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Resumo

As séries temporais sdo uma classe importante de objetos de dados que surgem de varias
fontes e a sua analise geralmente envolve enormes quantidades de informacgfes que exigem
0 uso de técnicas de mineragdo de dados. A medicao da similaridade em séries de longo prazo
desempenha um papel importante na busca por padrdes semelhantes, classificacéo,
agrupamento, previsdo e descoberta de conhecimento. No contexto clinico qualquer
estimativa de valores futuros baseada em seus valores passados pode ser Util no progndstico

de doengas.

Nesta tese sdo descritos diferentes métodos para medir a similaridade entre séries
temporais de sinais de presséo arterial (ABP) e sdo fornecidos resultados experimentais. Para
classificar um registro ABP dentro de uma classe de doencas particulares (um cluster), o
procedimento tipico € a determinacédo prévia da similaridade do registro ABP com um sinal
de referéncia caracterizando uma doenca cardiovascular (CVD) e depois, identificando a
forca dessa similaridade, possibilita-se uma classificacdo verdadeira positiva da doenca (ou
ndo). Varios métodos de mensuracdo da similaridade entre séries temporais sdo referidos na
literatura, sendo os mais comumente empregados objeto desta pesquisa. Uma vez que o
objetivo foi a aplicacdo dos resultados de similaridade para realizar agrupamento dos sinais
ABP (clustering), varios métodos de similaridade foram investigados particularmente no que
diz respeito ao seu desempenho ao prosseguir para a etapa seguinte de agrupamento de
acordo com a patologia.

Assim, esta tese relata o uso de sete métodos de similaridade diferentes, cinco
trabalhando no dominio do tempo e dois no dominio baseado em transformac&o, e explora o
seu uso quando o clustering pelo método de Partitioning Around Medoids € implementado.
Como os registros de dados sdo ruidosos e os sinais sofrem de variacdes devido a outras
fontes além das do coracdo, seis tipos de varia¢fes foram impostas ao sinal de referéncia e
foram testados 20 graus de possiveis variagdes. As séries temporais consideradas neste estudo
foram de 10 segundos de duracéo, referindo-se a eletrocardiogramas (ECG) saudaveis, a
sinais de ECG com segmentos ST de longo prazo, a ECG’s relativos a fibrilagdo atrial e ainda
a uma colecdo de ECGs de diagnostico. Foram considerados trés agrupamentos, cada um

envolvendo registros saudaveis e patologicos, em diferentes proporcdes.



Os resultados demonstram que a Transformagdo de Wavelet Discreta usando uma
decomposicdo de wavelet de Haar com as transformacdes de Karhunen-Loéve, além de
reduzir a carga de processamento computacional, possibilita 0 agrupamento com uma

precisdo entre 76% e 84% entre as trés classes diagnosticas consideradas.

A organizacdo desta tese é a seguinte. Uma breve representacdo de séries temporais esta
incluida no capitulo 1. Uma breve descri¢édo de varios métodos de similaridade e métodos de
agrupamento sdo apresentados nos capitulos 2 e 3. As experiéncias realizadas e os resultados
obtidos sdo descritos no capitulo 4. Finalmente, a conclusdo deste trabalho é apresentada no
capitulo 5, onde a lista de publicacfes resultantes desta tese esta incluido.

Keywords: Séries temporais; Correspondéncia de dados; Medidas de similaridade; Distancia
Euclideana; Transformada de Wavelet; Transformada de Fourier; Coeficiente de Correlacéo;

Distancia de Mahalanobis; PAM Clustering.



Abstract

Time series are an important class of data objects that arise from various sources and
their analysis typically involves huge amounts of information requiring usage of data mining
techniques. Measuring similarity in long time series plays an important role in searching for
similar patterns, classification, clustering, prediction and knowledge discovery. In clinical
context any estimation of future values based on its past values can be useful in disease
prognosis.

In this thesis different methods of measuring similarity between time series of arterial
blood pressure (ABP) signals are described and experimental results are provided. To classify
an ABP record within a particular diseases’ class (a cluster), the typical procedure is the prior
determination of the similarity of the ABP record with a reference signal characterizing a
cardiovascular disease (CVD) and then identifying the strength of that similarity to enable a
true positive classification of the illness (or not). Several methods of measuring similarity
among time-series are referred in literature, the most commonly employed one were object
of this research. Since the goal was the application of the similarity results to perform
clustering of the ABP signals, similarity methods were investigated particularly in what
concerns their performance when proceeding for the clustering following step.

So, this thesis reports the usage of seven different similarity methods, five working in
the time domain and two in the transform-based domain, and explores their usage when
clustering by Partitioning Around Medoids is implemented. As data records are noisy and
signals suffer from variations due to other sources than heart, six types of variations were
imposed on the reference signal and 20 degrees of possible variations were tested. The time
series considered on this study were 10 seconds length, referring to healthy,
electrocardiogram (ECG) long term ST’s, atrial fibrillation and a collection of diagnostic
ECGs. Three clusters were considered, each involving healthy and pathological records, in
different proportions.

Results demonstrate that the Discrete Wavelet Transform using a Haar wavelet
decomposition with the Karhunen-Loéve transforms, besides reducing the computational
processing load enables clustering with an accuracy between 76% and 84% among the three

diagnostic classes considered.



The organization of this thesis is as follows. A short representation of Time-series is in
chapter.1. A brief description of various similarity methods and clustering methods are given
in chapters 2 and 3. Experiments performed and results obtained are described in chapter 4.
Finally, the conclusion of this work is presented in chapter 5 where the list of publications
resultant from this thesis is included.

Keywords: Time series; Data matching; Similarity measure; Euclidean distance; Wavelet
transform; Fourier transform; Correlation coefficient; Mahalanobis distance; PAM

Clustering.
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Chapter 1
INTRODUCTION

1.1 Structure of the thesis

This thesis is organized into five chapters.

The present chapter, presents a general introduction and a brief representation of what
time series correspond to. Second chapter exposes the methods typically employed for
similarity measurements and presents an overview on each method; time domain methods

and transformed- based methods are considered.

Chapter.3 is concerned with clustering and the description of Partitioning Medoids
clustering method, the clustering method employed in this thesis and reported as the second

experiment on chaper4.

Chapter.4 describes the experiments developed to compare the performance of similarity
measuring methods and their performance while clustering data through Partitioning
Medoids approach. Two experiments are reported: the first is related to the comparative
assessment of similarity methods by applying different time series variations and comparing
the sensitivity results among the methods; the second experiment is devoted to the evaluation
of those similarity methods while integrated in the clustering strategy. This chapter starts by
explaining how to use similarity measurement definitions reported in chapter.2 and presents
a brief explanation about preprocessing techniques to be previously applied in the datasets.
This chapter follows with a description of the PhysioNet databases that were used in the
experiments. Finally, the results obtained are explained and some conclusions are drawn at

the end of each experiment.

The last chapter, chapter.5, the concluding remarks related to this thesis are presented
and also possible future research lines are suggested. A list of publications derived from this

thesis are included at the end of the chapter.



1.2 Thesis Background

Time series are defined as ordered sequence of values of a variable at equally spaced time
intervals. They are used to obtain an understanding of the underlying structure that produced
the observed data and quite often to fit a model and proceed to forecasting, monitoring or
even feedback and feedforward control [1].

Time series similarity measurement methods are methods of measuring the degree of
similarity between two-time series. If we can work with a highly efficient method of
measuring similarity and find the relationship among the time series, it will greatly increase
precision of the analysis in time series databases and helps improving the accuracy and

efficiency in classification, prediction and cluster analysis [2] [3].

Many researchers have devoted their time studying similarity measuring methods.
Application of similarity matching algorithms is included in the main area of Univariate and
Multivariate time series (MTS) analysis according to the number of variables considered to
generate the data collection. These research topics are commonly used in various multimedia,
medical and financial applications [4], it is one of the main subject in earthquake prediction
research [5], changes’ detection of vegetation indices in the land ecosystem research [6],
stock prices data and money exchange rate analysis [7] [8] [9], bioinformatics [10] and
medical streaming data (MSD) [11], arrhythmia detection [12] [13] and lots of other

applications in sciences considering different methods of similarity measuring.

Each of these publications are based on different approaches for similarity search, in
terms of working in time domain or in a reduced space of variables by means of transformed
spaces like frequency representation [14]. There are many similarity and distance measuring
methods, namely Dynamic Time Warping (DTW) distance [10] , Mahalanobis distance [13],
transforming and Dimension reduction techniques like Discrete Fourier Transform [15] or
Karhunen-Loéve Transform [16], Singular Value Decomposition Transform [17], Principal
Component Analysis [4] [18], Discrete Wavelet Transform (DWT) [19].



The main objective of this work is to compare the performance of different methods of
measuring similarity between long time series representing heart rate variability aiming at

precise and efficient cardiovascular disease clustering.

1.3 Representation of Time-series

Long Time-series data is the simplest representation of temporal data and refers to those
changes of real values in time or space that resulted from being sampled at a fixed time
interval. Mathematically, time series are represented as an ordered set of m real-valued

variables Y; = xq , x4, ..., Xty €aCh representing a value at a time point tm [20].

' R ' R :R (A)
ECG I ' '1 ' |
{ f-l ;0 :.l | x
/] bt .J‘-...'j - o ! / | , \ p l \ |’:/,/ .3
. ) ¥ v ¥
| | |
| | |
| | | ®)
sof | APP PP | PP
ABP N VS R |/ I
)

Figure 1: Representation of Time-series

(A. Electrocardiogram (ECG) signal, B. Arterial Blood Pressure (ABP) signals)

Long time series usually are so extensive and growing so fast that it becomes impossible
for a single person to utilize it all effectively. Also we are typically not interested in the exact
values of each time series data point so the time series analysis comprises methods capable

of extracting some useful and meaningful statistics and other characteristics of the data. Time



series can be described using a variety of qualitative terms and features such as seasonal,

trending, noisy, non-linear, chaotic and patterns which are contained within the data [21, 22].

Here is short explanation about the most common features of time series data or types of time

series patterns that may be used for characterizing the time series [21, 23]:
1- Seasonal effect (seasonal variation or seasonal fluctuations)

Many of the time series data show a seasonal variation which is influenced by seasonal
factors (e.g., the quarter of the year, the month, or day of the week, or, in case of biologic
signals, the heart rate) such as sales and temperature reading. This type of variation is easy
to understand and can be easily measured or removed from the data. It could be defined as a
pattern that repeats itself over fixed intervals of time and can be found by identifying a large
autocorrelation coefficient at the seasonal partial.

2- Trend (secular trend or long term variation):

It is a longer term change in the mean level, this is, when there is a long-term increase or

decrease in the data. The trend may be linear or non- linear (curvilinear).
3- Skewness:

It is a measure of symmetry, or more precisely, the lack of symmetry. It is used to characterize
the degree of asymmetry of values around the mean value.

4- Kurtosis:
It is a measure of whether the data are peaked or flat relative to a normal distribution. A data
set with high kurtosis tends to have a distinct peak near the mean, decline rather rapidly, and
have heavy tails. Data sets with low kurtosis tend to have a flat top near the mean rather than
a sharp peak. A uniform distribution would be the extreme case of low kurtosis.

How to effectively manage and use vast amounts of data contained in time series, the
effective discovery and understanding of the data sequence and knowledge behind the law,
in order to extract meaningful statistics and other data characteristics, has been more and
more challenging to data mining researcher’s [5], particularly thinking about the huge amount

of data nowadays available.



Analysis of time series usually comes across some underlying problems, such as large
volume of data, non-finite or even discrete numerical range, non-constant sampling rate,
various noise interference forms [2]. So before applying any analysis techniques, some pre-
processing is necessary namely normalization and noise removal.

We follow with a brief description of the background theory behind the similarity methods

that will be addressed in chapter.2.

1.4 Definition of similarity measurement

In almost all research on time series concerning clustering, classification, feature
extraction, trend forecasting, and decision support, the efficacy of measured of similarity
between two time series plays a fundamental role.

The similarity measure d = D(X, Y) between time series X and Y measures the distance d
between X and Y. D(X, Y) is a function of both time series (inputs) presenting as result
(output) the distance d between these series. This distance has to be nonnegative, that is, d >
0. Zero distance indicates a complete match between X and Y while high value of d indicates
that there is no association between the two time series.

The distance is said to be a metric, if D(X, Y) satisfies the additional symmetry property
D(X, Y) = D(Y, X) and also the triangle inequality D(X, Y) <D(X, Z) + D(Z, Y) [24, 25].

Different methods of calculating d will be described in chapter.2.



Chapter 2
TIME SERIES SIMILARITY MEASURING METHODS

2.1 Introduction

This chapter presents an explanation about the time series similarity approaches that
will be used on future chapters. These methods were selected among many of the available
ones because the main goal of the thesis is the evaluation of the similarity methods that can
present better accuracy when performing clustering procedures. The main idea of this thesis
is based on [26], to conclude assessing similarity methods performance; so in this thesis the

similarity methods were selected to allow results comparison with [26].

Determining similarity between time series can be processed in time or in
transformed domains (transform base methods). The time domain methods work with raw
time series (with preprocessing step) and have less computational complexity. The
transformed methods are based on transformation of the time series and have the ability to
reduce the size of the signals. They also reveal more details of the signal but at the expense

of higher computational burden.

2.2 Time Domain Methods

2.2.1 Introduction

The simplest algorithms for measuring similarity between time series are the time
domain approaches. Within this class of methods the Minkowski and Euclidean distance
(ED), Dynamic Time Warping (DTW), Correlation Coefficient transform (CC) (based on
Pearson’s correlation) and Mahalanobis distance, will be implemented and are below

described in detail.



2.2.2 Minkowski distance

The Minkowski distance between two time series X(t) = {x(1), x(2), ..., x(N)} and Y(t)
= {y(1), y(2),..., y(N)} is the length of the path connecting each pair of the points. This
distance understood as a measure of similarity, should be interpreted as representing less
similarity for greater distance and vice versa [27]. The most commonly used and simplest
time domain distance measurements in classification approaches are derived from the
Minkowski distance. Eq.1 is generally employed for both the Euclidean distance (Dg,) and
the Manhattan distance (Dyqn) [6]-

1

D s X(O,Y(®) = (T 11X =Y @©)I? )P @)

In the case of p=1, Eq.1 represents the Manhattan distance and for p=2 it produces the
Euclidean distance (Eq.2) characterized as being of easy usage to calculate similarity between
time series of the same length [6] [28] [29].

2.2.3 Euclidean distance
As mentioned this measurement is simple to understand and easy to compute (see Eq.2).
However, its major disadvantage is the fact of being heavily affected by size of the signals
and sensitive to small dispersion differences, so it is important to do some preprocessing to
standardize signals before proceeding with this tool. Normalization and Standardizing scores

are especially important if variables have been measured on different scales [30] .

Deucriaean(X(D,Y(0) = | Y 1X(®) = Y (D12 @)

Figure.2 shows two-time series X and Y presenting different ranges of amplitude scale
besides resembling similar in shape. The Euclidean distance between these two-time series
will be large. To avoid this kind of problem one should apply an offset translation and



amplitude scaling, which requires normalizing the signals before applying the distance

operator [22].

” & Unnormahized Normalized

0 20 40 &0 &0 100 120 140
Figure 2: Necessity to normalize time series before measuring the distance between them. Two-time series X and Y

have approximately the same shape, but have different offsets [22].

Even with this preprocessing step, measuring similarity with the Euclidean distance may still
be unsuitable for some time series domains since it does not show similarity of two time
series that are stretched or compressed. To cope with this problem in time domain,
researchers suggested [31], [32] the usage of Dynamic Time Warping distance measurement
(DTW).

2.2.4 Dynamic Time Warping

As mentioned, in practice, Euclidean distance has some drawbacks, such as, it does not
allow different sequence length and sampling rates, shifting in time axis, even though these
time series are similar to each other. Thus the Euclidean distance is difficult be directly used
to solve the problem. To cope with these problem, modifications have been introduced based
on the principle of Dynamic Time-warping (DTW) to allow more precise distance
calculations, however it is computationally expensive [5] [27] [31] [32].

As shows in Figure.3, with this method it is possible to measure similarity of signals that are

“stretched” or “compressed”, so, they can be compared. The only point that should be



considered is that the time series being compared are of exactly the same dimensionality
(length) [21, 33].

i Fuclidean distance

Dynamic Time Warping

Figure 3: Dynamic time-warping Vs Euclidean distance

Dynamic time Warping distance between two time-series X and Y is defined as Eq.3.

Dirw (X, Rest(Y))
Dirw(X,Y) = DA,y (X;, V) + min< Dy (Rest(X),Y;) ©))
DZrw (Rest(X), Rest(Y))
EQ.3 is used to minimize measured distance in two similar time series with a little difference

in terms of the stretching or squeezing in time axis.

Figure.4 shows two similar time series X and Y, but out of phase. To align the sequences
and computing the DWT distance, we construct a n x m warping matrix. The cell (i,j)is
correspond to the alignment of element x; with y; . First of all the distance D(i,j ) between
each two point is calculated then the optimal warping path from cell (0,0) to (n—1,
m — 1) (the Rest of the points) is calculated to find the minimum (min) distance, shown with
solid squares in the figure. Note that the “corners” of the matrix shown are dark gray, are
excluded from the search path, because the optimum distance is searched. The result of

alignment is shown in Figure.4 (b) as red color path [22]. This dynamic programming



technique is impressive in its ability to discover the optimal of an exponential number

alignment. Further explanation can be found in [34].

a) b)

Figure 4: a) Dynamic time warping layout. b) An example of a warping path with local
constraint

DTW produces a more intuitive similarity measure, allowing similar shapes to match even if
they are out of phase and are not perfectly synchronized in the time axis. The main drawback
of this similarity method is the time consuming effort dedicated to the calculation of the path
of minimal cost but it is a good method to cope with varying lengths in Euclidean space and

signals with out-of-phase similarities [35].

2.2.5Correlation coefficient
The Pearson Correlation Coefficient (CC) is a well-known similarity measure that is

invariant to shifting and scaling. Eq.4 shows the definition of Pearson Correlation Coefficient

between two time-series X(t) and Y(t) [34].

(XM = pe))(Y®O) — py)

T Y ) = e = W (T = 1) ®
1 < 1 <
where =3 ) @) and =7 > 0 (5)
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Where N is the length of the time seriesand p is the mean value of each time series (see
Eq.5) [12]. Eq.6 shows another equation commonly encountered in literature for calculating
the correlation coefficient. This equation uses the Covariance (Cov) which is a measure of
how much two random variables change together (see Eg.7) and also the standard
deviation (o) of X(t) and Y(t) respectively which by itself is a quantification of the amount
of variation in a set of data values and can be computed by the square roots of variance (see
Eq.8).

Cov (X(t),Y(t)

e (KO, Y () =~ (©)
1 n
Cov (X(©,Y(®) = = > (2 = ) (¥ — ) (7
i=1
1% 1%
o= g (-2 and o= [T (v-w) (8

The correlation coefficient tells us whether the pattern of responses between time series

are similar, it doesn’t tell us anything about the distance between two-time series. The
Pearson Correlation Coefficient range is —1 < ¢ < +1 where +1 indicates a perfectly
match between two time-series and 0O indicates that there is no association between the two
variables. A value less than 0 indicates a negative association this is, while one variable
increases the other is decreasing.
In the case of comparing two time series, usually when the trends and evolution are intended
to be evaluated, the similarity measures based on Pearson’s correlation are used [35]. This
method is symmetric in the sense that the correlation of X(t) with Y(t) is the same as the
correlation of Y (t) with X(t).

This method presents the advantage of being unaffected by dispersion differences across
variables (linear transformations) [30]. It means that multiplying a time series by a constant
and/or adding a constant does not change the correlation coefficients of that time series

variable with other variables [36].
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2.2.6 Mahalanobis distance

The Mahalanobis distance is defined as a dissimilarity measure between two time-series with
the same distribution and covariance matrix S introduced by P. C. Mahalanobis in 1936 [37].
It is defined as Eq.9:

D Mahalanobis (X (0, Y(£)) = /(X () = Y ()T S~1(X () — Y(£)) 9

The advantage of using Mahalanobis distance is that it takes into consideration the
correlations, S, between the time series under study and computes the distance with respect
to a base or reference point [38].

According to [35] Mahalanobis distance usually performs successfully with large data sets
with reduced features, otherwise undesirable redundancies tend to distort the results.

2.3 Transformed-based Methods

2.3.1 Introduction

The most important problem of long time series is about high dimensionality, the
similarity measuring of high dimensional time series is not possible based on human

perception. To cope with this problem, we need dimension reduction techniques [24].

Usually reduction techniques can be used to reduce the size of the data in the time series
lossless or without substantial loss of information (there might occur loss within a very small
margin). Therefore, a concise and precise representation of the data is provided by these
techniques. These transformations in data allow more efficient storage, transmission,
visualization, and computation during the process of measuring similarity between long time

series and diminish computation burden and processing complexity [22].
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The Discrete Fourier Transform (DFT) is a classic data reduction technique and based
on that the Discrete Wavelet Transform (DWT) is developed. Also, Singular Value
Decomposition (SVD) based on traditional Principal Components Analysis (PCA) is an
attractive data reduction technique [34] but which will not be addressed in this thesis.

A summary of the above referred transformed-based methods is presented in next
sections.

2.3.2Discrete Fourier Transform

In the signal processing techniques, Fourier Transform expresses a mathematical
function of time as a function of frequency. The basic idea of Fourier transform is the
decomposition of a signal into a time series, this is, according to the theory, any signal can
be represented by the sum of an infinite number of sine and cosine basis functions, where
each function is known as a Fourier coefficient. The discrete version of the Fourier Transform

enables the summation to be among a finite number of terms [22, 24].

Therefore, the DFT is used to map time sequences of long time series to frequency
domain enabling representation and approximation of a time series by a set of elementary

basis function [34] , [39]. It is also useful to characterize the magnitude and phase of a signal.

The exponential representation of DFT could be defined as Eq.10 [34].

j2mFi

X(F) = DFT(X(D)) = 7 SNg' X(De ™ v F=01,..,N—1 (10)

e N

(11)

_j2nFi (j27rFi j27rFi>
= C0S

)+jsin(2

From Eq.10 we can conclude that the Discrete Fourier Transform decompose periodic
signals into a time-series in the frequency domain, where imaginary and real parts produce
symmetric spectra. In this work, Discrete Cosine Transform (DCT) is used as a method of

measuring similarity between two time series, omitting the imaginary part of the spectrum.
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The first coefficients of the DFT concentrate and contain most of the time series’
information and can capture a good approximation of it. As an example, Figure.5 (a) shows
an Arterial Blood Pressure (ABP) signal that has been decomposed into its Fourier basis
functions, the first five being shown in Figure.5 (c) to (g), and then Figure.5(b) shows the
reconstructed signal when only these five basis functions are considered; As may be

noticeable the reconstructed signal presents a good approximation of the original signal.

\mplake

e

Figure 5: (a)Arterial blood pressure signal and (c) to (g) its basis functions; (b) reconstructed
signal using the five basis functions presented from (c) to (9).
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According to the Parseval’s theorem which specify that the Fourier Transform preserve
the Euclidean distance between time series in time and frequency domains, it is possible to
use the first coefficients for measuring similarity of two time-series instead of using the
original ones [9] [34] [15] [39].

The method of measuring similarity with DCT will be explained in detail in chapter.4.

2.3.3 Discrete Wavelet Transform

Usage of Fourier transforms comprises losing the opportunity to analyze the time domain
transformations although having taken care about information preservation in the frequency
domain. To represent the behavior of a time series in both domains, Wavelet based functions
enable better and higher resolution in both time and frequency domains. In time domain via
translations of the mother wavelet and in the frequency domain via dilations in the scale. The
wavelet coefficients represent the correlation between the wavelet and a localized section of
the time series. The wavelet coefficients are calculated for each wavelet segment, giving a
time-scale function relating the wavelets’ correlation to the signal. Unlike the Fourier
transform, wavelet transforms have an infinite set of possible basis functions and provides a

way of analyzing the local behavior of functions [7] [40] [41] [42].

In wavelet transforms lower frequency bands are represented in lower scales and higher
frequency bands are represented in higher scales. Although wavelets can be represented in
different types such as Daubechies, Symmlets or Haar wavelets. In this thesis the Haar
wavelet coefficients are employed and Euclidean distance is used to measure the similarity
between Haar wavelet coefficients of both time series.

Haar wavelet transforms are the most popular wavelet transformation that ensures the
preservation of the Euclidean distance between any two time-series in the transformed space.
For more details about wavelets, see [34].

For instance, Table.1 shows the wavelet transformation of a time series with length of 8
(in general would be with length N). The number of the steps (levels of decomposition) would

be j , which can be found by setting N = 2/. In case of this example it would be 3. As it
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shows summation and subtraction of each coefficient is calculated it is send to the next step.
This process continues until j steps are reached and the whole summation of coefficients

representing the time series is achieved (in this case the last line of the table).

; Sum Details
Resolution -
al a2 a3l al as ab al af
3 al+a2 a3+ad aS-ab a7+al al-a2 as-ad aS+ab al-a8
2 al-a2+a3+ad aS+ab+n7+a8 (al+a2)-(a3+ad) (aS+ab){aT+a8)
| al+a2-+a3+ad+aS-at+aT+a8 (al+a2+ald+ad)-(aS+ab+al-al)

Table 1: Haar wavelet transformation process on the time series with length of 8

The whole process consist of (2/-1) subtractions plus a summation performed recursively as
shown in Figure.6. It is clear that the reconstruction of a time series is possible from this
summation and subtraction actions without any loss of information regarding the established

levels of decomposition;

Figure 6: Decomposition of the time series in wavelet

Another explanation point of view for describing the decomposition of a signal with
wavelets is to mention that two kind of filters are used. As shown in Figure.6, time series
decompose into two sets of coefficients. In the first step approximation coefficients CA, ,
and detail coefficients CD, [43] are calculated. The low-pass filter produces the average
signal, while the high-pass filter produces the detail signal. The scientific name of each step
is octave. The detail signals are kept, but the higher octave averages can be discarded. The
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low-pass filter applies a scaling function to a signal, while the high-pass filter applies the
wavelet function. Each wavelet packet is also decomposed into two parts using the same
approach as in previous octave, giving rise to CA,, CD,. This makes wavelet a very complete

analysis and the whole binary tree is produced as shown in Figure.7.

LI T B T N N N I T N T e O S R T

M Khman er e (A

Figure 7: Decomposition Tree of ABP signal with three different resolution [45]

It shows ABP decomposition tree using Haar wavelet. It is also shown that the resolution
at different steps depends on the different scale and details that resolution required. For more

information about the interpretation of wavelet as filters see [44].
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A time series can be decomposed into a linear combination of its basis-functions, So the
signal could be approximated by different resolutions through Eq.12, as it may be seen in
Figure.8 , X'(t) is an approximation of the time series and its accuracy is dependent on the

level of the basis functions (J) that are used to reconstruct the signal .

J
X' =) ¢;® (12)
j=1
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Figure 8: Signal approximation using the Haar wavelet decomposition: a) ABP signal
approximation. b) Basis functions ¢; for j = 1,2,3,4.
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The basis functions ¢;(t) are orthogonal and generated by multiplication of the
coefficients d; € R which are scalers with the different orthogonal wavelet basis ;(t) such

that (Eq.13)

@;(t) =d;P;(t) (13)

The broad trend of the input function is captured in approximation of the original
function ¢ (t), plus localized changes which are kept as set of detailed functions ranging
from coarse to fine ¥ (t). If we consider, ¢,(t) = Cpooo(t)and J as level of
decomposition and j = log, N ; then DWT could be described by Eqg.14 and signal X(t) can

be approximately represented as a linear combination of N basis functions [19].

J-12i-1

(0 = Cooboo® + ) D dysbu® 1</<N (18

j=0 k=0

As a data reduction technique it is possible in Discrete Wavelet Transform
approximation to keep the most significant DWT coefficients for measuring similarity of two
time-series. T. Rocha et al. [29] proposed interpretable similarity measure to evaluate the
similarity between time series by combining the Haar wavelet decomposition with the
Karhunen-Loéve transforms (KLT) in order to optimum reduce the number of wavelet basis.
[26]. In this thesis the same approach has been performed to determine the similarity

measurement between two time series and a detailed explanation is included in chapter.4.

The multiresolution aspect of the wavelet transform provides a time-scale decomposition
of the signals allowing their visualization and a more accurate clustering of the data into
homogeneous groups [3] [19]. Wavelet transform also have some drawbacks. They are only
defined for sequences whose length is an integral power of two and also they involve a more

complex computational implementation.
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Chapter 3
CLUSTERING

3.1 Introduction

Clustering is one of the most frequently used data mining techniques, particularly for
similarity search amongst long time series [30]. The objective of cluster analysis is to
partition a set of objects and group the subsets into two or more clusters based on the
similarity between the analyzed time series. So clustering strategies are challenging tools
within several research areas as long as they include similarity search of sequences. The
combined methods are also used to recognize dynamic changes in time series. One may list
several research works in this area, to be mentioned as examples the approaches provided in
[21] [19] [20] [46] [47] [48].

Recalling the aim of this thesis, the comparison of different measuring similarity
methods, the experiment of clustering is going to checks the effect of similarity measures in
the application of clustering for discovering the accuracy of each method and this could be
useful in purposes of Heart rate variability (HRV) diagnosis. All the experiments should be
performed with different similarity measurement techniques to identify those who are able
to produce more accurate clustering results. Among the published clustering methods the
Partitioning Around Medoids (PAM) clustering is going to be used in this thesis.

Next section concentrates on the theory behind clustering which will be implemented in
this thesis and detailed in chapter.4.

3.2 Clustering

Clustering is a sort of classification procedure that categorizes all the time series in the
study dataset into groups, called clusters; the particularity of these classification is that these
clusters are not predefined and they are defined by the data itself, based on the similarity
between time series. The most important objective is to find the similar clusters that are as

distinct as possible from other clusters. In other words, this grouping should maximize inter
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cluster variance (maximum similarity inside the cluster) and minimize intra cluster variance

(the clusters themselves should be very dissimilar [22].

P. Esling et al. [24] presented a very clear definition of clustering:

Definition: “Given a database of time seriesT = (t,,...,t,) and a similarity measure
S(X,Y), find the set of clusters C ={c;} where ¢;={ T/ | T/ € S% } is a set of
subsequences that maximizes inter cluster distance and intra cluster cohesion.”

Figure.9 depicts two possible outputs of a clustering algorithm. It can be seen in this
figure that the main difficulty in clustering usually is defining the correct number of clusters.
It shows two possible outputs from the same clustering system obtained by changing the
number of required cluster N=3 and N=8. This difference is because of the way of initializing

and selecting the parameters and the level of detail targeted [24].
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Figure 9: Possible outputs of a clustering algorithm: a) defining 3 clusters, or b) 8
clusters [24]

3.3 Partitioning Around Medoids (PAM)

As explained in previous section the aim of clustering analysis is to partition a set of
objects in data base into two or more clusters such that objects within a cluster are similar
and objects in different clusters are dissimilar. As also mentioned, for enabling comparison
with previously published work in this area, the Partitioning Around Medoids (PAM) is the

clustering strategy to be considered.
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PAM is based on the search for k representative objects, called medoids, among the
objects of the dataset. The medoid of a cluster is defined as the object for which the average
of dissimilarity between objects near that medoid is minimum; in this case a cluster has been
identified. If k clusters are desired, k medoids are found. Once the medoids are found, the

data are classified into the cluster of the nearest medoid [49].

Algorithm of Partitioning Around Medoids attempts to minimize the total distance D

between objects within each cluster. Mathematically D can be computed as Eq.15.

Dziz Zdi,- (15)
k

=1 IECy JECk
where K is the total number of clusters, d;; is the distance between objects i and j, and Cj,

Is the set of all objects in cluster k [49].

“The algorithm proceeds through two phases. In the first phase, a representative set of k
objects is found. The first object selected has the shortest distance to all other objects. That
is, it is in the center. An addition k-1 objects are selected, one at a time, in such a manner that
at each step, they decrease D as much as possible. In the second phase, possible alternatives
to the k objects selected in phase one are considered in an iterative manner. At each step, the
algorithm searches among the unselected objects for the one that, if exchanged with one of
the k selected objects, will lower the most the objective function. The exchange is made and
the step is repeated. These iterations continue until no exchanges can be found to provide
lower values of the objective function. Note that all potential swaps are considered and that

the algorithm does not depend on the order of the objects on the database [49].”

Finding dissimilarity (distance) between two time series is fundamental to cluster
analysis since the goal is to place similar objects in the same cluster and dissimilar objects in
different clusters. The objective of this thesis is comparing different similarity methods so
we used different methods in clustering analysis and the output results are compared with
predefined datasets. In chapter.4 a more detailed description of the experiments developed

under this thesis are explained.
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Chapter 4
SIMILARITY MEASURE ANALYSIS

4.1 Introduction

As mentioned before measuring similarity is important for classification, clustering and
any analysis. Since clinical signals are random processes with non-stationary characteristics,
one is interested in determining disease clustering but having in mind the possibility of
personalized variations that may occur between different cardiac cycles of the same patient
and among different patients’ time series data representation. So, the clustering strategy to
be applied in this thesis, should account for possible variations of the time series without loss

of general classification on a same cluster.

Therefore, a primary experiment was undertaken to force variations on the template time
series and test the influence of increasing variations on the similarity measurements, this is,
we wanted to test the sensitivity of the similarity measurement method to different levels of

variations.

Secondly, the partitioning around Medoids clustering was assessed for various types of
similarity methods, searching for the most robust similarity method that could cluster
different CVD among the testing time series. The concept of clustering robustness hereby
involved is in the sense of identifying the pair similarity measurement versus PAM that will
enable clustering with less sensitivity to possible time series variations. Results are then
confronted with the first experiment results to confirm the most suitable strategy for CVD
diagnosis [6] [19] [29] [31] [50].

4.2 Implementation of similarity measuring algorithms

Similarity measuring similarity methods apply to pairs of time series. One time series is

a template with which we want to measure the similarity to the other time series. The template
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time series is forced to different degrees of variations, to be applied on amplitude and on time

dimensions.

The template time series corresponded to Arterial Blood Pressure data collected from the
public data base PhysioNet [51]. The similarity of these two time series is calculated
according to the methods and equations described in chapter.2.

Measuring similarity with Minkowski (p=6) and Euclidean distances’ methods,
Correlation Coefficient, Mahalanobis distance and Dynamic Time Warping Distance
methods is exactly the same as already explained in chapter.2 and the correspondent thereby
included. However, the procedure of measuring similarity with the Discrete Fourier

Transform and Discrete Wavelet Transform needs deeper explanations below stated.

i Discrete Fourier Transform

As explained in the chapter.2, The Fourier Transform (FT) decompose time series into
imaginary and real parts as two symmetric spectrums. In this work goes for the real part of
the signal. Discrete Cosine Transform is the real part of the FT and for a time series with
length of N, X(t)= {x; ,x,, ..., x5 } is derive from a simplified form of Eq.10 that is shown
in Eq.16.

72k — 1)(t — 1)
2N

N
X'(t) = p(t) ) Cycos( ) t=1,..,N (16)
kZ :

In Eq.16, the parameters C, are scale factors of the cosine wave and p(t) is a

normalization coefficient factor that could defined as Eq.17:

1
N ,t=1

t) = 17
p(t) \/% Ccien (17)

For measuring similarity of two time series X (t) and Y (t) based on DCT coefficients,
the first m coefficients could represent a good approximation of time series so this distance

could be a good measure of similarity . The template signal, X (t) ,and the added variation
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signal, Y (t) ,are decomposed into DCT coefficients and the similarity is measured according
to Eq.18.

m

Docr(X O.Y®) = | Gy — o) (18)

k=1
This distance could be the same as Euclidean distance if we consider all coefficients (m=N).

In this thesis, the number of coefficients chosen to reconstruct the signal were selected to
guarantee a 90 percent of accuracy. First of all, the absolute coefficients are ranked in descend
order then the number of basis that could be used in the reconstruction of the signal with the

90 percent approximation are chosen (almost always the first m=4 coefficients).

ii. Discrete Wavelet Transform

Discrete Wavelet Transform decompose time series into the basis functions as explained
in chapter.2. On this thesis the similarity measuring is based on the combination of wavelet
transform with the Karhunen-Loeve transform, which is an optimal dimension reduction

method that could guaranty a minimal reconstruction error.

In measuring similarity with DWT, the distance between time series is measured but the
reduced number of coefficients are considered according Karhunen-Loéve theorem. In this
method the time series decompose into the basis functions which are orthogonal to each other.
Those are obtained as eigenvectors of the covariance matrix composed of the wavelet basis
[52]. The approximation of the signal is obtained by reducing the number of basis that have
been employed in the similarity measuring instead of reducing the signal, This reduction is
obtained from the first highest J eigenvalues of the correspondent covariance matrix [26].

Firstly, the template time series , X;(t) with the length N, is decomposed into a linear

combination of N wavelet basis ¢;(t) ,as Eq.19 .
J
XO = 0,0 (19)
j=1
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Then, the second time series (variation of added signal), Y (t) with the same length of N, also

decomposed into the same wavelet basis ¢;(t) , Eq.20.

J

(GEDIANO (20)

j=1

In Eq.20, the coefficients «; are always existent and could be derived from Eq. 21 [26].

(Y (), 9;(0)

I 0 ®0,0) o

As in Fourier Transforms, the distance of this wavelet coefficients could show similarity of

two time series and could be described as Eq.22

J
Dowr(X (£),Y(£)) = 2(1 - )’ (22)
=1

In this distance equation if all set of basis are consider (J=N), the result would be the same
as the Euclidean distance. The most important advantage of this method is to reduce data

noises and unnecessary parts of the signal.

In this thesis the length of all the signals is set to N=1024 so the appropriate J=4 is chosen

for our experiments to achieve the accuracy of 92% in the approximation.

In chapter.2, all the equations for similarity techniques are about the distance between two
time series. Eq 23 is used for measuring similarity for all methods in the same exponential

scale.

S(X (£),Y(t)) = e Px®, ¥®) (23)

In this equation S is the similarity function which in the case of perfect similarity (D = 0)

would be 1 and in the case of dissimilarity (D — o) it would be almost zero.
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4.3 Preprocessing of the datasets

In the real life, all the time series collected from sensors or devices are subject to noise
and artifacts. The first and most important step of each signal processing experiment is
overcoming this problem by means of performing some preprocessing. It could increase the
quality of data before running any analysis, data may be transformed into a format that is
more easy and effective to be processed. The signals should be prepared by analyzing them
carefully to prevent misleading results. Preprocessing includes Noise filtering, normalization,
transformation, feature extraction and data selection. Usually noise filtering can be handled

by using traditional techniques like digital filters or wavelet thresholding.

Another issue to take into account is concerned the scaling differences between time
series. In the case of this thesis, since the range of amplitude values of the raw data (in ECG
and ABP signals) varies widely and similarity functions are based on the distance between
time series, different ranges of amplitude would produce erroneous results. This problem can

be overcome by a linear transformation of the amplitudes.

By performing normalization of all the signals in the dataset, all measured values are
adjusted in the common scale. This process called feature scaling or unity-based
normalization is typically used to bring all values into the range [0,1]. Eq. 24 describes the
rescaling method applied [52].

(24)

Another preprocessing method is removal vertical offsets. EQ.25 shows this

preprocessing step when X represents the mean value of the time series.

X' =X-X (25)

In the preprocessing of acquired signals in the dataset, if one or more signals have a
different sampling frequency, it is recommended to resample them to obtain the same
sampling frequency. This is performed order to obtain series of the same length with the same

frequency [24].
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4.4 Datasets acquisition
As mentioned in chapter.1, all biomedical signals used in this thesis were collected from
PhysioNet database [51]. PhysioNet offers free web access to large collections of recorded

physiologic signals (PhysioBank) many of them including clinical annotations.

“PhysioBank is a large and growing archive of well-characterized digital recordings of
physiological signals and related clinical data for use by the biomedical research community.
It currently includes databases of multiparameter cardiopulmonary, neural, and other
biomedical signals from healthy subjects and from patients with a variety of illnesses with

major public health implications [51].”

As also previously mentioned, two experiments were implemented to measure robustness
and sensitivity of similarity measuring methods when applied to biomedical time series, and
also, to measure the accuracy of each method. All the algorithms were implemented using
the Matlab software [53].

In the experiment of evaluating sensitivity of the similarity measurement methods
described in section 4.5, the template signal selected was an Arterial Blood Pressure signal

which was collected from MIMIC.II database.

MIMIC.Il - Multiparameter Intelligent Monitoring in Intensive Care, is a multi-
parametric dataset including time series of vital signs collected from bedside patient monitors
in the intensive care units (ICUs) and contains detailed clinical information for many of the

patients presented in the Waveform Database [54].

In the experiment of evaluating accuracy of clustering (as described in section 4.6) four

groups of ECG signal were collected from the following PhysioNet databases [54]:

Fantasia Database which is related to twenty young (21 - 34 years old) and twenty
elderlies (68 - 85 years old) healthy subjects. Both young and elderly were resting while
continuous electrocardiograms (ECG) were recorded. All subjects remained in a resting state
in sinus rhythm while watching the movie Fantasia (Disney, 1940) to help maintain
wakefulness. The sampling frequency in this database is 250 Hz but in some of the signals
were 333Hz.
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The Long-Term AF Database includes 84 long-term ECG recordings of subjects with
paroxysmal or sustained atrial fibrillation (AF). The sampling frequency in this database is
128 Hz.

The Long-Term ST Database contains 86 lengthy ECG recordings of 80 human
subjects, chosen to exhibit a variety of events of ST segment changes. The sampling

frequency in this database is 250 Hz.

The PTB Diagnostic ECG Database contains 549 records from 290 subjects (aged 17 to
87, mean 57.2; 209 men, mean age 55.5, and 81 women, mean age 61.6 with different heart
diseases. PTB is an abbreviation for Physikalisch-Technische Bundesanstalt , the National
Metrology Institute of Germany, which has provided this digitized ECGs for research. The
sampling frequency in this database is 1000 Hz.

4.5 Experiment for evaluating sensitivity of similarity measuring

methods

4.5.1 Introduction

A similarity measuring method should be capable of detecting similarity between
time series although some variations may occur in signals, this is, it should be invariant to
transformations and distortions. It should recognize two similar signal even though they are
not mathematically identical. The main goal of this experiment is to measure robustness of

each similarity methods when reference signal suffers variations [29].

4.5.2 Variations in time series

The biomedical time series may have different type of variation, in terms of adding noise,
scaling or translation in time or amplitude, and also changes in baseline. The similarity
measure S (X;(t),X,(t)) in Eq.23 should be robust to any combinations of these

transformations. For this experiment, Arterial blood pressure (ABP) signal is used, obtained
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from the PhysioNet dataset [54] as explained in section 4.3 . A template signal X(t)
representing the 10 sec ABP recording of healthy people is used. This template signal was
defined to be the average of 9 cardiac cycle segments randomly collected from the ABP

database.

The aim is to evaluate sensitivity and robustness of each similarity method to different

distortions. The distortions tested can be represented by the following equations [24]:

(@) Amplitude Scaling: X,4(t) = B * X(t), (26)
(b) Amplitude Translation: X,.(t) = X(t) + B, 27)
(c) Time Scaling: Xp5(t) = X(B * t), (28)
(d) Time Translation: X;.(t) = X(t + B ), (29)
(e) Baseline variation : X5(t) = rotate(X(t),0 ), (30)
(f) Adding Noise: Xy 4, (t) = X (£) + N(X;,N). (31)

Where f is a constant and © is the angle of rotation in the baseline and V" is White Gaussian
Noise (WGN). The values of p and © employed were based on experiments were small
incremental changes were envisaged, therefore 20 possible variations of the series are
considered; An example of a possible distortion imposed on a single cardiac cycle of the
template ABP signal is depicted in Figure.10.

4.5.3 Experimental results and analysis
According to the equations and methods explained in previous chapters, similarity of signals
measured by Sg4 (Euclidean distance), Spwr (Discrete Wavelet Transform), Sgy (Discrete
Fourier Transform), Scc (Correlation Coefficient), Sy.n(Mahalanobis distance), Sy
(Minkowski Distance), Sprw (Dynamic Time Warping Distance) were computed
considering increasing levels of distortions. Figure.11 presents for each distortion tested a
joint representation of all similarity measurement method performance when the 20 levels of

distortions are applied.
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Figure 10: Applying different types of variation on the ABP Time series; a) all 20 steps of
amplitude variation together, b) one step at all types of variation

(just on one heart cycle as Template)

As expected and depicted on Figure.11, the similarity measured values decrease when the
level of distortion (abscissa values) is increased. The sensitivity to each type of variation is

not the same for all the similarity methods as can be seen by the different trend of the curves.

31



Curves close to similarity value of one represent strong similarity, and those which are
maintained close to the horizontal line valued one are less sensitive to variable distortions,

therefore they present high robustness.

Figure 11 : Similarity measurement methods’ sensitivity metrics against degree of distortions
for the template signal variations: a) Amplitude Scaling, b) Amplitude Shift, ¢) Time Scaling,
d) Time shift, e) Variation of baseline, f) Variation by Adding white Gaussian Noise. The
figures’ caption nomenclature stands for: Sg4 - Euclidean distance, Spywr-Discrete Wavelet
Transform, Sgy-Discrete  Fourier Transform, Scc-Correlation Coefficient, Syjun-
Mahalanobis distance, Sy;;-Minkowski Distance, Sprw-Dynamic Time Warping Distance.

The similarity measured by Correlation coefficient displays lowest sensitivity to all the
signals’ variations tested and keeps its trend close to the unity similarity line through all

degree of distortion imposed denoting lowest sensitivity in all cases.
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The Euclidean distance and Fourier transform showed highest sensitivity to the distortions
since as degree of distortions increase the similarity measurement decays rapidly. The Fourier
transform being particularly critical when amplitude shift, time scale and time shift variations
are tested. The similarity measured by the Euclidean distance demonstrates higher

unpredictability results between two time-series whenever variations increase.

The Mahalanobis distance showed a performance closer to the one presented by the
Correlation coefficient and much better than the performance of the Euclidean distance or
the Minkowski Distance. This is due to the fact that, similarly to the Correlation Coefficient,
the Mahalanobis distance equation also takes into consideration the correlation of the data

set itself.

The Minkowski Distance proved to be only admissibly insensitive when White Gaussian

Noise and variance of the baseline are the data variations considered.

The Discrete Wavelet Transform response is almost insensitive to amplitude shift, closely
following the performance of the Correlation coefficient and it has better robustness

response, this is, low sensitivity to other variations.

The Dynamic Time Warping Distance presented a performance similar to the
Mahalanobis distance when time scaling is considered and is also almost insensitive to White

Gaussian Noise when up to 13 degrees of distortion are allowed.

Thinking about the main objective of this thesis, the identification of a similarity method
which could enable an efficient clustering of ABP time series, and knowing the individual
behavior of the tested similarity methods, next research step will be confirming these results

while applying clustering methods to time series (section 4.6).

4.5.4Conclusion

A comparative study of different time series similarity methods has been performed.
Since our target is CVD diagnosis applications, the study considered the well-known and
frequently used and referenced PhysioNet data-base, making use of healthy patients’ arterial

blood pressure signals. We experimentally demonstrated that among the tested time domain
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similarity measurement methods the Correlation Coefficient was the most robust method,
that is to say, the most insensitive to small distortion, presenting similarity measurements
close to unity for amplitude scaling, amplitude shifting, variance of the baseline and additive
white Gaussian noise. Concerning the transformed-based similarity methods tested, the
Discrete Wavelet Transform performed better than the Discrete Fourier Transform. It is
insensitive to amplitude shifts of the signals, almost insensitive to white Gaussian noise up
to 14 variations, but for the other variations it is clear a robustness decay as the degree of

variation increases.

To conclude, in what consists an election of the most robust similarity method the
Correlation Coefficient wins. However, when data reduction is required due to computational
burden of the whole system, the Discrete Wavelet Transform as proposed in (Rocha (2014)

[29]) is the similarity measurement approach to be elected.

To be also mentioned that the detailed experiments hereby reported are useful to identify
the most suitable similarity method to be applied on long time series when the time series
main characteristics are known in advance. For instance if a researcher is going to deal with
time series that are essentially corrupted by noise, the similarity method to be applied should
be the Pearson Correlation Coefficient or the Mahalanobis distance, baut never the Discrete

Fourier transform.

Next section addresses the influence of selecting these similarity methods when

clustering efficiency is envisaged.

4.6 Experiments for accuracy evaluation of PAM Clustering with
various similarity measuring methods

4.6.1 Introduction

As mentioned in the chapter.3, clustering is one of the most frequently used data mining
techniques. The objective of cluster analysis is to partition a set of objects into two or more
clusters based on the similarity between the analyzed time series. In this thesis Partitioning

Around Medoids is employed. PAM is based on the search for k representative objects, called
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medoids, among the objects of the dataset. If the average of dissimilarity between objects

near a medoid is minimum, a cluster is identified.

4.6.2 Datasets and Clustering performance evaluation metrics

To test the clustering performance 4 groups of ECG signals were generated. All the

signals were obtained from the PhysioNet databases [54] as explained in details in section

4.4.

For the first Group, 40 related to healthy subjects signals from Fantasia Database were

gathered, for the second group 84 signals randomly were pick up from The Long-Term AF

Database, for the third group, 85 signals from The Long-Term ST Database were used and

for the fourth group 71 signals from The PTB Diagnostic ECG Database were employed as

can be summarized in Table.2.

Number of signals

PhysioNet Data Base

Available

Randomily
selected

Signals’ characteristics

(21-24 h records)

Fantasia 40 (2h records) 40 Healthy subjects
w I,.'Bm Atgal 25 (10 h records) 84 Atnial Fibnillation
Fibrillation

: oty 86 - . y
Long-Term S 835 ST level drifted signals

PTB Diagnostic ECG

549
(variable record length)

71

Diagnostic ECG
(different pathologies)

Table 2: Dataset acquisition

To be mentioned that, as stated in Table.2 the original data bases included more signals

than those employed in this study. The selection of 40 time series of 10 seconds length from

the Fantasia data base involved random selection of these 10 seconds records. The same

strategy was employed on the selection of the working time series from the other data bases.
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Using these time series three testing collection were composed were healthy and

diseased patients’ records were grouped, as summarized in Table.3.

Two-rlass clusters:
Data Base Collection 1 Collection 2 Collection 3
Famniasia 30 i} 30
MIT-BIH Atrial Fibrillation 45
Long-Term 5T 55
PFTB Diagnostic ECG 50

Table 3: Data Base collections

The first collection included 30 healthy 10 seconds length time series and 45 time series
belonging to patients with atrial fibrillation. So, the clustering algorithm should differentiate

a specific illness among 75 time series.

The second collection, included 30 time series of healthy patients (not exactly the same
30 time series of collection 1) and 55 time series (also 10 seconds length) from Long-Term
ST data base. In this case, clustering strategy was tested against another time of time series

characteristics than those encountered in collection 1.

The third collection was also composed of 30 time series of healthy patients but now the
50 PTB time series randomly selected might include different pathologies since the PTB data

base is composed of diagnostic ECG signals.

It is expected that PAM clustering will be able to differentiate the healthy from the
diseased records within each collection, and, through computation of the clustering
performance for each similarity method employed on previous experiments one can conclude

about the most effective and robust similarity method to be employed on CVD clustering.
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To assess the performance of clustering precision and efficiency of each similarity
method should be analytically computed [55]. Gavrilov et la [56] proposed a cluster
similarity metric as defined by Eq.32,33 :

|G; N A

Slm(Gl,A]) =2 m

(32)

It computes a cluster similarity metric based on the G; “ground-truth”, this is, the
predefined members of each datasets and A; representing the clustering results obtained by
using PAM with various types of similarity method. Numerator of Eq.32 introduces the

number of correct similar time series A; that are recognized out of a predefine dataset G;.

Y., max Sim(Gi,Aj)

Sim(G,A) = ] - (33)

Eqg.33 computes the accuracy of the clustering results. A cluster out of the G groups

where k is the number of clusters considered [3], [56]. This metric will be zero if two

clustering are completely dissimilar and 1 if they are similar.

4.6.3 Clustering experiment results

The result of Sim in Eq.33 will be O if clustering results are completely dissimilar
and 1 if the clustering results are similar to the established ground-truth. To clarify, if for
instance within collection 1, 15 out of the 30 records (healthy patients) and 45 of the 45 atrial
fibrillation records were detected as similar we would have an accuracy of 75%. Here we are

designating ‘accuracy’ as the precision of correctness clustering of the data under analysis.

Each of the datasets is clustered using various type of similarity methods and Eq.33 is

computed to obtain the clustering results as stated in Table.4.

The clustering accuracy results in the Table.4 reveals that Discrete Wavelet Transform
provide the most accurate clustering on the selected time series for all collections tested with

a clustering accuracy ranging from 72.7 to 77.6.
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Stmilirity miethods uséd in Accuracy of clustering in Percent
Chustoring Collection] | Collection2 | Collection3

Euclidian distance 49.44 49.54 66.13
 Auto correlation coefficient 64.06 72.02 68.53
Discrete Cosine Transform 49.44 49.54 69.26
Discrete Wavelet Transform 72.79 77.60 73.09
Dynamic time warping 49.44 49.54 66.13
Mahalanobis distance 52.68 63.36 66.13
Minkowski metric(P=6) 66.85 75.70 58.97

Table 4: Comparison of clustering accuracy with different similarity measuring methods

In an attempt to improve the accuracy of the clustering procedure another experiment
was performed. At the pre-processing stage, all the time series were aligned among all
collections according to their first peak location (see Figure.12).

i i I i i i

Figure 12: Align signals in datasets according first peak

After this preprocessing step the same algorithms were applied. Table.5 shows the
modified results obtained with this additional preprocessing stage.
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Similarity methods used in
clustering

Accuracy of clustering in Percent

Collection2

Collection3

Collectionl
Euclidian distance 77.22 81.60 69.87
Auto correlation coefficient 66.60 67.05 74.21
Discrete Cosine Transform 77.22 77.92 72.97
Discrete Wavelet Transform 75.86 83.93 80.20
Dyuamié time war ping 77.22 81.60 69.87
Mahalanobis distance 76.13 81.60 69.87
Minkowski metric(P=6) 71.40 65.03 68.12

Table 5: Comparison of clustering accuracy with different similarity measuring methods

(time series first peak alignment)

Now we can observe that accuracy has in fact increased, for the Discrete Wavelet

Transform the range of accuracy is now between 75.8 and 83.9, but at the same time some

other similarity methods became more accurate.

In what concerns collection 1 can see from Table.5 that Dynamic Time Warping,

Euclidian Distance and Discrete Cosine Transform present higher accuracy (77.2) than the

Discrete Wavelet Transform (75.8); the next higher accuracy is obtained with Mahalanobis

distance (76.1). So the majority of the highest rated accuracies were obtained through time

domain methods. In fact, if we compare the ECG signals from healthy patients and those with

atrial fibrillation (Figure.13) one can see that the signals are not much different, so the time

domain similarity measurements easily compute the similarity differences.

Normal

Atrial Fibrillation

Figure 13: Comparison of normal and atrial fibrillation cardiac cycles ABP signals [57]
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In collection 2; the healthy ECG signals is compared with ST variation signals (see
Figure.14) that contains variety of events of ST segment changes, including ischemic ST
episodes, axis-related non-ischemic ST episodes, episodes of slow ST level drift, and
episodes containing mixtures of these phenomena and can see from Table.5 that Discrete
Wavelet Transform (83.93) present higher accuracy than Dynamic Time Warping, Euclidian
Distance and Mahalanobis distance (81.60), the next higher accuracy is obtained with
Discrete Cosine Transform (77.92). It can see in results that those signals which have more
distortion distinguished better with DWT.

AN A

- ST elevation :
- ST elevation - ST flattening off - Pathological Q waves

- Pathological Q waves Pathologyical Q waves
< Inverted T waves

Figure 14: Variation in ST segment [58]

In collection 3; the healthy ECG signals is compared with variety of distortion in signals
and can see from Table.5 that Discrete Wavelet Transform (80.20) present higher accuracy
than Auto Correlation Transform (74.21), the next higher accuracy is obtained with Discrete
Cosine Transform (72.97). In this collection also results shows that those signals which have

more distortion distinguished better with DWT.

The above presented clustering results strength the previously obtained results when
addressing the efficiency of similarity measurement techniques previously obtained.

4.6.4 Conclusion
In this chapter the similarity measuring method results obtained were validated by a
clustering algorithm. The objective of these experiments was to group similar time series
according to specifically predefined datasets and to compare the clustering results with
predefined groups. In this process by testing different similarity methods inside the PAM
clustering the accuracy of each method is measured. It gives us a measure about the level of
success and correctness reached by the algorithm.
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Analysis of these results reveal that DWT provides the most accurate clustering

particularly when the variability of signals occurs (collections 1 and 2). Results obtained for

collection 1 evidence that when inside the clustering members exist more similarity among

signals (only healthy and atrial fibrillation signals) Euclidian distance related measurements

may be more accurate. To be mentioned that if during the preprocessing stage the alignment

of the records’ first peaks was not performed, the DWT accuracy obtained for collection 1

would be better than any other method. The results improved when an additional

preprocessing step is applied.

The datasets were extended as may be seen in Table.6 to enable more experiments for

being able to define an accurate final conclusion with the same strategy of evaluating

accuracy of clustering. Table.7 depicts the results of all of the experiments and it shows that

the DWT provides the best results in this datasets.

Two-rlais ciusfers: Three=cimss cluslor:
Date Base Collection 1 | Collection 2 | Collection 2 | Collection 4 | Collection 5 | Collection & Collection 7
Fantasia 0 30 k1]

MIT-BIH Atrial Fibrillation ] 50 50 50

Long-Term ST 55 45 50 30

PTB Diagnostic ECG 50 50 50 50

Table 6: Extended datasets: 6 two-class clustering and 1 three-class clustering
Similarity methods used in Accuracy of clustering in Percent
clustering Collection] | Collection2 | Collection 3 | Collectiond Collection 5§ Collection6 | Collection”

Euclidian distance 77.22 81.60 69.87 68.03 78.57 65.13 54.84
Auto correlation coefficient 66.60 67.05 74.21 74.89 67 85 71.27 54.34
Discrete Cosine Transform 77.22 77.92 72.97 66.03 77.76 68.60 57.11
Discrete Wavelet Transform 75.86 83.93 80.20 75.86 78.75 75.73 57.54
Dynamic time warping 77.22 81.60 69.87 68.03 78.57 65.13 54.84
Mahalanobis distance 76.13 81.60 69.87 68.03 76.74 65.13 54.84
Minkowski metric{P=6) 71.40 65.03 68.12 71.86 70.04 69.93 5§7.26

Table 7: Comparing accuracy within 7 different datasets
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Chapter 5
CONCLUSION AND FUTURE WORKS
5.1 Concluding Remarks

In this thesis a comparative study is performed on the sensitivity and robustness of the
various similarity methods in confronting with variation and distortion that may occur in
time-series experiments. The aim was to find the appropriate similarity measure for long

time—series to achieve the best efficiency in clustering and classification.

We would like to emphasize that the key step in this type of time series data mining
endeavor always lies in choosing the right methods dependent on the particular signals and
variation existing for that experiment. This means that the similarity measuring method
chosen for clustering purposes will depend on the signal itself and the possible variation it
suffers. Sometimes the judgment is centered on the signal trend so resolution of
approximation is not so important but it may either be concerned with measuring similarity
based on the signals’ dynamics at specific points in time and in this case more accurate

resolution is required.

In case of our specific datasets, we experimentally demonstrate that Discrete Wavelet
Transform combined with Karhunen-Loeve transforms displayed the most accurate results
among the commonly employed time-series similarity measurement methods in terms of
accuracy in clustering long time-series. Results also proved that Discrete Wavelet Transform
combined with Karhunen-Loéve transforms are particularly robust when different types of

datasets are considered within the collection under clustering analysis.

It is better to say, even by this achieved results is not reasonable to conclude that one
similarity measure is better than the others. We can conclude that measuring the similarity in
long time series is dependent on the situation and the goals in the research, presenting
different performance in different cases. One particular method could be appropriate for one
research and not good for other one.
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5.2 Future work

In this work similarity methods are compared to achieve good clustering performance on
long time-series. In the future, a deeper study on the length of the time-series capable of

maintaining the performance already achieved should be investigated.

It is also envisaged to enlarge the study to other clustering goals, for instance to identify

from the heart rate variability sleep patterns.

Another aspect requiring research is comparing the obtained results with alternative

clustering strategies, namely using neural network-based classification methods.

In all cases, a common goal is envisaged, to find similarities (or not) between a patient’s
signal from his past clinical records and a currently collected signal to conclude about the

patient’s health evolution aiming at predicting future health trend.

5.3 Publications derived from the thesis

The results obtained from this research work are written in the form of conference papers
and submitted to 20th IFAC World Congress, (IFAC WC 2017) [58], and also to BHI12017 -
International Conference on Biomedical and Health Informatics [59]. Also a journal article
is being prepared enhancing the selection of similarity measurement techniques for long time

series clustering purposes.
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Abstract. Searching for similarity between time series plays an important role when large amounts of
information need to be clustered to integrate intetligent supported personal health care diagnosis systems.
Accurate measurement of time series similarity pattemns influences the performance of classification,
clustering and discase prediction stages. In this paper commonly employved methods of measuring
similarity between time series were tested on physiologic data. The similarity methods were applied on
longer data scgments than the typical cardiac cycle envisaging its usc integrated on personalized health
care cardiovascular diagnosis systems. Euclidean distance, Discrete Wavelet Transform, Discrete Fourier
Transform, Correlation Coefficient, Mahalanobis distance, Minkowski Distance, and Dynamic Time
Warping Distance were compared when incremental (20 levels) small vanations in amplitude scaling and
shift, time scaling and shift, baseline variance and additive Gaussian noise are forced to the tested time
series. Concentrating on the performance of the similanty methods in terms of their insensibility to small
data vanations results demonstrate that the time domain Correlation Coefficient is the most robust method
while the Discrete Wavelet Transform is the elected one between the transform-based methods. Selection
of a similarity method to be applicd should also take mto account implementation issucs, namely need of
data reduction to avoid computational burden.

Keywords: Time series; Similarity measure; Euclidean distance; Discrete Wavelet Transform: Discrefe
Fourier Transform: Correlation Coefficient: Mahalanobis distance. Minkowski Distance: Dynamic Time

Warping Distance,

1. INTRODUCTION

In the last decade there has been intense and significant
research on developing and deploving Personal Health Care
services in cardiovascular diseases (CVD) management there
are still several gaps to be tackled before an automated system
can efficiently perform CVD personalized management.
Within this context. usage of intelligent algorithms to process
data obtained from uncontrolled conditions and 1o be sell-
adapting (moving from population-based to patient-specific
adaptations) and accurate is still a research challenge. To
achieve so. several strategies may be followed, one of them
being composed of a prior identification of the personal
cardiac signal with a CVD pathology (e.g. by identificauon of
sumilarity between the personal signal with a reference signal)
followed by the automatic classification (i.e. clustering) of the
signal under analysis into a specific class of signals (usually
disease related). Like in many other application areas the
collected cardiac signals may be regarded as long time series
i.e. as the simplest representation of temporal data expressing
the changes of real values at time or space points, duc to
sampling at a fixed time interval (Koh et al (2005)).

Time senes similanity measurement 1s a method of measuring
the degree of similanty between two-time series. If we can
work with a highly efficient and effective method of measuring
similarity and find the relationship among the time series, it
will greatly increase precision of the analysis in time serics
databases and could help improving accuracy and efficiency in
classification. prediction and cluster analysis (Jiang ot al
(2009) Kalpakis et al (2001)).

Several works have been  published about  similarity
measunng methods. Application of simlanty matching
algorithm is commeonly encountered in various multimedia,
medical and financial applications (Yang ct al (2004.b)). It is
one of the main rescarch subjects in carthquake prediction
rescarch (Wei ot al (2010)), in change detection of vegetation
indices m the land ccosystem research (Lhermutte etal (201 1)),
in stock prices data and money exchange rate analysis (Struzik
et al (1999), Rafiei (1999), Rafiei (1997)). bioinformatics
(Tsiporkova et al (2012)) and in medical streaming data
(Bernatavicien et al (2015)), arrhythmia detection (Chien et al
(2005), Yeh (2009)) and several other sciences,

Each of these publications is based on different approaches for
similarity search both in terms of working in time (directly



with the data) or transform domain. There are many similarity
and distance measuring methods, namely Dynamic Time
Warping (DTW) distance  (Tsiporkova ¢t al (2012)),
Mahalanobis distance  (Yeh  (2009)), tmansforming  and
Dimension  reduction  techniques  like  discrele  Fourier
transform  (Agrawal ¢t al (1993)) or Karhunen-Loéve
transform (Castells  (2007)), Singular Value Decomposition
transform (Bandarabadi et al (2010)), principal component
analysis (Yang et al (2004.b), Karamitopoulos et al (2007)),
and discrete wavelet transform (DWT) (Antoniadis et al
(2011)),

This paper compares different methods of measuring
stmilarity in long time series and presents our analysis in lerms
of accuracy and precision when various forced time series
variations are imposed.

The organization of the rest of the paper is as follows. A
summary of the similarity measurement methods employed on
this study is presented in section 2. Description of the
experimental tests performed is included on section 3 and the
obtained results are presented in section 4. Conclusions and
topics to be addressed in the near future are pointed out in
section 5.

2. TIME SERIES BACKGOUND

2.1 Time series representation

As previously mentioned time series data represent the
varations observed on temporal data expressed as real values
in time or space, resultant of a fixed time interval sampling,
(Koh et al (2005)). How to effectively manage and use vast
amounts of data scries, the effective discovery and
understanding of the data sequence and knowledge behind the
law, has been increasingly adopted as data mining rescarcher’s
topic (Wei et al (2010)).
[ ===
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Fig. 1. Example of a time series: an electrocardiogram signal.

Dealing with time series quite often means having to overcome
some problems, such as large volumes of data. non-finite or
cven discrete numerical range, non-constant sampling rate.
various noise interference forms (Jiang ot al (2009)). So.
before applying any analysis technique. pre-processing is
required. namely normalization and noise removal.

A brief description of the time domain and transformed based
stmilarity methods used in this paper is below included

2.2 Time domain similarity measurement methods

The distance between two N sized time series X(1) = {x(1). x(2).
. X(N)} and Y(0) = {¥(1). ¥(2).... v(N)} isthe length of the
path connecting pair of points. This distance is a measure of
similarity, Greater distance indicates less similarty and vice
versa (Yang et al (2004.a)). The most commonly used and
simplest time domain  distance micasure in classification
approaches 1s derived from the Minkowski distance,
represented in (1), where it is described as a general equation
for both the Euclidean distance (Dgg) and the Manhattan

distance (D45, ) (Lhermitte et al (2011))

Dumknw:kt (X(t), Y(t)) e (z?;llxt -2 Ip ); “)

In the case of p=1. Eq.1 represent the Manhattan distance. If
p=2. the Euclidean distance is casy calculated among time
senes of the same length see (2) (Lhermitte et al (2011), Pree
ctal (2014).

Dxuciidun(x(t)vy(')) = L Xeyel? . (2)

However. the Euclidean distance has limitations. It does not
allow different sequence’s length. different sampling rates,
shifting in time axis (even though these time series are similar
to each other). These drawbacks make the Euclidean distance
difficult for direct use.

To cope with these problems. modifications have been
mntroctuced based on the principle of DTW (Dong et al (2006),
Megaloikonomou et al (2005)) as expressed in (3), where two
time-series X(1) and Y(t) are ‘stretched” or ‘compressed’ to
allow comparison between them. We construct a nxXm warping
matrix. The cell (i,j) is correspondent to the alignment of
element x; with y; and £ is the distance function. A detailed
explanation of DTW algonthm can be found in (Shasha et al

(2004)). (3)
Dipw(Xi, Rest(Y))
Dirw(X.Y) = Dy o (X0 Yi) + min< Dfri(Rest(X), ;)
Dirw(Rest(X), Rest(Y))

DTW produces a more intuitive similarity measure. allowing
similar shapes to match even if they are out of phase and are
not perfectly syvnchronized in the time axis as schematically
presented in Fig. 2.

The Pearson Correlation Cocflicient is a well-known similanty
measure that is invariant to shifting and scaling being expressed
by (4) ((Shasha et al (2004))

IV (Xt — py ) VID- py )
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rcc(X(t).Y(t)) = 4)

where N is length of the time series and W is the average of
cach time series (Chien et al (2005)) The Pearson Correlation
Coclficient ranges 1s -1 < r < +| where +1 indicates a
perfectly matched between two time-series and O indicates that



there is no association between the two variables. A value less
than 0 indicates a negative association.

The Mahalanobis distance defined as a dissimilarity measure
between  two time-series  with  the  same  distribution
and covariance mainx Sis defined on (5) (Mahalanohis
(1986)).

Dynamic Time Warping

Fig. 2. Dynamic time-warping Vs Euclidean distance.

D mabatanobis(X (). Y (1)) = JX =Y S71 (X =Y) (5

The advantage of using Mahalanobis distance is that it takes
into consideration the correlations. S, between the time senes
by which different patterns can be identified and analysed with
respect 10 a based or reference point (Sidek et al (2012))

2.3 Transform-based similarity methods

Usually time series are so long that data reduction techniques
can be used to reduce the size of the data without substantial
loss of information, The Discrete Fourier Transform (DFT) isa
classic data reduction technique and based on that the Discrete
Wavelel Transform (DWT) is developed. The DFT is used to
map long time series into frequency domain to enable
representation of the time series by a set of elementary function
called basis (in these case sine and cosine functions) (Shasha et
al (2004). Wei (2006)) as given in (6) at its exponential form:

J2RF,

X(F) = DFT(X(8)) = = X@e W (6)

Where F represents the frequency and N the length of the time
series. The first few coefficients of the DFT concentrate and
contain most information of the time series and can capture
good approximation of it. According to Parseval theorem which
specifies that the Fourier Transform preserves the Euclidean
distance between time series in time and frequency domains, it
is possible to use the first few coefficients for measuring
simifarity of two time-series instead of the original ones
(Agrawal et al (1993). Wei et al (2010), Shasha et al (2004)).
Fourier transform could change time series from time domain
1o frequency domain, at the expense of unclear time
representation, beside all information being preserved. To
represent the behaviour of a time series in both domains,

Wavelet-based functions arc also emploved with better and
higher resolution in both time and frequency domains. Unlike
the Fourier transform, wavelet transforms have a huge set of
possible basis functions and provides a way of analysing the
local behaviour of functions (Struzik ¢t al (1999), Kopenkov
(2008), Rocha et al (2014). Popivanov ¢t al (2002)). For more
details, see (Shasha et al (2004)).

So, time series can be decomposed into lincar combinations of
the basis-functions. The trend of the input function is captured

in approximation o the original function ¢ (t), while
Tocalized changes are kept as sets of detailed functions, ranging
from coarse (o fine / (t) (Antoniadis ct al (2011)). DWT is
computed as in (7).

B () = Coppoo(6) + EI2S T2 ) 0) (7)

Exploring the data reduction ability of DW'T for measuring the
similarity between two time-series (Rocha (2014)) proposed an
interpretable similarity measure by combining the Haar wavelet
decomposition with the Karhunen-Loéve transforms in order to
optimally reduce the number of wavelet basis (Rocha (2012)).
The multiresolution aspect of the wavelet transform provides a
time-scale decomposition of the signals allowing o visualize
and to more accurate clustering the data into homogencous
groups (Antoniadis ¢t al (201 1). Kalpakis ct al (2001)),

3. EXPERIMENTS

The goal of this work is measuning and comparing the
insensitivity of each similarity method to the imposed time
series vanation thinking on the future application of the best
performed method for clustering purposes.

Regarding the usage of a time series sampling frequency of
250Hz and performing an approximation of the series™ data
poinis to 2" (please see section 3.1), and, after 1esting how
many DFT coefficients would be required to attain a 90%
approximation. we decided to use the first 4 coefficients of
DFT (recall (6)). Also. with the same approximation
requirement, we considered |1 decomposition levels of DWT
(recall (7)). The similarity is hereby computed as the
difference between time series under comparison. and the
difference is expressed in the range 0 to I, where | means
100% agreement between the time series.

3.1 Time series emploved

Dealing with time series involves quite often a pre-processing
stage such as normalization and/or noise removal since time
series are tvpically large volumes of data. non-finite or even
discrete numerical type, non-constant sampling rate, noisc
mterference forms (Jiang et al (2009)). In our studv. we
collected our time-scrics from a public database. and we
resampled the signals to adjust all records 1o the same
sampling frequency  (250Hz, and used the closest
approximation 1o a power of 2 as data points) and we also
normalized data between 0 and 1 considering feature scaling.



In this paper the time series were collected from the public
databasce PhysioNel (Goldberger et al (2000)) that is available
in: (htps://physionet. org/physiobank/databasc/#ecg).

To enlarge the applicability of this study besides coronary
artery discase and heart failure patient (Rocha et al (2012)), the
similarity measurement methods were tested using Arterial
Blood Pressure (ABP) signals from Fantasia Database related
to healthy subjects, and similarity measurements were taken
from longer time series than usual in CVD assessment, i.c.. we
decided to test time sernies scgments longer than the cardiac
cycle. this is, we decided to test 10 sec length data segments.

A template signal X(t) representing 10 sec of healthy people
ABP recording was employed. This template corresponded to
the mean of randomly selected 10sec segments.

3.2 Time series variations imposed

Biomedical time series may have different type of variation
such as additive noise, scaling or translation in time or
amplitude, changes in bascline. So selection of a particular
simifarity method should be based on its sensitivity against
variations and to the specific application. Six types of time
series distortions were tested using the following equations:

(a) Amplitude Scaling: X, (¢) = f + X(t).

(b) Amplitude shift: X, (¢) = X(¢) + 6.

(c) Time scaling: X+, (t) = X(f « t).

(d) Time shift: X, () =X+ 8).

(¢) Baseline vanation: X (t) = rotate(X(t),8 ).

() Adding WGN: Xy, (¢) = X () + Z, ~N'(X, ,N).

Where  is a constant and © is the angle of rotation in the
bascline and N is White Gaussian Noisc (WGN). The valucs
of [ and O employed were based on experiments were small
incremental changes were envisaged, therefore we decided to
consider 20 possible variations of the series as can be seen in
Fig 3, where only the time shift distortion was tested with 21
possible variations.

Signals® similarity were measured by Sgq (Euclidean distance).
Spwr (Discrete Wavelet Transform), Sir (Discrete Founer
Transform), S (Correlation Coefficient), Sy, (Mahalanobis
distance), Su;, (Minkowski Distance), Sprw (Dynamic Time
Warping Distance) in terms of the above time senes vartations
and results are presented in Fig 3.

4. ANALYSIS OF THE RESULTS

Analysis of performance is always constrained by the goal of
the research in course, Inour case we were inferested in testing
the robustness of the similarity methods, where robustness is
understood as insensitivity to small variations. Recall that we
are testing 10 cardiac cycles instead of single cardiac cycles.
So. all experiments developed and the analysis of results below
performed are framed by this robustness goal.

As expected and depicted in Fig.3, the similarity measured
values decrease when the level of varation is increased (as
abscissa values increase). The sensitivity to cach type of
variation is not the same for all the similarity methods as can
be seen by the trend of the curves. Curves close to similarity
value of one represent strong similarity, therefore high
robustness.

The similarity measured by Correlation coefficient displays
lowest sensitivity to all the signals® vanations tested.

The Euclidean distance and Fouricr transform showed highest
sensitivity 1o the variations. The Fourier transform being
particularly critical when amplitude shifi, time scale and time
shift are tested, The similarity measured by the Euclidean
distance demonstrates higher unpredictability results between
Iwo time-series whenever variations increase.

The Mahalanobis distance showed a performance closer to the
one presented by the Correlation coefficient and much better
than the performance of the Euclidean distance or the
Minkowski Distance. This is duc to the fact that, similarly to
the Correlaton Cocfficient, the Mahalanobis also takes mto
consideration the correlation of the data set itself.

The Minkowski Distance proved 1o be only admissibly
msensitive when White Gaussian Noise and variance of the
baseline are the data variations considered.

The Correlation coefficient keeps close to the unity similarity
line through all degree of variations imposed denoting lowest
sensitivity to data variations in all cases.

The Discrete Wavelet Transform response 1s almost insensitive
to amplitude shifi, closely following the performance of the
Correlation coefficient and it has betler robusiness response,
this is, low sensitivity to other variations.

The Dynamic Time Warping Distance presented a performance
similar (o the Mahalanobis distance when time scaling is
considered and is also almost insensitive to White Gaussian
Noisce when up to 13 degrees of variation are allowed.
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Fig. 3. Sumilarity sensitivity metrics against degree of
variations for a) Amplitude Scaling, b) Amplitude Shifi, c)
Time Scaling, d) Time shift, e) Variation of baseline, f)
Variation by Adding white Gaussian Noise. The figures’
caption nomenclature stands for: Sy - Euclidean distance,
Spwi-Discrete  Wavelet Transform, Sy -Discrete Founer
Transform, S.~Correlation Coefficient, S.-Mahalanobis
distance. Sy-Minkowski Distance, Sppw-Dynamic Time
Warping Distance.

5. CONCLUSIONS AND FUTURE WORK

A comparative study of different time series similarity
methods has been performed. Since our target is CVD
diagnosis applications, the study considered the well-known
and frequently used and referenced PhysioNet data-base,
making use of healthy patients” arterial blood pressure signals.
We also assumed that testing these similarity methods on data

scgments longer than the average cardiac cyele (1 sec) would
cnable a broader application of this study and provide less time
consuming cvaluation of physiologic time serics when a CVD
personal health care system is aimed. So, behind this particular
study we envisage using these resulls on our strategy of
clustering and discase classification thus considering as the
best performed similarity  measurement method the one
presenting less sensitivity 1o small variations on the data signal
within a range of 20 degrees of increasing variations studied
on six types of possible signal vanations. Tests and analysis of
the results were based on the obtained similanity measurements
with seven different similarity measurement methods, five
addressing data in time domain and the other two on
transformed-based domain,

The case-study time series were collected from the PhysioNet
database. We experimentally demonstrated that among the
tested time domain similarity measurement methods the
Correlation Coefficient was the most robust method, that is to
say. the most insensitive to small variations, presenting
similarity measurements close to unity for amplitude scaling.
amplitude shifting, varance of the baseline and additive white
Gaussian noise. Concerning the transformed-based similarity
methods tested. the Discrete Wavelet Transform performed
better than the Discrete Fourier Transform. It is insensitive to
amplitude shifts of the signals, almost insensitive to white
Gaussian noise up to 14 vanations, but for the other variations
it is clear a robustness decay as the degree of variation
INCTLases.

To conclude. in what consists an election of the most robust
similarity method the Correlation Coefficient wins. However.
when data reduction is required due to computational burden
of the whole system, the Discrete Wavelet Transform as
proposed in (Rocha (2014)) is the similanity measurcment
approach 1o be clected.

Future work will address the influence of selecting these
similarity methods when clustering efficiency is envisaged.
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Validation of a similarity measurement method for clustering
cardiac signals *

A. Kiamimajd, M. G. Ruano, P. Carvalho, J, Henriques, T. Rocha, and S. Parcdes, Members. IEEE

Abstract—  Development of personalized cardiovascular
management systems involves automatic identification of the
current data as a normal or pathological; considering cardiac
data as time-series (bio signals), the illness identification may be
performed by secking similarity between the current patient’s
time-series data and a reference signal, as more accurately as
possible and then proceeding to illness stratification (clustering)
or even prognostic indication. In this paper we analyze the
performance of seven of the most common methods of time-
series similarity measurement when the Partitioning Around
Medoids strategy of clustering is considered. Three different
electrocardiogram collections of data were used for testing, each
one including both pathoelogical (were different pathologies were
included for each collection) and non-pathological time series.
Results demonstrate that usage of the reduced basis Discrete
Wavelet Transform resulting from the combination of Haar
wavelet decomposition with the Karhunen-Loéve transforms
enables clustering different pathological-dependent and healthy
cardiac datasets with better performance than the other
methods, presenting an accuracy ranging from 75% to 85%
when partitioning around Medoids clustering is used.

L NTRODUCTION

Cardiovascular diseases (CVD) are «till a major cause of
chronic disease human mortality, being responsible for huge
numbers of disability adjusted life years and presenting major
impact on health expenditure. Also, CVD may develop fast
and sometimes silently due to other comorbidities, which leads
to many relevant CVD research quenes whenever preventive
medicine 15 envisaged. Although in the last decade there has
been intense and significant research on developing and
deploying Personal IHealth Cuare (PIIC) services m CVD
management there are still several gaps to be tackled before an
automated system can efficiently perform CVD personalized
management.  Within this context, usage of intelligent
algonithms to process data obtamed from wmcontrolled
conditions and to be self-adapting (moving from population-
based to patient-specific adaptations) and accurate s stll a
research challenge. To achieve so, several strategics may be
followed, one of them assuming the cardiac signal as a time-
series. As s0, the strategy would be composed of a prior
wentification of the personal cardiac signal with a CVD
pathology (c.g by identification of similarity between the
personal time-series with a reference signal) followed by the
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awtomatic classification (1e clustering) of the time-serics
under analysis into a specific class of signals (usually discase
related). This procedure may be found m many application
areas and particularly at the bioengineering field; clustering 1s
m calling the attention of data mining rescarchers within
application arcas such as  bioinformatics [1], medical
streaming data [2] and arrhythmia detection |3, 4]

These publications are based on different approaches for
similarity scarch, cither m terms ol time and transformed-base
domains or both. Several similarity and distance measuring
methods may be found in literature, to be mentioned Dynamic
Time Warping (DTW) distance [1] and Mahalanobis distance
3] in time domain, within transformmg and dimension
reduction techmques, the Discrete Fourter Transform [4],
Kurhunen-Loéve  wansform  [5],  Singular  Value
Decomposition Transform [6], Principal Component Analvsis
|71, and Discrete Wavelet Transform (DWT) [8] are worth
being mentioned

Many of the clinically collected cardiac signals may be
regarded as time senes, i.c., as the simplest representation of
temporal data expressing the changes of real values at time or
space pomnts, doe to sampling at a fixed tme mterval
Whenever general trend of the cardiac cycles are to bhe
analvzed, several cardiac cycles are dealt sunultaneously,
allowing non-statioparity features to be taken into account
This approach leads us to long time-series analysis, enabling
an cfficient computatonal illness clustering regarding the
PHC management system,

However, usage of long time-series approaches requures a
highly efficient similarity method so that a highly precise
stratification phase may happen. and o that s the case,
subsequent accurate prediction [Y, 10] arises. So, the aim of
this paper is to validate the best performed and accurate
similarity measure to be applied on datasets of cardiac long
time series signals, taking into account previous team rescarch
on pceurney and precision evalustion of different methods of
measuring simlarity between long time series when different
possible varations are considered [11]. Present publication is
devoted 1o the description, testing and conclusion of
performing clustering by Partitioning Around Medoids (PAM)
[8] strategy, when the previously identified [11] best behaved
similarity method (in the context of a clustering approach) 1s
emploved. In [11] and |3] we tested the methods on Arterial
Blood Pressure (ABP) tme-series, while on this paper we
enlarge the study to electrocardiogram (ECG) signals,

This paper 1s orgamzed as follows: section Il and [T1
synthetize the similanity methods tested and the PAM
clustering  strategy  emploved, respectively! section 1V
specifies the data sets used; the experiments undertaken and
the obtained results are presented m section V and finally the



conclusions and 1ssues to be addressed in near fulure are
exposed mn section VI

IL SIMILARITY MEASURING METHODS

As previously mentioned searching for time-series
similanty may be performed in time or transformed (frequency
mn general) domons or even meluding both domauns. The
similarity measuring methods we tackled are described in the
sections below.

The distance between two N sized time series X(0) = {x(1),
N2), o, x(INYE and Y(0) = {v(1), ¥(2),.... y(N)} s the length
of the path connecting pair of points. This distance is a measure
of similanity, Greater distunce indicates less similanity and vice
versa [11].

A, Time Domain Methods

The most commonly used and simplest time domain
distunce measure n classification approaches 1s derived from
the Minkowski distance, represented in (1), where 1l is
described as a general equation for both the Euclidean distance
(Dgg) (P=2) and the Manhattan distance {Dygan) (Pl=l) [

D smsnene XOY®) = (T O —Y@P ) (1)

The Euclidean distance is casily caleulated among time
series with the same length [11, 12, 13] . However, the
Euclidean distance has limitations. [t does not allow diflerent
sequence’s length, different sampling rates, shifting in time
axis (even though these time series are similar to cach other).
T'hese drawbacks make the Euchidean distance difficult for
direct use. To cope with these problems, modifications have
been introduced based on the prineiple of IDTW [ 14, 15] where
two time-series X and Y are ‘stretched” or ‘compressed’ 1o
allow companison between them. We construet @ nxm
warpmng matnx. The cell (i,7) 15 comespondent o the
alignment of element x; with  y; ond D is the distance
function. A detoiled explanation of DTW algorithm can be
found in [16]. DTW produces a more ntuitive similarity
measure, allowing similar shapes to mateh even if they are out
of phase and are not perfectly synchronized in the time axis.

The Pearson Correlation Coefficient is a well-known
similarity measure that is invarant to shifting and scaling,
being expressed by (2) [16], where N s the Jength of the time
series and X and Y are the averages of each time series. The
Pearson Correlation Coefficient’s range is —1 < 1 < +1,
where +1 indicates a perfectly match between two time-series
and (1 indicates that there 15 no association between them. A
value less than 0 indicates a negative association

TN X XNy V) (2)
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The Mahalanobis distance defined as a dissimilarity measure
between  two time-serics with  the same  distribution
and covariance matrix S 1s defined on (3) [17].

D sanatamobis (X(0.Y(8))=y (X-Y)" §7(X-Y)

(3)

The advantage of using Mahalanobis distance s that 1t
takes into consideration the correlations, S, between the time
series by which different patterns can be identtfied and
analyzed with respect 10 a based or reference pomt.

8. Transformed-based methaods

Usually time series are so long that data reduction
techniques can be used to reduce the size of the data without
substantial loss of mformation a very convenient strategy
when long time-series are being processed. The Discrete
Fourier Transform (DFT) is a classic data reduction technique
and based on that the Discrete Wavelet Transform (DWT) 1s
developed. The DFT 1s used to map long time series into
Irequency domun o enable representation of the time series
by a set of elementary function called basis (in these case sine
and cosine functions) [ 16, 18] as given in (4) at its exponential
form:

N
1 2, “h
X(F=DFT(XW)=— me&r Fe0.1, NI
viv. %

Where I represents the frequency and N the length of the
time series. The first few coefficients of the DIFT concentrate
and contain most mformation of the time seres and can
capture good approximation of it. According to Parseval
theorem which specifies that the Fourier I'ransform preserves
the Fuchdean distance between hme series m time and
frequency domains, 1t is possible to use the first few
coefMicients for measuring similarity of two time-series instead
of the ongmal ones |16, 4. 18], Founer transform could change
time series from time domain to frequency domain, at the
expense of unclear time representation, beside all information
being preserved. To represent the behavior of & time series in
both domaims, Wavelet-based functions are also employed
with better and higher resolution n both time and frequency
domains. [Inlike the Fourier transform, wavelet transforms
have a huge set of possible basis functions and provides u way
of anulyzing the local behavior of functions [19. 20, 21]. For
more details, see [ 16].

So, time series can be decomposed into linear
combinations of the basis-functions. The trend of the input
function 1s captured in approximation to the original function
@ (t). while localized changes are kept as sets of detailed
functions, ranging [rom coarse o fine Y (t) (8] DWT is
computed as i (5),
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Exploring the data reduction ability of DWT for measuring
the stmlarity between two time-series 1. Rocha et al [13]
proposed an mterpretable similarity measure by combining the
Haar wavelet decomposition with the Karhunen-Loéve
transforms in order to optimally reduce the number of wavelet
basis [5], The multiresolution aspeet of the wavelet trunslorm
provides a time-scake decomposition of the signals allowing to
visunlize and to more accurate clustermg the data nto
homogeneous groups [8. 10].



11 PAM BASED CLUSTERING

Clustering is one of the most frequently used data mining
techniques. The objective of cluster analysis 18 to partition a
set ol objects mnto two or more clusters based on the similanty
between time series. On this paper we locus on PAM
clustering method which is based on the search for &
representative objects, called Medoids, among the objects of
the dataset. 11 the average of dissimilanily between objects near
u Medowd 1s mimmun it 1s classified as cluster [8]. PAM
clustering 1s hereby performed o analyze the ability of
different similarity methods to distinguish signals in the
dataset so that precision and efficiency of each similarity
methods [10] is assessed It attempls to mmimize the total
distance 1) between objects within each cluster. DD could be

computed as {6):
X
-3 ¥ Ta, ®

k=1 (EC) jECy

where K is the number of clusters, d; is the distance
between objects { and /. and €, 1s the set of all objects in cluster
k. For more details about algorithmic issues please see [23).

Finding dissimilarity (distance) between two bme series 1s
fundamental to cluster analysis since the goal is to place
similar objects in the same cluster and dissimular objects in
different clusters. The goal of present work 1s the identification
of the similarity method which would produce more precise
clustermg when compared with predefined datasets.

IV, LONG TIME SERIES EMPLOYED

Based on the public database PhysioNet [23] we created
our four data bases of ECG signals, Each signal in our data
hase has 10 sec length, randomly sclected from the
correspondent PhysioNet data base, The following dat bases
were considered: Fantasia, MIT-BIH Atria] Fibrillation, Long-
Term ST and PTB Diagnostic ECG. From these, PhysioNet
presented, respectively 40 (2h records). 23 (10 h records), 86
(21-24 h records) and 549 (variable record length), within
which 40, 84, 85 and 71 were randomly selected. According
these numbers we can see that our data base may include time
series of ECG's belonging to the same patient. but. most
mmportant, include different puthology sumples.

IV, EXPERIMENTS AND ANALY SIS OF RESULTS

Dealing with time series involves quite ofien a pre-
processing stage such as normalization and/or noise removal
sinee time series are typrcally large volumes of data, non-finite
or even discrete numerical type, non-constant sampling rate
and noise interference forms [9]. In our study, for each 10 see
signal of our working data base we applied pre-processing,
Since the range of amplitude values of the data vaned widely
and similanty functions do not work properly in such
sttuations, a linear transformation of the amplitudes was
performed. By normalization of all the signals in the dataset,
all measured values were adjusted in the common seale, This
featwre scaling process (tvpically named unity-based
normalization) is used 1o bring all values into the range [(,1]
|24]. Another preprocessing appliecd was the removal of

vertical offsets of the tme seriecs. We also resampled the
signals 1o adjust all records to the same sampling frequency of
250Hz, and used the closest approximation to a power of 2 as
data points. Also data was normalized between O and 1 by
means of feature scaling. At last every time series was aligned
n the datasets according to their first peaks aiming at increased
accuracy of the results,

Following previous research, different types of ime series
varigtions have been applied on the template tme series of
ABP signals and the achieved robustness’s mav be consulted
m [11]. At present the conclusions drawn for ABP signals
were considered to perform PAM clustening on ECGs.

Within the four workmg data bases created three
collections were formed, each one including 30 signals from
Fantasia data base and collection | included 45 signals from
MIT-BIH Atrial Fibnllation, collection 2 included 35 signals
from Long-Term ST duta base and finally collection 3
meluded 50 signals from PTB Diagnostic ECG.

The accuracy of clustering may be evaluated through
metrics. Gavrilov et la [23] proposed a cluster similarity metric
as defined by (7) und (8)
|G Ay
im(G;,4)) = 2 ——
S (Gl AJ‘) 2 lcfl + lA;I (7)

where G; are predefined members of each datasets to be
considered us “ground-truth” and A; wre clustenng results
obtained by using PAM with various types of similanty
methods. In our case we considered two G; members: healthy
and discased. Numerstor of (8) introduces the number of
similar time series A, that are recognized within G, when k
clusters are considered. This metric will be zero if two
clustering are completely dissimilar and 1 if they are similar
[10, 26].

2‘ max Sim(G,,A,)
— (8)

Sim(G,A) =

The cluster similarity metrics obtained with PAM
clusterig of these eollections are expressed on Table 1 where
a Sim value (expressed as percentage) of O mdicates that the
clustering results are completely dissimilur while a value of
100 evidences clustering results similar to the established
ground-truth. To ¢lanfy, if for instance within collection 1 15
out of the 30 records (healthy patients) and 45 of the 45 atrial
fibrillation records were detected as similar we would have an
accuracy of 75%. Here we are designating “accuracy” as the
precision of correetness clustering of the data under anulysis.

TABLE L. COMPARISON OF CLUSTERING “ACCURACY' WITH DIFFERENT
SIMILARITY METHODS

Similarity methods wsed I Acemrney of dustering in Pervent
Austering Cuttoction! | Coltection | Catiotiont

T ncladian dovtasce g KLoeb L
Aso convelation coeffict 66 60 6708 n
Dhacrete Coume Tramaform 1 LA M ny
Doeavte Wavelet Toaunboss TEN 89 5020
 Dyussic tine warping nan K160 98
Mahalun il dtmus 7613 KL60 o987
Mgk orweks s P-6) 71 40 as o 6% 12




Analysis of these results reveal that DWT provides the
most sccurate clustering particularly when the varbility of
signals occur (collections | and 2). Results obtained for
collection 1 evidence that when inside the clustenng members
exist more similarity among signals (only healthy and atnal
fibrillation signals) Euclidian distance related measurements
may be more accurate. To be mentioned that if during the pre-
processing stage the alignment of the records’ first peaks was
not performed, the DWT aceuracy obtnined [or collection |
would be better than any other methods. Also, these clustering
results strength the previously obtained results |5, 11]
confirming the election of DW T as the similarity measurement
to apply on CVD analysis.

V. CONCLUSION

This paper describes comparative studies performed to assess
accuracy of seven commonly emploved similarty methods by
comparison of clustening accuracy metrics obtained for those
similarity methods when applied on three different collections
of data. Results show that, besides previously published work
|5, 11}, when ECG long term data series are considered usage
of DWT combined with Karhunen-Loéve transtorms  for
clustening purposes is the most sccurate among the commonly
employed time-series similarity measurement methods being
particularly robust when different types of CVD are
considered within the collection under analvsis. Therefore,
this study enables a generalized conclusion that DWT s a
reliable similarity measurement method for biomedical and in
particular LCG time series sereening for clustering purposes.
Future work includes extending analysis to other intelligent-
based methods of clustering.
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