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Resumo 
 

        As séries temporais são uma classe importante de objetos de dados que surgem de várias 

fontes e a sua análise geralmente envolve enormes quantidades de informações que exigem 

o uso de técnicas de mineração de dados. A medição da similaridade em séries de longo prazo 

desempenha um papel importante na busca por padrões semelhantes, classificação, 

agrupamento, previsão e descoberta de conhecimento. No contexto clínico qualquer 

estimativa de valores futuros baseada em seus valores passados pode ser útil no prognóstico 

de doenças. 

 Nesta tese são descritos diferentes métodos para medir a similaridade entre séries 

temporais de sinais de pressão arterial (ABP) e são fornecidos resultados experimentais. Para 

classificar um registro ABP dentro de uma classe de doenças particulares (um cluster), o 

procedimento típico é a determinação prévia da similaridade do registro ABP com um sinal 

de referência caracterizando uma doença cardiovascular (CVD) e depois, identificando a 

força dessa similaridade, possibilita-se uma classificação verdadeira positiva da doença (ou 

não). Vários métodos de mensuração da similaridade entre séries temporais são referidos na 

literatura, sendo os mais comumente empregados objeto desta pesquisa. Uma vez que o 

objetivo foi a aplicação dos resultados de similaridade para realizar agrupamento dos sinais 

ABP (clustering), vários métodos de similaridade foram investigados particularmente no que 

diz respeito ao seu desempenho ao prosseguir para a etapa seguinte de agrupamento de 

acordo com a patologia. 

Assim, esta tese relata o uso de sete métodos de similaridade diferentes, cinco 

trabalhando no domínio do tempo e dois no domínio baseado em transformação, e explora o 

seu uso quando o clustering pelo método de Partitioning Around Medoids é implementado. 

Como os registros de dados são ruidosos e os sinais sofrem de variações devido a outras 

fontes além das do coração, seis tipos de variações foram impostas ao sinal de referência e 

foram testados 20 graus de possíveis variações. As séries temporais consideradas neste estudo 

foram de 10 segundos de duração, referindo-se a eletrocardiogramas (ECG) saudáveis, a 

sinais de ECG com segmentos ST de longo prazo, a ECG’s relativos a fibrilação atrial e ainda 

a uma coleção de ECGs de diagnóstico. Foram considerados três agrupamentos, cada um 

envolvendo registros saudáveis e patológicos, em diferentes proporções. 
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Os resultados demonstram que a Transformação de Wavelet Discreta usando uma 

decomposição de wavelet de Haar com as transformações de Karhunen-Loève, além de 

reduzir a carga de processamento computacional, possibilita o agrupamento com uma 

precisão entre 76% e 84% entre as três classes diagnósticas consideradas. 

A organização desta tese é a seguinte. Uma breve representação de séries temporais está 

incluída no capítulo 1. Uma breve descrição de vários métodos de similaridade e métodos de 

agrupamento são apresentados nos capítulos 2 e 3. As experiências realizadas e os resultados 

obtidos são descritos no capítulo 4. Finalmente, a conclusão deste trabalho é apresentada no 

capítulo 5, onde a lista de publicações resultantes desta tese está incluído. 

 

Keywords: Séries temporais; Correspondência de dados; Medidas de similaridade; Distância 

Euclideana; Transformada de Wavelet; Transformada de Fourier; Coeficiente de Correlação; 

Distância de Mahalanobis; PAM Clustering. 
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Abstract 
 

Time series are an important class of data objects that arise from various sources and 

their analysis typically involves huge amounts of information requiring usage of data mining 

techniques. Measuring similarity in long time series plays an important role in searching for 

similar patterns, classification, clustering, prediction and knowledge discovery. In clinical 

context any estimation of future values based on its past values can be useful in disease 

prognosis.   

In this thesis different methods of measuring similarity between time series of arterial 

blood pressure (ABP) signals are described and experimental results are provided. To classify 

an ABP record within a particular diseases’ class (a cluster), the typical procedure is the prior 

determination of the similarity of the ABP record with a reference signal characterizing a 

cardiovascular disease (CVD) and then identifying the strength of that similarity to enable a 

true positive classification of the illness (or not). Several methods of measuring similarity 

among time-series are referred in literature, the most commonly employed one were object 

of this research. Since the goal was the application of the similarity results to perform 

clustering of the ABP signals, similarity methods were investigated particularly in what 

concerns their performance when proceeding for the clustering following step. 

So, this thesis reports the usage of seven different similarity methods, five working in 

the time domain and two in the transform-based domain, and explores their usage when 

clustering by Partitioning Around Medoids is implemented. As data records are noisy and 

signals suffer from variations due to other sources than heart, six types of variations were 

imposed on the reference signal and 20 degrees of possible variations were tested. The time 

series considered on this study were 10 seconds length, referring to healthy, 

electrocardiogram (ECG) long term ST’s, atrial fibrillation and a collection of diagnostic 

ECGs. Three clusters were considered, each involving healthy and pathological records, in 

different proportions.  

Results demonstrate that the Discrete Wavelet Transform using a Haar wavelet 

decomposition with the Karhunen-Loève transforms, besides reducing the computational 

processing load enables clustering with an accuracy between 76% and 84% among the three 

diagnostic classes considered. 
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The organization of this thesis is as follows. A short representation of Time-series is in 

chapter.1. A brief description of various similarity methods and clustering methods are given 

in chapters 2 and 3. Experiments performed and results obtained are described in chapter 4. 

Finally, the conclusion of this work is presented in chapter 5 where the list of publications 

resultant from this thesis is included. 

 

Keywords: Time series; Data matching; Similarity measure; Euclidean distance; Wavelet 

transform; Fourier transform; Correlation coefficient; Mahalanobis distance; PAM 

Clustering. 
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Chapter 1  

INTRODUCTION  

1.1 Structure of the thesis 

 

This thesis is organized into five chapters. 

The present chapter, presents a general introduction and a brief representation of what 

time series correspond to. Second chapter exposes the methods typically employed for 

similarity measurements and presents an overview on each method; time domain methods 

and transformed- based methods are considered. 

Chapter.3 is concerned with clustering and the description of Partitioning Medoids 

clustering method, the clustering method employed in this thesis and reported as the second 

experiment on chaper4. 

Chapter.4 describes the experiments developed to compare the performance of similarity 

measuring methods and their performance while clustering data through Partitioning 

Medoids approach. Two experiments are reported: the first is related to the comparative 

assessment of similarity methods by applying different time series variations and comparing 

the sensitivity results among the methods; the second experiment is devoted to the evaluation 

of those similarity methods while integrated in the clustering strategy. This chapter starts by 

explaining how to use similarity measurement definitions reported in chapter.2 and presents 

a brief explanation about preprocessing techniques to be previously applied in the datasets. 

This chapter follows with a description of the PhysioNet databases that were used in the 

experiments. Finally, the results obtained are explained and some conclusions are drawn at 

the end of each experiment. 

The last chapter, chapter.5, the concluding remarks related to this thesis are presented 

and also possible future research lines are suggested. A list of publications derived from this 

thesis are included at the end of the chapter. 
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1.2 Thesis Background  

Time series are defined as ordered sequence of values of a variable at equally spaced time 

intervals. They are used to obtain an understanding of the underlying structure that produced 

the observed data and quite often to fit a model and proceed to forecasting, monitoring or 

even feedback and feedforward control [1]. 

 

Time series similarity measurement methods are methods of measuring the degree of 

similarity between two-time series. If we can work with a highly efficient method of 

measuring similarity and find the relationship among the time series, it will greatly increase 

precision of the analysis in time series databases and helps improving the accuracy and 

efficiency in classification, prediction and cluster analysis [2] [3]. 

 

 Many researchers have devoted their time studying similarity measuring methods. 

Application of similarity matching algorithms is included in the main area of Univariate and 

Multivariate time series (MTS) analysis according to the number of variables considered to 

generate the data collection. These research topics are commonly used in various multimedia, 

medical and financial applications [4], it is one of the main subject in earthquake prediction 

research [5], changes’ detection of vegetation indices in the land ecosystem research [6], 

stock prices data and money exchange rate analysis [7] [8] [9], bioinformatics [10] and 

medical streaming data (MSD) [11], arrhythmia detection [12] [13] and lots of other 

applications in sciences considering different methods of similarity measuring.  

 

Each of these publications are based on different approaches for similarity search, in 

terms of working in time domain or in a reduced space of variables by means of transformed 

spaces like frequency representation [14]. There are many similarity and distance measuring 

methods, namely Dynamic Time Warping (DTW) distance [10] , Mahalanobis distance [13], 

transforming and Dimension reduction techniques like Discrete Fourier Transform [15] or 

Karhunen-Loève Transform [16], Singular Value Decomposition Transform [17], Principal 

Component Analysis [4] [18], Discrete Wavelet Transform (DWT) [19].  
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The main objective of this work is to compare the performance of different methods of 

measuring similarity between long time series representing heart rate variability aiming at 

precise and efficient cardiovascular disease clustering. 

 

1.3 Representation of Time-series 

 

Long Time-series data is the simplest representation of temporal data and refers to those 

changes of real values in time or space that resulted from being sampled at a fixed time 

interval. Mathematically, time series are represented as an ordered set of m real-valued 

variables  𝑌𝑡 = 𝑥𝑡1 , 𝑥𝑡2 , … , 𝑥𝑡𝑚 each representing a value at a time point tm [20]. 

 

Figure 1: Representation of Time-series  

(A. Electrocardiogram (ECG) signal, B. Arterial Blood Pressure (ABP) signals) 

 

Long time series usually are so extensive and growing so fast that it becomes impossible 

for a single person to utilize it all effectively. Also we are typically not interested in the exact 

values of each time series data point so the time series analysis comprises methods capable 

of extracting some useful and meaningful statistics and other characteristics of the data. Time 
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series can be described using a variety of qualitative terms and features such as seasonal, 

trending, noisy, non-linear, chaotic and patterns which are contained within the data [21, 22]. 

Here is short explanation about the most common features of time series data or types of time 

series patterns that may be used for characterizing the time series [21, 23]: 

1- Seasonal effect (seasonal variation or seasonal fluctuations) 

Many of the time series data show a seasonal variation which is influenced by seasonal 

factors (e.g., the quarter of the year, the month, or day of the week, or, in case of biologic 

signals, the heart rate) such as sales and temperature reading. This type of variation is easy 

to understand and can be easily measured or removed from the data. It could be defined as a 

pattern that repeats itself over fixed intervals of time and can be found by identifying a large 

autocorrelation coefficient at the seasonal partial. 

2- Trend (secular trend or long term variation): 

It is a longer term change in the mean level, this is, when there is a long-term increase or 

decrease in the data. The trend may be linear or non- linear (curvilinear). 

3- Skewness: 

It is a measure of symmetry, or more precisely, the lack of symmetry. It is used to characterize 

the degree of asymmetry of values around the mean value. 

4- Kurtosis: 

It is a measure of whether the data are peaked or flat relative to a normal distribution. A data 

set with high kurtosis tends to have a distinct peak near the mean, decline rather rapidly, and 

have heavy tails. Data sets with low kurtosis tend to have a flat top near the mean rather than 

a sharp peak. A uniform distribution would be the extreme case of low kurtosis.  

How to effectively manage and use vast amounts of data contained in time series, the 

effective discovery and understanding of the data sequence and knowledge behind the law, 

in order to extract meaningful statistics and other data characteristics, has been more and 

more challenging to data mining researcher’s [5], particularly thinking about the huge amount 

of data nowadays available. 
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Analysis of time series usually comes across some underlying problems, such as large 

volume of data, non-finite or even discrete numerical range, non-constant sampling rate, 

various noise interference forms [2]. So before applying any analysis techniques, some pre-

processing is necessary namely normalization and noise removal.  

We follow with a brief description of the background theory behind the similarity methods 

that will be addressed in chapter.2. 

 

1.4 Definition of similarity measurement 

 

In almost all research on time series concerning clustering, classification, feature 

extraction, trend forecasting, and decision support, the efficacy of measured of similarity 

between two time series plays a fundamental role.  

The similarity measure d = D(X, Y) between time series X and Y measures the distance d 

between X and Y. D(X, Y) is a function of both time series (inputs) presenting as result 

(output) the distance d  between these series. This distance has to be nonnegative, that is, d ≥ 

0.  Zero distance indicates a complete match between X and Y while high value of d indicates 

that there is no association between the two time series. 

The distance is said to be a metric, if D(X, Y) satisfies the additional symmetry property 

D(X, Y) = D(Y, X) and also the triangle inequality D(X, Y) ≤ D(X, Z) + D(Z, Y) [24, 25]. 

 

Different methods of calculating d will be described in chapter.2. 
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Chapter 2   

TIME SERIES SIMILARITY MEASURING METHODS 

 

2.1 Introduction 

 

This chapter presents an explanation about the time series similarity approaches that 

will be used on future chapters. These methods were selected among many of the available 

ones because the main goal of the thesis is the evaluation of the similarity methods that can 

present better accuracy when performing clustering procedures.  The main idea of this thesis 

is based on [26], to conclude assessing similarity methods performance; so in this thesis the 

similarity methods were selected to allow results comparison with [26]. 

 Determining similarity between time series can be processed in time or in 

transformed domains (transform base methods). The time domain methods work with raw 

time series (with preprocessing step) and have less computational complexity. The 

transformed methods are based on transformation of the time series and have the ability to 

reduce the size of the signals. They also reveal more details of the signal but at the expense 

of higher computational burden. 

 

2.2 Time Domain Methods 

 

2.2.1  Introduction 

 

The simplest algorithms for measuring similarity between time series are the time 

domain approaches. Within this class of methods the Minkowski and Euclidean distance 

(ED), Dynamic Time Warping (DTW), Correlation Coefficient transform (CC) (based on 

Pearson’s correlation) and Mahalanobis distance, will be implemented and are below 

described in detail. 
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2.2.2  Minkowski distance 

 

The Minkowski distance between two time series X(t) = {x(1), x(2),  ..., x(N)}   and  Y(t) 

= {y(1), y(2),..., y(N)}  is the length of the path connecting each pair of the points. This 

distance understood as a measure of similarity, should be interpreted as representing less 

similarity for greater distance and vice versa [27]. The most commonly used and simplest 

time domain distance measurements in classification approaches are derived from the 

Minkowski distance. Eq.1 is generally employed for both the Euclidean distance (𝐷𝐸𝑑) and 

the Manhattan distance (𝐷𝑀𝑎𝑛) [6]. 

 

𝐷 𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖
(𝑋(𝑡), 𝑌(𝑡)) = (∑ |𝑋(𝑡) − 𝑌(𝑡)|𝑝𝑁

𝑡=1
 )

1

𝑝
     (1) 

 

In the case of p=1, Eq.1 represents the Manhattan distance and for p=2 it produces the 

Euclidean distance (Eq.2) characterized as being of easy usage to calculate similarity between 

time series of the same length [6] [28] [29]. 

 

2.2.3  Euclidean distance 

As mentioned this measurement is simple to understand and easy to compute (see Eq.2). 

However, its major disadvantage is the fact of being heavily affected by size of the signals 

and sensitive to small dispersion differences, so it is important to do some preprocessing to 

standardize signals before proceeding with this tool. Normalization and Standardizing scores 

are especially important if variables have been measured on different scales [30] . 

𝐷Euclidean(𝑋(𝑡), 𝑌(𝑡)) = √∑|𝑋(𝑡) − 𝑌(𝑡)|2

𝑁

𝑡=1

  
 

                                    (2) 

 

Figure.2 shows two-time series X and Y presenting different ranges of amplitude scale 

besides resembling similar in shape. The Euclidean distance between these two-time series 

will be large. To avoid this kind of problem one should apply an offset translation and 



8 

 

amplitude scaling, which requires normalizing the signals before applying the distance 

operator [22].  

 

Figure 2: Necessity to normalize time series before measuring the distance between them. Two-time series X and Y 

have approximately the same shape, but have different offsets [22]. 

 

Even with this preprocessing step, measuring similarity with the Euclidean distance may still 

be unsuitable for some time series domains since it does not show similarity of two time 

series that are stretched or compressed. To cope with this problem in time domain, 

researchers suggested [31], [32] the usage of Dynamic Time Warping distance measurement 

(DTW). 

 

2.2.4  Dynamic Time Warping 

 

As mentioned, in practice, Euclidean distance has some drawbacks, such as, it does not 

allow different sequence length and sampling rates, shifting in time axis, even though these 

time series are similar to each other. Thus the Euclidean distance is difficult be directly used 

to solve the problem. To cope with these problem, modifications have been introduced based 

on the principle of Dynamic Time-warping (DTW) to allow more precise distance 

calculations, however it is computationally expensive [5] [27] [31] [32]. 

As shows in Figure.3, with this method it is possible to measure similarity of signals that are 

“stretched” or “compressed”, so, they can be compared. The only point that should be 
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considered is that the time series being compared are of exactly the same dimensionality 

(length) [21, 33]. 

Figure 3: Dynamic time-warping Vs Euclidean distance    

 

Dynamic time Warping distance between two time-series X and Y is defined as Eq.3.  

 

𝐷𝐷𝑇𝑊
2 (𝑋, 𝑌) = 𝐷𝑖=1:𝑁

2 (𝑋𝑖, 𝑌𝑖) + 𝑚𝑖𝑛 {

𝐷𝐷𝑇𝑊
2 (𝑋𝑖, 𝑅𝑒𝑠𝑡(𝑌))          

𝐷𝐷𝑇𝑊
2 (𝑅𝑒𝑠𝑡(𝑋), 𝑌𝑖)            

 𝐷𝐷𝑇𝑊
2 (𝑅𝑒𝑠𝑡(𝑋), 𝑅𝑒𝑠𝑡(𝑌))

    (3) 

Eq.3 is used to minimize measured distance in two similar time series with a little difference 

in terms of the stretching or squeezing in time axis. 

Figure.4 shows two similar time series X and Y, but out of phase.  To align the sequences 

and computing the DWT distance, we construct a 𝑛 × 𝑚  warping matrix. The cell ( 𝑖 , 𝑗 ) is 

correspond to the alignment of element  𝑥𝑖 with  𝑦𝑖 . First of all the distance 𝐷( 𝑖 , 𝑗 )  between 

each two point is calculated then the optimal warping path from cell ( 0 , 0 )  to  ( 𝑛 − 1,

𝑚 − 1 ) (the Rest of the points) is calculated to find the minimum (min) distance, shown with 

solid squares in the figure. Note that the “corners” of the matrix shown are dark gray, are 

excluded from the search path, because the optimum distance is searched. The result of 

alignment is shown in Figure.4 (b) as red color path [22]. This dynamic programming 
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technique is impressive in its ability to discover the optimal of an exponential number 

alignment. Further explanation can be found in [34]. 

 

 

Figure 4: a) Dynamic time warping layout. b) An example of a warping path with local 

constraint 

 

DTW produces a more intuitive similarity measure, allowing similar shapes to match even if 

they are out of phase and are not perfectly synchronized in the time axis. The main drawback 

of this similarity method is the time consuming effort dedicated to the calculation of the path 

of minimal cost but it is a good method to cope with varying lengths in Euclidean space and 

signals with out-of-phase similarities [35]. 

 

2.2.5 Correlation coefficient  

 

The Pearson Correlation Coefficient (CC) is a well-known similarity measure that is 

invariant to shifting and scaling. Eq.4 shows the definition of Pearson Correlation Coefficient 

between two time-series X(t) and Y(t)  [34]. 

 

𝑟𝐶𝐶(𝑋(𝑡), 𝑌(𝑡)) =  
∑ ( 𝑋(𝑡) −   µ𝑋 )( 𝑌(𝑡) −   µ𝑌 𝑁

𝑡=1 )

√∑ ( 𝑋(𝑡) −   µ𝑋 )2 𝑁
𝑡=1 √∑ ( 𝑌(𝑡) −   µ𝑌  )2𝑁

𝑡=1

                     (4) 

         𝑤ℎ𝑒𝑟𝑒              µ𝑋 
=

1

𝑁
 ∑(𝑥𝑖)

𝑁

𝑖=1

     𝑎𝑛𝑑           µ𝑌 
=

1

𝑁
 ∑(𝑦𝑖)

𝑁

𝑖=1

                          (5) 
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Where N is the length of the time series and  µ  is the mean value of each time series (see 

Eq.5) [12]. Eq.6 shows another equation commonly encountered in literature for calculating 

the correlation coefficient. This equation uses the Covariance (Cov) which is a measure of 

how much two random variables change together (see Eq.7) and also the standard 

deviation (𝜎 ) of  X(t) and Y(t) respectively which by itself is a quantification of the amount 

of variation in a set of data values and can be computed by the square roots of variance (see 

Eq.8). 

 

𝑟𝐶𝐶(𝑋(𝑡), 𝑌(𝑡)) =
 Cov (X(t) , Y(t)) 

𝜎𝑋 . 𝜎𝑌 
                                             (6) 

Cov (X(t), Y(t)) =
1

𝑛
 ∑( 𝑥𝑖 − µ𝑋)( 𝑦𝑖 − µ𝑌)

𝑛

𝑖=1

                                  ( 7) 

   𝜎𝑋 
= √

1

𝑁
 ∑(  𝑥𝑖 − µ𝑋 )2

𝑁

𝑖=1

          𝑎𝑛𝑑       𝜎𝑌 
= √

1

𝑁
 ∑(  𝑦𝑖 − µ𝑌 )2

𝑁

𝑖=1

                (8) 

 

The correlation coefficient tells us whether the pattern of responses between time series 

are similar, it doesn’t tell us anything about the distance between two-time series. The 

Pearson Correlation Coefficient range is −1 ≤ 𝑟𝐶𝐶 ≤ +1  where +1 indicates a perfectly 

match between two time-series and 0 indicates that there is no association between the two 

variables. A value less than 0 indicates a negative association this is, while one variable 

increases the other is decreasing. 

In the case of comparing two time series, usually when the trends and evolution are intended 

to be evaluated, the similarity measures based on Pearson’s correlation are used [35]. This 

method is symmetric in the sense that the correlation of X(t) with Y(t) is the same as the 

correlation of Y(t) with X(t). 

This method presents the advantage of being unaffected by dispersion differences across 

variables (linear transformations) [30]. It means that multiplying a time series by a constant 

and/or adding a constant does not change the correlation coefficients of that time series 

variable with other variables [36]. 
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2.2.6  Mahalanobis distance 

 

The Mahalanobis distance is defined as a dissimilarity measure between two time-series with 

the same distribution and covariance matrix S introduced by P. C. Mahalanobis in 1936 [37]. 

It is defined as Eq.9: 

 

𝐷 Mahalanobis(𝑋(𝑡), 𝑌(𝑡)) = √(𝑋(𝑡) − 𝑌(𝑡))𝑇 𝑆−1(𝑋(𝑡) − 𝑌(𝑡))
 

                (9) 

 

The advantage of using Mahalanobis distance is that it takes into consideration the 

correlations, S, between the time series under study and computes the distance with respect 

to a base or reference point [38]. 

According to [35]  Mahalanobis distance usually performs successfully with large data sets 

with reduced features, otherwise undesirable redundancies tend to distort the results. 

 

2.3 Transformed-based Methods 

 

2.3.1  Introduction 

 

The most important problem of long time series is about high dimensionality, the 

similarity measuring of high dimensional time series is not possible based on human 

perception. To cope with this problem, we need dimension reduction techniques [24]. 

Usually reduction techniques can be used to reduce the size of the data in the time series 

lossless or without substantial loss of information (there might occur loss within a very small 

margin). Therefore, a concise and precise representation of the data is provided by these 

techniques. These transformations in data allow more efficient storage, transmission, 

visualization, and computation during the process of measuring similarity between long time 

series and diminish computation burden and processing complexity [22]. 
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 The Discrete Fourier Transform (DFT) is a classic data reduction technique and based 

on that the Discrete Wavelet Transform (DWT) is developed. Also, Singular Value 

Decomposition (SVD) based on traditional Principal Components Analysis (PCA) is an 

attractive data reduction technique [34] but which will not be addressed in this thesis. 

A summary of the above referred transformed-based methods is presented in next 

sections. 

 

2.3.2 Discrete Fourier Transform 

 

In the signal processing techniques, Fourier Transform expresses a mathematical 

function of time as a function of frequency. The basic idea of Fourier transform is the 

decomposition of a signal into a time series, this is, according to the theory, any signal can 

be represented by the sum of an infinite number of sine and cosine basis functions, where 

each function is known as a Fourier coefficient. The discrete version of the Fourier Transform 

enables the summation to be among a finite number of terms [22, 24]. 

Therefore, the DFT is used to map time sequences of long time series to frequency 

domain enabling representation and approximation of a time series by a set of elementary 

basis function [34] , [39]. It is also useful to characterize the magnitude and phase of a signal. 

 

The exponential representation of DFT could be defined as Eq.10 [34]. 

   

𝑋(𝐹) = 𝐷𝐹𝑇(𝑋(𝑡)) =
1

√𝑁
 ∑ 𝑋(𝑖)𝑒−

𝑗2𝜋𝐹𝑖 
𝑁                𝐹 = 0,1, … . , 𝑁 − 1𝑁−1

𝑖=0            (10) 

 

𝑒−
𝑗2𝜋𝐹 𝑖

𝑁 = 𝑐𝑜𝑠 (
𝑗2𝜋𝐹 𝑖

𝑁
) + 𝑗 𝑠𝑖𝑛 (2

𝑗2𝜋𝐹 𝑖

𝑁
)                                 (11) 

 

From Eq.10 we can conclude that the Discrete Fourier Transform decompose periodic 

signals into a time-series in the frequency domain, where imaginary and real parts produce 

symmetric spectra. In this work, Discrete Cosine Transform (DCT) is used as a method of 

measuring similarity between two time series, omitting the imaginary part of the spectrum. 
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The first coefficients of the DFT concentrate and contain most of the time series’ 

information and can capture a good approximation of it. As an example, Figure.5 (a) shows 

an Arterial Blood Pressure (ABP) signal that has been decomposed into its Fourier basis 

functions, the first five being shown in Figure.5 (c) to (g), and then Figure.5(b) shows the 

reconstructed signal when only these five basis functions are considered; As may be 

noticeable the reconstructed signal presents a good approximation of the original signal. 

 

Figure 5: (a)Arterial blood pressure signal and (c) to (g) its basis functions; (b) reconstructed 

signal using the five basis functions presented from (c) to (g). 
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According to the Parseval’s theorem which specify that the Fourier Transform preserve 

the Euclidean distance between time series in time and frequency domains, it is possible to 

use the first coefficients for measuring similarity of two time-series instead of using the 

original ones [9] [34] [15] [39]. 

 

The method of measuring similarity with DCT will be explained in detail in chapter.4. 

 

2.3.3  Discrete Wavelet Transform 

 

Usage of Fourier transforms comprises losing the opportunity to analyze the time domain 

transformations although having taken care about information preservation in the frequency 

domain. To represent the behavior of a time series in both domains, Wavelet based functions 

enable better and higher resolution in both time and frequency domains. In time domain via 

translations of the mother wavelet and in the frequency domain via dilations in the scale. The 

wavelet coefficients represent the correlation between the wavelet and a localized section of 

the time series. The wavelet coefficients are calculated for each wavelet segment, giving a 

time-scale function relating the wavelets’ correlation to the signal.  Unlike the Fourier 

transform, wavelet transforms have an infinite set of possible basis functions and provides a 

way of analyzing the local behavior of functions [7] [40] [41] [42]. 

 

In wavelet transforms lower frequency bands are represented in lower scales and higher 

frequency bands are represented in higher scales. Although wavelets can be represented in 

different types such as Daubechies, Symmlets or Haar wavelets. In this thesis the Haar 

wavelet coefficients are employed and Euclidean distance is used to measure the similarity 

between Haar wavelet coefficients of both time series. 

Haar wavelet transforms are the most popular wavelet transformation that ensures the 

preservation of the Euclidean distance between any two time-series in the transformed space. 

For more details about wavelets, see [34]. 

For instance, Table.1 shows the wavelet transformation of a time series with length of 8 

(in general would be with length N). The number of the steps (levels of decomposition) would 

be 𝑗  , which can be found by setting 𝑁 = 2𝑗. In case of this example it would be 3. As it 
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shows summation and subtraction of each coefficient is calculated it is send to the next step. 

This process continues until j steps are reached and the whole summation of coefficients 

representing the time series is achieved (in this case the last line of the table). 

 

 

 

        Table 1:  Haar wavelet transformation process on the time series with length of 8 

 

The whole process consist of (2𝑗-1) subtractions plus a summation performed recursively as 

shown in Figure.6. It is clear that the reconstruction of a time series is possible from this 

summation and subtraction actions without any loss of information regarding the established 

levels of decomposition; 

 

Figure 6: Decomposition of the time series in wavelet  

 

Another explanation point of view for describing the decomposition of a signal with 

wavelets is to mention that two kind of filters are used. As shown in Figure.6, time series 

decompose into two sets of coefficients. In the first step approximation coefficients  𝐶𝐴1 , 

and detail coefficients 𝐶𝐷1 [43] are calculated. The low-pass filter produces the average 

signal, while the high-pass filter produces the detail signal. The scientific name of each step 

is octave. The detail signals are kept, but the higher octave averages can be discarded. The 
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low-pass filter applies a scaling function to a signal, while the high-pass filter applies the 

wavelet function. Each wavelet packet is also decomposed into two parts using the same 

approach as in previous octave, giving rise to  𝐶𝐴2, 𝐶𝐷2. This makes wavelet a very complete 

analysis and the whole binary tree is produced as shown in Figure.7. 

Figure 7: Decomposition Tree of ABP signal with three different resolution [45] 

 

It shows ABP decomposition tree using Haar wavelet. It is also shown that the resolution 

at different steps depends on the different scale and details that resolution required. For more 

information about the interpretation of wavelet as filters see [44]. 
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A time series can be decomposed into a linear combination of its basis-functions, So the 

signal could be approximated by different resolutions through Eq.12,  as it may be seen in 

Figure.8 , 𝑋′(𝑡) is an approximation of the time series and its accuracy is dependent on the 

level of the basis functions (𝐽) that are used to reconstruct the signal . 

 

𝑋′(𝑡) =  ∑ 𝜑𝑗(𝑡)        

𝐽

𝑗=1

                                               (12)  

 

Figure 8: Signal approximation using the Haar wavelet decomposition:  a) ABP signal 

approximation.  b) Basis functions 𝜑𝑗 for  𝑗 = 1,2,3,4. 
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The basis functions  𝜑𝑗(𝑡) are orthogonal and generated by multiplication of the 

coefficients 𝑑𝑗 ∈ ℝ  which are scalers with the different orthogonal wavelet basis  𝜓𝑗(𝑡) such 

that (Eq.13) 

𝜑𝑗(𝑡) = 𝑑𝑗  𝜓𝑗(𝑡)                                                           (13) 

 

The broad trend of the input function is captured in approximation of the original 

function 𝜙 (𝑡), plus localized changes which are kept as set of detailed functions ranging 

from coarse to fine 𝜓 (𝑡). If we consider, 𝜑1(𝑡) =  𝐶0,0𝜙0,0(𝑡) and J as level of 

decomposition and  𝑗 = log2 𝑁  ; then DWT could be described by Eq.14 and signal X(t) can 

be approximately represented as a linear combination of N basis functions [19]. 

 

𝑋̃𝐽(𝑡) = 𝐶0,0𝜙0,0(𝑡) + ∑ ∑ 𝑑𝑗,𝑘𝜓𝑗,𝑘(𝑡)

2𝑗−1

𝑘=0

𝐽−1

𝑗=0

                     1 ≤ 𝐽 ≤ 𝑁     (14) 

 

As a data reduction technique it is possible in Discrete Wavelet Transform 

approximation to keep the most significant DWT coefficients for measuring similarity of two 

time-series. T. Rocha et al. [29] proposed interpretable similarity measure to evaluate the 

similarity between time series by combining the Haar wavelet decomposition with the 

Karhunen-Loève transforms (KLT) in order to optimum reduce the number of wavelet basis. 

[26]. In this thesis the same approach has been performed to determine the similarity 

measurement between two time series and a detailed explanation is included in chapter.4. 

 

The multiresolution aspect of the wavelet transform provides a time-scale decomposition 

of the signals allowing their visualization and a more accurate clustering of the data into 

homogeneous groups [3] [19]. Wavelet transform also have some drawbacks. They are only 

defined for sequences whose length is an integral power of two and also they involve a more 

complex computational implementation. 
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Chapter 3  

CLUSTERING 

3.1 Introduction 

 

Clustering is one of the most frequently used data mining techniques, particularly for 

similarity search amongst long time series [30]. The objective of cluster analysis is to 

partition a set of objects and group the subsets into two or more clusters based on the 

similarity between the analyzed time series. So clustering strategies are challenging tools 

within several research areas as long as they include similarity search of sequences. The 

combined methods are also used to recognize dynamic changes in time series. One may list 

several research works in this area, to be mentioned as examples the approaches provided in 

[21] [19] [20] [46] [47] [48]. 

Recalling the aim of this thesis, the comparison of different measuring similarity 

methods, the experiment of clustering is going to checks the effect of similarity measures in 

the application of clustering for discovering the accuracy of each method and this could be 

useful in purposes of Heart rate variability (HRV) diagnosis. All the experiments should be 

performed with different similarity measurement techniques to identify those who are able 

to produce more accurate clustering results. Among the published clustering methods the 

Partitioning Around Medoids (PAM) clustering is going to be used in this thesis. 

Next section concentrates on the theory behind clustering which will be implemented in 

this thesis and detailed in chapter.4. 

3.2 Clustering 

 

Clustering is a sort of classification procedure that categorizes all the time series in the 

study dataset into groups, called clusters; the particularity of these classification is that these 

clusters are not predefined and they are defined by the data itself, based on the similarity 

between time series. The most important objective is to find the similar clusters that are as 

distinct as possible from other clusters. In other words, this grouping should maximize inter 
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cluster variance (maximum similarity inside the cluster) and minimize intra cluster variance 

(the clusters themselves should be very dissimilar [22]. 

P. Esling et al. [24] presented a very clear definition of clustering:  

 

Definition: “Given a database of time series 𝑇 =  (𝑡1, . . . , 𝑡𝑛) and a similarity measure 

S(X,Y), find the set of clusters 𝐶 = {𝑐𝑖} where 𝑐𝑖 = {  𝑇𝑗
′  |   𝑇𝑗

′ ∈  𝑺𝑇
𝑛   }  is a set of 

subsequences that maximizes inter cluster distance and intra cluster cohesion.” 

Figure.9 depicts two possible outputs of a clustering algorithm. It can be seen in this 

figure that the main difficulty in clustering usually is defining the correct number of clusters. 

It shows two possible outputs from the same clustering system obtained by changing the 

number of required cluster N=3 and N=8.  This difference is because of the way of initializing 

and selecting the parameters and the level of detail targeted [24]. 

Figure 9: Possible outputs of a clustering algorithm: a) defining 3 clusters, or b) 8 

clusters [24] 

 

3.3 Partitioning Around Medoids (PAM)  

As explained in previous section the aim of clustering analysis is to partition a set of 

objects in data base into two or more clusters such that objects within a cluster are similar 

and objects in different clusters are dissimilar. As also mentioned, for enabling comparison 

with previously published work in this area, the Partitioning Around Medoids (PAM) is the 

clustering strategy to be considered. 
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PAM is based on the search for k representative objects, called medoids, among the 

objects of the dataset. The medoid of a cluster is defined as the object for which the average 

of dissimilarity between objects near that medoid is minimum; in this case a cluster has been 

identified. If k clusters are desired, k medoids are found. Once the medoids are found, the 

data are classified into the cluster of the nearest medoid [49]. 

Algorithm of Partitioning Around Medoids attempts to minimize the total distance D 

between objects within each cluster. Mathematically D can be computed as Eq.15. 

𝐷 = ∑  ∑  ∑ 𝑑𝑖𝑗

𝑗∈𝐶𝑘

               

𝑖∈𝐶𝑘

   

𝐾

𝑘=1

                                 (15) 

where K is the total number of clusters, 𝑑𝑖𝑗 is the distance between objects i and j, and 𝐶𝑘 

is the set of all objects in cluster k [49]. 

 “The algorithm proceeds through two phases. In the first phase, a representative set of k 

objects is found. The first object selected has the shortest distance to all other objects. That 

is, it is in the center. An addition k-1 objects are selected, one at a time, in such a manner that 

at each step, they decrease D as much as possible. In the second phase, possible alternatives 

to the k objects selected in phase one are considered in an iterative manner. At each step, the 

algorithm searches among the unselected objects for the one that, if exchanged with one of 

the k selected objects, will lower the most the objective function. The exchange is made and 

the step is repeated. These iterations continue until no exchanges can be found to provide 

lower values of the objective function. Note that all potential swaps are considered and that 

the algorithm does not depend on the order of the objects on the database [49].” 

Finding dissimilarity (distance) between two time series is fundamental to cluster 

analysis since the goal is to place similar objects in the same cluster and dissimilar objects in 

different clusters. The objective of this thesis is comparing different similarity methods so 

we used different methods in clustering analysis and the output results are compared with 

predefined datasets. In chapter.4 a more detailed description of the experiments developed 

under this thesis are explained. 
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Chapter 4  

SIMILARITY MEASURE ANALYSIS 

4.1 Introduction 

 

As mentioned before measuring similarity is important for classification, clustering and 

any analysis. Since clinical signals are random processes with non-stationary characteristics, 

one is interested in determining disease clustering but having in mind the possibility of 

personalized variations that may occur between different cardiac cycles of the same patient 

and among different patients’ time series data representation. So, the clustering strategy to 

be applied in this thesis, should account for possible variations of the time series without loss 

of general classification on a same cluster. 

 

Therefore, a primary experiment was undertaken to force variations on the template time 

series and test the influence of increasing variations on the similarity measurements, this is, 

we wanted to test the sensitivity of the similarity measurement method to different levels of 

variations. 

 

 Secondly, the partitioning around Medoids clustering was assessed for various types of 

similarity methods, searching for the most robust similarity method that could cluster 

different CVD among the testing time series. The concept of clustering robustness hereby 

involved is in the sense of identifying the pair similarity measurement versus PAM that will 

enable clustering with less sensitivity to possible time series variations. Results are then 

confronted with the first experiment results to confirm the most suitable strategy for CVD 

diagnosis [6] [19] [29] [31] [50]. 

 

4.2 Implementation of similarity measuring algorithms 

 

Similarity measuring similarity methods apply to pairs of time series. One time series is 

a template with which we want to measure the similarity to the other time series. The template 
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time series is forced to different degrees of variations, to be applied on amplitude and on time 

dimensions. 

The template time series corresponded to Arterial Blood Pressure data collected from the 

public data base PhysioNet [51]. The similarity of these two time series is calculated 

according to the methods and equations described in chapter.2. 

Measuring similarity with Minkowski (p=6) and Euclidean distances’ methods, 

Correlation Coefficient, Mahalanobis distance and Dynamic Time Warping Distance 

methods is exactly the same as already explained in chapter.2 and the correspondent thereby 

included. However, the procedure of measuring similarity with the Discrete Fourier 

Transform and Discrete Wavelet Transform needs deeper explanations below stated. 

 

i. Discrete Fourier Transform 

As explained in the chapter.2, The Fourier Transform (FT) decompose time series into 

imaginary and real parts as two symmetric spectrums. In this work goes for the real part of 

the signal. Discrete Cosine Transform is the real part of the FT and for a time series with 

length of N, X(t)= {𝑥1 , 𝑥2 , … , 𝑥𝑁} is derive from a simplified form of Eq.10 that is shown 

in Eq.16.  

𝑋′(𝑡) =  𝑝(𝑡) ∑ 𝐶𝑘 𝑐𝑜𝑠 〈
𝜋(2𝑘 − 1)(𝑡 − 1)

2𝑁
〉          𝑡 = 1, … , 𝑁          (16) 

𝑁

𝑘=1

 

In Eq.16, the parameters 𝐶𝑘 are scale factors of the cosine wave and 𝑝(𝑡) is a 

normalization coefficient factor that could defined as Eq.17: 

𝑝(𝑡) = {

1

√𝑁
    , 𝑡 = 1

√
2

𝑁
     , 2 ≤ 𝑡 ≤ 𝑁

                                                (17) 

For measuring similarity of two time series 𝑋 (𝑡) and Y(𝑡) based on DCT coefficients, 

the first m coefficients could represent a good approximation of time series so this distance 

could be a good  measure of similarity . The template signal, 𝑋 
 (𝑡) ,and the added variation 
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signal, Y(𝑡) ,are decomposed into DCT coefficients and the similarity is  measured according 

to Eq.18.  

𝐷𝐷𝐶𝑇(𝑋 
 (𝑡), 𝑌(𝑡)) = √∑ (𝐶𝑘 𝑋 

− 𝐶𝑘𝑌
)

2
𝑚

𝑘=1

                                (18) 

This distance could be the same as Euclidean distance if we consider all coefficients (m=N). 

In this thesis, the number of coefficients chosen to reconstruct the signal were selected to 

guarantee a 90 percent of accuracy. First of all, the absolute coefficients are ranked in descend 

order then the number of basis that could be used in the reconstruction of the signal with the 

90 percent approximation are chosen (almost always the first m=4 coefficients). 

 

ii. Discrete Wavelet Transform 

Discrete Wavelet Transform decompose time series into the basis functions as explained 

in chapter.2. On this thesis the similarity measuring is based on the combination of wavelet 

transform with the Karhunen-Loève transform, which is an optimal dimension reduction 

method that could guaranty a minimal reconstruction error. 

In measuring similarity with DWT, the distance between time series is measured but the 

reduced number of coefficients are considered according Karhunen-Loève theorem. In this 

method the time series decompose into the basis functions which are orthogonal to each other. 

Those are obtained as eigenvectors of the covariance matrix composed of the wavelet basis 

[52]. The approximation of the signal is obtained by reducing the number of basis that have 

been employed in the similarity measuring instead of reducing the signal, This reduction is 

obtained from the first highest J eigenvalues of the correspondent covariance matrix [26]. 

Firstly, the template time series , 𝑋1(𝑡) with the length N, is decomposed into a linear 

combination of  N wavelet basis 𝜑𝑗(𝑡) ,as Eq.19 . 

𝑋 
 (𝑡) =  ∑ 𝜑𝑗(𝑡)           

𝐽

𝑗=1

                                                    (19) 
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Then, the second time series (variation of added signal), Y(𝑡) with the same length of N, also 

decomposed into the same wavelet basis 𝜑𝑗(𝑡) , Eq.20. 

𝑌(𝑡) =  ∑  𝛼𝑗  𝜑𝑗(𝑡)           

𝐽

𝑗=1

                                             (20) 

 

In Eq.20, the coefficients  𝛼𝑗  are always existent and could be derived from Eq. 21 [26]. 

 𝛼𝑗 =
〈𝑌(𝑡), 𝜑𝑗(𝑡)〉

〈𝜑𝑗(𝑡), 𝜑𝑗(𝑡)〉
                                                              (21) 

 

As in Fourier Transforms, the distance of this wavelet coefficients could show similarity of 

two time series and could be described as Eq.22 

𝐷𝐷𝑊𝑇(𝑋 
 (𝑡), 𝑌(𝑡)) = √∑(1 −   𝛼𝑗)

2

𝐽

𝑗=1

                                  (22) 

In this distance equation if all set of basis are consider (J=N), the result would be the same 

as the Euclidean distance. The most important advantage of this method is to reduce data 

noises and unnecessary parts of the signal.  

In this thesis the length of all the signals is set to N=1024 so the appropriate J=4 is chosen 

for our experiments to achieve the accuracy of 92% in the approximation.   

In chapter.2, all the equations for similarity techniques are about the distance between two 

time series. Eq 23 is used for measuring similarity for all methods in the same exponential 

scale. 

𝑆 (𝑋 
 (𝑡), 𝑌(𝑡)) =  𝑒−𝐷 (𝑋 

 (𝑡) ,   𝑌(𝑡))                                      (23) 

 

In this equation S is the similarity function which in the case of perfect similarity (𝐷 = 0) 

would be 1 and in the case of dissimilarity (𝐷 → ∞) it would be almost zero. 
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4.3 Preprocessing of the datasets 

 

In the real life, all the time series collected from sensors or devices are subject to noise 

and artifacts. The first and most important step of each signal processing experiment is 

overcoming this problem by means of performing some preprocessing. It could increase the 

quality of data before running any analysis, data may be transformed into a format that is 

more easy and effective to be processed. The signals should be prepared by analyzing them 

carefully to prevent misleading results. Preprocessing includes Noise filtering, normalization, 

transformation, feature extraction and data selection. Usually noise filtering can be handled 

by using traditional techniques like digital filters or wavelet thresholding. 

Another issue to take into account is concerned the scaling differences between time 

series. In the case of this thesis, since the range of amplitude values of the raw data (in ECG 

and ABP signals) varies widely and similarity functions are based on the distance between 

time series, different ranges of amplitude would produce erroneous results. This problem can 

be overcome by a linear transformation of the amplitudes. 

By performing normalization of all the signals in the dataset, all measured values are 

adjusted in the common scale. This process called feature scaling or unity-based 

normalization is typically used to bring all values into the range [0,1]. Eq. 24  describes the 

rescaling method applied [52]. 

𝑋′  =
𝑋 −   𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 
                                                         (24) 

 

Another preprocessing method is removal vertical offsets. Eq.25 shows this 

preprocessing step when 𝑋̅  represents the mean value of the time series. 

𝑋′ = 𝑋 − 𝑋̅                                                                  (25) 

In the preprocessing of acquired signals in the dataset, if one or more signals have a 

different sampling frequency, it is recommended to resample them to obtain the same 

sampling frequency. This is performed order to obtain series of the same length with the same 

frequency [24]. 
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4.4 Datasets acquisition 

As mentioned in chapter.1, all biomedical signals used in this thesis were collected from 

PhysioNet database [51]. PhysioNet offers free web access to large collections of recorded 

physiologic signals (PhysioBank) many of them including clinical annotations. 

“PhysioBank is a large and growing archive of well-characterized digital recordings of 

physiological signals and related clinical data for use by the biomedical research community. 

It currently includes databases of multiparameter cardiopulmonary, neural, and other 

biomedical signals from healthy subjects and from patients with a variety of illnesses with 

major public health implications [51].” 

As also previously mentioned, two experiments were implemented to measure robustness 

and sensitivity of similarity measuring methods when applied to biomedical time series, and 

also, to measure the accuracy of each method. All the algorithms were implemented using 

the Matlab software [53]. 

In the experiment of evaluating sensitivity of the similarity measurement methods 

described in section 4.5, the template signal selected was an Arterial Blood Pressure signal 

which was collected from MIMIC.II database. 

MIMIC.II - Multiparameter Intelligent Monitoring in Intensive Care, is a multi-

parametric dataset including time series of vital signs collected from bedside patient monitors 

in the intensive care units (ICUs) and contains detailed clinical information for many of the 

patients presented in the Waveform Database [54]. 

In the experiment of evaluating accuracy of clustering (as described in section 4.6) four 

groups of ECG signal were collected from the following PhysioNet databases [54]: 

Fantasia Database which is related to twenty young (21 - 34 years old) and twenty 

elderlies (68 - 85 years old) healthy subjects. Both young and elderly were resting while 

continuous electrocardiograms (ECG) were recorded. All subjects remained in a resting state 

in sinus rhythm while watching the movie Fantasia (Disney, 1940) to help maintain 

wakefulness. The sampling frequency in this database is 250 Hz but in some of the signals 

were 333Hz.  
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The Long-Term AF Database includes 84 long-term ECG recordings of subjects with 

paroxysmal or sustained atrial fibrillation (AF). The sampling frequency in this database is 

128 Hz. 

The Long-Term ST Database contains 86 lengthy ECG recordings of 80 human 

subjects, chosen to exhibit a variety of events of ST segment changes. The sampling 

frequency in this database is 250 Hz. 

The PTB Diagnostic ECG Database contains 549 records from 290 subjects (aged 17 to 

87, mean 57.2; 209 men, mean age 55.5, and 81 women, mean age 61.6 with different heart 

diseases. PTB is an abbreviation for Physikalisch-Technische Bundesanstalt , the National 

Metrology Institute of Germany, which has provided this digitized ECGs for research. The 

sampling frequency in this database is 1000 Hz. 

 

4.5 Experiment for evaluating sensitivity of similarity measuring 

methods 

 

4.5.1 Introduction 

 

A similarity measuring method should be capable of detecting similarity between 

time series although some variations may occur in signals, this is, it should be invariant to 

transformations and distortions. It should recognize two similar signal even though they are 

not mathematically identical.  The main goal of this experiment is to measure robustness of 

each similarity methods when reference signal suffers variations [29]. 

 

4.5.2  Variations in time series 

 

The biomedical time series may have different type of variation, in terms of adding noise, 

scaling or translation in time or amplitude, and also changes in baseline. The similarity 

measure 𝑆 (𝑋1
 (𝑡), 𝑋2

 (𝑡)) in Eq.23 should be robust to any combinations of these 

transformations. For this experiment, Arterial blood pressure (ABP) signal is used, obtained 
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from the PhysioNet dataset [54] as explained in section 4.3 . A template signal X(t) 

representing the 10 sec ABP recording of healthy people is used. This template signal was 

defined to be the average of 9 cardiac cycle segments randomly collected from the ABP 

database. 

The aim is to evaluate sensitivity and robustness of each similarity method to different 

distortions. The distortions tested can be represented by the following equations [24]:    

 (a) Amplitude Scaling: 𝑋𝐴𝑠(𝑡) = 𝛽 ∗ 𝑋(𝑡),                 (26) 

 (b) Amplitude Translation: 𝑋𝐴𝑡(𝑡) = 𝑋(𝑡) + 𝛽 ,            (27) 

 (c) Time Scaling: 𝑋𝑇𝑠(𝑡) = 𝑋(𝛽 ∗ 𝑡),             (28) 

 (d) Time Translation: 𝑋𝑇𝑡(𝑡) = 𝑋(𝑡 + 𝛽 ),             (29) 

 (e) Baseline variation : 𝑋𝐵(𝑡) = 𝑟𝑜𝑡𝑎𝑡𝑒(𝑋(𝑡), 𝜃 ),               (30) 

 (f) Adding Noise:  𝑋𝑊𝑔𝑛(𝑡) = 𝑋 (𝑡) + 𝒩(𝑋𝑖 , 𝑁).                  (31) 

Where β is a constant and Ө is the angle of rotation in the baseline and 𝒩 is White Gaussian 

Noise (WGN). The values of β and Ө employed were based on experiments were small 

incremental changes were envisaged, therefore 20 possible variations of the series are 

considered; An example of a possible distortion imposed on a single cardiac cycle of the 

template ABP signal is depicted in Figure.10. 

 

4.5.3  Experimental results and analysis 

According to the equations and methods explained in previous chapters, similarity of signals 

measured by SEd (Euclidean distance), SDWT (Discrete Wavelet Transform), SFT (Discrete 

Fourier Transform), SCC (Correlation Coefficient), SMah(Mahalanobis distance), SMi 

(Minkowski Distance),  SDTW (Dynamic Time Warping Distance) were computed 

considering increasing levels of distortions. Figure.11 presents for each distortion tested a 

joint representation of all similarity measurement method performance when the 20 levels of 

distortions are applied. 
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Figure 10: Applying different types of variation on the ABP Time series; a) all 20 steps of 

amplitude variation together,  b) one step at all types of variation 

(just on one heart cycle as Template) 

 

As expected and depicted on Figure.11, the similarity measured values decrease when the 

level of distortion (abscissa values) is increased. The sensitivity to each type of variation is 

not the same for all the similarity methods as can be seen by the different trend of the curves. 
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Curves close to similarity value of one represent strong similarity, and those which are 

maintained close to the horizontal line valued one are less sensitive to variable distortions, 

therefore they present high robustness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 : Similarity measurement methods’ sensitivity metrics against degree of distortions 

for the template signal variations: a) Amplitude Scaling, b) Amplitude Shift, c) Time Scaling, 

d) Time shift, e) Variation of baseline, f) Variation by Adding white Gaussian Noise. The 

figures’ caption nomenclature stands for: SEd - Euclidean distance, SDWT-Discrete Wavelet 

Transform, SFT -Discrete Fourier Transform, SCC-Correlation Coefficient, SMah-

Mahalanobis distance, SMi-Minkowski Distance,  SDTW-Dynamic Time Warping Distance. 

 

The similarity measured by Correlation coefficient displays lowest sensitivity to all the 

signals’ variations tested and keeps its trend close to the unity similarity line through all 

degree of distortion imposed denoting lowest sensitivity in all cases. 
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The Euclidean distance and Fourier transform showed highest sensitivity to the distortions 

since as degree of distortions increase the similarity measurement decays rapidly. The Fourier 

transform being particularly critical when amplitude shift, time scale and time shift variations 

are tested. The similarity measured by the Euclidean distance demonstrates higher 

unpredictability results between two time-series whenever variations increase.  

The Mahalanobis distance showed a performance closer to the one presented by the 

Correlation coefficient and much better than the performance of the Euclidean distance or 

the Minkowski Distance. This is due to the fact that, similarly to the Correlation Coefficient, 

the Mahalanobis distance equation also takes into consideration the correlation of the data 

set itself. 

The Minkowski Distance proved to be only admissibly insensitive when White Gaussian 

Noise and variance of the baseline are the data variations considered.   

The Discrete Wavelet Transform response is almost insensitive to amplitude shift, closely 

following the performance of the Correlation coefficient and it has better robustness 

response, this is, low sensitivity to other variations.  

The Dynamic Time Warping Distance presented a performance similar to the 

Mahalanobis distance when time scaling is considered and is also almost insensitive to White 

Gaussian Noise when up to 13 degrees of distortion are allowed. 

  Thinking about the main objective of this thesis, the identification of a similarity method 

which could enable an efficient clustering of ABP time series, and knowing the individual 

behavior of the tested similarity methods, next research step will be confirming these results 

while applying clustering methods to time series (section 4.6). 

 

4.5.4 Conclusion 

 

A comparative study of different time series similarity methods has been performed. 

Since our target is CVD diagnosis applications, the study considered the well-known and 

frequently used and referenced PhysioNet data-base, making use of healthy patients’ arterial 

blood pressure signals. We experimentally demonstrated that among the tested time domain 
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similarity measurement methods the Correlation Coefficient was the most robust method, 

that is to say, the most insensitive to small distortion, presenting similarity measurements 

close to unity for amplitude scaling, amplitude shifting, variance of the baseline and additive 

white Gaussian noise. Concerning the transformed-based similarity methods tested, the 

Discrete Wavelet Transform performed better than the Discrete Fourier Transform. It is 

insensitive to amplitude shifts of the signals, almost insensitive to white Gaussian noise up 

to 14 variations, but for the other variations it is clear a robustness decay as the degree of 

variation increases. 

To conclude, in what consists an election of the most robust similarity method the 

Correlation Coefficient wins. However, when data reduction is required due to computational 

burden of the whole system, the Discrete Wavelet Transform as proposed in (Rocha (2014) 

[29]) is the similarity measurement approach to be elected. 

 To be also mentioned that the detailed experiments hereby reported are useful to identify 

the most suitable similarity method to be applied on long time series when the time series 

main characteristics are known in advance. For instance if a researcher is going to deal with 

time series that are essentially corrupted by noise, the similarity method to be applied should 

be the Pearson Correlation Coefficient or the Mahalanobis distance, baut never the Discrete 

Fourier transform. 

Next section addresses the influence of selecting these similarity methods when 

clustering efficiency is envisaged. 

 

4.6 Experiments for accuracy evaluation of PAM Clustering with 

various similarity measuring methods 

4.6.1 Introduction 

 

As mentioned in the chapter.3, clustering is one of the most frequently used data mining 

techniques. The objective of cluster analysis is to partition a set of objects into two or more 

clusters based on the similarity between the analyzed time series. In this thesis Partitioning 

Around Medoids is employed. PAM is based on the search for k representative objects, called 
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medoids, among the objects of the dataset. If the average of dissimilarity between objects 

near a medoid is minimum, a cluster is identified. 

 

4.6.2  Datasets and Clustering performance evaluation metrics 

 

To test the clustering performance 4 groups of ECG signals were generated. All the 

signals were obtained from the PhysioNet databases [54] as explained in details in section 

4.4.  

For the first Group, 40 related to healthy subjects signals from Fantasia Database were 

gathered, for the second group 84 signals randomly were pick up from The Long-Term AF 

Database, for the third group, 85 signals from The Long-Term ST Database were used and 

for the fourth group 71 signals from The PTB Diagnostic ECG Database were employed as 

can be summarized in Table.2. 

 

 

 

 

 

 

 

 

 

 

Table 2: Dataset acquisition 

 

To be mentioned that, as stated in Table.2 the original data bases included more signals 

than those employed in this study. The selection of 40 time series of 10 seconds length from 

the Fantasia data base involved random selection of these 10 seconds records. The same 

strategy was employed on the selection of the working time series from the other data bases. 
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Using these time series three testing collection were composed were healthy and 

diseased patients’ records were grouped, as summarized in Table.3. 

 

 

 

 

 

 

 

Table 3: Data Base collections 

 

The first collection included 30 healthy 10 seconds length time series and 45 time series 

belonging to patients with atrial fibrillation. So, the clustering algorithm should differentiate 

a specific illness among 75 time series. 

The second collection, included 30 time series of healthy patients (not exactly the same 

30 time series of collection 1) and 55 time series (also 10 seconds length) from Long-Term 

ST data base. In this case, clustering strategy was tested against another time of time series 

characteristics than those encountered in collection 1. 

The third collection was also composed of 30 time series of healthy patients but now the 

50 PTB time series randomly selected might include different pathologies since the PTB data 

base is composed of diagnostic ECG signals. 

It is expected that PAM clustering will be able to differentiate the healthy from the 

diseased records within each collection, and, through computation of the clustering 

performance for each similarity method employed on previous experiments one can conclude 

about the most effective and robust similarity method to be employed on CVD clustering. 
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To assess the performance of clustering precision and efficiency of each similarity 

method should be analytically computed [55].  Gavrilov et la [56] proposed a cluster 

similarity metric as defined by Eq.32,33 :  

𝑆𝑖𝑚(𝐺𝑖, 𝐴𝑗) = 2 
|𝐺𝑖 ∩ 𝐴𝑗|

|𝐺𝑖| + |𝐴𝑗|
                                                    (32) 

It computes a cluster similarity metric based on the 𝐺𝑖 “ground-truth”, this is, the 

predefined members of each datasets  and 𝐴𝑗 representing the clustering results obtained by 

using PAM with various types of similarity method. Numerator of Eq.32 introduces the 

number of correct similar time series Aj that are recognized out of a predefine dataset Gi. 

 

 𝑆𝑖𝑚(𝐺 , 𝐴 ) =
∑  max

𝑗
 𝑆𝑖𝑚(𝐺𝑖 , 𝐴𝑗)𝑖

𝑘
                                          (33) 

Eq.33 computes the accuracy of the clustering results.  A cluster out of the G groups 

where  𝑘 is the number of clusters considered [3], [56]. This metric will be zero if two 

clustering are completely dissimilar and 1 if they are similar. 

 

4.6.3  Clustering experiment results 

 

  The result of  𝑆𝑖𝑚  in Eq.33 will be 0 if clustering results are completely dissimilar 

and 1 if the clustering results are similar to the established ground-truth. To clarify, if for 

instance within collection 1, 15 out of the 30 records (healthy patients) and 45 of the 45 atrial 

fibrillation records were detected as similar we would have an accuracy of 75%. Here we are 

designating ‘accuracy’ as the precision of correctness clustering of the data under analysis. 

Each of the datasets is clustered using various type of similarity methods and Eq.33 is 

computed to obtain  the clustering results as stated in Table.4.  

The clustering accuracy results in the Table.4 reveals that Discrete Wavelet Transform 

provide the most accurate clustering on the selected time series for all collections tested with 

a clustering accuracy ranging from 72.7 to 77.6. 
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Table 4: Comparison of clustering accuracy with different similarity measuring methods 

 

In an attempt to improve the accuracy of the clustering procedure another experiment 

was performed. At the pre-processing stage, all the time series were aligned among all 

collections according to their first peak location (see Figure.12).  

 

 

 

 

 

 

 

 

Figure 12: Align signals in datasets according first peak 

 

After this preprocessing step the same algorithms were applied. Table.5 shows the 

modified results obtained with this additional preprocessing stage.  
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Table 5: Comparison of clustering accuracy with different similarity measuring methods 

(time series first peak alignment) 

Now we can observe that accuracy has in fact increased, for the Discrete Wavelet 

Transform the range of accuracy is now between 75.8 and 83.9, but at the same time some 

other similarity methods became more accurate. 

In what concerns collection 1 can see from Table.5 that Dynamic Time Warping, 

Euclidian Distance and Discrete Cosine Transform present higher accuracy (77.2) than the 

Discrete Wavelet Transform (75.8); the next higher accuracy is obtained with Mahalanobis 

distance (76.1). So the majority of the highest rated accuracies were obtained through time 

domain methods. In fact, if we compare the ECG signals from healthy patients and those with 

atrial fibrillation (Figure.13) one can see that the signals are not much different, so the time 

domain similarity measurements easily compute the similarity differences. 

 

 

 

 

 

 

 

Figure 13: Comparison of normal and atrial fibrillation cardiac cycles ABP signals [57] 
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In collection 2; the healthy ECG signals is compared with ST variation signals (see 

Figure.14) that contains variety of events of ST segment changes, including ischemic ST 

episodes, axis-related non-ischemic ST episodes, episodes of slow ST level drift, and 

episodes containing mixtures of these phenomena and  can see from Table.5 that Discrete 

Wavelet Transform (83.93) present higher accuracy than Dynamic Time Warping, Euclidian 

Distance and Mahalanobis distance (81.60), the next higher accuracy is obtained with 

Discrete Cosine Transform (77.92). It can see in results that those signals which have more 

distortion distinguished better with DWT. 

 

 

 

 

Figure 14: Variation in ST segment [58] 

 

In collection 3; the healthy ECG signals is compared with variety of distortion in signals 

and can see from Table.5 that Discrete Wavelet Transform (80.20) present higher accuracy 

than Auto Correlation Transform (74.21), the next higher accuracy is obtained with Discrete 

Cosine Transform (72.97). In this collection also results shows that those signals which have 

more distortion distinguished better with DWT. 

The above presented clustering results strength the previously obtained results when 

addressing the efficiency of similarity measurement techniques previously obtained. 

4.6.4  Conclusion 

In this chapter the similarity measuring method results obtained were validated by a 

clustering algorithm. The objective of these experiments was to group similar time series 

according to specifically predefined datasets and to compare the clustering results with 

predefined groups. In this process by testing different similarity methods inside the PAM 

clustering the accuracy of each method is measured. It gives us a measure about the level of 

success and correctness reached by the algorithm. 
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Analysis of these results reveal that DWT provides the most accurate clustering 

particularly when the variability of signals occurs (collections 1 and 2). Results obtained for 

collection 1 evidence that when inside the clustering members exist more similarity among 

signals (only healthy and atrial fibrillation signals) Euclidian distance related measurements 

may be more accurate. To be mentioned that if during the preprocessing stage the alignment 

of the records’ first peaks was not performed, the DWT accuracy obtained for collection 1 

would be better than any other method. The results improved when an additional 

preprocessing step is applied. 

The datasets were extended as may be seen in Table.6 to enable more experiments for 

being able to define an accurate final conclusion with the same strategy of evaluating 

accuracy of clustering. Table.7 depicts the results of all of the experiments and it shows that 

the DWT provides the best results in this datasets. 

 

 

 

 

 

 

Table 6: Extended datasets: 6 two-class clustering and 1 three-class clustering 

 

 

 

 

 

 

 

Table 7: Comparing accuracy within 7 different datasets  
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Chapter 5  

CONCLUSION AND FUTURE WORKS 

5.1 Concluding Remarks 

 

In this thesis a comparative study is performed on the sensitivity and robustness of the 

various similarity methods in confronting with variation and distortion that may occur in 

time-series experiments. The aim was to find the appropriate similarity measure for long 

time–series to achieve the best efficiency in clustering and classification. 

We would like to emphasize that the key step in this type of time series data mining 

endeavor always lies in choosing the right methods dependent on the particular signals and 

variation existing for that experiment. This means that the similarity measuring method 

chosen for clustering purposes will depend on the signal itself and the possible variation it 

suffers. Sometimes the judgment is centered on the signal trend so resolution of 

approximation is not so important but it may either be concerned with measuring similarity 

based on the signals’ dynamics at specific points in time and in this case more accurate 

resolution is required. 

In case of our specific datasets, we experimentally demonstrate that Discrete Wavelet 

Transform combined with Karhunen-Loève transforms displayed the most accurate results 

among the commonly employed time-series similarity measurement methods in terms of 

accuracy in clustering long time-series. Results also proved that Discrete Wavelet Transform 

combined with Karhunen-Loève transforms are particularly robust when different types of 

datasets are considered within the collection under clustering analysis.  

It is better to say, even by this achieved results is not reasonable to conclude that one 

similarity measure is better than the others. We can conclude that measuring the similarity in 

long time series is dependent on the situation and the goals in the research, presenting 

different performance in different cases. One particular method could be appropriate for one 

research and not good for other one. 
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5.2 Future work 

In this work similarity methods are compared to achieve good clustering performance on 

long time-series. In the future, a deeper study on the length of the time-series capable of 

maintaining the performance already achieved should be investigated. 

It is also envisaged to enlarge the study to other clustering goals, for instance to identify 

from the heart rate variability sleep patterns. 

Another aspect requiring research is comparing the obtained results with alternative 

clustering strategies, namely using neural network-based classification methods. 

In all cases, a common goal is envisaged, to find similarities (or not) between a patient’s 

signal from his past clinical records  and a currently collected signal to conclude about the 

patient’s health evolution aiming at predicting future health trend. 

 

5.3 Publications derived from the thesis 

 

 The results obtained from this research work are written in the form of conference papers 

and submitted to 20th IFAC World Congress, (IFAC WC 2017) [58], and also to BHI2017 - 

International Conference on Biomedical and Health Informatics [59]. Also a journal article 

is being prepared enhancing the selection of similarity measurement techniques for long time 

series clustering purposes. 
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