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Abstract 

Other-race faces are discriminated and recognized less accurately than own-race 

faces. The other-race effect (ORE) emerges during infancy and is robust across different 

participant populations and a variety of methodologies (Meissner & Brigham, 2001). 

Decades of research has been successful in characterizing the roots of the ORE, however 

certain aspects regarding the nature of own- and other-race face representations remain 

unspecified. The present dissertation attempts to find the commonalities and differences 

in the processing of own- vs. other-race faces so as to develop an integrative 

understanding of the ORE in face recognition.  

In Study 1, I demonstrated that the ORE is attributable to an impaired ability to 

recognize other-race faces despite variability in appearance. In Study 2, I further 

examined whether this ability is influenced by familiarity. The ORE disappears for 

familiar faces, suggesting a fundamental difference in the familiar and unfamiliar other-

race face recognition. Study 3 was designed to directly test whether the ORE is 

attributable to a less refined representation of other-race faces in face space. Adults are 

more sensitive to deviations from normality in own- than other-race faces, and between-

rater variability in attractiveness rating of individual faces is higher for other- than own-

race faces. In Study 4, I investigated whether the ORE is driven by the different use of 

shape and texture cues. Despite an overall ORE, the transition from idiosyncratic shape to 

texture cues was comparable for own- and other-race faces, suggesting that the different 

utilization of shape and texture cues does not contribute to the ORE. In Study 5, applying 

a novel continuous-response paradigm, I investigated how the representations of own- 

and other-race face are stored in visual working memory (VWM). Following ample 
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encoding time, the ORE is attributable to differences in the probability of a face being 

maintained in VWM. Reducing encoding time caused a loss of precision of VWM for 

other- but not own-race faces. Collectively, the results of this dissertation help elucidate 

the nature of representations of own- and other-race faces and clarify the role of 

perceptual experience in shaping our ability to recognize own- and other-race faces. 
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CHAPTER 1 

General Introduction 

1.1 The Other-Race Effect: A Definition 

Adults possess a remarkable ability to recognize individual faces, despite the fact 

that all faces share the same configural template (i.e., two eyes located above the nose 

and mouth). However, such face expertise is limited to face categories with which people 

have abundant perceptual experience (e.g., upright faces, own-race faces). One of the 

most replicated phenomena in face perception is that perceivers tend to discriminate and 

recognize faces of the race with which they are most familiar (typically one’s own race) 

more accurately than the faces of the race with which they are less familiar. This is the 

so-called other-race effect (ORE), which has also been called the “own-race bias” and 

“cross-race effect” (Byatt & Rhodes, 2004; Ng & Lindsay, 1994; see Meissner & 

Brigham, 2001 for a review). 

The other-race effect was first reported in 1914 by Feingold, who claimed that 

“other things being equal, individuals of a given race are distinguishable from each other 

in proportion to our familiarity, to our contact with the race as whole. Thus, to the 

uninitiated American all Asiatics look alike, while to the Asiatics, all White men look 

alike” (Feingold, 1914; p.50). The first empirical evidence supporting the ORE derives 

from a study conducted by Malpass and Kravitz in 1969. These researchers found that 

both Caucasian and African American adults were more accurate when identifying 

previously learned own- than other-race faces (Malpass & Kravitz, 1969). Since then, the 

robustness of the ORE has been confirmed by a great volume of research testing 

participants from different ethnic groups and with faces from different races (e.g., West 
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Caucaisan and Hispanic faces; see Tanaka & Pierce, 2009; Turkish and German faces; 

Sporer, 2002; Anglo-American, African-American, and Mexican-American faces; see 

Platz & Hosch, 1998 for a field study; East Asian faces, Valentine & Endo, 1992; Ng & 

Lindsay, 1994; Zhang, Zhou, Pu, & Hayward, 2011). Given that the effect is found across 

participant groups and face categories, the ORE is unlikely due to the differences in 

either stimulus sets or observer characteristics. Furthermore, Goldstein compared the 

physiognomic variability among Japanese, white and black faces and found no evidence 

for racial differences in facial heterogeneity (Goldstein, 1979), suggesting that the ORE is 

not due to the fact that faces of one ethnic group are inherently more difficult to 

recognize and memorize than the faces from another ethnic group (also see Baytt & 

Rhodes, 2004). 

Importantly, Bothwell and colleagues conducted a meta-analysis based on 14 

studies involving both black and white participants (n = 1435; Bothwell, Brigham, & 

Malpass, 1989). They also found a consistent ORE; around 80% of the black and white 

subjects exhibited better recognition of own- than other-race faces. Meissner and 

Brigham (2001) also confirmed the reliability of the ORE in their meta-analysis, 

involving 39 research studies and nearly 5000 participants. They reported that the chance 

of a mistaken identification is 1.56 greater for an other-race identity than that of an own-

race identity (Meissner & Brigham, 2001). They suggested that the ORE is associated 

with greater error when identify a previously seen other-race face as familiar (hit) and 

greater error when identify a previously unseen other-race face as novel (correct 

rejection).  



	 	

	 3	

In addition to the behavioral studies described above, a great volume of 

neurophysiological studies and neuroimaging studies have been conducted to explore the 

time-course and the anatomical basis of the other-race effect. Several EEG studies have 

reported smaller amplitudes of N170 and P200 for other- than own-race faces (Ito & 

Urland, 2005; Jonathan, Freeman, & Holcomb, 2009; Vizioli, Foreman, Rousselet, & 

Caldara, 2009; Vizioli, Rousselet, Foreman, & Caldara, 2009; but see Balas & Nelson, 

2010; Stahl, Wiese & Schweinberger, 2008; Tanaka & Pierce, 2009). N170 and P200 are 

ERP components that peak over tempero-occipital brain regions about 170ms and 200ms 

after stimulus onset, are larger for faces than most other stimulus categories, and are 

thought to reflect structural encoding and holistic processing of faces (see Rossion, 2014 

for a review). These findings therefore suggest that the ORE is at least partially 

attributable to the impairments in the formation of sensory representations of other- than 

own-face faces (structural encoding) and in the integration of facial features into a whole 

when encoding other- than own-race faces. 

Neuroimaging studies are conducted to explore the localization of activity 

associated with the processing of own- versus other-race faces. Some fMRI studies have 

reported greater activation of fusiform gyrus (FFA) and occipital face area (OFA) for 

own- and other-race faces (Feng et al., 2011; Golby, Gabrieli, Chiao, & Eberhardt., 2001; 

Kim et al., 2006; Natu, Raboy, & O’Toole, 2010; also see Natu & O’Toole, 2013 for a 

review, but see Kanwisher et al., 1997). OFA has been found to be sensitive to face parts 

and configuration. FFA has been reported to be involved in the processing of faces at a 

subordinate level rather than at a basic-level and activation of the FFA reflects 

differential visual expertise (Natu & O’toole, 2013; Tarr & Gauthier, 2000). For example, 



	 	

	 4	

FFA can be greatly activated when bird and car experts judge whether the two birds in a 

pair belong to the same species, or whether the two cars in a pair belong to same model 

but different years (Gauthier et al., 2000). Greater activation of these brain areas for own- 

vs. other-race faces would suggest that the ORE is associated with impaired sensitivity to 

the structure of facial features in other-race faces, likely a directly result of limited 

perceptual experience with these faces (Natu & O’toole, 2013; Feng et al., 2011).  

 

1.2 Measurement of Other-Race Effect 

A variety of methodologies have been used to investigate the ORE. These tasks 

are designed to characterize the perceptual and mnemonic differences in the processing of 

own- and other-race faces. For example, the old/new face recognition task and 

Cambridge face memory tasks are designed to measure perceivers’ ability to store and 

recall representations of own- and other-race faces. Other tasks, such as Glasgow face-

matching task and the 1-in-10 line-up task, are designed to measure perceivers’ ability to 

perpetually discriminate among own- and other-race faces. Some other tasks are designed 

to determine the mechanisms underlying differential discrimination and recognition; 

these tasks test people’s sensitivity to the shape of facial features and feature spacing (e.g., 

Jane/Ling task; Scrambled/blurred task), as well as holistic processing of own- and other-

race faces (e.g., Composite face task; Part/Whole task).  

Extensive evidence has suggested that the ORE is not merely a memory 

phenomenon; it also exists at a perceptual level. Perceivers tend to show deficits in the 

encoding, storage, and/or retrieval of the other-race face representations from memory, 

however, their performance is also impaired in perceptual discrimination tasks, where the 
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memory demands are largely eliminated or reduced. This section will review the most 

typical five measures that are used in the ORE literature: old/new face recognition task, 

which measures perceivers’ memory for faces; 1-to-10 face matching task, which tests 

the perceptual discrimination of faces; the composite face task, which measures the 

holistic processing of faces; and the scrambled/blurred task and Jane/Ling task, which 

test perceivers’ sensitivity to the appearance of individual facial features and the spacing 

among facial features in own- and other-race faces. 

1.2.1 Old/new face recognition task 

One of the classic measures of own- and other-race face memory is the old/new 

face recognition task (e.g., Golby, Gabrieli, Chiao & Eberhardt, 2001; MacLin & 

Malpass, 2001; Meissner & Brigham, 2001; Wright, Boyd & Tredoux, 2003). In this task, 

participants are typically instructed to memorize a set of own- and other-race faces, 

followed by a forced-choice recognition test in which the learned faces are intermixed 

with novel faces; participants are asked to indicate whether each face is an ‘old’ face 

(seen during the learning phase) or a ‘new’ face (not seen during the learning phase).  

Participants’ responses can be therefore categorized into four types: hits, defined 

as the proportion of trials in which previously learned faces are correctly identified as 

‘old’; misses, defined as the proportion of trials in which previously learned faces are 

incorrectly identified as ‘new’; correct rejections, defined as the proportion of trials in 

which previously unseen faces are correctly identified as ‘new’; and false alarms, which 

is the proportion of trials in which previously unseen faces are incorrectly identified as 

‘old’. Using signal detection theory, d-prime, which takes into account both hits and false 

alarms, can be calculated to represent overall recognition accuracy. Using this paradigm, 
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researchers have consistently found that when asked to recall the learned own- and other-

race faces from memory, perceivers typically make fewer hits and more false alarms for 

other- than own-race faces (see Meissner & Brigham, 2001 for a review), reflecting 

impairments in the encoding, storage and/or retrieval of other-race face representations 

from memory (Meissner & Brigham, 2001; Young, Hugenberg, Bernstein, & Sacco, 

2012). Although the old/new face recognition task has been widely used to test people’s 

memory for own- and other-race faces, its’ real-world applicability is criticised by some 

researchers (Lindsay & Well, 1983) as it is unlikely in the real world that perceivers learn 

a set of faces sequentially and then recall these faces from their memory. Some other 

more applied tasks, such as the identity task, requiring participants to locate a target face 

in an identity line-up from memory (Meissner, Tredoux, Parker & MacLin, 2005; Jackiw, 

Arbuthnott, Pfeifer, Marcon & Meissner, 2008; Evans, Marcon & Meissner, 2009), have 

also been used in the face perception literature, but will not be discussed in detail here.  

1.2.2 Face matching task 

In addition to face memory tasks, researchers have also developed various 

matching tasks to measure people’s perceptual discrimination of own- and other-race 

faces. One of the classic tasks is the face-matching task (also see Glasgow face matching 

task; Megreya & Burton, 2007; Megreya, White, & Burton, 2011). The face-matching 

task has different formats that vary in their difficulty (e.g., simultaneous face matching, 

sequential face matching, 1-to-1 face matching, 1-to-10 face matching), but all are 

designed to minimize the memory demands so as to test whether there is differential 

discrimination of own- and other-race faces at the perceptual level. 
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In the classic 1-to-10 face matching task (e.g., Megreya, White, & Burton, 2011), 

participants are shown a target face and an array of 10 test faces; their task is to 

determine whether the target is present among the test faces and, if so, to identity the 

person. In the half of the trials, the target faces are present in the test array, and in the 

other half, the target faces are absent. For the target-present trials, there are three possible 

responses: hit, defined as correctly reporting that the target is ‘present’, and correctly 

identifying the target; misses, defined as incorrectly reporting that the target is ‘absent’; 

and misidentification, defined as incorrectly identify a distractor. For the target-absent 

trials, there are two possible responses: correct rejections, defined as correctly reporting 

that the target is ‘absent’; and false alarms, defined as incorrectly reporting that target is 

‘present’ and identifying a foil. Overall accuracy is typically calculated based on hits and 

correct rejections. It has been consistently found that participants’ matching performance 

is significantly impaired for other- relative to own-race faces (Levin, 2000; Megreya & 

Havard, 2011; Megreya, White, & Burton, 2011; Sporer, Trinkl, & Guberova, 2007). 

Megreya and colleagues used upright and inverted target own- and other-race faces in 

their study and found a stronger inversion effect for own- than other-race faces, 

suggesting that the ORE is also associated with more configural processing of own- than 

other-race faces (inversion especially disrupts the accurate extraction of special relations 

among facial features, Maurer, Le Grand, & Mondloch, 2002). Collectively, these studies 

show poor discrimination and recognition of other-race faces; the studies to follow look 

at potential underlying processes. 
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1.2.3 Composite face task  

Several lines of studies have suggested that other-race faces are processed less 

holistically than own-race face, which may underlie the recognition and discrimination 

deficits for other-race faces (e.g., Michel, Corneille, & Rossion, 2007; Michel, Rossion, 

Han, Chung, & Caldara, 2006; Tanaka, Kiefer, & Bukach, 2003). This conclusion has 

been made based on tasks measuring people’s ability to extract the relationship between 

facial features, and to integrate the facial features into a gestalt (i.e., holistic processing; 

see Maurer, Le Grand, & Mondloch, 2002). One of the classic measures is the composite 

face task.  

In this task (see Figure 1.1), participants are shown a target face and then a 

composite face comprised of the same upper half paired with a different bottom half or a 

composite face comprised of a different upper and a different bottom half than the target 

face. Participants are asked to indicate whether the top halves of the two faces are 

identical or different. On the half of the trials, the top and the bottom half are aligned 

while on the other half of the trials, they are misaligned (a manipulation that disrupts 

holistic processing). When the two halves are aligned, participants are inclined to respond 

‘different’ because the face is processed as a whole and therefore perception of the top 

half is influenced by the bottom half. When the two halves are misaligned, the top and 

bottom halves are processed independently and accuracy improves.  Some studies suggest 

that the difference in accuracy between misaligned and aligned conditions is bigger for 

own- than other-race faces (Michel, Corneille, & Rossion, 2007; Michel, Rossion, Han, 

Chung, & Caldara, 2006; but see Mondloch et al., 2010), suggesting that other-race faces 

are processed less holistically than own-race faces.  
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        1.2.4 Scrambled/blurred task and Jane/Ling task  

The scrambled/blurred task and Jane/Ling task are designed to measure perceivers’ 

sensitivity to the appearance of individual facial features as well as the spacing among 

facial features. In the scrambled/blurred task, participants study a set of original faces, 

and then make old/new judgments about scrambled and blurred faces. While configural 

information is largely eliminated in scrambled faces, featural information is largely 

eliminated in blurred faces. Researchers found that accuracy is typically higher in both 

blurred and scrambled face pairs for own- than for other-race faces, suggesting that 

perceivers are less sensitive to facial features and their second-order configuration in 

other-race faces than own-race faces (e.g., Hayward, Rhodes, & Schwaninger, 2008; 

Mondloch et al., 2010; Rhodes et al., 2009). In the Jane/Ling task, memory demands are 

minimized by having participants make same/different judgements about pairs of faces 

that differ in the spacing among featural features (spacing set) or the shape of individual 

features (featural set). In the featural set, individual facial features of a target identity 

(e.g., eyes and mouth) are replaced by the facial features of another sex-matched identity, 

while retaining the original spatial configuration of features. In the spacing set, the 

individual facial features of the target identity remain unchanged, however, the spacing 

among them is changed (e.g., moving two eyes up or down 1.3 standard deviations). 

Consistent with the scrambled/blurred task, accuracy on both the spacing and featural set 

is higher for own- than for other-race faces, indicating that perceivers are less sensitive to 

facial features and their configuration in other- than own-race faces (Mondloch et al., 

2010).  
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In summary relative to own-race faces, perceivers process other-race faces less 

holistically, are less sensitive to differences in features and their spacing, are less able to 

discriminate between faces in simultaneous/sequential matching tasks, and less able to 

store and recall other-race faces from memory. 
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Figure 1.1. An example of faces stimuli used for composite face task; Retrieved 
from Young, S. G., Hugenberg, K., Bernstein, M. J., & Sacco, D. F. (2012). Perception 
and motivation in face recognition a critical review of theories of the cross-race 
effect. Personality and Social Psychology Review, 16(2), 116-142.  
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1.3 Theoretical Accounts of Other-Race Effect 

Despite the many years of research on the other-race effect, the underlying 

mechanisms of the ORE are still under debate. A number of theoretical explanations for 

the ORE have been proposed. This section will review the two major theoretical accounts 

of the other-race effect: the perceptual expertise hypothesis, and the social cognitive 

hypothesis.  

1.3.1 Perceptual expertise hypothesis 

A core assumption of the perceptual expertise hypothesis is that a lack of 

perceptual experience with other-race faces leads to reduced sensitivity to differences 

among other-race faces in shape and spacing of facial features (Mondloch et al., 2010), 

and consequently leads to a deficient encoding and processing of other-race faces (Michel, 

Caldara, & Rossion, 2006; Tanaka, Kiefer, & Bukach, 2004). These differences together 

fundamentally shape the way in which own- and other-race faces are mentally 

represented, which has been conceptualized in Valentine’s influential multidimensional 

face space model (Valentine, 1911). 

Extensive evidence has been provided to support this hypothesis. This evidence 

can be generally categorized into two streams. One stream comprises developmental 

studies that examine how the asymmetrical perceptual experience with faces of racial in-

group and out-group members gained through development differently shapes perceivers’ 

ability to recognize own- and other-race faces; these studies have suggested that the 

other-race effect is a direct product of perceptual narrowing (see the following section). 

Another stream comprises studies that examine how acquired perceptual expertise with 

other-race faces through specialized training modulates the magnitude of the other-race 
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effect. In this section, I will firstly review the studies supporting the perceptual expertise 

hypothesis based on each of the two streams and then explain the ORE in the context of 

the influential multidimensional face space model and norm-based coding model. 

1.3.1.1 The role of perceptual experience 

Many developmental studies suggest that the ORE is a result of perceptual 

narrowing, which refers to the phenomenon that the perceptual system is broad from birth, 

but narrows as a function of experience (Maurer & Merker, 2013; Kelly et al., 2005; 2007; 

Pascalis et al., 2005). Just as experience tunes our sensitivity to musical rhythms (Hannon 

& Trehub, 2005) and speech sounds (Kuhl, Tsao, & Liu, 2003), so too does it tune our 

sensitivity to facial cues to identity (Pascalis et al., 2005). More specifically, researchers 

proposed that infants are born with a broad face-processing system, allowing them to 

discriminate faces from different ethnic groups. This broad system gradually becomes 

tuned to faces from the infant’s own ethnic group, as a result of repeated exposure to 

these faces and not to faces from a different ethnic group (Anzures et al., 2013; Kelly et 

al., 2005; 2007).  

In line with this hypothesis, Kelly and colleagues (2007) found that 3-month-old 

Caucasian infants are capable of discriminating faces both from their own ethnic group 

(Caucasian faces) and from three other ethnic groups (Middle Eastern, Chinese, and 

African faces). By 6 months of age Caucasian infants lose their ability to discriminate 

African and Middle Eastern faces and by 9 months, they can only discriminate faces from 

their own ethnic group (Caucasian faces). Several studies suggest that the fine-tuning of 

the perceptual system is highly experience-dependent. African infants living in a 

predominantly Caucasian environment showed similar preference for black and white 



	 	

	 14	

faces (Bar-Haim, Ziv, Lamy, & Hodes, 2006). Training Caucasian infants with East 

Asian faces between 6 and 9 months (70 minutes of visual experience with photos of 

Asian individuals) tends to postpone the emergence of the other-race effect (Heron-

Delaney et al., 2011). A similar pattern was observed in the discrimination of monkey 

faces in infants; between 6 and 9 months of age, infants gradually lose their ability to 

discriminate different monkey faces. Most notably, extensive perceptual training tends to 

postpone this loss of ability (Pascalis et al., 2005). Moreover, Anzures et al (2012) found 

that after receiving approximately 100- 105 minutes’ video training with Asian faces, 8 to 

10 months old Caucasian infants who previously could not discriminate between novel 

and familiarized Asian faces started to show above-chance recognition of novel Asian 

faces. These developmental studies together highlighted that face-processing expertise 

still remains plastic and it is continuously shaped by early perceptual experience. 

Consistent with evidence that experience drives perceptual narrowing during 

infancy, it has been found that the magnitude of the other-race effect in adults is 

modulated by the extent of interracial contact. For example, Chiroro and colleagues 

found that the other-race effect is reduced in both Caucasian and African Americans who 

report having a high degree of contact with other-race identities relative to individuals 

who reported having little contact with other-race identities (Chiroro & Valentine, 1995). 

Consistent with this finding, considerable research has confirmed a positive relationship 

between participants’ self-reported interracial contact and their performance for other-

race faces in both discrimination (Brigham et al., 1982) and in recognition tasks (Wiese, 

Kaufmann, & Schweinberger, 2014; Zhao, Hayward, & Bulthoff, 2014). The ORE is also 

less evident in children who live in more integrated neighborhoods than in children who 



	 	

	 15	

live in segregated neighborhoods (Feinman & Entwisle, 1976). Furthermore, the other-

race effect is absent (de Heering, Liedekerke, Deboni, & Rossion, 2010) and even 

reversed following cross-race adoption before the age of nine years (Sangrigoli et al., 

2005). Taken together, these studies show that perceptual experience plays a critical role 

in shaping our ability to recognize own- and other-race faces.  

In addition, some researchers argue that the magnitude of the ORE can be reduced 

by specific training with other-race faces. Although the stability and effectiveness of 

training as well as whether the training can be generalized to novel other-race faces is 

still debatable, initial evidence suggests that specific types of training might reduce the 

other-race effect. For example, Dunning et al found that basketball fans outperform 

basketball novices in recognizing black faces (Dunning, Li, & Malpass, 1998), likely a 

result of extensive exposure to black faces, given that the majority of professional 

basketball players are black. Malpass and colleagues found that recognition of other-race 

faces can be improved by feedback training (Malpass, Lavigueur, & Weldon, 1973) and 

by asking participants to learn which face was paired with which number (faces paired 

with digits task; Elliott, Wills, & Goldstein, 1973). In contrast to these findings, other 

laboratory training has produced modest results (McGugin, Tanaka, Lebrecht, Tarr & 

Gauthier, 2011; Tanaka & Pierce, 2009). For example, in the Tanaka and Pierce study, 

Caucasian participants were trained to discriminate Caucasian and African American’s 

faces either at an individual level (e.g., Joe, Bob) or at a categorical level (African 

American, Caucasians). Although participants’ recognition performance benefited more 

from the subordinate-level training than the categorical-level training, such training does 
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not reduce the magnitude of ORE, suggesting a comparable training effect for own- and 

other-race faces (Tanaka & Pierce, 2009).  

Collectively, this evidence highlights that discrimination and recognition of own- 

and other-race faces is highly experience-dependent. The developmental and perceptual 

asymmetries in the experience with own- and other-race faces likely fundamentally 

modulate the way in which own-and other-race faces are processed and subsequently 

recognized.  

1.3.1.2 Multidimensional face space model and norm-based coding 

Some researchers argue that the asymmetrical perceptual experience with own 

and other-race faces influences how own and other-race faces are mentally represented. 

The other-race effect is attributable to less refined representations of other- than own-race 

faces in a multidimensional face space. This could be explained in the context of 

Valentine’s multidimensional face space model (Valentine, 1991).  

According to Valentine, individual faces are represented as unique points in a 

multidimensional face space. The dimensions underlying this face space represent the 

specific feature properties that are used to define individual faces (e.g., length of the nose, 

the distance between two eyes). The location of each face is determined by its values on 

the dimensions underlying face space, along which faces vary. The average face 

(norm/prototype), which has the average value on each dimension and represents the 

average of all faces preciously encountered, is located in the center of the face space. 

Given that the dimensions of face space are shaped by experience such that they 

maximally differentiate faces from categories with which adults have abundant 

experience, different degrees of contacts make own-race faces distributed in the central 
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region of face space and other-race faces tightly clustered together in the periphery (see 

Figure 1.2; Valentine, 1991; also see O’Toole & Natu, 2013). The dense clustering of 

other-race faces is responsible for the increased errors in the discrimination of other-race 

faces (Valentine, 1991). Papesh and Goldinger (2010) asked Caucasian participants to 

rate the similarity of white and black computerized faces; the faces in the two sets were 

identical and varied only in skin tone. Based on a multidimensional scaling method, they 

found that the inter-face distance for other-race faces is smaller than that of own-race 

faces, suggesting a more tightly clustered representation of other- than own-race faces. A 

similar pattern was found in another study using natural Caucasian and Asian faces 

(Byatt & Rhodes, 2004). These studies provide initial support for the multidimensional 

face space model and its explanatory power for the other-race effect.  

Valentine has identified two conceptual sub-models in the multidimensional face 

space framework. One is the norm-based coding model and the other is the exemplar-

based coding model. The norm-based coding model suggests that faces are encoded with 

respect to their deviations from the average face (norm/prototype; Valentine, 1991). In 

contrast, the exemplar-based coding model suggests faces are encoded with regarded to 

absolute value of each dimension in the face space (Valentine, 1991). Although both 

models posit the existence of the face norm, exemplar-based coding model predicts that 

the face norm/prototype has no special significance. There has been prolonged debate 

regarding which model better captures how faces are represented in face space (Goldstein 

& Chance, 1980; Diamond & Garey, 1986; Rhodes, 1996; Leopold, O’Toole, Vetter, & 

Blanz, 2001). However, recent evidence from adaptation after-effects studies are in favor  
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Figure 1.2. Representations of own- and other-race faces in the multidimensional 
face space. Each dot represents a face and each vector represents a dimension along 
which face can vary in the face space. Note that the different exemplar density is shown 
for the own- and other-race faces. The original multidimensional face space model is 
from Valentine (1991). 
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of the norm-based coding model (Jaquet, Rhodes & Hayward, 2007; Short, Hatry, & 

Mondloch, 2011). Hill et al (2006) trained white participants to attend to some feature 

dimensions (lips, mouth, and nose) that are used more frequently by black participants 

and tested the size of the ORE. They found that such training improved white participants’ 

recognition of black faces, therefore reduced the ORE. These results suggest that 

selectively attending to meaningful dimensions of other-race faces facilitates the 

establishment of a fine-tuned representation of these faces. In addition, Jaquet et al (2008) 

adapted Caucasian and Chinese participants to distorted faces of both race in opposite 

directions simultaneously (e.g., Caucasian expanded and Chinese compressed faces) and 

found that participants’ perception of face normality simultaneously altered in opposite 

directions for own- and other-race faces. They therefore proposed that faces from 

different race groups are coded by dissociable norms (Jaquet, Rhodes, Hayward, 2008). 

Although the multidimensional face space and norm-based coding model have 

been successful in characterizing some critical effects, including the other-race effect in 

face perception, this account has been questioned, largely because the nature of the 

underlying dimensions of face space are not clearly specified. They might be features and 

their spacing (e.g., nose length, distance between the eyes,) or more abstract dimensions 

(e.g., eigenfaces; Hancock, Burton, & Bruce, 1996). Furthermore, it does not explain how 

representations of a particular face can be activated by multiple instances.  

Extensions of Valentine’s model (Voronoi regions and attractor fields model; 

Lewis & Johnston, 1999; Tanaka, Giles, Kremen & Simon, 1998; also see Tanaka & 

Corneille, 2007) posit that faces are not represented as points, but instead are represented 

as a Vironoi region or attractor field, which reflect the range of inputs that are perceived 
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as belonging to a given identity, allowing recognition despite changes in appearance (e.g., 

in expressions, viewing angles, makeup). These models will be discussed in details in the 

context of the Study 1 and Study 2 of my dissertation (see Chapter 2 and 3). 

Taken together, with the aforementioned evidence, the ORE can be regarded as a 

perceptual and memory deficit for other-race faces that is attributable to a less refined 

representation of other-race faces, reduced sensitivity to the shape and spacing of facial 

features in other-race faces, as well as a less efficient processing of other-race faces. 

Differential perceptual experience plays a pivotal role in the development of the other-

race effect. 

1.3.2 Social cognitive hypothesis 

Although the perceptual hypothesis offers an elegant explanation of the ORE, 

more recently, an alternate social cognitive theory (Hugenberg, Young, & Bernstein, 

2010) of the ORE has been proposed. This theory suggests that differential perceiver 

motivation and social categorization of own- and other-race faces leads to a qualitatively 

different way of attending to racial in-group and out-group members. Own-race faces are 

recognized more accurately than other-race faces because they are typically categorized 

as belonging to social in-group members. This shared in-group membership signals that 

own-race faces are important to individuate. Individuation of own-race members requires 

one to attend to facial characteristics that are identity-diagnostic (e.g., configural 

information) rather than category-diagnostic (e.g., skin tone), leading to a more accurate 

identification and discrimination of own- than other-race faces. In contrast, other-race 

faces are processed at the categorical level, reducing attention to individuating features. 
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Following this logic, the social cognitive model posits that if the social 

categorization (in-group / out-group membership) is the key underlying the ORE, merely 

manipulating the non-race social membership while holding the racial group membership 

constant (e.g., viewing own-race faces) would modulate the recognition of social in-

group and out-group faces. This argument has been supported by several studies. For 

example, Bernstein et al (2007) found that holding the perceptual experience with target 

faces constant (all target faces were own-race faces), merely categorizing faces as 

belonging to an in-group facilitates their recognition, relative to faces categorized as 

belonging to an out-group (in- and group membership were manipulated based on 

university affiliation/personality; see also Short & Mondloch, 2010). Consistent with this 

finding, Hugenberg and Corneille (2009) found that own-race faces categorized as in-

group members are processed more holistically than own-race faces categorized as out-

group members. In addition, it has been found motivating perceivers to individuate racial 

outgroup members facilitates their recognition of these other-race faces (Hugenberg, 

Miller, & Claypool, 2007).  

The social cognitive model of the ORE has been supported by empirical evidence 

suggesting that manipulation of non-identity specific information is sufficient to 

modulate the amplitude of the ORE (Bernstein, Young, & Hugenberg, 2007). For 

example, Hehman et al. (2012) found that when both own- and other-race faces are 

categorized as belonging to the in-group members, these faces are recognized with a 

similar accuracy, leading to an elimination of other-race effect, and suggesting that the 

ORE is at least partially attributable to different social cognitive mechanisms.  
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The perceptual expertise hypothesis and social cognitive models emphasize on 

different mechanisms, and both provide explanations for the cause of other-race effect. 

Increasing evidence suggests that social categorization can modulate the perceptual and 

cognitive mechanisms underlying the ORE. For example, Cassidy, Quinn and 

Humphreys (2011) found that other-race in-group faces are processed more configurally 

than own-race out-group faces. Their work highlights the role of both perceptual 

expertise and social group status of faces in shaping people’s encoding of own- and 

other-race faces and suggests that perceptual expertise hypothesis and social cognitive 

hypothesis are not mutually exclusive and they jointly contribute to the other-race effect. 

 

1.4 The Current Research 

The current research was designed to examine the role of perceptual experience in 

shaping adults’ ability to recognize own- versus other-race faces and to clarify some 

specific perceptual and cognitive mechanisms underlying the other-race effect. My first 

objective was to further characterize the ORE by highlighting a previously ignored aspect 

–one’s ability to recognize identity in ‘ambient images’ that capture natural variability in 

appearance—and to directly contrast recognition of familiar vs. unfamiliar faces 

(Chapters 2 and 3). I then provide the first direct examination of the hypothesis that the 

mental representation of other-race faces is less well-refined than that of own-race faces 

(Chapter 4).  Following that, I investigated whether impaired encoding and learning of 

other-race faces is attributable to differential utilization of shape and texture—two facial 

cues to identity. Finally, applying a novel continuous response paradigm, I explored how 

representations of own- and other-race faces are stored in and recalled from visual 
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working memory. Characterizing these differences or commonalities in the processing of 

own- vs. other-race faces, my dissertation attempts to develop an integrative 

understanding of the ORE in face recognition. 

For over one hundred years, the other-race effect has been framed as problem of 

discriminating among other-race identities (i.e., telling faces apart). The conclusion that 

“they all look the same to me” is based on studies measuring the perception/memory of 

highly controlled stimuli, typically involving only one or two images of each identity. 

Indeed, almost every study examining identity matching and recognition, holistic 

processing, and sensitivity to features and their spacing was based on representing each 

identity with a single image.  

Thus, despite many years of research on the other-race effect, our understanding 

of a key aspect of own- and other-race face recognition, namely how do we identify own- 

and other-race faces despite a wide range of natural variations in their appearance (e.g., 

changes in expression, viewing angles, lighting conditions), is surprisingly limited. 

Successfully identifying faces despite changes in their appearance is not only a prevalent 

and challenge task in our daily life; it is also the very purpose of face recognition. 

Relying on a single image for each identity conflates face recognition with image 

recognition (Burton, 2013). It might be the case that the challenge of recognizing other-

race identities is underestimated, given that pictorial cues (e.g., illuminance, shadows) to 

identity are less reliable when an identities’ appearance changes. Therefore, in my 

dissertation, I attempted to first fill in the gap in the other-race effect literature by 

investigating this neglected challenge in face recognition. Specifically, in Study 1 

(Chapter 2), I examined how a wide range of natural variations in appearance influences 
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people’s recognition of unfamiliar own- and other-race identities. Applying a sorting task 

developed by Jenkins et al (Jenkins, White, Montfort, & Burton, 2011), I tested both 

Caucasian and Asian adults’ ability to recognize own- and other-race identities 

(unfamiliar celebrities as well as non-celebrities) in ambient images. They were asked to 

sort 20 images of each of two unfamiliar identities, such that each pile contained all of 

the images of one person. I found that participants make nearly twice as many piles (i.e., 

perceived twice as many identities) when sorting other- compared to own-race faces, 

suggesting within-person variability affects identity perception for other-race faces more 

than own-race faces—at least when faces are unfamiliar. 

In addition, considerable studies examining own-race face recognition have 

suggested that whereas representations of unfamiliar own-race faces can be greatly 

influenced by the variations in appearance, representations of familiar own-race faces are 

resistant to these variations (e.g., Jenkins, White, Montfort, & Burton, 2011), highlighting 

a fundamental difference in familiar and unfamiliar own-race face recognition. Following 

this logic, In Study 2 (Chapter 3), I then examined how the ability to recognize own- and 

other-race faces across natural variations in appearance is modulated by the familiarity of 

faces. Particularly, I asked whether perceivers also build up reliable representations of 

familiar other-race faces that allow for accurate recognition despite a wide range of 

natural variation in appearance. Using a sorting task, Chinese adults were asked to sort 

familiar own- and other-race faces, and unfamiliar own- and other-race faces. I replicated 

the findings of Study 1 in sorting unfamiliar faces. Notably, I found that the other-race 

effect disappears when sorting familiar faces, suggesting that when a specific other-race 

identity becomes familiar, perceivers can form an abstract representation allowing 
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recognition across natural variation in appearance. Establishing these fundamental 

questions is important for us to gain a more comprehensive understanding of the 

mechanisms of the other-race effect, and is particularly helpful to clarify some questions 

regarding how own- and other-race faces are represented in the face space.    

Having discovered that the starting point for face learning differs for own- vs. 

other-race faces (i.e., that perceivers are less tolerant to the within-person variability in 

appearance for other than own-race faces; Chapter 2) but that adults can form robust 

representations of individual identities regardless of face race (Chapter 3), I next 

conducted three lines of research to investigate why it might be harder to match identity 

in unfamiliar other-race faces relative to unfamiliar own-race faces (Chapter 4) and the 

extent to which differential use of cues to identity (Chapter 5) and differences in the 

capacity and precision of visual working memory for other- compared to own-race faces 

(Chapter 6) might contribute to differences in the familiarization process. 

Thus, the second question that my research attempts to address is how different 

perceptual experience with own-and other-race faces shapes the way in which own- and 

other-race faces are mentally represented in multi-dimensional face space. Although past 

studies have suggested that adults possess separable norms coding for own- and other-

race faces (Jaquet, Rhodes, & Hayward, 2008; Little, DeBruine, Jones, & Waitt, 2008), 

no direct evidence was provided to demonstrate whether the norm and face space are less 

well differentiated for other-race faces. To address this question, in Study 3, I tested both 

Caucasian and Asian participants’ sensitivity to how faces deviate from an average face 

when judging own- and other-race faces. To do so I took two approaches. First I directly 

asked participants to judge which of two faces was more normal. Second, I asked adults 
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to rate the attractiveness of own- and other-race faces. I found that adults are less 

sensitive to deviations from normality in other- than own-race faces, and that between-

rater variability in attractiveness ratings of individual faces was higher for other- than 

own-race faces. These findings suggest that dimensions of face space are optimized for 

own- rather than other-race faces, and the other-race effect is attributable to the 

inefficiency in the use of norm-based coding for other-race faces. 

Study 4 was designed to examine whether impairments in encoding novel other-

race faces (as reflected in poor sorting of other-race faces in Study 1 and reduced 

sensitivity to normality for other-race faces in Study 3) and in the recognition of newly 

learned other-race faces (i.e., in old/new recognition tasks; Golby, Gabrieli, Chiao & 

Eberhardt, 2001; MacLin & Malpass, 2001; Wright, Boyd & Tredoux, 2003) are driven 

by the inefficiency with which different types of facial cues are used. Recent studies have 

highlighted that shape and texture cues are used differently in the encoding of 

unfamiliar/novel faces and in the recognition of familiar/learned faces. Whereas shape 

information is particularly important for the initial encoding of unfamiliar faces, texture 

information is more important for recognizing familiar/learned faces (Itz, Schweinberger, 

Schulz, & Kaufmann, 2014); furthermore the shift from shape to texture cues is 

associated with recognition accuracy (Kaufmann, Schulz, & Schweinberger, 2013). No 

study has investigated whether the different utilization of shape and texture cues 

underlies the impairments in encoding and learning other-race faces. To address this 

question, in Study 4, I directly tested this hypothesis using two opposite approaches. I 

selectively caricatured or reduced the shape or texture information (replacing the shape or 

texture cues of original faces by the average shape or texture). Across two approaches, I 
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found that despite an overall other-race effect, the transition from shape to texture cues is 

comparable for own- and other-race faces, suggesting that although other-race faces are 

learned less efficiently, the use of shape and texture cues in the learning is not 

qualitatively different for own- and other-race faces. My research therefore identified 

commonalities regarding the cues used during own- and other-race face learning. 

Although it was well established that the other-race effect is partially driven by 

impairments in recalling representations of other-race faces from memory, little is known 

about the nature of the representations of own- and other-race faces. Traditional measures 

only provide a single binary measure of perceivers’ memory performance (e.g., 

correct/incorrect answer in the old/new face recognition task) therefore failing to capture 

potential variation in the quality of face representations. Applying a novel continuous-

response paradigm, in the final study of my dissertation, I independently measured the 

number of own- and other-race face representations stored in visual working memory 

(VWM) and the precision with which they were stored. Participants reported target own- 

or other-race faces on a circular face space that smoothly varied along the dimension of 

identity. Using statistical mixture modeling, I found that following ample encoding time, 

the ORE is attributable to differences in the probability of a face being maintained in 

VWM. Reducing encoding time caused a loss of precision of VWM for other- but not 

own-race faces. This study provides direct evidence that the ORE is driven by the 

inefficiency with which other-race faces are rapidly encoded in VWM. I proposed that 

impaired VWM performance for other-race faces, evident in the failure to rapidly 

establish high-precision representations for those faces, is likely carried forward into 

long-term memory. These impairments likely cascade to cause greater recognition errors 
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for other-race faces, an effect that has been consistently found in tasks that require the 

retrieval of face representations from long-term memory.  

Collectively, the results of the five studies in this dissertation help us to better 

understand how representations of own- and other-race faces are encoded and represented, 

and what factors fundamentally modulate the other-race effect. The ORE is not only 

limited to the impaired discrimination of individual other-race faces, but is also 

manifested by impairments in the establishment of stable representations of other-race 

faces across variability in appearance. However, such ability is greatly modulated by 

perceivers’ familiarity with the faces. The other-race effect is attributable to less refined 

dimensions of face space for other-race faces, and by the failure to rapidly consolidate 

other-race faces into coherent and stable representations in visual working memory. 

Moreover, despite these differences underlying own- and other-race faces recognition, 

there are some commonalities between the processing of own- and other-race faces. 

Ultimately, perceivers can build up reliable representations of familiar other-race faces 

that are as stable as the representations of familiar own-race faces. Despite being less 

efficient in learning other-race faces, the reliance on efficient facial cues in the face 

learning is comparable for own- and other-race faces.  

 

  



	 	

	 29	

Reference 

Anzures, G., Quinn, P. C., Pascalis, O., Slater, A. M., & Lee, K. (2013a). Development of 
own-race biases. Visual Cognition, 21(9-10), 1165-1182. doi: 
10.1080/13506285.2013.821428  

 
Anzures, G., Quinn, P. C., Pascalis, O., Slater, A. M., Tanaka, J. W., & Lee, K. (2013b). 

Developmental origins of the other-race effect. Current Directions in 
Psychological Science, 22(3), 173-178. doi: 10.1177/0963711412474459  

 
Balas, B., & Nelson, C. A. (2010). The role of face shape and pigmentation in other-race 

face perception: An electrophysiological study. Neuropsychologia, 48, 498-506. 
http://dx.doi.org/10.1016/j.neuropsychologia.2009.10.007 

 
Byatt, G., & Rhodes, G. (2004). Identification of own-race and other-race faces: 

Implications for the representation of race in face space. Psychonomic Bulletin & 
Review, 11(4), 735-741. 

 
Bothwell, R. K., Brigham, J. C., & Malpass, R. S. (1989). Cross-racial 

identification. Personality and Social Psychology Bulletin, 15(1), 19-25. 
 
Bar-Haim, Y., Ziv, T., Lamy, D., & Hodes, R. M. (2006). Nature and nurture in own-race 

face processing. Psychological science, 17(2), 159-163. 
 
Bernstein, M. J., Young, S. G., & Hugenberg, K. (2007). The cross-category effect: Mere 

social categorization is sufficient to elicit an own-group bias in face 
recognition. Psychological Science, 18(8), 706-712. 

 
Brigham, J. C., Maass, A., Snyder, L. D., & Spaulding, K. (1982). Accuracy of 

eyewitness identification in a field setting. Journal of Personality and Social 
Psychology, 42(4), 673-681. 

 
Chiroro, P., & Valentine, T. (1995). An investigation of the contact hypothesis of the 

own-race bias in face recognition. The Quarterly Journal of Experimental 
Psychology, 48(4), 879-894. 

 
De Heering, A., De Liedekerke, C., Deboni, M., & Rossion, B. (2010). The role of 

experience during childhood in shaping the other-race effect. Developmental 
science, 13(1), 181-187. 

 
Diamond, R., & Carey, S. (1986). Why faces are and are not special: an effect of 

expertise. Journal of Experimental Psychology: General, 115(2), 107-117. 
 
Dunning, D., Li, J., & Malpass, R. S. (1998). Basketball fandom and cross-race 

identification among European-Americans: Another look at the contact hypothesis. 



	 	

	 30	

In biennial conference of the American Psychology-Law Society, Redondo Beach, 
CA. 

 
Elliott, E. S., Wills, E. J., & Goldstein, A. G. (1973). The effects of discrimination 

training on the recognition of white and oriental faces. Bulletin of the 
Psychonomic Society, 2(2), 71-73. 

 
Evans, J. R., Marcon, J. L. & Meissner, C. A. (2009). Cross-racial lineup identification: 

assessing the potential benefits of context reinstatement. Psychology, Crime & 
Law, 15(1), 19-28. doi: 10.1080/10683160802047030 

 
Feingold, G. A. (1914). The influence of environment on identification of persons and 

things. Journal of Criminal Law and Criminology, 5(1), 39-51. 
 
Feinman, S., & Entwisle, D. R. (1976). Children's ability to recognize other children's 

faces. Child development, 506-510. 
 
Feng, L., Liu, J., Wang, Z., Li, J., Li, L., Ge, L., Tian, J., & Lee, K. (2011). The other 

face of the other-race effect: An fMRI investigation of the other-race face 
categorization advantage. Neuropsychologia, 49(13), 3739-3749. 

 
Gauthier, I., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). Expertise for cars and 

birds recruits brain areas involved in face recognition. Nature neuroscience, 3(2), 
191-197. 

 
Golby, A. J., Gabrieli, J. D., Chiao, J. Y., & Eberhardt, J. L. (2001). Differential 

responses in the fusiform region to same-race and other-race faces. Nature 
neuroscience, 4(8), 845-850. 

 
Goldstein, A. G. (1979). Facial feature variation: Anthropometric data II. Bulletin of the 

Psychonomic Society, 13(3), 191-193. 
 
Goldstein, A. G., & Chance, J. E. (1980). Memory for faces and schema theory. The 

journal of psychology, 105(1), 47-59. 
 
Hancock, P. J., Burton, A. M., & Bruce, V. (1996). Face processing: Human perception 

and principal components analysis. Memory & Cognition, 24(1), 26-40. 
 
Hancock, K. J., & Rhodes, G. (2008). Contact, configural coding and the other‐race 

effect in face recognition. British Journal of Psychology, 99(1), 45-56. 
 
Hannon, E. E., & Trehub, S. E. (2005). Tuning in to musical rhythms: Infants learn more 

readily than adults. Proceedings of the National Academy of Sciences of the 
United States of America, 102(35), 12639-12643. 

 
Hart, A. J., Whalen, P. J., Shin, L. M., McInerney, S. C., Fischer, H., & Rauch, S. L. 



	 	

	 31	

(2000). Differential response in the human amygdala to racial outgroup vs 
ingroup face stimuli. Neuroreport, 11(11), 2351-2354. 

 
Hayward, W. G., Rhodes, G., & Schwaninger, A. (2008). An own-race advantage for 

components as well as configurations in face recognition. Cognition, 106(2), 
1017-1027. 

 
Hehman, E., Mania, E. W., & Gaertner, S. L. (2010). Where the division lies: Common 

ingroup identity moderates the cross-race facial-recognition effect. Journal of 
Experimental Social Psychology, 46(2), 445-448. 

 
Heron-Delaney, M., Anzures, G., Herbert, J. S., Quinn, P. C., Slater, A. M., Tanaka, J. 

W., ... & Pascalis, O. (2011). Perceptual training prevents the emergence of the 
other race effect during infancy. PLoS One, 6(5), e19858. 

 
Hugenberg, K., Miller, J., & Claypool, H. M. (2007). Categorization and individuation in 

the cross-race recognition deficit: Toward a solution to an insidious problem. 
Journal of Experimental Social Psychology, 43(2), 334-340. 

 
Hugenberg, K., Young, S. G., Bernstein, M. J., & Sacco, D. F. (2010). The 

categorization-individuation model: an integrative account of the other-race 
recognition deficit. Psychological review, 117(4), 1168-1187. 

 
Ito, T. A., & Urland, G. R. (2005). The influence of processing objectives on the 

perception of faces: An ERP study of race and gender perception. Cognitive, Affective, 
& Behavioral Neuroscience, 5, 21-36. doi:10.3758/CABN.5.1.21 

 
Itz, M. L., Schweinberger, S. R., Schulz, C., & Kaufmann, J. M. (2014). Neural correlates 

of facilitations in face learning by selective caricaturing of facial shape or 
reflectance. NeuroImage, 102, 736-747. 

 
Jackiw, L. B., Arbuthnott, K. D., Pfeifer, J. E., Marcon, J. L. & Meissner, C. A. (2008). 

Examining the cross-race effect in lineup identification using Caucasian and First 
Nations samples. Canadian Journal of Behavioural Science. 40(1), 52-57. doi: 
10.1037/0008-400x.40.1.52 

 
Jaquet, E., Rhodes, G., & Hayward, W. G. (2007). Opposite aftereffects for Chinese and 

Caucasian faces are selective for social category information and not just physical 
face differences. The Quarterly Journal of Experimental Psychology, 60(11), 
1457-1467. 

 
Jaquet, E., Rhodes, G., & Hayward, W. G. (2008). Race-contingent aftereffects suggest 

distinct perceptual norms for different race faces. Visual Cognition, 16(6), 734-
753. 

 



	 	

	 32	

Jenkins, R., White, D., Van Montfort, X., & Burton, A. M. (2011). Variability in photos 
of the same face. Cognition, 121(3), 313-323. 

 
Jonathan, B., Freeman, N. A., & Holcomb, P. J. (2009). The face-sensitive NIT0 encodes 

social category information. NeuroReport, 1, 1-5. 
 
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module 

in human extrastriate cortex specialized for face perception. Journal of 
neuroscience, 17(11), 4302-4311. 

 
Kaufmann, J. M., Schulz, C., & Schweinberger, S. R. (2013). High and low performers 

differ in the use of shape information for face 
recognition. Neuropsychologia, 51(7), 1310-1319. 

 
Kelly, D. J., Quinn, P. C., Slater, A. M., Lee, K., Gibson, A., Smith, M., Ge, L., & 

Pascalis, O. (2005). Three‐month‐olds, but not newborns, prefer own‐race 
faces. Developmental science, 8(6), F31-F36. 

 
Kelly, D. J., Quinn, P. C., Slater, A. M., Lee, K., Ge, L., & Pascalis, O. (2007). The 

other-race effect develops during infancy: Evidence of perceptual narrowing. 
Psychological Science, 18(12), 1084-1089. 

 
Kim, J. S., Yoon, H. W., Kim, B. S., Jeun, S. S., Jung, S. L., & Choe, B. Y. (2006). 

Racial distinction of the unknown facial identity recognition mechanism by event-
related fMRI. Neuroscience letters, 397(3), 279-284. 

 
Kuhl, P. K., Tsao, F. M., & Liu, H. M. (2003). Foreign-language experience in infancy: 

Effects of short-term exposure and social interaction on phonetic 
learning. Proceedings of the National Academy of Sciences, 100(15), 9096-9101. 

 
Leopold, D. A., O'Toole, A. J., Vetter, T., & Blanz, V. (2001). Prototype-referenced 

shape encoding revealed by high-level aftereffects. Nature neuroscience, 4(1), 89-
94. 

 
Levin, D. T. (2000). Race as a visual feature: using visual search and perceptual 

discrimination tasks to understand face categories and the cross-race recognition 
deficit. Journal of Experimental Psychology: General, 129(4), 559-574. 

 
Lewis, M. B., & Johnson, R. A. (1999). A unified account of the effects of caricaturing 

faces. Visual Cognition, 6(1), 1-42. doi: 10.1080/713756800 
 
Lindsay, R. C. L., & Wells, G. L. (1983). What do we really know about cross-race 

eyewitness identification? In S. M. A. Lloyd,Bostock & B. R. Clifford (Eds.),  
Evaluating witness evidence: Recent psychological research and new perspectives, 
219-233. Chichester: Wiley. 

 



	 	

	 33	

Little, A. C., DeBruine, L. M., Jones, B. C., & Waitt, C. (2008). Category contingent 
aftereffects for faces of different races, ages and species. Cognition, 106(3), 1537-
1547. 

 
MacLin, O. H., & Malpass, R. S. (2001). Racial categorization of faces: The ambiguous 

race face effect. Psychology, Public Policy, and Law, 7(1), 98-118. 
 
Malpass, R. S., Lavigueur, H., & Weldon, D. E. (1973). Verbal and visual training in face 

recognition. Attention, Perception, & Psychophysics, 14(2), 285-292. 
 
McGugin, R. W., Tanaka, J. W., Lebrecht, S., Tarr, M. J., & Gauthier, I. (2011). Race-

specific perceptual discrimination improvement following short individuation 
training with faces. Cognitive science, 35(2), 330-347. 

 
Meissner, C. A., & Brigham, J. C. (2001). Thirty years of investigating the own-race bias 

in memory for faces: A meta-analytic review. Psychology, Public Policy, and 
Law, 7(1), 3-35. 

 
Meissner, C. A., Tredoux, C. G., Parker, J. F., & MacLin, O. H. (2005). Eyewitness 

decisions in simultaneous and sequential lineups: A dual-process signal detection 
theory analysis. Memory & cognition, 33(5), 783-792. doi: 10.3758/BF03193074 

 
Malpass, R. S., & Kravitz, J. (1969). Recognition for faces of own and other 

race. Journal of personality and social psychology, 13(4), 330-334. 
 
Maurer, D., Le Grand, R., & Mondloch, C. J. (2002). The many faces of configural 

processing. Trends in cognitive sciences, 6(6), 255-260. 
 
Maurer, D., & Werker, J. F. (2014). Perceptual narrowing during infancy: A comparison 

of language and faces. Developmental Psychobiology, 56(2), 154-178. 
 
Megreya, A. M., & Burton, A. M. (2007). Hits and false positives in face matching: A 

familiarity-based dissociation. Perception & psychophysics, 69(7), 1175-1184. 
 
Megreya, A. M., White, D., & Burton, A. M. (2011). The other-race effect does not rely 

on memory: Evidence from a matching task. The Quarterly Journal of 
Experimental Psychology, 64(8), 1473-1483. 

 
Michel, C., Corneille, O., & Rossion, B. (2007). Race categorization modulates holistic 

face encoding. Cognitive Science, 31(5), 911-924. 
 
Michel, C., Rossion, B., Han, J., Chung, C. S., & Caldara, R. (2006). Holistic processing 

is finely tuned for faces of one's own race. Psychological Science, 17(7), 608-615. 
 
Michel, C., Caldara, R., & Rossion, B. (2006). Same-race faces are perceived more 

holistically than other-race faces. Visual Cognition, 14(1), 55-73. 



	 	

	 34	

 
Mondloch, C. J., Elms, N., Maurer, D., Rhodes, G., Hayward, W. G., Tanaka, J. W., & 

Zhou, G. (2010). Processes underlying the cross-race effect: An investigation of 
holistic, featural, and relational processing of own-race versus other-race faces. 
Perception, 39(8), 1065-1085. 

 
Natu, V., & O'Toole, A. J. (2013). Neural perspectives on the other-race effect. Visual 

Cognition, 21(9-10), 1081-1095. 
 
Natu, V., Raboy, D., & O'toole, A. J. (2011). Neural correlates of own-and other-race 

face perception: Spatial and temporal response differences. NeuroImage, 54(3), 
2547-2555. 

 
Ng, W. J., & Lindsay, R. C. (1994). Cross-race facial recognition failure of the contact 

hypothesis. Journal of Cross-Cultural Psychology, 25(2), 217-232. 
 

O'Toole, A. J., & Natu, V. (2013). Computational perspectives on the other-race 
effect. Visual Cognition, 21(9-10), 1121-1137. 

 
Pascalis, O., Scott, L. S., Kelly, D. J., Shannon, R. W., Nicholson, E., Coleman, M., & 

Nelson, C. A. (2005). Plasticity of face processing in infancy. Proceedings of the 
National Academy of Sciences of the United States of America, 102(14), 5297-
5300. 

 
Pezdek, K., Blandon-Gitlin, I., & Moore, C. (2003). Children's face recognition memory: 

more evidence for the cross-race effect. Journal of Applied Psychology, 88(4), 
760. 

 
Papesh, M. H., & Goldinger, S. D. (2010). A multidimensional scaling analysis of own-

and cross-race face spaces. Cognition, 116(2), 283-288. 
 
Rhodes, G., Ewing, L., Hayward, W. G., Maurer, D., Mondloch, C. J., & Tanaka, J. W. 

(2009). Contact and other-race effects in configural and component processing of 
faces. British Journal of Psychology, 100(4), 717-728. 

 
Rhodes, G., & Jeffery, L. (2006). Adaptive norm-based coding of facial identity. Vision 

research, 46(18), 2977-2987. 
 
Ronquillo, J., Denson, T. F., Lickel, B., Lu, Z. L., Nandy, A., & Maddox, K. B. (2007). 

The effects of skin tone on race-related amygdala activity: An fMRI 
investigation. Social cognitive and affective neuroscience, 2(1), 39-44. 

 
Rossion, B. (2014). Understanding face perception by means of human electrophysiology. 

Trends in cognitive sciences, 18(6), 310-318. 
 



	 	

	 35	

Sangrigoli, S., Pallier, C., Argenti, A. M., Ventureyra, V. A. G., & De Schonen, S. (2005). 
Reversibility of the other-race effect in face recognition during 
childhood. Psychological Science, 16(6), 440-444. 

 
Short, L. A., Hatry, A. J., & Mondloch, C. J. (2011). The development of norm-based 

coding and race-specific face prototypes: An examination of 5-and 8-year-olds’ 
face space. Journal of Experimental Child Psychology, 108(2), 338-357. 

 
Sporer, S. L. (2001). Recognizing faces of other ethnic groups: An integration of theories. 

Psychology, Public Policy, and Law, 7(1), 36-97. 
 
Sporer, S. L., Trinkl, B., & Guberova, E. (2007). Matching faces: Differences in 

processing speed of out-group faces by different ethnic groups. Journal of Cross-
Cultural Psychology, 38(4), 398-412. 

 
Stahl, J., Wiese, H., & Schweinberger, S. R. (2008). Expertise and own-race bias in face 

processing: an event-related potential study. Neuroreport, 19, 583-587. doi: 
10.1097/WNR.0b013e3282f97b4d 

 
Tanaka, J. W., & Pierce, L. J. (2009). The neural plasticity of other-race face 

recognition. Cognitive, Affective, & Behavioral Neuroscience, 9(1), 122-131. 
 
Tanaka, J. W., Kiefer, M., & Bukach, C. M. (2004). A holistic account of the own-race 

effect in face recognition: Evidence from a cross-cultural study. Cognition, 93(1), 
B1-B9. 

 
Tanaka, J., Giles, M., Kremen, S., & Simon, V. (1998). Mapping attractor fields in face 

space: the atypicality bias in face recognition. Cognition, 68(3), 199-220. 
 
Tanaka, J. W., & Corneille, O. (2007). Typicality effects in face and object perception: 

Further evidence for the attractor field model. Perception & Psychophysics, 69(4), 
619-627. 

 
Valentine, T. (1991). A unified account of the effects of distinctiveness, inversion, and 

race in face recognition. The Quarterly Journal of Experimental 
Psychology, 43(2), 161-204. 

 
Valentine, T., & Endo, M. (1992). Towards an exemplar model of face processing: The 

effects of race and distinctiveness. The Quarterly Journal of Experimental 
Psychology, 44(4), 671-703. 

 
Vizioli, L., Foreman, K., Rousselet, G. A., and Caldara, R. (2009). Inverting faces elicits 

sensitivity to race on the N170 component: A cross-cultural study. Journal of 
Vision. 10, 1-23. doi:10.1167/10.1.15 

 



	 	

	 36	

Vizioli, L., Rousselet, G., Foreman, K., & Caldara, R. (2009). Other-race faces all look 
alike to me and my N170. Journal of Vision, 9, 549-549. doi:10.1167/9.8.549 

 
Wells, G. L., & Olson, E. A. (2001). The other-race effect in eyewitness identification: 

What do we do about it?. Psych. Pub. Pol. and L., 7, 230-802. 
 
Wiese, H., Kaufmann, J. M., & Schweinberger, S. R. (2014). The neural signature of the 

own-race bias: Evidence from event-related potentials. Cerebral Cortex, 24(3), 
826-835. 

 
Wright, D. B., Boyd, C. E., & Tredoux, C. G. (2003). Inter‐racial contact and the 

own‐race bias for face recognition in South Africa and England. Applied 
Cognitive Psychology, 17(3), 365-373. 

 
Young, S. G., Hugenberg, K., Bernstein, M. J., & Sacco, D. F. (2012). Perception and 

motivation in face recognition a critical review of theories of the cross-race 
effect. Personality and Social Psychology Review, 16(2), 116-142. 

 
Zhang, L., Zhou, G., Pu, X., & Hayward, W. G. (2011). Inconsistent individual 

personality description eliminates the other-race effect. Psychonomic bulletin & 
review, 18(5), 870-876. 

 
Zhao, M., Hayward, W. G., & Bülthoff, I. (2014). Holistic processing, contact, and the 

other-race effect in face recognition. Vision research, 105, 61-69. 
 

  



	 	

	 37	

 

CHAPTER 2 

Study 1: The flip side of the other-race coin: They all look different to me1 

2.1 Introduction 

People are worse at recognizing and discriminating other-race faces than own-

race faces (see Bothwell, Brigham & Malpass, 1989; Meissner & Brigham, 2001 for 

reviews)2. This other-race effect (ORE) is robust across a range of methodologies: 

recognition tests, in which participants’ ability to discriminate between previously seen 

faces and novel faces is measured (e.g., Golby, Gabrieli, Chiao & Eberhardt, 2001; 

MacLin & Malpass, 2001; Wright, Boyd & Tredoux, 2003); identity tasks in which 

participants locate a target face in an identity line-up from memory (e.g., Meissner, 

Tredoux, Parker & MacLin, 2005; Jackiw, Arbuthnott, Pfeifer, Marcon & Meissner, 2008; 

Evans, Marcon & Meissner, 2009); discrimination tasks that involve making 

same/different judgments about pairs of faces (e.g., Walker & Tanaka, 2003; Mondloch 

et al., 2010); and sequential matching tasks (e.g., Lindsay, Jack & Christian, 1991; 

Tanaka, Kiefer & Buklach, 2004; Rhodes, Hayward & Winkler, 2006).  

In addition to providing insights about the role of experience in the development 

of perceptual expertise (see Tanaka, Heptonstall & Hegan, 2013; Kelly et al., 2007), this 

phenomenon has important practical implications. Difficulty in recognizing other-race 

individuals leads to embarrassment when adults fail to recognize familiar individuals in 

social or professional contexts, and has led to numerous false incarcerations based on 

                                                
1 This chapter is based on the published article: Laurence, S., Zhou, X., & Mondloch, C. J. (2016). The flip side of the 
other-race coin: They all look different to me. British Journal of Psychology, 107(2), 374-388. doi: 10.1111/bjop.12147 
2 	We are using the terms own race and other race to be consistent with the literature but we recognise that these are 
perceptual/cognitive terms and not biological categories.	
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erroneous eyewitness testimony (reviewed in Hugenberg, Young, Bernstein & Sacco, 

2010). Understanding the mechanisms underlying the effect is essential. The ORE has 

been framed as a problem with individuating (discriminating between) other-race faces, 

consistent with Feingold’s claim that “to the uninitiated American, all Asiatics looks 

alike, while to the Asiatic, all White men look alike” (1914, p50; see also Meissner & 

Brigham, 2001; Vizioli, Rousselet & Caldara, 2010; but see Goldstein, 1979). When 

asked to recall faces from memory, participants typically make fewer hits (correctly 

identifying a previously seen face as familiar) and more false alarms (incorrectly 

identifying a novel face as familiar) for other-race faces, compared to own-race faces 

(Meissner & Brigham, 2001). Collectively, this leads to lower accuracy (d’) for other-

race faces. A higher false alarm rate suggests that one component of the other-race effect 

is that other-race faces have higher perceived similarity than own-race faces, resulting 

from their being densely clustered in multi-dimesional face space (e.g., Young, 

Hugenberg, Bernstein, Sacco, 2012).  Consistent with this hypothesis, other-race faces 

are judged to look more similar to each other than are own-race faces when presented in 

pairs (Byatt & Rhodes, 2004; Papesh & Goldinger, 2010).  In fact, a number of journal 

articles investigating the ORE even have the phrase “they/we all look the same” in their 

titles (Johnson & Fredrickson, 2005; Ackerman et al., 2006; Wilson & Hugenberg, 2010).  

Poor discrimination and recognition of other-race faces is predicted by 

Valentine’s model (Valentine, 1991), according to which each individual identity is 

represented as a unique point in a multidimensional face space. The location of each 

identity is determined by its values on the dimensions underlying face space, along which 

faces vary (e.g., distance between the eyes, nose length). The dimensions of face space 



	 	

	 39	

are refined through perceptual experience to represent the facial properties that are 

optimal for discriminating identities from highly familiar categories (see O’Toole & Natu, 

2013 for a discussion); own-race faces are distributed in the central region of face space 

whereas other-race faces are tightly clustered together in the periphery (Valentine, 1991, 

also see Figure 2.1a). This dense clustering of other-race faces is responsible for 

increased errors when discriminating between other-race identities.  

Extensions of Valentine’s model take into account an aspect of face recognition 

that has largely been ignored in the literature (see Burton, 2013)—the fact that 

representations of each identity can be activated by multiple images; we need, for 

example, to recognize our neighbor when she dons a pair of sunglasses or applies makeup 

prior to going out. Voronoi regions (Lewis & Johnston, 1999) and attractor fields 

(Tanaka, Giles, Kremen & Simon, 1998; also see Tanaka & Corneille, 2007) around each 

point in face space reflect the range of inputs that are perceived as belonging to a given 

identity, allowing recognition despite changes in appearance (e.g., in expression, makeup, 

hairstyle, illumination, or orientation). The size of an identity’s attractor field is 

determined by the density of nearby representations (i.e., by its location in face space) 

and determines the range of acceptable inputs. Because the dimensions of face space are 

optimized for own-race faces, own-race faces will, on average, have larger inter-face 

distances than other-race faces, which are clustered together in the periphery of face 

space. Such models imply that own-race face have larger attractor fields (or Voronoi 

regions) than other-race faces (see Figure 2.1). 

In the vast majority of studies investigating the ORE an individual's face is only 

represented by a single photograph (e.g., Mondloch et al., 2010; Wilson & Hugenberg, 
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2010; Hancock & Rhodes, 2008) or by a pair of pictures that vary in expression (e.g., 

Vizioli et al., 2010; Ackerman et al., 2006; Chiroro & Valentine, 1995), viewpoint (e.g., 

Ellis & Deregowski, 1981; Sporer, Trinkl & Guberova, 2007; Sporer & Horry, 2011) or 

the camera with which the pictures were taken (e.g., Megreya, White & Burton, 2011; but 

see Meissner, Susa & Ross, 2013 who varied expression and camera). The ability to 

recognize that multiple images of another-race face belong to the same person (i.e., the 

implication of other-race faces having smaller attractor fields) has been ignored. 

This is an important oversight: Within-person variability can have a profound 

effect on one’s perception of identity. Even for own-race faces, photos of the same person 

can be perceived as belonging to different individuals, unless that person is familiar. 

Jenkins, White, Montfort & Burton (2011) collected 20 photographs of each of two 

Dutch celebrities. Participants were asked to sort the faces such that all of the photos of 

the same person were grouped together. Their results were striking: When the faces were 

familiar (in the Netherlands) most participants correctly sorted the photographs into two 

identities. However, UK participants who were unfamiliar with the faces perceived more 

identities (i.e., sorted faces into more piles; Median = 7.5) than the two identities that 

were present. These findings highlight the difficultly of recognizing unfamiliar identities 

across natural variation in images. 

In the current study we hypothesized that participants would perceive even more 

identities when completing the sorting task with unfamiliar other-race faces. At first 

glance, this prediction is counterintuitive; if other-race faces all “look the same” one 

might expect participants to make fewer piles when sorting other-race faces. However, 

smaller attractor fields for other-race compared to own-race identities were expected to 
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Figure 2.1. (a) A representation of Valentine’s (1991) face space, in which each dot 
represents an individual identity and the circles around each dot represent the attractor 
fields. Own-race faces (blue dots) fall in the centre of face space and have relatively large 
attractor fields, whereas other-race faces (red dots) are tightly clustered together in the 
periphery of face space with relatively small attractor fields. (b) Each circle represents an 
identity and its associated attractor field in face space. Top row: Own-race faces are 
further apart and the attractor field is bigger. Two pictures of the same Caucasian identity 
both fall within the same attractor field; therefore, they are perceived as belonging to the 
same person. Bottom row: Other-race faces are closer together and the size of the 
attractor field is smaller. Two pictures of the same East Asian identity overlap with two 
attractor fields; therefore, they are perceived as belonging to two distinct identities.  
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make recognition of other-race faces across a wide range of natural variation especially 

hard because even trivial changes might result in an image crossing the boundaries of the 

identity’s relatively small attractor field, resulting in an activation of neighboring 

identities (see Figure 2.1b).  

To test this hypothesis, in two experiments we asked participants to sort 40 

photographs into piles such that each pile contained all of the photographs of one person. 

All identities were unfamiliar to all participants. Participants were not told that the correct 

solution was two piles of 20 pictures. In Experiment 1 Caucasian participants sorted 

photographs of either two Caucasian celebrities or two East Asian celebrities; to control 

for stimulus effects Chinese participants also sorted the Caucasian photographs. The 

Caucasian celebrities were from a different country than the participants and thus 

unfamiliar. In Experiment 2 participants sorted non-celebrity faces and we used a 

complete design such that both Caucasian and Chinese participants sorted own- and 

other-race faces. We hypothesized that participants would make more piles (i.e., perceive 

more identities) when sorting unfamiliar other-race faces than unfamiliar own-race faces.  

We also recorded misidentification errors, defined as sorting the two different 

identities into the same pile. Based on Jenkins et al. (2011) we anticipated very few 

misidentification errors when participants sorted own-race faces. However, given the 

predominant view that other-race faces are perceived as more similar than own-race faces, 

we predicted more misidentification errors for other-race faces than own-race faces. 

 



	 	

	 43	

2.2 Experiment 1 

2.2.1 Method 

2.2.1.1 Participants 

 Seventy-five participants were included in the final analysis: 25 were East Asian 

students at Zhejiang Normal University, China (15 female; Mean age = 20.92; SD = 2.74) 

and 50 were Caucasian students at Brock University, Canada (45 female; Mean age = 

19.48; SD = 1.23). All East Asian and 25 Caucasian participants (21 female) 

completed the task with Caucasian faces and the other 25 Caucasian participants (24 

female) did so with East Asian faces. We aimed to have 25 participants in each condition 

who were wholly unfamiliar with the identities contained in the sorting card task so we 

excluded an additional 17 participants who believed they were familiar with the faces. In 

fact, none of the excluded participants accurately identified the identities contained in the 

task; all of the identities were misidentified (e.g., as belonging to an American singer or a 

Japanese actress). 

2.2.1.2 Stimuli 

Twenty images of each of two female UK celebrities (Holly Willoughby and Fearne 

Cotton) and two female Chinese celebrities (Bingbing Fan and Zhiling Lin) were taken 

from the Internet via a Google image search. The celebrities were chosen because they 

were well known in their country of origin, unfamiliar to the participants we tested in 

other countries and, within each country of origin, physically similar (e.g., hair color, age 

etc.). For each person we selected the first 20 images in which their face was bigger than 

150 pixels in height, displayed in frontal aspect, and not occluded in any way. This 

resulted in a total of 80 images (20 per identity). The images were cropped so that only 
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the head was displayed (much like a passport photograph) and were changed to grayscale. 

They were then printed on cards that were 38 x 50 mm in size. A representation of the 

variability among photographs is shown in Figure 2.2. 

2.2.1.3 Procedure 

The task procedure was also based on Jenkins et al. (2011). Participants were 

presented with the following written instructions: “In front of you is a deck of 40 face 

photos. Your task is to sort the photos by identity, so that photos of the same face are 

grouped together. There is no time limit on this task and you are free to create as many 

or as few groups as you wish.” After each participant had completed the card-sorting task 

they were asked to indicate whether they were familiar with any of the faces. If 

participants indicated that a face(s) was familiar they were then asked to provide a 

name(s) or any information about that person (e.g., where they had seen that person). 

Upon completion, participants answered questions assessing their contact with other-race 

identities (e.g., Caucasian participants’ contact with East Asian identities). For example, 

they were asked how many of their top 10 friends were of East Asian/Caucasian ethnicity, 

and how much current and previous experience they had with individuals of East Asian 

ethnicity.  

 2.2.2 Results and Discussion 

2.2.2.1 Number of Perceived Identities 

Overall, participants reported very little contact with other-race identities. All 

participants reported having less than three other-race friends. Seventy-two percent of 

Caucasian and 92% of East Asian participants reported having zero other-race friends.  
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Figure 2.2. Five pictures of two identities, Sarah Laurence (top) and Xiaomei Zhou 
(bottom). We are unable to show the photographs from our experiment for copyright 
reasons.  
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Variance differed across groups so we analyzed the data using non-parametric tests. One-

Sample Wilcoxon Signed-Rank Tests revealed that in all three groups the median number 

of perceived identities was significantly greater than the two identities that were present 

(Caucasian participants sorting Caucasian photos: Mdn = 4, Z = 120, p = .001; Caucasian 

participants sorting East Asian photos: Mdn = 9, Z = 325, p < .001; East Asian 

participants sorting Caucasian photos: Mdn = 13, Z = 324, p < .001). 

Participants perceived more identities (i.e., made more piles) when sorting other-

race faces compared to own-race faces. As shown in Figure 2.3, Caucasian participants 

sorted own-race photos into a mean of 4.8 identities (SD = 3.51; Median = 4; Mode = 2; 

Range = 2-16). In contrast, they sorted other-race photos into a mean of 11 identities (SD 

= 6.43; Median = 9; Mode = 7; Range = 4-31) and East Asian participants sorted the 

Caucasian photos into a mean of 13.6 identities (SD = 7.16; Median = 13; Mode = 13; 

Range = 1-31). Mann-Whitney U tests showed that Caucasian participants perceived 

significantly more identities when sorting the East Asian photos than the Caucasian 

photos, U (25, 25) = 93, p < .001, two-tailed, r = .61. Likewise, East Asian participants 

perceived significantly more identities in the Caucasian photographs than did the 

Caucasian participants, U (25, 25) = 76.5, p < .001, two-tailed, r = .65. The two groups 

sorting other-race faces made a similar number of piles.  

2.2.2.2 Misidentification Errors 

We analyzed misidentification errors in two ways. First, we compared the number of 

piles containing two identities when participants sorted own- versus other-race faces. 

Second, we compared the number of participants who made at least one misidentification 

error when sorting own- versus other-race faces. For Caucasian participants, the number 
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of misidentification errors was higher when participants sorted other-race faces (see 

Table 2.1). Mann-Whitney U tests confirmed that the number of misidentification errors  

(number of piles with two identities) was higher when Caucasian participants sorted 

other-race faces (M = 3.0) than own-race faces (M = 1.8), U (25, 25) = 192.50, p = .02, 

two-tailed, r = .33.  This is a significant finding because making more piles for other-race 

faces (see above) reduces the number of faces in each pile and, consequently, reduces the 

chance probability of misidentification errors. However, there was no significant 

difference in the number of misidentification errors for East Asian and Caucasian 

participants sorting the Caucasian photographs, U (25, 25) = 265.5, p = 0.35, two-tailed, r 

= .13, suggesting that the effect observed among Caucasian participants could be a 

stimulus effect.  

For Caucasian participants there was a significant association between the race of 

the faces they were sorting and the number of people who made at least one 

misidentification error, χ2 (1) = 5.71, p = .02, ϕ = .11; whereas 92% of Caucasian 

participants made at least one misidentification error for other-race faces only 64% made 

at least one for own-race faces. However, for Caucasian photographs, there was no 

significant association between the race of participant (East Asian versus Caucasian) and 

the number who made at least one misidentification error, χ2 (1) = 2.60, p = .11, ϕ = .05. 

Eighty-four percent of Chinese participants made at least one misidentification error. 

Taken together our results provide no support for misidentification errors being more 

likely when sorting other-race faces. 
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Figure 2.3. The number of perceived identities for Caucasian and East Asian participants 
sorting Caucasian or East Asian faces. Each dot represents the number of perceived 
identities for an individual participant. The red line represents the median number of 
perceived identities.  
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Table 2.1  

Descriptive Statistics for the Number of Misidentification Errors in Experiment 1 and 2. 

 M SD Range Median Mode 

Experiment 1      

CA sorting Own 1.8 1.88 0-6 1 0 

CA sorting Other 3.0 1.70 0-6 3 3 

EA sorting Other 2.2 2.02 0-6 1 1 

Experiment 2      

CA sorting Own 1.4 1.43 0-5 1 0 

CA sorting Other 1.6 1.67 0-5 1 0 

EA sorting Own 1.2 1.61 0-5 0 1 

EA sorting Other 1.4 1.47 0-4 1 0 

Note. CA = Caucasian; EA = East Asian 
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Summary 

The findings from Experiment 1 suggest that for unfamiliar faces, within-person 

variability in appearance affects our perception of identity more for other-race faces than 

own-race faces. However, two characteristics of our design limit the generalizability of 

our results. Firstly, our stimuli were images of celebrities. Variability in appearance may 

be greater for celebrities than for people in the general population; if so, then our findings 

may exaggerate the influence of face race on recognition. Secondly, our choice of stimuli 

did not allow us to have a complete design; we did not have a condition in which East 

Asian participants sorted unfamiliar East Asian faces. From a purely practical perspective, 

we were extremely unlikely to find many East Asian participants for whom the Chinese 

celebrities were unfamiliar. 

 We addressed each of these concerns in Experiment 2 in which both East Asian 

and Canadian participants sorted own- and other-race face photos by identity. All 

photographs were of non-celebrities and, to increase generalizability, two face pairs were 

used for each race. Thus, Experiment 2 incorporated a complete design and extended our 

work to new, non-famous identities. 

2.3 Experiment 2 

2.3.1 Method 

2.3.1.1 Participants 

 We tested a total of 80 participants: 40 were East Asian students at Zhejiang 

Normal University, China (28 female; Mean age = 22; SD = 1.89) and 40 were Caucasian 

students at Brock University, Canada (37 female; Mean age = 17; SD = 2.20). Twenty 
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East Asian and 20 Caucasian participants sorted East Asian faces. The other 20 East 

Asian and 20 Caucasian participants sorted Caucasian faces. 

 

2.3.1.2 Stimuli and Procedure 

 We recruited four Caucasian non-celebrity models and four East Asian non-

celebrity models each of whom allowed us access to their pictures via social media (e.g., 

Facebook and QQ space). All models were young adult females. We paired up the 

models from each race, resulting in two Caucasian pairs and two East Asian pairs. The 

models within each pair were of a similar age and had a similar hair color. We selected 

the first 20 images from each model's social media Webpage where their face was bigger 

than 150 pixels in height, displayed a roughly frontal aspect, and not occluded in any way. 

We also tried to ensure that all of the photographs were taken on different days. As in 

Experiment 1, the images were cropped, changed to greyscale, printed on cards that were 

38 x 50 mm in size, and grouped such that each participant was given a pile of 40 

photographs—20 per each of two identities. Ten East Asian participants and 10 

Caucasian participants sorted each of the four faces pairs. 

 

 2.3.2 Results and Discussion 

2.3.2.1 Number of Perceived Identities 

 Parametric analyses were used for Experiment 2 given that variance did not differ 

across groups. Preliminary analyses revealed no effect of stimulus pair, all ps > .20, 

regardless of whether photographs were sorted by Caucasian or East Asian participants. 

All subsequent analyses are collapsed across face pairs.  
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As shown in Figure 2.4, Caucasian participants sorted own-race photos into a 

mean of 7.0 identities, (SD = 5.12; Median = 5; Mode = 2; Range = 2-20) and other-race 

photos into a mean of 9.3 identities, (SD = 4.89; Median = 8.5; Mode = 6; Range = 2-18). 

Likewise, East Asian participants sorted own-race photos into a mean of 7.3 identities, 

(SD = 4.99; Median = 5; Mode = 5; Range = 2-20) and other-race photos into a mean of 

10.4 identities, (SD = 5.6; Median = 10; Mode = 11; Range = 4-22). 

One-sample t-tests confirmed that in every condition the number of perceived 

identities was significantly greater than the two identities that were present (Caucasian 

participants sorting own and other-race faces, t (19) = 4.32, p < .001, d = 1.34, 95% CI  

(4.55; 9.35); t (19) = 6.68, p < .001, d = 2.07, 95% CI (7.01; 11.59); East Asian 

participants sorting own and other-race faces, t (19) = 4.70, p < .001, d = 1.46, 95% CI 

(4.91; 9.59); t (19) = 6.70, p < .001, d = 2.09), 95% CI (7.78; 13.02).  

We conducted a 2 (participant race: Caucasian vs. East Asian) × 2 (face race: own 

vs. other race) between-subjects ANOVA. We found a significant main effect of face 

race (F1, 76= 5.68, p = .020, ηp² = .070). As in Experiment 1, participants perceived 

significantly more identities for other-race faces (M = 9.85, SE = 0.816) than own-race 

faces (M = 7.1, SE = 0.816). The main effect of participant race (F1, 76 = 0.37, p = .546, 

ηp² = .005) and the interaction between face race and participant race (F1, 76 = 0.12, p 

= .730, ηp² = .002) were both nonsignificant. 

2.3.2.2 Misidentification Errors  

Unlike Experiment 1, we did not observe any effect of face race on misidentification 

errors. A 2 (participant race: Caucasian vs. East Asian) × 2 (face race: own vs. other race)   
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Figure 2.4. The number of perceived identities for Caucasian and East Asian participants 
sorting own-and other-race faces. Each dot represents the number of perceived identities 
for an individual participant, and the red line depicts the median.  
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between-subjects ANOVA revealed no significant effects, all ps > .60. As noted in Table 

2.1, misidentification errors were rare in all conditions. 

Summary 

As in Experiment 1, in which we used celebrity faces, participants were more 

accurate in recognizing that multiple photographs of non-famous identities belong to the 

same identity when sorting own-race faces than when sorting other-race faces. 

Furthermore, there was no evidence of an impaired ability to discriminate among 

different other-race identities.  Collectively, these findings draw attention to the flip side 

of the other-race effect: recognizing facial identity despite natural variation in appearance. 

The implication of these findings is considered in the General Discussion. 

 2.4 General Discussion 

The findings of Experiments 1 and 2 replicate past research, which found that 

when faces are unfamiliar, pictures of the same person appear to belong to several 

distinct identities (Jenkins et al., 2011). Most notably, we provide the first evidence that 

within-person variability affects identity perception of other-race faces even more than it 

affects identity perception of own-race faces. Our participants perceived more identities 

when they were sorting unfamiliar other-race faces compared to unfamiliar own-race 

faces, and this was true for both celebrities and non-celebrities. Whereas research based 

on perceptual expertise emphasizes the effect of experience on discrimination and 

recognition (Meissner & Brigham, 2001; Tanaka et al., 2013), our results suggest that 

experience with a face category also influences perceivers’ ability to extract identity 

information across multiple images, even in a perceptual task in which there are no 

memory demands (see Sporer et al., 2007; Sporer & Horry, 2011; Meissner et al., 2013 
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for similar findings in tasks that included memory demands and only two images of each 

identity).  

Our findings cannot be explained by physiognomic differences between East 

Asian and Caucasian faces (i.e., two pictures from one race being easier to sort); East 

Asian and Caucasian participants sorted the same faces differently. Perceivers’ difficulty 

in recognizing unfamiliar faces across natural variation in a person’s appearance (e.g., 

changes in lighting and viewpoint) may be the result of unfamiliar face representations 

being based more heavily on lower-level image properties (e.g., Bruce, 1982; Bruce, 

Henderson, Newman & Burton, 2001; Burton, Wilson, Cowan & Bruce, 1999; see Young 

& Bruce, 2011 for a discussion; see Hancock, Bruce & Burton, 2000 for a review), 

properties that vary across images even when identity is held constant. When recognizing 

identities across changes in pose, expression, lighting, age or hairstyle, perceivers cannot 

rely on pictorial cues; rather, they must extract structural information that allows identity 

matching despite changes in appearance (Bruce & Young, 1986). Our findings are 

consistent with evidence that adults’ ability to extract such structural information from 

unfamiliar other-race faces is impaired relative to own-race faces (Sporer & Horry, 2011; 

see also Ellis & Deregowski, 1981).  

 Valentine’s (1991) influential model in which faces are conceptualized as single 

points in multidimensional face space cannot account for our findings. That model does 

account for difficulty in discriminating faces from categories with which observers have 

minimal experience (e.g. other-race and other-age faces); because other-race faces are 

less well represented by the dimensions of face space, observers lack sensitivity to 

differences among these faces (characterized as tightly clustered points in this 
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multidimensional space) and one identity is easily mistaken for another (e.g., Byatt & 

Rhodes, 2004; see Young et al., 2012 for a review). However, building on Valentine's 

model, Lewis and Johnston (1999) and Tanaka et al. (1998) characterize each identity’s 

representation as a region rather than a single point. The distance between contiguous 

points, which represents perceptual similarity along the dimensions of face space, 

determines the size of the region (Voronoi cell, attractor field, respectively) associated 

with each identity; thus faces in a densely populated location in face space will have 

smaller attractor fields. Neighboring regions in face space will compete with each other 

when an ambiguous incoming image is similar to both regions. This could result in two 

things: i) pictures of different people being incorporated into the same region, or ii) 

pictures of the same person being separated into different regions. Thus, it is because 

other-race faces, on average, are more similar perceptually to one another than own-race 

faces that they have smaller attractor fields and, consequently, are more difficult to 

recognize across natural variation in appearance.  

An interesting direction for future research will be to explore the role of face 

space density and face space dimensions on tolerance for within-person variability. As 

one anonymous reviewer pointed out, typical own-race faces might be located in a 

relatively dense region of face space (but see Burton & Vokey, 1998 for a discussion); 

therefore, they may also have smaller attractor fields. If exemplar density alone 

determines tolerance for variability, then typical own-race faces, like other-race faces, 

should be more difficult to sort than less typical faces. However, in contrast to other-race 

faces, the dimensions of face space might better represent typical faces, making them less 

susceptible to idiosyncratic pictorial cues and easier to sort than other-race faces.  
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Theories of familiar face recognition (e.g., Jenkins & Burton, 2011; Jenkins et al., 

2011; Burton, Jenkins, Hancock & White, 2005) imply that familiarity with a person 

defines the variability that will be incorporated into their representation. Previous 

behavioral findings suggest that expert performance with familiar faces does not 

generalize to unfamiliar faces (e.g., Burton et al., 1999, Bruce et al., 2001). Participants 

perceive multiple identities in a set of photos of a single person despite knowing 

hundreds of people of the same race and age (Jenkins et al., 2011). Furthermore, whereas 

telling participants that only two identities were present in a pile of 40 photographs 

improved performance with new images of those identities in a subsequent same/different 

matching task, no improvement was observed for new identities (Andrews, Jenkins, 

Cursiter, & Burton, 2015). Such findings suggest that variability should be understood for 

each face separately, rather than for faces as a class of object.  

Whereas performance differences for familiar versus unfamiliar own-race faces 

emphasize the importance of experience with particular identity, our findings support a 

role for experience with a face category (another level of familiarity). While 

acknowledging that there may be qualitative differences between familiar and unfamiliar 

face processing (see Burton, 2013 for a discussion), our data suggest that experience with 

multiple faces from a given category influences one’s ability to recognize identities 

across images of unfamiliar people. Having fewer familiar other-race exemplars stored in 

memory might result in less knowledge of how individual other-race faces can vary in 

appearance, limiting our ability to recognize unfamiliar faces in ambient images. It may 

be only as we become familiar with multiple other-race individuals that we learn more 

about how any single identity can vary, just as infants and children need to hear a word 
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spoken by many individuals in order to learn it well (Rost & McMurray, 2009; see 

Watson, Robbins & Best, 2014 for a review and discussion). As more other-race 

exemplars are incorporated into face space our sensitivity to facial dimensions increases, 

increasing inter-face spacing, and, consequently, the size of attractor fields. 

A similar process may underlie the development of expert face processing during 

childhood. Given evidence the children's ability to simultaneously rely on multiple 

dimensions improves after 8 years of age (Nishimura, Maurer, & Gao, 2009) and that 

children are less sensitive than adults differences along the dimensions of face space 

(Jeffery et al., 2010; Short, Lee, Fu, & Mondloch, 2014), we suggest that the 

development of expertise during childhood can be conceptualized as learning multiple 

examplars resulting in increased sensitivity to the dimensions of face space, leading to 

larger inter-face distances and, consequently, larger attractor fields associated with 

unfamiliar identities. Therefore young children, like adults tested with other-race faces, 

are expected to make more errors when sorting unfamiliar own-race faces than adults. 

The practical implications of our results are significant. Jenkins et al. (2011) 

highlight the significance of within-person variability on the utility of photo identification. 

Whereas almost any photograph is easily matched to the correct familiar identity, 

matching photographs of an unfamiliar person is more challenging (see Johnston & 

Edmonds, 2009 for a review). Based on evidence that other-race faces are judged more 

similar to each other than own-race faces, the challenge facing airport security officials is 

thought to be that of discriminating identities. Our results suggest another challenge: 

recognizing that the person carrying identification is the person on the passport despite 

changes associated with hairstyle, weight gain/loss, make-up, etc. (also see Meissner et 



	 	

	 59	

al., 2013). This challenge is exemplified in the case of Suaad Hagi Mohamud, a Canadian 

who was detained and imprisoned in Nairobi when an airport official concluded that her 

4-year-old passport photo was a picture of someone else (Aulakh, 2009, August 10).  

Previous studies in which participants were trained to recognize a single image of 

multiple other-race identities (Lebrecht, Pierce, Tarr & Tanaka, 2009) showed that such 

training is only minimally effective.  To the extent that distance between identities in 

multidimensional face space is correlated with the size of their Voronoi cells or attractor 

fields, training people with multiple images of each identity may prove to be more useful 

(Andrews et al., 2015).  

One potential limitation of our study is that the majority of Caucasian participants 

were female whereas the male:female ratio was more balanced in the East Asian groups. 

Although future studies should aim for an even distribution of males and females, our 

finding similar results for both participant groups in Experiment 2 suggests that this is 

unlikely to alter our conclusions. A further limitation of the sorting task is that 

misidentification rates will be impacted by the two identities used. Future studies in 

which multiple identities are presented in match-to-sample or same/different tasks will 

allow for a more refined assessment of the contribution of two problems—difficulty 

telling two identities apart and difficulty recognizing identities across natural variability 

in images—to the own-race recognition advantage. 

 Overall, our work gives new insights as to why we find recognizing other-race 

faces so challenging. Whereas prior work emphasizes an impaired ability to discriminate 

other-race faces (e.g., recognizing that faces belong to different people), we found an 

impaired ability to recognize an identity across images that incorporate natural variability 
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(e.g., recognizing that faces belong to the same person). We believe that this should be 

incorporated into new and existing theories of the ORE. 
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CHAPTER 3 

Study 2: Recognizing “Bella Swan” and “Hermione Granger”: No own-race 

advantage in recognizing photos of famous faces3 

 3.1 Introduction 

Mike Burton and colleagues have identified two shortcomings in studies of face 

recognition: focusing on recognition of faces learned in the lab and using tightly 

controlled images with each identity represented by a single (or two nearly identical) 

image(s). This approach fails to capture our task in daily life—indeed the very purpose of 

face recognition—which is to recognize familiar faces and to do so even when 

appearance (e.g., expression, make-up) changes. These limitations have impaired 

progress in understanding face recognition (Burton, 2013). Whereas familiar face 

representation is abstractive and image-invariant, unfamiliar face representation is image-

dependent (Burton, Schweinberger, Jenkins, & Kaufmann, 2015), as highlighted in a 

clever study by Jenkins, White, Van Montfort, and Burton (2011). They presented 

participants with images that captured idiosyncratic variability in the appearance of two 

identities. When sorting 40 photographs (20/identity) into piles such that each pile 

contained all photos of a single identity, participants for whom the faces were familiar 

made two piles but those who were unfamiliar made eight. 

These shortcomings also limit our understanding of one of the most studied 

phenomenon in face recognition: the other-race effect (ORE; better recognition of own- 

than other-race faces, Meissner & Brigham, 2001). Research investigating the ORE has 

                                                
3 This chapter is based on the published article: Zhou, X., & Mondloch, C. J. (2016). Recognizing “Bella Swan” and 
“Hermione Granger”: No Own-Race Advantage in Recognizing Photos of Famous Faces. Perception, 45(12), 1426-
1429. doi 10.1177/0301006616662046. The article was published in the Short and Sweet section of the journal, which 
requires that the topic appeals to a broad audience and is written in a more relaxed formatting style (i.e., no separate 
Method and Results sections). 
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almost exclusively focused on recognition of tightly controlled images of unfamiliar 

identities (e.g., Mondloch et al., 2010; Rhodes, Hayward, & Winkler, 2006); little is 

known about our ability to recognize other-race faces when appearance varies and 

identities are familiar. One study showed that when sorting naturalistic photographs of 

unfamiliar identities, participants perceived twice as many identities for other-race faces, 

suggesting that recognizing unfamiliar other-race identities is especially challenging 

when appearance varies (Laurence, Zhou, & Mondloch, 2016). Here, we replicated this 

novel finding and examined whether familiarity with specific identities eliminates the 

ORE. 

 3.2 Method and Results 

A total of 100 participants living in China (M = 21.35 years, range = 18–28) sorted 

grayscale photographs (20 per each of two physically similar female celebrities) into 

identity-specific piles. We selected the first 20 images of each identity from Google 

Image >150 pixels in height, displayed in frontal aspect, with no occlusions. Figure 3.1 

shows comparable images of two identities (not used here). Two groups sorted unfamiliar 

faces comprising Japanese (Yuriko Yoshitaka, Erika Toda) or Caucasian celebrities 

(Millie Mackintosh, Renee Olstead). Two groups sorted familiar faces comprising 

Chinese (Mi Yang, Yifei Liu) or Caucasian celebrities (Emma Watson and Kristen 

Stewart, rendered famous via Harry Potter and The Twilight Saga). Familiarity was 

confirmed via a questionnaire. 

A 2 (Familiarity: Familiar vs. Unfamiliar) x 2 (Face race: Own vs. Other) between-

subjects ANOVA with number of piles (perceived identities) as the dependent variable  
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Figure 3.1. A portrayal of the kind of variability encountered in our sorting task. 
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Figure 3.2. Number of perceived identities by individual participants. Red lines indicate 

medians. 

  



	 	

	 70	

(DV), revealed a significant interaction, F(1,96) = 7.57,  p = .007, ηp² = .07. As shown in 

Figure 3.2, participants showed an own-race advantage when sorting unfamiliar faces, 

t(48) = 2.85, p = .006, Cohen’s d = 0.81), with a mean of 11.56 versus 7.28 piles for 

other- (Median = 10; Range = 5-28) and own-race faces (Median = 6; Range = 3-15), 

respectively. In contrast, the ORE vanished when faces were familiar, t(48) = -0.64, p 

= .526, Cohen’s d = 0.18) because almost every participant made two piles for own- 

(Mean = 2.12; Median = 2; Range = 2-4) and other-race faces (Mean = 2.24; Median = 2; 

Range = 2-6). An astute reader might wonder whether photographs of Watson and 

Stewart were inherently easy to sort. They were not. We tested an additional six 

participants who had not seen these popular films and were wholly unfamiliar with the 

celebrities; none made two piles (Mean=12.00; Median=12; Range=5-21).  

Our findings provide novel insights about how other-race faces are represented. 

Valentine (1991) argued that other-race faces are densely clustered in the periphery of 

multidimensional face space because they are represented by few dimensions or 

perceivers are less sensitive to how the faces vary across these dimensions; dense 

clustering makes unfamiliar other-race faces difficult to recognize across variability in 

appearance (Laurence et al., 2016). We showed that when specific other-race identities 

become familiar via extensive exposure to within-person variability (social media, 

movies, and magazines), perceivers form an abstract representation allowing recognition 

across natural variation in appearance. Such learning might not be evident when exposure 

is limited to an iconic image (Carbon, 2008). This perceptual learning is identity-specific 

and does not generalize to the whole other-race category, perhaps because familiarity 

with a few other-race exemplars does not add dimensions to face space. Whether 
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perceptual learning is as efficient for other-race faces as it is for own-race faces remains 

to be determined. 

The current research has profound applied implications. Eyewitness testimony might 

be problematic when identifying an unfamiliar other-race suspect, but when witnessing a 

crime committed by someone with whom one is familiar, the accuracy of subsequent 

recognition might be independent of race. Our work suggests rethinking the concept of 

the ORE. Although frequently conceived as a problem of ‘‘face recognition,’’ it is more 

accurately depicted as a problem of ‘‘image recognition’’ or ‘‘face learning’’; there is no 

effect on ‘‘face recognition’’ once an other-race identity becomes familiar. In other 

words, Jackie Chan and Leonardo DiCaprio are equally likely to be recognized by fans 

when their appearance changes (e.g., when they grow a beard or shave their head). 
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CHAPTER 4 

Study 3: Judging Normality and Attractiveness in Faces: Direct Evidence of a More 

Refined Representation for Own-Race, Young Adult Faces4 

4.1 Introduction 

Adults possess an exceptional ability to discriminate and recognize individual faces, 

despite the fact that all faces share the same configural template (i.e., two eyes located 

above the nose and mouth). This perceptual expertise has been attributed to norm-based 

coding, a process by which individual face exemplars are encoded with reference to their 

deviation from the face norm (i.e., center of face space), which represents the average of 

all faces previously encountered (Valentine, 1991). Strong evidence for norm-based 

coding has emerged from studies examining face aftereffects (e.g., Leopold, O’Toole, 

Vetter, & Blanz, 2001; Rhodes & Jeffery, 2006; Rhodes et al., 2005; Schweinberger et al., 

2010). For example, repeated exposure to an adaptor face (e.g., anti-Dan) shifts the norm 

toward that face, biasing perception selectively toward a face with attributes opposite to 

the adaptor (e.g., Dan; termed identity aftereffects). Likewise, exposure to faces distorted 

in a similar direction (e.g., features expanded outward) produces a temporary shift in the 

norm, such that unaltered faces appear distorted in the opposite direction while similarly 

distorted faces appear more attractive (termed figural aftereffects; Rhodes, Jeffery, 

Watson, Clifford, & Nakayama, 2003).  

Norm-based coding is functionally important; it allows efficient extraction of subtle 

variations in the shared configuration among faces (Byatt & Rhodes, 1998). This process 

frees up neural resources by allowing the perceptual system to focus on the unique 

                                                
4 This chapter is based on the published article: Zhou, X., Short, L.A., Chan, H.S., & Mondloch, C. J. (2016). Judging 
normality and attractiveness in faces: Direct evidence of a more refined representation for own-race, young adult faces. 
Perception. 45(9), 973-990. doi:10.1177/0301006616652044 
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characteristics that are crucial for identifying a particular face, rather than storing a 

complete structural description of each face (Rhodes & Leopold, 2011; Rhodes, Watson, 

Jeffery, & Clifford, 2010; Webster & MacLeod, 2011). The functional value of norm-

based coding is evident in the positive correlation between the magnitude of both figural 

eye-height (Dennett, McKone, Edwards, & Susilo, 2012) and identity aftereffects 

(Rhodes, Jeffery, Taylor, Hayward & Ewing, 2014) and individual differences in face 

recognition memory.  

Valentine’s influential norm-based coding model (1991) provides an elegant 

explanation for two well-known phenomena: the other-race effect (ORE; better 

recognition of own- than other race faces (see Bothwell, Brigham & Malpass, 1989; 

Meissner & Brigham, 2001 for reviews) and the other-age effect (OAE; better 

recognition of own-age; Anastasi & Rhodes, 2005; Perfect & Harris, 2003; Rhodes & 

Anastasi, 2012) or young adult faces (de Heering & Rossion, 2008; Kuefner, Macchi 

Cassia, Picozzi, & Bricolo, 2008) than faces from other age categories). Valentine 

proposed that the dimensions of face space are shaped by experience such that they 

maximally differentiate faces from categories with which adults have abundant 

experience. Consequently, faces from other categories (typically other-race and other-age 

faces) are densely clustered in the periphery of face space, making them hard to 

discriminate and recognize.  

Category-contingent aftereffects provide partial support for this explanation. 

Adaptation to face categories distorted in opposite directions (e.g., compressed Caucasian 

versus expanded Asian faces) simultaneously shifts normality/attractiveness preferences 

in opposite directions. Opposing aftereffects have been found for race (Jaquet, Rhodes, & 
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Hayward, 2008; Little, DeBruine, Jones, & Waitt, 2008), orientation (Rhodes et al., 2004), 

species (Little et al., 2008), sex (Jaquet & Rhodes, 2008; Little, DeBruine, & Jones, 2005) 

and age (Little et al., 2008; Short, Proietti, & Mondloch, 2015) and suggest that separable 

norms are used to code faces from different face categories (e.g., race and species).   

Although opposing aftereffects demonstrate that adults possess separable norms 

coding for faces from different categories, they do not address whether the norm and face 

space are less well differentiated for categories with which adults have less experience 

(e.g., other-race faces), a critical component of Valentine’s model. This is because the 

magnitude of aftereffects does not vary as a function of perceptual expertise; adults do 

not show larger aftereffects for upright faces compared to inverted faces (Rhodes et al., 

2004), for own-race compared to other-race faces (Jaquet et al., 2008), or for young adult 

compared to older adult faces (Short et al., 2015). Thus, the refinement of the norms and 

underlying dimensions used for faces from different categories remains unclear. In the 

current study, we directly test whether adults possess a more refined face space for own-

race and young adult faces relative to other-race and older adult faces, respectively. 

The method used to address this question in Experiment 1 is based on a previous 

study showing that poor recognition of older faces may be partially attributable to 

insensitivity to deviations from the norm in older relative to young adult faces (Short & 

Mondloch, 2013). In that study, participants were shown young and older adult face pairs 

in which one face was undistorted and the other image of the same identity had either 

compressed or expanded facial features. Participants were asked to judge which face in 

each face pair was more normal (normality task) and which was more expanded 

(discrimination task). The normality task is sensitive to norm-based coding because 
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participants need to reference a norm. In contrast, the discrimination task does not require 

referencing a norm because participants can simply compare feature size. Short and 

Mondloch found that both young and older adults were more accurate for young than 

older adult faces in the normality task whereas they exhibited comparable accuracy for 

young and older faces in the discrimination task. Enhanced performance for young adult 

faces in the normality task was presumed to reflect reliance on a face space optimized for 

the dimensions of young adult faces, perhaps due to the early and continuous exposure 

most adults have to young adult faces throughout the lifespan. Consistent with this 

viewpoint, a recent study demonstrated that this enhanced sensitivity to the dimensions of 

young relative to older faces emerges as early as 3 years of age (Short, Mondloch, & 

Hackland, 2015).  

If abundant experience with young adult faces sets up the perceptual system in a 

way that is preferentially tuned for the dimensions of young adult faces, then we would 

expect that abundant experience with own-race faces tunes the dimensions of face space 

for own-race faces in the same way, resulting in enhanced normality judgments for own- 

relative to other-race faces. In the current study, we directly tested this hypothesis. In 

Experiment 1, Caucasian and Chinese adults were tested with a modified version of the 

normality and discrimination tasks employed by Short and Mondloch (2013). Participants 

viewed own- and other-race face pairs rather than young and older adult face pairs. We 

predicted that both Caucasian and Chinese adults would be more accurate in judging the 

normality of own-race faces but would show comparable accuracy in discriminating own- 

and other-race faces.  
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In Experiment 2, to provide converging evidence for the conclusion that the 

dimensions of face space are more refined for the face categories with which adults have 

ample experience, we tested adults’ sensitivity to variability in the attractiveness of own- 

versus other-race faces (Exp. 2a) and young versus older adult faces (Exp. 2b). 

Considerable evidence has suggested that similar to perceptions of normality, adults’ 

perception of attractiveness is influenced by norm-based coding (e.g., Langlois & 

Roggman, 1990; Rhodes, 2006; Rhodes & Tremewan, 1996). Perceived facial 

attractiveness changes as a function of proximity to the norm, such that perceptual 

attractiveness decreases the farther a face is from the norm (e.g., Langlois & Roggman, 

1990). If our mental representation of young, own-race faces is characterized by a more 

well-refined face space, then young, own-race faces should be more dispersed than older 

and other-race faces (Burton & Vokey, 1998), increasing consensus not only in 

judgments of normality, but also attractiveness.  

If abundant experience with own-race and young adult faces makes the dimensions 

of face space more finely tuned for these face categories, then adults should be more 

likely to agree on (i.e., greater consensus; less between-rater variability) the attractiveness 

of individual faces from such face categories relative to face categories with which they 

have less experience. To test this hypothesis, we presented participants with undistorted 

images of own- and other-race faces (Exp. 2a) or young and older adult faces (Exp. 2b) 

and measured the extent to which participants agreed on the attractiveness of each face 

(between-rater variability), which is quantified by the magnitude of the standard 

deviation (SD) in attractiveness ratings for each face. We hypothesized that participants 

would show greater agreement (i.e., smaller mean standard deviations) for face categories 
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with which they had greater cumulative life experience (i.e., own-race and young adult 

faces) than faces with which they had limited perceptual experience (i.e., other-race and 

older adult faces). 

4.2 Experiment 1 

 4.2.1 Method 

4.2.1.1 Participants 

Twenty-four Caucasian adults (24 female; Mean age = 19.67 years, SD = 1.17, 

age range = 18-22) from Brock University, Canada and 24 Chinese adults (18 female; 

Mean age = 22.00 years, SD = 2.25, age range = 20-27) from Zhejiang Normal University, 

China participated in this experiment. All participants included in our analyses reported 

minimal contact with other-race identities based on their responses on a questionnaire 

(see Procedure section). All participants reported having less than two other-race friends 

and 98.75% of participants reported having zero other-race friends. We excluded five 

additional participants (three Caucasian and two Chinese adults) who reported significant 

experience with individuals of East Asian/Caucasian ethnicity. All participants gave 

written informed consent and received either research credit or a small honorarium for 

their participation.  

4.2.1.2 Materials 

Stimuli consisted of colored facial photographs of 12 Caucasian adults (6 male) 

and 12 Chinese adults (6 male). All stimuli were acquired from the Center for Vital 

Longevity Face Database (Minear & Park, 2004) and the Let’s Face It database at Brock 

University. Faces were presented in a frontal view and posed a neutral expression. Faces 

were resized such that the distance from the hairline to the chin was approximately 450 
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pixels, and the spherize tool in Adobe Photoshop Version CS5 was used to expand and 

compress the internal features of each face (see Figure 4.1). The facial features of each 

faces were either expanded outward or compressed inward at three distortion levels (-

30%, -20%, -10%, 10%, 20%, 30%), resulting in a total of six new versions of each face. 

Each level of distortion was then paired with the undistorted same-identity counterpart. 

The left/right position of the undistorted face in each face pair was counterbalanced such 

that the undistorted face appeared on the left side in half of the trials. An additional four 

identities were used in four practice trials. Practice trials consisted of an undistorted face 

paired with either an expanded or compressed face (±40%) of the same identity. The 

practice and test stimuli were approximately 33 × 20 cm when presented on a 23-inch 

computer monitor and were viewed from a distance of approximately 60 cm. Stimuli 

were presented and participants’ responses were recorded using Superlab 4.5 software. 

4.2.1.3 Procedure  

This study received clearance from the Research Ethics Board at Brock University. 

All participants were tested individually in two tasks: a normality judgment task and a 

discrimination task. The order in which participants completed the two tasks was 

counterbalanced such that half of the participants were tested with the normality task 

followed by the discrimination task and the other half were tested in the reverse order. In 

both tasks, each trial comprised a 500-ms fixation cross, followed by a face pair that was 

presented for 3000 ms. Once the face pair disappeared from the screen, it was replaced by 

a screen prompting participants to press a key indicating which face was either more 

normal-looking (normality task) or more expanded (discrimination task). Within each 

task, race of face was blocked; half of the participants were tested with Caucasian faces 



	 	

	 80	

first and the other half were tested with East Asian faces first. Within each block, both 

face identities and distortion levels were randomized for each participant. In the 

discrimination task, the expanded face in each pair was defined as having more stretched 

(i.e., expanded outward) features than its same-identity counterpart (e.g., undistorted face 

compared to a -10% face). Twelve identities across 6 levels of distortion for each of the 

two race categories resulted in a total of 144 face pairs that were presented to participants 

in each task. Prior to the actual test, participants were presented with four practice trials 

in which the distortion was increased to ±40%. On each practice trial, participants were 

shown an undistorted face paired with an expanded or compressed face of the same 

identity.  

Upon completion of both tasks, participants completed a questionnaire assessing 

the amount of contact they have had with other-race identities (e.g., Chinese participants’ 

contact with Caucasian individuals). For example, they indicated how many of their top 

ten friends were of East Asian/Caucasian ethnicity, and how much current and previous 

experience they have had with other-race identities. 

 4.2.2 Results and Discussion 

To simplify our analysis, we collapsed across expanded and compressed trials 

within each distortion level. In the normality task, we calculated the proportion of trials in 

which participants selected the undistorted face in a face pair as being more normal. In 

the discrimination task, we calculated the proportion of trials in which participants 

selected the more expanded face in a face pair as being more expanded (i.e., the 

undistorted face when the distorted face was compressed, but the expanded face when the 

distorted face was expanded). Task order did not influence the accuracy of normality  
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Figure 4.1. Sample distortion continua for a Chinese identity and a Caucasian identity. 
Each face pair comprised an undistorted face paired with a compressed or an expanded 
version of the same identity.  
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judgments and discrimination (ps > .12); thus task order was excluded from all further 

analyses. We conducted a 2 (participant race: Caucasian, Chinese) × 2 (task type: 

normality, discrimination) × 2 (face race: Caucasian, East Asian) × 3 (distortion: 10%, 

20%, 30%) mixed-model ANOVA, with participant race as a between-subjects variable 

and  task type, face race and distortion levels as within-subjects variables.  

Because our primary question concerned the influence of face race on normality 

versus discrimination judgments, we focus here on main effects and interactions 

involving task type. We found significant main effects of task type (F 1, 46 = 60.86, p 

< .001, ηp² = .57), face race (F 1, 46 = 21.99, p < .001, ηp² = .32) and distortion level (F 1, 45 

= 540.55, p < .001, ηp² = .96), such that accuracy was higher in the discrimination task (M 

= 0.87, SE = 0.01) than in the normality task (M = 0.76, SE = 0.01) and for own-race 

faces (M = 0.83, SE = 0.01) than for other-race faces (M = 0.80, SE = 0.01). Accuracy 

increased as distortion level increased (10%: M = 0.68, SE = 0.01; 20%: M = 0.83, SE = 

0.01; 30%: M = 0.93, SE = 0.01). There was also a task type by distortion interaction (F 1, 

45 = 57.68, p < .001, ηp² = .72), which indicated that the difference in performance across 

the two tasks decreased as distortion level increased (i.e., the task became easier; see 

Figure 4.2a). 

Notably, we found a significant interaction between task type and face race (F 1, 46 = 

15.00, p < .001, ηp² = .25; see Figure 4.2b). Paired-sample t-tests confirmed that both 

Caucasian and Chinese participants were more accurate in judging the normality of own-

race faces (M = 0.78, SE = 0.01) than other-race faces (M = 0.73, SE = 0.01, t47 = 5.42, p 

< .001, Cohen’s d = 0.59). In contrast, accuracy for own- (M = 0.87, SE = 0.01) and 

other-race (M = 0.87, SE = 0.01) faces did not differ in the discrimination task (t47 = 5.34, 
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p = 0.60, Cohen’s d = 0). This task type by face race interaction was not qualified by 

interactions with either participant race or distortion level, ps > 0.41. Furthermore when 

examined independently, both Caucasian and Chinese participants showed an own-race 

advantage on the normality task (ps < .010) but not the discrimination task (ps > .100). 

To determine whether participants’ greater accuracy in judging the normality of own-race 

faces than other-race faces is attributable to better image learning in the course of the 

experiment for own- than other-race faces (i.e., to participants recognizing previously 

selected faces), we conducted an ANOVA in which block (1st vs 2nd half of trials), face 

race, participant race, and distortion levels were factors. There was no effect of block and 

no interaction involving block was significant (ps > .325). Thus, more accurate 

performance for own- than for other-race faces in the normality task is not attributable to 

image learning (i.e., greater sensitivity to normality in own-race faces did not emerge 

overtime). 

In summary, both Caucasian and Chinese adults showed deficits in detecting the 

normality of other-race compared to own-race faces despite no effect of face race on their 

ability to detect the expansion of facial features. This is consistent with evidence that 

young and older adults show a young adult face advantage in the normality but not the 

discrimination task (Short & Mondloch, 2013). Discrepant results across the two tasks 

directly points to reduced efficiency in the use of norm-based coding for other-race faces, 

another category with which most people have less experience. Extensive perceptual 

experience with own-race faces tunes the dimensions of face space for own-race faces, 

making judgments of normality more accurate for own- than other-race faces. But lack of 

perceptual experience with other-race faces does not influence accuracy in the  
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Figure 4.2. Mean proportion correct for the discrimination and normality tasks at (a) each 
level of distortion collapsed across face race and for (b) own- and other-race faces 
collapsed across distortion levels. * p < .05. 
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discrimination task, a task that does not require the use of norm-based coding. This 

argument receives support from evidence that inverting the face pairs eliminates the 

young adult face advantage in the normality task but not the discrimination task (Short & 

Mondloch, 2013). 

Experiment 2 

 Similar to judgments of normality, judgments of attractiveness are influenced in 

part by how much an individual face deviates from an average face; facial attractiveness 

is inversely related to distance from the mean (Langlois & Roggman, 1990; Light, 

Hollander, & Kayra-Stuart, 1981; Morris & Wickham, 2001; O’Toole, Deffenbacher, 

Valentin, & Abdi, 1994; Rhodes, 2006; Rhodes & Tremewan, 1996; but see Alley & 

Cunningham, 1991). Similar mean attractiveness ratings across different cultures 

(Cunningham, Roberts, Barbee, Druen, & Wu, 1995; Langlois et al., 2000) and age 

groups (Cross & Cross, 1971) suggests a degree of consensus regarding which faces are 

most versus least attractive. However, mean ratings for an individual face ignore 

between-rater variability (consensus), a metric that we hypothesized would be influenced 

by experience.  

If extensive experience with own-race and young adult faces optimizes the 

dimensions of face space for these face categories, resulting in faces from other 

categories being more densely clustered with poorly refined norms, then there should be 

less consensus among raters when judging faces from categories with which they have 

less experience. To test this hypothesis and provide converging evidence for a face space 

optimized for own-race and young adult faces, we showed participants 40 undistorted 

faces from each of two categories and asked participants to rate each face on a 7-point 
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attractiveness scale. In Experiment 2a, Caucasian and Chinese participants rated the 

attractiveness of Caucasian and East Asian faces; in Experiment 2b, young and older 

adults rated the attractiveness of young and older adult faces. To quantify consensus, for 

each face, we calculated the standard deviation of ratings across participants. We 

hypothesized that there would be less between-rater variability (i.e., smaller mean 

standard deviation) in ratings of individual faces for own-race faces (Exp. 2a) and young 

adult faces (Exp. 2b) relative to other-race and older adult faces, respectively.   

4.3 Experiment 2a 

 4.3.1 Method 

4.3.1.1 Participants 

Forty Caucasian undergraduates (37 female; Mean age = 20.48 years, SD = 5.67, 

age range = 17-25) from Brock University, Canada and 40 Chinese undergraduates (35 

female; Mean age = 22.15 years, SD = 2.43, age range = 18-26) from Zhejiang Normal 

University, China participated in this experiment. As in Experiment 1, Caucasian and 

Chinese participants reported very little contact with other-race individuals. All 

participants included in our analyses reported having less than two other-race friends; 

98.75% of participants reported having zero other-race friends. An additional 19 

participants (two Chinese, 17 Caucasian) were excluded from the final analysis due to 

reported significant experience with individuals of other-race ethnicity. Participants 

received either research credit or a small honorarium for their participation. 

4.3.1.2 Materials 

Stimuli comprised colored photographs of 40 Caucasian faces (20 female) and 40 

East Asian faces (20 female). All stimuli were acquired from the Center for Vital 
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Longevity Face Database (Minear & Park, 2004) and from the Let’s Face It database at 

Brock University. Each face was presented in a frontal view and with a neutral 

expression. Using Adobe Photoshop Version CS5, we removed the neck, background 

details, and distracting blemishes from the original pictures and resized them such that 

the distance from the hairline to the chin was approximately 500 pixels. All stimuli were 

presented and responses were recorded using SuperLab 4.5 software. 

4.3.1.3 Procedure  

This study received clearance from the Research Ethics Board at Brock University. 

After providing written informed consent, participants sat 60 cm in front of a 23-inch 

computer and were told that they would be shown a series of faces and that it was their 

job to rate each face in terms of its attractiveness. Participants were told that they would 

use a 7-point attractiveness rating scale, with 1 being not at all attractive and 7 being 

extremely attractive. Participants were told to attempt to use the full range of the scale 

and to think about the attractiveness of each face with regard to other faces of that race 

when making their responses.  

Face race was blocked such that half of the participants viewed Caucasian faces 

followed by East Asian faces, and half viewed East Asian faces followed by Caucasian 

faces. Each block contained 40 trials and each trial consisted of a 500-ms fixation cross 

followed by a face that appeared for 3000 ms. Participants had an unlimited amount of 

time to rate each face’s attractiveness via keypad on the 7-point scale. Before each block, 

participants were presented with all 40 faces from that block, one at a time for 1 second 

each, with a 500-ms ISI. This was done so that participants would have a sense of the 

range of variability in the attractiveness of the faces, thus ensuring that the first few faces 
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would not be given abnormal ratings. As in Experiment 1, upon completion of the 

attractiveness task, participants completed a questionnaire assessing the amount of 

contact they had with other-race identities.  

 4.3.2 Results and Discussion 

For each Caucasian and East Asian face, we calculated the mean attractiveness and 

the standard deviation in attractiveness ratings; calculations were done separately for 

Caucasian and Chinese participants. The mean attractiveness rating for each face reflects 

the average (i.e., central tendency) rating provided by Caucasian or Chinese raters. The 

standard deviation in attractiveness ratings reflects the extent to which raters agree with 

each other regarding the attractiveness of a particular face. In other words, higher 

standard deviations in attractiveness ratings indicate greater between-rater variability (i.e., 

less consensus) in attractiveness ratings. 

Task order and face sex did not have a significant effect on the mean and SD 

attractiveness ratings, nor did they interact with any other variables (all ps > .09); thus 

task order and face sex were excluded in all subsequent analyses. All follow-up t-tests 

were 2-tailed. 

Mean attractiveness ratings. A 2 (face race: Caucasian, East Asian) × 2 

(participant race: Caucasian, Chinese) mixed-model ANOVA examining mean 

attractiveness ratings for own- and other-race faces revealed no main effects of face race 

(F1, 78 = 1.12, p = .29, ηp²  = .01) and participant race (F1, 78 = 0.32, p = .58, ηp²  = .004). 

Furthermore, there was no significant face race by participant race interaction (F1, 78 = 

2.23, p = .14, ηp²  = .03), indicating that Caucasian and Chinese adults showed 

comparable average attractiveness ratings for both own- and other-race faces. This was 
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further confirmed by a significant positive correlation between Caucasian and Chinese 

participants’ mean attractiveness ratings for both Caucasian (r = 0.61, p < .001) and East 

Asian faces (r = 0.62, p < .001). In other words, increases in Caucasian raters’ mean 

attractiveness rating for Caucasian and East Asian faces were associated with increases in 

Chinese raters’ mean attractiveness rating for the same faces. 

Standard deviation in attractiveness ratings. We next examined whether 

Caucasian and Chinese raters showed greater between-participant variability (e.g., less 

consensus) in rating the attractiveness of other-race relative to own-race faces. We 

conducted a 2 (face race: Caucasian, East Asian) × 2 (participant race: Caucasian, 

Chinese) mixed-model ANOVA with the standard deviations in attractiveness ratings for 

own- and other-race faces as the dependent variable. We found a significant interaction 

between face race and participant race (F1, 78 = 5.24, p = .03, ηp² = .06; see Figure 4.3). 

Independent-sample t-tests confirmed that Caucasian adults showed greater between-

participant variability when rating the attractiveness of other-race faces (M = 1.41, SE = 

0.03) than when rating the attractiveness of own-race faces (M = 1.33, SE = 0.03; t78 = 

2.18, p = .03, Cohen’s d = 0.47). However, Chinese adults showed comparable between-

participant variability when rating the attractiveness of both own- (M = 1.36, SE = 0.03) 

and other-race faces (M = 1.39, SE = 0.03; t78 = -0.64, p = .53, Cohen’s d = 0.16). 

In summary, consistent with our hypothesis, Caucasian participants showed reduced 

consensus when rating the attractiveness of East Asian faces compared to Caucasian 

faces. Previous studies suggest that perceived facial attractiveness reflects norm-based 

coding, with attractiveness ratings inversely related to the distance from the norm (e.g., 

Rhodes & Tremewan, 1996). Among Caucasian participants, reduced consensus when  
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Figure 4.3. Caucasian and Chinese adults’ mean standard deviation in attractiveness 
ratings for own- and other-race faces. * p < .05, n.s = nonsignificant 
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judging the attractiveness of other-race faces is consistent with their impaired ability to 

judge the normality of other-race faces (Experiment 1). In contrast, despite showing 

higher accuracy when judging the normality of East Asian compared to  Caucasian faces 

(Experiment 1), Chinese participants did not show reduced consensus when judging the 

attractiveness of Caucasian faces. This might be attributable to Chinese participants 

having greater exposure to Western media (e.g., Western movies, singers, news) than 

Caucasian participants have to East Asian media. To the extent that actors and singers are 

typically above average in attractiveness, this experience might influence Chinese 

participants’ judgments of attractiveness more so than their judgments of normality, a 

possibility that should be examined in future studies. Collectively the results of 

Experiments 1 and 2a provide direct evidence that the dimensions of face space are more 

refined for own- than other-race faces. In Experiment 2b, we wanted to confirm these 

findings with another face category with which adults have differential experience: young 

and older adult faces. In particular, we examined whether consensus in attractiveness 

ratings varies as a function of face age. 

 
4.4 Experiment 2b 

Short and Mondloch (2013) reported that both young and older adults are more 

accurate in judging the normality of young relative to older adult faces under conditions 

in which their ability to discriminate faces from the two categories was comparable. In 

Experiment 2b, we measured the degree of consensus among young and older adults 

when judging the attractiveness of young versus older adult faces. Greater consensus 

when judging young adult faces would provide converging evidence of a more refined 
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norm for young faces, consistent with the dimensions of face space being optimized for 

young adult faces. 

 4.4.1 Method 

4.4.1.1 Participants  

Forty Caucasian undergraduate students from Brock University (35 female; M = 

19.60 years, age range = 18-24) and 40 senior citizens living in independent housing in 

the Niagara region of Ontario (29 female; M = 71.88 years, age range = 60-89) 

participated in this experiment. Senior citizen participants were all in good health, and 39 

of the 40 senior participants had 20/30 vision or better. Undergraduates received research 

credit or a small honorarium and senior citizens received a gift card for their participation 

in the study. All participants completed a questionnaire assessing their weekly face-to-

face contact with both young and older adults. All participants included in our analyses 

reported spending more time with own-age peers (M = 45.24 hours and 53.73 hours per 

week for young and older adults, respectively) than other-age individuals (M = 7.63 hours 

and 7.69 hours per week). An additional two undergraduates were tested but excluded 

from the final data set because they failed to pay attention during testing (n = 1) or did 

not fill out the questionnaire properly (n = 1). 

4.4.1.2 Materials 

Stimuli comprised colored photographs of 40 Caucasian young adult (20 female; age 

range = 18-29) and 40 Caucasian older adult (20 female; age range = 70-81) faces. All 

stimuli were acquired from the Center for Vital Longevity Face Database (Minear & Park, 

2004) and resized such that the distance from the hairline to the chin was approximately 

500 pixels. Young adult stimuli were identical to those used in Experiment 2a. As in 
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Experiment 2a, all photographs were cropped such that only the face and hair remained 

and all distracting blemishes were removed. All stimuli were presented and responses 

were recorded using SuperLab 4.5 software. 

4.4.1.3 Procedure   

The procedure of Experiment 2b was identical to that of Experiment 2a but older 

adult faces were shown instead of East Asian faces and the questionnaire measured the 

amount of current contact with young versus older adult faces. 

 4.4.2 Results and Discussion 

Similar to Experiment 2a, we calculated the mean attractiveness rating and standard 

deviation for each young and older adult face. 

Mean attractiveness ratings. A 2 (face age: young, older) x 2 (participant age: 

young, older) mixed-model ANOVA with mean attractiveness ratings as the dependent 

variable revealed a main effect of participant age, F1, 78 = 86.76, p < .001, ηp² = .53, such 

that faces were rated as more attractive by older adults (M = 4.32, SE = .07) than by 

young adults (M = 3.73, SE = .10). There was no main effect of face age, F1, 78 = 2.34, p 

= .13, ηp² = .03, nor was there a significant face age by participant age interaction, F1, 78 

= .17, p = .68, ηp²  = .002. The lack of a significant interaction indicates that young and 

older adults provided comparable attractiveness ratings for both face ages; this was 

further confirmed by a significant positive correlation between young and older adults’ 

mean attractiveness ratings for young adult (r = .77, p < .001) and older adult faces (r 

= .77, p < .001).  

Standard deviation in attractiveness ratings. A 2 (face age: young, older) x 2 

(participant age: young, older) mixed-model ANOVA with the standard deviations in 
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attractiveness ratings as the dependent variable revealed a main effect of face age (F1, 78 = 

13.96, p < .001, ηp² = .15; see Figure 4.4). Overall, there was greater between-participant 

variability in attractiveness ratings for older adult faces (M = 1.32, SE = .02) than for 

young adult faces (M = 1.24, SE = .02). There was no main effect of participant age (F1, 78 

= .24, p = .63, ηp² = .003), nor a significant face age by participant age interaction (F1, 78 

= .55, p = .46, ηp² = .007).  

In summary, just as Caucasian adults showed greater consensus in their 

attractiveness ratings of own- relative to other-race faces, both young and older adults 

showed greater consensus in their attractiveness ratings for young relative to older adult 

faces. This is consistent with previous evidence that young and older adults are more 

sensitive to deviations from the norm in young relative to older faces (Short & Mondloch, 

2013). It is surprising, perhaps, that older adults showed an advantage for young adult 

faces in this task despite recent abundant experience with older adult faces. This is in 

contrast to Chinese young adults who, likely because of exposure to Western media, did 

not show an own-race advantage on our attractiveness task. We suspect that the 

continuous young adult face bias in older adults reflects the special influence of early 

experience in shaping perceptual expertise—experience that is dominated by young faces 

(Macchi Cassia, Bulf, Quadrelli, & Proietti, 2013; Short, Semplonius, Proietti, & 

Mondloch, 2014). Collectively, these results provide direct evidence of a more refined 

face space (a well-defined norm and sensitivity to deviations along the underlying 

dimensions) for own-race and young adult faces relative to faces from other categories. 
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Figure 4.4. Young and older adults’ mean standard deviation in attractiveness ratings for 
young and older adult faces. * p < .05. 
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4.5 General Discussion 

Collectively, our results provide the first direct evidence that multidimensional face 

space is more refined for own- than other-race faces and provide converging evidence 

that both young and older adults’ face space is more refined for young than older adult 

faces (see Short & Mondloch, 2013). We discovered an own-race advantage in judgments 

of normality but not discrimination (Experiment 1) and among Caucasian participants, 

less between-participant variability in attractiveness ratings for own-race than for other-

race faces (Experiment 2a). We also found less between-participant variability in 

attractiveness ratings for young than for older adult faces both among young and older 

participants (Experiment 2b). These results suggest that the dimensions of face space are 

optimized for face categories with which people have ample perceptual experience (i.e., 

own-race faces; young adult faces). A particular strength in this set of experiments is that 

we tested adults from different race and age groups; consequently variability in normality 

and attractiveness judgments cannot be attributed to stimulus effects.  

It has been well established that other-race faces and older adult faces are 

recognized less accurately than own-race and young adult faces (Bothwell et al., 1989; de 

Heering & Rossion, 2008; Meissner & Brigham, 2001). This has been attributed to norm-

based coding, but few studies have systematically examined the relationship between 

norm-based coding and recognition deficits. Although opposing aftereffects suggest that 

separable norms are used to encode faces from different categories, the hypothesis that 

the face norm and the dimensions underlying face space are less well differentiated for 

faces from less encountered categories has not been directly tested in studies of 

aftereffects. Here we provide the first direct evidence of this hypothesis.  
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Unlike judging which of two faces is more expanded, judging normality requires 

perceptual expertise (i.e., knowledge of what an average face from that category looks 

like). This argument is supported by evidence that inversion impairs performance on the 

normality task (but not the discrimination task) and eliminates the young adult face 

advantage (Short & Mondloch, 2013). In the current study, despite no difference in the 

accuracy with which Caucasian and Chinese adults were able to discriminate own- versus 

other-race faces, their judgments of normality were more accurate for own-race faces. 

This result reflects reduced sensitivity to deviations from a prototypical other-race face 

and inefficiency in the use of norm-based coding for other-race faces, a pattern likely 

resulting from limited perceptual experience with other-race faces. This finding is 

consistent with evidence that young and older adults are more sensitive to deviations 

from normality in young than older adult faces (Short & Mondloch, 2013), suggesting a 

reliance on a face space that is optimized for the dimensions for young adult faces. 

In Experiment 2, we provided converging evidence for less efficiently tuned 

dimensions of face space for other-race and older adult faces by using a different task: 

attractiveness judgments. We found that Caucasian adults showed more consensus (less 

variability) when rating the attractiveness of Caucasian faces compared to East Asian 

faces, with no difference among Chinese adults. Moreover, both young and older adults 

were more likely to agree on the attractiveness of young adult faces than older adult faces. 

Greater between-participant variability in perceived attractiveness for other-race and 

older adult faces is consistent with our conclusion that the perceptual processing system 

is preferentially tuned for face categories with which people have more perceptual 

experience. 
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The results of the present study support the norm-based coding model of the own-

race and own-age/young adult face recognition advantage and highlight the important 

role of perceptual experience in shaping the face norm and the dimensions underlying 

face space. The dimensions of face space are refined through perceptual experience to 

represent the facial properties that are optimal for discriminating identities from highly 

familiar categories. Consequently, faces from unfamiliar categories, such as other-race 

faces and older adult faces, are tightly clustered in the periphery of face space (Valentine, 

1991). This model explains why perceivers have an impaired ability to detect deviations 

from normality and greater between-perceiver variability in attractiveness ratings for 

other-race and older adult faces.  This may be one reason why participants make more 

errors in recognition tasks involving other-race and older adult identities (e.g., Golby, 

Gabrieli, Chiao & Eberhardt, 2001; MacLin & Malpass, 2001; Wright, Boyd & Tredoux, 

2003). 

Our finding that there is a perceptual advantage for own-race and young adult faces 

is consistent with evidence that both N170 amplitude and the N170 inversion effect are 

influenced by face race and age. The amplitude of the N170 is smaller for own- than 

other-race faces (e.g., Wiese, Kaufmann, & Schweinberger, 2014) and for young than 

older faces in both young and older adults (Wiese, Schweinberger, & Hansen, 2008), 

whereas the N170 inversion effect shows the opposite pattern (Komes, Schweinberger, & 

Wiese, 2015; Viziolia, Rousseleta, & Caldaraa, 2010; Wiese, Komes, & Schweinberger, 

2013). This early perceptual advantage impacts recognition; the own-race recognition 

advantage is robust, as is the own-age advantage among young adults. In contrast, 

findings are inconclusive in older adult samples (see Proietti, Macchi Cassia, & 
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Mondloch, 2015 for a review), perhaps because of later processing stages (e.g., as 

reflected in the N250; Wiese, Kachel, & Schweinberger, 2013) being influenced by 

accumulation of experience with different age groups over the lifespan (Anastasi & 

Rhodes, 2006) and the special influence of early experience in shaping perceptual 

expertise for adult faces (Macchi Cassia et al., 2013). 

Our finding that face space is more refined for own-race and young adult faces also 

has explanatory value for a less investigated challenge in face recognition: recognizing 

identity when appearance varies. Two pictures of the same person can look very different 

and pictures of two different people can look very similar. When sorting photographs of 

unfamiliar faces into piles such that each pile includes all of the pictures of one identity, 

adults frequently separate photos of one person into multiple piles (i.e., they perceive 

different pictures of the same person as belonging to different identities). For example, 

when sorting a pile of 40 photographs comprising 20 pictures of two different identities, 

adults make about seven piles (i.e., they perceive about seven different identities; Jenkins, 

White, Van Montfort, & Burton, 2011). They make twice as many piles (perceive twice 

as many identities) when sorting unfamiliar other-race identities (Laurence, Zhou, & 

Mondloch, 2016), suggesting that recognizing identity in photos that capture natural 

within-person variability in appearance among other-race faces is especially challenging.  

This finding was interpreted in light of extensions of Valentine’s norm-based 

coding model, according to which each face is represented as a region (attractor field), 

rather than a single point, in face space (Tanaka, Giles, Kremen, & Simon, 1998). The 

attractor field reflects the range of inputs that are perceived as belonging to a given 

identity (i.e., our ability to tolerate within-person variability in appearance). The size of 
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an identity’s attractor field is inversely correlated with the density of nearby 

representations, and thus hypothesized to be smaller for other-race and older adult faces 

than for own-race and young adult faces. Laurence et al. (2016) argued that smaller 

attractor fields for other-race faces not only make other-race faces harder to tell apart but 

increase the difficulty in recognizing an identity in the context of natural changes in 

appearance. The current study provides evidence that other-race faces are more densely 

clustered than own-race faces in face space, with a smaller inter-face distance—a key 

component to this argument. It would be worthwhile to investigate the relationship 

between individual differences in sensitivity to deviations from the norm and the ability 

to recognize pictures of faces that incorporate a wide range of natural variations. 

Issues for Future Research 

Our findings provide direct evidence that deficits in recognizing other-race and 

older adult faces can be attributed to a less refined face space for faces from these 

categories. They also raise several issues worthy of further investigation. In particular, we 

highlight the need to refine our conceptualization of face space. First, it is not clear 

exactly what the dimensions underlying face space are. They might be features and their 

spacing (e.g., nose length, distance between the eyes,) or more abstract dimensions (e.g., 

eigenfaces; Hancock, Burton, & Bruce, 1996). Although norm-based coding has 

enormous explanatory power, it is important to better specify the nature of the underlying 

dimensions. 

Second, the process through which perceptual experience shapes the dimensions of 

face space has not been specified. Opposing aftereffects suggest that we have separable 

face spaces for own- and other-race faces (Jaquet, Rhodes, & Hayward, 2008) and young 
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versus older faces (Short et al., 2015). Partial transfer of aftereffects across face race 

(Jaquet & Rhodes, 2008) and age (Short et al., 2015) suggests shared underlying 

dimensions and separable prototypes/norms. Some dimensions are almost certainly 

shared across categories (Short et al., 2015). This characterization of face space accounts 

for our findings in several ways. First, it is likely that any one dimension is not equally 

diagnostic for faces from all categories. To the extent that dimensions are optimized to 

discriminate faces from categories with which people have more perceptual experience 

(e.g., own-race and young adult faces), they will be less effective for discriminating faces 

from other categories (e.g., other-race and older adult faces). For example, eye color may 

be a salient dimension for discriminating Caucasian identities, but Asian identities might 

be more clustered on this dimension. In addition, we propose that regions of face space 

associated with different categories vary in the number of dimensions represented and/or 

the length of the underlying vectors (a conceptualization of sensitivity to differences 

along dimensions). Just as children rely on fewer dimensions than adults (Nishimura, 

Maurer, & Gao, 2009), it is likely that the very limited number of other-race and older 

adult face exemplars in one’s face space severely restricts the number of underlying 

dimensions. As noted by Burton and Vokey (1998), fewer dimensions might leave the 

vast majority of faces clustered in the center of face space. As dimensions are added 

(which happens throughout development for own-race, young adult faces), faces become 

more dispersed, making them easier to discriminate and recognize. Our results suggest 

that this dispersion also leads to greater consensus in attractiveness judgments because 

there is more variability among faces in their proximity to the center of face space. While 

in contrast to Valentine’s (1991) claim that faces are most densely clustered in the center 
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of face space, it is consistent with his argument that perceived attractiveness is influenced 

by distance from the center. Future studies should aim to clarify how representations vary 

across face categories.  

There is also evidence showing that children are less sensitive than adults in 

differentiating along the dimensions of face space (Anzures, Mondloch, & Lackner, 2009; 

Short, Hatry, & Mondloch, 2011; Short, Lee, Fu, & Mondloch, 2014) and their ability to 

simultaneously use multiple dimensions improves after 8 years of age (Nishimura et al., 

2009). Future studies should investigate whether the increase of perceptual expertise with 

age enhances children’s sensitivity to deviations from the face norm and their sensitivity 

to the dimensions along which faces vary. 

In summary, two methodologies were used to examine the representation of own- 

versus other-race faces and young versus older adult faces in face space. Adults were 

more sensitive to how faces deviate from an average face when judging own- relative to 

other-race faces and were less likely to agree on the attractiveness of other-race and older 

adult faces. Collectively, these results provide direct evidence that perceptual experience 

with own-race, young adult faces optimizes the dimensions of face space for own-race 

and young adult faces. Such reduced sensitivity to deviations from the face norms for 

categories with which we have less experience may explain the special challenge of 

recognizing other-race and older adult identities. 

  



	 	

	 103	

References 

Alley, T. R., & Cunningham, M. R. (1991). Averaged faces are attractive, but very 
attractive faces are not average. Psychological Science, 2(2), 123-125. doi: 
10.1111/j.1467-9280.1991.tb00113.x 

 
Anastasi, J. S., & Rhodes, M. G. (2005). An own-age bias in face recognition for children 

and older adults. Psychonomic Bulletin & Review, 12(6), 1043-1047. doi: 
10.3758/BF03206441 

 
Anastasi, J. S., & Rhodes, M. G. (2006). Evidence for an Own-Age Bias in Face 

Recognition. North American Journal of Psychology, 8(2), 237-253.  
 
Anzures, G., Mondloch, C. J., & Lackner, C. (2009). Face adaptation and attractiveness 

aftereffects in 8-year-olds and adults. Child Development, 80(1), 178-191. doi: 
10.1111/j.1467-8624.2008.01253.x 

 
Bothwell, R. K., Brigham, J. C., & Malpass, R. S. (1989). Cross-racial identification. 

Personality and Social Psychology Bulletin, 15(1), 19-25. doi: 
10.1177/0146167289151002 

 
Burton, A. M., & Vokey, J. R. (1998). The face-space typicality paradox: Understanding 

the face-space metaphor. The Quarterly Journal of Experimental Psychology: 
Section A, 51(3), 475-483. doi: 10.1080/713755768 

 
Byatt, G., & Rhodes, G. (1998). Recognition of own-race and other-race caricatures: 

Implications for models of face recognition. Vision Research, 38(15), 2455-2468. 
doi: 10.1016/S0042-6989(97)00469-0 

 
Cross, J. F., & Cross, J. (1971). Age, sex, race, and the perception of facial beauty. 

Developmental Psychology, 5(3), 433-439. doi: 10.1037/h0031591 
 
Cunningham, M. R., Roberts, A. R., Barbee, A. P., Druen, P. B., & Wu, C. H. (1995). 

“Their ideas of beauty are, on the whole, the same as ours”: Consistency and 
variability in the cross-cultural perception of female physical attractiveness. 
Journal of Personality and Social Psychology, 68(2), 261. doi: 10.1037/0022-
3514.68.2.261 

 
de Heering, A., & Rossion, B. (2008). Prolonged visual experience in adulthood 

modulates holistic face perception. PLoS ONE, 3(5), e2317. doi: 
10.1371/journal.pone.0002317 

 
Dennett, H. W., McKone, E., Edwards, M., & Susilo, T. (2012). Face aftereffects predict 

individual differences in face recognition ability. Psychological Science, 23(11), 
1279-1287. doi: 10.1177/0956797612446350 

 



	 	

	 104	

Golby, A. J., Gabrieli, J. D., Chiao, J. Y., & Eberhardt, J. L. (2001). Differential 
responses in the fusiform region to same-race and other-race faces. Nature 
Neuroscience, 4(8), 845-850. doi:10.1038/90565 

Hancock, P. J., Burton, A. M., & Bruce, V. (1996). Face processing: Human perception 
and principal components analysis. Memory & Cognition, 24(1), 26-40. doi: 
10.3758/BF03197270 

 
Jaquet, E., & Rhodes, G. (2008). Face aftereffects indicate dissociable, but not distinct, 

coding of male and female faces. Journal of Experimental Psychology: Human 
Perception and Performance, 34(1), 101-112. doi: 10.1037/0096-1523.34.1.101 

 
Jaquet, E., Rhodes, G., & Hayward, W. G. (2008). Race-contingent aftereffects suggest 

distinct perceptual norms for different race faces. Visual Cognition, 16(6), 734-
753. doi: 10.1080/12506280701350647  

 
Jenkins, R., White, D., Van Montfort, X., & Burton, A. M. (2011). Variability in photos 

of the same face. Cognition, 121(3), 313-323. doi: 
10.1016/j.cognition.2011.08.001 

 
Komes, J., Schweinberger, S. R., & Wiese, H. (2015). Neural correlates of cognitive 

aging during the perception of facial age: the role of relatively distant and local 
texture information. Frontiers in psychology, 6, 1-16. doi: 
10.3389/fpsyg.2015.01420 

 
Kuefner, D., Macchi Cassia, V., Picozzi, M., & Bricolo, E. (2008). Do all kids look alike? 

Evidence for an other-age effect in adults. Journal of Experimental Psychology: 
Human Perception and Performance, 34(4), 811-817. doi: 10.1037/0096-
1523.34.4.811 

 
Langlois, J. H., Kalakanis, L., Rubenstein, A. J., Larson, A., Hallam, M., & Smoot, M. 

(2000). Maxims or myths of beauty? A meta-analytic and theoretical review. 
Psychological bulletin, 126(3), 390-423. doi: 10.1037//0033-2909.126.3.390 

 
Langlois, J. H., & Roggman, L. A. (1990). Attractive faces are only average. 

Psychological Science, 1(2), 115-121. doi: 10.1111/j.1467-9280.1990.tb00079.x 
 
Laurence, S., Zhou, X., & Mondloch, C. J. (2016). The flip side of the other-race coin: 

They all look different to me. British Journal of Psychology. 107(2), 374-388. 
doi: 10.1111/bjop.12147 

 
Leopold, D. A., O'Toole, A. J., Vetter, T., & Blanz, V. (2001). Prototype-referenced 

shape encoding revealed by high-level aftereffects. Nature Neuroscience, 4(1), 
89-94. doi: 10.1038/ncb739 

 



	 	

	 105	

Light, L. L., Hollander, S., & Kayra-Stuart, F. (1981). Why attractive people are harder to 
remember. Personality and Social Psychology Bulletin, 7(2), 269-276. doi: 
10.1177/014616728172014 

 
Little, A. C., DeBruine, L. M., & Jones, B. C. (2005). Sex-contingent face after-effects 

suggest distinct neural populations code male and female faces. Proceedings of 
the Royal Society of London B: Biological Sciences, 272(1578), 2283-2287. doi: 
10.1098/rspb.2005.3220 

 
Little, A. C., DeBruine, L. M., Jones, B. C., & Waitt, C. (2008). Category contingent 

aftereffects for faces of different races, ages and species. Cognition, 106(3), 1537-
1547. doi:10.1016/j.cognition.2007.06.008 

 
Macchi Cassia, V., Bulf, H., Quadrelli, E., & Proietti, V. (2013). Age-related face 

processing bias in infancy: Evidence of perceptual narrowing for adult faces. 
Developmental psychobiology, 56(2), 238-248. doi : 10.1002/dev.21191 

 
MacLin, O. H., & Malpass, R. S. (2001). Racial categorization of faces: The ambiguous 

race face effect. Psychology, Public Policy, and Law, 7(1), 98. doi: 
10.1037//1076-8971.7.1.98 

 
Meissner, C. A., & Brigham, J. C. (2001). Thirty years of investigating the own-race bias 

in memory for faces: A meta-analytic review. Psychology, Public Policy, and Law, 
7(1), 3. doi: 10.1037/1076-8971.7.1.3 

 
Minear, M., & Park, D. C. (2004). A lifespan database of adult facial stimuli. Behavior 

Research Methods, Instruments, & Computers, 36(4), 630-633. doi: 
10.3758/BF03206543 

 
Morris, P. E., & Wickham, L. H. (2001). Typicality and face recognition: A critical re-

evaluation of the two factor theory. The Quarterly Journal of Experimental 
Psychology: Section A, 54(3), 863-877. doi: 10.1080/713755992 

 
Nishimura, M., Maurer, D., & Gao, X. (2009). Exploring children’s face-space: A 

multidimensional scaling analysis of the mental representation of facial identity. 
Journal of Experimental Child Psychology, 103(3), 355-375. doi: 
10.1016/j.jecp.2009.02.005 

 
O’Toole, A. J., Deffenbacher, K. A., Valentin, D., & Abdi, H. (1994). Structural aspects 

of face recognition and the other-race effect. Memory & Cognition, 22(2), 208-
224. doi: 10.3758/BF03208892 

 
Perfect, T. J., & Harris, L. J. (2003). Adult age differences in unconscious transference: 

Source confusion or identity blending?. Memory & cognition, 31(4), 570-580. doi: 
10.3758/BF03196098 

 



	 	

	 106	

Proietti, V., Macchi Cassia, V., & Mondloch, C. J. (2015). The own-age face recognition 
bias is task dependent. British Journal of Psychology, 106(3), 446-467. doi: 
10.1111/bjop.12104 

 
Rhodes, G. (2006). The evolutionary psychology of facial beauty. Annual Review of 

Psychology., 57, 199-226. doi: 10.1146/annurev.psych.57.102904.190208 
 

Rhodes, M. G., & Anastasi, J. S. (2012). The own-age bias in face recognition: A meta-
analytic and theoretical review. Psychological Bulletin, 138(1), 146-174. doi: 
10.1037/a0025750 

 
Rhodes, G., & Jeffery, L. (2006). Adaptive norm-based coding of facial identity. Vision 

Research, 46(18), 2977-2987. doi: 10.1016/j.visres.2006.03.002 
 
Rhodes, G., Jeffery, L., Taylor, L., Hayward, W. G., & Ewing, L. (2014). Individual 

differences in adaptive coding of face identity are linked to individual differences 
in face recognition ability. Journal of Experimental Psychology: Human 
Perception and Performance, 40(3), 897. doi: 10.1037/a0035939 

 
Rhodes, G., Jeffery, L., Watson, T. L., Clifford, C. W., & Nakayama, K. (2003). Fitting 

the mind to the world: Face adaptation and attractiveness aftereffects. 
Psychological Science, 14(6), 558-566. doi: 10.1046/j.0956-
7976.2003.psci_1465.x 

 
Rhodes, G., Jeffery, L., Watson, T. L., Jaquet, E., Winkler, C., & Clifford, C. W. G. 

(2004). Orientation-contingent face aftereffects and implications for face-coding 
mechanisms. Current Biology, 14(23), 2119-2123. doi : 
10.1016/j.cub.2004.11.053 

 
Rhodes, G., & Leopold, D. A. (2011). Adaptive norm-based coding of face identity. In A. 

J. Calder, G. Rhodes, M. H. Johnson, & J. V. Haxby (Eds.), The Oxford handbook 
of face perception (pp. 263-286). Oxford, England: Oxford University Press. 

 
Rhodes, G., Robbins, R., Jaquet, E., McKone, E., Jeffery, L., & Clifford, C. W. G. (2005). 

Adaptation and face perception: How aftereffects implicate norm-based coding of 
faces Fitting the mind to the world: Adaptation and after-effects in high-level 
vision (pp. 213-240). New York: Oxford University Press.  

 
Rhodes, G., & Tremewan, T. (1996). Averageness, exaggeration, and facial attractiveness. 

Psychological Science, 7(2), 105-110. doi: 10.1111/j.1467-9280.1996.tb00338.x 
 
Rhodes, G., Watson, T. L., Jeffery, L., & Clifford, C. W. (2010). Perceptual adaptation 

helps us identify faces. Vision Research, 50(10), 963-968. doi: 
10.1016/j.visres.2010.03.003  

 



	 	

	 107	

Schweinberger, S. R., Zäske, R., Walther, C., Golle, J., Kovács, G., & Wiese, H. (2010). 
Young without plastic surgery: Perceptual adaptation to the age of female and 
male faces. Vision research, 50(23), 2570-2576. doi: 10.1016/j.visres.2010.08.017 

 
Short, L. A., Hatry, A. J., & Mondloch, C. J. (2011). The development of norm-based 

coding and race-specific face prototypes: An examination of 5-and 8-year-olds’ 
face space. Journal of Experimental Child Psychology, 108(2), 338-357. doi: 
10.1016/j.jecp.2010.07.007 

 
Short, L. A., Lee, K., Fu, G., & Mondloch, C. J. (2014). Category-specific face 

prototypes are emerging, but not yet mature, in 5-year-old children. Journal of 
Experimental Child Psychology, 126, 161-177. doi: 10.1016/j.jecp.2014.04.004 

 
Short, L. A., & Mondloch, C. J. (2013). Aging faces and aging perceivers: Young and 

older adults are less sensitive to deviations from normality in older than in young 
adult faces. Perception, 42(8), 795-812. doi: 10.1068/p7380 

 
Short, L. A., Mondloch, C. J., & Hackland, A. T. (2015). Attractiveness judgments and 

discrimination of mommies and grandmas: Perceptual tuning for young adult 
faces. Journal of Experimental Child Psychology, 129, 1-11. doi: 
10.1016/j.jecp.2014.08.001 

 
Short, L. A., Proietti, V., & Mondloch, C. J. (2015). Representing young and older adult 

faces: Shared or age-specific prototypes?. Visual Cognition, 23(8), 939-956. doi: 
10.1080/13506285.2015.1115794 

 
Short, L. A., Semplonius, T., Proietti, V., & Mondloch, C. J. (2014). Differential 

attentional allocation and subsequent recognition for young and older adult faces. 
Visual Cognition, 22(9-10), 1272-1295. doi: 10.1080/13506285.2014.993007 

 
Tanaka, J., Giles, M., Kremen, S., & Simon, V. (1998). Mapping attractor fields in face 

space: The atypicality bias in face recognition. Cognition, 68(3), 199-220. doi: 
10.1016/S0010-0277(98)00048-1 

 
Valentine, T. (1991). A unified account of the effects of distinctiveness, inversion, and 

race in face recognition. The Quarterly Journal of Experimental Psychology A, 
43(2), 161-204. doi: 10.1080/14640749108400966 

 
Vizioli, L., Rousselet, G. A., & Caldara, R. (2010). Neural repetition suppression to 

identity is abolished by other-race faces. Proceedings of the National Academy of 
Sciences, 107(46), 20081-20086. doi: 10.1073/pnas.1005751107 

 
Webster, M. A., & MacLeod, D. I. A. (2011). Visual adaptation and face perception. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 
366(1571), 1702-1725. doi: 10.1098/rstb.2010.0360 



	 	

	 108	

Wiese, H., Kachel, U., & Schweinberger, S. R. (2013). Holistic face processing of own-
and other-age faces in young and older adults: ERP evidence from the composite 
face task. Neuroimage, 74, 306-317. doi: 10.1016/j.neuroimage.2013.02.051 

 
Wiese, H., Kaufmann, J. M., & Schweinberger, S. R. (2014). The neural signature of the 

own-race bias: Evidence from event-related potentials. Cerebral Cortex, 24(3), 
826-835. doi: 10.1093/cercor/bhs369 

 
Wiese, H., Komes, J., & Schweinberger, S. R. (2013). Ageing faces in ageing minds: A 

review on the own-age bias in face recognition. Visual Cognition, 21(9-10), 1337-
1363. doi: 10.1080/13506285.2013.823139 

 
Wiese, H., Schweinberger, S. R., & Hansen, K. (2008). The age of the beholder: ERP 

evidence of an own-age bias in face memory. Neuropsychologia, 46(12), 2973-
2985. doi: 10.1016/j.neuropsychologia.2008.06.007 

 
Wright, D. B., Boyd, C. E., & Tredoux, C. G. (2003). Inter-racial contact and the own-

race bias for face recognition in South Africa and England. Applied Cognitive 
Psychology, 17(3), 365-373. doi: 10.1002/acp.898 

 
  



	 	

	 109	

CHAPTER 5 

Study 4: The Other-Race Effect is Not Modulated by Differential Use of Shape and 

Texture Cues During Face Learning and Recognition 

5.1 Introduction 

Face perception serves as one important basis for human social interactions. On a 

daily basis, perceivers rely on the accurate extraction of stable identity-based 

characteristics (e.g., age, sex and ethnicity) as well as dynamic social signals (e.g., 

emotional state and direction of attention) from faces to function effectively in the social 

world. Adults’ remarkable expertise in extracting identity-based cues is limited to face 

categories with which they have abundant perceptual experience. For example, one of the 

most replicated phenomena in face perception is that perceivers tend to discriminate and 

recognize faces of their own ethnic group more accurately than faces of different ethnic 

groups (see Bothwell, Brigham, & Malpass, 1989; Meissner & Brigham, 2001, for 

reviews). This other-race effect (ORE) emerges during infancy (Anzures, Quinn, Pascalis, 

Slater, & Lee, 2013a; Anzures et al., 2013b; Gauthier & Nelson, 2001; Kelly et al., 2005; 

2007), and is robust across different participant populations and a variety of 

methodologies (e.g., recognition tasks, matching tasks and sorting tasks; Maclin & 

Malpass, 2001; Hayward, Rhodes, & Schwaninger, 2008; Mondloch et al., 2010; 

Laurence, Zhou, & Mondloch, 2016). Given that the ORE has many deleterious 

consequences involving the misidentification of racial out-group members (e.g., social 

embarrassment or erroneous eyewitness testimony), understanding the mechanisms 

underlying the ORE has profound implications not only for models of face recognition 

but also for applied settings. 
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One of the classic measures of the ORE is the old/new face recognition task, in 

which participants are presented with own- and other-race faces during a study phase and 

then asked to recognize those faces when they are intermixed with novel faces. In this 

task, d’, a measure of overall accuracy, takes into account both perceivers’ ability to 

recognize previously learned faces (hits) and their ability to detect that a face is novel 

(correct rejections)—two components of accuracy that are analyzed in the current 

research because they represent separable aspects of face learning. It has been 

consistently found that participants make fewer hits and more false alarms (inversely 

proportional to correct rejections; i.e., incorrectly classify a novel face as learned) for 

other- than own-race faces, leading to a smaller d’ for other-race faces (Meissner & 

Brigham, 2001; Young, Hugenberg, Bernstein, & Sacco, 2012).  

Growing evidence examining own-race face recognition suggests that the 

importance of two cues to facial identity—shape and texture—differs for learned vs. 

newly encountered faces. Shape cues refer to the shape as well as the size of the 

individual facial features, and their second-order configuration (e.g., interocular distance; 

Richler, Mack, Gauthier, & Palmeri, 2011). Texture cues represent the reflectance 

properties of faces, such as luminance, hue and saturation (e.g., Beale & Keil, 1995; 

Bruce et al., 1991; Kloth, Damm, Schweinberger, & Wiese, 2015; Itz, Schweinberger, & 

Kaufmann, 2016; Russell, Biederman, Nederhouser, & Sinha, 2007). Although the term 

texture is the commonly used in the field of psychology, the terms reflectance and albedo 

are used in the field of computer vision (O’toole, Vetter, & Blanz, 1999). All of these 

terms refer to the light-transfer function of the surface (Russell, Chatterjee, & Nakayama, 

2012). While shape is particularly important for the initial encoding of unfamiliar own-
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race faces, texture information is more important for recognizing familiar/learned own-

race faces (Burton, Schweinberger, Jenkins, & Kaufmann, 2015; Jenkins & Burton, 2008; 

but see Russell, Chatterjee, & Nakayama, 2012). In the current study, we examined to 

what extent the impairments in encoding and recognition of other- relative to own-race 

faces are attributable to the different utilization of shape and texture cues. 

Two classic approaches have been taken to examine the contributions of shape 

and texture to face recognition: exaggerating these cues by selectively caricaturing shape 

or texture and selectively reducing these cues by replacing a face’s shape or texture with 

an average shape or texture. Taking the first approach, several studies have provided 

evidence that shape cues are critical for encoding unfamiliar faces (i.e., for face learning) 

but less so for the recognition of familiar faces. For example, Schulz, Kaufmann, Kurt, & 

Schweinberger (2012) found an initial encoding advantage for unfamiliar faces with 

exaggerated idiosyncratic shape (also see Itz, Schweinberger, Schulz, & Kaufmann, 

2014); participants learned veridical, spatially caricatured or anticaricatured faces and 

were asked to recognize these unfamiliar faces in a test phase. Spatial caricaturing and 

anticaricaturing exaggerated and diminished the metric differences between each 

individual face and a gender matched average face, while preserving the texture of 

original faces. Recognition accuracy was higher for shape caricatures than both veridicals 

and anticaricatures, a pattern observed in both hits and correct rejections. In line with this 

finding, Kaufmann and colleagues found that spatially caricatured faces elicited larger 

occipitotemporal N170, N250, and late-positive component (LPC; Kaufmann & 

Schweinberger, 2008; 2012) than veridical faces, an effect that is evident for unfamiliar 

but not for familiar faces. This suggests that shape caricaturing might facilitate the initial 
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structural encoding and the activation of identity-specific semantic information for 

unfamiliar faces.  

Whereas shape cues are critical for encoding novel faces, they become less 

reliable for the recognition of familiar faces. Representations of familiar faces are 

resistant to shape normalization (e.g., to a loss of identity-specific shape information; 

Burton, Jenkins, Hancock, & White, 2005) and spatial distortions such as stretching 

(Hole, George, Eaves, & Rasek, 2002), suggesting that alternative information— i.e. 

texture—plays a more important role for recognizing familiar (learned) faces (e.g., Itz, 

Golle, Luttmann, Schweinberger, & Kaufmann, 2017; Andrews, Baseler, Jenkins, Burton, 

& Young, 2016). Using the second approach, Russell and Sinha (2007) directly examined 

the effects of shape and texture cues in the recognition of personally familiar faces (e.g., 

personal friends). The presented faces were either shape-only faces, which contained the 

original shape but average texture, or texture-only faces, which contained the original 

texture but average shape. Participants showed better recognition of their friends’ faces 

from texture (texture-only faces) than from shape information (shape-only faces). Such 

recognition impairments for familiar faces caused by the reduction of texture cues were 

also evident in undergraduates when recognizing their lecturers’ faces (Kaufmann, Itz, & 

Schweinberger, 2016).   

Using an old/new face recognition task, Itz et al. (2014) provided the first direct 

evidence of different utilization of shape and texture cues in the recognition of newly 

learned faces. Participants learned veridical, shape-caricatured (original texture) and 

texture-caricatured (original shape) unfamiliar faces; these learned faces were intermixed 

with novel faces in the test phase. Whereas recognition of learned faces benefited only 
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from texture caricaturing, correct rejection of novel faces (a proxy for face encoding) 

tended to benefit more from shape than texture caricaturing. Notably, the relative use of 

shape and texture cues for familiar vs. unfamiliar faces is associated with individual 

differences in face recognition skills (Itz et al., 2017; Kaufmann, Schulz, & 

Schweinberger, 2013; but see Russell et al., 2012, in which individuals with 

prosopagnosia, super-recognizers, and control participants were tested). Specifically, 

individuals with above-average, compared to individuals with below-average, face 

recognition skills exhibit an even greater utilization of texture and an even smaller 

utilization of shape for identifying familiar and newly learned compared to unfamiliar 

faces (Itz et al., 2017; Kaufmann et al., 2013).  

Here we hypothesized that the ORE may be attributable to adults relying on shape 

cues when recognizing learned other-race faces, a pattern comparable to individuals with 

poor recognition skills continuing to rely on shape (rather than texture) cues when 

recognizing learned own-race faces. In two experiments, participants were instructed to 

learn a series of Caucasian and East Asian faces followed by an old/new recognition task. 

In Experiment 1, taking the first approach, we selectively exaggerated the diagnostic 

information of both own- and other-race faces by caricaturing either their shape or texture 

properties. If the ORE is attributable to greater reliance on shape and reduced reliance on 

texture in the recognition of learned other-race faces, then participants should benefit 

more from texture than shape caricatures for learned own-race faces, but not for leaned 

other-race faces. In Experiment 2, taking the second approach, we selectively replaced 

the original shape or texture information of own- and other-race faces with the average 

shape or texture and examined whether eliminating idiosyncratic shape or texture 
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information impairs learning and recognition of own- versus other-race faces. 

Participants learned veridical faces and the contribution of shape and texture to 

subsequent recognition was examined by showing texture-only, shape-only or the 

veridical versions of these faces at test. If the ORE is, at least partially, driven by the 

inefficient use of texture cues in the recognition of other-race faces, eliminating the 

texture cues (shape-only faces) would impair people’s recognition of own-race faces to a 

greater extent than their recognition of other-race faces. 

  

5.2 Experiment 1 

 5.2.1 Methods 

5.2.1.1 Participants 

Forty Caucasian adults (34 males, M age = 19.80, SD = 2.09, age range = 18-25) 

from Brock University participated in this experiment. All participants included in the 

final analyses reported little contact with other-race identities; all reported having fewer 

than two East Asian friends, and 18 (45%) of them reported having zero East Asian 

friends. An additional two participants were excluded from the final analysis because 

they reported significant experience with individuals of East Asian ethnicity. All 

participants gave written informed consent and received either research credit or a small 

honorarium for their participation. This study received clearance from the Research 

Ethics Board at Brock University. 

5.2.1.2 Stimuli  

Full-color Caucasian and East Asian faces (36 per race) showing neutral 

expressions were selected from the 3D face database at Brock University. Using the 
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DI3DcaptureTM system (version 6.1.1; Dimensional Imaging, Glasgow, UK), each face 

had been captured by four 10-megapixel cameras and the four images of each face were 

then interpolated to create a three-dimensional object (.di3b; OBJ files).  

We applied a similar method used by Itz et al. (2014) to create the shape and 

texture caricatures (SC, TC). First, the shape and the texture of each face were transferred 

onto standardized meshes containing 878 vertices using the shape and material transfer 

plugins in DI3DviewTM (version 6.6.1; Dimensional Imaging, Glasgow, UK). During the 

shape transfer process, 152 reference points were placed on each face to allocate the 

facial shape to the correct positions on the standardized 3D mesh, which was then 

reshaped to the shape of the individual face. During the material transfer process, the 

texture information of each face was transferred to the shape mesh by allocating the four 

images from the cameras to the corresponding quadrant of the shape mesh. Using the 

Iterative Closest Point (ICP) alignment tool, all 3d faces (OBJ files) were then aligned 

according to a standardized mesh. Finally, using the morph plugin, shape or texture 

information of each face was caricatured relative to the gender- and race-matched 

average while holding the other dimension constant (e.g., shape morph with preserved 

texture), such that deviations of the veridical faces from the average were accentuated by 

50% (see Figure 5.1). These steps resulted in a total of 216 morphed wavefront OBJ files 

(a veridical image, a shape caricature, and a texture caricature for each of 72 faces). 

For each version (veridical, SC, TC) of each of the 72 faces we created six two-

dimensional bitmap images in Photoshop (CS5, 12.0) that differed only in viewing angle: 

10o downward and full frontal; 10o downward and 15o to the left; 10o downward and 15o 

to the right; 10o upward and full frontal; 10o upward and 15o to the left; 10o upward and 
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15o to the right. The six images for each identity were then categorized into two sets (set 

A and B); one set was presented in the learning phase and the other in the test phase (see 

Procedure section). Set A included 10o downward, 10o downward/15o to the left, and 10o 

upward/15o to the right. Set B included 10o upward, 10o downward/ 15o to the right, and 

10o upward/15o to the left (see Figure 5.2). All faces were standardized at 640 by 640 

pixels, and each face (22.58 by 22.58 cm) was displayed on a black background at an 

image resolution of 72 pixels/cm. Stimuli were presented with PsychoPy 1.8 (Peirce, 

2007; 2009) in the center of a 15-inch color monitor with a black background and a 

viewing distance of approximately 100 cm (viewing angle of 12.88° by 12.88°). 
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 Figure 5.1. Examples of shape caricatured and texture caricatured own- and other-race 
faces (Experiment 1); and own- and other-race text-only and shape-only faces 
(Experiment 2).   
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Figure 5.2. Examples of different viewing angles for the same veridical male face.  
Set A included 10o downward, 10o downward/15o to the left, and 10o upward/15o to the 
right. Set B included 10o upward, 10o downward/ 15o to the right, and 10o upward/15o to 
the left. 
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5.2.1.3 Procedure 

Each participant completed a one-hour session, comprising four practice trials 

(two per race) followed by 216 test trials (108 per race). Both practice and test trials 

contained a learning phase and a recognition phase. The race of the faces was blocked, 

such that half of the participants were presented with Caucasian faces first and the other 

half with East Asian faces first. 

In the learning phase, participants were instructed to learn 18 faces; six were 

veridicals (VR), six were shape caricatures (SC) and the other six were texture caricatures 

(TC). Each face was learned from three different viewing angles (either from Set A or Set 

B) and each set of viewing angle was presented twice. Thus, each learning trial 

comprised successive presentations of three images of a single face; each image was 

shown for 2 s, with an inter-stimulus interval (ISI) of 0.5 s. Each 3-image chain was 

shown twice. Both the order of face identities and the order of images for a given face 

identity were randomized for each participant, with the constraint that the six images of 

the same face identity were never shown in direct succession. To encourage participants 

to form a unified representation of each face based on the 3-image chain, the interval 

between the offset of the last image of one face and the onset of the first image of the 

next face was 1.2 s, rather than the within-face ISI of 0.5 s. 

After participants had completed the learning phase, they were instructed to 

perform an old/new face recognition task. In this task, participants were presented with 

the 18 learned faces intermixed with 18 novel faces. Each learned face was presented in 

the format in which it had been learned (VR, TC, SC) and each novel face was assigned 

to one of the three formats (six faces per format) so as to equate the number of learned vs. 
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novel faces in each of the three formats. Each face was presented from three viewing 

angles (but not in direct succession), with learned faces shown from different viewing 

angles than those used in the test phase (e.g., if Set A had been shown during learning, 

Set B was shown in the test phase). The order in which images were presented was 

randomized for each participant, ensuring no successive repetitions of the same face. 

Participants indicated whether each face had been learned (seen in the learning phase) or 

was novel, by pressing one of two keys (“Z” for learned; and “M” for novel faces) on a 

standard North American computer keyboard. Each recognition trial began with a 

fixation cross, presented in the center of the screen for 0.5 s, followed by a face image for 

1.5 s and a blank screen for 1.2 s. Participants were instructed to respond as quickly as 

possible without making mistakes; an error sound played if they failed to respond within 

1.5 s, indicating that they needed to respond faster. 

 5.2.2 Results 

Where appropriate, we performed Epsilon correction for heterogeneity of 

covariances throughout (Huynh & Feldt, 1976). In the case of the three post-hoc 

comparisons (paired samples t-tests), the significance level was Bonferroni-adjusted to α 

= .017 (Abdi, 2007). Because we were specifically interested in the differential 

contribution of shape and texture cues to encoding new faces (reflected in correct 

rejections) vs. recognizing learned faces (reflected in hits), d’ (a measure of overall 

accuracy) was not of interest. Instead, we analyzed hits and correct rejections separately. 

Accuracy. To examine whether shape and texture information are utilized 

differently for own- and other-race faces in face learning and recognition, we conducted a 

2 (face race: Caucasian vs. East Asian faces) × 2 (familiarity: learned vs. novel) × 3 
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(caricature type: VR vs. SC vs. TC) repeated-measures ANOVA with proportion correct 

as the dependent variable. Mauchly’s Tests of Sphericity indicated that the assumption of 

sphericity had not been violated, ps > .159. 

We found significant main effects of face race, F(1, 39) = 18.16, p < .001, 

ηp² = .32 and caricature type, F(2, 78) = 20.80, p < .001, ηp² = .35. Accuracy was higher 

for own- (M = 0.73, SE = 0.01) than for other-race faces (M = 0.67, SE = 0.01). Paired 

sample t-tests confirmed that accuracy was lower for veridical faces (M = 0.64, SE = 0.02) 

than for both shape (M = 0.72, SE = 0.01) and texture caricatures (M = 0.73, SE = 0.01), 

ps < .001, with no difference between the two caricature types, p = .720. In addition, we 

found a significant interaction between caricature type and familiarity, F(2, 78) = 3.81, p 

= .026, ηp
2 = .09. Separate one-way repeated measures ANOVAs were conducted for 

learned and novel faces collapsed across face race. Accuracy varied across caricature 

type for novel faces, F(2, 78) = 13.29, p < .001, ηp
2 = 0.25. Accuracy was greatest for SC 

(M = 0.77, SE = 0.02), followed by TC (M = 0.73, SE = 0.02) and then VR faces (M = 

0.67, SE = 0.03); all paired-sample t-tests were significant, ps < .04. Accuracy also varied 

across caricature type for learned faces, F(2, 78) = 9.13, p < .001, ηp
2 = 0.19. In contrast 

to novel faces, accuracy was higher for TC (M = 0.73, SE = 0.02) than for both SC (M = 

0.68, SE = 0.02) and VR faces (M = 0.62, SE = 0.03; ps < .021), with no significant 

difference between the SC and VR faces, p = .065. Notably, the three-way caricature type 

x familiarity x face race interaction was not significant, F(2, 78) = 0.50, p = .615, ηp
2 

= .01; thus, the interaction of caricature type and familiarity was independent of face race 

(see Figure 5.3). 
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Figure 5.3. Accuracy for novel and learned own-race faces (left) and other-race faces 
(right) in each face type condition.  
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RT. The 2 (face race) × 2 (familiarity) × 3 (caricature type) repeated measures 

ANOVA for mean reaction times for correct responses revealed significant main effects 

of familiarity, F(1, 70) = 5.88, p = .021, ηp² = .14, and caricature type, F(2, 70) = 3.43, p 

＝.043, ηp² = .09. Response times were faster for learned (M = 793ms, SE = 16) than for 

novel faces (M = 823ms, SE = 16; p = .021). Response times were slower for VR faces 

(M = 820ms, SE = 15) than both TC (M = 805ms, SE = 15) and SC faces (M = 798ms, SE 

= 16), ps < .044, with no significant difference between TC and SC faces, p = .414. This 

pattern confirms that the impact of shape and texture caricatures on accuracy cannot be 

attributed to speed/accuracy tradeoffs. 

5.2.3 Discussion 

In Experiment 1, we examined whether selectively caricaturing shape or texture 

cues to facial identity differentially impacts perceivers’ encoding of newly encountered 

own- vs. other-race faces and their recognition of learned faces from these two categories. 

Our study was guided by evidence that the impaired recognition of own-race faces is 

associated with a failure in the transition from shape to texture cues (Kaufmann et al., 

2013). We proposed that the ORE might be driven by a similar failure when recognizing 

other-race faces. We replicated Itz et al.’s (2014) finding that, relative to veridical faces, 

the correct rejection of novel faces benefits from both shape and texture caricatures. In 

addition, whereas Itz et al. (2014) only reported a numerically greater benefit from shape 

than texture cues that failed to reach conventional levels of statistical significance, in the 

present study we observed significantly greater benefits from shape than texture cues. 

This advantage for shape caricatures was absent in the recognition of learned faces; 

relative to veridical faces, accuracy for learned faces was higher only for texture 



	 	

	 124	

caricatures. In contrast to our hypothesis, however, we observed a comparable transition 

from shape to texture cues for own- and other-race faces, despite an overall other-race 

effect. 

Our results suggest that different mechanisms underlie individual differences in 

recognizing own-race faces on the one hand, and differences in the accuracy with which 

own- vs. other-race faces are recognized on the other hand; only the former is associated 

with a failure to rely on texture in lieu of shape when recognizing learned faces. Prior to 

drawing strong conclusions, we aimed to replicate this finding using a different approach 

in Experiment 2. 

5.3 Experiment 2 

Experiment 2 was designed to provide converging evidence that the ORE is not 

attributable to the different utilization of shape and texture cues during the learning of 

own- vs. other-race faces. Participants learned veridical faces during the study phase; in 

the test phase we selectively eliminated shape or texture information by replacing original 

shape with average shape (texture-only faces) or original texture with average texture 

(shape-only faces). To ensure faces were learned during the study phase, we asked 

participants to learn only six (rather than 18) faces per block. Furthermore, we provided 

semantic information for each face (each face was assigned an occupation) during 

learning and verified that participants had learned the occupation associated with each 

face prior to the test phase. We provided semantic labels to maximize learning of all faces. 

Of interest, such labeling has been reported to be instrumental for the fast development of 

categorical perception effects (a proxy for robust perceptual representations) for 

unfamiliar faces (Kikutani, Roberson, & Hanley, 2010). 
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Consistent with evidence that recognition of personally familiar faces is especially 

impaired by the removal of texture information (shape-only faces; Itz et al., 2017; Russell 

& Sinha, 2007; Kaufmann, Itz, & Schweinberger, 2016) and based on the results of 

Experiment 1, we hypothesized that recognition of learned faces would be especially 

impaired for shape-only faces. Based on the results of Experiment 1, we hypothesized 

that correct rejection of novel faces would be impaired for both shape- and texture-only 

faces with greater impairment for texture-only faces. Most importantly, we hypothesized 

that the pattern of effects would be comparable for own- and other-race faces.  

 5.3.1 Method 

5.3.1.1 Participants 

Twenty-four Caucasian adults (21 females, M age = 19.50, SD = 1.91, age range = 

17-24) from Brock University participated in this experiment. All participants included in 

the final analyses reported little contact with other-race identities (i.e., all reported having 

no more than two East Asian friends).  

5.3.1.2 Stimuli 

The 72 face identities used in Experiment 1 were also used here. In contrast to 

Experiment 1, new versions of each face were created by replacing the original shape or 

texture information with the average shape or texture information using the morph plugin 

in DI3DviewTM (version 6.6.1; Dimensional Imaging, Glasgow, UK). For each face, the 

shape-only version (i.e., SP-only faces) contained the shape information of the veridical 

face, while the texture information was fully replaced by the texture information of the 

gender- and race-matched average. Likewise, the texture-only version (i.e., TX-only 

faces) contained the texture information of the veridical face, while the shape information 
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was fully replaced by the shape information of the gender- and race-matched average (see 

Figure 5.1). 

5.3.1.3 Procedure 

This study received clearance from the Research Ethics Board at Brock 

University. Each participant completed a 1-hour session, comprising three blocks of trials 

for both own- and other-race faces. Six identities were introduced in each block; half of 

the participants completed the three own-race blocks first and half completed the three 

other-race blocks first. 

Each block of trials began with a learning phase, during which participants 

learned six veridical faces, each of which was associated with one of six possible 

occupations (e.g., lawyer, physician). Each identity was assigned a unique occupation 

(see Appendix A for our occupation list) with different occupations used across blocks; 

the assignment of occupation to each face was randomized for each participant. The 

occupation was presented for 2s followed by three images of the face; each image was 

shown for 2s with an ISI of 0.5s. As in Experiment 1, the three images differed in 

viewing angle (Set A or Set B), the order of images within identities and the order of 

identities were randomized for each participant, each occupation and 3-image chain was 

shown twice, ensuring that the same chain was not shown in succession, and the interval 

between identities was set as 1.2 s.  

To confirm that participants had learned each face, the learning phase was 

followed by a verification task in which participants were presented with a single image 

of each learned face along with a list of three of the six occupations from that block. 

Participants were asked to indicate which occupation matched the presented face. 
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Participants were given unlimited time to make responses in this task. If participants 

failed to correctly identify all six occupations, they were shown the entire set of learning 

stimuli again, with each three-image chain presented only once. All participants 

successfully completed this task within 10 attempts.  

After successfully completing the verification task, participants completed an 

old/new recognition task identical to that in Experiment 1. Each of the six learned faces 

was presented from three novel viewpoints in one of three formats: VR (i.e. veridical), 

SP-only, TX-only (two faces per format); the format assigned to each face varied 

randomly across participants. The six learned faces were intermixed with three images 

(Set A or Set B) of six novel faces (two faces per format). This sequence of learning, 

verification, and test phases were completed six times (three times for each face race) by 

each participant.  

 5.3.2 Results 

There was an own-race advantage during the learning phase. In the verification 

task, participants needed significantly more attempts for other- (M = 2.50, SE = 0.55) 

than own-race faces (M = 1.29, SE = 0.32), t = 2.32, p = .030, Cohen’s d = 0.55. 

For the test phase, a 2 (face race: Caucasian vs. East Asian faces) × 2 (familiarity: 

learned vs. novel) × 3 (face type: VR vs. SP-only vs. TX-only) repeated-measures 

ANOVA was conducted, with proportion correct as the dependent variable. There were 

significant main effects of face race, F(1, 23) = 5.22, p = .032, ηp² = .19, familiarity, F(1, 

23) = 31.23, p < .001, ηp² = .58, and face type, F(2, 23) = 99.82, p < .001, ηp² = .81. As in 

the verification task, participants were more accurate for own- (M = 0.72, SE = 0.01) than 

other-race faces (M = 0.68, SE = 0.02; p = .032). The face race x familiarity interaction 
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was not significant, F(2, 46) = 0.44, p = .516, ηp
2 = .02, suggesting similar own-race 

benefits both for encoding novel faces and recognizing learned faces. The main effect of 

familiarity reflects that participants were more accurate when detecting that a face was 

novel than when recognizing a learned face, as reflected in their showing a higher 

proportion of correct rejections (M = 0.81, SE = 0.03) compared to hits (M = 0.59, SE = 

0.02; p < .001). Paired samples t-tests (with alpha level adjusted as in Experiment 1) 

investigating the effect of face type confirmed that accuracy was greatest for VR faces (M 

= 0.85, SE = 0.02), followed by TX-only faces (M = 0.70, SE = 0.02) and then SP-only 

faces (M = 0.55, SE =0.01); all pairwise comparisons were significant, ps < .001.  

Notably, we found a significant interaction between familiarity and face type, F(2, 

46) = 66.68, p < .001, ηp² = .74. A one-way ANOVA showed a significant effect of face 

type for novel faces, F(2, 46) = 18.23, p < .001, ηp
2 = 0.44. Accuracy was comparable for 

VR (M = 0.84, SE = 0.03) and SP-only faces (M = 0.90, SE = 0.03), p = .078, and higher 

for both of these than for TX-only faces (M = 0.69, SE = 0.04), ps < .001. A one-way 

ANOVA also showed a significant effect of face type for learned faces, F(2, 48) = 108.93, 

p < .001, ηp
2 = 0.83. In contrast to the pattern observed for novel faces, accuracy was 

greatest for VR faces (M = 0.86, SE = 0.03) followed by TX-only faces (M = 0.70, SE = 

0.03) and then SP-only faces (M = 0.21, SE = 0.04). All pairwise comparisons were 

significant, ps < .001. Critically, the three-way face type by familiarity by face race 

interaction was not significant, F(2, 46) = 0.62, p = .545, ηp
2 = .03, suggesting that the 

interaction of face type and familiarity was independent of face race (see Figure 5.4).  
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Figure 5.4. Accuracy for novel and learned own-race faces (left) and other-race 
faces (right) in each face type condition. 
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5.3.3 Discussion 

Experiment 2 replicated the pattern of results from Experiment 1, using a different 

approach: Manipulating shape and texture cues had a comparable effect on encoding and 

recognition of own- and other-race faces. Relative to veridical faces, encoding of novel 

faces (correct rejections) was impaired by selectively eliminating shape information 

(texture-only faces). This is in line with the results from Experiment 1, in which 

caricaturing shape provided a larger benefit than caricaturing texture when novel faces 

were presented in the test phase. In turn, recognition of learned faces (hits) was impaired 

by selectively decreasing both texture (shape-only faces) and shape (texture-only faces) 

information, however with much larger impairments for shape-only faces which appeared 

to be extremely difficult to recognize in the absence of idiosyncratic texture information 

(Figure. 5.4). Again, this result is well in line with the findings from Experiment 1 in 

which recognition of learned faces only benefitted from texture caricatures. Importantly 

these patterns were observed for both own- and other-race faces. It is important to note 

that the comparable use of shape vs. texture cues for own- and other-race faces was 

observed in the context of an overall own-race advantage. In Experiment 2, participants 

learned own-race faces in fewer attempts than other-race faces and in both experiments 

they were more accurate for own- than other-race faces in the test phase. These 

experiments provide converging evidence that the ORE is not attributable to different 

utilization of shape and texture cues during the learning of own- vs. other-race faces. 

5.4 General Discussion 

The aim of this study was to investigate whether impairments in the encoding and 

recognition of other-race faces relative to own-race faces are attributable to differential 
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utilization of shape and texture cues. Taking two approaches, and consistent with 

previous studies (Itz et al., 2014; Kaufmann et al., 2013), we showed that whereas shape 

cues are critical for the encoding of novel faces, texture cues become more important for 

the recognition of learned faces. Notably, despite an overall ORE, the shift from shape to 

texture dominance during face learning was comparable for own- and other-race faces, 

suggesting the different utilization of shape and texture cues in face learning does not 

contribute to the ORE. This conclusion is consistent with suggestions that early 

perceptual mechanisms of face processing are qualitatively similar for own- and other-

race faces, and just work less efficiently for other-race faces (e.g., Wiese, Stahl, & 

Schweinberger, 2009). Importantly, in our study, faces were learned from three different 

viewing angles and then presented at three novel viewing angles at test; therefore, it is 

unlikely that differences in performance associated with changes in shape and texture 

cues are based on image recognition. 

Encoding Novel Faces 

The correct rejection of novel own- and other-race faces benefitted from shape 

caricatures (Experiment 1) and was impaired by the reduction of shape cues (Experiment 

2). Like Itz et al. (2014), we also found an encoding advantage for faces with exaggerated 

texture cues in Experiment 1. However, the benefit of caricaturing texture was less than 

that of caricaturing shape, and in Experiment 2 decreasing texture did not impair the 

encoding of novel faces. Spatial caricaturing exaggerates the spatial relations between an 

individual and an average face, thus enhancing the perceived distinctiveness of faces as 

well as the analysis of second-order configuration (Benson & Perrett, 1991; Perkins, 1975; 

Stevenage, 1995; Valentine, 1991). The observed encoding advantages for shape 
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caricatures for own- and other-race faces are in line with recent studies using 

photorealistic faces to examine own-race face recognition (Kaufmann et al., 2013; Itz et 

al., 2014) as well as early studies using line drawings to examine other-race face 

recognition (Byatt & Rhodes, 1998; 2004). Using photorealistic faces, our study 

demonstrates that both shape and texture cues are important in the encoding of novel 

own- and other-race faces, with shape cues playing the more critical role for both face 

categories.  

Recognizing learned faces  

Consistent with previous studies using both personally familiar and newly learned 

faces (Itz et al., 2014; Kaufmann, Itz, & Schweinberger, 2016; Russell et al., 2007), we 

found that recognition of learned faces benefits from exaggerated texture cues 

(Experiment 1) and in turn is dramatically impaired by the elimination of texture cues 

(Experiment 2). Most importantly, despite being generally less accurate in the recognition 

of learned other- than own-race faces, perceivers relied less on shape and more on texture 

for learned faces from both face categories. These results suggest that once a face is 

learned, regardless of the race, idiosyncratic shape cues play little or no role in 

recognition; rather, texture cues are critical.  

Successful recognition of these familiar faces is thought to depend on perceivers’ 

sensitivity to texture cues because shape cues vary widely across different images of the 

same identity (e.g., as head orientation and facial expression change), and thus are less 

reliable cues to identity (Burton, 2013). This is directly supported by the evidence that 

familiar own-race face recognition is intact despite spatial distortions (Hole, George, 

Eaves, & Rasek, 2002) and despite the removal of idiosyncratic shape properties. In that 
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sense, the present findings align well with other results in challenging the idea that 

familiar face recognition is based on precise spatial information in faces (Burton et al., 

2015). Reliance on texture cues to recognize familiar own- and other-race faces is in line 

with recent evidence that highly familiar other-race faces are recognized despite 

variability in appearance across images (Zhou & Mondloch, 2016). The importance of 

using texture cues in the recognition of both familiar own- and other-race faces was 

hinted at by Russel and Sinha (2007). They found an accurate recognition of personally 

familiar faces when only texture cues were available (i.e., after the removal of original 

shape cues), a pattern seen for both own- and other-race faces (Russel & Sinha, 2007). 

Our study provides direct evidence that in the process of becoming familiar with a newly 

encountered face, idiosyncratic texture cues are used in a comparable way for own- and 

other-race faces. 

Mechanisms Underlying the Other-Race Effect 

Our finding of a comparable transition from shape to texture cues in the learning 

of own- and other-race faces raises an important question: what drives the ORE? Both 

perceptual expertise and social motivation likely contribute to the ORE and our focus is 

on the role of perceptual expertise; we do not address the relative contributions of these 

two factors (for an excellent recent study of this issue, see Wan, Crookes, Reynolds, Irons, 

& McKone, 2015). One possibility is that despite relying on shape and texture 

information in similar ways for own- and other-race faces during encoding and 

recognition, adults’ quantitative sensitivity to these cues is reduced for other-race faces. 

Indeed, considerable research examining the ORE has been taken to support this 

hypothesis that the ORE is partially driven by reduced sensitivity to identity information 
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in other-race faces. For example, in the scrambled/blurred task, after studying a set of 

faces, when asked to make old/new judgments about scrambled (configural information 

eliminated) and blurred (featural information reduced) images, accuracy is higher for 

own- than for other-race faces, suggesting reduced sensitivity to the facial features and 

their second-order relations in other- than own-race faces (e.g., Hayward, Rhodes, & 

Schwaninger, 2008; Mondloch et al., 2010; Rhodes et al., 2009). Reduced sensitivity to 

shape cues in other-race faces is evident even when memory demands are minimized by 

having participants make same/different judgements about pairs of faces that differ in the 

shape of features or the spacing among them (Mondloch et al., 2010). This insensitivity 

to shape-related properties likely underlies less efficient learning of other-race faces than 

own-race faces in Experiment 2 of the current study (i.e., our finding that participants 

needed more attempts to reach learning criterion for other-race faces than own-race faces 

in the occupation verification task). 

The reduced sensitivity to facial cues is also consistent with recent evidence that 

the representation of other-race faces in multi-dimensional face space is less well refined 

than that of own-race faces (Zhou, Short, Chan, & Mondloch, 2016). According to 

Valentine’s influential multi-dimensional face space model (MDFS), faces are 

represented as points in a multidimensional face space. The location of each face is 

determined by its values on the dimensions along which faces can vary (including 

differences in shape and texture). The dimensions of face space are refined through 

experience to maximally differentiate faces from categories with which the perceiver has 

maximal experience—typically upright, own-race faces (Valentine, 1991). Limited 

perceptual experience with other-race faces makes them relatively densely clustered in 
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the periphery of face space, leading to impaired discrimination and recognition—a 

hypothesis that is supported by recent evidence that adults are more sensitive to 

deviations from normality in own- than other-race faces (Zhou, Short, Chan, & Mondloch, 

2016). Taken in the context of the current study, we conclude that the ORE is driven by 

reduced sensitivity to both shape and texture cues, but not differential reliance on these 

cues when encoding novel faces or when recognizing familiar faces.  

Limitations and Future Directions 

Of necessity, we used only a single level (50%) of caricaturing shape and texture 

cues. Future research should directly examine our hypothesis that differences in 

sensitivity to shape and texture cues drive the ORE by systematically varying caricature 

levels (e.g., 15%, 30%, 45%, 60%). In conjunction with our current findings, higher 

threshold sensitivity to shape and texture changes in other-race compared to own-race 

faces would suggest that the ORE reflects quantitative, rather than qualitative, differences 

in perception.  

In addition, several lines of evidence have indicated that the use of shape and 

texture cues modulates brain responses associated with own-race face recognition. 

Understanding commonalities and differences underlying own- and other-race face 

learning would be enhanced by including measures of underlying neural mechanisms. Itz 

and colleagues found that benefits from texture cues for learned faces are associated with 

an enhanced posterior N250, a component that has been related to the activation of stored 

representations of faces (Itz et al., 2014). In addition, the preceding occipito-temporal 

P200 component appears to be selectively sensitive to idiosyncratic shape information 

relative to a prototypical average face (Kloth, Rhodes, & Schweinberger, 2017; Schulz, 
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Kaufmann, Walther, & Schweinberger, 2012). Using fMRI, Andrews et al. (2016) found 

that face-selective regions, such as the FFA, showed an equal sensitivity to shape and 

texture properties in the recognition of familiar own-race faces. However, we are 

unaware of psychophysiological and neuroimaging studies investigating the role of shape 

and texture information for the ORE. It therefore remains for future studies to examine 

not only the time-course and anatomical basis of processing own- vs. other-race faces, 

but also how this is associated with the use of shape and texture properties.   

Conclusion 

In conclusion, taking different approaches, we found that participants showed 

comparable transition from shape to texture dominance in the learning of own- and other-

race faces. The current study extends our prior understanding of the mechanism 

underlying the ORE. We reported here for the first time that although other-race faces are 

learned less efficiently relative to own-race faces, the shift from shape to texture cues is 

comparable, suggesting that the ORE cannot be attributed to the different utilization of 

shape and texture cues during face learning. 
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CHAPTER 6 

Study 5: Encoding Differences Affect the Number and Precision of Own- vs. Other-

Race Faces Stored in Visual Working Memory 

 6.1 Introduction 

Faces convey abundant visual information including static identity characteristics 

(e.g., age, sex, ethnicity, and attractiveness), as well as dynamic cues (e.g., facial 

expressions, eye gaze). Despite our exceptional ability to rapidly process complex visual 

information from faces and to use this information effectively during social interactions, 

humans’ expertise in face processing is limited to those face categories with which we 

have abundant perceptual experience (e.g., own-race faces). Across a broad range of 

research paradigms investigating face recognition, there is a robust other-race effect 

(ORE), defined here as inferior performance when identifying faces of a different race 

than faces of the same race as the perceiver (see Bothwell, Brigham, & Malpass, 1989; 

Meissner & Brigham, 2001, for reviews). The ORE is one of the primary causes for false 

conviction based on erroneous eyewitness testimony (Behrman & Davey, 2001; 

Hugenberg, Young, Bernstein, & Sacco, 2010; Scheck, Neufeld, & Dwyer, 2003; Sporer, 

2001). Understanding the mechanisms of the ORE, therefore, has profound implications 

both for models of face recognition and for applied settings. 

In numerous studies examining face recognition, participants have been presented 

with own- and other-race faces during a study phase and then asked to recognize those 

faces when they are intermixed with novel identities (the old/new face recognition task). 

A ubiquitous finding is that participants consistently make more false alarms (incorrectly 

identifying an unseen face as familiar) and fewer hits (correctly identifying a previously 
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seen face as familiar) for other-race compared to own-race faces, reflecting impairments 

in the encoding, storage and/or retrieval of other-race face representations from memory 

(Meissner & Brigham, 2001; Young, Hugenberg, Bernstein, & Sacco, 2012). A similar 

own-race advantage is found when learning is more extensive (e.g., Cambridge Face 

Memory Test, in which faces were learned from multiple angles; McKone et al., 2012); 

and when memory demands are minimized by asking participants to make same/different 

judgments for pairs of faces that differ only in feature shape or spacing (e.g., Hayward, 

Rhodes, & Schwaninger, 2008; Mondloch et al., 2010). 

While the ORE is known to be robust, traditional measures only provide a single 

binary measure of perceivers’ memory performance; each response is scored as being 

either correct or incorrect, failing to capture potential variability in the quality of the 

representation. The assumption that the representation of any given face stored in 

memory is a perfect representation is theoretically untenable and has recently been 

challenged by studies examining the precision with which basic visual features (colors, 

orientations) are stored in visual working memory (VWM; Bays, Catalao, & Husain, 

2009; Wilken & Ma, 2004; Zhang & Luck, 2008;) as well as long-term memory (LTM; 

Brady, Konkle, Gill, Oliva, & Alvarez, 2013; also see Luck & Vogel, 2013 for a review).  

A recent and more refined approach, the continuous response paradigm, provides 

a more sensitive index of the structure of memory (and perceptual) representations (Bays, 

Catalao, & Husain, 2009, Bays & Husain, 2008; Brady, Konkle, & Alvarez, 2011; Heyes, 

Zokaei, & Husain, 2016; Sarigiannidis, Crickmore, & Astle, 2016). In the continuous 

response paradigm, participants are asked to recall and report the remembered target, 

which is presented in an array of stimuli that vary along a continuous feature dimension 
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(e.g. color, orientation). Response error is evaluated by calculating the angular deviation 

between the target item and the item reported by the participant. Statistical mixture 

modeling allows one to measure three sources of overall error (Bays, Catalao, & Husain, 

2009; Bays & Husain, 2008; Brady, Konkle, Gill, Oliva, & Alvarez, 2013): a) failure in 

encoding or retrieving the target item, leading to a random response (i.e., guessing); b) 

variability/ noisiness of the stored representation, leading to decreased precision when the 

target is recalled; and c) representation of the target item being interrupted by a non-

target item, which leads to a swap error (i.e., recalling the non-target instead of the target). 

This methodological combination of continuous recall and mixture modeling could 

therefore provide a more refined examination of the nature of own- and other-race face 

representations, and the types of errors that lead to recognition impairments for other-race 

faces.  

Although the continuous response paradigm has been widely used in studies 

examining VWM for basic features (e.g., hue, line orientation), its use with more 

complex stimuli is limited. Lorenc et al. (2014) investigated the role of perceptual 

experience in encoding and storing face representation in VWM by contrasting VWM for 

upright vs. inverted faces. They reported a significant loss of precision for inverted, 

relative to upright, faces with no difference in the guess rate. Given that the fidelity of 

representations in LTM is constrained by those in VWM (Brady, Konkle, Gill, Oliva, & 

Alvarez, 2013), this finding suggests that the difference in recognition performance 

between upright and inverted faces could be attributed to the effect of visual experience 

on the fidelity of face representations encoded in VWM. What effect visual experience 

has on the fidelity of own- compared to other-race faces remains unknown.  
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Here we provide the first examination of the extent to which the ORE is 

attributable to a failure to encode and retrieve other-race faces from memory vs. a loss of 

precision in the representations of other-race faces. To examine this question we used the 

continuous response paradigm in which participants were asked to maintain own- or 

other-race faces in VWM, and to report a target face on a unique circular face space that 

smoothly varied along the dimension of identity (see Figure 6.1). The angular deviation 

between the target face and the face selected by the participant provides a more sensitive 

measure of face memory than can be obtained through traditional face recognition 

paradigms as it captures continuous variability in face representations.  

In two experiments we examined the nature of the representations of own- and 

other-race faces that are stored in VWM. In Experiment 1 we presented two faces on each 

trial, one of which was then cued for recall. By applying mixture modeling to the raw 

error, we differentiated three potential sources of error that contribute to the ORE: 

random guesses, swap errors and lack of the precision for the remembered face. In 

Experiment 2 we presented only one face but varied presentation time. Applying mixture 

modeling here allowed us to examine whether reducing presentation time especially 

impaired VWM for other-race faces. 

6.2 Experiment 1: Storing two faces with ample encoding time 

 6.2.1 Methods and materials 

6.2.1.1 Participants 

Fifteen Caucasian adults (1 male, ages 19-30 years, SE =0.68) from Brock 

University participated in the study and were included in the final analysis, a sample size 

comparable to that in other studies using the continuous response paradigm. 
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Figure 6.1. A schematic of the continuous response task used in the first experiment.  
On each trial, participants were presented with two study faces for 1500ms, each of 
which was paired with a cue color. Following the 900ms delay, participants were 
presented with eight faces made of up morphs from four identities. Participants were 
instructed to report as accurately as possible the identity of the cued (e.g., red) target face. 
When participants moved the mouse along the face wheel, the face in the center changed 
simultaneously to indicate the face that they were reporting, which changed continuously 
between the displayed anchor faces. Note. Permissions preclude showing the faces used 
in the actual study; faces in the figure are for demonstration only. 
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 All participants were from Brock University, reported minimal contact with 

other-race identities and verbally confirmed normal or corrected-to-normal vision. An 

additional seven participants were excluded from the final analysis because they reported 

extensive contact with Asian identities (n=1) or had extremely poor performance (n=6, 

i.e., guess rate exceeded 2.5 sd of the mean). All participants provided written informed 

consent and received either research credit or a small honorarium for their participation. 

This study received clearance from the Research Ethics Board at Brock University.  

6.2.1.2 Stimuli     

Four Caucasian and four East Asian faces were acquired from the Let’s Face It 

database at Brock University. All faces were female, physically similar, displayed in full-

front view and unfamiliar to the participants. Each identity was paired with each of the 

other same-race identities to create six pairings. We then used a linear morphing 

procedure to create 19 morphed faces for each pairing by blending the two faces in 5% 

steps (e.g., 95/5, 90/10, … , 5/95). Nineteen morphs across six face pairs for each of the 

two race categories resulted in a total of 236 faces (228 morphs; eight originals) that were 

used in the experiment.  

A unique circular face space comprised of Caucasian or East Asian faces, analogous 

to a colour wheel, was created on each trial by randomly placing the four original (anchor) 

faces with equal distances between them. Based on their relative location, morphed faces 

were then placed among the anchor faces, such that identity varied continuously around 

the wheel. Thus, in the 360° circular face space, 80 faces (four anchors; 76 morphs) were 

evenly distributed, making the difference between any two neighboring faces equivalent 

to 4.5°. All faces were standardized at 395 by 510 pixels and were presented on a 19-inch 
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computer monitor with the viewing distance approximately 60 cm. Stimuli were 

presented and participants’ response were collected using PsychoPy1.8 (Peirce, 2007; 

2009) 

6.2.1.3 Procedure    

Each participant completed a 1-hour session, comprising eight practice trials 

(four/race) followed by 240 test trials. The race of face was blocked such that half of the 

participants were presented with Caucasian faces first and the other half with East Asian 

faces first.  

Each trial began with a sequential presentation of two faces (e.g., 90%A-10%B; 

55%C/45%D) that were chosen randomly from the face space (could be anchor or 

morphed faces), followed by a delay period of 900ms, and then a face wheel (see Figure 

6.1). The two faces were cued by different colors (red or green) and were presented 

sequentially for 1500ms each with a 150ms interstimulus interval. A 1500ms presentation 

time ensures full encoding of each face in VWM (Lorenc et al., 2014). One of the two 

faces was randomly assigned as the target face and the other as the non-target face. 

Participants were unaware of which face was the target and were instructed to memorize 

both of them. After the 900ms delay, a red or green rectangle appeared in the center of 

the screen indicating which face was the target. Eight randomly chosen and equidistant 

faces from the face wheel were presented around the central target item at equal intervals. 

Participants were instructed to locate the target face by using a computer mouse to select 

a point on the face wheel. While they moved the mouse along the face wheel, the face in 

the center changed simultaneously to indicate the face they were selecting. Like the 

composition of the face wheel, the color (red/green) and the position (first/second) of the 
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target were randomized across trials. Participants proceeded at their own pace and were 

asked to be as accurate as possible in their decision.  

6.2.1.4 Data analysis 

Overall response error. Response error was calculated for each trial as the angular 

deviation (in degrees; -180° to 180°) between the correct orientation of the target face and 

the orientation of the face reported by the participant. To obtain a generic measure of the 

overall precision of response, we calculated the reciprocals of the standard deviation 

(1/SD) of response error across trials separately for own- and other-race faces. 

Model fitting for own- and other-race faces. To further identify the sources of increased 

response error for other-race faces, we fit a three-component model to each participant 

dataset for own- and other-race faces. The three-component model is described by the 

following equation (Bays et al., 2009; 2011): 

𝑝 𝜃 = 𝛼𝜙&	 𝜃 − 𝜃 + 	𝛽 +
,
	 𝜙&	 𝜃 − 𝜑. + 𝛾 +

01
,
.   

where 𝛼, 𝛽 and 𝛾 represent the probability of reporting the correct target face, the 

probability of mistakenly reporting the non-target faces, and the probability of responding 

randomly, respectively. Here, 𝛼 + 𝛽 + 𝛾 = 1. In addition, 𝜃 represents the correct 

orientation of the target face and 𝜃 represents the orientation of the face reported by the 

participant. 𝜙&	is the von Mises (circular normal) distribution with the mean zero and the 

concentration parameter 𝜅. Greater 𝜅 indicates a more concentrated von Mises 

distribution. 𝑚 is the number of non-target faces, in this case, 𝑚 = 1, and 𝜑+, 𝜑0, …𝜑,  

are the orientations of the m non-target faces. Maximum likelihood estimates of the 

mixture parameters 𝛼, 𝛽 and 𝛾 for each participant and face race were obtained using an 
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expectation-maximization algorithm (Myung, 2003; Suchow, Brady, Fougnie, & Alvarez, 

2013). 

According to these models, the overall response distribution comprises a mixture 

of three components (Bays et al., 2009): 1) pure guesses, defined as responses that were 

distributed uniformly across the face space, representing the probability that perceivers 

guessed randomly because of failures in the encoding and/or retrieval of presented faces; 

2) target (correct) responses, which were from a von Mises distribution (circular-normal 

distribution) centered on the target face, indicating the probability that perceivers 

correctly remembered the target face; and 3) non-target responses, drawn from the same 

von Mises distribution but centered on the non-target face (i.e., the distractor face), 

indicating the probability of misremembering the distractor as the target face (swap error). 

The proportion of correct responses is transformed into an estimate of the number of 

successfully maintained faces by multiplying the probability of correct responses by the 

set size (n=2) for both own- and other-race faces. The fidelity of own- and other-race 

faces stored in visual working memory was estimated using the standard deviation of the 

von Mises distribution obtained from the mixture model for own- and other-race faces. 

SD is inversely related to precision, where a larger SD represents a more dispersed 

distribution of the responses, indicating a less precise face representation stored in VWM.  

 6.2.2 Results 

6.2.2.1 Overall response error 

The distribution of errors for own- and other-race faces is shown in Figure 6.2. A 

paired-sample t-test revealed a significant main effect of face race (t14 = 3.69, p = .002, 



	 	

	 150	

Cohen’s d = 0.95); overall, participants had smaller response errors for own-race faces 

(MSD = 56.61o) than for other-race faces (MSD = 69.66o).  

6.2.2.2 Mixture modeling of response error 

The result of the model fit is plotted in Figure 6.2. Paired sample t-tests revealed a 

lower correct response rate for other-race faces (M = .58) than own-race faces (M = .78, 

t14 = 3.57, p = .003, Cohen’s d = 0.95). The significant difference in the proportion of 

correct responses was attributable to a significant difference in guess rate (M = .24 vs .03 

for other- vs. own-race faces; t14 = 3.36, p = .005, Cohen’s d = 0.88), with no difference 

in swap errors (M = .18 vs .19 for other- vs. own-race faces; t14 = 0.17, p = .865, Cohen’s 

d = 0.04). The change in guess rate reflects a diminished number of stored faces for 

other-race (k = 1.16) relative to own-race (k = 1.56) faces. Notably, precision did not 

differ between own- and other-race faces, t14 = 0.74, p = .472, Cohen’s d = 0.19, as 

indicated by comparable standard deviations of von Mises distributions for own-race 

faces (35.26o) and other-race faces (32.34o).  

 6.2.3 Discussion 

While holding two potential target faces in VWM and given ample encoding time, 

participants made significantly larger errors in their recall of other- compared to own-race 

faces, as indicated by the greater angular deviations (SD) between the target face and the   
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Figure 6.2. The distribution of response errors for own (left) - and other-race (right) faces. 
The histogram displays the proportion of binned responses relative to the target face. 
Black lines display the three-component mixture model, fit to the raw error. With two 
potential target faces on each trial, the mixture model combines a uniform guessing 
distribution with a circular-normal distribution of correct and non-target (swap) responses. 
The pink and blue solid lines indicate the width of the von Mises (circular normal) 
distribution at 1 SD and are flanked by corresponding identities (±1 SD of error). Pt 
indicates the proportion of correctly reported targets, and SD indicates 1 SD of the 
circular error for these responses. Note. Permissions preclude showing the faces used in 
the actual study; faces in the figure are for demonstration only.  
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faces that was reported by the participant. Results of mixture modeling further informed 

us that the increase in overall errors for other-race faces was attributable to an increased 

guess rate, but not in reduced precision or an increase in swap errors. Therefore, 

differences in performance between own- and other-race faces can be attributed to 

impairments in the encoding, consolidation and/or retrieval of other-race face 

representations, rather than a change in either the precision with which remembered faces 

are stored or an increase in identity confusion.   

 6.3 Experiment 2: Storing one face with limited encoding time 

In Experiment 1, participants were given ample time (1500ms) to encode each of 

two faces; one face was then cued for recall. This protocol is maximally sensitive to 

storage limitations, defined here as the maximal fidelity with which own- and other-race 

faces are stored (Bays, Gorgoraptis, Wee, Marshall, & Husain, 2011). Limitations in 

encoding are best captured by very brief presentations (Bays et al., 2011). To examine 

whether any observed differences in Experiment 1 were attributable to differences in 

encoding as compared to storage limitations, in Experiment 2 we examined whether 

reducing presentation time (from 1500 to 200ms) especially impairs the probability 

and/or precision of correct responses for other-race faces. To isolate limitations in 

encoding we further reduced the set size to one in Experiment 2, thus working well below 

the capacity of VWM for own- and other-race faces observed in Experiment 1.  

 6.3.1 Methods and materials 

6.3.1.1 Participants 

20 adults (4 males, ages 18-25 years, SE = 0.45) from Brock University 

participated in the study. 
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Figure 6.3. The distribution of response error for own-race (top) and other-race (bottom) 
faces when the faces were presented for 200ms (left) and 1500ms (right).  
The histograms display the proportion of binned responses relative to the target face. 
Black lines display the mixture model, fit to the raw response error. With only a single 
target face on each trial, the mixture model combines a uniform guessing distribution 
with a circular-normal distribution of correct responses. The pink and blue solid lines 
indicate the width of the von Mises (circular normal) distribution at 1 SD and are flanked 
by corresponding identities (±1 SD of error). Pt indicates the proportion of correctly 
reported targets, and SD indicates 1 SD of the circular error for these responses. Note. 
Permissions preclude showing the faces used in the actual study; faces in the figure are 
for demonstration only. 
 

  



	 	

	 154	

  6.3.1.2 Stimuli and procedure 

The stimuli and procedure were identical to Experiment 1 with two exceptions: (1) 

there were 420 test trials and on each test trial only one face was presented; (2) the 

presentation time of target face varied across trials. On half of the trials faces were 

presented for 200ms and on the other half for 1500ms (as in Experiment 1).  

 

6.3.2 Results 

6.3.2.1 Overall response error 

The distribution of errors from Experiment 2 is displayed in Figure 6.3.  A 2 

(Face race: own- vs. other-race faces) X 2 (Presentation time: 200ms vs. 1500ms) 

repeated measures ANOVA revealed significant main effects of face race (F1,19 = 7.68, p 

= .012, ηp² = .29) and presentation time (F1,19 = 40.26, p < .001, ηp² = .68). Participants 

were more precise for own-race faces (MSD = 59.57o) than other-race faces (MSD = 65.89o) 

and when faces were presented for longer time (MSD = 58.69o) than when faces were 

presented for shorter time (MSD = 66.77o). The face race x presentation time interaction 

did not reach significance (F1,19 = 1.85, p = .190, ηp² = .09). These results demonstrate 

that independent of the number of faces or length of encoding time, participants 

demonstrated greater error in their recall of other- compared to own-race faces, consistent 

with the ORE. 

6.3.2.2 Mixture modeling of response error 

Given the absence of a non-target face in Experiment 2, a two-component mixture 

model, proposed by Zhang and Luck (2008) was used. The components in this model are 
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comparable to those in the three-component model and described by the following 

equation (here	𝛼 + 𝛾 = 1): 

𝑝 𝜃 = 𝛼𝜙&	 𝜃 − 𝜃 + 𝛾
1
2𝜋 

Because the guess rate is inversely proportional to correct responses, so here we only 

analyzed the proportion of correct responses. A 2 (Face race: own- vs. other-race faces) X 

2 (Presentation time: short vs. long) repeated measures ANOVA revealed significant 

main effects of face race (F1,19 = 7.87, p = .011, ηp² = .29) and presentation time (F1,19 = 

17.90, p < .001, ηp² = .49). As shown in Figure 6.3, participants made significantly fewer 

correct responses for other-race faces (M = .66) than for own-race faces (M = .74) and for 

the shorter presentation time (M = .66) than for the longer presentation time (M = .74). 

Consequently, the number of recalled faces was lower for other- (k = .66) than own-race 

(k = .74) faces and for shorter presentation time (k = .66) than for longer presentation 

time (k = .74). Notably, the face race x presentation time interaction did not approach 

significance (F1,19 = 1.27, p = .274, ηp² = .06), indicating that reducing presentation time 

did not especially impair the probability of an other-race face being recalled. 

The Precision of VWM (1/SD of the von Mises distribution) was greater for the 

longer presentation time (MSD = 34.17o) than the shorter presentation time (MSD = 38.53o), 

as revealed by the significant main effect of presentation time (F1,19 = 7.51, p = .013, 

ηp² = .28). The main effect of face race was not significant (F1,19 = .67, p = .424, ηp² =.03), 

but the interaction between face race and presentation time approached significance (F1,19 

= 3.31, p =.085, ηp² =.15). Based on a priori hypotheses we conducted paired-sample t 

tests; these confirmed that reducing presentation time significantly reduced precision for 

other-race faces (MSD = 40.97o vs. 33.59o for 200 vs. 1500ms; t19 = 2.82, p = .011, 
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Cohen’s d = 0.63). In contrast, precision was comparable for shorter (MSD = 36.09o) and 

longer presentation times (MSD = 34.74o) for own-race faces (t14 = 0.70, p = .494, 

Cohen’s d = 0.16).  

 6.3.3 Discussion 

Overall, participants’ precision of recall was impaired when encoding time was 

reduced to 200ms and when encoding other- compared to own-race faces. The mixture 

modeling revealed that the increase in response error caused by a reduction in encoding 

time was driven by fewer correct responses for both own- and other-race faces and a loss 

of precision that was specific to other-race faces. Thus under conditions that are 

maximally sensitive to encoding limitations, the probability of a correct response was 

reduced for both own- and other-race faces and the fidelity of other-race, but not own-

race, face representations was impaired. The implications of these novel findings for both 

mechanisms underlying the ORE and models of face representation are discussed below. 

6.4 General discussion 

In summary, using a novel continuous response paradigm, we provided the first 

evidence that the ORE is attributable to increased error in the representation of other-race 

faces in VWM. We then used mixture modeling to examine how three sources of error 

contribute to the ORE: a failure to encode and retrieve other-race face representations 

(guess rate), reduced precision for other-race faces, and/or increased interruption from 

non-target faces (identity confusion). Based on this analysis, we revealed two novel 

findings. First, following ample exposure to own- and other-race faces, the ORE was 

evident in an increased guess rate, but not in reduced precision or an increase in identity 

confusion. Second, limiting encoding time impaired precision for other- but not own-race 
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faces. Collectively, these results suggest that the ORE is caused by a failure to rapidly 

consolidate other-race faces into coherent and stable representations in VWM.  

Our findings build on two previous studies showing that perceptual experience 

affects how faces are stored in VWM (Humphreys, Hodsoll, & Campbell., 2005; Lorenc 

et al., 2014). To the best of our knowledge, the only previous study to explicitly contrast 

VWM for own- and other-race faces used the change blindness paradigm (Humphreys et 

al., 2005). These authors reported faster change detection for own-race than other-race 

faces, but this paradigm precludes examining the separate contributions of a failure to 

encode and retrieve other-race faces versus reduced fidelity in their representation. 

Lorenc et al. (2014) used the continuous response paradigm to compare VWM for upright 

and inverted faces (two face categories with which adults have differential experience). 

Precision, but not capacity, of VWM was greater for upright than inverted faces. Here, 

for the first time, we applied the continuous response paradigm to examine the ORE. Like 

Lorenc et al., we found that perceptual experience influences the precision of VWM for 

faces; reducing presentation time to 200ms impaired precision for other-race, but not 

own-race, faces. Unlike Lorenc et al., we also found that experience influences the 

number of faces that can be maintained in VWM. These differential patterns might reflect 

a difference between the two studies in the dimensions along which faces continuously 

varied rather than differential effects for orientation vs. face race: Whereas the faces in 

Lorenc et al’s study varied in both age and sex, ours differed only in identity. Encoding 

and maintaining gender and sex in VWM might be easier than encoding and maintaining 

identity, as suggested by both fewer correct responses and greater variability of face 

representations reported by participants in our study. Nonetheless all of these studies 
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provide strong evidence that VWM for faces is impacted by experience. Moreover, given 

that the fidelity of LTM representations is constrained by those encoded and maintained 

in VWM (Brady et al., 2013) our study suggests that ORE observed in LTM can be 

attributed, at least in part, to differences in the ability to establish high-fidelity 

representations in VWM for other- compared to own-race faces.  

The inefficiency with which other-race faces are rapidly encoded and 

consolidated into stable representations is consistent with a large body of 

electrophysiological studies examining the neural mechanisms of the ORE. These studies 

reported smaller amplitudes of N170 and P200 for other- than own-race faces (Ito & 

Urland, 2005; Senholzi & Ito, 2012; Vizioli, Foreman, Rousselet, & Caldara, 2009; 

Vizioli, Rousselet, Foreman, & Caldara, 2009; but see Balas & Nelson, 2010; Herrmann, 

Schreppel, Jäger, Koehler, Ehlis, & Fallgatter, 2007; Stahl, Wiese & Schweinberger, 

2008) —ERP components that peak over tempero-occipital brain regions about 170ms 

and 200ms after stimulus onset. N170 and P200 are thought to reflect structural encoding 

of faces (i.e., processing physiognomic information to form a sensory representation) and 

configural processing (i.e., integrating facial features into a whole). These 

electrophysiological studies suggest reduced efficiency in structural encoding and 

configural processing for other-race faces, consistent with behavioural evidence (see 

Mondloch et al., 2010; Michel, Rossion, Han, Chung, & Caldara, 2006; Rhodes, 

Hayward, & Winkler, 2006; Tanaka, Kiefer, & Bukach, 2004). 

One possible explanation for differential encoding and maintenance of own- and 

other-race faces in VWM is related to how own- and other-race faces are mentally 

represented. According to Valentine’s influential norm-based coding model (Valentine, 
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1991), faces are represented in a multidimensional face space and are encoded with 

reference to their deviation from a face prototype/norm that represents the average of all 

faces previously encountered. Representing individual faces relative to a prototype 

ensures efficient extraction of subtle variations in the shared configuration among faces 

(Byatt & Rhodes, 1998), and individual differences in norm-based coding correlate with 

individual differences in recognition accuracy (Dennett, McKone, Edwards, & Susilo, 

2012; Rhodes, Jeffery, Taylor, Hayward, & Ewing, 2014). Multidimensional face space 

is influenced by experience; adults’ representation of both other-race (Zhou, Short, Chan, 

& Mondloch, 2016) and other-age (Short & Mondloch, 2013) faces is less well refined 

than that of own-race and own-age faces. To the extent that face space is maximized for 

discriminating and recognizing own-race faces, encoding and storing representations of 

other-race faces in VWM likely entails a higher perceptual load; one consequence of this 

load appears to be a reduction in the precision with which other-race faces are stored in 

VWM. This explanation is consistent with evidence that complex objects (e.g., Chinese 

characters, random polygons) place greater demands on VWM and lead to a reduced 

VWM capacity relative to simple objects (Alvarez & Cavanagh, 2004; also see Brady, 

Konkle, & Alvarez, 2011 for a review). Although own- and other-race faces do not differ 

in stimulus complexity, as evident in the ORE being independent of race of face and race 

of participants (e.g., Ng & Lindsay, 1994; Sporer, 2001), limited perceptual experience 

with other-race faces increases the demands on VWM.  

Of necessity we presented identical images of unfamiliar identities at study and 

test. The function of face perception in daily life, however, is to recognize familiar 

identities despite within-person variability in appearance (e.g., in lighting, hairstyle, 
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expression, viewpoint; Burton, 2013). Impairments in VWM for other-race faces might 

contribute to increased errors in recognizing that two different images of an unfamiliar 

other-race face belong to the same identity (Laurence, Zhou, & Mondloch, 2016) and 

likely impact processes by which a newly encountered face becomes familiar (e.g., 

ensemble encoding—the rapid and automatic formation of an average; Kramer, Ritchie, 

& Burton, 2015). 

In summary, we argue that the impaired VWM performance for other-race faces, 

evident in the failure to rapidly establish high-precision representations for those faces, is 

likely carried forward into LTM. These impairments cascade to cause greater recognition 

errors for other-race faces, an effect that has been consistently found in tasks that require 

the retrieval of face representations from LTM (e.g., old/new recognition task). Indeed, 

inefficient encoding and storage of other-race faces in VWM might reduce the impact of 

exposure to newly encountered faces on the refinement of their representation in multi-

dimensional face space. Given the potential legal consequences of wrongful eyewitness 

recognition, the practical implications of our study are significant. Intervention and 

training programs aiming to improve recognition memory for other-race faces should 

emphasize the efficiency with which other-race identities are encoded so as to increase 

the capacity and precision of visual working memory for such faces.  
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CHAPTER 7 

General Discussion 

Since the early twentieth century, the other-race effect has attracted enormous 

attention of researchers (Meissner & Brigham, 2001; Young, Hugenberg, Bernstein, & 

Sacco, 2012 for reviews). Decades of research has characterized the cognitive 

mechanisms underlying and the moderators of the other-race effect. A variety of 

methodologies have been used to investigate different aspects of own- and other-race face 

recognition. These methodologies captured differential perceptual discrimination of own- 

and other-race faces, recognition based on the recalling of representations from memory, 

perceivers’ sensitivity to shape and spacing of facial features in own- and other-race faces, 

and the refinement of the coding dimensions associated with own- and other-race faces. 

Training paradigms have been developed to attenuate the other-effect effect (Tanaka & 

Pierce, 2009; McGugin, Tanaka, Lebrecht, Tarr, & Gauthier, 2011). Researchers have 

also investigated how the recognition bias for own-race faces influences, and is 

influenced by, racial stereotypes and attitudes (Ferguson, Rhodes, Lee, & Sriram, 2001; 

Lebrecht, Pierce, Tarr, & Tanaka, 2009; Levin, 2000; Walker & Hewstone, 2008).  

Collectively, the results of this dissertation highlight the commonalities and the 

differences between the processing of own- and other-race faces and provide novel 

insights about the cognitive mechanisms underlying the other-race effect. One difference 

between the recognition of own- and other-race faces is in perceivers’ ability to recognize 

faces despite natural variation in appearance: This ability is impaired for other-race faces 

(Study 1). A commonality, however, is the ease with which familiar faces are recognized 

despite this same natural variability (Study 2). I next conducted three lines of studies to 
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investigate the perceptual and cognitive mechanisms that might contribute to other-race 

faces being harder to encode and recognize. In two cases, I identified differences between 

own- and other-race face perception. First, I provided evidence that the representations of 

other-race faces are less refined in face space than the representations of own-race faces, 

leading to a reduced sensitivity to the deviations from normality in other- than own-race 

faces, and increased between-rater variability in the judgment of attractiveness of other- 

relative to own-race faces (Study3). Given that the dimensions of face space are refined 

through perceptual experience, my Study 3 therefore provides direct support for the 

perceptual experience model for the ORE. Second, I showed that differential perceptual 

experience with faces from different ethnic groups also impairs the efficiency with which 

these faces are encoded and maintained in visual working memory (Study 5), a memory 

system that is responsible for temporarily holding visual information to serve the needs of 

ongoing tasks (Luck & Vogel, 2013). Failure to rapidly establish high-precision 

representations for other-race faces is likely carried forward into long-term memory, 

causing greater recognition errors for other-race faces, an effect that has been consistently 

found in tasks that require the retrieval of face representations from long-term memory. 

Capturing the potential variability in the representations of own- and other-race faces 

stored in visual working memory, rather than merely recording perceivers’ binary 

memory performance, this study highlights the quantitative rather than qualitative 

differences in the encoding and storage of own- and other-race face representations in 

visual working memory system. When encoding time is limited, the ORE is driven by the 

representations of other-race faces stored in VWM being less precise or fuzzier. Despite 

differences in both VWM and the refinement of representations, I also discovered a 
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commonality in how own- and other-race faces are encoded and recognized. Despite 

being less efficient in learning an other-race face, the two sources of cues to facial 

identity—shape and texture—are used in a similar way for own- and other-race faces. I 

propose that it might be that despite relying on shape and texture information in similar 

ways for own- and other-race faces during encoding and recognition, adults’ quantitative 

sensitivity to these cues is reduced for other-race faces, likely a result of continuous 

asymmetries in own- and other-race perceptual experience across lifespan. 

The following three sections (7.1-7.3) will separately discuss the mechanisms of 

other-race effect in the context of different sources of variability in appearance (both 

natural within-person variability, and variability associated with experimentally induced 

shape and texture changes), the refinements of own- and other-race face representations, 

and in the storage and retrieval of memory for own- and other-race faces. Based on these 

discussions, I propose a working hypothesis (7.4) to integrate the different aspects of 

ORE so as to provide a more comprehensive understanding of the ORE in face 

recognition. Finally, in the last section of the general discussion (7.5), I highlight a 

number of new avenues that could be explored in future studies.  

7.1 Recognizing own- and other-race identities despite changes in appearance 

Incorporating within-person variability in identities’ appearance to examine own- 

and other-race identity person is an important part of my thesis. Traditionally, the other-

race effect has been investigated in the context of between-person variability, focusing on 

the discrimination among own- and other-race identities. However, recent studies 

examining own-race face recognition have suggested that the effect of within-person 

variability on identity person is large (Burton, Jenkins, Schweinberger, 2011; Cursiter, 
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2013; Murphy, Ipser, Gaigg, Cook, 2015; see Burton, 2013 for a review). In the real 

world within-person variability in appearance sometimes exceeds between-person 

variability in appearance (Hancock, Bruce, & Burton, 2000), reducing the utility of 

pictorial cues (information specific to a particular image, such as shadows). Past studies 

ignoring within-person variability might preclude our understanding of fundamental 

factors underlying the challenges in other-race face recognition.  

Past studies have classified the variations in appearance into two categories—one 

regarding the variations in face characteristics, and one regarding environmental and 

camera variations (Hancock et al., 2000; Cursiter, 2013). Variations in facial 

characteristics include changes in expression, hairstyle, hair color, makeup, as well as the 

variations that occur with changes in aging, stress level and health condition (e.g., weight 

gain or loss and tiredness). These variations can have a great influence on the facial 

configuration and the distinctiveness of a given identity (Coetzee, Perrett, & Stephen, 

2009; Hancock et al., 2000). The environmental and camera variations are lighting, the 

scene complexity that a face is in, the distance between the camera and the target face, 

capturing angles, and the variations associated with different types of camera lens. How 

the two types of within-person variability influence the formation of a robust 

representation of an own- and an other-race face has not been specified, and it is likely 

that they co-act to generate the reliable other-race effect. For example, the metric 

differences between individual facial features might change when the identity shows a 

different expression (movement of the mimetic musculature of the face; Pantic & Patras, 

2006), and also when the picture taker uses a different camera angle, which might alter 
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the specific pattern of shading (e.g., low-angle shot might make the chin look bigger and 

the distance between eyes and eyebrows look smaller).  

My Study 1 suggested that recognizing an unfamiliar face despite changes in 

appearance is hard and even more challenging when the face is from a different ethnic 

group. My Study 2 however, suggested that recognizing an other-race identity across 

variability in appearance is trivially easy when the other-race face is familiar to the 

perceiver. The series of studies together suggest that the fundamental differences between 

unfamiliar and familiar own-race face recognition (see Burton, 2013; Johnston, Edmonds, 

2009 for reviews) also exist in unfamiliar and familiar other-race face recognition and 

that the other-race effect is limited to unfamiliar faces. Like unfamiliar own-race face 

recognition (Burton, Schweinberger, Jenkins, & Kaufmann, 2015), unfamiliar other-race 

face recognition is fragile and image-dependent; unfamiliar other-race face recognition is 

even less tolerant to changes in appearance than unfamiliar own-race recognition. 

Nevertheless, representations of both familiar own- and other-race face recognition are 

abstract and image-invariant and both are highly resistant to natural variability in 

appearance. In Study 4, using a face learning paradigm, I demonstrated that when 

acquiring familiarity with own- and other-race faces (face learning), the two main sources 

of facial variability (shape and texture properties) are used comparably for own- and 

other-race faces, although other-race faces are learned less efficiently. The transition 

from a reliance on both shape and texture cues to a reliance on texture cues is comparable 

for own- and other-race faces. 

These novel findings therefore raise important questions regarding the other-race 

effect: How are abstract and reliable representations of familiar other-race faces achieved? 
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How does perceptual experience shape the processes by which own- and other-race faces 

become familiar? And what critical factors should an effective training paradigm capture 

in order to improve participants’ learning and recognition of other-race faces?   

One direction of examining these questions would be incorporating within-person 

variability during face learning. Indeed, recent studies incorporating within-person 

variability of faces to examine the acquisition of familiar own-race faces have suggested 

that within-person variability in appearance might be the process by which a face 

becomes familiar (Andrews, Jenkins, Cursiter & Burton, 2015; Bindemann & Sandford, 

2011; Dowsett, Sandford & Burton, 2016; Menon, White & Kemp, 2015; Ritchie & 

Burton, 2016). Andrews and colleagues replicated Jenkins et al’s (2011) finding that 

sorting ambient images of two different unfamiliar identities is highly error-prone. In 

contrast, performance is greatly improved by informing participants of the number of 

identities present. Notably, exposure to within-person variability of target identities in the 

sorting task facilitated participants’ subsequent matching of novel images of the target 

identities (Andrews et al., 2015). Likewise, Dowsett and colleagues found that 

participants’ performance in a 1-in-30 matching task can be improved by providing with 

multiple images of the target identity (Dowsett et al., 2016). The extent to which 

individuals are exposed to within-person variability in appearance during learning 

modulates perceiver’ subsequent perceptual matching as well as their recognition of 

learned faces. The more variability in appearance perceivers learned, the better perceivers 

were able to recall the learned faces from their memory and recognize new instances 

(Ritchie & Burton, 2016; Murphy et al., 2015). Some programs have been developed 

aiming to document the difficulty of recognizing faces based on the various sources of 
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variability in appearance, such as in pose, ambient lighting, expressions, size of the face, 

and distance between the camera and target face (e.g., Face and Ocular Challenge Series 

(FOCS); Good, Bad and Ugly (GBU) face challenge, Phillips et al., 2012; Face 

Recognition Vendor Test, (FRVT), Ngan & Grother, 2015). Moreover, recent studies 

examining computer-based face recognition suggest that recognition algorisms based on 

photometric and appearance-based variability can optimize accuracy in face matching 

and recognition (O'Toole et al., 2007; O'Toole, An, Dunlop, Natu, & Phillips, 2012). 

These studies, together with my finding that the other-race effect can be eliminated 

entirely after acquiring considerable familiarity with an individual face, I propose that 

exposure to a wide range of natural variations of appearance might be a key to learning 

other-race faces, and to forming stable representations of familiar other-race faces. It is 

likely that learning of unfamiliar other-race faces can also benefit from the learning of 

how other-race faces vary. However, such benefits of learning and the efficiency with 

which stable representations of faces are derived from multiple instances may differ for 

own- and other-race faces. This is because the efficiency of learning other-race faces is 

likely constrained by the impairments in the encoding and processing of own- and other-

race faces identified in my dissertation (e.g., insensitivity to shape of facial features, as 

well as their second-order relations in other-race faces; inefficiency with which coherent 

representations of other-race faces are consolidated in VWM; less refined representations 

of other-race faces in face space).  

Studies investigating the processes by which own- and other-race faces become 

familiar should also consider distinguishing the separate role of different sources of facial 

properties, such as shape and texture cues, during own- and other-race face learning. Liu 
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and colleagues found that learning faces from multiple poses can facilitate their 

recognition across changes in illumination; in contrast, learning faces with different 

illuminations did not facilitate recognition of faces across changes in pose (Liu, Bhuiyan, 

Ward, & Sui, 2009). Their study suggests that pose and illumination variations play 

different roles in the initial encoding of novel faces, with information derived from pose 

variations being key for the learning of new faces (Liu et al., 2009; also see Longmore, 

Liu, & Young, 2008). This finding is also consistent with past studies and the findings of 

my Study 4, suggesting that whereas shape cues are important for the encoding of novel 

faces, texture cues are more important for the recognition of learned faces. Studies 

investigating the neural basis of own-race face learning also suggested that benefits from 

texture cues for learned faces are associated with an enhanced posterior N250, a 

component that has been related to the activation of stored representations of faces (Itz, 

Schweinberger, Schulz, & Kaufmann, et al., 2014). My Study 4 demonstrated that 

although other-race faces are learned less efficiently, the transition from reliance on 

shape cues to texture cues during face learning is comparable for own- and other-race 

faces. This finding particularly highlights the use of appropriate cues in learning both 

own- and other-race faces. 

7.2 Refinement of face norm and face space for own- and other-race faces  

Throughout the current series of studies, Valentine’s influential multidimensional 

face space framework and norm-based coding model provide explanatory power. The 

series of studies provide evidence that the ORE is associated with perceivers’ tolerance of 

within-person variability in appearance (Study 1 and 2), their sensitivity to deviations 

from normality and attractiveness in own- vs. other-race faces (Study 3), the utilization of 
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different facial cues to encode and recognize own- and other-race identities (Study 4), as 

well as the efficiency with which coherent and stable representations of faces are 

consolidated in visual working memory (Study 5). While acknowledging that there are 

some shared commonalities in the processing of own- and other-race faces (Study 2 & 4), 

the differences between the cognitive processing of own- and other-race face are evident 

(Study 1, 3 & 5). These differences might be directly associated with how representations 

of own- and other-race faces are mentally processed in multidimensional face space. 

Notably, the reliable other-race effect observed in my studies provides some indication 

that the refinement of face space and a face norm likely takes extensive and continuous 

perceptual experience with other-race race identities to achieve.  

The finding that representations of both own- and other-race faces can be 

activated by multiple images, although this is limited when a face is unfamiliar, provides 

direct support for Tanaka’s attractor field model (Tanaka, Giles, Kremen & Simon, 1998; 

also see Lewis & Johnston, 1998 for Voronoi cell model). The attractor field model is an 

extension of Valentine’s face space model (1999) and suggests that each face is 

represented as a region rather than a single point in multidimensional face space. The 

attractor fields (Tanaka et al., 1998; also see Tanaka & Corneille, 2007) around each 

point in face space reflect the range of inputs that are perceived as belonging to a given 

identity, allowing recognition despite changes in appearance (e.g., in expression, makeup, 

hairstyle, illumination, or orientation). The size of an identity’s attractor field is 

determined by the density of nearby representations (i.e., by its location in face space) 

and determines the range of acceptable inputs. Because the dimensions of face space are 

more refined for own-race faces, these faces should have larger inter-face distances than 
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other-race faces, which are clustered together in the periphery of face space. My Study 2 

suggests that it is likely that extensive exposure to a specific other-race identity facilitates 

the expansion of the attractor field of that given identity, therefore allowing the 

establishment of an abstract representation of an other-race identity. However, such 

perceptual learning is identity-specific and does not generalize to the whole other-race 

category, perhaps because familiarity with a few other-race exemplars does not add 

dimensions to face space or increase sensitivity to differences along dimensions, 

consistent with Burton’s finding that within-person variability in own-race faces is likely 

idiosyncratic (Burton, Kramer, Ritchie, & Jenkins, 2016).  

There are still several key aspects of face space and the norm-based coding model 

that remain largely unspecified. One is about the nature of the dimensions of face space. 

They might represent the shape and size of facial features (e.g., nose length), the spacing 

between individual facial features (distances between eyes) and/or comprise more 

abstract dimensions (e.g., eigenfaces, the eigenvectors of the covariance matrix of the set 

of face images; Hancock, Burton, & Bruce, 1996). Given the ambiguous definition of 

dimensions of face space, it is conceptually difficult to capture how different perceptual 

experience with own-and other-race face refines the dimensions of face space. Partial 

transfer of aftereffects across face race (Jaquet, Rhodes, Hayward, 2008; Short, Lee, Fu, 

& Mondloch, 2014) and age (Short, Proietti, & Mondloch, 2015) suggests there are some 

dimensions that are almost certainly shared across race and age categories. Would it be 

possible to take the advantage of perceivers’ sensitivity to such shared dimensions and 

train people to improve their sensitivity to other dimensions that are not shared by own- 

and other-race faces?  
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In addition, it is not specified whether the other-race effect is attributable to the 

differences in the quantity or the quality of dimensions underlying face space (or their 

combination). More specifically, is the other-race effect driven by there being fewer 

dimensions available for other- than own-race faces and/or by the dimensions of other-

race faces being less fine-tuned such that perceivers lack sensitivity to differences along 

the dimensions? Using multidimensional scaling analyses, Nishimura and colleagues 

investigated adults and children’s perceived similarity of a set of homogeneous faces (all 

faces had the same hair and posed a neutral expression). They found that whereas adults 

use multiple dimensions for similarity judgments, children tend to rely on a single 

dimension for each judgement, despite demonstrating sensitivity to multiple dimensions 

(Nishimura, Maurer, & Gao, 2009). Is it possible that, like children who lack of the 

perceptual experience with faces in general relative to adults, perceivers rely on fewer 

dimensions to encode other- than own-race faces? These questions are beyond the scope 

of the current dissertation, but should be specified in future studies.  

The third question that needs further clarification is how the refinement of the 

dimensions of face space changes as a function of familiarity with specific own- and 

other-race faces. According to the attractor field model (Tanaka et al., 1998), the size of 

an identity’s attractor field is determined by the density of nearby representations (i.e., its 

location in the face space) and determines the range of acceptable inputs. Because the 

dimensions of face space are more refined for own- than other-race faces, own-race faces 

would have larger inter-face distances than other-race faces, which are clustered in the 

periphery of face space. If acquiring the full familiarity with considerable number of 

other-race identities would expand the attractor filed for these other-race identities, we 
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would expect to see an increase in perceivers’ sensitivity to the properties of the relevant 

dimensions, which might in turn generalize to the recognition of newly encountered 

other-race faces. This hypothesis does not contradict the findings of my Study 2, which 

suggests that familiarity with a few other-race exemplars likely does not add dimensions 

to face space. But the number of exemplars needed for a significant change in the 

refinement of face space should be quantified in future studies. 

7.3 Face representations stored in visual working memory and long-term memory 

Working memory is the system used to temporarily store and manipulate 

information lasting in the order of seconds (Baddeley, 2003). It has been found to be 

highly correlated with a wide range of cognitive functions, such as selective attention, 

executive function, fluid intelligence, processing speed and reasoning/problem solving 

(see Downing, 2000; Fukuda, Awh, & Vogel, 2010; Johnson et al., 2013; Miyake, 

Friedman, Rettinger, Shah, & Hegarty, 2001). Visual working memory allows us to block 

out distractions, keeping information updated quickly and functioning effectively in the 

visual world. It serves as an interface between perception, long-term memory and action 

(Miyake & Shah, 1999) and is considered to be the basis of general cognitive function 

(Dempere-Marco, Melcher, & Deco, 2012).  

Impairments in the encoding, storage and/or retrieval of other-race face 

representations from memory have been reported in numerous behavioral studies (e.g., 

fewer hits and greater false alarms in the old/new face recognition task; see Meissner & 

Brigham, 2001 for a review). A large body of electrophysiological studies examining the 

neural mechanisms of the ORE also suggests that the other-race effect emerges at an 

early perceptual stage of face processing and is associated with different structural 
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encoding and configural processing of own- vs. other-race faces. For example, some 

studies reported smaller amplitudes of N170 and P200 for other- than own-race faces (Ito 

& Urland, 2005; Foreman, Rousselet, & Caldara, 2009; Vizioli, Rousselet, Foreman, & 

Caldara, 2009; but see Balas & Nelson, 2010; Stahl, Wiese & Schweinberger, 2008). 

Given the important role of visual working memory for processing complex visual 

stimuli, such as faces, and the initial behavioral and neural evidence supporting the 

existence of impairments in visual working memory for other-race faces (Humphreys, 

Hodsoll, & Campbell, 2005), it is surprising that very few studies have examined how 

representations of own- and other-race faces are stored in visual working memory. 

Consistent with psychophysiological studies (Foreman et al, 2009; Stahl et al., 2008), 

Study 5 provided evidence that the ORE emerges at an early stage of information 

processing, and is attributable to the inefficiency with which other-race faces are rapidly 

consolidated into stable representations in visual working memory. Some studies suggest 

that fidelity of representations in long-term memory is constrained by those in visual 

working memory (Brady, Konkle, Gill, Oliva, & Alvarez, 2013). The results of my study 

suggest that the ORE observed in long-term memory may be attributed, at least in part, to 

differences in the ability to establish high-fidelity representations in VWM for other- 

compared to own-race faces.  

The continuous response paradigm provided us with a valuable approach to 

explore how differential perceptual experience with own- and other-race faces influences 

the capacity and the precision of visual working memory for own- and other-race faces. 

In future studies this novel protocol should be modified to investigate the differences in 

pure perceptual representations of own- and other-race faces as well as the face 
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representations stored in long-term memory. For example, two faces (one target and one 

test) could be presented simultaneously and participants could be asked to adjust the test 

face to match the target face on the face wheel. This perceptual task does not require 

memory demands, but could be used to test perceivers’ perceptual sensitivity to the 

properties of facial features. In addition, participants could also be asked to recall 

representations of personally familiar faces (or newly learned other-race faces) from their 

long-term memory and to match these familiar face representations on a face wheel. This 

would provide an examination of the precision of long-term memory for own- versus 

other-race faces. 

 Using these modifications of the continuous-response paradigms, Brady and 

colleagues (2013) tested the precision of visual information (e.g., for the color of simple 

objects such as chairs, and balloons) encoded and stored in visual working memory and 

in long-term memory. Participants were shown target objects, each shown in a randomly 

selected color, and were asked to choose from a color wheel what color matched the color 

of the target object that they had seen. The task was a perception task, a visual working 

memory task, or a long-term memory task. In the perception condition, the target object 

and the test object are shown simultaneously and participants were asked to perceptually 

match the colors of two objects. Whereas the visual working memory task required 

participants to retain the colors of three objects in the memory for a short period of time 

(e.g., 1s), the long-term memory task required participants to retain the colors of 232 

objects in memory for a long period of time (11 minutes). They found that there is a 

significant loss of precision in perceivers’ representation of simple objects (e.g., chairs 

and balloons) from perception to visual working memory; however, the precision of 
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hundreds of representations encoded and retrieved from long-term memory is the same as 

that of three actively stored representations in visual working memory (Brady et al., 

2013). These results suggest that the fidelity of visual working memory and long-term 

memory share a similar limit. Would a similar pattern be found for more complicated 

visual stimuli (i.e., faces)? Would differential perceptual experience with own- and other-

race faces make the relationship between the fidelity of visual working memory and the 

fidelity of long-term memory differ for own- and other-race faces? Exploring these 

questions would help better understand how own- and other-race faces are stored in 

visual working memory and the long-term memory system, and what factors modulate 

the process of the formation of familiar other-race face representations.   

7.4 A Working Hypothesis 

Collectively, the five studies comprising my dissertation suggest that the other-

race effect is likely a multiply-determined phenomenon that can be caused/affected by 

multiple perceptual and cognitive factors. The recognition deficits for other-race faces 

exist at a perceptual level as well as at a mnemonic level. The ORE is attributable to 

deficits in recognizing other-race identities despite changes in appearance, to less refined 

representations of other-race faces in face space, and to the inefficiency with which 

coherent representations of faces are consolidated in and retrieved from visual working 

memory.  

Despite the perceptual and mnemonic differences in the processing and learning 

of own-and other-race faces, these differences tend to be quantitative rather than 

qualitative. For example, when the stream of facial representations enters the visual 

system, perceivers can quickly extract critical facial characteristics, form stable sensory 
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representations of own-race faces, and actively maintain the representations in visual 

working memory for ongoing cognitive processing. However, they are less efficient when 

doing so for other-race faces. Likewise, other-race faces are learned less efficiently than 

own-race faces, but the utilization of shape and texture cues during face learning are not 

qualitatively different for faces of two racial groups. Therefore, I propose that the 

impaired encoding and learning of other-race faces are not driven by fundamentally 

different utilization of facial cues but rather by the fact that perceivers’ quantitative 

sensitivity to these cues is reduced for other-race faces. Aftereffect studies suggested that 

adults rely on separable norms to encode own- and other-race faces (Jaquet et al., 2008), 

and building on that, my study provides direct evidence that face norm and dimensions of 

face space are less differentiated for other-than own-race faces. Notably, my study 

showed that the ORE is attributable to impairments in extracting stable representations of 

other-race faces across variations in appearance. Nevertheless, as suggested by my study, 

such impairment is limited to unfamiliar other-race face recognition. Perceivers can 

ultimately form stable representations of both familiar own- and other-race faces, 

allowing recognition across variations in appearance. Whereas both unfamiliar own- and 

other-race face recognition is image-dependent and is susceptible to variations in 

appearance, both familiar own- and other-race face recognition is more abstractive and 

image-independent.  

Bruce and Young’s influential model of face recognition (Bruce & Young, 1986), 

suggests that unfamiliar and familiar face recognition falls along different routes. 

Recognition of unfamiliar faces involves structural encoding of faces, directed visual 

processing, as well as facial expression and speech analysis. Structural encoding of faces 
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ensures a formation of quick and basic description of faces, and directed visual 

processing allows the quick extraction of physical aspects of faces such as age, gender 

and race. In addition to that, recognition of familiar faces involves the activation of face 

recognition unit, followed by the person identity node, and then name generation (Bruce 

& Young, 1986). Successful recognition of familiar faces is achieved when there is a 

match between the products of accurate structural encoding and previously stored 

representations of familiar faces, held in face recognition units (Bruce & Young, 1986). 

Therefore, successful recognition of someone’s face requires not only the accurate 

extraction of facial properties that are critical for identifying the face (optimize the 

products of structural encoding and face analysis), but also requires an optimal 

recognition unit that best captures how the face looks.  

It is likely that limited perceptual experience with other-race faces in general 

impairs perceivers’ sensitivity to the shape of facial features and the spatial configuration 

among facial features of a given unfamiliar other-race face (e.g., impairs structural 

encoding). This impaired sensitivity further impairs their accurate extraction of critical 

characteristics that define the face and their ability to quickly consolidate the 

representations of an other-race face into a stable representation in visual working 

memory. These factors together make the products of structural encoding and analysis of 

the unfamiliar other-race face less accurate. In addition, when an unfamiliar other-race 

face is encountered, the face representation stored in the face recognition unit unlikely 

captures how the face truly looks, making the appropriate utilization of texture cues (e.g., 

luminance) less available, thus further impairing the formation of a stable representation 

of the face across variations in appearance. Notably, these factors are unlikely 
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independent from each other. Instead, they are mutually interactive and may be 

modulated by the perceivers’ motivation and existing face norm. For example, the 

efficiency with which representations of own- and other-race faces are manipulated and 

stored in visual working memory may influence perceivers’ ability to extract appropriate 

shape and texture cues during face learning. The ability to process shape and texture-

relevant information in faces may in turn affect how quickly critical facial information is 

maintained and updated in visual working memory. The two may together influence the 

refinement of face representations stored in recognition units in memory, consequently 

changing the threshold of activation of the face recognition units. Theoretically, the 

whole cognitive system can be governed by one’s existing perceptual experience as well 

as one’s social cognition, such as racial bias and racial attitude, which in turn, may exert 

differential influence on one’s ability to process identity-specific information.  

These bidirectional influences co-act to generate the reliable ORE. To test these 

hypotheses, one direction would be to individually manipulate the influential factors and 

investigate how the change of a given factor influences the other factors, and 

consequently the recognition of own- and other-race faces. For example, one can 

manipulate the cognitive load on VWM by changing the number of faces that need to be 

stored in VWM (or the complexity of the contexts where the faces were seen), and 

investigate its influences on perceivers’ sensitivity to shape and texture cues in own- and 

other-race faces, and on perceivers’ sensitivity to deviations from own- and other-race 

norm. Another direction would be to investigate the role of individual differences in 

shaping perceivers’ ability to from stable representations of faces across changes in 

appearance, to use shape and texture cues during face learning, to represent faces in face 
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space, and to consolidate these face representations in VWM. If these aspects of ORE are 

symmetrically interactive, we would expect to see a high correlation across different 

tasks. 

The other-race effect is a direct result of perceptual narrowing (Pascalis et al., 

2005). Perceptual narrowing has also been shown to occur within other domains, such as 

music and speech perception (Hannon & Trehub, 2005; Kuhl, Tsao, & Liu, 2003). Our 

perceptual system tends to be shaped by perceptual experience to represent the 

characteristics of stimulus categories with which we have most experience (e.g., own-

race faces, native language and native musical rhythms). However, the generalization of 

learning across domains might be different. For example, learning of Mandarin for an 

English-speaking person would likely be largely influenced by the differences between 

English and Mandarin, two very different language systems in the composition of 

vocabularies, phonics, structure of grammars, as well as the use of inflection. Certain 

rules of grammars may be used to generalize to the learning of Mandarin, but some may 

not.  Indeed, generalization of learning between English and Mandarin might be much 

harder than generalization of learning between English and Dutch, two language systems 

that belong to the same Indo-European language family (Renfrew, 1990). Just as English 

and Dutch share properties, faces from different racial groups share a similar configural 

template, namely two eyes are located above a nose and a mouth. How is the learning of 

an Asian face influenced by the existing (e.g., Caucaisan) face norm? Are there certain 

dimensions that are shared across faces from different racial groups? Evidence from 

aftereffects studies suggests so, given that partial transfer of aftereffects occur across face 
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race (Jaquet et al., 2008)? Then, to what extent they can be used to generalize the 

learning of Asian faces?  These questions can be investigated in the future studies. 

In addition, there is long-standing debate in the developmental face perception 

literature regarding whether there are qualitative or quantitative differences between 

children and adults’ face recognition and whether the improvement of face processing 

with age results from development of general cognitive skills (e.g., memory, attention, 

strategy use, concentration ability) or from face-specific development (i.e., shaped by 

perceptual experience with faces). Recent evidence shows that children show certain 

characteristics of adult-like face processing, despite an overall reduced performance on 

face recognition tasks. For example, like adults, they process faces holistically (de 

Heering, Houthuys, & Rossion, 2007), they use norm-based coding (Short, Hatry, & 

Mondloch, 2011), and they are sensitive to the shape of facial features and the spacing 

among facial features (Mondloch, Le Grand, & Maurer, 2002; Quinn & Tanaka, 2009). 

Do the perceptual and cognitive mechanisms underlying children’s own-race face 

recognition and adults’ other-race face recognition share some similarities? If the 

differences in performance on the face recognition tasks in adults for own- versus other-

race faces parallels those observed when comparing to children versus adults, we would 

expect to see an improvement of face processing during childhood even after controlling 

for the effect of general cognition, suggesting that improvement of face processing with 

age is, at least in part, face-specific. This is because impairments in adults’ recognition of 

other-race faces compared to own-race faces cannot attributable to the general cognition. 

In turn, examining the development of face processing would help clarify the role of 

perceptual experience in adults’ own- and other-race face recognition in addition to the 
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influence of social cognition. If some of the mechanisms underlying children’s 

immaturities in face recognition and adults’ poor recognition of other-race faces are 

attributable to the same mechanisms (i.e., face-specific experience), we would also 

expect to see that adults’ recognition of own- and other-race faces changes as a function 

of perceptual experience with faces from different racial groups even after controlling for 

the influence of social cognition (e.g., perceivers’ motivation and racial attitude). These 

questions call for an integrative study of perceptual experience that encompasses both 

developmental studies and studies in which adults are tested with faces from different 

categories. In addition to these general questions, the next section discussed several 

immediate follow-up studies. 

 

7.5 Future Directions 

Although the current research found evidence for recognizing the identity of 

unfamiliar faces in the context of variability in appearance, I did not test what factors 

might influence this challenge. Past studies have suggested that participants’ performance 

in the sorting task is modulated by visual constrains and the similarity of the faces being 

sorted (Andrews et al., 2015; Cursiter, 2013). For example, both informing participants 

the correct number of sorting identities (Andrews et al., 2015) and asking participants to 

sort dissimilar looking, rather than highly similar looking identities (Cursiter, 2013), 

results in perceivers correctly grouping different images of the same identities together 

(they rarely make confusions between the two target identities). In addition, social 

cognitive models suggest that some social cognitive factors (e.g., motivation, social 

categories) modulate the amplitude of the ORE (Bernstein, Young, & Hugenberg, 2007). 
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Future studies stemming from this work should examine how perceptual expertise and 

social cognitive factors jointly influence people’s ability to ‘tell own- and other-race 

faces together’. 

My Study 2 highlighted the ability of adults to build up stable representations of 

familiar other-race faces. However, I did not test how such stable representations are 

achieved and how differential perceptual experience with own- and other-race faces 

shapes this process. Evidence from our lab (Baker, Laurence, & Mondloch, 2017) 

suggests that adults require exposure to less variability in appearance than do children to 

acquire familiarization with own-race faces. It would be interesting to investigate how 

exposure to different degrees of variability in appearance can influence the learning of 

own- and other-race face. If adults’ learning of other-race faces is comparable to 

children’s learning of own-race faces, then they should require exposure to more 

variability in the appearance of other-race faces than in the appearance of own-race faces 

to become familiar. In addition, my Study 2 suggests that although when specific other-

race identities become familiar, perceivers can form an abstract representation allowing 

recognition across natural variations in appearance, such perceptual learning is identity-

specific and does not generalize to the whole other-race category. This result suggests 

that perhaps familiarity with just a few other-race exemplars does not add dimensions to 

face space. Future studies should examine whether training participants to gain sensitivity 

to some dimensions in the face space can facilitate the learning of other neighboring 

dimensions. For example, one could examine whether learning a set of similar looking 

other-race identities would help perceivers to generalize this familiarity to the other novel 
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identities who look similar to the learned identities, but not to dissimilar looking 

identities.  

My Study 4 suggested that one possible source of the reliable other-race effect is 

that perceivers are less sensitive to the shape and texture cues in own- and other-race 

faces. Future studies should directly test this hypothesis and examine how perceivers’ 

encoding and recognition of own- and other-race faces changes as a function of 

continuous change in the caricaturing level. If participants are less sensitive to the shape 

and texture cues in other- than own-race faces, perceivers would need greater caricaturing 

levels to recognize other-than own-race faces (e.g., the hits for 30% texture caricatured 

own-race faces might be equal to the hits for 60% texture caricatured other-race faces). 

Such a finding would confirm that the ORE is driven by quantitative, rather than 

qualitative, differences in the processing of own- and other-race faces. 

The finding that perceivers are inefficient in rapidly consolidating other-race faces 

into coherent and stable representations in VWM is consistent with a large body of 

electrophysiological studies as well as studies using different memory paradigms (e.g., 

old/new face recognition task, change blindness paradigm). Past studies examining visual 

working memory for simple objects have suggested that the visual working memory is 

highly limited in capacity and the memory performance decays as a function of the set 

size (Luck et al., 2013). However, I did not directly test how capacity of visual working 

memory for own- and other-race faces changes with the increase of the set size (e.g., I did 

not manipulate the number of faces that need to be maintained in the visual working 

memory). This is another question that is worthy of examination. My normality study 

(Study 3) suggest that the dimensions of face space are less refined for both other-race 
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and older adult faces, two face categories with which adults typically have limited 

perceptual experience. Despite this similarity, other-race faces and older adult faces differ 

in some ways. Whereas race is a stable characteristic across lifespan, age continuously 

changes. It would be interesting to examine in the future studies that how different 

perceptual experience with these face categories (e.g., other-race and other-age faces) 

shapes the capacity and the fidelity of visual working memory for these face 

representations.   

 

7.5 Conclusions 

In summary, the results of this dissertation provide evidence that the other-race 

effect is not only attributable to impairments in the discrimination of other-race faces; it 

also reflects impairments in perceivers’ ability to recognize unfamiliar other-race faces 

despite changes in appearance. The other-race effect is modulated by familiarity: when a 

specific other-race identity becomes familiar, perceivers can form an abstract 

representation allowing recognition across natural variation in appearance. Limited 

perceptual experience with other-race faces makes the dimensions of face space less 

refined for these faces and influences the efficiency with which other-race faces are 

rapidly consolidated into coherent and stable representations in visual working memory. 

Despite being less efficient in learning other- than own-race faces, the transition from 

shape to texture cues is comparable for own- and other-race faces, suggesting that the use 

of shape and texture cues are not qualitatively differ for own- and other-race faces. These 

commonalities and differences in the processing and encoding of own- and other-race 

faces help elucidate the cognitive mechanism underlying the other-race effect. In the 
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context of multiculturalism and globalization, these findings have broad theoretical 

implications for perceptual expertise accounts of ORE and profound practical 

implications for eye-witness testimony and social interactions. 

 

 
  



	 	

	 191	

Reference 

Ambrus, G. G., Windel, F., Burton, A. M., & Kovács, G. (2017). Causal evidence of the 
involvement of the right occipital face area in face-identity 
acquisition. NeuroImage, 148, 212-218. 

 
Andrews, T. J., Baseler, H., Jenkins, R., Burton, A. M., & Young, A. W. (2016). 

Contributions of feature shapes and surface cues to the recognition and neural 
representation of facial identity. Cortex, 83, 280-291. 

 
Andrews, S., Burton, A. M., Schweinberger, S. R., & Wiese, H. (2016). Event-related 

potentials reveal the development of stable face representations from natural 
variability. The Quarterly Journal of Experimental Psychology, 1-13. 

 
Andrews, S., Jenkins, R., Cursiter, H., & Burton, A. M. (2015). Telling faces together: 

Learning new faces through exposure to multiple instances. The Quarterly 
Journal of Experimental Psychology, 68(10), 2041-2050. 

 
Baddeley, A. (2003). Working memory: looking back and looking forward. Nature 

reviews neuroscience, 4(10), 829-839. 
 
Baker, K.A., Laurence, S., & Mondloch, C.J. (2017). How does a newly encountered face 

become familiar? The effect of within-person variability on adults’ and children’s 
perception of identity. Cognition, 161, 19 - 30.  

 
Balas, B., & Nelson, C. A. (2010). The role of face shape and pigmentation in other-race 

face perception: An electrophysiological study. Neuropsychologia, 48, 498-506. 
http://dx.doi.org/10.1016/j.neuropsychologia.2009.10.007 

 
Bernstein, M. J., Young, S. G., & Hugenberg, K. (2007). The cross-category effect: Mere 

social categorization is sufficient to elicit an own-group bias in face 
recognition. Psychological Science, 18(8), 706-712. 

 
Bindemann, M., & Sandford, A. (2011). Me, myself, and I: Different recognition rates for 

three photo-IDs of the same person. Perception, 40(5), 625-627. 
 
Brady, T. F., Konkle, T., Gill, J., Oliva, A., & Alvarez, G. A. (2013). Visual long-term 

memory has the same limit on fidelity as visual working memory. Psychological 
Science, 24, 981-990. doi: 10.1177/0956797612465439 

 
Burton, A. M., (2013). Why has research in face recognition progressed so slowly? The 

importance of variability. The Quarterly Journal of Experimental 
Psychology, 66(8), 1467-1485. 

 
Burton, A. M., Jenkins, R., & Schweinberger, S. R. (2011). Mental representations of 

familiar faces. British Journal of Psychology, 102(4), 943-958. 



	 	

	 192	

 
Burton, A. M., Kramer, R. S., Ritchie, K. L., & Jenkins, R. (2016). Identity from 

variation: Representations of faces derived from multiple instances. Cognitive 
Science, 40(1), 202-223. 

 
Burton, A. M., Schweinberger, S. R., Jenkins, R., & Kaufmann, J. M. (2015). Arguments 

against a configural processing account of familiar face recognition. Perspectives 
on Psychological Science, 10(4), 482-496. 

 
Coetzee, V., Perrett, D. I., & Stephen, I. D. (2009). Facial adiposity: a cue to 

health?. Perception, 38(11), 1700-1711. 
 
Cursiter, H. J. (2013). Within-person variability in facial appearance (Doctoral thesis 

University of Glasgow, Scotland, United Kingdom). Retrieved from 
http://theses.gla.ac.uk/4541/ 

 
Dempere-Marco, L., Melcher, D. P., & Deco, G. (2012). Effective visual working 

memory capacity: an emergent effect from the neural dynamics in an attractor 
network. PLoS One, 7(8), e42719. 

 
de Heering, A., Houthuys, S., & Rossion, B. (2007). Holistic face processing is mature at 

4 years of age: Evidence from the composite face effect. Journal of Experimental 
Child Psychology, 96(1), 57-70.  

 
Downing, P. E. (2000). Interactions between visual working memory and selective 

attention. Psychological Science, 11(6), 467-473. doi: 10.1111/1467-9280.00290 
 
Dowsett, A. J., Sandford, A., & Burton, A. M. (2016). Face learning with multiple 

images leads to fast acquisition of familiarity for specific individuals. The 
Quarterly Journal of Experimental Psychology, 69(1), 1-10. 

 
Ferguson, D. P., Rhodes, G., Lee, K., & Sriram, N. (2001). ‘They all look alike to me’: 

Prejudice and cross‐race face recognition. British Journal of Psychology, 92(4), 
567-577. 

 
Fukuda, K., Awh, E., & Vogel, E. K. (2010). Discrete capacity limits in visual working 

memory. Current opinion in neurobiology, 20(2), 177-182. doi: 10.3758/17.5.673 
 
Hancock, P. J., Bruce, V., & Burton, A. M. (2000). Recognition of unfamiliar 

faces. Trends in cognitive sciences, 4(9), 330-337. 
 
Hancock, P. J., Burton, A. M., & Bruce, V. (1996). Face processing: Human perception 

and principal components analysis. Memory & Cognition, 24(1), 26-40. 
 
Hannon, E. E., & Trehub, S. E. (2005). Tuning in to musical rhythms: Infants learn more 

readily than adults. Proceedings of the National Academy of Sciences of the 



	 	

	 193	

United States of America, 102(35), 12639-12643. 
 
Humphreys, G., Hodsoll, J., & Campbell, C. (2005). Attending but not seeing: The" other 

race" effect in face and person perception studied through change 
blindness. Visual Cognition, 12, 249-262. 
http://dx.doi.org/10.1080/13506280444000148 

 
Ito, T. A., & Urland, G. R. (2005). The influence of processing objectives on the 

perception of faces: An ERP study of race and gender perception. Cognitive, 
Affective, & Behavioral Neuroscience, 5, 21-36. doi:10.3758/CABN.5.1.21 

 
Itz, M. L., Schweinberger, S. R., Schulz, C., & Kaufmann, J. M. (2014). Neural correlates 

of facilitations in face learning by selective caricaturing of facial shape or 
reflectance. NeuroImage, 102, 736-747. 

 
Jaquet, E., Rhodes, G., & Hayward, W. G. (2008). Race-contingent aftereffects suggest 

distinct perceptual norms for different race faces. Visual Cognition, 16(6), 734-
753. 

 
Jenkins, R., White, D., Van Montfort, X., & Burton, A. M. (2011). Variability in photos 

of the same face. Cognition, 121(3), 313-323. 
 
Johnston, R. A., & Edmonds, A. J. (2009). Familiar and unfamiliar face recognition: A 

review. Memory, 17(5), 577-596. 
 
Johnson, M. K., McMahon, R. P., Robinson, B. M., Harvey, A. N., Hahn, B., Leonard, C. 

J., Gold, J. M. (2013). The relationship between working memory capacity and 
broad measures of cognitive ability in healthy adults and people with 
schizophrenia. Neuropsychology, 27(2), 220. doi: 10.1037/a0032060 

 
Kaufmann, J. M., Schulz, C., & Schweinberger, S. R. (2013). High and low performers 

differ in the use of shape information for face 
recognition. Neuropsychologia, 51(7), 1310-1319. 

 
Kramer, R. S., Jenkins, R., Young, A. W., & Burton, A. M. (2016). Natural variability is 

essential to learning new faces. Visual Cognition, 1-7. 
 
Kuhl, P. K., Tsao, F. M., & Liu, H. M. (2003). Foreign-language experience in infancy: 

Effects of short-term exposure and social interaction on phonetic 
learning. Proceedings of the National Academy of Sciences, 100(15), 9096-9101. 

 
Lebrecht, S., Pierce, L. J., Tarr, M. J., & Tanaka, J. W. (2009). Perceptual other-race 

training reduces implicit racial bias. PLoS one, 4(1), e4215. 
 



	 	

	 194	

Levin, D. T. (2000). Race as a visual feature: using visual search and perceptual 
discrimination tasks to understand face categories and the cross-race recognition 
deficit. Journal of Experimental Psychology: General, 129(4), 559-574. 

 
Lewis, M. B., & Johnson, R. A. (1999). A unified account of the effects of caricaturing 

faces. Visual Cognition, 6(1), 1-42. doi: 10.1080/713756800 
 
Liu, C. H., Bhuiyan, M. A. A., Ward, J., & Sui, J. (2009). Transfer between pose and 

illumination training in face recognition. Journal of Experimental Psychology: 
Human Perception and Performance, 35(4), 939-947. 

 
Longmore, C. A., Liu, C. H., & Young, A. W. (2008). Learning faces from photographs. 

Journal of Experimental Psychology: Human Perception and Performance, 34(1), 
77-100. 

 
Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: from 

psychophysics and neurobiology to individual differences. Trends in cognitive 
sciences, 17(8), 391-400. 

 
Meissner, C. A., & Brigham, J. C. (2001). Thirty years of investigating the own-race bias 

in memory for faces: A meta-analytic review. 
 
McGugin, R. W., Tanaka, J. W., Lebrecht, S., Tarr, M. J., & Gauthier, I. (2011). Race-

specific perceptual discrimination improvement following short individuation 
training with faces. Cognitive science, 35(2), 330-347. 

 
McKone, E., Brewer, J. L., MacPherson, S., Rhodes, G., & Hayward, W. G. (2007). 

Familiar other-race faces show normal holistic processing and are robust to 
perceptual stress. Perception, 36(2), 224-248. 

 
Menon, N., White, D., & Kemp, R. I. (2015). Variation in photos of the same face drives 

improvements in identity verification. Perception, 0301006615599902. 
 
Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are 

visuospatial working memory, executive functioning, and spatial abilities related? 
A latent-variable analysis. Journal of Experimental Psychology: General, 130(4), 
621-640. 

 
Mondloch, C. J., Le Grand, R., & Maurer, D. (2002). Configural face processing 

develops more slowly than featural face processing. Perception, 31(5), 553-566. 
 
Murphy, J., Ipser, A., Gaigg, S. B., & Cook, R. (2015). Exemplar variance supports 

robust learning of facial identity. Journal of Experimental Psychology: Human 
Perception and Performance, 41(3), 577. 

 



	 	

	 195	

Ngan, M., & Grother, P. (2015). Face recognition vendor test (FRVT) performance of 
automated gender classification algorithms. National Institute of Standards and 
Technology. 

 
Nishimura, M., Maurer, D., & Gao, X. (2009). Exploring children’s face-space: A 

multidimensional scaling analysis of the mental representation of facial identity. 
Journal of Experimental Child Psychology, 103(3), 355-375. doi: 
10.1016/j.jecp.2009.02.005 

 
Pantic, M., & Patras, I. (2006). Dynamics of facial expression: Recognition of facial 

actions and their temporal segments from face profile image sequences. IEEE 
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 36(2), 
433-449. 

 
O'Toole, A. J., An, X., Dunlop, J., Natu, V., & Phillips, P. J. (2012). Comparing face 

recognition algorithms to humans on challenging tasks. ACM Transactions on 
Applied Perception (TAP), 9(4), 16-29. 

 
O'Toole, A. J., Phillips, P. J., Jiang, F., Ayyad, J., Penard, N., & Abdi, H. (2007). Face 

recognition algorithms surpass humans matching faces over changes in 
illumination. IEEE transactions on pattern analysis and machine 
intelligence, 29(9). 1642-1646. 

 
Pascalis, O., Scott, L. S., Kelly, D. J., Shannon, R. W., Nicholson, E., Coleman, M., & 

Nelson, C. A. (2005). Plasticity of face processing in infancy. Proceedings of the 
National Academy of Sciences of the United States of America, 102(14), 5297-
5300. 

 
Phillips, P. J., Beveridge, J. R., Draper, B. A., Givens, G., O'Toole, A. J., Bolme, D., ... & 

Weimer, S. (2012). The good, the bad, and the ugly face challenge 
problem. Image and Vision Computing, 30(3), 177-185. 

 
Quinn, P. C., & Tanaka, J. W. (2009). Infants’ processing of featural and configural 

information in the upper and lower halves of the face. Infancy, 14(4), 474-487.  
 
Renfrew, C. (1990). Archaeology and language: the puzzle of Indo-European origins. 

CUP Archive. 
 
Ritchie, K. L., & Burton, A. M. (2016). Learning faces from variability. The Quarterly 

Journal of Experimental Psychology, 70(5), 897-905. 
 
Schulz, C., Kaufmann, J. M., Walther, L., & Schweinberger, S. R. (2012). Effects of 

anticaricaturing vs. caricaturing and their neural correlates elucidate a role of 
shape for face learning. Neuropsychologia, 50(10), 2426-2434. 

 



	 	

	 196	

Shah, P., & Miyake, A. (1999). Models of working memory: An introduc- tion. In A. 
Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active 
maintenance and executive control (pp. 1–27). Cambridge, England: Cambridge 
University Press.  

 
Short, L. A., Hatry, A. J., & Mondloch, C. J. (2011). The development of norm-based 

coding and race-specific face prototypes: An examination of 5-and 8-year-olds’ 
face space. Journal of Experimental Child Psychology, 108(2), 338-357. 

 
Short, L. A., Lee, K., Fu, G., & Mondloch, C. J. (2014). Category-specific face 

prototypes are emerging, but not yet mature, in 5-year-old children. Journal of 
experimental child psychology, 126, 161-177. 

 
Short, L. A., & Mondloch, C. J. (2010). The importance of social factors is a matter of 

perception. Perception, 39, 1562-1564. doi: 10.1068/p6758.  
 
Short, L. A., & Mondloch, C. J. (2013). Aging faces and aging perceivers: Young and 

older adults are less sensitive to deviations from normality in older than in young 
adult faces. Perception, 42(8), 795-812. 

 
Short, L. A., Mondloch, C. J., McCormick, C. M., Carré, J. M., Ma, R., Fu, G., & Lee, K. 

(2012). Detection of propensity for aggression based on facial structure 
irrespective of face race. Evolution and Human Behavior, 33(2), 121-129. 

 
Short, L. A., Proietti, V., & Mondloch, C. J. (2015). Representing young and older adult 

faces: Shared or age-specific prototypes?. Visual Cognition, 23(8), 939-956. doi: 
10.1080/13506285.2015.1115794 

 
Stahl, J., Wiese, H., & Schweinberger, S. R. (2008). Expertise and own-race bias in face 

processing: an event-related potential study. Neuroreport, 19, 583-587. doi: 
10.1097/WNR.0b013e3282f97b4d 

 
Tanaka, J. W., & Corneille, O. (2007). Typicality effects in face and object perception: 

Further evidence for the attractor field model. Perception & Psychophysics, 69(4), 
619-627. 

 
Tanaka, J., Giles, M., Kremen, S., & Simon, V. (1998). Mapping attractor fields in face 

space: the atypicality bias in face recognition. Cognition, 68(3), 199-220. 
 
Tanaka, J. W., & Pierce, L. J. (2009). The neural plasticity of other-race face 

recognition. Cognitive, Affective, & Behavioral Neuroscience, 9(1), 122-131. 
 
Vizioli, L., Foreman, K., Rousselet, G. A., and Caldara, R. (2009). Inverting faces elicits 

sensitivity to race on the N170 component: A cross-cultural study. Journal of 
Vision. 10, 1-23. doi:10.1167/10.1.15 

 



	 	

	 197	

Vizioli, L., Rousselet, G., Foreman, K., & Caldara, R. (2009). Other-race faces all look 
alike to me and my N170. Journal of Vision, 9, 549-549. doi:10.1167/9.8.549 

 
Walker, P. M., & Hewstone, M. (2008). The influence of social factors and implicit racial 

bias on a generalized own‐race effect. Applied Cognitive Psychology, 22(4), 
441-453. 

 
Young, S. G., Hugenberg, K., Bernstein, M. J., & Sacco, D. F. (2012). Perception and 

motivation in face recognition a critical review of theories of the cross-race 
effect. Personality and Social Psychology Review, 16(2), 116-142. 
 
 



	 	

	 198	

Appendix 1 

 

 
 
 
 

 
 
 
 
 
  

Social Science Research Ethics Board 
  

 

Certificate of Ethics Clearance for Human Participant Research 
 

Brock University 
Research Ethics Office 
Tel: 905-688-5550 ext. 3035 
Email:  reb@brocku.ca 

 

                    
 

DATE: October 24, 2016 
  
PRINCIPAL INVESTIGATOR: MONDLOCH, Cathy - Psychology 
  
FILE: 15-232 - MONDLOCH 
  
TYPE: Ph. D. STUDENT: Xiaomei Zhou 

SUPERVISOR: Cathy Mondloch 

TITLE: Recognizing Faces in Photographs 
 

ETHICS CLEARANCE GRANTED  
 

Type of Clearance:  MODIFICATION Expiry Date:  3/31/2017 
 
The Brock University Social Sciences Research Ethics Board has reviewed the above named research proposal 
and considers the procedures, as described by the applicant, to conform to the University’s ethical standards 
and the Tri-Council Policy Statement.  
 
Modification: Computer stimulus and task. 
 
The Tri-Council Policy Statement requires that ongoing research be monitored by, at a minimum, an annual 
report.  Should your project extend beyond the expiry date, you are required to submit a Renewal form before 
3/31/2017.  Continued clearance is contingent on timely submission of reports. 
 
To comply with the Tri-Council Policy Statement, you must also submit a final report upon completion of your 
project.  All report forms can be found on the Research Ethics web page at 
http://www.brocku.ca/research/policies-and-forms/research-forms.   
 
In addition, throughout your research, you must report promptly to the REB: 

a) Changes increasing the risk to the participant(s) and/or affecting significantly the conduct of the study; 
b) All adverse and/or unanticipated experiences or events that may have real or potential unfavourable 

implications for participants; 
c) New information that may adversely affect the safety of the participants or the conduct of the study; 
d) Any changes in your source of funding or new funding to a previously unfunded project. 

 
We wish you success with your research. 
 
 
Approved:        
  ____________________________ 
  Jan Frijters, Chair 
  Social Science Research Ethics Board 
 
Note: Brock University is accountable for the research carried out in its own jurisdiction or under its auspices 

and may refuse certain research even though the REB has found it ethically acceptable. 
 

If research participants are in the care of a health facility, at a school, or other institution or community 
organization, it is the responsibility of the Principal Investigator to ensure that the ethical guidelines and 
clearance of those facilities or institutions are obtained and filed with the REB prior to the initiation of 
research at that site. 



	 	

	 199	

 
Appendix 2  

 
 

QUESTIONNAIRE: RACE 
 
 

Thank you for participating in our research. We recognize that individuals may differ 
in their ability to recognize faces. Some of these differences may be attributable to 
how much we experience different kinds of faces on a daily basis. Please take a few 
moments to complete the following questionnaire. 
 
Your responses will be confidential. 
 
PERSONAL INFORMATION 

 
1. Date of birth: ………………………………..………………………………. 

 
2. Mark your ethnic group: 

 
q Caucasican 
q Asian 
q Aboriginal 
q African Canadian 
q Other (Please specify) __________________________ 

 
3. How many people live in your household (including yourself):  

 
a) Home _________ 
b) University __________ 

 
4. Please indicate how many of those people (both at home and at University) are in 
each of the following  groups: 
 
 a) Caucasian _________ 

b) East Asian __________ 
 
5. Think about family members with whom you have regular contact (at least once 
per month). How many of those people are in each of the following ehtnic groups: 
 
 
 a) Caucasian _________ 

b) East Asian __________ 

Participant #______ 
 
DOT ________________ 
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6. Please estimate how many hours you usually spend per week interacting with 
people in each of the following groups: 
 
 a) Caucasian _________ 

b) East Asian __________ 
 

7. With how many East Asian adults do you have contact  in a typical week? 
__________ 
 

 
8. In your opinion, in the last 5 years, how much experience have you had with East 
Asian individuals? 

 
       1                       2                       3                        4                           5 
       �                      �                      �                        �                          � 
    minimal             some          moderate                a lot                       extensive 
 

 
 

9. Think of up to 10 friends with whom you spend the most time. Of these 10 friends: 
 

How many are Caucasian? _______  
How many are East Asian? _______ 
How many are any other race outside of Caucasian and East Asian? _______ 

  
 
10. Please write down the FIRST NAME (only) of up to 10 East Asian friends: 
 
_______________________________________________________________________ 
 
_______________________________________________________________________ 
 
_______________________________________________________________________ 
 
 
 
 
11. Please provide any additional information that would indicate extensive 
experience with East Asian individuals.  
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Appendix 3 

 
Familiarity Questionnaire 

 
 
 

a) Demographic Information 
 

 Age (in years): _________  
 
Sex (circle one):  Female   Male  
 
Ethnicity (e.g. White, Black, Asian): __________________________________  
 
First Language: __________________________________ 
 

 
 

b) Familiarity Information 
 
Were any of the faces in the experiment familiar?  Please circle 
Yes   /     No 
If yes, please indicate the name/s* of the individual/s that you recognised: 

________________________________________________________________________ 

________________________________________________________________________ 

*If you can't recall a name then please write down other information related to that 
person e.g. actor from a Harry Potter film. 
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Appendix 4 

 
                                   QUESTIONNAIRE: AGE 

 
 

 
Thank you for participating in our research. We recognize that individuals may differ 
in their ability to recognize faces. Some of these differences may be attributable to 
how much we experience different kinds of faces on a daily basis. Please take a few 
moments to complete the following questionnaire. 
 
Your responses will be confidential. 
 

PERSONAL INFORMATION 
 

 
1. Date of birth: ………………………………..………………………………. 

 
2. Mark your ethnic group: 

 
q Caucasican 
q Asian 
q Aboriginal 
q African Canadian 
q Other (Please specify) __________________________ 

 
3. How many people live in your household (including yourself):  
 
   a) Home _________ 
 
   b) University _________ 
 
4. Please indicate how many those people are in each of the following age groups: 
 
 a) Child (< 10) ____________ 
 b) Adolescent (11 – 17) ________ 
 c) Young adult (18 – 35) _________ 

d) Middle adult (35 – 55) __________ 
e) Older adult (56 – 80) __________ 

 
5. Think about family members with whom you have regular contact (at least once 
per month). How many of those people are in each of the following age groups: 
 

Participant #______ 
 
DOT ________________ 
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 a) Young adult (18 – 35) _________ 

b) Middle adult (35 – 55) __________ 
c) Older adult (56 – 80) __________ 
 

6. Please estimate how many hours you usually spend per week interacting with 
people in each of the following age groups: 
 
 a) Young adult (18 – 35) _________ 

b) Middle adult (35 – 55) __________ 
c) Older adult (56 – 80) _________ 

 
 
7. How many older adults (60 to 90 years old) you have contact with in a typical week? 
__________ 
 

 
8. In your opinion, in the last 5 years, how much experience have you had with people 
between the ages of  

 
60 and 90 years?  
 
       1                       2                       3                        4                           5 
       �                      �                      �                        �                          � 
    minimal             some          moderate                a lot                       extensive 
 

 
 

9. Please provide any additional information that would indicate extensive 
experience with older adults (ages 60 to 90). 
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Appendix 5 

 
Occupation list used in Study 4  

 
 

Accountant Lawyer 

Architect Librarian 

Artist Mechanic 

Athlete Musician 

Biologist Nurse 

Carpenter Optometrist 

Cashier Pharmacist 

Photographer CEO 

Chef Politician 

Custodian Professor 

Dentist Psychiatrist 

Director Receptionist 

Salesperson Doctor 

Editor Scientist 

Electrician Soldier 

Engineer Teacher 

Journalist Veterinarian 

Judge Writer 
 

 


