a relation G. For details of those definitions we refer to the
Coq implementation. The following Figure 7.1 represent graph G.

Figure 7.1: Example of Graph

We have to verify that G is indeed symmetric in order to satisfy the pre-condition of the
vertex cover algorithm.

Lemma GraphIssymmetric : Converse Rel G = G.

In the next step we have to refine our abstract algorithm to the concrete category of finite
set theoretic relations by instantiating each parameter of the module appropriately. Then
we can call the algorithm. Figure 7.2 shows the instantiation of the parameters and also the
output for our example.



CHAPTER 7. IMPLEMENTATION OF APPROXIMATION ALGORITHMS 101

Figure 7.2: Implementation and Output of Vertex Cover

The first call returns the vertex cover as list representation of the vector. The second call
simply returns the vertex cover as a list.
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7.2 Hitting Sets

7.2.1 Abstract Implementation of the Algorithm

The relational algorithm that we use for the hitting sets problem takes exactly the same pa-
rameters as the algorithm that we use for vertex cover. Similar to the vertex cover problem,
we need to prove that our program will terminate. Therefore we proved Lemma 4.2.1, and
we do not need to show any additional properties as for the previous algorithm since the
precondition is not related to any relation of the recursive call. First we show the termina-
tion lemma and then we define the algorithm.

Lemma Decreasing HS : forall {a b: Obj} (s P: Mor b one) (I: Mor a b), id Ď I ˘ 0 I Ñ s

ăą ZeroÑ P = @atom sÑ s [ (I ˘ 0 I 0 P) „@ s.

Definition hittingSets’ {a b: Obj} (I : Mor a b) (surj : id Ď I ˘ 0 I) (c : Mor a one) (s : Mor

b one) : Mor a one :=

Fix (WFR b one) (fun ñ Mor a oneÑ Mor a one)

(fun (s : Mor b one)

(hittingSets : forall (s’ : Mor b one), s’ @ sÑ Mor a oneÑ Mor a one)

ñ match eqDec s Zero with

| left ñ fun cñ c

| right nñ fun cñ

let p := @atom b one s in

let s’ := s [ (I ˘ 0 I 0 p)„in

hittingSets s’ (Decreasing HS s p I surj n (eq refl p)) (c [ I 0 p)

end) s c.

Definition hittingSets {a b: Obj} (I : Mor a b) (surj : id Ď I ˘ 0 I) : Mor a one := hittingSets’

I surj Zero One.

Similar to the previous algorithm, we will get exactly the algorithm presented in Section
4.2 if we remove all information and parameters regarding termination.

In order to prove the correctness of the program, we needed to prove Theorem 4.2.5 and
4.2.6 in Coq. We used one auxiliary lemma to prove those theorems. The declaration of
that lemma and the theorems in Coq is given below:
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Lemma hittingSets’ eq {a b: Obj} (I : Mor a b) (surj : id Ď I ˘ 0 I) : forall (c : Mor a one)

(s : Mor b one), hittingSets’ I surj c s = if eqDec b one s Zero then c else hittingSets’ I surj

(c \ I 0@atom b one s) (s [ (I ˘ 0 I 0@atom b one s)„).

Theorem approxHS PartA {a b: Obj} (I : Mor a b) (surj : id Ď I ˘ 0 I) (k :nat) (preK :

forall (p : Mor b one), injective p Ñ Card a one (I 0 p) Ď nmult k (Card one one id)):

forall (s : Mor b one) (c : Mor a one), s„Ď I ˘ 0 c Ñ (forall (d : Mor a one), (I ˘ 0
I 0 s)„Ď I ˘ 0 d Ñ Card c Ď nmult k (Card d)) Ñ let c’ := hittingSets’ I surj c s

in One = I ˘ 0 c’^ forall (d : Mor a one), One Ď I ˘ 0 dÑ Card c’ Ď nmult k (Card d).

Theorem approxHS {a b: Obj} (I : Mor a b) (surj : id Ď I ˘ 0 I) (k :nat) (preK : forall (p

: Mor b one), injective p Ñ Card a one (I 0 p) Ď nmult k (Card one one id)) : let c :=

hittingSets I surj in One = I ˘ 0 c ^ forall (d : Mor a one), One Ď I ˘ 0 d Ñ Card c Ď

nmult k (Card d).

7.2.2 Example

In this section, we apply our approximation algorithm to a concrete hypergraph. The re-
lation I is of type X Ñ E for a graph G “ pX, Eq. So we need to define a data type for
both nodes and edges. In our example we have a set of Nodes with elements N0, . . . ,N3
and a set of Edge with elements E0, . . . , E2. After that we needed a create a instance of
FNT DType based on Nodes and Edge. Similar to the previous example we define the
graph by its incident relation that we have called G. The following Figure 7.3 is the graph
representation of our graph G.

Figure 7.3: Example of Hyper Graph
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In order to satisfy the pre-condition for the hitting set algorithm we need to prove our G is
injective.

Lemma GraphIsInjective : ID Rel Ď Comp Rel (Converse Rel G) G.

The following Figure 7.4 shows the instantiation of parameters and output of our example.

Figure 7.4: Declaration and Output of Hitting Sets
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7.3 Maximum Independent Sets

7.3.1 Abstract Implementation of the Algorithm

The recursive call of the relational algorithm that we discuss in Section 4.3 is different from
the vertex cover and hitting sets examples. In this case we call the function recursively until
the relation is equal to the universal relation. Therefore we need to verify that the increasing
order, i.e., the reversed inclusion order, is well-founded. As before we add the requirement
by assuming a variable that contains a proof of this fact. All other variables are the same
as for the previous two algorithms.

Variable WFR GR : well founded Relation gr A.

Now we state Lemma 4.3.1 that shows the termination of the recursion. This lemma is used
to implement the relational algorithm for maximum independent sets.

Lemma Increasing MIS : forall {a : Obj} (v p: Mor a one) (R: Mor a a), v ăą One Ñ p =

@atom (v„)Ñ v \ p \ (R 0 p) A v.

Definition maxIS’ {a : Obj} (R : Mor a a) (s v: Mor a one) : Mor a one :=

Fix (WFR GR a one) (fun ñ Mor a oneÑ Mor a one)

(fun (v : Mor a one)

(maxIS’ : forall (v’ : Mor a one), v’ A vÑ Mor a oneÑ Mor a one)

ñ match eqDec v One with

| left ñ fun sñ s

| right nñ fun sñ

let p := @atom a one (v„) in

let v’ := v \ p \ (R 0 p) in

maxIS’ v’ (Increasing MIS v p R n (eq refl p)) (s \ p)

end) v s.

Definition maxIS {a : Obj} (R : Mor a a) : Mor a one := maxIS’ R Zero Zero.

The procedure for proving the correctness of the algorithm is similar to Hitting sets.

Lemma maxIS’ eq {a : Obj} (R : Mor a a) : forall (s v : Mor a one), maxIS’ R s v = if

eqDec a one v One then s else maxIS’ R (s \ @atom a one (v„)) (v \ (@atom a one (v„))
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\ (R 0 (@atom a one (v„)))).

Theorem approxmaxIS’ PartA {a : Obj} (R : Mor a a) (sym : R ˘ = R) (preR : R Ď id„) (k

: nat) (preK : forall (p : Mor a one), injective pÑ Card a one (R 0 p) Ď nmult k (Card one

one id)): forall (v : Mor a one) (s : Mor a one), R 0 s Ď s„Ñ R 0 s \ s = v Ñ (forall (t :

Mor a one), t Ď v ^ R 0 t Ď t„Ñ Card t Ď nmult (k + 1) (Card s))Ñ let s’ := maxIS’

R s v in (R 0 s’ Ď (s’)„) ^ forall (t : Mor a one), (R 0 t Ď t„) Ñ Card t Ď nmult (k + 1)

(Card s’).

Theorem approxmaxIS {a : Obj} (R : Mor a a) (sym : R ˘ = R) (preR : R Ď id„) (k : nat)

(preK : forall (p : Mor a one), injective p Ñ Card a one (R 0 p) Ď nmult k (Card one one

id)): let s := maxIS R in (R 0 s Ď (s)„) ^ forall (t : Mor a one), (R 0 t Ď t„)Ñ Card t Ď

nmult (k + 1) (Card s).

7.3.2 Example

We apply the relational algorithm for maximum independent sets to the same graph that we
used in the example of vertex covers. The following Figure 7.5 shows the implementation
and output of this algorithm. For this graph the output is re; c; as
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Figure 7.5: Declaration and Output of Maximum Independent Sets
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7.4 Maximum Cuts

7.4.1 Abstract Implementation of the Algorithm

According to the relational algorithm for the maximum cut problem that we discuss in
Chapter 4, we need to declare variables to reflect the assumptions that the equality, the
smaller or equal relation, and the strictly smaller relation on cardinalities is decidable. We
also need to prove Lemma 4.4.1 showing termination of the recursion.

Variable LtDecCard : LtDec eq card DA OM Card.

Variable LeRelationCard : LECard DA OM Card.

Variable eqDecCard : EqDecCard DA OM Card.

Lemma Decreasing MaxCut : forall {a : Obj} (v p : Mor a one), v ăą ZeroÑ p = @atom

vÑ v [ p „@ v.

Similar to hitting sets and maximum independent sets we do not need to prove any other
properties for declaring the algorithm for maximum cuts. The following is the exact imple-
mentation of Section 4.4.

Definition maxCut’ {a : Obj} (R : Mor a a) (v s t: Mor a one) : Mor a one :=

Fix (WFR a one) (fun ñ Mor a oneÑ Mor a oneÑ Mor a one)

(fun (v : Mor a one)

(maxCut’ : forall (v’ : Mor a one), v’ @ vÑMor a oneÑMor a oneÑMor a one)

ñ match eqDec v Zero with

| left ñ fun s tñ s

| right nñ fun s tñ

let p := @atom a one v in

let v’ := v [ p„in

if (LtDecCard ((R 0 p) [ s) ((R 0 p) [ t))

then maxCut’ v’ (Decreasing MaxCut v p n (eq refl p)) (s \ p) t

else maxCut’ v’ (Decreasing MaxCut v p n (eq refl p)) s (t \ p)

end) v s t.

Definition maxCut {a : Obj} (R : Mor a a) : Mor a one := maxCut’ R One Zero Zero.
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A similar technique is used to prove Lemma 4.4.5 and 4.4.6 show the correctness of this
algorithm.

Lemma maxCut’ eq {a : Obj} (R : Mor a a) : forall (v s t: Mor a one), maxCut’ R v s t

= if eqDec a one v Zero then s else (if (LtDecCard ((R 0 (@atom a one v)) [ s) ((R 0

(@atom a one v)) [ t)) then maxCut’ R (v [ (@atom a one v)„) (s \ (@atom a one v)) t

else maxCut’ R (v [ (@atom a one v)„) s (t \ (@atom a one v))).

Theorem approxmaxCut’ PartA {a : Obj} (R : Mor a a) (sym : R ˘ = R) (preR : R Ď id„) :

forall (v : Mor a one) (s t : Mor a one), s [ t = ZeroÑ s \ t = v„Ñ Card (R [ ((s 0 s ˘
) \ (t 0 t ˘ ))) Ď Card (R [ ((s 0 t ˘ ) \ (t 0 s ˘ )))Ñ let s’ := maxCut’ R v s t in forall (c :

Mor a one), Card (R [ ((c 0 (c„) ˘ ) \ (c„0 c ˘ ))) Ď nmult 2 (Card (R [ ((s’ 0 (s’„) ˘
) \ (s’„ s’ ˘ )))).

Theorem approxmaxCut {a : Obj} (R : Mor a a) (sym : R ˘ = R) (preR : R Ď id„) : let s’

:= maxCut’ R One Zero Zero in forall (c : Mor a one), Card (R [ ((c 0 (c„) ˘ ) \ (c„0 c

˘ ))) Ď nmult 2 (Card (R [ ((s’ 0 (s’„) ˘ ) \ (s’„0 s’ ˘ )))).

7.4.2 Example

Similar to the maximum independent set example we do not need to prove any special
properties for the implementation of the relational algorithm for the maximum cut prob-
lem. Again, we use the same graph as in the vertex cover example. Implementation and
output for this example shown in the following Figure 7.6. The output for this graph is
rh; g; f ; d; bs.
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Figure 7.6: Declaration and Output of Maximum Cuts



Chapter 8

Conclusion and Future Work

In this thesis, we have presented a framework for implementing approximation algorithms
based on different kinds of allegories. We also proved that set theoretic relations between
finite sets together with their usual cardinality form a model of these theories. Several
decidability properties and features of well-founded relations have been defined in order
to construct a comprehensive framework followed by proving that finite relations satisfy
these properties as well. We have also shown that the relational version of four approxi-
mation algorithms are logically correct. Finally, we provided an example of each algorithm.

This framework also can be used for specifying, reasoning and implementing applications
based on different relations such as L-Fuzzy relations. By implementing several algorithms,
we show that this framework is suitable to bridge between specification and implementa-
tion. We believe that this project is a significant contribution on an interactive proof assis-
tant for software development and verification. It also promotes the usages of functional
programming languages.

Future work will focus on implementing other approximation algorithms using this frame-
work. The framework could also be extended by adding other structure and properties
known in the theory of relations such as arrow categories, representation theorems, and
relational modelling of processes. Another potential project could focus on implementing
specialized tactics for relational structures. This would allow a user to prove properties
about relations more conveniently. Most proofs in the framework so far are based on ap-
plying a small set of tactics. Adding sophisticated new tactics for relations would add a
significant degree of automation.
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[16] Schmidt, G., and Ströhlein, T.: Relations und Graphs. EATCS Monographs on
Theoret. Comput. Sci. (1993).

[17] Tarski, A., and Givant, S.: A Formalization of Set Theory without Variables.
Colloquium Publications 41, American Mathematical Society (1987).

[18] Wei, V. K.: A Lower Bound for the Stability Number of a Simple Graph. Bell Lab.
Tech. Memor. 81-11217-9 (1981).

[19] Winter, M.: Goguen Categories – A Categorical Approach to L-fuzzy Relations.
Trends in Logic 25 (2007).

[20] The Coq Proof Assistant. 25 Sep. 2017. https:coq.inria.fr/

[21] Functional Extensionality. 25 Sep. 2017. https:
coq.inria.fr/library/Coq.Logic.FunctionalExtensionality.html

[22] Well Founded Recursion. 25 Sep. 2017.
http://adam.chlipala.net/cpdt/html/Cpdt.GeneralRec.html/

[23] Relational Algebra and KAT in Coq. 25 Sep. 2017.
http://perso.ens-lyon.fr/damien.pous/ra/

https:coq.inria.fr/
https:coq.inria.fr/library/Coq.Logic.FunctionalExtensionality.html
https:coq.inria.fr/library/Coq.Logic.FunctionalExtensionality.html
http://adam.chlipala.net/cpdt/html/Cpdt.GeneralRec.html/
http://perso.ens-lyon.fr/damien.pous/ra/

	Introduction
	Preliminaries
	Partially-Ordered Sets
	Upper and Lower Bounds
	Greatest and Least Element
	Join and Meet
	Upper and Lower Semilattices

	Lattices
	Distributive Lattice
	Bounded Lattice

	Heyting Algebras
	Boolean Algebras
	Set-theoretic Relations
	Matrix Representation
	Basic operations
	Converse Relation
	Identity Relation
	Composition of Relations


	Categories and Allegories
	Category Theory
	Allegories
	Distributive Allegories
	Division Allegories
	Heyting Categories
	Schröder Categories
	Unit Object
	Cardinality of Relations
	Direct Product
	Projections
	Algebraic Properties of the Projection Relations

	Direct Sum
	Injections
	Algebraic Properties of Injection Relations

	Relational Atoms and Edges

	Approximation Algorithms
	Vertex Cover
	Pseudo Code of Approximation Algorithm for the Vertex Cover Problem
	Example
	Algorithm for the Minimum Vertex Cover Problem

	Adaption to Hitting Sets
	Maximum Independent Sets
	Relational Approximation of Maximum Independent Sets

	Maximum Cut
	Relational Approximation of Maximum Cuts


	The Coq Proof Assistant
	Set, Prop and Type
	Proofs and Tactics
	Classes
	Functions
	Fixpoint

	Infix Operators
	Prop vs. bool 
	Well-Founded Recursion

	Relational Framework
	Implementation of Lattices
	Order-theoretic Definition of Lattices
	Algebraic Definition of Lattices
	Equivalence of the two Definitions
	Distributive Lattices
	Declaration of Bounded Lattice
	Heyting algbera
	Boolean Algebras
	Binary Relation

	Categories and Allegories
	Categories
	Allegories
	The Category and Allegory of Binary Relations

	Implementation of Distributive Allegories
	The Distributive Allegory of Binary Relations

	Implementation of Division Allegories
	The Division Allegory of Binary Relations

	Implementation of Heyting Categories
	The Heyting Category of Binary Relations

	Implementation of Schröder Categories
	The Schröder Category of Binary Relations

	Implementation of a Unit
	The Unit Object of Binary Relations

	Implementation of Cardinality Functions
	The Cardinality of Binary Relations

	Implementation of Atom and Edge
	Implementation of Atoms for Binary Relations

	Implementation of Direct Products
	The Direct Product for Binary Relations

	Implementation of Direct Sum
	The Direct Sum for Binary Relations

	Well-Founded Inclusion Order of Relations
	Well-Founded Inclusion Order of Binary Relations

	Decidability of Equality of Relations

	Implementation of Approximation Algorithms
	Vertex Covers Problem
	Abstract Implementation of the Algorithm
	Example

	Hitting Sets
	Abstract Implementation of the Algorithm
	Example

	Maximum Independent Sets
	Abstract Implementation of the Algorithm
	Example

	Maximum Cuts
	Abstract Implementation of the Algorithm
	Example


	Conclusion and Future Work

