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Abstract 

This study examined whether fluctuations in training load during an Olympic year lead to 

changes in mineral properties and factors that regulate bone (sclerostin (SOST), 

osteoprotegerin (OPG)), and receptor activator of nuclear factor kappa-B ligand 

(RANKL)) and energy metabolism (insulin-like growth factor-1 (IGF-1) and leptin), and 

inflammation (tumor necrosis factor-α (TNF-α)) in elite heavyweight female rowers. 

Blood samples were drawn from female heavy-weight rowers (n=15) (27.0±0.8y, 

80.9±1.3 kg, 179.4±1.4 cm) at baseline (T1 – 45 weeks pre-Olympic Games) and 

following 7, 9, 20, 25 and 42 weeks (T1-6, respectively). Serum was analyzed by 

Multiplex assays (EMD Millipore, Toronto, CAN). Total weekly training load was 

recorded over the weeks prior to each time point. Bone mineral density (BMD) was 

measured by dual energy X-ray absorptiometry at T1 and T6. Total BMD increased 

significantly pre- to post-training (+1.6%). OPG, IGF-1, and leptin were not different 

across all time points. OPG/RANKL was significantly higher at both T4 and 5 compared 

to T1 and 2. High training load (T5) was associated with the highest TNF-α levels (2.1 

pg/ml), and a parallel increase in SOST (993.1 pg/ml), while low training load (T6 - 

recovery) was associated with significantly lower TNF-α (1.5 pg/ml) and a parallel 

decrease in SOST (741.0 pg/ml). Leptin was a significant determinant of bone-mineral 

properties in these athletes. These results suggest exercise training can lead to an increase 

in OPG/RANKL, and training load periodization can control the inflammatory response 

associated with intense training, and combined with adequate caloric intake can preserve 

bone mineral integrity in elite female athletes.    
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CHAPTER 1: LITERATURE REVIEW 

 

1.1 Bone 

Bone is a dynamic tissue that provides structural support to the body, and allows for 

locomotion and protection. It also supports the body’s homeostasis, acting as a reservoir 

for minerals, and of course supporting hematopoiesis within the supplying mineral 

marrow space [1]. There are 4 general categories of bone; long, short, flat and irregular 

bones. Within each category of bone there are anatomical differences. These differences 

involve changes in the amount of cortical and trabecular bone.  

Cortical bone is dense, solid and surrounds the marrow space. In contrast, 

trabecular bone is a meshwork of bone interspersed in the bone marrow compartment and 

is mainly present in the vertebrae, pelvis and metaphysis of long bone. Trabecular bone 

makes up ~20% of the adult skeleton and tends to be more metabolically active than 

cortical bone, which makes up ~80% of the adult skeleton [1]. However, there are 

specific bones that have varying make-ups of bone types. For example, vertebrae 

(irregular bone), femoral head (long bone) and radial diaphysis are composed of 25:75, 

50:50, and 95:5 cortical to trabecular bone respectively [1].  

1.2 Bone Turnover 

Bone turnover is a continual process of bone formation and resorption that leads to 

healthy and stable bone [2]. Metabolic disorders like osteoporosis and Paget’s disease are 

characterized by a low bone mineral density (BMD) and changes in the microarchitecture 

of bone, and high fragility and risk of stress fractures because of a misbalance of whole 

body bone turnover (negative turnover balance). A negative turnover balance is 
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characterized by a push towards an increase in bone resorption and/or a decrease in bone 

formation, which ultimately leads to alterations in bone remodelling and thus a lower 

BMD [3].  

Bone turnover determines the quality and quantity of bone [2]. This is the process 

of resorbing old damaged bone and forming new bone. This continual process maintains 

bone strength and mineral homeostasis, and is accomplished by removal of discrete 

packets of old bone (i.e., bone resorption), and replacement of these packets with newly 

synthesized proteinaceous matrix, and subsequent mineralization of the matrix to form 

new bone (i.e., bone formation).  

1.2.1 Cells involved in bone remodeling 

The bone remodeling process can be simplified to the relationship/balance of the cells 

that form bone and cells that resorb bone. Osteoblasts are derived from pluripotential 

mesenchymal stem cells from bone marrow and form bone. Osteoclasts are derived from 

circulating hematopoietic monocyte precursors and resorb bone [4]. These cells 

communicate through various pathways and their activity is tightly regulated to maintain 

adequate bone integrity and mass. Bone remodeling is conducted by osteoclasts and 

osteoblasts that are tightly coupled and are involved in a sequential cycle involving: 1) 

Activation. 2) Resorption, 3) Reversal, and 4) Formation [1].  

1.2.2 Osteoclasts 

Osteoclasts are multinucleated cells that require two factors for activation (i.e., 

osteoclastogenesis) that are depicted in Figure 1. These two factors include macrophage-

colony stimulating factor (M-CSF), which signals through its receptor Fms [5], and 

receptor activator of NF-kβ ligand (RANKL), which signals through its receptor (RANK) 
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[6]. Furthermore, the downstream intracellular signalling effectors of M-CSF and 

RANKL; TNF receptor associated factor 6 (TRAF6) [7], activator protein 1 (AP-1) [8], 

nuclear factor-kβ (NF-kβ) [9], and nuclear factor of activated t-cells (NFAT) [10] have 

also been shown to be essential for osteoclastogenesis to occur. Specifically, knockout 

models, or in vitro inhibition of these effectors result in the inhibition of progression of 

pre-osteoclasts through the stages of differentiation. For example, the absence of these 

effector cells halts the progression to tartrate resistant acid phosphatase-positive (TRAP) 

multinucleated cells that express the receptor for M-CSF, which takes approximately 3 

days in vitro. Furthermore, factors like tumor necrosis factor α (TNF-α) can induce an 

increase in osteoclastogenesis by increasing the expression of RANKL or M-CSF.  

 
 

Figure 1. Regulation of osteoclastogenesis. M-CSF and RANKL signalling are critical 

for the progression from a hematopoietic stem cell to a mature multi-nucleated osteoclast. 

As osteoclast matures it becomes able to produce and secrete enzymes (TRAP) and 

factors that break down bone. M-CSF=macrophage colony-stimulating factor, C-

Fms=colony stimulating factor receptor 
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Activation of resorption involves: recruitment and activation of mononuclear monocyte-

macrophage osteoclast precursors, lifting of the endosteum that contains bone lining cells, 

and attachment of mononucleated osteoclast precursors to bone matrix, which 

subsequently become multinucleated preosteoclasts [1]. Resorption takes ~2-4wks during 

each cycle while the process of bone formation proceeds resorption and takes 

approximately 4-6 months [11]. Reversal involves the transition from bone resorption to 

bone formation.  

1.2.3 Osteoblasts 
 

 

Figure 2. Regulation of osteoblastogenesis. Wnt signalling regulates the increase in 

osteoblastogensis through the increase in production of RUNX2 and OSX transcription 

factors. Upon progression from a mesenchymal stem cell, the osteoblast matures and 

becomes able to produce factors (BAP and OC) that lead to increase bone formation. 

OSX=osterix, BAP=bone alkaline phosphatase, OC=osteocalcin. 
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Bone formation involves synthesis of collagenous matrix by osteoblasts. Matrix is 

regulated by osteoblasts, which release membrane bound vesicles that concentrate 

calcium and phosphate and enzymatically destroy inhibitors of mineralization, where the 

matrix that has filled the resorbing pits will go on to mineralize and form new bone [12]. 

Mesenchymal stem cells are precursors of osteoblasts and are located within the bone 

marrow. In vitro, these cells can be differentiated into osteogenic, chondrogenic and 

adipogenic lineages [13]. The Wnt/β-catenin signalling has been shown to regulate 

osteoblastogenesis (Figure 2) and will be discussed further below. Osteoblasts that are in 

the newly formed matrix become osteocytes that have an extensive canalicular network 

connecting them to the bone surface osteoblasts. However, approximately 50-70% of 

osteoblasts that form new bone undergo apoptosis, while the remaining 50-30% turn into 

osteocytes or into bone-lining cells [14].  

1.2.4 Osteocytes 

Osteocytes account for 90-95% of all adult bone cells and can live up to a decade within 

mineralized bone matrix [15]. Their location within bone matrix is likely critical for their 

development into osteocytes from osteoblasts [16], and once within mineralizing bone 

they act as sensors to changes in mechanical load/stimuli (i.e., exercise) [17]. These 

mechanosensory cells can modulate osteoclast activity as well by expressing and 

secreting RANKL on their dendritic processes [18]. Osteocytes can also increase 

osteoblast differentiation, as seen with the treatment of mesenchymal stem cells with 

medium from osteocytes in vitro (MLO-Y4) [19]. Evidence of osteocytes regulation of 

both osteoclastogenesis and osteoblastoglenesis suggests that they are important in the 

regulation of bone remodeling in general. Also, more recently there is evidence of 
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osteocytes mineralizing bone within their canicular network [20]. Osteocytes also highly 

express Wnt negative regulators sclerostin (SOST) and dickkopf-related protein 1 (DKK-

1), which supplies further evidence of their role in regulating bone remodeling [15].  

1.3 Serum markers of bone remodelling  

Recently there has been extensive assessment and characterization of cellular and 

extracellular factors of the skeletal matrix associated with bone formation and resorption 

[21]. These factors are a practical therapeutic tool for assessing bone metabolism. Serum 

bone formation markers include bone alkaline phosphatase (BAP), osteocalcin (OC) and 

P1NP, bone resorption markers include products of type 1 collagen degradation (PYD, 

DPD, CTX, and NTX) and an enzyme secreted by osteoclasts (TRAP) have been used. 

These markers of bone turnover are more sensitive to changes in bone metabolism and 

can be used to monitor/diagnose metabolic bone diseases more effectively when 

compared to measurements of BMD (i.e., dual energy x-ray absorptiometry (DXA)), as 

BMD takes months to years to have measurable changes to occur [21]. However, it is 

important to understand that changes in these formation or resorption markers explain the 

activity of either osteoblasts or osteoclasts in a specific moment in time, and do not 

explain what is leading to the change in activity or bone remodelling.  

1.3.1 Formation Markers 

Tissue non-specific alkaline phosphatase (AP) is a membrane bound isoenzyme secreted 

by liver, kidney and bone. Bone specific AP (BAP) is secreted by osteoblasts and makes 

up ~50% of total serum AP [22]. BAP’s mechanism of action in bone remains unclear, 

however there is strong evidence that BAP hydrolyzes the mineralization inhibitor PPi to 
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allow for mineralization and growth, as well as provides inorganic phosphate to promote 

mineralization [23, 24]. Specifically, in homozygous BAP knockout in vitro and in vivo 

models there is no initialization of mineralization by osteoblasts and an increase in 

mineralization inhibitor, suggesting BAP is required for mineralization and the 

prevention of inhibition of mineralization [25, 26]. BAP has been extensively studied as a 

serum marker of bone formation with the use of bone specific immunoassays. It appears 

that there is little effect of food, stability, half-life and intra-individual variability on BAP 

levels. However, the limitation of this marker is that there is cross-reactivity with liver 

isoforms [27].  

 Osteocalcin (OC) is a noncollagenous protein secreted by differentiated 

osteoblasts and is the most abundant protein of the bone matrix [28, 29]. OC contains 3 

residues of gamma-carboxyglutamic acid, which can be post-translationally modified by 

being carboxylated [28]. Carboxylation is vitamin K dependent and determines calcium 

binding properties of OC. OC has been established as both a marker of formation and 

resorption and is released during both processes. Early research suggests a role in osteoid 

mineralization, because OC is mainly expressed during bone formation. However, 

analysis of OC knockout murine models shows increased cortical and trabecular 

thickness and increased bone rigidity [30]. These results are conflicting and suggest a 

potential negative feedback mechanism of OC. OC also appears to be regulated by 

25(OH)D, renal function, menstrual phase and circadian variability [27].  Procollagen 

type 1 carboxy and amino terminal propeptide (P1CP and P1NP) are derived from 

extracellular cleavage of type-1 collagen by proteases during formation [31]. P1NP is the 

most accepted bone formation marker and marker of proliferating osteoblasts, however 
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type 1 collagen is not specific to bone, and therefore peripheral levels may not reflect 

dynamic changes in bone formation [27].   

1.3.2 Resorption Markers  

Carboxy and amino terminal cross-linked telopeptides of type 1 collagen (CTX and 

NTX) are derived from extracellular degradation by proteases (cathepsin K) during bone 

resorption [31]. These markers have variation in levels following food intake and NTX is 

the most reliable bone resorption marker. Deoxypyridinoline and pyridinoline (DPD and 

PYD) are products of type I collagen breakdown, which are released into circulation in a 

free or bound state. These pyridinium crosslinks therefore represent bone resorption [32]. 

These markers are assessed in urine and need to be corrected to creatinine levels, and 

they have high circadian variation and depend on liver function as well [27].  

Tartrate resistant acid phosphatase-isoform 5b (TRAP) is an enzyme that cleaves 

type I collagen into fragments and is secreted by osteoclasts into circulation during bone 

resorption and reflects osteoclast differentiation [33]. Serum levels appear to be affected 

by acute exercise, circadian rhythm and are unstable at room temperature. Cathepsin K is 

a cysteine protease that is present in the outer membrane of actively resorbing osteoclasts 

and cleaves telopeptides and helical regions of type I collagen [33].  

1.4 Tumor Necrosis Factor-Alpha effect on bone remodelling 

Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine that is involved in 

both systemic and local inflammation. TNF-α is ubiquitously expressed in most cell 

types, including lymphoid cells, mast cells, endothelial cells, fibroblasts and neuronal 

cells, however it is mainly produced by macrophages [34]. TNF-receptor1 is 
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constitutively expressed in most tissues, and TNF-α can effect intracellular signalling in 

the majority of cell types [34].  

 TNF-α is associated with chronic inflammatory bone diseases, such as rheumatoid 

arthritis, post-menopausal osteoporosis, periodontal disease and aseptic periprosthetic 

bone resorption [35].  TNF-α has been shown to induce apoptosis of osteoblasts in vitro, 

and increase RANKL expression in osteoblasts and stromal cells [36, 37], ultimately 

leading to inhibited bone formation and increased osteoclastogenesis [38]. In vitro studies 

have shown that TNF-α can induce osteoclastogenesis, however when pre-osteoclasts 

were cultured with OPG and TNF-α, there was an increase in osteoclastogenesis 

independent of RANKL/RANK by increasing M-CSF [39]. Thus, TNF-α increases bone 

resorption through the increase in osteoclast activity, and decreases formation through 

osteoblast apoptosis. Furthermore, Kim et al. 2012 highlighted a relationship between 

TNF-α and bone when they found an increase in SOST expression, a negative regulator 

on Wnt/β-catenin signalling, in mice with low estrogen while SOST expression was 

inhibited when a TNF-α blocker was administered [40]. Also, when TNF-α is 

administered to cultured fibroblast-like synoviocytes from synovial tissue of rheumatoid 

arthritis patients there is a distinct increase in expression of SOST. Furthermore, when 

mice over-express recombinant  human TNF-α there is SOST expression present in 

fibroblast-like synoviocytes, whereas WT mice fibroblast-like synoviocytes do not 

express SOST [41], which suggests an indirect role of TNF-α can induce SOST 

expression in vivo and in vitro.  
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1.5 Insulin Like Growth Factor-1 

Insulin like growth factor 1 (IGF-1) operates through a homologous receptor tyrosine 

kinase that regulates cell metabolism, differentiation, proliferation, and protection against 

apoptosis [42, 43]. Cell signalling networks associated with the receptor tyrosine kinase 

include phosphatidylinositol 3-kinase (PI3K)/Akt and Ras/extracellular signal-regulated 

kinase (ERK), and together these cascades mediate the actions of IGF-1 [44]. The 

majority (70-80%) of IGF-1 circulates in a 150-kDa complex composed of IGF-1, IGF- 

binding protein 3 (IGFBP-3), and the acid labile subunit (ALS) [45]. This complex 

preserves the half-life of IGF-1 and facilitates their endocrine action by inhibiting 

secretion into extravascular compartments. Hepatocytes produce the majority of IGF-1, 

however all tissues express IGF-1 [46].  

 Serum levels of IGF-1 are mostly the product of the liver. In murine models, 

when hepatic IGF-1 production is ablated through out the lifespan there is a 70% 

decrease in circulating IGF-1, increased growth hormone (GH) levels, and increased liver 

GH signalling (STAT5B phosphorylation) [47]. These changes are associated with 

increased liver inflammation, oxidative damage, and despite the increase in GH, the 

decrease in IGF-1 is thought to lead to compromised skeletal integrity, and accelerated 

bone loss [47].  

 Studies analyzing murine models of IGF-1R/IGF-1 gene knock outs have shown 

that IGF-1 receptor haploinsufficiency in a female mouse model (IGF-1R(+/-)) leads to 

inhibited osteoblast differentiation and decreased femoral and calvariae BMD. Reduced 

IGF-1 also resulted in significant reduction in Osx and Runx2 when compared to wild 

types [48], which suggests an implication of altered IGF-1 signalling in osteopenia. 

Furthermore, IGF-1 has been shown to inhibit glycogen synthase kinase-3 (GSK3) by 
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increased PI3K and Ras/ERK intracellular signalling [49], which suggests cross talk 

between IGF-1 signalling and Wnt/β-catenin signalling.  Wnt/β-catenin signalling will be 

discussed in detail below.  

1.6 Leptin 

Leptin is a 167-amino acid protein product of the ob gene [50] expressed primarily in 

adipose tissue, however has been recently shown to be produced in placenta, ovaries, 

skeletal muscle and the stomach [50]. Leptin receptor is located ubiquitously and is a 

member of the class I cytokine receptor family [51]. Circulating leptin levels have been 

shown to represent the relative number of adipocytes in normal weight and obese 

individuals, and therefore, body fat [52] and body mass index [53]. Leptin acts through 

receptors located centrally, specifically in the hypothalamus and hindbrain, and 

peripherally in skeletal muscle, bone, and cartilage [54]. There is indirect evidence of 

leptin’s role in bone metabolism. Leptin deficient female athletes were found to have an 

increased risk of osteopenia and stress fractures [55]. In addition, long-term administration 

of metreleptin treatments to lean hypoleptinemic women resulted in an increased BMD and 

BMC at the lumbar spine [56].  

1.6.1 Leptin Signaling 

Leptin receptor activation leads to the activation of a receptor-associated janus kinase 

JAK. Leptin acts on the hypothalamus, which leads to the inhibition of transcription 

factors neuropeptide Y and cocaine- amphetamine-related transcript (CART), and 

subsequently inhibits food intake [57]. However, leptin also acts on several peripheral 

tissues, such as bone. Leptin’s actions are mediated through its receptor, and upon 
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binding it dimerizes and can activate several pathways associated with growth and 

survival. These pathways include the janus kinase 2(JAK2)/signal transducer and 

activator of transcription 3 (STAT3), the mitogen-activated protein kinase (MAPK), and 

the PI3K/Akt/mammalian target of rapamycin (mTOR) to name a few [58]. Inactivation 

of these pathways can result in aberrant osteoblast/osteoclast activity and lead to bone 

loss [59, 60]. More recently, leptin has been shown to activate the nuclear kappa-light-

chain-enhancer of activated B cells (NF-kβ) pathway as well [61], which highlights 

differential ways leptin can exert actions on bone metabolism. 

 

 

Figure 3. Leptin signalling’s effect on bone osteoclastogenesis. Leptin acts either 

peripherally or centrally, which have opposing effects on osteoclastogensis. AdrB2R= 

adrenergic beta 2 receptor; LepR = leptin receptor; SNS = sympathetic nervous system; 

CART = cocaine amphetamine regulated transcript.  
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1.6.2 Leptin’s effects on cell signalling in bone 

Leptin replacement therapy in women with leptin deficiency induced by amenorrhea has 

been shown to increase free triiodothyronine, free thyroxine, IGF-1, IGFBP-3, BAP, and 

OC [62], and decrease parathyroid hormone (PTH) and RANKL/OPG after 36 weeks of 

treatment [63] and improved reproductive outcomes, recovery of menstruation, GH, and 

adrenal axes [64]. These changes translate into improved BMC and BMD across 24 months 

of leptin replacement in centrally hypothalamic amenorrhea as well [56]. Figure 3 

compared how the central and peripheral pathways of leptin effect bone. Findings that 

support leptin’s differential effects on bone are highlighted below.   

 Mice with mutations in the ob gene (inhibited leptin production) tend to be obese, 

diabetic, have reduced activity, metabolism and body temperature, and upon administration 

of leptin there is reduced food intake, weight, fat mass and improvement in metabolic rate, 

activity and body temperature [65, 66]. This data suggests an important role of leptin in 

regulating body weight and fat deposition through effects on metabolism and appetite. 

Furthermore, mice deficient in leptin show infertility and inhibited hypothalamic-pituitary 

function [67]. This model also appears to have increased mesenchymal precursor migration 

to adipose tissue from distant organs in order to increase adipogenesis, which can be 

explained by the increased production of TNF-α within adipose tissue [68]. When leptin is 

administered either peripherally or centrally there is a significant decrease in bone marrow 

adipocyte number due to an increase in apoptosis in WT or leptin deficient mice and rats 

compared to vehicle treated controls [69-72]. More recently when leptin was administered 

both peripherally and centrally there was no difference in bone growth between the two 

modes of administration [73]. However, these results appear to be inconsistent with recent 
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findings. Specifically, investigation of the bone microarchitecture of leptin deficient mice 

found these mice having significantly shorter femora, lower femora BMC, BMD, cortical 

thickness, trabecular bone volume, and higher bone marrow adipocyte number when 

compared to lean WT mice [70]. However, this same study showed that leptin deficient 

mice have significantly increased vertebral length, lumbar BMC, BMD, and trabecular 

bone volume compared to lean WT [70]. These results indicate that the axial and 

appendicular skeleton may respond differently to leptin and that there is likely more than 

one pathway regulating leptin’s actions on bone and that central and peripheral leptin may 

have inhibitory or stimulatory effects on bone growth.  

Previous research promotes the hypothesis that leptin inhibits bone formation 

centrally, thus increasing bone loss by the regulation of osteoblast activity through the 

sympathetic nervous system [74]. Specifically, when leptin is administered by 

intracerebroventricular infusion (administered centrally) there is an increased bone loss in 

leptin-deficient and WT mice when compared to controls [74]. Furthermore, when leptin 

is administered centrally into WT mice that have been treated with propranolol, a β-

blocker, for 5 weeks there is no change in bone mass, suggesting a role of the sympathetic 

nervous system in the anti-osteogenic effects observed with central leptin administration 

[75]. Assessment of leptin deficient mice, who have had leptin repletion through 

recombinant adeno-associated virus leptin gene therapy in the hypothalamus with no 

change in peripheral leptin levels, has shown to lead to normalization of the skeletal 

phenotype, as seen with increased femoral length, total bone volume and decreased femoral 

and vertebral cancellous bone volume compared to pre-treatment, vehicle control and WT 

mice [76].  
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In contrast to centrally administered leptin, leptin administered intraperitoneally 

has been shown to significantly increase cortical and trabecular bone mass, as well as total 

bone mass in leptin deficient mice when compared to vehicle treated controls [77]. Leptin 

also regulates OC production, which suggests a direct mechanism of leptin on bone 

metabolism [78]. Furthermore, the identification of adipocytes in bone marrow that secrete 

leptin highlights a route to lead to increased leptin action in the bone micro-environment 

[79]. These results indicate the peripheral leptin pathway increases bone mass, while the 

central leptin pathway leads to lower bone mass.  

1.7 Female rowers and bone 

Healthy female rowers tend to have significantly higher lumbar spine BMD 

compared to a control population [80]. This high BMD in the lumbar spine of competitive 

rowers has been seen to occur in non-elite rowers, where novice male rowers performed 

~10hrs of total training volume/week for 7-months and had a 2.9% increase in lumbar 

spine BMD [81]. This higher BMD is most likely a result to the mechanical loading of 

4.6 times body mass at the lumbar spine, which occurs during a rowing stroke in elite 

female rowers [82].  

 However, there is evidence of no effect on BMD in general and at the lumbar 

spine in particular after 9-months of training in female college-level rowers [83]. The 

training consisted of 2 d/wk resistance training (~60% 1 rep maximum) and 5 d/wk on 

water moderate intensity training. Despite no change in BMD, however, there was a 

significant decrease in 2000m erg times (-18s in post compared to baseline), as well as 

increased lean mass and decreased body fat. The improved performance and body 

composition (baseline body fat of 31% to 27% post season) could be a result of being at a 
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relatively lower level of performance compared to elite athletes at baseline. In another 

study, control (non-rowing college students), novice (3-months experiences) and 

experienced collegiate female rowers (2.2y) were compared at baseline and after a 6-

month competitive season [84]. All rowers trained together, and performed similar 

number of strokes. However, the experienced rowers had significantly faster 2000m, and 

6000m ergometer times, indicating more force production. The experienced group had a 

2.5% increase in spine BMD from pre- to post-competition period when compared to 

novice rowers. Interestingly, novice rowers had a slight decrease in spine BMD, although 

they started off with a 3% higher BMD than experienced rowers. The BMD changes in 

both rowing groups was not different than controls [84]. The similar BMD changes in 

female rowers compared to age matched controls after a training season creates more 

questions concerning the effect high level competitive rowing has on BMD. 

 A systematic review [85] published in 2011 in the Journal of Sports Medicine 

outlined the epidemiology, mechanisms, risk factors and effectiveness of prevention 

strategies for rib stress fractures in rowers. Assessment of 140 journal articles resulted in 

the identification of an 8-16% occurrence of rib stress fractures in elite rowers, and the 

incidence was the same in scullers and sweepers, as well as in males and females. They 

hypothesized based on their findings that the increased risk of stress fractures may be a 

result of low calcium and vitamin D intake, eating disorders in general, or low 

testosterone [85]. They discussed that a higher rate of bone resorption and a lower rate of 

bone formation may be resulting in the increase in fracture, however they did not review 

any studies that measured these factors specifically in rowers. Furthermore, disordered 

eating, menstrual dysfunction, or energy availability may be the reason some researchers 
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observed decreases in BMD or alterations in markers of osteoblast and osteoclast activity, 

however they don’t explain what precedes these changes in bone remodelling. 

1.8 Monitoring serum markers of bone turnover during training 

Understanding the response of BMD across a training season in athletes can provide a 

general  overview of the influence raining has on bone. However, detectable changes 

occur only after relatively long term periods. Monitoring factors that are released during 

bone formation or resorption provides a snap shot picture of ongoing formation and 

resorption processes. Furthermore, changes in formation and resorption markers occur 

following relatively shorter periods. Thus, some studies have attempted to illustrate how 

changes in training volume can affect various markers of bone turnover. Lombardi et al. 

[86] assessed serum bone and energy metabolism markers at rest in the unfed state in 9 

professional male cyclists competing in the Giro d’Italia stage race. Blood was drawn at 

baseline, day 12 (154 km/d, net energy expenditure = 3402kcal), and day 22 (154km/d, 

net energy expenditure = 3756 kcal). 12 days into the 3wk stage race resulted in a 

significant decrease in total OC and leptin, which remained lower 22 days into the race 

when compared to baseline. Furthermore, 22 days into the race resulted in a significant 

increase in adiponectin and TRAP activity when compared to baseline. Despite the 

changes in bone resorption markers across the stage race, serum BAP levels were 

unchanged. O’Kane et al. [87] highlighted differences in urine bone resorption (NTX) 

and collagen breakdown (CTX) markers between college level rowers, runners, 

swimmers and age matched controls. Rowers had the highest levels of resting urine NTX 

compared to all groups, and had lower levels of CTX compared to runners. The authors 

suggest rowers have more of an osteo-stimulatory effect (higher bone turnover). 
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However, they did not measure any markers of bone formation in this study nor did they 

describe what period of training these athletes were in.  

 Sansoni et al. [88] assessed serum samples taken from 17 male marathoners pre- 

and post- a 65-km mountain ultra marathon as well as from 12-age matched controls. Pre-

race levels showed significantly higher P1NP and lower decarboxylated OC compared to 

age matched controls. Post-race levels showed a decrease in decarboxylated OC and 

P1NP compared to pre-race levels. These results suggest that ultramarathoners have 

higher osteoblastic activity than age matched controls, and that an extended period of 

high volume exercise can lead to a decrease in bone formation, which is interesting, 

because an increase in resorption found in elite cyclists during a 3-week stage race was 

also not matched by an increase in bone formation [86]. Zanker et al. [89] evaluated the 

effect of energy balance on markers of bone turnover in 8 elite male distance runners, 

who averaged 50 km/wk of running at a high intensity. Energy balance was manipulated 

by diet, while the exercise protocol during each week of balance or energy deficit would 

remain the same and lasted 3 consecutive days. Athletes who were in an energy balance 

had no change in P1NP, OC, Dpd, NTX, or IGF-1 from pre- to post- 3d of training. In 

contrast, the same athletes performing the same 3d exercise protocol but consuming 50% 

of their estimated energy requirement had significant decreases in P1NP and IGF-1 from 

pre- to post-training, which were also positively correlated. These results suggest that the 

bone formation response to repetitive endurance training is highly dependent on energy 

availability.  

 De Souza et al. [90] assessed young (24 years old) recreationally active females 

across the menstrual cycle and separated them into either (1) energy and estrogen replete, 
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(2) energy and estrogen deficient, (3) energy replete and estrogen deficient, or (4) energy 

deficient and estrogen replete. Energy and estrogen deficient group had significantly 

lower P1NP and significantly higher urinary CTX levels compared to groups that were 

either energy replete or estrogen replete. Furthermore, CTX was shown to be a predictor 

of lumbar spine BMD and leptin was correlated with bone formation markers [90].  

 In summary, there appears to be a push towards an increase in bone resorption 

while some studies have suggested a decrease in formation following strenuous periods 

of training or competition. However, monitoring direct markers of bone 

formation/resorption only paints a picture of the current state of bone turnover. Therefore, 

monitoring both BMD and markers that precede bone turnover may be a better way to 

assess how training is impacting bone during periods of intense training in athletes. One 

pathway that may be useful for monitoring changes in bone metabolism during exercise 

training is the Wnt/β-catenin pathway.  

1.9 Introduction to Wnt Proteins 

Wingless and INT-1 (Wnt) is a family of 20 identified signalling glycoproteins that 

activate various signal transduction pathways [91]. These pathways include the canonical 

Wnt/β-catenin cascade, the non-canonical planar cell polarity pathway, and the Wnt/Ca2+ 

pathway. Of these pathways the canonical pathway is the most understood, and is 

involved in development, cancer, and tissue self renewal [92]. This section will focus on 

the canonical pathway and the proteins/mediators involved in tissue self renewal, 

specifically its role in bone formation and resorption.  

 Wnt undergo extensive intracellular processing before being secreted from their 

producing cells into the extracellular matrix, where they will act on their effector cell. 
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Post-translational modifications that have been shown to be essential for Wnt signalling 

to occur are glycosylation and acetylation. This is highlighted by experiments where site 

specific mutagenesis was induced at sites of either glycosylation [93] or acetylation [94], 

which resulted in impaired secretion or inhibition of signalling, respectively. Following 

post-translational modifications, Wnt proteins are recruited to the endoplasmic reticulum, 

where chaperone proteins guide Wnt to the extracellular space. However, the ER protein 

Oto appears to anchor Wnt1 and 3a with the addition of glycophosphatidylinositol to the 

endoplasmic reticulum, which results in the accumulation of Wnt and decreased 

signalling. Knockdown models of Oto in vivo, as well as over-expression of 

phospholipases to colorectal cancer cells leads to increased Wnt signalling [95, 96]. 

Following post-translational modifications and retention in the endoplasmic reticulum, 

Wnt protein is targeted for secretion and is removed from the cell by an endosome as a 

lipid modified protein [97]. The combination of post-translational modifications, as well 

the retention of Wnt to the endoplasmic reticulum can contribute to the activity of Wnt 

signalling before Wnt has even left the cell.  

1.10 Canonical Wnt/β-Catenin Signalling 

Figure 4 summarizes the Wnt/β-Catenin signal transduction pathway within osteoblasts. 

Briefly, following secretion of Wnt into the extracellular matrix, it can act on its effector 

cell through cell surface receptors. However, prior to Wnt signalling, β-catenin, an 

essential second messenger for Wnt signalling, is phosphorylated by GSK3 with 

facilitation of scaffolding proteins Axin and adenomatous polyposis coli (APC) [98]. This 

phosphorylation marks β-catenin for degradation by β-Transducin repeat containing 

protein mediated ubiquitin/proteasome pathway. Activation of Wnt/β-catenin cascade 
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occurs upon the binding of Wnt to a 7-transmembrane domain-spanning G-protein 

coupled receptor frizzled (FZD) as well as low-density lipoprotein receptor-related 

protein 5 and 6 (LRP5/6) co-receptors [99]. This transmembrane domain also contains 

membrane proteins such as disheveled, axin, and Frat-1, which in conjunction lead to 

disruption of the protein complex APC, Axin and GSK3. This disruption in the protein 

complex leads to inhibition of GSK-3, and thus β-catenin phosphorylation by GSK-3. 

Therefore, Wnt signalling results in β-catenin stabilization and accumulation in the 

cytoplasm. Now stable, β-catenin can translocate into the nucleus. Translocation of β-

catenin into the nucleus leads to formation of complexes with members of LEF/TCF 

family of transcription factors, and mediates transcription of Wnt-responsive genes. 

Translocation of β-catenin is also dose dependent, where an increase in Wnt signalling 

leads to increased translocation [100]. Extracellular regulators of Wnt signalling include, 

but are not limited to DKK-1 and SOST, which act on LRP5/6 to inhibit signal 

transduction.  
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Figure 4. Factors associated with Wnt/β-catenin signalling. Wnt signalling is tightly 

regulated to have sufficient osteoblastogenesis as well as osteoclastogenesis, which result 

in adequate bone growth. LRP5/6 = Low-Density Lipoprotein Receptor-Related Protein 

5/6; GSK3 = Glycogen Synthase Kinase 3; TCF/LEF = T-Cell Factor/Lymphoid 

Enhancer Factor; RUNX2 = Runt Relate Transcription Factor 2; TF = Transcription 

Factor; OSX = Osterix; FASL = Fas Ligand; RANK = Receptor Activator of Nuclear 

Kappa-β; RANKL = RANK Ligand. 

 

 

1.10.1 Interaction of Wnt signalling with the OPG/RANKL axis 
 

Figure 4 illustrates the relationship between Wnt and OPG/RANKL signalling. Briefly, 

murine knock out models of β-catenin and APC in mature osteoblasts have been shown to 

reduce trabecular and cortical bone volume [101]. Furthermore, bone loss phenotype of 

osteoblast β-catenin knockout mice appears to be associated with a reduced osteoblast 
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differentiation and matrix mineralization, and increased osteoclast activity, which is 

attributed to the decreased OPG and increased RANKL expression. Furthermore, mouse 

models with constitutive activation of β-catenin have high bone mass phenotype that 

results from reduced osteoclast activity and increased osteoprotegerin (OPG) production 

which inhibits RANKL expression [101].  

 Evidence of Wnt signalling inhibiting osteoclastogenesis through activation of 

osteoblasts comes from assessment of co-cultures of mouse osteoblasts and mononuclear 

spleen cells [102]. Cells stimulation with LiCl (mimicking Wnt signalling by inhibiting 

GSK3) resulted in complete inhibition of RANKL mRNA expression and inhibition of 

osteoclast formation when compared to vehicle control. Furthermore, β-catenin’s role in 

RANKL inhibition was assessed through transfecting ST2 stromal cells with full length 

β-catenin or β-catenin lacking the C-terminal domain needed for TCF/LEF dependent 

gene transcription. Overexpression of full length β-catenin reduced endogenous RANKL 

promotor activity, and in contrast, β-catenin lacking its C-terminal domain had no effect 

on RANKL expression when compared to control. These results indicate canonical Wnt 

signalling in osteoblasts can lead to decreased RANKL expression through increased Wnt 

signalling, which ultimately inhibits osteoclastogenesis [102].  

Further evidence of the importance of Wnt signalling in osteoclastogenesis comes 

from transgenic 3-month old mice, where LRP6 in osteoblasts is knocked out [103]. KO 

mice had significantly reduced femoral trabecular bone volume, and increased bone 

separation in the secondary spongiosa area when compared to WT mice. In addition, the 

number of osteoblasts, but not the number of osteoclasts, were significantly reduced in 

KO mice when compared to WT mice, and interestingly osteoclast activity was 



24 
 

unchanged between KO and WT mice. This decrease in osteoblast number was associated 

with increased apoptosis, where proliferation was unchanged in KO mice compared to 

WT. Importantly, β-catenin target gene expression of Axin2, Naked2, BMP4 and OPG 

were significantly down-regulated by 30-40% in KO mice when compared to WT. 

However, RANKL/OPG ratio remained unchanged between the KO and WT mice [103]. 

These results indicate LRP6 knockout in osteoblasts results in bone loss due to decreased 

bone formation with no change in osteoclastic bone resorption despite a decrease in OPG 

expression in adult mice.  

 β-catenin’s function was further assessed in vivo, where point mutations were 

introduced to generate osteoblast specific loss of function or gain of function mouse 

models [104]. In gain of function mouse models there was a significant reduction in 

osteoclast number and Dpd (collagen breakdown), and increased bone mass. However, 

osteoblast number was unchanged when compared to WT mice [104]. Micro-array 

analysis highlighted a significant increase in OPG expression (3.2-fold), which encodes a 

soluble TNF-α receptor that acts to inhibit RANKL and therefore osteoclastogenesis, 

when compared to WT mice. Significant reduction in bone-mass and an increase in 

osteoclast number, and bone resorption rate were observed in mice lacking β-catenin 

compared to WT mice [104]. Interestingly, the number of osteoblasts and bone formation 

rate were unchanged between the mutant animal models [104]. LEF/TCF proteins appear 

to be critical in the expression of OPG, as seen with TCF null mouse models and 

osteoblast cell lines. These results suggest Wnt signal transduction in osteoblasts is 

responsible for the regulation of osteoclast differentiation, whereas mutations in Wnt 

LRP5 receptor may not be critical in the activation of β-catenin.  
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1.10.2 Wnt signalling controls osteoblastogenesis 

Commitment of mesenchymal stem cells to the osteoblast lineage requires activation of 

the canonical Wnt/β-catenin pathway [105]. Therefore, Wnt signalling increases bone 

mass by an increase in osteoblast number. In vitro assessment of human mesenchymal 

stem cells suggests that increased Wnt signalling leads to inhibition of adipogenic 

differentiation and an increase in alkaline phosphatase, indicating increased osteogenesis. 

Specifically, Wnt treatment resulted in no change in the levels of differentiation, but it 

rather led to an increase in proliferation of progenitor cells in a dose dependent manner. 

Also, over-expression of stabilized β-catenin lead to BAP induction, suggesting 

stimulation of osteochondral differentiation [106]. Furthermore, stimulation of 

mesenchymal precursor cells with LiCl resulted in osteoblast differentiation through the 

induction of Runx2 and OSX transcription factors [107, 108]. Additionally, when mice 

overexpress Wnt proteins there is a significant increase in bone volume and strength, as 

well as stimulated osteoblastogenesis by the induction of Runx2 and OSX [107]. In vivo 

evidence of Wnt signalling leading to increased osteblastogenesis comes from analysis of 

the inhibition of GSK3β, and therefore constitutive activation of β-catenin [109]. Four 

weeks of LiCl administration seems to lead to a significant increase in bone formation 

rate and number of osteoblasts when compared to mice being treated with vehicle control 

[109].  

The importance of Runx2 is highlighted in vivo with deficient murine models, 

which results in the absence of differentiated osteoblasts and mineralization compared to 

WT mice [110, 111]. However, in mice overexpressing Runx2 there is an increase in 

bone formation and resorption, and osteoclast number, which further highlights the need 
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for osteoblast differentiation to drive osteoclastogenesis [112]. Osteoblast driven 

osteoclastogenesis is further underscored by assessment of increased expression of Runx2 

in co-cultures of primary murine pre-osteoblasts, which resulted in an increased 

differentiation of splenocytes into osteoclasts [113], which was associated with Runx2 

mediated increased RANKL secretion and association with the osteoblast membrane 

[114]. Also, increased β-catenin levels leads to an increase in OPG levels [104]. The 

above results suggest that Wnt signalling mediates both osteoblastogenesis, and the 

regulation of osteoclastogenesis through the increase in Runx2, further illustrating a tight 

relationship between bone formation and resorption.  

1.11 SOST – a Wnt antagonist  

One ligand for LRP5 is the Sost gene product SOST. SOST is mainly found in the 

osteocytes and has extensively been shown to inhibit Wnt/β-catenin in vitro and in vivo. 

Mutations in the Sost gene in humans leads to lack of SOST production, leading to 

sclerosteosis or van Buchem disease, which are forms of sclerosing bone dysplasias (bone 

overgrowth) [115, 116]. Processes associated with SOST includes cellular response to 

PTH, negative regulation of BMP signalling pathway, negative regulation of Wnt 

signalling pathway involved in dorsal/ventral axis specification, negative regulation of 

the canonical Wnt pathway, negative regulation of ossificiation, negative regulation of 

protein complex assembly, and response to mechanical stimulus. 

Co-immunoprecipitation of SOST in vitro found that SOST directly antagonizes 

LRP5/6 co-receptors of the canonical Wnt pathway [117]. Also, activation of LRP6/FZD 

induced by Wnt1 cell treatment was abolished by ectopic SOST treatment [117]. 

Moreover, production of Xenopus embryos with LRP6ΔC, which has a mutation in the 
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cytoplasmic domain, resulted in no interaction with frizzled upon SOST administration 

and therefore inhibition of Wnt signalling (i.e., axis formation) [118]. These data suggest 

a critical relationship between SOST levels and activation of LRP5 in the canonical Wnt 

pathway. 

Further assessment of SOST’s function was done in Xenopus embryos, which 

highlighted that SOST inhibits the canonical Wnt pathway resulting in inhibited bone 

formation [117]. Also, assessment of human osteoblastic (HEK293T) cells transfected 

with Wnt-1 expressing plasmid and co-expression with a sost expression plasmid 

illustrated that SOST inhibited Wnt signalling in a dose-dependent manner [117].  

The in vitro investigation of murine iliac bone cells found a high proportion of 

osteocytes positive for SOST while osteoblasts bone lining cells and periosteal 

osteoblasts had no SOST, suggesting osteocytes were the cells that were solely 

expressing SOST [119]. Furthermore, osteocytes that were positive for SOST were 

further away from bone surfaces than osteocytes negative for SOST [119]. This suggests 

that osteoblasts within forming osteons have protection from SOST inhibition by a layer 

of SOST negative osteocytes. Osteons in the process of bone formation (BAP positive 

cells) contained significantly greater SOST negative osteocytes than SOST positive 

osteocytes, and osteons not forming bone (BAP negative) had osteocytes that were nearly 

all positive for SOST [119]. Also, analysis of murine bone biopsies has found that newly 

embedded osteocytes are negative for SOST, and only after the onset of mineralization 

are these cells able to produce SOST mRNA. Also, ~2/3 of non-remodelling cortical 

osteons contained SOST positive osteocytes exclusively, indicating that after 

mineralization there is an increase in this inhibitory signal [119]. Additionally, there was 
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no alterations in the recruitment of osteocytes in the osteons of mice with a loss of 

function mutation in Sost or controls, which suggests that SOST affects the later stages of 

bone formation [119]. These results indicate that SOST is critical in the maintenance of 

bone microarchitecture, which is based on the evidence of the tight regulation of SOST’s 

production and location and coincides with the positive association of increased resting 

serum SOST levels and BMC [120].  

In vitro analysis of a human osteoblastic cell line that expresses SOST has 

illustrated that transcription factors activated upon Wnt signalling (i.e, Runx2 and OSX), 

bind to specific regions at the human sost promotor, and together activate SOST 

expression in a dose dependent manner [121, 122]. Also, Runx2 and OSX levels have 

been shown to be positively correlated with SOST levels [121]. These studies provide 

evidence for a potential feedback control mechanism involved in bone formation.   

Identification of additional potential pathways targeted by SOST, comes from in 

vivo studies assessing DNA electroporation of gastrocnemius of mice with expression 

plasmids for BMP and SOST, and in vitro in osteoblastic cell lines with exogenous BMP 

and/or SOST treatment [123]. BMP ectopic bone formation appears to be prevented by 

co-expression of SOST in vivo, and there was no evidence of SOST acting as a direct 

BMP antagonist. Various osteoblast cell lines have been assessed for the effect of 

endogenous SOST treatment. This analysis found that SOST affected both the Wnt and 

TGF-β/BMP signalling pathways, however there was only evidence of direct association 

with Wnt (Wnt1, Wnt3, and Wnt3a) and indirect association with BMP (down regulation 

of BMP target genes) [123]. These results suggest SOST is a direct canonical Wnt 

inhibitor and an indirect BMP antagonist.  
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 To assess if SOST production or inhibition was mediated autonomously or 

through a hormonal response (i.e., alterations in PTH), cultured osteocytes were analyzed 

to determine the cellular mechanisms underlying the response to mechanical loading and 

unloading [124]. In vitro, 3-dimensional cultures underwent loading and unloading, 

which was accomplished by non-rotating (static) or rotating (simulated microgravity) 

cultures for 3 days. Unloading increased SOST expression and RANKL/OPG ratio in 

unloaded cells when compared to loaded cells, which illustrated osteocytes ability to 

independently respond to mechanical loading. Also, there were no alterations in 

osteocalcin, BAP, and OSX mRNA levels as well as pathways associated with increased 

SOST expression [124], demonstrating SOST response is not a consequence of altered 

transcriptional activity in general. Finally, when endogenous PTH and PGE2 were added 

to unloaded cultures the SOST response was attenuated, which illustrates that SOST’s 

response is not only affected by autocrine action, but paracrine and endocrine as well.     

The effects of SOST antibody administration on temporal changes in systemic and 

local expression of bone turnover marker and its long-term effect on osteoblast, 

osteoclasts, and osteocytes has been assessed in ovariectomized rats [125, 126]. Six 

weeks post anti-SOST administration there were significant increases in P1NP and OC, 

and after 26 weeks’ elevation these markers were normalized back to levels comparable 

to animals being treated with vehicle control. In addition, levels of TRAP were decreased 

at 6 weeks and were back to levels comparable to control after 26 weeks of anti-SOST 

treatment. Increased bone formation at 6 weeks was confirmed with histomorphometric 

analysis, which showed an increase in bone volume fraction and L3 trabecular bone in 

ovary ectomized(OVX)-anti-SOST compared to OVX-vehicle controls. Ex vivo 
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osteoclastogenesis of OVX animals being treated with vehicle control had significantly 

higher TRAP-positive osteoclast-like cells compared to cultures from animals being 

administered anti-SOST. Surprisingly, there were no changes in the osteoclast regulatory 

proteins OPG or RANKL. Finally, anti-SOST administration has led to a significant 

increase in DKK1 and SOST mRNA expression suggesting a mechanism of preventing 

excessive bone accrual in response to anabolism/bone formation [125]. These data show 

the impact that SOST has on bone formation and markers of bone turnover.  

In contrast to the previously discussed studies [125, 126], SOST antibody 

treatment has also been shown to increase lumbar vertebrae and femur-tibia BMD 

increased progressively through 26 weeks [127]. Increases in BMD at week 6 was 

attributed to decreased osteoclast activity and increased trabecular and cortical bone 

formation, and increases in BMD at week 26 were attributed to residual endocortical and 

trabecular osteoblast stimulation and decreased osteoclast activity [127]. These findings 

support decreased osteoclast activity at 26 weeks of SOST antibody administration, 

where other authors have reported no change in in vivo and ex vivo osteoclast activity 

when compared to vehicle control [125, 126]. These studies suggest that there is a 

complex relationship between SOST and bone formation, as in vitro studies clearly show 

mechanistically that this factor inhibits bone formation. 

1.11.1 Factors that mediate SOST production  

Seasonal variation of serum SOST levels has been assessed in healthy men and women 

65 years of age [128]. SOST appeared to increase in wintertime by 20% and declined 

through spring and summer seasons. In contrast, in the fall SOST was 20% higher 

compared to mean levels. Interestingly, OC, parathyroid hormone (PTH) and physical 
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activity levels were unchanged at all time points. These results suggest a potential 

seasonal variation in SOST levels in healthy men and women over the age of 65. No such 

studies exist in younger adults.  

 Comparison of serum SOST, PTH and free estrogen levels in pre- (27 years of 

age) and postmenopausal women (57 years of age) has been done [129]. SOST levels 

were significantly higher in the postmenopausal women when compared to 

premenopausal women, whereas PTH and 25(OH)D levels were not different between 

groups. Multiple regression analysis in the post-menopausal women showed that PTH 

and free estrogen index could be predictors of SOST. Further analysis in pre- and 

postmenopausal women has found that SOST increases progressively up until age 45 and 

remains elevated post-menopause [130]. Estradiol, FSH, PTH, and age for 

postmenopausal women, and serum OC, FSH and estradiol for pre- and post-menopausal 

women were shown to be determinants of serum SOST levels [130]. This data suggest 

that estrogen deficiency can lead to increased SOST levels, and that PTH, estrogen, FSH, 

and age can regulate SOST expression.  

 PTH is a known inhibitor of SOST production [131-133]. Intermittent increases in 

PTH lead to increased osteoblast number by attenuating apoptosis. Specifically, infusion 

or intermittent administration of PTH into WT rats or mice has shown up to a ~90% 

decrease in SOST mRNA and SOST levels as well as an increase in markers of bone 

remodelling in vertebral bone, secondary metaphyseal trabeculae, diaphyseal bone and in 

epiphyseal trabeculae [132, 133]. However, a single injection of PTH resulted in a 50% 

reduction in SOST mRNA at 2 hours while 4 daily injections had no effect on SOST 
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mRNA or SOST [132]. These results indicate a tight regulation of osteoblastogenesis 

mediated by osteocytes, and illustrates a negative role of SOST in bone formation.  

 Elevated osteoclasts and intracortical/calvarial porosity is exacerbated by 

overexpressing SOST and is reversed by blocking resorption. Rhee et al. (2013) used 

intermittent PTH injections into WT rats and found no direct relationship between SOST 

expression and levels of OPG and RANKL [134]. Also, OPG/RANKL ratio had an 

inverse response to PTH treatment in primary (rise) and secondary (falling) metaphyseal 

bone [134]. These results illustrate different metabolic needs of various compartments of 

bone, where primary metaphyseal bone undergoes modeling and secondary bone 

undergoes remodeling. In post-menopausal women, serum SOST levels were found to be 

positively correlated with both lumbar spine BMD and T-score and negatively correlated 

with PTH [135].  

 OVX mice are often used as a model to assess estrogen-deficiency. This model 

appears to lead to an increase in SOST expression, and when TNF-α blocker or β-

estradiol were administered 3 times per week OVX SOST expression was reversed back 

to WT levels [40]. These results indicate that estrogen may regulate SOST levels through 

TNF-α. This hypothesis is supported by previous studies that have shown that TNF-α null 

mice do not lose bone mass following ovariectomy like WT mice do. Decreased estrogen 

levels in this model have been shown to increase T-cell production of TNF-α, which in 

turn augments RANKL-induced osteoclastogensis [136-139]. Constitutively, estrogen 

supplementation has been shown to prevent OVX bone loss through a TGF-β dependent 

mechanism, which inhibits T-cell activation [139]. Kim et al. (2015) have also shown that 

postmenopausal women taking aromatase inhibitors, which block the conversion of 
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steroids to estrogen, have significantly higher serum SOST compared to control post-

menopausal women [140], suggesting a protective effect of estrogen on SOST levels.  

 Interestingly, examination of the effect of the transcription factors OSX and 

RUNX2 on SOST expression in human bone cell lines has found that each of these two 

transcription factors alone led to increased SOST expression, and together they acted 

synergistically [121]. This is surprising, because RUNX2 has been shown to be 

responsible for pre-osteoblasts’ differentiation into mature osteoblasts, following which 

levels of SOST decline [141]. These findings suggest a negative feedback loop, as 

increased OSX and RUNX2 are also required for osteoblastogenesis. 

1.12 TNF-α response to various modes of exercise training  

Table 1. Studies investigating the response of TNF-α to exercise training. 

Training Effect on 

TNF-α 

Other findings Conclusions Reference 

8 M competitive cyclists 

trained for 6 wk (wk 1-2 

low training, 7 h/wk; wk 

3-4 high intensity, 14 

h/wk; wk 5-6 taper, 3.5 

h/wk) 

↔ ↓ Performance and mood state TNF-α is not a useful 

measure of measuring 

changes in training 

stress in cyclists 

[142] 

8 M competitive rowers 

trained for (wk 1 no 

training, 10 h/wk; wk 2-3 

high volume, 18 h/wk; wk 

4 taper, 10 h/wk) 

↑ ↑ TNF-α following endurance 

exercise only after wk 3 

↔ Resting Leptin 

↓ Leptin following endurance 

exercise only after wk 3 

TNF-α increase and 

leptin decrease post-

exercise suggests 

higher stress to lipid 

metabolism in higher 

energy deficit 

conditions 

[143] 

4 M and 4 F competitive 

rowers trained for 8 wk 

(wk 1-6 high volume, 24.8 

h/wk; wk 7, low volume, 

2.4 h/d; wk 8 taper, 1.8 

h/d) 

↑ ↑ IL-6 

↔ Training intensity 

TNF-α was associated with 

perceived stress scale, training 

duration and distance rowed 

Monitoring resting 

levels of TNF-α may 

indicate levels of 

training stress in elite 

rowers 

[144] 

F – Female, M – Male 

 Smith et al. [145] proposed the cytokine hypothesis of overtraining, which 

suggests that repetitive trauma to the skeletal system, due to high intensity/volume 

training, with a lack of appropriate recovery time, can lead to overtraining. It is suggested 

that resting levels of TNF-α, a secreted myokine and pro-inflammatory cytokine, may be 
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elevated due to repetitive increases in acute inflammation as a response to adaptive 

microtrauma, which subsequently results in systemic chronic inflammation [146]. If the 

training plan was successful, and the athlete adapted to the stress of training, then 

hypothetically elevated basal TNF-α levels during high training intensity/volume would 

normalize during tapering. There is extensive evidence of IL-6 increasing following acute 

strenuous exercise, however TNF-α’s response appears to be variable (reviewed in 

[147]). Furthermore, some studies have measured resting TNF-α levels in athletes and 

have found contrasting results (Table 1). Ramson et al. [143] attempted to assess if 2 

weeks of high volume (18h/wk) training could alter resting serum TNF-α levels in 

competitive rowers. They found no differences in resting levels. However, when they 

assessed the immediate post-exercise response of TNF-α they found a significant increase 

post-exercise during the 2 weeks of high volume training, whereas levels were unchanged 

post-exercise during a tapering week. They found similar results with leptin, however 

instead of increasing, leptin decreased. The authors suggested that since high volume 

training is highly dependent on lipid metabolism, the marked increase in TNF-α and 

decrease in leptin are suggestive of an energy deficit. Despite these findings, resting 

levels of TNF-α were not sensitive to changes in training volume. However, in this study 

training intensity was not taken into account, and the training duration was only 2 weeks 

long, which might be too short to see changes.  

 Another study assessing competitive male cyclists performing 2 weeks of low 

volume training, 2 weeks of high volume and intensity training followed by 2 weeks of 

tapering showed that TNF-α was unresponsive to changes in training volume, and were 

not associated with declines in performance and mood state [142]. However, the cytokine 
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hypothesis to overtraining requires excessive microtrauma to occur, and since cyclists 

perform mainly concentric contractions with limited loading there may not have been 

enough stress to elicit a change in cytokines. Furthermore, these athletes had very high 

levels of TNF-α initially (6.3 pg/ml), which could have masked any changes seen 

following 2 weeks of high volume training (8.3 pg/ml). Assessment of recreationally 

active adolescent boys has supported the cytokine hypothesis, which showed that resting 

serum levels of TNF-α is significantly increased during basketball [148] and wrestling 

[149] competitive periods compared to pre-training. Lastly, Main et al. [144] showed that 

resting TNF-α levels are sensitive to changes in training volume and distance rowed in 

competitive male and female rowers, suggesting TNF-α is a useful marker for assessing 

training volume in elite rowers. Despite these findings, there is limited evidence in elite 

level athletes. Thus the utility of TNF-α as a marker of training stress and its association 

with bone metabolism remains speculative.   

1.13 IGF-1 response to various modes of exercise training  

Monitoring IGF-1 levels in athletes has been proposed as a useful tool for assessing 

training stress/overtraining [150]. It is suggested that there is an increase in central 

catabolism and local anabolism early in the adaptation to increased exercise volume. This 

is likely a way of conserving energy while increasing local tissue growth [151]. However, 

there have been disparate results in studies that have assessed resting serum IGF-1 levels 

in athletes and non-athletes. Sartorio et al. [152] highlighted that resting IGF-1 levels in 

elite male and female sprinters, triathletes, runners, walkers, cyclists, rowers, skiers, 

hockey players, and swimmers were all within normal range for the age of these athletes. 

Furthermore, despite a higher GH level, IGF-1 serum levels were not different when 
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compared to non-elite athletes and sedentary controls [153], which the authors attributed 

to a high paracrine action of IGF-1 in active muscle. In contrast, Antonelli et al. [154] 

found that salivary IGF-1 levels were lower in well-trained female volleyball players 

compared to sedentary females. These findings suggest that athletes have variable levels 

of IGF-1 compared to controls, however IGF-1 response to training has found contrasting 

results as well.  

 Table 2 presents the studies on the IGF-1 responses to exercise training. 

Hecksteden et al. [155] assessed IGF-1 response to a 6-day training camp and following 2 

days of subsequent recovery in professional cyclists, team sport athletes, and strength 

trained athletes in their respective preparatory periods. Similar results have been found in 

elite adolescent athletes as well [156, 157]. The 6-day training camp elicited a significant 

decrease in performance, which was restored following 2 days of recovery. Furthermore, 

cyclists and sports trained athletes showed a significant decrease in IGF-1 from pre-

training camp to post-training camp, and levels in cyclists and strength trained athletes 

increased following recovery compared to pre-training camp levels. The author suggests 

that IGF-1 may be a good peripheral marker for monitoring endurance training, however 

due to high inter-individual responses following an acute change in training volume this 

conclusion may be too generalized. Measurement of IGF-1 levels in elite handball players 

was assessed over a slightly longer period of time and found that serum IGF-1 levels 

declines significantly following 2 weeks of intense training and returns to baseline 

following 2 weeks of tapering [158]. These results suggest a catabolic state with intense 

training and are in agreement with previous findings in adolescent gymnasts, where IGF-

1 decreased in a state of negative energy balance [159]. Nemet et al. [149] tested this 
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hypothesis that decreased IGF-1 or increased IGF-1 would be associated with energy 

deficit or excess following a 7-day excessive exercise program. Following the program 

men who were in an energy deficit had a decline in IGF-1 following training, and over 

fed participants had no change in IGF-1, which suggests that energy balance during 

exercise training influences IGF-1 levels and that adequate diet may occlude changes in 

IGF-1 following fluctuations in training volume. Lastly, elite level rowers training for 5 

weeks showed that as volume and intensity of training tapered, IGF-1 levels increased, 

which suggests that tapering period is critical for an anabolic response to training [160]. 

Furthermore, this ties back to the cytokine hypothesis [150], which suggests that if the 

training plan was successful and resulted in a stress (inflammation), and the athlete was 

able to recover than there should be an anabolic increase, and a catabolic decrease, which 

would suggest an increase in IGF-1 and decrease in TNF-α during tapering. This is 

supported by in vitro assessment of myotubes that shows higher levels of IGF-1 leads to 

inhibited expression of TNF-α. 

 

 

 

 



38 
 

Table 2. Studies investigating the response of IGF-1 to exercise training.  

Training Effect on 

IGF-1 

Other Findings Conclusions Reference 

3 days of intensive exercise in 

11-year-old trained F gymnasts 

↓ ↑ DHEA, testosterone 

↓ T3, cortisol, body 

mass 

The authors suggest that 

depressed T3 and IGF-1 

leads to growth 

depression, and 

retardation of bone age 

[156] 

Adolescent wrestlers compared 

to active controls had blood 

draws pre- and post 4 months of 

training 

↓ ↑ GH 

↓ Testosterone, body 

mass 

Nutrition may lead to 

alteration in IGF-1 levels 

[157] 

12 elite M rowers had fasted 

blood draws at:  

1. relatively low volume of 

11.6±0.4 h/wk. 

2. 6-month extended 

preparatory period of high 

training volume 16.8±0.6 h/wk 

↑ Increased by 20.2% at 

high vs low training 

volume period 

 

IGF-1 correlated with 

OC 

Bone formation marker 

OC is related to IGF-1 

levels, indicating a 

possible metabolic 

implication of IGF-1 in 

bone cell activity  

[161] 

Young, healthy females did 

either 8wk of no exercise 

(control), resistance, aerobic or 

combined exercise training 

↔ No time, group or 

interaction effects with 

immunoreactive and 

bioactive IGF-1 levels 

and all IGFBPs.  

↑ Training specific 

neuromuscular 

outcomes 

Endocrine derived IGF-1 

does not reflect positive 

anabolic neuromuscular 

outcomes 

[162] 

73 competitive cyclists and 

strength trained athletes did 8d 

of an intense training camp 

(fatigue) then 2d of recovery 

↓ ↑ CK Periods of fatigue induces 

a decrease in IGF-1, 

which can be returned to 

baseline following 2d of 

recovery 

[155] 

Elite handball player who 

trained for 4 wks; 2 wks of 

intense training followed by 2 

wks of tapering 

↓ Parallel changes in 

subjective physical 

conditioning  

Periods of intense 

exercise can induce a 

decrease in anabolism 

(IGF-1 levels) and can 

lead to a decrease in 

subjective physical 

conditioning  

[158] 

7 internationally ranked artistic 

gymnasts training for 16 wks 

↓ ↓ 31% energy intake 

compared to 

recommendation, 

IGFBP3\-3, IGF-1:C 

↑ Cortisol 

Energy deficit may 

induce a catabolic state, 

as seen with a decrease in 

IGF-1:cortisol. 

[159] 

10 male rowers trained for 18d 

straight for 3.2 h/d 

↓ ↓ Performance, mood 

state 

Normalized following 

tapering 

Overreaching is needed 

for competition 

preparation and can be 

monitored with IGF-1  

[160] 

F – Female, M – Male 
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1.14 Leptin response to various modes of exercise training  

Leptin follows a diurnal pattern of nadir (0900h) and peak (0100h). [163]. Endurance 

athletes appear to have lower levels of resting leptin when compared to age matched-

controls [88]. Leptin responds to increased and decreased energy availability by 

decreasing and increasing, respectively. Decreased leptin results in energy conservation 

and thermogenesis, and leptin increases to inhibit food intake [164]. Furthermore, leptin 

has been negatively correlated with measures of performance, and appears to have a dose 

response relationship with training volume [165]. Thus, leptin’s role as a potential tool to 

monitor changes in energy availability or training volume in athletes has been explored 

but with conflicting results. Specifically, leptin has been shown to be sensitive [143, 165-

171] and not sensitive to changes in training volume [161, 172-176]. 
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Table 3. Studies examining leptin’s response to exercise training. 

Training Effect on 

Leptin 

Other findings Conclusions Reference 

6 well-trained rowers had 

blood taken after 1wk of 

normal intensity training 

(BL), 3 wk of 9.1h RT/wk 

and 5.5h ET/wk (RT), 1 

wk of recovery, 3 wk of 

14.3h ET/wk (HVLIT), 

and a second week of 

recovery (RE2) 

↓ RT compared to BL 

↓ cortisol 

RE1 compared to BL 

↓ Performance 

ET compared to BL 

↑ Performance 

Correlates with training 

intensity and Pmax but 

negatively with VO2max 

Decreases leptin with 

increased intensity may 

have been caused by 

increased flux of energy, 

and/or hypocortisolism 

from overtraining. Leptin is 

a potential marker for 

monitoring training and 

metabolic energy 

expenditure 

[166] 

12 highly trained M 

rowers had fasted blood 

taken at 9:00 during 

training 9.3 hrs/wk (BL), 

after 3 weeks of training 

at 17.5 hrs/wk (HVLIT), 

and after 2wk of training 

at 8.9hrs/wk (RE) 

↓ HVLIT compared to BL: 

↑ CK  

↓ Insulin 

↔ Cortisol, glucose, PB% 

RE compared to BL: 

↔ Cortisol, glucose, 

insulin, CK, PBF 

RE compared to HVLIT: 

↔ Cortisol, glucose, 

insulin, BF% 

An increase in training 

volume of 100% lead to a 

40% decrease in leptin 

levels. There appears to be a 

dose response relationship 

between training stress and 

leptin, suggesting leptin can 

be used as a signal for 

human metabolic adaptation 

to heavy training stress in 

highly trained male rowers. 

[165] 

17 F rowers and 

recreationally active 

controls had resting serum 

taken throughout a 20 wk 

training block at pre-, 5 

wk (high intensity), 10 wk 

(moderate intensity) and 

20 wk (moderate 

intensity) 

↓ Leptin 

when fT3 

↓ as well 

at 5 and 

10wk 

 

↔ Leptin 

when fT3 

↔ 

  TSH and fT3 were 

decreased with decreased 

leptin suggesting a lower 

hypothalamic-pituitary 

signaling action and a 

means of energy 

conservation 

[167] 

11 M rowers participated 

in 36wk of intense 

endurance training and 

one session of acute 

exercise pre- and post-

training 

↔ 

 

 Resting leptin levels were 

unchanged. However, the 

ability to recover basal 

leptin levels 24h following 

an acute bout of exercise 

was improved after 36wk of 

training, which suggests an 

improved energy and 

metabolism regulation.  

[172, 173] 

13 M collegiate distance 

runners participated in 8 

days of a strenuous 

training camp (~284.1 km 

ran) 

↔ 24 wks compared to 0 wks: 

↑ Cortisol 

20wks compared to 0wks: 

↓ BF%, testosterone 

Increase in cortisol and 

decrease in testosterone 

indicates a state of 

overtraining. Leptin was 

unchanged, and was not 

related to cortisol or %BF. 

However, leptin was 

correlated with testosterone, 

indicating a role in 

modulation of overtraining.  

[174] 

 

 

11 elite M rowers 

preparing for 2004 

Olympics; 6 rowers were 

selected and 5 were not. 

Testing was done at 

beginning of preparatory 

period and 24 wk later 

 

 

Selected 

Rowers: 

↔ 

Non-

selected 

rowers: 

↓ 

 

Competition period 

compared to preparatory 

period: 

↑ Training volume (23.4%), 

VO2max (3%), Pamax (5%)  

↓ BF% (0.9%), insulin  

↔ Weight, 2000m sculling 

time 

 

 

Decreased adipokines post 

exercise in lower 

performing athletes may be 

indicative of the inadequate 

recovery of these athletes.  

 

 

 

[168] 
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during the competition 

period. Blood was taken 

pre- and immediately post 

2000m single sculling, 

and 30 min post exercise. 

Non-selected compared to 

selected rowers at 

competition period: 

↓ testosterone   

12 nationally and 

internationally ranked M 

rowers. Fasted blood 

draws at: 

1. Relatively low training 

volume of 11.6±0.4 h/wk. 

2. 6-month extended 

preparatory period of high 

training volume 16.8±0.6 

h/wk 

↔ 2 compared to 1: 

↑ OC (17%) and IGF-1 

(20%) 

↔ Testosterone, cortisol, 

insulin, leptin, adiponectin 

Leptin is not a sensitive 

marker for training volume 

[161] 

12 M internationally and 

nationally ranked rowers; 

24 wk training with 

resting blood draws at 0, 

4, 8, 12, 16, 20 and 24 

weeks. 

↓ 24 wk compared to 0 wk: 

↑ Performance, training 

volume (41%)  

20wks compared to 0wks: 

↓ Leptin 

↔ Resting adiponectin at 

all times 

Adiponectin levels were 

negatively correlated with 

leptin levels and body fat 

mass, which indicates its 

importance and potential 

use for assessing energy 

expenditure/body mass 

control 

[169] 

8 trained M rowers had 

fasted resting blood draws 

after 1wk of 6-8h (BL), 2 

wk of 10-16h (HVT), and 

1 wk of 8h of training 

(RE) 

↓ HVT compared BL:  

↑ Training volume, energy 

expenditure, social stress, 

fatigue 

↓ Relative caloric intake (-

455kcal/day), RESTQ-

index, leptin (29%) 

↔ Insulin, ghrelin, TNF-α 

and glucose 

RE compared to BL: 

↓ Ghrelin 

↑ Success 

↔ Training volume, 

insulin, TNF-α and glucose 

RE compared to HVT: 

↑ RESTQ-Index 

↓ Training volume, physical 

complaints 

↔ Leptin, insulin, ghrelin, 

TNF-α and glucose 

HVT at low intensity for 2-

weeks resulted in a 

significant decrease in 

leptin when compared to 

baseline, the athletes were 

also in an energy deficit at 

this time, which confirms 

previous findings that leptin 

can monitor training stress 

and energy expenditure 

[143] 

13 M competitive heavy 

weight rowers performed 

an acute bout of exercise 

at the 3rd and 36th week 

of the training season and 

serum was taken pre-, and 

immediately, 2h and 24h 

post-exercise 

. ↔ 

 

Post- compared to pre-

training 

 

↑ Post-exercise recovery of 

leptin levels 

 

Resting leptin levels were 

unchanged. However, the 

ability to recover leptin 

levels following an acute 

bout of exercise to resting 

levels 24h post-exercise 

was achieved only in the 

36th week of training,. This 

could be attributed to an 

alteration in energy balance.  

[175] 

12 M national and 

international level rowers 

had blood draws 

following a reference 

week (R) (10h), high 

volume week (T1) (~19h) 

and after a recovery week 

(T2) (10h) 

↓ T1 compared to R 

↔ Insulin, NPY, ghrelin 

T1 compared to T2 

↔ Insulin, NPY, ghrelin 

T2 compared to R 

↔ Insulin, NPY, ghrelin 

Fasting leptin levels is a 

sensitive measure for 

assessing changes in 

volume of training 

[170] 
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8 M trained cyclists had 

blood draws throughout a 

6-month heavy cycling 

training plan 

↓ Post 6-months training 

compared to pre: 

↑ Aerobic capacity 

↔ Resting adiponectin  

This data suggests 6-months 

of heavy chronic endurance 

exercise does not affect 

adiponectin levels, however 

decreases leptin synthesis. 

Also, adiponectin is not 

associated with aerobic 

capacity or insulin 

resistance.  

[171] 

80 F elite rhythmic 

gymnasts were divided 

into intensely and very 

intensely trained (mean 

training volume = 40.8 

h/wk) and were monitored 

during a 20-week training 

period 

↔ Very intensely trained 

compared to intensely 

trained: 

↑ Adiponectin 

20 wk compared to 0 wk: 

↓ BF%, testosterone 

Adiponectin levels was 

associated with training 

intensity, and may reflect 

deterioration of energy 

balance rather than training 

stress and leptin is not a 

sensitive marker to changes 

in training load 

[176] 

F – Female, M – Male, EU – Eumenorrheic, AU – Amenorrheic, BL – Baseline, RT – Resistance Training, 

HVLIT – High Volume Low Intensity Training, ET – Endurance Training, RE – Recovery, BF% - Body 

Fat Percentage, HVT – High Volume Training, LIT – Low Intensity Training. 

 

 

 

1.14.1 Short term training effects on Leptin (<12 weeks) 

Table 3 presents the studies on the leptin responses to exercise training. Simsch et al. 

[166] assessed resting serum leptin levels in well-trained male rowers before and after a 3 

week high intensity resistance training block, one week of recovery, 3 weeks of 

endurance training, and 1 week of recovery. Leptin levels decreased following 3 weeks of 

high intensity resistance training and remained lower than resting levels the second week 

of recovery during a moderate intensity training block and prior to the high intensity 

training block (1.3, 1.1, and 0.83ng/ml respectively). Leptin levels returned to pre-

training levels following the endurance training block and remained constant at the end of 

the 1 week of recovery. Leptin levels were correlated with thyroid stimulating hormone 

(TSH) levels following resistance training, suggesting that high intensity training rather 

than endurance training can lead to suppression in the hypothalamic-thyroid-axis and 

leptin. Furthermore, Jurimae et al. [165] compared 3 weeks of high volume training (17.5 

h/wk) and 2 weeks of tapering (8.9 h/wk) in highly trained male rowers. Resting leptin 

decreased significantly following the 3-week high volume training when compared to 
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pre-training (1.5 compared to 2.5 ng/ml). Furthermore, resting leptin increased 

significantly following 2 weeks of tapering compared to post- 3 weeks of high volume 

training (2.0 compared to 1.5 ng/ml) yet it was still significantly lower than pre-training 

levels. The authors suggest leptin is a sensitive marker for training volume and could be 

used to monitor training status [165] and is supported by more recent studies in elite male 

rowers [170]. These results contrast findings from swimmers, who train at high intensity, 

but when training volume increased during the training season there was no change in 

resting leptin compared to pre-season levels, despite a decline in fat mass. Ramson et al. 

[143] also attempted to better understand resting leptin levels following 1 week of low 

intensity training (6-8h), 2 weeks of high volume training (10-16h) and a subsequent 

week of recovery (8h) in competitive male rowers. There was no change in resting serum 

leptin levels before the 1 week of low intensity, 2 weeks of high volume, or after a 

recovery week (1.1, 1.1 and 1.0 ng/ml respectively. Conflicting evidence from short term 

training may be a result of training status prior to assessing leptin levels, thus leptin’s 

utility as a marker of energy homeostasis remains speculative, especially when 

monitoring athletes in the short term.  

1.14.2 Long term training effects on Leptin (>12 weeks) 

Baylor and colleagues [167] assessed leptin, TSH, T3, and T4 responses to a 20 wk 

training block in female crew level rowers. The first 1-9 weeks were high volume 

training, while weeks 10-20 were moderate volume training with week 5 being a recovery 

week. Athletes were grouped into ether responders (decreased T3) or non-responders (no 

change in T3). Responders had significant decreased T3 and TSH at week 5 and at 10 

compared to baseline with levels returning to baseline after 20 weeks. Resting leptin was 
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not different in responders compared to sedentary age matched controls and non-

responders (12.0 compared to 12.9 and 12.6ng/ml respectively). Leptin decreased from 

pre-training to week 5 (-26.1%) and week 10 (-28.9%) and returned to pre-training levels 

following the moderate training phase at week 20. In contrast, as non-responders had no 

change in any hormones at any time point [167]. These results indicate decreased 

hypothalamic-pituitary signalling in these athletes may be a way of conserving energy, 

and decreases in leptin may be a response to changes in energy status and not changes in 

training volume, as low intensity high volume training relies on lipid metabolism.   

Desgorces et al. [177, 178] examined the effect of 36 weeks of intense endurance 

training in highly trained male rowers on leptin and free fatty acid serum levels. They 

found that 36 weeks of intense endurance training did not elicit a change in resting leptin 

(1.75 and 1.69ng/ml for pre- and post-36wk of training respectively), however leptin was 

reduced immediately post-exercise while energy intake increased as training progressed. 

These results suggest that repeated hypoleptinemia following acute exercise leads to an 

increase in energy intake, which normalizes resting leptin. Furthermore, Jurimae et al. 

[169] assessed the effect of 24 weeks of volume extended training on resting levels of 

leptin in elite male rowers at week 0, 4, 8, 12, 16, 20, and 24. Training volume was 

initially 99 min/day, and there was a steady increase from week 8 to week 20 (127-168 

min/d) while at week 24 volume decreased to 114min/d. Leptin only decreased at week 

20 compared to week 0 (0.97 compared to 1.02ng/ml) suggesting that these athletes may 

be in an energy deficit at this time, or may be due to a decline in fat mass. The effect of a 

6-month volume extended training plan on leptin and bone remodelling has been assessed 

in elite male rowers [161]. Average weekly training volume was higher (16.8h/wk) 
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compared to relative rest week prior to training (11.6h/wk), while intensity remained the 

same. Arm BMD was the only site that was affected and increased compared to pre-

training BMD levels. Resting leptin was unchanged (1.02 compared to 0.99ng/ml) and 

IGF-1 levels increased and were correlated with OC, which also increased. These results 

suggest an important role of IGF-1 with bone formation and that BMD remains stable 

during the preparatory period in elite rowers [161]. The recent association of leptin with 

BMD [179, 180], as seen with the relationship between serum leptin concentrations and 

fluctuations in markers of bone remodelling, warrants further investigation.  

Thus, leptin appears to be a sensitive marker to changes in energy expenditure, 

and plays a role in fat and glucose metabolism and energy homeostasis. In addition, 

various modes of training can impact the resting levels of leptin, albeit results are 

inconsistent. The lack of  longitudinal studies on changes in training modes across a 

training season (9-months) has not been completed, therefore conclusive evidence of the 

fluctuations of leptin to various training loads across a training year can not be confirmed. 

Also, the limited literature on the association of leptin with bone metabolism warrants 

further investigation. 

 

1.15 OPG response to exercise training  

OPG increases with age and is higher in women with osteoporosis than in age-matched 

controls. Normal, resting OPG serum levels for pre-menopausal women are around 200 

pg/ml. Also, women with higher OPG levels have higher rates of bone turnover, 

suggesting a compensatory mechanism to enhanced osteoclastic bone resorption rather 
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than a cause of osteoporosis [181]. Herrmann et al. [182] highlighted a potential 

protective effect of oral contraceptive use in female endurance athletes, as seen with 

increase markers of bone formation. However, they saw no group difference in OPG 

levels in endurance female athletes compared to age matched controls. In contrast, West 

et al. [183] emphasized that eumenorrheic endurance athletes have higher OPG levels 

compared to sedentary controls. However, Scott et al. [184] found no difference in 

trained and untrained male athletes, suggesting a potential sex difference or that the 

participants in this study were not trained enough.  

Several studies (Table 4) have shown that OPG responds to various modes and 

volumes of exercise training. Bergstrom et al. [186] assessed the effect of moderate 

training 3 d/wk in post-menopausal women and found OPG increased by 7.6 pg/ml and 

BMD increased by 0.008 g/cm2 at the hip when compared to non-exercising controls. 

This increased BMD was only associated with an increase in OPG, and was independent 

of changes in SOST or RANKL. In contrast, obese and overweight patients performing 

aerobic exercise 4 h/wk for 6 months found no change in OPG levels despite positive 

body composition changes following exercise training. Also, when post-menopausal 

women trained on a cycle-ergometer at 70-80% of workload 40 min 3d/wk for 8wk there 

was no change in OPG levels, however there was a decrease in OC following training 

(Table 4).  
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Table 4. Studies assessing OPG’s response to exercise training. 

Training Effect 

on 

OPG 

Other findings Conclusions Reference 

Comparison of F endurance athletes 

(training 20 h/wk) and matched 

controls  

↔ Grouped: 

↔ sRANKL, 

BAP 

↑ CTx  

 

Athletes using 

Oral 

Contraceptive vs. 

Not: 

↑ CTx, BAP, 

OPG 

 

Athletes have increased bone 

turnover than controls, and 

athletes taking oral 

contraceptives have lower 

bone turnover and lower 

bone resorption than non-

users, suggesting a protective 

effect on bone 

[182] 

Comparison of EU sedentary (1), 

exercising women (2) and exercising 

AU young women (3)  

 

2 

compa

red to 

1 & 3: 

↑ 

 

3 had ↑ CTX and 

CTX/OPG than 1 

& 2.  

3 had ↓ lumbar 

spine BMD than 

2. 

OPG responds to exercise 

training and that ↓ OPG may 

be involved in the etiology 

of increased bone resorption 

and decreased BMD. 

[183] 

27 postmenopausal F performed 

cycle-ergometer at 70-80% of 

workload for 40 min, 3 d/wk for 8 wk 

↔ ↔ CTx, insulin 

↓ OC, waist:hip 

OC and OPG 

correlated only at 

pre-training 

Regular exercise resulted in 

a decrease in OC and had no 

impact on OPG levels 

[185] 

112 post-menopausal F walked for 30 

min 3 d/wk and 1h of aerobic and 

strength training 1-2 d/wk for 1 year 

compared to sedentary controls 

↑ ↔ SOST, 

RANKL, CTX 

and BAP  

↑ BMD 

Exercise training balances 

bone turnover and increases 

OPG to counter balance 

RANKL signaling and 

increase BMD 

[186] 

21 overweight and obese patients (M 

and F) performed 6 months of 

aerobic training 4 h/wk 

↔ ↔ CRP, RANKL 

↓ Weight, waist 

circumference, 

BP 

Exercise resulted in positive 

changes in body 

composition, however 

training resulted in no 

changes in OPG or RANKL 

[187] 

9 M experienced Crossfit athletes had 

blood draws before, immediately and 

24h following a workout consisting 

of resistance and anaerobic exercises 

for 2 days in a row 

↓ pre- 

to 48h 

post 

Immediately post-

exercise: 

↑ IL-6, IL-10 

(only on day 1) 

↓ IL-10/IL-6  

 

Consecutive days of CrossFit 

training results in 

suppression of the immune-

system, as well as a decline 

in OPG levels 

[188] 

F – Female, M – Male, EU – Eumenorrheic, AU – Amenorrheic 

 

 

Furthermore, despite in vitro evidence of mechanical load increasing OPG levels, 

Maimoun et al. [189] illustrated that OPG levels are not different in pre- or post-

monarchial girls who were either not active or participating in high impact, low impact, 

or non-impact sport disciplines, despite a higher BMD associated with the high impact 

group. Marques et al. [190] supports these findings in their study on older adults 

performing 32 weeks of loaded exercise (resistance exercise) training 3 d/wk, which 
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found no change in OPG levels from pre- to post-resistance training, suggesting training 

with load does not have an impact on OPG levels. Furthermore, Marques et al. [191] 

showed that 8 months of either resistance or aerobic training in post-menopausal women 

results in no change in serum levels of OPG or RANKL, however BMD is increased 

compared to sedentary controls. The hypothesis that volume and not intensity mediates 

OPG response is contradicted in a study that assessed 10 weeks of moderate intensity 

walking 50 mins/d, 5 d/wk for 10 wks in middle aged men, which found no change in 

OPG and a decrease in RANKL serum levels [192]. The results of these studies suggest 

individual differences in the OPG response to exercise training (Table 4). 

1.16 SOST response to various modes of exercise training  

In the past 2 decades, bone metabolism in endurance athletes has gained a great deal of 

attention as highlighted in previous sections. However, less is known about the female 

endurance athlete. In particular, serum markers associated with the Wnt/β-catenin 

pathway during extensive periods of training have been rarely assessed. Current research 

in this field provides some evidence from healthy non-athletes as well as elite level 

athletes that suggests SOST is affected by various modes of exercise training (Table 5). 
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Table 5. Studies assessing SOST’s response to exercise training 

Training Effect on 

SOST 

Other findings Conclusions Reference 

112 post-menopausal 

F walked for 30 mins 

3 d/wk and 1h of 

aerobic training 1-2 

d/wk for 1 year 

compared to 

sedentary controls 

↔ ↔ RANKL, CTX and 

BAP ↑ BMD and OPG 

Exercise training balances 

bone turnover by increasing 

OPG to counter balance 

RANKL signaling and 

increase BMD 

[186] 

58 healthy F trained 

for 8 wks, 4 d/wk and 

compared to 62 

controls 

↓ ↑ IGF-1 (107%), PINP, 

BAP, CTX and OC 

Exercise training decreases 

SOST expression in non-

athletes 

[193] 

Compared athletes in 

various sport 

disciplines with 

sedentary controls  

Weight 

Bearing 

sports: 

↑ 

Non-weight 

bearing 

sports: 

↔ 

F compared 

to M: 

↑ 

SOST and BAP were 

inversely correlated in 

sedentary individuals, but 

not athletes  

Increased bone anabolism 

by mechanical loading leads 

to a negative feedback loop, 

which increases inhibitors of 

anabolism (i.e., SOST) 

[194] 

50 female EU or AU 

athletes and 

sedentary controls 

~19.8 years of age 

EU and AU 

athletes 

compared to 

controls: 

↑ 

EU athletes SOST levels 

were positively correlated 

with lumbar spine BMD, 

and control SOST levels 

were inversely associated 

with lumbar spine BMD 

SOST asserts differential 

effects on bone in athletes 

and non-athletes 

[195] 

9 M cyclists 

competing in the Giro 

D’Italia stage race: 

Comparing baseline, 

mid and final stage 

Continual ↑ ↑ CK, uCa 

Positive Correlations: 

SOST and estradiol,  

PO/m, NEE, uCa, and CK 

- Correlations: 

SOST and DHEA 

SOST could be a marker for 

both muscle and bone 

metabolic activity and 

damage 

[196] 

43 professional M 

soccer players ~26.5 

years of age 

compared to 16 M 

healthy controls 

↑ ↑ 25(OH)D3, P1NP, sCa 

↓ PTH 

↔ Energy, Ca or vitamin 

D intake 

- Correlations: 

SOST and sCa 

Training for multiple years 

may be associated with 

increased serum SOST 

[197] 

F – Female, M – Male, EU – Eumenorrheic, AU – Amenorrheic, CK – Creatine Kinase, u/sCa – 

Urinary/Serum Calcium, PO/m – Power Output/meter, NEE – Net Energy Expenditure 

 

 

Pre-menopausal women participating in resistance and aerobic training for 90 min 

for 4d/wk for a year have shown no changes in serum SOST, but had increased serum 

OPG levels and BMD when compared to healthy sedentary controls [186]. In contrast, a 

similar population following an intervention of 120 min/wk for 8wks was shown to have 

significantly lower (37%) serum SOST levels and higher IGF-1 (107%) levels when 
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compares to sedentary controls [193]. These conflicting results in healthy non-athletes 

suggest that serum SOST levels may be affected by different training durations and that 

the response to training may be variable depending not only on volume, but performance 

level as well. This is highlighted by the comparison of SOST levels in elite athletes of 

various sports and healthy non-athlete controls, which has shown that SOST is higher in 

females compared to males in general, and in athletes competing in weight bearing sports 

when compared to non-weight bearing sports and non-athletes [194]. Furthermore, these 

athletes in general had an inverse age-related correlation with SOST and that individuals 

with higher levels of physical activity (i.e., endurance athletes) have higher SOST levels 

(20% higher) compared to individuals with lower levels of physical activity. These 

findings are in contrast to findings in healthy individuals aged 44±10 years, which found 

that men had higher SOST than women, and that age in general was positively correlated 

with serum SOST levels [120]. Furthermore, SOST is significantly higher in athletes 

when compared to healthy non-athlete controls [195]. Surprisingly, SOST was positively 

associated with lumbar spine BMD and Z-score, while in non-athletes, SOST was 

inversely associated with lumbar spine BMD. In addition, athletes had significantly 

higher CTX than non-athletes, however P1NP was not different, yet it was positively 

associated with SOST. These results indicate that despite SOST being a known bone 

formation inhibitor, it can be positively (eumenorrheic) or negatively (non-athletes) 

associated with BMD.  

Continued assessment of SOST’s response to exercise training in athletes was 

done during the Giro d’Italia 2012 stage race, where 9 professional male cyclists had 3 

fasted blood draws prior, 12d and 23d after the start of competition [196]. SOST was 
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significantly increased at 12d and 23d of competition compared to the beginning of 

competition, and it was directly related to estradiol and inversely related to 

dehydroepiandrosterone (DHEA) levels. Estradiol was also correlated with urinary 

calcium and phosphorous levels. This data suggests that increased muscular effort in 12d 

intervals, as seen with increased CK levels in the absence of loading, stimulates 

osteocytes to increase SOST expression, which increases bone resorption. 

Ultramarathoners are a great model of assessing changes of bone metabolism after 

extreme energy expenditure. Spartathlon race is a 246-km ultradistance race, and 

assessment of serum levels of SOST has shown no change from pre- to post-race [198]. 

Despite the absence of an immediate response, sera taken 3 days following the race 

showed a significant decrease in SOST when compared to pre- and post-race levels. This 

is in agreement of previous work that has shown that athletes have lower resting SOST 

levels than non-athletes [120], and suggests a long term positive effect of endurance 

training on bone health. Assessment of SOST levels in professional male soccer players 

has shown to be significantly higher when compared to age matched, healthy non-athletes 

[197], which further suggests a complex relationship between peripheral levels of SOST 

and physical activity. These data suggest that SOST levels may be affected not only by 

training level, but also by the type of training being performed, and can be associated 

with either higher or lower BMD. However, this suggestion is limited by the lack of 

longitudinal studies.  
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CHAPTER 2: INTRODUCTION TO RESEARCH PAPER 

 

Exercise training has generally been shown to be beneficial to bone health in young 

athletes compared to non-athletic controls [199, 200]. However, the osteogenic benefits 

of exercise training may have a threshold, as periods of high volume/load training have 

been shown to lead to greater bone resorption over formation [89, 196, 201], and 

consequently, may increase the risk of stress fractures in elite female rowers [202].  

Several cross-sectional studies suggest that elite female rowers, and endurance 

athletes in general, are susceptible to low bone mineral density (BMD), due to consistent 

high volume training/load (endurance runners ~ 26 miles/week; elite rowers ~1080 

min/week) [203, 204], accompanied by inadequate energy intake, resulting in low energy 

availability [205]. Competitive female rowers have also been found having higher resting 

serum levels of type 1 collagen breakdown compared to non-athletes and competitive 

runners and swimmers [87], suggesting higher rate of bone turnover. In elite, 

heavyweight male rowers, Jurimae et al. (2006) [161] demonstrated that 6 months of 

training can elicit an osteogenic response, as seen with a 6% increase in BMD and 17% 

increase in resting osteocalcin serum levels, suggesting that extended periods of high 

volume training can lead to a beneficial osteogenic response. However, these studies 

report bone marker levels only pre- and post-training, without taking into account 

fluctuations in training volume/load during a training period. More importantly, 

previously examined bone markers reflect bone turnover activity, but do not address the 

mechanisms responsible for changes in formation or resorption.  
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The anabolic Wnt/β-catenin signal transduction pathway regulates osteoblast and 

osteoclast activation and differentiation [99]. Greater Wnt binding to its receptor 

increases bone formation and inhibits bone resorption [206]. In addition, Wnt signalling 

increases expression of osteoprotegerin (OPG), which down-regulates osteoclastogenesis 

by inhibiting the catabolic receptor activator of nuclear factor kappa-B (RANK):RANK 

ligand (RANKL) signalling cascade, a pathway critical for osteoclastogenesis[207]. 

Sclerostin (SOST), an osteocyte-derived Wnt signalling antagonist [119], has been 

implemented in assessing stress fracture risk [208] and has been proposed to unbalance 

bone turnover toward bone resorption following a 3-week stage race in elite male cyclists 

[196]. Thus, the Wnt signalling pathway may be partially mediating changes seen in the 

bone response to high volume training. However, no study has assessed how SOST or the 

downstream products, OPG and RANKL, are affected by fluctuations in training load, 

which takes into account both training volume and intensity.  

Furthermore, SOST’s, OPG’s, and RANKL’s relationship with markers of energy 

homeostasis and stress has yet to be explored. Three markers that are used to assess 

variations in energy homeostasis or stress in elite athletes include tumor necrosis factor 

alpha (TNF-α), leptin, and insulin like growth factor 1 (IGF-1) [164]. Resting TNF-α 

levels have been suggested to increase due to excessive training stress and lack of 

recovery in elite male rowers [143-145]. In addition, TNF-α has been shown to increase 

SOST expression [40, 209][210], as well as RANKL expression [211], warranting 

investigation into its role in Wnt/β-catenin and RANK:RANKL signalling during 

fluctuations in training volume/load. Leptin is related to mean daily energy intake and 

expenditure and decreases following periods of high volume training as a result of 
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increased energy expenditure (reviewed in [164]). Low levels of leptin have been 

associated with a lower BMD in female athletes [56, 179, 180], as well as with lower 

OPG and higher RANKL levels [56, 63]. IGF-1 seems to reflect energy status, and bone 

formation, as a combination of high volume training and low energy intake reduces IGF-

1 and type 1 collagen production[89], and has been shown to be positively associated 

with BMD and BMC of the femoral neck and spine in female athletes [212].These results 

suggest a negative impact of TNF-α on bone, but a protective effect of leptin and IGF-1 

in elite athletes.  

The objective of this study was to examine whether fluctuations in training load 

during an Olympic year lead to changes in bone mineral properties and serum biomarkers 

of Wnt and RANK:RANKL signalling (SOST, OPG, and RANKL), and how these bone-

specific changes relate to markers of training stress (TNF-α, leptin, and IGF-1). It is 

noteworthy that since heavyweight rowers are not required to make a certain weight 

category, their examination allows for the assessment of the bone and cytokine response 

independent of low energy balance. We hypothesize that SOST and TNF-α will increase 

while leptin and IGF-1 will decrease following periods of high load training, and that 

subsequently will all return to baseline following periods of low training load. Lastly, 

since these athletes will be in relative energy balance throughout the year, it is expected 

that there will have no changes in their BMD from pre- to post training.  
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CHAPTER 3: METHODS 

 

3.1 Participants 

Fifteen elite, heavyweight, female rowers, who were training to represent Canada at the 

2016 Olympiad in Rio de Janeiro were studied. Athletes were 27.0 ± 0.8 years of age, 

179.4 ± 1.4 cm tall, 80.9 ± 1.3 kg, 20.8 ± 0.6% body fat, and had 9.3 ± 1.1 years of 

experience in competitive rowing. All participants gave written informed consent and the 

study was approved by the Research Ethics Boards of Brock University and the Canadian 

Sport Institute Ontario. 

3.2 Study Design and Procedures 

Over the course of the 42-week study, participants arrived at their daily training 

environment (Rowing Canada’s National Training Centre, London, ON, CAN) at the 

same time (08:00-09:00) and had blood draws on six occasions: prior to the beginning of 

the training season in September 2015 (T1), 7 weeks (T2), 9 weeks (T3), 20 weeks (T4), 

25 weeks (T5), and 42 weeks (T6) into the training season. Each testing day occurred on 

a Monday prior to their training for the week in a rested state and following the 

consumption of a consistent breakfast. Total energy intake at T1, T2 and T4-6 were: 

4246±401, 3740±181, 3883±242, 3445±213, 3563±157 kcal, respectively, and there was 

no difference across time (p=0.22). Total protein intake at T1, T2 and T4-6 were: 158±8, 

144±7, 147±9, 130±10, and 154±12g, respectively, and there was no difference across 

time (p=0.22). Total carbohydrate intake at T1, T2 and T4-6 were: 611±91, 521±34, 

504±29, 426±30, and 410±26g, respectively, and there was no difference across time 

(p=0.09). Total fat intake at T1, T2 and T4-6 were: 136±8, 123±7, 135±8, 123±7, 
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135±10, 121±9, and 146±6g, respectively, and there was no difference across time 

(p=0.10). Menstrual status was not controlled for, as blood draws needed to be done on 

the same day for all athletes. The last blood draw took place 4 weeks before competition. 

Blood was drawn from an antecubital vein into Vacutainers. Following blood 

draws, the samples sat at room temperature for 25 min, then were transported at 4oC for 

1.7h from the training center to the University laboratory, where blood was centrifuged at 

1,000xg, serum isolated and aliquoted, and stored at -80oC for future analysis.  

3.3 Calculation of Training Volume, Intensity, and Load 

Training volume (min/wk) was prescribed by the National Team coaches, and both 

volume and intensity were the same for all athletes throughout the year training plan. A 

modified Banister’s training impulse (TRIMP) [213] was used to quantify weekly 

training intensity based on heart rate response coupled with the duration of training for 

each training session. Each athlete’s heart rate (HR) intensity zones were determined via 

ergometer step tests, which were done throughout the season, and adjustments to intensity 

zones were made as fitness progressed. There were no drastic differences between 

TRIMP at T1-6. Training volumes for T1-6 were: 1020, 942, 972, 955, 1097, and 880 

min/wk, respectively. T5 had the highest training volume, and T6 had the lowest. 

Training load (intensity × time × min-1) was calculated as the product of the average 

weekly intensity and training volume from the previous 3 weeks of training. Specifically, 

training load for T1-6 were: 5319, 3808, 4875, 4221, 5660, and 4808 intensity*h*min-1, 

respectively. T5 had the highest training load, and T2 had the lowest.  
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3.4 Biochemical Analysis 

Serum SOST, OPG, TNF-α, leptin, RANKL, and IGF-1 were analyzed in triplicate using 

Milliplex MAGPIX kits (EMD Millipore Corporation, Bellerica, MA, USA). SOST, 

OPG (OPG levels include bound (to RANKL) and the unbound forms), TNF-α, and 

leptin were measured on a Human Bone Panel (4 panels were used to analyze all 

samples). The average intra-assay coefficient of variation for SOST was 5.3% and the 

inter-assay coefficient of variation was 7.4%. The average intra-assay coefficient of 

variation for OPG was 7.2%, and the inter-assay coefficient of variation was 8.2%. The 

average intra-assay coefficient of variation for TNF-α was 6.1%, and the inter-assay 

coefficient of variation was 5.7%. The average intra-assay coefficient of variation for 

leptin was 4.3%, and the inter-assay coefficient of variation was 5.1%. Human RANKL 

(RANKL levels only include the unbound form) was measured using a single human 

RANKL Panel (2 panels were used to analyze all samples). The average intra-assay 

coefficient of variation for RANKL was 3.4%, and the inter-assay coefficient of variation 

was 4.1%. Human IGF-1 was measured using a single Human IGF-1 Panel (4 panels 

were used to analyze all samples). The average intra-assay coefficient of variation for 

IGF-1 was 7.5%, and the inter-assay coefficient of variation was 5.4%. Human estradiol 

was measured in duplicate using 2 enzyme linked immunosorbent assays (ELISA) (R&D, 

MN, USA). The average intra-assay coefficient of variation for estradiol was 4.8%, and 

the inter-assay coefficient of variation was 5.9%.  

3.5 Bone Measurements and Dietary Intake 

Total-body BMD and BMC were measured by dual-energy x-ray absorptiometry (DXA) 

(Lunar iDXA ME 2000087, GE Healthcare, Burlington, ON, CAN). Lumbar spine, ribs, 
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pelvis, arms, and leg BMD values were also ascertained from region-of-interest values 

reported with the whole-body scan. Dietary variables were assessed from three-day 

dietary records for each athlete prior to each blood draw. Athlete food diaries for the 3 

days leading into each blood draw were analyzed for total energy, and macro- and 

micronutrient intake using Food Processor Nutrition Analysis Software (ESHA, Salem, 

OR, SUA).  

3.6 Statistical analysis 

All data were screened for normality using the Kolmogorov-Smirnov test. Descriptive 

statistics on anthropometric characteristics were calculated for the total group. A paired t-

test was used to compare the pre- and post-training DXA scans. A one-way analysis of 

variance for repeated measures (RM ANOVA) was used to assess changes over time in 

biochemical markers. In the event of a significant time effect, further pairwise 

comparisons were made using LSD correction to determine significant differences 

between time points. In addition, percent coefficient of variation (%CV) for each 

biochemical marker was determined for each participant to ascertain fluctuations in 

marker concentrations throughout the season and to assess how marker variability 

affected bone mineral properties. Finally, data from T1 and T6 were combined into 

continuous data sets and linear regression was used to determine predictors of BMD, 

BMC, and percent change (%change) in BMD and BMC. Significance was accepted at an 

alpha level of <0.05 for all analyses, and means±SEM are reported in all Figures and 

Tables. Statistical Analysis was performed using SPSS version 22 for Windows.   
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CHAPTER 4: RESULTS 

 

From pre-season (T1) to post-season (T6) there was no change in body mass. However, 

there was a significant decrease in adiposity (20.7 ± 0.6 to 19.9 ± 0.8%, p = 0.02). Table 

6 presents changes in bone mineral properties from pre- to post-season. Total BMD 

increased significantly (+1.6%, p = 0.05) from pre- to post-season (42 weeks). However, 

total BMC remained stable (+1.9%, p = 0.34). 

Table 6. Bone outcomes of interest at pre- compared to post-season in all rowers (values 

are Mean±SEM). 

 

*= P<0.05; %Δ = percent change calculated as (post-season subtract pre-season)/pre-season X 100  

The mean percent coefficient of variation (%CV) of all biochemical markers over 

the training season were estimated using the individual %CV across time points, and are 

presented in Table 7. These values represent the variability of each marker during the 

season within each individual. Estradiol had the highest CV (37.8%) and OPG had the 

lowest CV (19.9%) during the season.  

 

 

 

Measurements Pre-Season (T1) Post-Season (T6) % Δ P-value 

 Total BMC (g) 3115 ± 95 3176 ± 64  +1.9 0.34 

Total BMD (g/cm2) 1.25 ± 0.02 1.27 ± 0.02 +1.6   0.05* 

Trunk BMD (g/cm2) 1.10 ± 0.03 1.13 ± 0.02 +2.7 0.09 

Pelvis BMD (g/cm2) 1.22 ± 0.03 1.26 ± 0.03 +3.2 0.06 

Ribs BMD (g/cm2)   0.89 ± 0.02  0.91 ± 0.02 +2.2 0.34 

Spine BMD (g/cm2)  1.20 ± 0.03 1.23 ± 0.03  +2.6 0.19 
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Table 7. Percent coefficient of variation 

(%CV) of all biomarkers for individual 

participants across time (values are 

Mean±SEM).  

Biomarker %CV 

Estradiol 37.8±4.7 

IGF-1 20.4±3.0 

Leptin 32.0±2.5 

TNF-α 21.7±2.9 

SOST 25.7±3.3 

OPG 19.9±2.1 

RANKL 33.0±6.0 

OPG/RANKL 36.9±22.3 

IGF-1=insulin growth factor-1; TNF-α=tumor necrosis 

factor-α; SOST=sclerostin; OPG=osteoprotegerin; 

RANKL=receptor   activator of nuclear factor kappa-B 

ligand;  

 

 

Figure 5 shows the changes of SOST (a), OPG (b), RANKL (c), and 

OPG/RANKL ratio (d), along with the training load fluctuations, across the 42-week 

study period. SOST appeared sensitive to changes in training load, as levels increased at 

T5, compared to T6, T4, T3 and T2 (p = 0.006) and not different from T1. That is, SOST 

followed the fluctuations in training volume with its levels being highest at T5, when 

training volume was also at its highest, compared to the tapering week (T6) with the 

lowest training volume (993.1 vs. 741.0 pg/mL, respectively, p = 0.006). OPG was 

unchanged over the season. RANKL decreased significantly at T4 and remained reduced 

at T5 and T6 compared to T1 (p = 0.002). The OPG/RANKL ratio was significantly 

increased at T4 and T6 compared to T1 and T2 (p = 0.02).  
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Figure 5. Weekly training volume from the 3 weeks preceding each blood draw and 

mean ± SEM of resting a) SOST, b) OPG, c) RANKL, and d) OPG/RANKL serum 

concentrations in elite heavyweight female rowers (n=15). A RM ANOVA was used to 

ascertain any significant changes across time in osteokines. a = p<0.05, significantly different from 

week 0; b = p<0.05, significantly different from week 7;  c = p<0.05, significantly different from week 

9; d = p<0.05, significantly different from week 20; f = p<0.05, significantly different from week 42. 

 

Figure 6 shows the changes in the inflammatory and metabolic markers, along 

with training load fluctuations, across time. TNF-α (a) showed a similar pattern to 

(SOST), and was significantly higher at T1 and T5 compared to T6 (p = 0.002). Leptin 

(b) did not change consistently with fluctuations in training load or volume, and was 

lowest at T2 (1224.5 pg/ml). However, there were no significant differences between any 

time points. IGF-1 (c) remained unchanged throughout the training season.  

Estrogen was measured to control for menstrual status, because all athletes had 

their blood drawn on the same day, thus at different stages of their menstrual cycles. 

Estrogen was not significantly different at any time point. Figure 6d shows the mean ± 
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SEM concentration change of estrogen across the 42-week long study period. Also, 

estrogen had no significant relationships with any other serum biomarkers or bone 

outcomes at any time point or overall.  

 

  

Figure 6. Weekly training volume from the 3 weeks preceding each blood draw and 

mean ± SEM of resting a) TNF-α, b) leptin, c) IGF-1, and d) estrogen serum 

concentrations in elite heavyweight female rowers (n=15). A RM ANOVA was used to 

ascertain any significant changes across time in biomarkers. a = p<0.05, significantly 

different from week 1; significantly different from week 25; f = p<0.05, significantly 

different from week 42. 

 

Table 8 shows the regression results for total BMC and BMD. Model 1 for total 

BMC included TNF-α as the strongest negative predictor, which together with leptin 

(model 2) could explain up to 31% of the variance in total BMC. For total BMD, leptin 

was a positive predictor and could explain 14% of the variance in total BMD (Table 3). 

Stepwise regressions were also performed for %change of BMC and %change of BMD. 
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The model for %change of BMC included OPG/RANKL %CV as a negative predictor 

and could explain 30% of the variance in %change of BMC. No other variables assessed 

in this study were accepted into the stepwise regressions and no variables explained the 

variance in %change of BMD (entry at F<0.05). The relationships between total BMD 

and BMC and biomarkers were independent of estrogen, body composition, menstrual 

status and oral contraceptive use, as none of these variables entered in the predictive 

models.  

Table 8. Regression models predicting total BMC and BMD using TNF-α and leptin. 

Unstandardized β-coefficients are reported with Beta in parentheses 

 

  

Variables Model 1 Model 2 

Total BMC   

TNF-α -158.3(-0.42) -182.1(-0.49) 

Leptin  0.03(0.42) 

     Adjusted R2 0.15 0.31 

     p-value 

 

  0.02*   0.003* 

Total BMD   

Leptin 9.3E-6(0.37)  

     Adjusted R2 0.14  

     p-value   0.04*   
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CHAPTER 5: DISCUSSION 

   

This is the first study to examine the effect of training load fluctuations on bone markers 

(SOST, OPG and RANKL), and their relationship with changes in inflammatory and 

metabolic markers across an Olympic year in elite athletes in general, and in female, 

heavyweight rowers in particular. Our findings demonstrate that TNF-α, an inflammatory 

marker, and SOST, a bone formation inhibitor, were sensitive to changes in training 

volume and training load. Additionally, SOST appears to increase in parallel with TNF-α, 

suggesting that high volume/load training can induce systemic inflammation, and inhibit 

osteoblastogenesis. Thus, this study presents new evidence in support of the mechanism, 

illustrated in Figure 7, of how high training load leads to a transient decrease in bone 

formation through an upregulation of SOST via TNF-α. In contrast, the intermittent 

periods of lower volume/load training were accompanied by decreases in both TNF-α and 

SOST, further supporting the proposed mechanism. Over the course of the season, a 

decrease in RANKL, along with the relatively stable OPG, led to an overall increase in 

OPG/RANKL, which is an indicator of an overall decrease in osteoclastogenesis. Lastly, 

leptin, appears to be a positive predictor of BMD and BMC. In contrast, TNF-α, which 

was sensitive to training load fluctuations, appears to be a negative predictor of BMC. 

These catabolic responses, however, can be reversed with intermittent periods of reduced 

training load, which combined with a healthy metabolic profile (i.e., stable leptin), seem 

to protect the bone integrity in elite female athletes.   
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Figure 7. The effect of increased training volume on Wnt/β-catenin and 

RANK:RANKL:OPG signalling cascades; (Adapted from Servier Medical Art by 

Servier©). 

 

5.1 Bone mineral properties and anthropometric outcomes pre- and post-training 

There was a significant increase in BMD over the training season. This finding is in line 

with previous studies that have reported site specific (i.e., lumbar spine) [81, 82] 

increases in BMD in elite male and female rowers. However, this the first study to assess 

changes in BMD in elite heavyweight female rowers across a full competitive season, and 

highlight an increase. Body mass did not change, suggesting that rowers were in energy 

balance. This is supported by the observations that IGF-1 and leptin remained relatively 

constant, and the fact the rowers received frequent nutritional counseling. Therefore, our 

results suggest that the increase in BMD is due to the high quantity of intense muscle 

contractions [214]. This provides further support for the mechanostat theory [214], 

according to which the increase in BMD is due to the high quantity of intense muscle 

contractions.   
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The increase in total BMC, although of similar magnitude (1.9%), was 

statistically not significant. This is puzzling and is probably due to the higher variability 

in individual values. On the other hand, although there was no change in stature, it is 

possible that the participants were still accruing bone mass. Peak bone mass, defined as 

the highest level of bone mass achieved as a result of normal growth, is largely achieved 

by age 18 to early 20s depending on the bone [215]. In girls, approximately 50% of peak 

bone mass is accrued around the time of peak height velocity [216], with 90% of total 

body BMC accrued by the end of the second decade [217], and the remaining 5-10% 

achieved by the third decade [216]. Overall, the significantly higher BMD and stable 

BMC clearly indicate that the bone mineral properties of these elite, heavyweight rowers 

were at least preserved during the season. 

5.2 SOST response to fluctuations in training load 

SOST fluctuated parallel to training load, which is in contradiction to studies that have 

shown extensively that increased mechanical loading decreases the expression and 

protein levels of SOST in vivo [218]. On the other hand, elite cyclists who were 

competing in a 3-week stage race showed a continual increase in SOST from pre- to 1.5 

and 3 weeks into the race [196].  Another study found a significant decrease in SOST 

from pre- and post-3 days of recovery following a race in spartathlon participants [198]. 

These studies suggest that SOST may increase with increased training volume/load and 

can decrease with recovery, despite mechanical unloading increasing SOST expression in 

vivo [218]. Our findings further support these findings found in elite athletes, as SOST 

increased during the weeks of higher training load (T5) and decreased during periods of 

lower training load. It is also interesting that SOST fluctuated in parallel to training 
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volume; at T6, during the tapering period of the lowest training volume, SOST reached 

its lowest levels while it reached its highest levels during the week of the highest training 

load (T5). This suggests that simple changes in training volume (as in hours/week) can 

lead to alterations in bone metabolism.   

Our results also support the previous suggestions that extended periods of high 

volume/load training can lead to a transient suppression of bone formation due to 

inhibition of Wnt signalling by SOST [196]. In vitro assessment of SOST found that its 

expression is only seen in osteons following mineralization, and SOST is highest in 

osteons that are undergoing bone resorption [119]. The relationship between SOST 

expression and bone resorption suggests that either the number of osteons undergoing 

bone resorption increased, or the osteons undergoing bone resorption increased SOST 

expression as training volume/load increased. SOST fluctuated in parallel, and was 

positively related to TNF-α levels, a proposed inflammatory marker of muscular stress 

[145], which suggests that excessively high training load can lead to elevated resting 

TNF-α levels and subsequently, increased SOST expression.  

Lastly, estrogen was not correlated to either TNF-α or SOST at each time point or 

overall, despite previous evidence of estrogen being a significant predictor of SOST in 

pre- and post-menopausal women [129], and estrogen deficient mice appear to increase 

SOST expression in a TNF-α dependent mechanism [40]. In contrast, our results suggest 

that TNF-α may upregulate SOST expression independent of estrogen as a response to 

increased training load.  
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5.3 OPG, RANKL and OPG/RANKL responses to fluctuations in training load 

OPG did not respond to fluctuations in training load, and remained fairly stable. 

However, despite no change in OPG, RANKL decreased significantly at midseason 

compared to pre-season and remained suppressed to post-season, leading to an increase in 

OPG/RANKL ratio from T1 to T4 and T6. Taken together, these results suggest there 

may be a decrease in osteoclast number due to a decrease in available RANKL, and thus 

a decrease in bone resorption over the training period, possibly explaining the increase in 

BMD. This suggestion is supported by the regression analysis in Table 3, which shows 

that the variability of OPG/RANKL throughout the season, as determined by %CV across 

all time points, accounted for 30% of the variance in the %change of BMC.  

 OPG has been hypothesized to increase with exercise training, subsequently 

decreasing unbound RANKL levels, thus protecting the skeleton from bone loss [219]. In 

this study, OPG levels remained unchanged across the training year, however unbound 

RANKL levels significantly decreased, suggesting a decrease in osteoclastogenesis either 

by a decrease in RANKL levels, or due to a higher proportion of OPG being bound to 

RANKL. Also, the OPG/RANKL ratio was not associated with BMC or BMD in this 

study despite being elevated at week T4 and T6 compared to pre-training levels, 

suggesting a protective effect on bone and subsequently contributing to the increase in 

BMD from pre- to post-training. In elite female gymnasts and endurance athletes, BMD 

is significantly higher than age-matched controls, although OPG/RANKL ratio was 

similar [220],[182]. There are limited studies that assessed the OPG/RANKL ratio in 

athletes and this is the first to assess the training response. Thus, our finding that 

OPG/RANKL ratio is not a predictive marker for BMD, is in agreement with previous 
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findings [220]. However, monitoring the OPG/RANKL ratio may suggest directional 

changes in BMD, as we have shown that this ratio increases throughout a training season 

and remains elevated. The elevated ratio may also translate to the improved BMD from 

pre- to post-season.  

5.4 Leptin’s association with bone mineral properties  

Leptin was not sensitive to changes in training load but was found to be a significant 

predictor of total BMD and BMC. This finding agrees with one previous study also 

reporting leptin to be a significant predictor of total BMC and BMD in active females 

[221]. Leptin replacement therapy has also been shown to increase bone formation and 

improve BMD in female athletes with low BMD and serum leptin levels [56, 222, 223]. 

Interestingly, leptin’s influence on bone mineral properties seems to be independent of 

training since leptin did not directly respond to the fluctuations in training load, and 

showed moderate variability (32 %CV) throughout the training season. These findings, 

and supporting literature, suggest that adequately stable levels of leptin may be critical 

for BMD preservation in elite female athletes. Despite these findings, the exact 

mechanism of how leptin preserves BMD remains unclear, as leptin acts on many tissues, 

which increase the secretion of anabolic endocrine effectors, such as IGF-1 and estrogen 

[55], and inhibit the production of RANKL [224], which together, improves BMD. Our 

findings only support leptin may be important for preservation or improvement in BMD 

in elite female athletes.  
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusion 

Fluctuations in training load were accompanied by parallel fluctuations in SOST and 

TNF-α, suggesting that increasing training load may inhibit bone formation. This 

catabolic response can be counterbalanced by periods of lower training load, which lower 

TNF-α and SOST.  Furthermore, leptin levels, which appear insensitive to training load 

fluctuations. Also, leptin levels and the low variability in the OPG/RANKL ratio during 

the training season seem to protect the bone mineral properties in these elite, heavyweight 

rowers. This is new evidence that training load periodization can control the 

inflammatory response associated with intense training, and coupled with adequate 

nutrient intake can preserve bone mineral integrity in elite female athletes.  

6.2 Limitations 

This is the first study to assess the effect of training load fluctuations on bone markers 

(SOST, OPG and RANKL), and their relationship with changes in inflammatory and 

metabolic markers during an Olympic year in elite athletes in general, and in female, 

heavyweight rowers in particular. Despite the attempt to limit the factors that may 

confound our results, this study did have some flaws.   

 First, we have not measured bone events directly, and our interpretation of the 

results are based on inferences from indirect bone markers measured in blood. Also, the 

design of this study did not allow for controlling for menstrual status or food intake. In 

order not to interfere with training schedule, all blood draws were performed in all 

athletes on the same morning, right before workouts. This meant athletes were in 
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different phases of their menstrual cycles, and thus had different levels of hormones. 

Additionally, since practice immediately followed the blood draw, all athletes were in a 

fed state during blood draws. Also, multiplex assays are an effective way at assessing 

multiple analytes simultaneously with a small amount of sample. However, this method 

has a higher lower limit of detection for most analytes, and has higher variability than 

ELISA.  

6.3 Future Directions 

Future studies are needed to assess elite lightweight female athletes, compared with 

heavyweight rowers and with non-exercising controls. This will help understand the 

response of SOST, as well as other Wnt related markers, and inflammatory cytokines to 

fluctuations in training load with or without energy expenditure/intake balance in elite 

athletes. Also, taking multiple draws during recovery periods following periods of high 

load training will help elucidate how long a recovery period is required to have levels of 

SOST and TNF-α to return to baseline. Furthermore, following resting levels of SOST, 

and other Wnt related markers, in non-athletic and athletic populations at multiple time 

points from pre- to post- an exercise training program with various training modalities 

will give an insight into how initialization vs. long term training of various modes of 

exercise (i.e., low impact vs. high impact, high intensity vs. high volume) impact these 

markers.  

 Lastly, there is still much to be learned about what role osteocytes have in bone 

mineralization and maintenance, and the mechanism of why there is this paradoxical 

increase in SOST with increased training load in elite athletes while there is a decrease 

with excessive loading in murine models. Since we are unable to take bone biopsies, 



72 
 

future studies should first utilize animal models to assess osteocyte, osteoblast, and 

osteoclast cell number, expression and localization of SOST and other Wnt related 

signalling molecules within bone and peripheral tissues, as well as bone 

microarchitecture following exercise training rather than utilizing loading murine models. 

Making assertions from loading experiments and not exercise specific studies may lead to 

a misinterpretation as to what may be occurring with exercise, as exercise stimulates the 

utilization of all organ systems and secretion of signalling molecules, while the loading 

experiments only focuses on sedentary behaviour coupled with excessive mechanical 

loading. Assessing bone cell ratios will give an insight into how the bone multicellular 

unit is responding to exercise training and give an insight into why we are seeing the 

changes in SOST (i.e., if there is a change in osteocyte number over osteoblast number). 

Evaluating expression and localization of SOST will answer the question of whether 

there is a change in expression or the response to exercise is based on the quantity of 

SOST within the canaliculi lacunae system. Also, assessing localization of SOST, and 

other Wnt associated signalling molecules, with peripheral tissues has never been done, 

since we know SOST is in high concentration within serum and that LRP5/6 receptors are 

a ubiquitous signalling system we would expect that SOST may inhibit Wnt signalling in 

peripheral tissues, such as muscle. Also, assessing Wnt expression, protein levels, and 

Wnt-receptor association following acute exercise, as well as training, in bone and 

muscle will help elucidate the mechanisms that lead to the anabolic responses observed. 

Measuring bone microarchitecture changes will give an improved understanding of how 

bone is responding to exercise training along with changes in SOST expression. These 

studies will provide insight into what impact the SOST response to exercise training has 



73 
 

on bone microarchitecture. Furthermore, assessing how Wnt signalling is modulated 

following exercise (acute and training) can help elucidate why we see the response 

observed in serum and what they mean.  
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