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Abstract 

Common risk alleles identified through Genome-Wide Association Studies 

(GWAS) explain about 14% of familial breast cancer cases. However, GWAS do 

not identify causative variants in the risk loci and do not contribute to the 

understanding of risk mechanisms. All of the risk loci functionally analysed to date 

are cis-regulatory, i.e. polymorphisms that modify gene expression. Therefore, 

we hypothesize that cis-regulation is a central mechanism in breast cancer 

susceptibility. 

Differential allelic expression (DAE) is the most robust method to identify the 

effect of cis-regulatory single nucleotide polymorphisms (SNPs). Our group 

established a whole-genome DAE map for normal breast tissue, which we 

integrated with the GWAS data, to identify risk loci with greater potential to be cis-

regulatory. We identified 111 loci, with one of them in the 12q24 locus, containing 

an unpublished GWAS SNP, rs7307700, and 15 DAE SNPs. 

We performed in silico analysis to characterize the regulatory potential of 

candidate cis-regulatory SNPs (rSNPs) in breast cell lines, and in vitro analysis 

by electrophoretic mobility shift assay (EMSA) to explore interactions between 

candidate rSNPs and candidate transcription factors (TFs). Three candidate 

rSNPs, rs10773145, rs10846834 and rs12302714, overlapped regulatory 

elements and DNase I hypersensitivity sites, and were associated with the DAE 

observed for two transcribed SNPs (or DAE SNPs), rs7301263 and rs12581512. 

The candidate SNPs rs10773145 and rs10846834 were both located within 

known c-FOS and STAT3 binding sites, but showed small allelic differences in 

the ChIP-seq data. Since there was no ChIP-seq data for rs12302714, we carried 

EMSA analysis. Although we detected DNA-protein binding for both alleles of this 

SNP, no allelic differences were detected. We also analysed candidate SNPs for 

microRNA binding and the results suggested that a microRNA have preferentially 

binding to the alleles of candidate rSNP rs12302714. These results indicate that 

the DAE observed might not be explained by differential binding of TFs at the 

three candidate rSNPs and might be due to other regulatory mechanisms, that 

require further exploration, such as splicing and microRNAs. 
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Resumo 

O cancro da mama é uma das doenças oncológicas mais comuns, sendo a mais 

frequente causa de morte entre as mulheres. É estimado que uma em cada onze 

mulheres será diagnosticada com cancro da mama ao longo da sua vida. Trata-

se de uma patologia complexa cuja etiologia pode ser devido a fatores genéticos 

e não genéticos. Estima-se que 5% a 10% dos casos de cancro da mama são 

devido a fatores genéticos, no entanto, o conhecimento atual acerca do risco 

hereditável não explica cerca 50% destes casos familiares. Recentes avanços 

tecnológicos, nomeadamente nos microarrays de genotipagem, e nos Estudos 

de Associação no Genoma Inteiro (genome-wide association studies, GWAS) 

permitiram identificar um grande número de variantes associadas a risco para 

cancro da mama. Os GWAS são estudos divididos por fases, que analisam 

variações no genoma inteiro, com o objetivo de descobrir fatores genéticos de 

risco de doenças comuns na população, como o cancro da mama. 

As variantes cis-reguladoras são polimorfismos frequentes na população (>5% 

de frequência do alelo menos frequente na população), ao contrário das 

mutações (<1% de frequência na população). Estes polimorfismos têm a 

capacidade de regular a expressão de genes quando localizados em elementos 

reguladores, nomeadamente, promotores ou elementos intensificadores 

(enhancer), podendo afetar a ligação de fatores de transcrição e 

consequentemente, a regulação de determinado gene. 

Atualmente, 94 loci de suscetibilidade para o cancro da mama foram 

identificados através de GWAS, que explicam apenas cerca de 14% do risco 

para esta patologia. Até à data, foram estudados funcionalmente 13 loci, e os 

resultados sugerem que os polimorfismos analisados tinham como mecanismo 

de atuação a cis-regulação. Adicionalmente, do 94 loci somente um se localiza 

numa região codificante, com todos os outros a localizarem-se em intrões, 

regiões intergénicas e regiões sem transcrição detetável (“gene deserts”). 

Finalmente, os GWAS para além dos 94 loci de risco validados, produziram 

longas listas de loci com significância estatística muito elevada, que necessitam 

de ser priorizados para estudos de validação. 



v 
 

Com base nestas evidências, a nossa hipótese é que a cis-regulação é um 

mecanismo importante para o risco do cancro da mama e que a maioria dos 

polimorfismos associados ao risco para o cancro da mama ainda por descobrir 

poderão ser também cis-reguladores. 

Este trabalho foca-se nos polimorfismos de nucleótido único (SNPs) cis-

reguladores e, entre outras abordagens, estes SNPs cis-reguladores (rSNP) 

podem ser identificados através da análise de loci de características 

quantitativas de expressão (expression quantitative trait loci, eQTL) e da análise 

de Expressão Alélica Diferencial (differential allelic expression, DAE). A análise 

de eQTL permite fazer uma associação entre SNPs e a variação de expressão 

total de determinado gene. No entanto, o nível de expressão total está sujeito a 

fatores em trans (tal como o nível de proteínas com função de fatores de 

transcrição), para além dos fatores em cis (alterações na sequência, tal como os 

SNPs). DAE é um dos possíveis efeitos observados na presença de rSNPs em 

elementos reguladores, dessa forma, a análise de DAE permite comparar os 

níveis relativos de expressão dos dois alelos do mesmo gene em indivíduos 

heterozigóticos, utilizando um SNP transcrito (tSNP ou DAE SNP). Esta 

abordagem não só indica qual o alelo a causar DAE, como elimina o efeito de 

fatores trans, pois compara os níveis de transcritos dos alelos individualmente 

no mesmo contexto celular e haplótipos. 

Num trabalho anterior feito pela Prof. Ana Teresa Maia e colegas, desenvolveu-

se um mapa de DAE em 64 amostras de tecido mamário normal, que informa 

quais genes estão sob a influência de rSNPs.  O próximo passo será identificar 

os SNPs causadores de risco. Assim, os dados do mapa de DAE foram cruzados 

com os resultados publicados e não publicados de GWAS para cancro da mama. 

Este cruzamento de dados foi feito de acordo com a localização cromossómica, 

distância física (janelas de ±250kb entre o GWAS SNP e o DAE SNP) e padrões 

de desequilíbrio de ligação (linkage disequilibrium, LD) com o valor mínimo de r2 

= 0.4. Foram identificados 111 loci candidatos que contêm pelo menos um 

GWAS SNP e um DAE SNP e com forte potencial cis-regulador. Em 32 loci o 

GWAS SNP e o DAE SNP estavam em elevado LD, ou seja, os seus genótipos 

estavam fortemente associados. Como todos os loci estudados funcionalmente 

sugerem que o mecanismo causador de risco para o cancro da mama é a cis-
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regulação, e como todos os loci identificados, com exceção a um, encontram-se 

em regiões não codificantes (sugerindo que estão localizados em regiões 

regulatórias), selecionámos para análise funcional o locus 12q24, não publicado, 

para testar se este locus encontra-se também sob influência de rSNPs e validar 

este locus para o risco de cancro da mama. O GWAS SNP neste locus não 

atingiu o valor estabelecido pelo GWAS para passar a fase III, talvez por não 

estar em elevado LD com o rSNP causal. Desta forma, iremos testar se a 

integração do nosso mapa de DAE com os dados do GWAS relativos ao cancro 

da mama é uma boa abordagem para priorizar loci ainda por validar, com maior 

probabilidade de estarem sob influência de variantes cis-reguladoras, e 

consequentemente, mais prováveis a estarem associados ao risco para o cancro 

da mama. 

Este trabalho teve como objetivo: 1) validar um dos loci identificados, mas não 

validados, localizado na região 12q24, e confirmar a sua associação com o risco 

para o cancro da mama; 2) identificar e analisar funcionalmente as variantes com 

potencial a serem cis-reguladoras no locus 12q24; 3) testar se a nossa 

abordagem é um método eficaz para priorizar variantes candidatas a associados 

com risco. 

Começou-se por analisar o nosso mapa de DAE nesta região. A região do locus 

12q24 apresenta 15 DAE SNPs e um GWAS SNP, rs7307700, localizado no 

gene AACS. Para identificar e analisar possíveis variantes associadas ao risco 

e com potencial a serem rSNPs, foram feitas análises in silico. Os dados dos 

projetos HapMap e 1000 Genomes Project foram consultados para identificar os 

melhores candidatos a rSNPs em LD ≥ 0.4 com o GWAS SNP, sendo 

identificados 72 rSNPs candidatos. Para analisar estes candidatos, acedeu-se 

aos dados dos projetos ENCODE e Roadmap Epigenomics, que contêm 

informações sobre zonas de hipersensibilidade à desoxirribonuclease I (DHSs), 

imuno-precipitação da cromatina (ChIP-seq) para diversas modificações de 

histonas e fatores de transcrição, previsões alélicas de ligação de proteínas 

(PWM). No final desta análise, 12 rSNPs candidatos foram encontrados em 

sobreposição com DHSs e com regiões que contêm marcadores para elementos 

reguladores, com evidência de estarem ativos em linhas celulares mamárias, 
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sugerindo que esses podem ter um efeito funcional através da regulação da 

expressão de genes alvo., 

Para identificar as variantes que poderão estar a causar DAE no locus 12q24, 

testaram-se os níveis de expressão alélica dos 15 DAE SNPs com os genótipos 

dos 12 rSNPs candidatos. Dado o padrão de DAE demonstrado pelos DAE 

SNPs, pretendeu-se identificar os rSNP candidatos cujos homozigóticos não 

demonstrassem DAE nos DAE SNPs (i.e., SNPs transcritos), e cujos 

heterozigóticos apresentassem DAE nos DAE SNPs. Três dos 12 candidatos 

(rs10773145, rs10846834 e rs12302714) explicavam o DAE de dois DAE SNPs 

(rs12581512 e rs7301263). Para dois deles, rs10773145 e rs10846834, que se 

encontravam em completo LD um com o outro, existiam dados de ChIP-seq 

disponíveis que indicavam a ligação das proteínas STAT3 e c-FOS. No entanto, 

esses dados não revelavam diferenças de afinidade entre os alelos de cada 

SNP. Para o terceiro candidato, rs12302714, como não existiam dados de ChIP -

seq, procedemos com ensaios in vitro. Os resultados de EMSA (electrophoretic 

mobility shift assay) sugeriram que, apesar de haver ligação de proteína, não 

existiam diferenças de afinidade para os alelos deste rSNP candidato. De acordo 

com estes resultados, é possível que estes três candidatos estejam a afetar o 

DAE observado nos DAE SNPs do gene AACS por outro mecanismo que não a 

ligação diferencial de fatores de transcrição em elementos reguladores. Outros 

mecanismos possíveis incluem diferenças alélicas de produção de transcri tos 

alternativos (alelos a afetar o processo de splicing), ou de regulação por 

microRNAs. 

De seguida, analisou-se se havia alguma previsão de ligação preferencial de 

microRNAs aos alelos dos 72 SNPs candidatos. Em 17 dos 72 SNPs (incluindo 

o SNP rs12302714) houve previsões de ligação microRNAs com preferência a 

um dos alelos comparativamente ao outro. Posteriormente, analisaram-se os 

genótipos dos candidatos rSNPs, DAE SNP e GWAS SNP para a estrutura de 

LD nessa região e para identificação dos haplótipos, nas 64 amostras de tecido 

normal da mama, que poderão ser responsáveis pelo aumento ou diminuição da 

expressão dos genes. Foram identificados seis haplótipos comuns, estando dois 

haplótipos associados a diferenças nos níveis de expressão. Estes resultados 
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sugerem que talvez seja o efeito acumulativo de dois ou mais rSNPs a causar o 

risco para cancro da mama e o DAE observado nos DAE SNPs no locus 12q24. 

Em paralelo a este trabalho, um outro locus (5q14.2) foi funcionalmente 

analisado. Um dos candidatos rSNP identificados através da análise in silico, 

afeta diferencialmente a ligação de um fator de transcrição no gene ATG10, 

causando assim, DAE por cis-regulação. No entanto, o fator de transcrição que 

se liga preferencialmente a um dos alelos deste rSNP permanece por identificar.  

Em suma, o cruzamento dos nossos dados de DAE com os dados de GWAS foi 

uma boa abordagem para priorizar loci não publicados dos GWASes que estão 

sob influência de cis-regulação, e com potencial para ser associado ao risco, 

para validação para o risco de cancro da mama. Futuramente, mais análises in 

silico e in vitro deverão ser feitas, de modo a entender que outro mecanismo de 

regulação poderá explicar o DAE observado no locus 12q24, e que fator de 

transcrição poderá estar a regular a expressão do gene ATG10 (locus 5q14.2). 

Uma análise mais aprofundada da regulação destes genes poderá levar também 

à compreensão da biologia de predisposição ao cancro e contribuir para o 

desenvolvimento de terapias futuras, especialmente na área da medicina 

personalizada, baseada nos haplótipos que regem o DAE em cada indivíduo. 

Palavras-chave: cancro da mama; suscetibilidade; polimorfismos de nucleóticos 

únicos; variantes cis-reguladoras; expressão alélica diferencial. 
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1  Introduction 

1.1 Cancer overview 

1.1.1 Epidemiology 

Cancer is among the diseases with the highest incidence in the world, leading 

not only to a reduction in the patient's quality of life but also to a socio-economic 

decline. It is estimated that one in four males and one in five females will have 

severe cancer in their lifetime (American Cancer Society, 2016). Every year, 

worldwide, fourteen million people are diagnosed with cancer and eight million 

die, and 1/3 of these deaths are thought to be preventable. In Europe alone, there 

were 3.45 million new cases of cancer (besides non-melanoma skin cancer) in 

2012. Since cancer develops with age, these numbers tend to increase, as life 

expectancy becomes longer. Without further improvement at scientific and 

prevention level it is estimated that by 2030 death by cancer will increase 59% 

(Globocan, 2012). In Portugal, according to Globocan 2012, 49,174 people were 

diagnosed with cancer, with breast cancer being the most common malignant 

tumour, and the incidence is predicted to increase to 60,772 by 2030. 

 

1.1.2 Aetiology 

According to the World Health Organization (WHO), cancer corresponds to an 

uncontrolled growth and dissemination of cells. Normally, it is characterized by 

the accumulation of genetic mutations over time, in the same cell, mostly due to 

environmental factors that cause an abnormal and uncoordinated proliferation of 

the cell (Figure 1.1.2.1) (Jackson & Loeb 1998). In other words, the real problem 

in cancer is the uncontrolled ability of a single cell that carries a driver mutation 

to divide. 
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Figure 1.1.2.1 Carcinogenesis stages. Tumours are complex groups of cells, with high level of 
intra- and inter- heterogeneity. Each step reflects genetic changes that will lead to a cancer cell. 
It begins with alterations that will inactivate tumour suppressor genes and activate oncogenes, 

promoting uncontrolled proliferation of the mutated cell, leading further to metastasis. (Image 
taken from (Yokota 2000)). 

 

Carcinogenesis is a multistep process which begins with the acquisition of 

somatic mutations in (proto-)oncogenes or tumour suppressor genes, where 

activation/up regulation or loss of function, respectively, causes 

hyperproliferation, blocking of differentiation and inhibition of cellular death 

(apoptosis) (Osborne 2004). (Proto-)oncogenes are involved in the normal 

growth of a cell, coding for proteins that stimulate cell growth, proliferation and 

regulate apoptosis. However, when mutated they become oncogenes that are 

constitutively activated, leading to abnormal cell proliferation, anomalous 

expression of growth factors and their receptors, such as fibroblast growth factor 

(FGF) and fibroblast growth factor receptor (FGFR), respectively. Other 

examples of oncogenes are HER2, c-MYC, hTERT, EGFR, VEGFR and RAS. 

Tumour suppressor genes are important for the delay of the cell division and DNA 

repair. Normally, tumour suppressor genes act by inhibiting cell growth, 

promoting apoptosis. The deregulation of these genes prevents abnormal cells 

to die. Some examples of tumour suppressor genes are TP53, BRCA1, BRCA2, 

APC and RB1 (Lodish et al. 2000). 

Tumour cells progressively acquire characteristics that allow them to continue 

proliferating and developing malignancy. These characteristics are called the 

Hallmarks of Cancer, and were first proposed in 2000 (Hanahan & Weinberg 

2000): 

 Sustaining proliferative signalling 

 Evading growth suppressors 
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 Activating invasion and metastasis 

 Enabling replicative immortality 

 Inducing angiogenesis 

 Resisting cell death 

The same authors, in 2011, proposed four more new characteristics that are 

involved in the pathogenesis of cancer (Hanahan & Weinberg 2011). Since none 

of this new features have been validated, they are called emerging hallmarks: 

 Deregulating cellular energetics 

 Avoiding immune destruction 

 Tumour-promoting inflammation 

 Genome instability and mutation 

Cancer cells have the ability to invade the surrounding tissues and metastasize 

to distant location, affecting almost any body part. Several types of cancers can 

be prevented if avoided exposition to common risk factors, such as tobacco and 

obesity. Furthermore, a significant percentage of cancers can be cured by 

surgery, radiotherapy or chemotherapy if detected early (World Health 

Organization, 2016).  

 

1.2 Breast Cancer 

1.2.1 Pathogenesis, histological and molecular subtypes 

There are several risk factor that increase the susceptibility to develop breast 

cancer such as age, diet, genetics, familial history, infections and endocrine 

factors (endogenous and exogenous) (Abdulkareem 2013; Shah et al. 2014). The 

high heterogeneity, genetic instability and complexity makes the task to identify 

the biological mechanism that leads to breast cancer more challenging 

(Abdulkareem 2013). Different types of breast cancer have different aetio-

pathogenesis. Morphologically, breast is essentially constituted by fat tissue and 

mammary glands. Mammary glands are composed by ducts and lobes, which 

have smaller sections named lobules. The majority of breast cancers are called 

carcinomas, and depending on the localization they can be called in situ 
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carcinoma – when localized in the region where it began -, or invasive carcinoma 

- if it spread to the surrounding tissues. The initiation of the in situ carcinomas 

may be in the lobules – lobular carcinoma – or in the ducts – ductal carcinoma, 

being the ductal carcinoma in situ (DCIS) significantly more common than lobular 

carcinoma in situ (LCIS) (National Cancer Institute, 2016). Histologically, unlike 

LCIS, DCIS and invasive carcinoma have intra-tumour histological differences 

and can be divided in five and seven subtypes, respectively: 

 

Figure 1.2.1.1 Histological classification of breast cancer. Breast cancer can be catalogued 

into different subtypes, according to histological features and growth patterns. This system is 
currently used by clinicians to categorize the heterogeneity found in breast cancer. (Image 
adapted from Malhotra et al. 2010). 

  

Infiltrating ductal carcinoma (IDC) accounts for 70-80% of all invasive 

carcinomas. In the clinics, the pathologist analyses the nuclear pleomorphism, 

glandular/tubule formation and mitotic rate in IDC and ranks it according to 

grades: well differentiated (Grade 1), moderately differentiated (Grade 2) and 

poorly differentiated (Grade 3) (Malhotra et al. 2010). 

Microarray analysis allowed investigators to understand and establish a 

molecular profile of gene expression in a tumour (Eroles et al. 2012). Molecular 

characteristics on cancer cells helped improved personalized medicine, since the 
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same type of tumour is different between people and within the tumour, 

culminating with differences in patient survival (Malhotra et al. 2010). Depending 

on the molecular type of tumour, we can predict the response to a directed 

treatment (Shah et al. 2014). Breast cancer can be divided in five major molecular 

subtypes (Figure 1.2.1.2) based on gene expression of the tumours: ER+ 

(oestrogen receptor positive)/Luminal A, Luminal B, Basal-like, ERBB2-enriched 

(or HER2) and Normal Breast-like (Sorlie et al. 2001; Sorlie et al. 2003). 

 

 

Figure 1.2.1.2 Molecular classification of breast cancer. Breast cancer present different  

subtypes, according to intrinsic molecular characteristics identified by microarray analysis of 
patient tumour specimens. Image taken from (Sorlie et al. 2003). 

Luminal A is the most common subtype of breast cancer, representing 50-60% 

of total. It is characterized by an increase in ER (oestrogen receptor 1) expression 

and/or PR+ (progesterone receptor)/HER2- status, GATA binding protein 3 and 

oestrogen-regulated LIV-1. It is also associated to low-grade tumours and good 

prognosis (Eroles et al. 2012; Malhotra et al. 2010; Sorlie et al. 2001). 

Luminal B is less common than Luminal A, accounting for approximately 20% of 

all breast cancer, and it is known for having low levels of ER/PR receptors, being 

HER2 negative, with high levels of proliferation, and not having a good prognosis 

(Sorlie et al. 2001; Malhotra et al. 2010). 

ERBB2 is an oncogene that encodes for the transmembrane tyrosine kinase 

growth receptor ERBB2 that is part of the human epidermal growth factor receptor 

(HER/EGFR/ERBB) family. This gene is overexpressed in 20-30% of all breast 

tumours and is involved in cell proliferation survival, cell motility, and invasion. 

ERBB2 positive tumours, where the expression of this gene is amplified, are more 
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aggressive and, therefore, present a poor prognosis (Shah et al. 2014; Sorlie et 

al. 2001; Perou et al. 2000).  

Basal-like/triple-negative is characterized by the expression of keratin 5, 6 and 

17, integrin beta, fatty acids, laminin and for the absence of ER, PR and HER2 

expression. Accounting for 3-15% of all breast tumour, this subtype is associated 

with poor outcome due to the lack of treatment options (Sorlie et al. 2001; Perou 

et al. 2000; Badve et al. 2011; Sorlie et al. 2003). 

 

Normal breast-like show similarities with normal breast tissue, expressing genes 

related to the adipose tissue, and other none-epithelial cell types (Sorlie et al. 

2001). 

More recently, a study has examined gene expression and copy number in 2,000 

breast tumours, the METABRIC project (Molecular Taxonomy of Breast Cancer 

International Consortium), performing a new integrative clustering, based on 

gene expression and copy number data and the results suggested ten novel 

molecular subtypes, showed in Table 1.2.1.1 (Curtis et al. 2012). 

 

Table 1.2.1.1 Breast cancer subtypes classification according to the METABRIC project.  
This table was accomplished based on data presented by the METABRIC project (Curtis et al. 
2012). IntClust, integrative clustering; CNA, copy number aberrations.  

Subgroup Characteristics 

IntClust 1 17q23/20q cis-acting luminal B subgroup; relatively good 
outcome 

IntClust 2 High-risk ER+ subgroup; characterized by amplification of 

11q13/14, overexpressing genes like CCND1 and RSF1, both 
previously linked to breast and ovarian cancer; associated with 
poor prognosis. 

IntClust 3 Luminal A cases subgroup, enriched for histotypes that typically 

have good prognosis; characterized by low genomic instability. 

IntClust 4 Includes both ER-positive and ER-negative cases; 
characterized by low levels of CNA and good prognosis. 

IntClust 5 ERBB2-amplified subgroup; characterized by HER2 

enrichment (ER-negative) cases and luminal (ER-positive) 
cases; low prognosis 

IntClust 6 8p12 cis-acting luminal subgroup; characterized by 

amplification of 8p12 
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IntClust 7 Luminal A subgroup; characterized by 16p gain/16q loss and 

higher frequencies of 8q amplification 

IntClust 8 Luminal A subgroup; characterized by 1q gain/16q loss, a 
common translocation event 

IntClust 9 8q cis-acting/20q-amplified mixed subgroup 

IntClust 

10 

Basal-like cancer enriched subgroup; characterized by high 

genomic instability and cis-acting alterations, namely, 5 loss/8q 
gain/10p gain/12p gain; good long-term outcome 

 

These molecular characteristics are important biomarkers that can indicate the 

patient overall cancer outcome – prognosis biomarker – and the effect of a 

therapeutic intervention – predictive biomarker – in order to improve diagnosis 

and treatment for breast cancer (Oldenhuis et al. 2008).  

 

1.2.2 Epidemiology 

In 2012, nearly 1.67 million women were diagnosed with breast cancer worldwide, 

and almost 522,000 of these women died (ranking as the fifth cause of death 

worldwide), making breast cancer the most common cancer in women (Globocan 

2012). In the same year, 463,800 European women were diagnosed with breast 

cancer, from which 131,200 died (Ferlay et al. 2013). In Portugal, out of 6,088 

women diagnosed with breast cancer, 1,570 died. Unfortunately, these numbers 

have a tendency to increase and by 2050 it is estimated 3.2 million new cases 

per year worldwide. As expected, the incidence is higher in developed than in 

undeveloped countries, and this is related mostly to these countries’ lifestyle. It is 

estimated that one in eight women will have breast cancer during their lifetime, in 

which 89% have more than 40 years. This change in incidence can be also due 

to an increase in population-based screening, which leads to an early detection 

and decrease in mortality (Youlden et al. 2012). 
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1.2.3 Aetiology 

1.2.3.1 Environmental /Overall Risk factors 

Although screening through mammography does not prevent cancer, it reduces 

the risk of dying from cancer. Finding cancer at early stages, while asymptomatic, 

makes the treatment easier and increases long-term survival (Centers for 

Disease Control and Prevention, 2016). There are some factors that can be 

avoided and that contribute to an increase risk of breast cancer, such as exposure 

to carcinogenic substances (e.g. alcohol, tobacco and red meat), oral 

contraceptives, give birth at older age (after 40s), obesity and exposure to 

radiation. Investing in protective factors such as physical exercise, keeping a 

healthy diet, a healthy weight and breastfeeding may decrease the risk of 

developing breast cancer (Youlden et al. 2012; McPherson et al. 1994). It is also 

known that breast cancer is strongly related with age, and in fact, this disease 

affects mostly elderly women after menopause (>54 years). 

1.2.3.2 Genetic Susceptibility 

Genetic susceptibility is an increased probability of an individual to develop a 

disease based on their genotype. This genetic inheritance can be triggered by 

environmental factors, normally at late age. Genetic susceptibility can be 

classified according to the relative risk that the genetic variant confer and their 

frequency in the population (Figure 1.2.3.2.1) (reviewed in Ghoussaini et al. 

2013).  
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Figure 1.2.3.2.1 Breast cancer genetic susceptibility loci. The relative risks and risk allele 

frequency for each locus. Higher risk mutations have lower frequency on the population, while 
common modest-risk alleles confer only a small risk (Ghoussaini et al. 2013). 

  

Inherited factors increase the probability of an individual having cancer due to 

mutations on the germline cells. About 5-10% of breast cancers are due to 

genetic predisposition, affecting mainly younger people (Gage et al. 2012). 

Comparing with the general population, individuals with at least one first-degree 

relative with breast cancer are two or more times more likely to develop breast 

cancer. Multiple-case families include a positive familial history with: 

 At least three relatives, in the same side of the family, with breast or 

ovarian cancer 

 At least, one first-degree relative  

 At least one case per generation 

 At least one first-degree relative diagnose at a younger age (<40) 

(McPherson et al. 1994) 

Although those inherited autosomal dominant mutations represent a small 

amount of the causes for breast cancer, most of them have a significantly high 
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penetrance - meaning that the individuals that carry those genetic variants have 

high probability of expressing the phenotype. 

 

1.2.3.2.1  High-risk mutations 

Some tumour suppressor genes, such as STK11/LKB1, BRCA1, BRCA2 and 

TP53, are involved in the repair of damaged DNA. When any of these genes 

acquire loss-of-function mutations the resulting protein will not be produced or 

function properly (Apostolou & Fostira 2013; Ripperger et al. 2009). These high-

penetrance alleles increase the risk for developing breast cancer by 10- to 30-

fold, through the direct effect of the mutation. Although mutations in these genes 

are rare in the population (have low frequency, <1%), they confer a significant 

lifetime risk for breast cancer (>50%) (Figure 1.2.3.2.1) (Ghoussaini et al. 2013; 

Fletcher & Houlston 2010). Twenty five percent of the familial cases of breast 

cancer are explained by high risk mutations, being 16% due to BRCA1 and 

BRCA2 germline mutations (Van Der Groep et al. 2011). In fact, multiple-case 

family studies have shown that by the age of 70, approximately 80% of the 

carriers of germline mutations in BRCA1 and BRCA2 genes would develop this 

type of cancer (Milne & Antoniou 2011). The studies and approaches that allowed 

the identification of these mutations were: i) linkage analysis, that provides 

statistical evidence of the contribution of a variant or gene in the disease aetiology 

within families (Ott et al. 2015; Aloraifi et al. 2015); ii) positional cloning, which 

helps identifying the causal genetic mutations of diseases with simple Mendelian 

inheritance (Puliti et al. 2007); and iii) DNA resequencing of candidate genes 

(Fletcher & Houlston 2010). 

Indeed, there are studies that show the existence of differences in penetrance 

within the carrier families, suggesting that there are other factors, such as 

environmental and genetic modifiers, influencing the risk (Begg et al. 2009; Milne 

& Antoniou 2011; Ripperger et al. 2009). It has been described that 

polymorphisms can have an effect in genes, altering their expression, making 

them an important tool to predict the risk associated with cancer, and, 
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furthermore, this may lead to new therapeutic methodologies for breast cancer 

patients (Maia et al. 2012; Milne & Antoniou 2011). 

 

1.2.3.2.2  Moderate-risk mutations 

Genetics variants in ATM, CHEK2, PALB2, BRIP1, PTEN and CDH1, also 

involved in DNA repair, increase moderately the relative risk for breast cancer 

(approximately two-fold), conferring an higher probability of an individual to 

develop breast cancer in their lifetime of approximately ≥20% (Figure 1.2.3.2.1) 

(Ghoussaini et al. 2013; Hindorff et al. 2011). DNA resequencing of candidate 

genes for coding variation, using genetically enriched cases, allowed the 

identification of these variants (Fletcher & Houlston 2010). 

 

1.2.3.2.3  Common low-susceptibility alleles and GWAS 

These alleles are common in the population, with a minor allele frequency (MAF) 

of >5%, and confer a modest to low relative risk, corresponding to <1.5-fold and 

a lifetime risk of 10-20% (Figure 1.2.3.2.1) (Ghoussaini et al. 2013). These 

polymorphisms are usually found by genome-wide association studies (GWAS), 

that are a type of study that analyses DNA sequence variations through the entire 

human genome, aiming to identify genetic risk factors for diseases that are 

common in the population (Bush & Moore 2012; Knight 2014). For breast cancer, 

recent studies identified so far 94 loci, that explained about 14% of the inherited 

risk for breast cancer (Michailidou et al. 2015). Of the 94 loci, 13 were studied at 

a functional level and all suggested that these polymorphisms can modify the 

expression of genes in a allele-specific manner, namely MAP3K1, CCDC170, 

ZNF365, CASP8, CCDN1, FGFR2, MDM4 and can modify breast cancer related 

genes, such as BRCA1 and BRCA2 (Ghoussaini et al. 2013; Michailidou et al. 

2015; Ripperger et al. 2009; Maia et al. 2012; Glubb et al. 2015; Cai et al. 2011; 

Shephard et al. 2009; Wang et al. 2014; French et al. 2013; Meyer et al. 2008; 

Meyer et al. 2013; Wynendaele et al. 2010). Additionally, the underlying 

mechanisms of these susceptibility polymorphisms are still unresolved.  
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Single nucleotide polymorphisms (SNPs) are spread across the genome. GWAS 

use marker SNPs as genetic markers for a certain genomic region and allow the 

association between numerous SNPs and a specific phenotype or disease (Bush 

& Moore 2012), by using cases and controls samples. Under the assumption that 

when the GWAS SNP is not the causative genetic variant and that the actual 

causal SNP is in high linkage disequilibrium (LD) with the marker SNP, GWAS 

uses LD as a measurement to correlated the genotypes of two different SNPs 

(Figure 1.2.3.2.3.1). LD refers to when two or more markers on a chromosome 

are transmitted together within a population, during chromosome segregation in 

cell division, forming haplotypes. Thereupon, this non-random association 

between alleles at two or more loci, is commonly measured by two parameters - 

D prime (D’) and R square (r2) which compare the observed frequencies of co-

occurrence for two alleles in a population with the frequencies expected if the two 

markers were independent (Bush & Moore 2012; Morton 2005). D’ varies 

between zero and one, corresponding to linkage equilibrium when the 

recombination between two or more markers is elevated, and to linkage 

disequilibrium, when there is no recombination between the two markers. 

Coupled with D’, high values of r2 (also scaled between zero and one) indicate 

that the two markers transmit similar information. Therefore, it only takes one 

genotyped marker to find the allelic variation of the other (Bush & Moore 2012). 

 

Figure 1.2.3.2.3.1 GWAS approach for identification of the causal SNP. A GWAS marker 
SNP in strong LD with a common causal variant, the true responsible for the phenotype, will report  
the causal SNP. Image obtained and adapted from (Balding 2006). 
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In other words, GWAS uses a marker SNPs that report the association with 

another SNP when both are in strong LD with each other. In this way, most of all 

genome sequence is covered only with a small portion of known markers SNPs. 

More loci associated with risk are yet to be identified, and is expected to be due 

to common-low susceptibility alleles (Galvan et al. 2010). However, the 

polymorphisms associated to a certain phenotype found in a GWAS, are rarely 

the individual causative polymorphism, and therefore it is necessary to improve 

the current approaches to be able to find the true cause of the observed 

phenotype and the intrinsic mechanism (Knight 2014; Consortium 2015). 

 

1.3 Genetic Variation/Polymorphisms 

Comparing DNA sequences from different individuals, it has been estimated that 

in every few hundred bases there is a genetic polymorphism. Considering that 

there are 3.2 billion nucleotides in the human genome and that they can be 

responsible for alterations in gene expression, it is of extreme importance to study 

these variations effect on differences in treatment response and disease risk  

(Stoneking 2001). Unlike mutations, these variations are common, with >1% of 

allele frequency in the population (Torkamani & Schork 2008). 

Within DNA variations, the most common are SNPs (~90%), tandem repeat 

segments (minisatellite (10-100 bp) and microsatellite (1-6 bp)), and large and 

small duplications/deletions/insertions (Wang et al. 2005). SNPs are variations of 

one nucleotide in the DNA sequence with the ability to regulate gene expression. 

They can also be found in protein-coding regions, and depending on whether the 

SNP changes or not the encoded amino acid in the final protein it is classified as 

non-synonymous or synonymous, respectively (Torkamani & Schork 2008). 

Since SNPs are present in a significant proportion of human populations, they 

are considered common genetic variation. Also, most of the SNPs have two 

alleles and their frequency is represented by the minor allele frequency (MAF) 

rather than the more common allele frequency (the major allele) (Bush & Moore 

2012). 
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1.3.1 Cis-Acting Regulatory Variants 

Gene expression is regulated by environmental, epigenetic and genetic factors 

that act both in cis and in trans (Jones & Swallow 2011). Cis-regulation is the 

mechanism by which a variation in the DNA sequence affects the expression of 

a gene, by modulating the binding affinity of transcription factors, mRNA stability, 

methylation and splicing, for example. Meanwhile, trans-regulation relates to the 

effect of proteins regulating other gene expression, such as transcription factors. 

Variants in cis-regulatory elements, like promoters, enhancers, silencers and 

insulators can disrupt or enhance the binding affinity of transcription factors and 

can lead to unequal levels of transcription between the two alleles of a gene 

(Figure 1.3.1.1). 

 

 

Figure 1.3.1.1 Cis-acting regulatory variation causing differential allelic expression. a) A 

variant in a proximal promoter may prevent transcription factor binding altering expression of the 
allelic transcript. Transcript SNPs (markers) (shown here as black/white circles) can be used to 
determine transcript ratios. b) A variant in a distal enhancer site may prevent complex binding 

and affect transcription levels. Image adapted from (Jones & Swallow 2011). 

 

SNPs can be anywhere in the genome and may affect, for example, the binding 

affinity of proteins in an allele-specific manner. One of those examples, found 

through GWAS, is present in the risk-loci FGFR2, where it was shown in a 

functional analysis that the risk allele was associated with increased expression 

of this gene when compared to the common allele (Meyer et al. 2008). Another 

example is MAP3K1, whose risk alleles are also associated with increased gene 

expression (Glubb et al. 2015). MicroRNAs (miRNA) and methylation can also be 

affected by genetic alterations such as SNPs. miRNAs are small non-coding 

RNAs with approximately twenty two nucleotides, that regulate gene expression 

by binding to mRNA and preventing translation (synthesis of a protein) or by 
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promoting mRNA cleavage and destabilization (Liu et al. 2012). Roughly 3% of 

genes represent miRNA and 30% of coding genes can be affected by miRNA 

(Sassen et al. 2008). The presence of a SNP in the 3’UTR of a mRNA might affect 

the miRNA binding and, consequently, the mRNA translation (Liu et al. 2012). 

For example, it was shown that the target site of miR-125b, in the 3’UTR of the 

gene BMPR1B, which encode a kinase, contains a SNP (rs1434536) and that 

miR-125b differently binds to the C and T alleles of this SNP in breast cancer 

(Sætrom et al. 2009). 

As well as miRNA, chemical modification of DNA and histones is also involved in 

gene expression regulation. DNA is packed around histone proteins (H1, H2A, 

H2B, H3, and H4 histones) forming the chromatin, that can suffer modifications 

such as methylation, acetylation, phosphorylation, ubiquitylation and 

sumolyation, specifically on lysine residues (K) of histones H3 and H4 (Hellman 

& Chess 2010; Ellis et al. 2009; Handy et al. 2011). The histone code hypothesis 

refer that the expression of the DNA information is partially regulated by these 

modifications. This epigenetic regulation can be complex since each histone can 

be modified simultaneously with different histone marks at multiple sites. Each 

histone has different number of lysine (that can be mono-, di- or tri-methylated or 

acetylated), arginine (that can be methylated) or threonine/serine/tyrosine (that 

can be phosphorylated). Therefore, it is probable that every nucleosome in a cell 

presents different modifications. In fact, in a recent study where they analysed 39 

histone modifications in human CD4+ T cells, a group have shown that patterns 

of modifications can occur on the genome, and most of those modifications were 

associated with promoters and enhancers, suggesting a role of histone 

modifications in transcriptional regulation (Wang et al. 2008; Handy et al. 2011; 

Bannister & Kouzarides 2011). The DNA methylation usually occurs in CpG 

islands (areas in the DNA sequence rich in C (cytosine) and G (guanine) 

dinucleotides, found frequently in promoters), namely in the C nucleotide, and it 

might be associated with gene expression repression due to the steric inhibition 

of regulatory transcription complexes binding to DNA (Handy et al. 2011; Ellis et 

al. 2009). 

Also, the accessibility to the chromatin for transcription factor binding varies 

according to the chromatin states, that can be open (euchromatin) or compact 
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(heterochromatin). Thus, the chromatin state is controlled by histone 

modifications. Since active regulatory elements are located in regions with open 

chromatin, that is, accessible to the transcription machinery, these DNA sites are 

highly sensitive to DNase I, an enzyme that digests the DNA strand (Jin et al. 

2015). Therefore, if a SNP is present in a DNase I Hypersensitive site (DHS), it 

may cause differences in transcription factor binding between the two alleles and 

lead to different levels of expression (Schaub et al. 2012).  

  

1.3.2 Differential Allelic Expression 

As stated before, regulatory SNPs or rSNPs may lead to different levels of 

expression between the two alleles of a gene (Maia et al. 2012; Jones & Swallow 

2011).  

Currently, two approaches are used to detect these differences of expression, 

namely, expression quantitative trait loci (eQTL) and differential allelic expression 

(DAE). eQTL provide us information about overall expression (mRNA) of a gene, 

making association between markers of genetic variation with gene expression 

levels typically measured in tens or hundreds of individuals. One of the 

advantages of eQTL is that it allows the identification of new functional loci, 

through GWAS, without having previous knowledge of specific cis or trans 

regulatory regions. However, it does not inform us which allele is causing the 

difference on expression levels (Figure 1.3.2.1) (Pastinen 2010). On the other 

hand, DAE approach is an allele-specific study, and the differences in expression 

between the two alleles due to the presence of a rSNP, can be quantified in 

heterozygous individuals as a ratio of the expression of one allele compared with 

the other, using transcribed SNPs (DAE SNPs) as allelic markers (Figure 1.3.1.1 

and Figure 1.3.2.1). DAE also allows the elimination of environmental or trans-

factors that can modify both alleles, since it is focused on the transcribed alleles 

individually (Pastinen 2010). 

Indeed, our research group performed a whole-genome mapping of cis-regulation 

in normal breast samples using DAE, and these results suggest that 

approximately 87 % of genes expressed in normal breast tissue are affected by 
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regulatory SNPs (rSNPs) (Xavier et al, unpublished). Another study has used 

eQTL analyses with information from The Cancer Genome Atlas (TCGA), 

regarding gene expression in ER+ breast cancer. They conclude that 1.2% of 

gene expression variance was due to cis-acting SNP loci, which corresponded to 

189 out of 15,732 tested genes (Li et al. 2013). 

Therefore, here we focus on DAE studies, considering it is more accurate in 

detecting cis-regulatory loci and in mapping the causal regulatory variant (rSNP), 

enabling to identify which allele is conferring the up- or down-regulation of a 

specific gene. 

 

Figure 1.3.2.1 Differences between eQTL and DAE.  In eQTL, the overall expression is equal 
even though the gene is being cis-regulated. In contrast, DAE shows the intrinsic difference 

between the alleles, in individuals heterozygous for a regulatory variant. Image adapted from 
(Pastinen 2010). 

  

1.3.3 Previous work – DAE map in normal breast tissue 

Previous work developed by Professor Ana Teresa Maia and her colleagues, 

consisted in a DAE scan of the entire genome. This was accomplished using 

microarrays (Illumina Exon510S-Duo arrays), and 64 normal breast tissue 

samples, which were genotyped and quantified for allelic expression. The result 

was a whole-genome map of cis-regulated genes (86.8% of the autosomal 
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genes), with 49,461 DAE SNPs located in 11617 genes, in breast tissue (Figure 

1.3.3.1). 

 

Figure 1.3.3.1 Global cis-regulation map of breast tissue. This map gives us information about  
which genes are being cis-regulated and, therefore, presenting differential allelic expression  
(Maia et al, unpublished). 

The DAE measured in tSNPs (DAE SNPs) can be explained by the effect of an 

rSNP that differentially regulates their expression. Depending on the different 

levels of LD (measured by D’ and r2) between the rSNP and the tSNP, three 

patterns of DAE distribution can be seen in this map, consistent with the 

scenarios 1, 2 and 3 described by Xiao and Scott (Xiao & Scott 2011): 

 Scenario 1, if the tSNP is in complete LD (r2=1) with the rSNP. All 

heterozygous samples for the tSNP will show DAE (Figure 1.3.3.2. A) with 

the same allele being preferentially expressed. 

 Scenario 2, when the LD between the tSNP and rSNP is not complete, but 

strong (r2<1, D’=1). In this case, individuals heterozygous for the tSNP (Tt) 

might be homozygous (RR) or heterozygous (Rr) for the rSNP (Figure 

1.3.3.2. B), and therefore some heterozygotes for the tSNP will show DAE 
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(those heterozygous for the rSNP) and some will not (homozygous for the 

rSNP) 

 Scenario 3, when the tSNP and rSNP are in low LD (r2<1, D’<1), it is 

possible to find four combinations of the heterozygous tSNP with the rSNP 

in the population (Figure 1.3.3.2. C). Therefore, some individuals will not 

display DAE (the ones homozygous RR or rr for the rSNP) and others will 

display preferential expression of one or another allele (Rr or rR for the 

rSNP). 

 

 

Figure 1.3.3.2 Patterns for different LD measurements between rSNP and a heterozygous 

DAE SNP. Image taken from (Xiao & Scott 2011). 

 

Furthermore, with the aim to prioritize the best candidates for cis-acting regulatory 

SNPs in breast cancer, a member of our research group (Doctor Joana Xavier) 

cross-compared the DAE data (Maia et al, unpublished) with the published (94 

loci associated with risk for breast cancer) and unpublished (reported in a GWAS 

late phase) GWAS data. This integration was done by identifying loci that had at 

least a GWAS SNP and a DAE SNP within 250kb away from each other and with 

a minimum LD of r2 = 0.4. This generated a list of 111 clusters with strong cis-

regulatory potential in breast tissue, where in 32 of them the GWAS SNP and the 
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DAE SNP are in high LD. In the end, one cluster was prioritized – 12q24 locus – 

that contains a GWAS SNP that did not pass the last phase of the GWAS (with a 

p-value = 0.002), since the threshold was 1x10-7, not being associated to breast 

cancer risk. Since GWASes have a produce a list of unpublished SNPs to 

validate, the integration of our DAE data with the GWAS data for breast cancer, 

was also a way to prioritize the loci with genes being cis-regulated by cis-

regulatory variants, and therefore, more likely to be associated with breast cancer 

risk, for further validation studies. Therefore, we wanted to validate this 

unpublished locus to breast cancer risk, by identifying the cis-regulatory variants 

causing DAE, and further re-test the GWAS SNP with those candidate cis-

regulatory variants, in order to associate the 12q24 locus to breast cancer risk. 

This way, the aim of this study was to validate an unpublished GWAS locus to 

confirm it as a new risk locus for breast cancer. 

. 
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2 Hypothesis 

One of the limitations of GWASes is that they are unable to identify the true causal 

variant or the mechanism conferring risk for breast. Also, all variants found so far 

associated with risk for breast cancer were located in non-coding regions, 

suggesting that breast cancer associated variants may be mainly located in 

regulatory elements. To this date, 13 of the 94 loci were studied at a functional 

level by other research groups, and all of these causative SNPs were cis-

regulatory (Wynendaele et al. 2010; Ghoussaini et al. 2014; Gorbatenko et al. 

2014; Quigley et al. 2014; Glubb et al. 2015; Wang et al. 2014; Hurtado 2013; 

Dunning et al. 2016; Cai et al. 2011; Meyer et al. 2008; French et al. 2013; Huijts 

et al. 2011; Long et al. 2010; Cowper-sal et al. 2012). Thus, we hypothesize that 

cis-regulation is an important mechanism, contributing to the risk for breast 

cancer, and that cis-acting variants are responsible for the DAE observed. 

Additionally, GWAS have generated long lists of SNPs that were very close to 

reach genome-wide significance, and need to be validated to confirm their 

association with risk. Being DAE one of the effect observed in the presence of 

cis-regulatory SNPs, this makes it a powerful method to identify these SNPs. 

Therefore, integrating our DAE results with the GWAS unpublished and published 

data may be a powerful approach to prioritize loci to validate, with higher 

probability to be associated with risk for breast cancer and gene expression 

regulation. 
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3 Objective & Specific Aims 

For this master thesis, our main objective was to test if our DAE studies are a 

powerful tool to prioritize unpublished GWAS loci for validation studies, in order 

to help identifying further risk loci associated with breast cancer. Our specific aims 

were: 

1. To find new candidate cis-acting regulatory SNPs in the 12q24 locus; 

2. To functionally analyse their regulatory potential; 

3. To use them to validate the unpublished 12q24 locus and its association 

with breast cancer risk 
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4 Materials and methods 

4.1 Study samples 

In this work we studied a total of 290 samples. Eighty-four (84) samples were 

from normal breast tissue, extracted from women whose reduction mastectomy 

was performed for reasons not related to cancer. These normal breast tissue 

samples were collected at Addenbrooke’s Hospital, Cambridge, United Kingdom. 

Additionally, 150 samples of Human B cells (blood) were extracted from 

anonymous blood donors and 56 samples were extracted from cancer patient B 

cells (blood), both obtained from Blood Centre at Addenbrooke’s Hospital. All 

samples referred were acquired with the approval of the Addenbrooke’s Hospital 

Local Research Ethics Committee (REC reference 04/Q0108/21 and 

06/Q0108/221). 

DNA and total RNA was previously extracted from all samples using a 

conventional SDS/proteinase K/phenol method and TRizol® method, 

respectively. All extraction procedures were done at the University of Cambridge 

and the extracted RNA was used for DAE analysis. 

 

4.2 Cell lines 

In vitro assays were made with nuclear extract from breast cancer cell lines, 

namely, T-47D (human mammary ductal carcinoma, oestrogen receptor positive 

(ER+)), HCC1954 (human mammary ductal carcinoma, an oestrogen receptor 

negative (ER-)), MCF-7 (human mammary adenocarcinoma, (ER+)) and MDA-

MB-231 (human mammary adenocarcinoma, (ER-)) cell lines (Table 4.2.1). 

Nuclear extract from T-47D and HCC1954 cell lines were available in our stock. 

MCF-7 and MDA-MB-231 were cultured in DMEM medium at 37ºC and 

supplemented with penicillin/streptomycin to avoid contaminations and 10% 

foetal bovine serum, which is rich in growth factors, allowing the cells to grow, 

divide and survive. All cell lines were obtained from our collection.  
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The normal breast cell lines analysed in silico were HMEC (human mammary 

epithelial cells), HMF (human mammary fibroblasts), MCF10A (human mammary 

epithelial cells), BR.MYO (breast myoepithelial primary cells) and BR.H35 (breast 

variant HMEC). 

  

Table 4.2.1 List of breast cancer cell lines analysed. IDC, invasive ductal carcinoma; AC, 
adenocarcinoma; DC, ductal carcinoma. ER/PR/ERBB2/TP53/EGFR status: ER/PR positivity,  

ERBB2/EGFR overexpression and TP53 mutational status and protein levels. WT, wild-type.  
Information from (Neve et al. 2006) and ATCC website (www.lgcstandards-atcc.org). 

 

4.3 Linkage disequilibrium analyses and identification of proxy SNPs 

The publicly available tool SNAP (SNP Annotation and Proxy Search) was used  

to measure the LD between SNPs and for the identification of proxy SNPs. Proxy 

SNPs are SNPs in high LD that report each other. Thus, when a candidate SNP 

is not available on a particular genotyping array, proxy SNPs in LD with that 

candidate SNP can report it, based on observed LD patterns in the International 

HapMap Project (HapMap) and 1000 Genome Project (Johnson et al. 2008; The 

1000 Genomes Project Consortium 2012). Both projects were developed with the 

aim of identify and catalogue genetic variants with frequencies of at least 1% in 

the populations studied. We only use information of European (CEU) studies from 

1000 Genome Project and a maximum limit distance between the SNPs of 500kb 

(kilo-base). 
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4.4 In Silico annotation of variants functional information 

In silico annotation was performed in order to gather information regarding 

regulatory chromatin states, haplotype structures, DNase I Hypersensitive sites 

(DHSs), histone modifications, protein weight matrix previsions (PWM), 

microRNA binding predictions and chromatin immunoprecipitation sequencing 

(ChIP-seq), relatively to the candidate rSNPs. 

For our analysis, histone modifications were used to identify regulatory elements, 

since they are responsible for controlling the accessibility for protein binding 

(Table 4.4.1) (Handy et al. 2011). We also analysed DHSs data, since it is a 

powerful method to identify transcriptional regulatory elements and the chromatin 

states (Table 4.4.1). 

 

Table 4.4.1 Histone modifications. Examples of known histone modifications in breast tissue, 
where they are found genomically and some of their effect. Information gathered from Roadmap 

and UCSC Genome Browser in the scope of this work. 

Modifications Effect 
H3K4me3 Active promotor 
H3K4me1 Active and inactive enhancers – mostly 

intergenic regions 
H3K4me2 Active promotor 
H3K27me3 Repressive 
H3K27ac Active promotor and active enhancer 
H3K36me3 and H3K79me2 Transcriptional repression 
H3K9me3 Repeat repression 
H3K9ac Active mark 

 

ChIP-seq consists in a combination of two techniques, which are chromatin 

immunoprecipitation and sequencing. In this method, DNA-protein complexes are 

precipitated with a specific antibody that recognizes the target protein followed 

by DNA sequencing, allowing the identification of protein-DNA binding sites 

(Mardis 2007). We gathered information regarding ChIP-seq in Haploreg v4.1 

database and RegulomeDB. 

PWM is a probabilistic model that provides predictions concerning transcription 

factor binding consensus sites in a certain DNA sequence (Chen et al. 2007). It 
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is helpful when no ChIP-seq data is available for a certain locus or SNPs position. 

Haploreg v4.1 was accessed to consult PWM results. 

Besides these analyses, the following databases were accessed: 

 Haploreg version 4.1 (Ward & Kellis 2011) – it was used to access 

information regarding regulatory elements at variants on haplotype blocks, 

such as candidate regulatory SNPs at disease-associated loci. Using 

genotyping information from the 1000 Genome Project to analyse the LD 

structure in each locus, Haploreg provides information about SNPs that 

are highly correlated with the candidate SNP. Also, it gives information 

about PWM, chromatin state, sequence conservation across mammals, 

regulatory motifs of SNPs and DHSs. 

 UCSC Genome Browser (Kent et al. 2002) – it is a genomic browser that 

allows the visualisation of the genomic landscape of the candidate 

regulatory SNP concerning histone modifications, DHSs, chromatin state 

and transcription factor ChIP-seq. This interactive website gathers 

information from the Roadmap Epigenomics Project (Chadwick 2012) – a 

public resource of human epigenomic data such as DNA methylation, 

histone modifications, chromatin accessibility and small RNA transcripts in 

stem cells and ex vivo primary tissues – and the ENCODE Project (Encode 

Consortium 2012), regarding information about regulatory elements in the 

DNA, including ChIP-seq, DHSs and chromatin state.  

 Integrative Genome Viewer (IGV) – it is a high-performance visualization 

tool for interactive exploration of large, integrated genomic datasets 

(Robinson et al. 2011; Thorvaldsdóttir et al. 2013). Here, we analysed the 

results of several ChIP-seq experiments, to verify the intensity of the DNA-

protein binding and the binding affinity of the protein towards the two 

alleles of a heterozygous SNP (comparing the reads for each allele). 

 RegulomeDB (Boyle et al. 2012) – it is a website that collects information 

from Roadmap Epigenomics project and ENCODE project. Here, we 

analysed the candidate regulatory SNPs for known and predicted 

regulatory DNA elements including regions of DHSs, binding sites of 

transcription factors and promoter regions. 
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 Haploview software (Barrett et al. 2005) – it was used to analyse pair-wise 

LD and possible haplotype structure between the candidate SNPs, in our 

64 samples of normal breast tissue. 

 For microRNA analysis the following databases were accessed: 

 NCBI dbSNP (Sherry et al. 2001) – is a database of single 

nucleotide polymorphisms (SNPs) and multiple small-scale 

variations that include insertions/deletions, microsatellites. This 

database was used to obtain the sequence where each candidate 

SNP was located. 

 Ensembl (Yates et al. 2016) – is a genome browser with 

information, among others, sequence variation and transcriptional 

regulation. Ensembl tools include BLAST, BLAT, and the Variant 

Effect Predictor (VEP). This browser was used to find the location 

of the candidate SNPs in the gene in study. 

 miRBase database (Griffiths-Jones et al. 2008) – is a database of 

published miRNA sequences and annotation. Each entry in the 

miRBase Sequence database represents a predicted hairpin 

portion of a miRNA transcript (termed mir in the database). Here, 

we analysed the candidate SNPs for predicted microRNA binding 

sites. 

  

4.5 DAE mapping analysis 

DAE mapping analysis was done by plotting the DAE ratios (of the DAE tSNP) 

against the genotypes of the candidate rSNPs. Different statistical tests were 

used, depending on the DAE scenario observed. We used a t-test and Welch’s-

test to verify differences in DAE mean of the genotype groups, when variances 

were equal or unequal, respectively. We also used the F-test to verify differences 

in the variance between the homozygous and heterozygous groups for the 

candidate rSNP. We used permutation to correct the p-values. If the p-value is 

true, even when a 1000 permutation is applied (i.e. a 1000 combinations of the 

same samples) the outcome/results will be the same. With 1000 permutations the 

smallest possible p-value is 0.001, and the uncertainty p-value is 0.05. Genotype 
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imputation was performed by Doctor Joana Xavier, to cover more candidate 

regulatory SNPs, which consists in having reference haplotypes, obtained from 

HapMap and 1000 Genomes Project, and use it to predict genotypes at SNPs 

that were not directly assayed in individuals samples (imputation). In resume, the 

DAE mapping analysis was performed to analyse if the candidate rSNPs were 

associated with the DAE levels measured at the DAE SNPs. 

The DAE ratio was calculated, both in cDNA (complementary DNA) and gDNA 

(genomic DNA), using the formula: 

𝐃𝐀𝐄 =  𝒍𝒐𝒈𝟐 (
𝑨𝒍𝒍𝒆𝒍𝒆 𝑨

𝑨𝒍𝒍𝒆𝒍𝒆  𝑩
). 

The gDNA was used to normalize the results, excluding other events in the DNA 

sequence, such as copy number variations, that might be also causing unequal 

levels of expression between the alleles of a gene, and in this work we only focus 

on cis-regulatory variants. 

𝐍𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐞𝐝 𝐃𝐀𝐄 = DAEcDNA - DAEgDNA 

Thus, this analysis results shows the DAE caused only by cis-regulation. 

  

4.6 Polymerase Chain Reaction (PCR) for genotyping rs111549985 

PCR is a technique that allows the amplification of a specific segment of the DNA. 

To perform this technique five components are necessary, namely the template 

DNA to amplify, primers to set up the beginning and ending of the fragment to be 

amplified, deoxynucleotides (dNTPs) that form the new strands of the PCR 

product, and DNA polymerase an enzyme that synthetizes the PCR product. It is 

composed by three phases (denaturation, annealing and extension) where 

temperature varies, and the final product will be billions of copies (amplification 

of each fragment: 2n, n = number of cycles) of a specific DNA fragment, which 

can then be separated based on its size, using agarose gel electrophoresis. The 

agarose gel electrophoresis consists in adding the PCR product (DNA fragments)  

in an agarose gel and applying electric current. This way, it is possible to separate 

the DNA products on the basis of size, allowing the determination of the presence 
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and the size of the PCR product after the addition of a DNA stain, in the agarose 

gel when exposed to UV (ultraviolet) light (Lilit Garibyan 2013). 

In this work, primers were designed to amplify the region containing the SNP 

rs111549985 (Table 4.6.1). The PCR was made using KAPA2G Fast ReadyMix 

PCR kit (from Kapa Biosystems) or KAPATaq HotStart (from Kapa Biosystems) 

to genotype 51 normal breast samples. Both master mixes were prepared 

according to manufacturer’s instructions. The cycles set up was: 95ºC/3min 

(initial denaturation), 95ºC/15sec (denaturation), 60ºC-58ºC/15sec (annealing), 

72ºC/2sec (extension) and 72ºC/0.3sec (final extension). Denaturation, 

annealing and extension steps were repeated for 30 cycles. The agarose gel was 

prepared in a final concentration of 1.5% in 0.5X TBE and the electrophoresis 

was carried for 40min at 100V. Four ng of genomic DNA from each normal breast 

tissue sample were used, and water was used as a negative control (a non-

template control). Three µL of RedSafe (DNA stain) was added to agarose gel 

solution and we used Bio-Rad ChemiDoc to visualize the gel, to confirm the 

amplification and to verify the presence or not of contamination. The samples 

selected to sequence (by Sanger Sequencing) were then purified with Exo/SAP 

Go – PCR Purification kit (from GRiSP Research Solutions). The samples 

concentration was measured in a Nanodrop 2000c Spectrophotometer (Thermo 

Scientific) and then diluted to 80ng/µL and 50ng/µL. 

 

 

Table 4.6.1 Primers sequence designed for PCR. In the table is represented the selected SNP 
of the 5q14.2 locus to analyse. The common allele is shown first and the minor allele is shown 
second. For each allele of this SNP, the forward (FWD) and the reverse (REV) sequences were 

designed. 
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4.7 Nuclear protein extraction 

The nuclear protein extraction was made using the NE-PER Nuclear and 

Cytoplasmic Extraction Reagent kit (Thermo Scientific) following the protocol 

stated by the manufacturer. Briefly, after scraping the cells in culture, two 

reagents were added to the cell pellet – CER (cytoplasmic extraction reagent) I 

and II – which disrupt the cell membrane, release the cytoplasmic contents, and 

leave the nucleus intact. NER (nuclear extraction reagent) was then added to lyse 

the nuclear membrane yielding the nuclear components. The concentration of the 

nuclear extract was measured using the Qubit 2.0 (Invitrogen by Life 

Technologies) spectrophotometer, according to the manufacturer’s instructions. 

The nuclear extract was then used to test the protein binding affinity in the two 

alleles of the candidate rSNP rs12302714. 

 

4.8 Electrophoretic Mobility Shift Assay (EMSA) 

EMSA is an in vitro technique that allows the study of DNA and protein 

interactions. Under the observation that the electrophoretic mobility of DNA-

protein is slower than the free DNA, due to their molecular weight, in a non-

denaturing polyacrylamide gel, it is possible to obtain information regarding 

binding affinity (Hellman & Fried 2007).  

This method consists in labelling a double-stranded oligonucleotide with a 

fluorescent marker, such as biotin or radioactive isotopes, and adding it to a 

nuclear extract. If proteins bind to the labelled sequence, the formed complex will 

migrate slowly through the polyacrylamide gel when compared to the free 

oligonucleotide, producing a specific band of higher molecular weight (shift) 

(Figure 4.8.1). Additionally, an unlabelled oligonucleotide (competition reaction) 

can also be added to assess the binding specificity between the protein and the 

oligonucleotide. The unlabelled oligonucleotide will be used in a much higher 

concentration than the labelled oligonucleotide, and therefore if the protein is 

specific to that sequence it will bind more to the unlabelled oligonucleotide in 

excess, and the result will be a weaker band or no band. In a final test, to confirm 

which protein is binding to the oligonucleotide, an antibody that recognizes a 
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specific target protein, will create a heavier complex with less mobility, forming a 

band with higher molecular weight in the gel (supershift) (Figure 4.8.1) (Hellman 

& Fried 2007; Chorley et al. 2008). 

 

Figure 4.8.1 Illustration of EMSA technique. The gel shift assay consists in three major steps: 
1) binding reactions; 2) electrophoresis; 3) probe detection (Thermo Scientific, URL:  

http://www.piercenet.com/method/gel-shift-assays-emsa). 

  

4.8.1 Oligonucleotide Labelling and Detection 

The oligonucleotides were designed for both alleles of the candidate rSNP 

rs12302714 (C>T, 

TATGACTAACCTTTTGTAAACGGGTTGTGAGAGGCTGGGAG and 

TATGACTAACCTTTTGTAAATGGGTTGTGAGAGGCTGGGAG). An 

oligonucleotide that covers a region in the FGFR2 gene where Oct-1 and RUNX2 

proteins bind, was used as positive control (Meyer et al. 2008). The first step was 

to label each complementary oligonucleotide separately, and then proceed to 

annealing (10 minutes at 80ºC, then overnight at room temperature). The 

labelling was made with a non-radioactive marker, biotin, a molecule with the 

ability to intercalate specifically in the 3’ End DNA strands with the help of the 

enzyme terminal deoxynucleotidyl transferase (TdT). The labelling procedure 
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was executed following the manufacturer’s instructions of Biotin 3’ End DNA 

Labelling kit (from Thermo Scientific). To test the labelling efficiency, dot blot by 

hand spotting was performed. Before the detection process, the reactions were 

transferred from the gel in to a nylon membrane with the help of SD Semi-Dry 

Transfer Cell (from Bio-Rad), and then cross-linked using UV light. Further, the 

detection was made following the manufacturer’s instructions of 

Chemiluminescent Nucleic Acid Detection Module (from Thermo Scientific), that 

consists in blocking the membrane with Blocking Buffer (to block unoccupied 

binding surfaces), wash it with 1X Wash Buffer (to remove any impurities, 

reducing background signal during visualization) and adding a chemiluminescent 

substrate – luminol – for horseradish peroxidase (HRP), that permits the 

visualization of the labelled oligonucleotides when exposed to UV light. 

  

4.8.2 Protein-Nuclei Acid Binding and Competition Assay 

All EMSAs were performed following the LightShift Chemiluminescent EMSA kit 

(from Thermo Scientific). The reaction for each allele of the SNP and for the 

positive control (all at 30nM concentration) contained 1X binding buffer to 

produce ionic conditions that allow binding DNA-protein (preventing the pH from 

changing), 10ng/µL poly(dI.dC) which is a sequence composed only by I and C 

nucleotides where unspecific proteins bind, 1X protease inhibitor to protect the 

proteins from the digestive function of proteases, 1mM DTT to stabilize enzymes 

and other proteins, 10µg of nuclear protein extract and buffer C, all in a final 

volume of 20µL. The binding buffer and buffer C were prepared according to the 

Table 4.8.2.1. 

 

Table 4.8.2.1 Preparation of buffer C and 5X binding buffer, with a final volume of 1mL. BB, 
binding buffer. 

Buffer C 

Component 
Final concentration 

(in 1 mL) 

Hepes, pH 7.9 20 mM 

NaCl 400 mM 
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EDTA 1 mM 

Glycerol 20% 

H20   

    

    

5 X BB Buffer 

Component 
Final concentration 

(in 1 mL) 

Hepes, pH 7.4 100 mM 

ZnCl2 0.5 mM 

Glycerol 50% 

H20   
 

 

A 4 or 6% polyacrylamide gel was used to run the samples at 80V until the 

samples entered the lanes and then 120V for approximately 1h. The samples 

were then transferred to a nylon membrane, at 0.28A for 10min, cross-linked 

(exposure to UV-light two times, at 120mJ/cm2) and detected, as described 

previously. 

The results that showed clear evidence of differences in protein binding affinity 

between the two alleles of a SNP were further analysed with an EMSA 

competition assay. The competitions were performed by adding unlabelled 

oligonucleotide in different concentrations (1X, 33X and 100X, relatively to the 

30nM of the labelled oligonucleotide (considered 1X)) of the alleles of interest. 

For the alleles that continued to show protein binding with relatively high 

specificity, a supershift assay was performed by adding 2µL of specific antibodies 

(POL II and HMGA) at 200µg/0.1mL of concentration. 

5 Results 

5.1 Genomic view of the putative 12q24 risk locus for breast cancer 

Our DAE map was combined with the GWAS published and unpublished breast 

cancer data, in order to identify the loci that have at least a GWAS SNP and a 

DAE SNP within 250kb away from each other and with a minimum LD of r2 = 0.4. 

A list with 111 clusters with strong cis-regulatory potential in breast tissue was 
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generated, where in 32 clusters the GWAS SNP and the DAE SNP are in high 

LD. 

For this thesis we chose the locus 12q24, which in the GWAS study from Easton 

and colleagues (Easton et al. 2007) reached a p-value = 0.002 with an OR = 1.04, 

95% CI = 0.98–1.09). This level of significance was not sufficient for a genome-

wide study (threshold p-value ≥ 10-7), however it is high enough to suggest that if 

the region was analysed in more detail, and the true risk variants (if they exist) 

were identified, that the power to detect association with risk would be greatly 

improved. Thus, we aimed to test if the DAE method for identifying cis-regulatory 

variants was an efficient approach to prioritize the most promising candidates 

from unpublished GWAS lists.  

We began by analysing the region where the GWAS SNP rs7307700 is located 

(the 12q24 locus, more specifically, intron seven of the AACS gene, Figure 

5.1.1). According to our DAE map, there were 15 DAE SNPs that showed DAE 

in this locus, positioned in different genes, eight of which lie within the AACS gene 

and one in UBC gene (Figure 5.1.2). In this analysis, we focused on the region 

250kb upstream and 250kb downstream starting from the GWAS SNP rs7307700 

position. 

 

Figure 5.1.1 Genomic view of the GWAS SNP at the 12q24 locus.  In the top panel is 

represented an ideogram of chromosome 12, with the locus containing the gene AACS 
represented by a blue box. In the middle panel, genes are represented in blue and the AACS 
gene area is shaded in yellow. In the lower panel is represented the GWAS SNP rs7307700.  

Image obtained from Roadmap Epigenomics.  
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Figure 5.1.2 Genomic view of the tSNPs at the 12q24 locus.  In the top panel is represented 
an ideogram of chromosome 12, with the locus containing the gene AACS represented by a blue 

box. In the middle panel, genes are represented in blue and the AACS gene area is shaded in 
yellow. In the lower panel are represented the DAE tSNPs. Image obtained from Roadmap 
Epigenomics.  

 

5.2 Identification and analysis of candidate rSNPs in the 12q24 locus 

To find candidate cis-acting regulatory SNPs in the 12q24 locus, which could be 

hypothetically associated with risk, we searched for SNPs in moderate LD (r2 ≥ 

0.4 and D’≈1) with the GWAS marker SNP rs7307700. We chose this level of LD 

r2 ≥ 0.4 because we hypothesise that the GWAS SNP rs7307700 might not have 

passed the phase III of GWAS because it is not in high LD with the true causal 

variant. Seventy-two SNPs were met these criteria (Annex 1.2).  

We next prioritized the candidates that were located in regulatory elements and 

DHS sites. Of the 72 SNPs, 36 SNPs were overlapping regulatory elements with 

evidence for being active in breast tissue and, of these, 12 SNPs were also 

located in DHS sites (Table 5.2.1, 5.2.2 and Figure 5.2.1). 

Table 5.2.1 List of candidates rSNPs. Putative 12 rSNPs in moderate LD with the GWAS SNP, 

with evidence of being located in regulatory sites and DHS. Ref, reference allele; alt, alternative 
allele. MAF represents the frequency of the least common allele. These results were obtained by 
using SNAP tool, Haploreg v4 and RegulomeDB.  

SNP Alleles ref/alt MAF 

rs10846828 C/T 0.46 

rs12302714 C/T 0.41 

rs10846834 A/G 0.42 

rs10773145 T/C 0.42 

rs7133614 C/T 0.34 

rs10773146 G/A 0.42 

rs12578446 A/G 0.31 

rs34151902 G/T 0.27 

rs4765021 G/A 0.51 

rs4622332 C/T 0.41 

rs4559740 G/A 0.3 
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rs7294703 A/G 0.5 

 

To assess the chromatin context of the 12 candidate rSNPs, we also looked for 

histone modifications. These candidate SNPs were located in regions harbouring  

histone marks H3K4me1, H3K4me3, which are indicate enhancers and 

promoters, respectively, and H3K27ac and H3K9ac, which are markers for active 

regulatory elements. Figure 5.2.1 and Table 5.2.2 show these results. 

 

Figure 5.2.1 Genomic view of the 12 candidate rSNPs. In the top panel are represented the 
ChIP-seq data for a series of histone modifications (Green represents active marks, red is 

repressive marks) and DNase-seq experiments (in blue). In the middle panel are the 12 candidate 
rSNPs and in the lower panel are represented the genes in this region (blue). Image obtained 
from Roadmap Epigenomics. 

 

Table 5.2.2 List of candidates SNPs in AACS gene. In this table is represented the 12 
candidates rSNPs that were located in at least one promotor or one enhancer, with active histone 

marks in breast cell lines. T-47D (human mammary ductal carcinoma, oestrogen receptor positive 
(ER+)) and MCF-7 (human mammary adenocarcinoma, ER+) are breast cancer cell lines; HMEC 
(human mammary epithelial cells) and HMF (human mammary fibroblasts) are normal breast cell 
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lines. This table was made with results from Roadmap Epigenomics, Genome Browser, Haploreg 

v4.1 and RegulomeDB. 

 

 

5.3 Mapping analysis 

We next analysed the DAE distribution pattern of the 15 DAE SNPs located in 

this locus, in order to know their association with the candidate rSNPs genotypes 

(Annex 1.1).  For example, the DAE SNP rs12581512 presents a DAE scenario 

1 according to (Xiao & Scott 2011), with all except one heterozygote expressing 

more the A allele when compared to the G allele (Figure 5.3.1 A). This suggests 

that this SNP is most probably in high LD with the causal variant. rs7301263 

shows a scenario 2 pattern of DAE, where some (but not all) heterozygotes 

preferentially express the A allele when compared to the C allele (Figure 5.3.1 

B). 
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Figure 5.3.1 DAE distribution pattern of two DAE SNPs. In the top of each graphic is 

represented the DAE SNP and gene where is located. The x-axis represents the heterozygous  
genotypes of the two DAE SNPs meanwhile the y-axis represents the DAE ratio seen at these 
two DAE SNPs. (A) DAE ratio of the DAE SNP rs12581512 and (B) the DAE SNP rs7301263.  

Each green dot represents an individual heterozygous for the DAE SNP. The dotted lines are a 
threshold (0.58 to -0.58), defined by our group, for what we consider significant values (DAE ratio, 
log 2 (1.5) = 0.584). The samples observed in between the threshold have equal expression of 

both alleles, hence not causing a differential effect in expression. Above the dotted l ines are the 
samples in which one allele is being differentially expressed and below are the samples in which 
the other allele is differentially expressed. 

 

To test which candidates rSNPs could explain the DAE observed at the 12q24 

locus, we analysed the association between genotypes at the 12 candidate 

rSNPs and the DAE measured at the 15 DAE SNPs, by plotting the distribution 

of DAE of each DAE SNP according to the candidate rSNP genotype. Genotyping 

data used in this analysis came from our genotyping experiments, the DAE 

experiments and imputation exercises. The candidate rSNPs are only considered 

potentially causal and responsible for the DAE if: (1) the homozygous samples 

for the rSNP do not show DAE; (2) the heterozygous samples for the rSNPs 

present DAE.  

From this analysis, two candidate rSNPs showed greater potential to be the 

causal variant of DAE in AACS (DAE SNP rs12581512) – rs10773145 and 

rs10846834 – and one other candidate rSNP showed greater potential to be the 

causal variant of DAE in the UBC (DAE SNP rs7301263) - rs12302714 (Figure 

5.3.2 A and B). No variant explained the DAE observed in any of the remaining 
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genes from the 12q24 locus. Only some heterozygous for the candidate rSNP 

rs12302714 display DAE. But more importantly, we observed that all 

homozygous individuals for rs12302714, show equal levels of transcription of the 

two alleles of the DAE tSNP rs7301263. For SNPs rs10773145 and rs10846834, 

the majority of heterozygous individuals show one allele more expressed 

compared to the other. The Welch’s-test although not significant, was 

underpowered by the fact that there was only one homozygous sample for these 

SNPs, although, the DAE levels of the one homozygous sample and one 

heterozygous sample are near the cut-off. 

 

 

Figure 5.3.2 DAE mapping analysis for the candidate rSNPs rs12302714, rs10773145 and 
10846834. In the top of each graphic is represented the candidate rSNP, gene where it is located 

and p-value for this test. The x-axis represents the genotypes of the candidates rSNPs and the 
y-axis represents the DAE ratio seen at the DAE SNPs rs7301263 and rs12581512. (A) rSNP 
rs12302714 with DAE SNP rs7301263, (B) rSNPs rs10773145 and rs10846834 with DAE SNP 

rs12581512. The dotted lines are a threshold (0.58 to -0.58), defined by our group, for what we 
consider significant values (DAE ratio, log 2 (1.5) = 0.584). The samples observed in between the 
threshold have equal expression of both alleles, hence not causing a differential effect in 

expression. Above the dotted lines are the samples in which one allele is being differential ly  
expressed and below are the samples in which the other allele is differentially expressed.  
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5.4 In silico analysis of candidate rSNPs rs12302714, rs10773145 

and 10846834 

The rs12302714, rs10773145 and rs10846834 were located in the AACS gene 

(Figure 5.2.1). Since the three candidates rSNPs overlapped regulatory element 

regions, we searched for evidence of TF binding at their locations. No significant 

prediction of differences in allelic binding affinity was found for candidate rSNPs 

rs10773145 and rs12302714. For candidate rs10846834, PWM data analysis 

showed that several predicted TFs could have different allelic binding affinity 

(Tables 5.4.1, 5.4.2 and 5.4.3). 

Table 5.4.1 Predicted transcription factor binding for candidate rSNP rs10773145. TF, 
transcription factor. Information from Haploreg v4.1 database. The values represent PWM scores. 

Predicted TF binding Reference allele T Alternative allele C 

Sin3Ak-20 7.7 2.2 

 

Table 5.4.2 Predicted transcription factor binding for candidate rSNP rs10846834. TF, 
transcription factor. Information from Haploreg v4.1 database. The values represent PWM scores. 

Predicted TF binding Reference allele A Alternative allele G 

Gfi1 12.5 1.9 

Maf -1.1 10.9 

NF-E2 6.3 12.9 

Nrf-2 0.5 12.1 

 

Table 5.4.3 Predicted transcription factor binding for candidate rSNP rs12302714. TF, 
transcription factor. Information from Haploreg v4.1 database. The values represent PWM scores. 

Predicted TF binding  Reference allele C Alternative allele T 

Sox 11.8 11.1 

 

We next analysed ChIP-seq information for these three candidates. We found 

that rs10773145 and rs10846834, both located in an active enhancer at HMEC 

and BR.MYO cell lines (normal mammary cell lines), overlap a STAT3 and c-FOS 

proteins binding sites (Figure 5.4.1 and Figure 5.4.2). However, for rs12302714 

we were not able to find any evidence of TF binding in the ChIP-seq data available 

form ENCODE and Roadmap Epigenomics. 
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Figure 5.4.1 ChIP-seq results for (A) STAT3 and (B) c-FOS proteins in MCF10A cell line, at 

the candidate rSNP rs10773145. In the bottom of each image is represented the nucleotides,  
with adenine in green, thymine in red, cytosine in blue and guanine in orange. The horizontal bars  
correspond to the sequence reads of the experiment and the vertical bars to the frequency that 

the protein binds to each allele. The information was first obtained from Haploreg v4.1 and  
RegulomeDB and then visualised with IGV. 

 

Total Reads Count: 15 
C (Blue): 9 (60 %) 
T (Red): 6 (40 %) 

A 

Total Reads Count: 48 
C (Blue): 27 (56 %) 
T (Red): 21 (44 %) 

B 
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Figure 5.4.2 ChIP-seq results for (A) STAT3 and (B) c-FOS proteins in MCF10A cell line, at 
the candidate rSNP rs10846834. In the bottom of each image is represented the nucleotides,  
with adenine in green, thymine in red, cytosine in blue and guanine in orange. The horizontal bars  

correspond to the sequence reads of the experiment and the vertical bars to the frequency that 
the protein binds to each allele. The information was first obtained from Haploreg v4.1 and  
RegulomeDB and then visualised with IGV. 

For rs10773145 and rs10846834 candidate rSNPs the ChIP-seq results show 

strong binding of c-FOS in MCF10A cell line, but with small differences of affinities 

A 

Total Reads Count: 9 
A (Green): 5 (56 %) 
G (Brown): 4 (44 %) 

B 

Total Reads Count: 94 
A (Green): 44 (47 %) 
G (Brown): 50 (53 %) 
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between the two alleles (56% (C) and 44% (T) for SNP rs10773145; 47% (A) and 

53% (G) for SNP rs10846834). Regarding STAT3, the total number of reads (n ≤ 

20) of each ChIP-seq experiment was not sufficient to draw any conclusions. 

Therefore, it is likely that these SNPs do not alter the binding affinity of the 

transcription factors and might be causing the DAE observed in the DAE SNP 

rs12581512 by other mechanisms. 

Since there was no evidence of TF binding in the ChIP-seq data available, we 

decided to carry out an EMSA for the candidate rSNP rs12302714, to test if it 

could bind any other TF for which there was no ChIP-seq data available. 

5.5 Analysis of the protein binding preferences in the candidate rSNP 

rs12302714 

At the beginning of the EMSA experiments the oligonucleotide probes were 

labelled. This initial step included a labelling efficiency test, which was only done 

for the positive control (FGFR-13*). In Figure 5.5.1, it can be seen that this probe 

was labelled with 100% efficiency. 

 

Figure 5.5.1 Determination of labelling efficiency for Biotin Control DNA and for positive  
control annealed FGFR2. The blot includes the dilution for each of the standards of the 
Procedures for Estimating Labelling Efficiency (option 2: Dot Blot by Hand Spotting) (inside black 
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box); as well as the labelling control of the kit and the positive control of nuclear extract FGFR2 

(inside green box). 

Then, three different EMSAs were performed using three nuclear extracts from 

the breast cancer cell lines MCF-7 (Figure 5.5.2), T-47D (Figure 5.5.3) (both 

ER+) and HCC1954 (Annex 2.1) (ER-). As observed in Lane 1 of Figure 5.5.2, 

there is binding of Oct-1 and Runx2 to the control probe FGFR2-13*, which 

corresponds to the positive control of an rSNP regulating FGFR2 expression. The 

binding seen in Lanes 2 and 3 is not allele specific (contains oligonucleotides 

corresponding to the C and T alleles for this candidate rSNP, respectively). This 

equal binding was confirmed by the competition assays with the unlabelled 

oligonucleotides (Lanes 4-7), in which all bands disappeared, meaning that both 

alleles can compete with each other. Although, if there were differential protein 

binding preference between the C and the T allele of rs12302714, we would see 

a weaker band for one allele and a stronger one for the other allele. 

 

 

Figure 5.5.2 EMSA in vitro assay showing protein-nucleic acid interaction and competition 

binding studies. Nuclear extract from MCF-7 cell line were used. Lane 1 corresponds to the 
positive control, FGFR2 oligonucleotides, the band is identified by a circle. Lanes 2 and 3 (red 



45 
 

arrows) corresponds to labeled oligonucleotides containing the C and the T allele, respectively ,  

of the SNP rs12302714. Lanes 4 and 5 contains labeled oligonucleotide with the C allele, while 
lanes 6 and 7 contais the labeled oligonucleotide containing the T allele. For competition, 30 X 
higher concentrated unlabelled oligonucleotide was added to lanes 4 and 6, meanwhile to lanes 

5 and 7, the unlabeled oligonucleatide was set 100X higher. 

 represents the increase of oligonucleotide concentration. 

 

The EMSA was repeated using a different cell line T-47D (Figure 5.5.3) and in 

the same conditions, showing similar results. Therefore, it is possible that this 

candidate rSNP is causing the DAE observed in the DAE SNP rs7301263 by 

other mechanisms rather than alterations of the binding of transcription factors. 

 

 

Figure 5.5.3 EMSA in vitro assay showing protein-nucleic acid interaction of candidate 
rSNP rs12302714 with two different nuclear extracts. Nuclear extract from MCF-7 (black box) 

and T-47D (blue box) cell lines were used. Lane 1 corresponds to EBNA control; lanes 2 and 7 
contains the positive control FGFR2 oligonucleotides. Lanes 3, 4, 8 and 9 (red arrows) 
corresponds to labeled oligonucleotides containing the C and the T allele of the SNP rs12302714.  

It is important to say that, although it seems that there is more protein binding to the C allele,  
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those lanes (3 and 8) has more oligonucleotide pipetted that lanes 4 and 9 (which corresponds 

to the T allele). 

 

5.6 In silico analysis of microRNAs binding 

Since the results of ChIP-seq for the SNPs rs10846834 and rs10773145 and our 

EMSA results for SNP rs12302714 suggested that these candidate rSNPs might 

not be causing DAE by altering the binding affinity of transcription factors, we 

proceed to analyse if any of the initial 72 SNPs in LD with the GWAS SNP were 

causing DAE by altering the mRNA levels through differential allelic microRNAs 

regulation. 

The results suggested that 17 out of the 72 SNPs (including rs12302714) could 

modify the binding affinity of microRNAs to their targeting sites on 3’UTR of 

mRNAs, and could therefore, be affecting the mRNA levels in an allele-specific 

manner (Table 5.6.1). 

Table 5.6.1 List of SNPs predicted to be altering miRNA binding affinity. In this table is shown 
in the first column the 17 SNPs out of the 72 initial SNPs that alter miRNA binding affinity ; in the 

second column is the alleles of each SNP; in the third column is the miRNA that is  predicted to 
be binding differently to one allele compared to the other; and in the fourth column is the total 
number of miRNAs that binds to each SNP. This table was accomplished by consulting NCBI 

SNP, Ensembl and miRBase databases. 

SNP Alleles miRNA binding 
differently 

Total number of miRNA 
binding 

rs12302714 C - 11 

T hsa-miR-4506 

rs7133614  C hsa-miR-5708 8 

T - 

rs12578446  A hsa-miR-6747-5p 8 

G - 

rs4765021  A hsa-miR-6851-5p 4 

G - 

rs4765217  G hsa-miR-6866-5p 11 

T - 

rs56394386 A - 6 

G hsa-miR-5095 

rs4765218  A hsa-miR-4756-5p 12 

hsa-miR-4526 

G hsa-miR-3909 

rs7135489  A hsa-miR-5694 3 
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G - 

rs6488989  A - 16 

C hsa-miR-3691-3p 

rs2018130  C - 11 

T hsa-miR-1972 

hsa-miR-5708 

rs7955201 C hsa-miR-346 16 

T hsa-miR-3691-3p 

rs7138557 C - 7 

T hsa-miR-1245b-3p 

rs7137679 C - 17 

T hsa-miR-3613-3p 

rs900410 C hsa-miR-3162-5p 12 

T hsa-miR-4446-5p 

rs10846824 C hsa-miR-6810-3p 4 

hsa-miR-6845-3p 

T - 

rs55999005  C - 7 

G hsa-miR-873-3p 

T - 

rs7953077 C - 10 

T hsa-miR-19a-3p 

rs34624329  G - 24 

T hsa-miR-550a-3p 

hsa-miR-550b-2-5p 

hsa-miR-550a-5p 

hsa-miR-550a-3-5p 

rs12316499 A - 22 

G hsa-miR-3714 

hsa-miR-6885-5p 

rs7398636 C hsa-miR-1236-5p 20 

hsa-miR-3605-3p 

hsa-miR-6798-3p 

hsa-miR-6845-3p 

hsa-miR-6729-3p 

hsa-miR-4433a-3p 

hsa-miR-513c-3p 

hsa-miR-6891-5p 

hsa-miR-4433b-5p 

G - 

rs41473449  A - 2 

G hsa-miR-638 

rs11058031  A - 21 

T hsa-miR-1303 
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rs12303416  C hsa-miR-665 22 

T hsa-miR-5689 

rs58624919  A hsa-miR-4298 7 

G - 

rs10846822  C - 16 

T hsa-miR-1272 

 

5.7 LD structure and Haplotype analysis 

As there are three candidate rSNPs that can explain the DAE observed in this 

locus, we analysed the haplotype block and LD structure of the region using the 

genotype information of our 64 normal samples, in order to identify the haplotype 

containing the potential cis-regulatory variant or variants responsible for the DAE 

observed in the AACS and UBC genes. In other words, we analysed the 

frequency of the possible recombination between the alleles of the GWAS SNP 

rs7307700, the candidate rSNPs (rs10773145, rs10846834 and rs12302714) and 

the DAE SNPs (rs12581512 and rs7301263). 

Haplotype analysis showed that the region where the GWAS SNP, the candidate 

rSNPs and the DAE SNPs are positioned is divided in two haplotype blocks. The 

DAE SNP rs7301263 (located in the UBC gene) was not in high LD with the other 

SNPs. Meaning that random recombination may occur between the alleles of this 

SNP and the alleles of rs10773145, rs10846834, rs12302714, rs12581512 and 

rs7307700. Therefore, rs7301263 is not in a haplotype block, as we can see in 

Figure 5.7.1. 
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Figure 5.7.1 Linkage disequilibrium structure and haplotype blocks for the GWAS SNP 
(rs7307700, in green), the candidate rSNPs (rs12302714, rs10773145 and rs10846834, all in 

red) and the DAE SNPs (rs12581512 and rs7304293, in blue). In this LD plot, the blocks were 
defined using Confidence Intervals by Gabriel et al 2002. The SNPs are identified on top of the 
diagram. The r2 squared colour scheme was chosen, where black represent r2=1, the different  

shades of grey represent 0 < r2 < 1 and the r2 values inside the plots indicate the pairwise LD 
between the SNPs. Black triangles indicate the two haplotype blocks. Plot obtain from Haploview 
tool. 

 

Block 1 is about 10kb long and includes the candidate rSNP rs12302714 and the 

GWAS SNP rs7307700, meanwhile the block 2 (around 3 kb long) includes the 

DAE SNP rs12581512 and two candidate rSNPs, rs10773145 and rs10846834. 

Also, we observed that block 1 has 3 major haplotypes that account for 99.2% of 

the individuals (with some rarer not displayed in the figured), while block 2 has 

only 3 possible haplotypes, as shown in Figure 5.7.2. 
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Figure 5.7.2 Blocks 1 and 2 and their respective haplotypes. Above are the rsID. The 
frequency of each haplotype is shown at the right side and the SNP rsID on top corresponds to 

those in LD in Figure 5.7.1. In red are the candidate rSNPs, in green is the GWAS SNP and in 
blue is the DAE SNP. The haplotype 1 is constituted by C and G nucleotides; haplotype 2 by T 
and A nucleotide; haplotype 3 by C and A nucleotides; haplotype 4 by G, A and T nucleotides;  

haplotype 5 by A, G; and C nucleotides and haplotype 6 by G, G and C nucleotides of the 
corresponding SNPs. Image obtained and adapted from Haploview tool. 

The minor allele of the GWAS SNP rs7307700 (A allele, in green), which is 

associated with risk for breast cancer, is present in haplotypes 2 and 3. From our 

DAE data, the minor A allele of the DAE SNP rs12581512 (in blue), found in 

haplotype 5, is overexpressed when compared to the common G allele. 

The minor alleles of the candidate rSNPs rs10846834 (G) and rs10773145 (C) 

are found in haplotype 5 in block 2 (frequency approximately 30%) and the minor 

allele of rs12302714 (T) is found in haplotype 2 in block 1 (frequency 

approximately 40%). Interestingly, both haplotypes are in high LD and comprise 

the GWAS SNP risk allele (A) and the preferentially expressed DAE SNP allele 

(A). Also, the results from IGV suggested that the minor alleles of rs10846834 

(G) and rs10773145 (C) were associated with more binding affinity to STAT3 and 

c-FOS (Figure 5.4.1 and Figure 5.4.2), and results of microRNA analysis 

suggested that the miRNA hsa-miR-4506 binds preferentially to the T allele of 

rs12302714. This way, the effect of two or more alleles may be causing the risk 

for breast cancer and the DAE. 

A more detailed analysis of the haplotypes (Table 5.7.1), suggested that the 

haplotype 2, that also have the minor T of the candidate rSNP rs12302714, is 

more frequently transmitted with haplotype 5 (26.2% of frequency), which have 

the allele more expressed from the DAE SNP (A) and the G and C minor alleles 
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of two candidate rSNPs, both associated with more protein binding. However, 

haplotype 2 is also transmitted with haplotype 4, with 13.6% of frequency, that 

have the DAE SNP (G) less expressed allele and rSNPs (A and G) alleles 

associated with less protein binding. 

The haplotype 3 is transmitted with haplotype 4, haplotype 6 (1.3% and 3.1% of 

frequency, respectively; both with the GWAS allele (G) not associated with risk, 

DAE SNP (G) less expressed allele and rSNPs (A and G) less associated with 

protein binding) and with haplotype 5 (1.9% of frequency). 

Thus, the ratio of signal of the haplotypes more probably to be causing risk 

(haplotypes 2 / 5 and haplotypes 3 / 5) compared with the haplotypes not causing 

risk (haplotypes 2 / 4, 3 / 4 and 3 / 6) is 28.1% to 18%. Therefore, this might 

explain why the signal detected for GWAS was not significantly strong to 

associate the GWAS SNP with risk for breast cancer, since 18% of the signal 

detected is from haplotypes recombination not associated with neither DAE and 

cis-regulation. 

Table 5.7.1 Blocks 1 and 2 and their respective haplotypes frequency recombination.  The 

frequency of each haplotype in our 64 samples is shown below each block. In the column 
“Frequency of recombination (%)” is represented in percentage the frequency of recombination 
between block 1 (Haplotypes 1, 2 and 3) and block 2 (Haplotypes 4, 5 and 6). This table 

correspond to Figure 5.6.2 although more detailed. Table obtained and adapted from Haploview 
tool. Hap, haplotype. 

BLOCK 1.  Frequency of recombination (%) 

Hap 1 (53.1%) Hap 4 (51.5%) Hap 5 (0%) Hap 6 (01.6%) 

Hap 2 (39.8%) Hap 4 (13.6%) Hap 5 (26.2%) Hap 6 (0%) 

Hap 3 (6.3%) Hap 4 (1.3%) Hap 5 (1.9%) Hap 6 (3.1%) 

BLOCK 2.    

Hap 4 (67.2%)    

Hap 5 (28.1%)    

Hap 6 (4.7%)    

 

5.8 EMSA for candidate rSNP rs111549985 of the 5q14.2 locus 

During this master thesis project, in parallel, we conducted another functional 

analysis in the 5q14.2 locus, where we demonstrated differences in protein 

binding affinity between the two alleles of a SNP. It is included here to show an 
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example of an rSNP displaying preferential allelic binding affinity, which was not 

detected in the locus 12q24 (Figure 5.7.1). 

In summary, the SNP associated with breast cancer risk in the GWAS was 

rs7707921 (OR = 0.94, p-value = 5x10-11). The 5q14.2 locus had three genes 

showing DAE, namely ATG10, RPS23 and ATP6AP1L. After in silico analysis, 

one candidate rSNP located in ATG10 gene showed a putative effect in 

transcription factor binding sites, rs111549985 (data not shown since was 

performed by another colleague). However, there was not enough functional 

information available to associate this SNP to the DAE observed in this locus So, 

we performed a PCR to genotype the candidate rSNP rs111549985 in 51 normal 

breast samples, in order to be possible to perform the DAE mapping analysis, 

which further indicated that this variant is associated with DAE levels at three 

SNPs, in the genes ATG10 and RPS23. 

Through EMSA in vitro assay, using MCF-7, MDA-MB-231 and HCC1954 cell 

lines, we verified that there is a protein binding to both alleles but preferentially to 

the C allele of rs111549985 rather than the G allele (Lanes 3 and 4), as shown in 

Figure 5.7.1. Therefore, rs111549985 is a good candidate to be the causal rSNP 

to the observed DAE in ATG10 and RPS23 and to be associated with the risk of 

breast cancer. This binding was confirmed with competitions assay using 

unlabeled oligonucleotides (Lanes 5-10). We further performed a supershift 

assay in order to identify the protein that was binding to rs111549985 using 

antibodies against POL II, E2F1 and c-MYC (the EMSA for the last two proteins 

is not shown in Figure 5.7.1), based on PWM analysis results. The results (Lanes 

11-14) showed that none of these proteins are the one binding to rs111549985.   
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Figure 5.8.1 EMSA in vitro assay showing protein-nucleic acid interaction and competition 
binding studies for candidate rSNP rs111549985 (5q14.2 locus). Nuclear extract from MCF-

7 cell line was used. Lane 1 corresponds to EBNA control; lane 2 contain the positive control 
FGFR2 oligonucleotides. Lanes 3 and 4 (red arrows) corresponds to labeled oligonucleotides 
containing the C and the G allele of the SNP rs111549985. For competition, 1X concentrated 

unlabelled oligonucleotide was added to lanes 5 and 8; 30X higher concentrated unlabelled 
oligonucleotide was added to lanes 6 and 9; 100X higher concentrated unlabelled oligonucleotide 
was added to lanes 7 and 10. To lanes 11 and 13, HMGA antibody was added as negative control,  

meanwhile in lanes 12 and 14 Pol II antibody was added. 
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6 Discussion and Conclusion 

Prior studies have shown that inherited genetic variants contribute to the 

regulation of gene expression and may increase the risk of developing common 

diseases, such as breast cancer (Ghoussaini et al. 2013; Michailidou et al. 2015; 

Ripperger et al. 2009; Maia et al. 2012; Glubb et al. 2015; Cai et al. 2011; 

Shephard et al. 2009; Wang et al. 2014; French et al. 2013; Meyer et al. 2008; 

Meyer et al. 2013; Wynendaele et al. 2010). The fact that all 94 common low-

penetrance loci identified by GWAS associated with risk for breast cancer were 

located in non-coding regions, intergenic region or gene deserts (except one loci 

that was located in a coding region), suggested that they are located in regulatory 

elements. Furthermore, since all loci studied at a functional level suggested that 

these genetic variants are conferring risk through cis-regulation, we hypothesize 

that cis-regulation is an important mechanism for breast cancer risk and that the 

genetic variants located in the remaining loci to analyse functionally are likely cis-

regulatory. Since GWASes have a long list of unpublished SNPs to validate, we 

combined our DAE data, with unpublished and published GWAS data for breast 

cancer in order to prioritize the loci with genes being regulated by cis-regulatory 

variants, and therefore, more likely to be associated with breast cancer risk, for 

further validation studies. This way, the main objective of this study was to 

validate an unpublished GWAS locus to confirm it as a new risk locus for breast 

cancer, by first identifying the causal genetic variant(s) cis-regulating this locus 

and further performing a new association study to improve the GWAS SNP 

significance to breast cancer risk. 

In previous work performed in our group the whole-genome DAE map was 

accomplished by using microarrays and comparing the expression of both alleles 

in 500K SNPs along the genome. Further, merging the DAE map with published 

and unpublished GWAS data, was generated a list of 111 clusters with strong cis-

regulatory potential in breast tissue. Each cluster defined as having at least one 

GWAS SNP and one DAE SNP within 250kb. In 32 of the 111 clusters, the GWAS 

SNP and the DAE SNP were in strong LD. One cluster was located in the 12q24 

locus, which was selected to be analysed under the course of this thesis, in order 

to test if we could validate the GWAS unpublished SNP (rs7307700) that did not 
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reach the phase III GWAS statistical significance threshold (p-value ≤ 1x10-5) with 

a p-value = 0.002, and further, associate this locus to breast cancer risk.  

Besides the GWAS SNP rs7307700, the 12q24 locus contained also 15 SNPs 

displaying DAE. rs7307700 is located in the AACS gene, which encodes for an 

enzyme called acetoacetyl-CoA synthetase. Although, the physiological role of 

AACS is yet unclear in humans, some studies suggested its involvement in the 

regulation of lipid metabolism and the metabolism of ketone bodies (Schug et al. 

2015). The ketone bodies are often used as an alternative resource of energy by 

tumour cells when undergoing starvation (Ohgami et al. 2003; Schug et al. 2015). 

One possibility for this locus not passing the phase III significance threshold in 

the GWAS could be because it is not in high LD with the causal variant. As stated 

before, GWAS uses marker SNPs that report the association with other SNPs 

when they are in strong LD with each other. In this way, if the GWAS SNP 

rs7307700 is not in strong LD with the true causal variant, this may diminish the 

signal detected for rs7307700 during the association analysis, and as a result, 

the locus was not be associated with risk. We believe that by first looking for the 

possible causal regulatory variant, which evidence from other studies suggests 

might be a cis-regulatory SNP(s), and further analyse the correlation between the 

GWAS SNP and the causal rSNP genotypes, would be a possible way to improve 

the statistical power to detect association with risk at this locus. 

Taking this into consideration, we chose to investigate SNPs that are in moderate 

to high LD with the GWAS SNP. Based on our DAE data, and on data available 

from regulatory genomic projects, we selected 12 candidate rSNPs that showed 

potential to be cis-acting regulatory variants. Since we had the genotypes of all 

12 SNPs in 64 normal breast samples from the DAE study, we tested if any of 

these candidates could explain the DAE observed by performing a mapping 

analysis. In other words, we tested the genotypes of the 12 candidate rSNPs 

against the allelic expression of the 15 DAE SNPs, in order to see if when the 

candidates rSNPs were heterozygous, the samples presented DAE at the DAE 

SNPs, and when the rSNPs were homozygous the samples showed no DAE. The 

DAE SNP rs12581512 showed a DAE distribution pattern that suggest a 

complete LD between rs12581512 and the rSNP (or rSNPs), and the rs7301263 
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DAE distribution pattern suggested a strong, although incomplete LD between 

rs7301263 and the rSNP (or rSNPs). From this analysis, three of the initial 12 

candidates SNPs, rs10846834, rs10773145 and rs12302714, were selected as 

candidates to be putatively regulating the AACS gene. 

6.1 Analysis of candidates rSNPs rs10846834 and rs10773145 

The candidate rSNPs rs10846834 and rs10773145 were strongly associated with 

the DAE SNP rs12581512, with the majority of individuals heterozygous for these 

two rSNPs showing DAE. Although the p-value was not significant (p-value = 

0.485), we should note the lack of homozygotic samples for these SNPs, which 

weaken the statistical analysis. Therefore, we included these two candidate 

rSNPs in our analysis. However, for the heterozygous individuals for DAE SNP 

rs12581512 there was only one sample homozygous for the rSNPs rs10846834 

and rs10773145. Therefore, to confirm if these two SNPs are truly associated 

with DAE levels, we need to increase the number of samples in the analysis to 

improve the statistical power. 

The next step was to look for evidence of protein binding on these two candidates. 

For the rSNP rs10846834 there were predictions of three proteins possibly 

binding to its sequence (Nrf-2, Maf and Gfi1) with significant differences in allelic 

binding affinity. The protein Maf - encoded by the oncogene Maf - is part of the 

basic leucine zipper (bZIP) family of transcription factors, which have a basic 

domain capable of binding to the DNA and a bZIP domain to form heterodimers 

with specific transcription factors, such as NF-E2 and Nrf-2 (Kannan et al. 2012), 

which might explain the predicted binding of all of those proteins. PWM analysis 

suggested that Maf binds to the alternative G allele (PWM = 10.9), but not to the 

reference A allele (PWM = -1.1). We further looked on IGV for ChIP-seq 

experiments that could confirm the PWM results, but for these proteins there were 

no experiments on breast cell lines. Since there was no ChIP-seq experiments 

for these four proteins on breast cell lines, in the future we propose EMSA 

analysis to validate PWM results, particularly for Maf protein. 
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For the candidate rSNP rs10773145, there were predictions of Sin3Ak-20 protein 

binding, though with no significant allelic differences in binding affinity between 

the reference T allele and the alternative C allele. 

Also, for both candidate rSNPs rs10846834 and rs10773145 we found in 

Haploreg v4.1 and in RegulomeDB, results of ChIP-seq experiments showing 

that these two SNPs are located in a region that has STAT3 and c-FOS proteins 

binding, in MCF10A cell line. We analysed these results on IGV, to verify the 

intensity of the DNA-protein binding and the binding affinity of STAT3 and c-FOS 

proteins towards the two alleles of the SNPs rs10846834 and rs10773145, by 

comparing the reads for each allele. Regarding STAT3 protein binding, both 

candidate rSNPs had less than twenty ChIP-seq reads count (a total 15 reads for 

rs10773145 and 9 reads for rs10846834), which can lead to uncertainties on the 

differences in allelic binding affinity between for each candidate rSNPs. 

Therefore, other functional studies are needed to confirm this binding. On the 

other hand, there was strong evidence of c-FOS protein binding at both SNPs, 

with a total of 48 reads for rs10773145 and 94 reads for rs10846834. However, 

it did not seem that the c-FOS protein had binding preference for either allele of 

SNP rs10773145 or SNP rs10846834. Nevertheless, it is known that c-FOS is a 

common co-factor of STAT3, as their DNA binding sites co-occur proximally 

together. STAT3 is a transcription factor that regulates gene expression, 

including the FOS proto-oncogene, involved in cell proliferation, differentiation 

and apoptosis, and therefore STAT3 is normally constitutively activated in cancer 

cells, playing a crucial role in carcinogenesis. c-FOS is a bZIP protein that 

dimerizes with proteins of the JUN family, forming the AP-1 transcription factor 

complex. This complex is also often regulated in cancer by STAT3, influencing 

tumour angiogenesis, inflammation and inhibition of apoptosis (Carpenter & Lo 

2014; Xiong et al. 2014). A recent study in T-47D breast cell line, showed the 

cooperative transcriptional interaction among STAT3, c-FOS and c-JUN (AP-1) 

on the CCND1 promoter (which the coding protein is essential for the cell cycle 

G1/S transition). It was shown that after drug stimulation of STAT3, this protein 

was recruited to the CCND1 promoter along with c-FOS and c-JUN. However, in 

the absence of the AP-1 complex the STAT3 recruitment was abrogated (Díaz 

Flaqué et al. 2013). Still, there is very limited information regarding STAT3 and 
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c-FOS interaction, especially in breast cancer tissue, and the discrepancy in the 

number of reads in the ChIP-seq experiments for c-FOS and for STAT3 did not 

allow us to draw any conclusions. These results may also be influenced by this 

interaction or by the endogenous levels of STAT3 protein. 

 

6.2 Analysis of candidate rSNP rs12302714 

The candidate rSNP rs12302714 was significantly associated with the DAE levels 

at SNP rs7301263, since a portion of the heterozygous individuals for 

rs12302714 display DAE and all individuals homozygous for rs12302714 showed 

no DAE for tSNP rs7301263. 

We next looked for evidence of protein binding on rs12302714. For this candidate 

rSNP, there was only prediction of Sox protein binding, but with no significant 

allelic differences in binding affinity predicted for its alleles.  

Additionally, there was no ChIP-seq data available for this candidate rSNP, so, in 

order to test if there was any preferential binding affinity between the alleles of 

rs12302714 we performed an EMSA assay. The results suggested that there is 

a capability to bind protein (shift), although with no allelic differences in affinity, 

as both bands for the C and T alleles appeared with similar intensity. We also did 

a competition assay that confirmed previous evidence of a non-preferential 

protein binding of both alleles. Therefore, the candidate rSNP rs12302714 is 

probably not the responsible for a change in transcription factor binding that could 

cause the DAE observed on tSNP rs7301263 located in the AACS gene. 

 

6.3 In silico analysis of microRNAs binding for the 72 SNPs 

We looked for the causal rSNP in the AACS gene and we found three candidates 

rSNPs (rs10846834, rs10773145 and rs12302714) that explained the DAE 

observed in the SNPs rs12581512 and rs7301263, although after functional 

analysis the ChIP-seq results for rs10846834 and rs10773145, and performing 

EMSA in vitro assay for the SNP rs12302714, the results suggested that the DAE 
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observed was probably not due to cis-regulatory SNPs altering the binding affinity 

of transcription factors. Therefore, we searched for evidence of cis-regulatory 

variants acting in different ways, for example, altering miRNA binding. This 

analysis showed predictions that 17 SNPs (including rs12302714) could alter 

miRNA binding affinity. Normally, miRNAs are associated to gene silencing 

through post-transcriptional binding to their target site (frequently in the 3’UTR of 

mRNA sequence), affecting the translation and the mRNA stability (Liu et al. 

2012; Humphreys et al. 2005). There are studies that showed that the presence 

of SNPs in miRNA target site may regulate gene expression in an allele-specific 

manner (Wynendaele et al. 2010). Thus, miRNA regulation may be the 

mechanism causing DAE in the AACS gene. The preferential binding predicted 

for miRNA hsa-miR-4506 to the T allele of the candidate rSNP rs12302714, may 

suggest the association of the A allele of this SNP with gene expression 

regulation, since hypothetically, the mRNA containing the T allele in the 3’UTR 

will be silenced. More functional analysis is needed to validate the miRNA results, 

such as, microRNA functional analysis, in order to confirm the difference in 

binding affinity between the alleles of the 17 SNPs, and further test exactly how 

it affects the AACS gene expression. 

 

6.4 LD structure and Haplotype analysis for rs7307700, rs12581512, 

rs10846834 and rs10773145 

In order to see if there is a haplotype more associated with risk for breast cancer 

we did a haplotype and LD structure analysis. The DAE SNP rs7301263 was not 

in high LD with the other SNPs, and therefore, was not in a haplotype block. The 

GWAS compared the frequency between cases and controls of rs7307700 minor 

A allele and identified an association with risk. Therefore, it is detecting the signal 

from haplotypes 2 and 3 that both have the GWAS risk allele. Both haplotypes 

contain the GWAS SNP A allele and, in combination with haplotype 5 (the one 

containing the DAE SNP allele A and the rSNPs alleles G and C), accounts for a 

total frequency of 28.1%. On the other hand, the haplotypes with the less 

expressed alleles but that had the GWAS A allele (haplotypes 2 / 4, 3 / 4 and 3 / 

6) represent a total frequency of 18%. Therefore, maybe the risk signal detected 
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from the GWAS A allele was not significantly strong due to this small difference 

in the ratio of signal of the haplotypes carrying the preferentially expressed 

alleles. If these are the true causative of risk, then haplotypes 2 / 4, 3 / 4 and 3 / 

6 could be masking the effect detected at rs7307700. This may suggest that the 

effect of two or more alleles may be causing the risk for breast cancer and the 

DAE. 

Additionally, haplotype 5 possess the minor alleles G and C of the candidates 

rSNPs rs10846834 and rs10773145, respectively, which were associated with 

more binding affinity to STAT3 and c-FOS proteins, suggesting that this haplotype 

is associated with these transcription factors binding, and perhaps, with more 

expression of the AACS gene, when these variants are found together. The 

preferential binding predicted for miRNA hsa-miR-4506 to the T allele of 

rs12302714, found in haplotype 2 together with the GWAS risk allele, may 

suggest the association of the A allele of this candidate rSNP with DAE. 

 

Therefore, more in silico and in vitro analysis are needed to try to explain the DAE 

in 12q24 locus, that could be due to other regulatory mechanisms not studied in 

this work, such as allele-specific splicing events, rather than transcription factor 

binding. Only after clarifying the mechanism behind the DAE present in 12q24 

locus we will be able to understand if this locus could also be associated with risk 

for breast cancer, by re-testing the rSNPs for association with risk. Thus, more 

analysis are needed to understand the DAE observed in the AACS and UBC 

genes, although we believe that the AACS is more probable to be associated with 

risk for breast cancer, since the allele more expressed of the DAE SNP located 

in AACS is part of the haplotype that includes the GWAS risk allele, whereas the 

DAE SNP located in UBC seems not to be associated with risk. In summary, our 

approach, combining the data of our DAE map with the GWAS breast cancer 

data, revealed to be a fine method to prioritize unpublished locus under influence 

of cis-regulatory variants, associated with the DAE levels, to further validation 

studies. 

In the future, performing an association study with these candidate cis-regulatory 

variants is fundamental to associate the 12q24 locus to breast cancer risk. 
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Further studies similar to this work will contribute to a better understanding of the 

biology underlying breast cancer risk, as well as contribute to future development 

of cancer prevention and treatment, improving personalized medicine.  
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Annex 1 

Annex 1.1 DAE SNPs reported in previous results obtained in microarray (Maia et al, 
unpublished). These are the 15 DAE SNPs that we chose to validate. The x-axis indicates the 

genotype (all heterozygous) and the y-axis indicates the normalised DAE ratio obtained. Dotted 
lines delimit the cut-off of preferential allelic expression ratio [log2(1.5) = 0.584].  
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Annex 1.2 List of the 72 proxy SNPs in LD ≥ 0.4 with the GWAS SNP. 12 SNPs (in bold) were 

in at least one active promotor or enhancer and in DHS, in breast cell lines. The rest of the SNPs 
were excluded from our analysis. 

SNP Active enhancer or 

promotor in breast 
cell line 

DNase I 

rs10846828 Yes Yes 
rs12302714 Yes Yes 
rs10846834 Yes Yes 
rs10773145 Yes Yes 
rs7133614 Yes Yes 
rs10773146 Yes Yes 
rs12578446 Yes Yes 
rs34151902 Yes Yes 
rs4765021 Yes Yes 
rs4622332 Yes Yes 
rs4559740 Yes Yes 
rs7294703 Yes Yes 
rs4765217 Yes Not in breast 
rs56394386 Yes Not in breast 
rs4765218 Yes Not in breast 
rs7970937 Yes Not in breast 
rs12371384 Not in breast Not in breast 
rs7135489 Not in breast No data 
rs1384556 Not in breast Yes 
rs6488989 Yes Not in breast 
rs2018130 Not in breast Not in breast 
rs7955201 Yes No data 
rs7138557 Not in breast Yes 
rs7137679 Yes No data 
rs900410 Yes Not in breast 
rs10846824 Not in breast No data 
rs55999005 Not in breast No data 
rs7953077 Yes Not in breast 
rs10400509 Not in breast No data 
rs58416336 Yes Not in breast 
rs2291247 Not in breast Not in breast 
rs2291248 Not in breast Not in breast 
rs34624329 Not in breast Not in breast 
rs3751181 Yes No data 
rs12581512 Yes Not in breast 
rs12316499 Not in breast Not in breast 
rs10846829 Not in breast Not in breast 
rs7398636 Not in breast Yes 
rs7136220 Not in breast Yes 
rs7133006 Yes Not in breast 
rs7133864 Yes Not in breast 
rs1080910 Yes Not in breast 
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rs34961756 Yes Not in breast 
rs41473449 Yes Not in breast 
rs35620656 Yes Not in breast 
rs12580221 Not in breast Yes 
rs11058031 Not in breast Not in breast 
rs2297478 Not in breast Yes 
rs12303572 Not in breast Not in breast 
rs57491100 Not in breast Yes 
rs57031290 Not in breast No data 
rs12303416 Not in breast No data 
rs12305181 Not in breast Yes 
rs35941060 Not in breast Yes 
rs58624919 Not in breast Yes 
rs900411 Not in breast Not in breast 
rs6488984 Not in breast Not in breast 
rs11058053 Yes Not in breast 
rs35933435 Yes Not in breast 
rs10773140 Not in breast No data 
rs7307545 Not in breast No data 
rs7315347 Yes Not in breast 
rs7954593 Not in breast No data 
rs10744191 Not in breast Not in breast 
rs10773142 Yes Not in breast 
rs4765214 Not in breast No data 
rs56255932 Yes Not in breast 
rs34107239 Yes Not in breast 
rs10846822 Not in breast No data 
rs1029075 Not in breast Yes 
rs7963307 Not in breast No data 
rs2343542 Not in breast No data 
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Annex 2 

Annex 2.1 EMSA for candidate rSNP rs12302714, showing no differences in binding affinity 
between the alleles, even in different binding conditions.  Nuclear extract from HCC1954 cell 

line was used. Lane 1 corresponds to EBNA control; lane 2 contain the positive control FGFR-13 
oligonucleotides. Lanes 8 and 9 corresponds to EBNA control conditions; lanes 10 and 11 is 
EBNA conditions but with less poly(dI dC); lanes 12 and 13 is our conditions (normal); and lanes 

14 and 15 is our conditions but without zinc. 

 

 

 

Annex 2.2.1 Different EMSA conditions used to test if: 1) the kit conditions are improved; 2) the 

concentrations of poly(dI.dC) could alter the binding process since more protein may bind to the 
poly(dI.dC) sequence instead of the oligonucleotide of interest; 3) zinc ions could affect the 
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binding process, since for the control kit EBNA no zinc is added to the reaction; 4) our conditions 

is more adequate for EMSA assay. 

 

 

 

 


