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1. Abstract 

Cancer is the second leading cause of death worldwide. Environmental and 

lifestyle factors play a crucial role in its development. Certain components of the diet, 

namely Isothiocyanates (ITCs), which are present in cruciferous vegetables, can act as 

cancer chemoprevention agents, which may reduce cancer development risk up to 50%. 

 ITCs are thought to act through inhibition of Phase I biotransformation enzymes, 

cytochromes P450 (CYPs), which are responsible for the bioactivation of many pre-

carcinogenic compounds in the body. In this study we used computational (in silico) 

docking methods to investigate the interaction between ITCs and several important 

members of the CYP family who are known to be inhibited by this group of 

chemopreventive agents. Experimental inhibition constants (Ki) were compared with the 

estimates produce with the in silico docking algorithms.  

 In silico docking was performed using several ITCs (BITC, PEITC, PHITC, 

PPITC) as ligands and all the CYP files available in the PDB website for the following 

receptor molecules: CYP2A6, 2A13, 2B6, and 2C9. In order to investigate how different 

docking algorithms and scoring functions would affect the docking results, the softwares 

Autodock Vina (Vina) and AutoDock4 (AD4) were both used and compared to other 

results found in the literature. The relative performance of AD4 and Vina was assessed 

by in silico redocking the crystallographic ligands of the studied CYPs and comparing 

the results with the experimentally observed conformations 

 The best docked ligand structure found by both programs is, for most cases, very 

similar in position and conformation to the crystallographic structure, with Vina 

producing Ki values in closest agreement with experimental data. In terms of both rigid 

and flexible docking, Vina produced better results with more accurate Ki values when 

compared with AD4. Vina is better at flexible while AD4 is better at rigid docking. The 

docking of a ligand to its crystallographic partner as compared with docking to a different 

structure of the same CYP generally yields the second best Ki values. 

 ITCs were found to be good inhibitors of CYP2A6 and PHITC is a very good 

inhibitor of CYP2A13. High Ki values corresponding to weak inhibition were observed 

for CYP2B6, whereas very poor inhibition was observed for CYP2C9. 

Keywords: Isothiocyanates; Cytochrome P450s; Docking; Inhibition 
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2. Resumo 

O cancro é considerado a segunda causa de morte em todo o mundo. Os factores 

ambientais e o estilo de vida desempenham um papel crucial no desenvolvimento desta 

doença. Muitos estudos epidemiológicos mostram que uma dieta rica em frutas e vegetais 

é capaz de levar a uma diminuição do risco de se desenvolver cancro até 50%. Um dos 

elementos de uma dieta saudável que tem um papel especialmente relevante na prevenção 

do cancro são os vegetais crucíferos. Estes contêm compostos chamados glucosinolatos. 

Quando os glucosinolatos entram em contacto com a enzima mirosinase há a produção 

maioritária de isotiocianatos.  

Os glucosinolatos conseguem prevenir o aparecimento e desenvolvimento de 

cancro através da regulação de vários mecanismos celulares, sendo de especial relevância 

a regulação do metabolismo de compostos xenobióticos pelas enzimas de 

biotransformação. Os isotiocianatos conseguem activar as enzimas de Fase II 

(destoxificação – conjugação) e inibir as enzimas de Fase I (destoxificação e bioactivação 

de carcinogénios – oxidação). Os citocromos P450 (CYPs) são os enzimas responsáveis 

pela maioria (70-80%) do metabolismo da Fase I. Estas versáteis monooxigenases são 

capazes de hidroxilar muitos compostos e estão presentes em maior abundância no 

retículo endoplasmático liso dos hepatócitos. As principais famílias de CYPs 

responsáveis pela carcinogénese são também aquelas que estão envolvidas no 

metabolismo de compostos exógenos (CYP1-2). 

Os ITCs conseguem inibir, de forma reversível ou irreversível, a actividade 

catalítica de alguns CYPs, ligando-se ao centro activo destes enzimas.  

O tempo de vida dos ITCs no organismo está dependente da actividade dos 

enzimas de Fase II. Estes são activados pelos ITCs, levando à sua posterior degradação 

pela via do ácido mercaptúrico e posterior excreção por via urinária (principal via) ou 

fecal. 

Uma miríade de ITCs de origem natural e sintética são capazes de inibir a 

actividade dos CYPs. Após uma revisão da literatura disponível, foram escolhidos 4 ITCs 

[benzil-ITC (BITC); fenetil-ITC (PEITC); 6-fenilhexil-ITC (PHITC); 3-fenilpropil-ITC 

(PPITC)] e 4 CYPs (2A6; 2A13; 2B6; 2C9) para serem objecto de estudo nesta tese de 

mestrado.  
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A modelação molecular tem vindo a ganhar um maior destaque nos últimos anos 

devido à maior velocidade de processamento de dados por computadores pessoais. Neste 

tipo de estudos é necessário considerar diversos factores, tais como o tamanho e as 

propriedades electrónicas das moléculas. Várias abordagens teóricas e algoritmos de 

modelação podem ser usados quando se faz acoplamento (docking) molecular.  

O método de ab initio tenta resolver a equação de Schrödinger através do uso da 

aproximação de Born–Oppenheimer assumindo o movimento dos núcleos e desprezando 

o movimento dos electrões. Por sua vez, o método de mecânica molecular tira partido das 

forças existentes entre as ligações atómicas numa molécula. Finalmente, o método de 

dinâmica molecular tenta resolver as equações Newton aplicadas ao movimento de 

moléculas. 

Para os cálculos de docking molecular deste trabalho, utilizaram-se dois 

programas: AutoDock Vina (Vina) e AutoDock 4 (AD4). Em ambos os caos é usada uma 

função de pontuação (scoring) e um algoritmo de busca, de modo a tentar encontrat a 

conformação ideal de acoplamento de ligando e receptor. No entanto, os dois programas 

diferem na forma matemática da função de scoring e no mecanismo do algoritmo de 

pesquisa. 

Os ITCs foram construídos utilizando o programa HyperChem, o qual providencia 

as ferramentas necessárias à criação de modelos moleculares num ambiente 

tridimensional. O processo de construção das moléculas envolve cálculos de mecânica 

quântica (ab initio) bem como de mecânica molecular (utilizando o campo de forças 

MM+), podendo os modelos gerados ser usados em diversos tipo de simulações 

moleculares. Este tipo de métodos permite prever o modo como a estrutura das moléculas 

simuladas responde a diversos tipos de perturbações. 

Foi realizado o download dos ficheiros pdb dos CYPs de origem humana a partir 

do website do Protein Data Bank (PDB), o qual consiste numa grande base de dados para 

estruturas cristalográficas de macromoléculas biológicas e dos seus respectivos ligandos 

(quando presentes). A maioria destas estruturas foi obtida experimentalmente por 

cristalografia de raio-X, e em menor número por espectroscopia de Ressonância 

Magnética Nuclear (NMR). A primeira técnica de determinação de estrutura molecular 

baseia-se no uso de raios X que são incididos sobre um cristal da molécula cuja estrutura 

se pretende determinar levando à produção de padrões de difracção que podem ser usados 
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para resolver a estrutura molecular. A segunda técnica baseia-se na exposição da molécula 

em estudo a um campo magnético extremamente forte, o qual vai produzir a reorientação 

do spin nuclear de alguns tipos de átomos presentes na amostra, possibilitando assim a 

sua determinação estrutural. 

O acoplamento molecular dos CYPs com os respectivos ligandos nativos bem 

como com os ITCs foi realizado através do uso do conjunto de programas AutoDock 

Tools (ADT), AutoGrid4/AutoDock4 (AD4) e AutoDock Vina (Vina). É através do 

emprego destes programas que se procurou encontrar a melhor energia de interação 

possível entre ligando e receptor. Esta tarefa é realizada através do uso de funções de 

scoring, as quais fornecem uma previsão da afinidade de ligação entre ligando e receptor, 

bem como da orientação e conformação relativa das duas moléculas. Aminimização de 

scoring é usada como objectivo na busca sistemática pela melhor conformação do ligando 

(flexível) no receptor (rígido ou flexível). 

Os ficheiros pdb contendo as estruturas das moléculas em estudo têm de ser 

manualmente ajustados de modo a estarem aptos a serem utilizados no processo de 

docking molecular. As moléculas de água, os ligandos nativos e as cadeias suplementares 

da macromolécula são removidos através do programa PyMOL. No ADT é adicionado 

carga e resíduos flexíveis aos ficheiros do receptor e ligando, os quais são posteriormente 

gravados em formato pdbqt. A grelha de busca também é definida neste programa. De 

seguida correm-se os programas de docking molecular (AD4 e Vina) separadamente nos 

seus modos de docking rígido e flexível. O uso simultâneo dos dois programas e a 

comparação dos resultados obtidos fornecem uma forma de validação dos cálculos. Como 

forma adicional de validação dos cálculos, procedeu-se ao re-docking dos pares 

cristalográficos CYP-ligando nativo de forma a comparar os resultados com os dados 

obtidos experimentalmente.  

Uma vez que o programa Vina é mais recente que o AD4, a necessidade de ter 

uma comparação mais equitativa levou a que se procedesse à alteração das cargas do 

grupo hémicos dos CYPs a acoplar pelo AD4 por cargas hémicas mais precisas, as quais 

foram fornecidas pelo trabalho de Shahrokh, K. et al.; 2012.  

Uma revisão da literatura referente à inibição de CYPs por ITCs foi tida em conta 

por forma a se proceder à escolha dos CYPs a serem alvo de acoplamento molecular bem 
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como ter uma forma de comparar os resultados obtidos in silico com os obtidos 

experimentalmente. 

Os valores experimentais de constante de inibição [Ki (µM)] de alguns ligandos 

foram usados como forma de validação dos resultados das simulações de docking. 

Enquanto o software AD4 fornece estimativas directas de Ki (sendo apenas necessária 

uma conversão de mM para µM), os valores de constantes de afinidade dados pelo 

software Vina têm de ser convertidos em valores de Ki. 

Ambos os programas fornecem informação relativamente à raíz quadrada do 

desvio médio (RMSD) dos ligandos. O RMSD corresponde ao desvio médio da estrutura 

do ligando após o acoplamento face à sua posição cristalográfica original. Os valores de 

RMSD obtidos pelo programa AD4 foram os únicos utilizados uma vez que o Vina 

calcula o RMSD usando como referência não a estrutura original do mesmo mas sim 

melhor estrutura acoplada do ligando. 

A análise dos resultados obtidos mostrou que as melhores estruturas acopladas por 

ambos os programas eram na sua grande maioria muito semelhantes às estruturas 

cristalográficas correspondentes. Também se constatou que a sua localização bem como 

orientação tridimensional eram as mais semelhantes com a estrutura cristalográfica. No 

entanto, o programa Vina foi capaz de gerar melhores resultados de Ki em relação aos 

encontrados na literatura quando comparado com os obtidos pelo AD4.  

Relativamente aos modos de acoplamento rígido e flexível, verificou-se que o 

programa Vina conseguiu gerar os melhores resultados nas duas situações. No entanto, 

quando a análise é feita em termos de programa, verifica-se que o Vina é melhor em 

acoplamento flexível enquanto que o AD4 é melhor em acoplamento rígido. 

Visto que existem várias estruturas cristalográficas do mesmo CYP, importa 

responder se o acoplamento de um ligando com o seu parceiro cristalográfico é capaz de 

gerar um melhor resultado do que com uma estrutura diferente mas do mesmo CYP. Em 

ambos os programas, alguns ligandos conseguem de facto ter um melhor valor de Ki 

quando acoplados com o seu parceiro cristalográfico. No entanto, maioritariamente isto 

só ocorre para o segundo melhor resultado. Apesar de o receptor sofrer algum ajuste ao 

acomodar o ligando, é possível que outros ligandos de estrutura parecida ocupar com alta 

afinidade o espaço tridimensional deixado vago pelo ligando original. 
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Uma vez que existem diferentes estruturas cristalográficas do mesmo par CYP-

ligando, procedeu-se ao acoplamento do mesmo tipo de ligando mas com as outras 

estruturas referentes ao mesmo par de modo a ver se o programa AD4 conseguia descobrir 

alguma diferença. Tal não foi verificado, não havendo nenhuma diferença tanto ao nível 

do modo de acoplamento como de valores de Ki ou RMSD. Tal acontecimento deve-se 

possivelmente ao facto de que o processo de cristalização ter sido refinado até ao ponto 

em que certas variáveis, como quem ou quando os complexos foram cristalizados ter 

pouca ou nenhuma importância no produto final de cristalização. 

De seguida procedeu-se ao acoplamento dos diversos CYPs com ligandos 

exógenos de forma a testar se os programas de acoplamento usados conseguiam distinguir 

um verdadeiro ligando de um não ligando. O que se verificou no nodo de acoplamento 

rígido foi que o único ligando escolhido capaz de exercer um controlo negativo sob o 

acoplamento nos CYPs 2A6/13 e 2B6 foi o 2QJ, facto que pode estar ligado à sua elevada 

complexidade estrutural. No caso do CYP2B6, como 2QJ é um ligando endógeno, o 

ligando IND foi aquele que acabou por funcionar como controlo negativo aceitável. 

De um modo geral, não houve nenhum controlo negativo que se destacasse 

quando de procedeu ao acoplamento flexível. Tal pode dever-se ao facto de que no modo 

flexível, um outrora controlo negativo tenha depois espaço de manobra no interior do 

centro activo de modo a conseguir produzir um valor de Ki bastante inferior ao do 

produzido em modo rígido. O único ligando exógeno aceitável foi o 3QO quando este era 

acoplado ao CYP2A13 no programa Vina. 

Ambos os programas de acoplamento usados são bons a acoplar ligandos que 

reúnam as seguintes características: moléculas não-polares, com um ou dois anéis 

(preferencialmente) aromáticos ou com uma estrutura em forma de cadeira e com poucas 

a nenhuma ligação rodável. 

No caso dos ITCs e para ambos os programas, estes constituem bons inibidores 

de CYP2A6/2A13, inibidores moderados de CYP2B6 e maus inibidores de CYP2C9. 

PHITC é um excelente inibidor de CYP2A13. 

Palavras-chave: Isotiocianatos; Citocromos P450; Acoplamento; Inibição 
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3. Introduction 

3.1 What is Cancer? 

Cancer is a complex and diversified disease of which not all cellular components 

are cancer cells (e.g. immune cells, endothelial cells, fibroblasts). Uncontrolled cellular 

proliferation in cancer cells, which is the most known characteristic of cancer, is caused 

by a progressive accumulation of multiple abnormalities (i.e. mutations) in the cells´ 

regulatory mechanisms. The several traits of cancer arise from six different types of 

alterations that happen during the cancer development process that leads to the formation 

of increasingly cancerous cells. These six cancer hallmarks are the following:  self-

sufficiency in growth signals, insensitivity to anti-growth signals, tissue invasion and 

metastasis, limitless replicative potential, sustained angiogenesis, and evading apoptosis. 

More recently, two new cancer hallmarks (deregulating cellular energetics, and avoiding 

immune destruction), as well as the corresponding enabling characteristics (tumour-

promoting inflamation, and genome instability and mutation), were recognized as being 

involved in the carcinogenic process and, as such, they were added to the previously 

mentioned six (Cooper, G. M.; 2000)(Yates, L. R.; Campbell, P. J.; 2012)(Aktipis, C. A.; 

Nesse, R. M.; 2012)(Hanahan, D.; Weinberg, R. A.; 2000)(Hanahan, D.; Weinberg, R. A, 

2011)(Tlsty, T. D.; Coussens, L. M.; 2006)(Bendall, S. C.; Nolan, G. P.; 2012)(Sudhakar, 

A.; 2009)(Mardis, E. R.; 2012)(Mendelsohn, J. et al.; 2008).  

 

Fig.: 3.1 – The different cancer hallmarks and enabling characteristics that are 

crucial in the development of cancer (Hanahan, D; Weinberg, R. A.; 2011). 
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3.2 Distinction between Tumour and Cancer 

Tumour is the same as cancer with regard to uncontrolled cellular proliferation. A 

benign tumour is one which does not invade any neighbourly tissue, or in other words, it 

neither penetrates nor crosses the basal membrane (i.e. membrane that surrounds the 

tumour cells). A malignant tumour, on the other hand, invades the basal membrane and 

the surrounding tissues and, with time, it can also eventually spread out to other tissues 

in the body through metastasis in the blood or lymph. Malignant tumours are the ones 

that should be properly known and referred to as cancers (Cooper, G. M.; 

2000)(Mendelsohn, J. et al.; 2008). 

 

Fig.: 3.2 – A tumour is confined by the basement membrane until the last is 

ruptured by the first and invasion of the surround tissues occurs. Cancer cells can then 

procced to invade other tissues and organs in the body by using the linfatic system or the 

blood circulatory system (Mendelsohn, J. et al.; 2008). 

 

3.3 Cancer Statistics Worldwide 

3.3.1 Incidence 

Cancer may affect up to at least 24 million people in the world, with an anual 

incidence rate of 12.7 million new cases of the disease diagnosed every year. Cancer 

incidence in the globe is expected to increase steadily over the next few years (Baskar, R. 

et al.; 2012)(Li, W. W. et al.; 2012)(Anand, P. et al.; 2008)(Steward, W. P.; Brown, K.; 

2013)(see Bibliography website section for references). 
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Fig.: 3.3 – Incidence of different types of cancer in the world, with lung being the 

one with the highest incidence affecting 13.0% of all cancer incidence cases (see 

Bibliography website section for references). 

 

3.3.2 Mortality 

Cardiovascular diseases are the first leading cause of death worldwide; the second 

been cancer. Every year, an estimated 30 million people will die of chronic diseases. 3.9 

million (13%) of all these people died because of cancer. Some recently data pointed out 

to the estimated cancer death cases to be as high as 7.6 million deaths annually 

(Senthilkumar, K.; Kim, S.; 2013)(Thomas, F. et al.; 2012)(Baskar, R. et al.; 2012)(Li, 

W. W. et al.; 2012)(Rath, M.; 2001)(Li, W. W. et al.; 2012)(Baskar, R. et al.; 

2012)(Sudhakar, A.; 2009)(see Bibliography website section for references). 

 

Fig.: 3.4 – Mortality of different types of cancer in the world, with lung being the 

one with the highest mortality affecting 19.4% of all cancer patients (see Bibliography 

website section for references). 
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3.4 Cancer Statistics by Gender 

3.4.1 Incidence 

It was estimated that in the year 2012, 14.1 million people would develop cancer. 

Of all this new cases of cancer, 53% of them would be in men and 47% would be in 

women. Lung cancer was the most usually diagnosed cancer in men and it affected 16.8% 

of the new cases of cancer in men in 2012. Breast cancer, on the other hand, was the most 

usually diagnosed cancer in women, affecting 25.1% of all the new cases of cancer in 

women for the same year (see Bibliography website section for references). 

 

Fig.: 3.5 – Incidence of different types of cancer in men, with lung being the one 

with the highest incidence (see Bibliography website section for references). 

 

 

Fig.: 3.6 – Incidence of different types of cancer in women, with breast being the 

one with the highest incidence (see Bibliography website section for references). 
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3.4.2 Mortality 

In terms of cancer deaths around the globe, estimates were made that pointed out 

to 8.2 million people dying in 2012 because of this disease. 57% of these cancer deaths 

would affect men and 43% would affect women. Lung cancer is the main cancer related 

cause of death in men resulting in 23.6% of all cancer mortality in men, while breast 

cancer is the cancer type that causes more cancer deaths in women resulting in 14.7% of 

all cancer mortality in women (see Bibliography website section for references). 

 

Fig.: 3.7 – Mortality of different types of cancer in men, with lung being the one 

with the highest mortality (see Bibliography website section for references). 

 

 

Fig.: 3.8 – Mortality of different types of cancer in women, with breast being the 

one with the highest mortality (see Bibliography website section for references). 
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3.5 Development of Cancer 

Cancer development is generally a long process resulting from an accumulation 

of mutations over a period of time, which could take as many as 20 years or even more 

until invasion of nearby tissues happens. This fact explains why cancer commonly 

develops in old-aged people. As time goes by, tumour cells are being constantly selected 

for an increasingly cancerous phenotype (i.e. capacity for proliferation, survival, 

invasion, and metastasis)(Cooper, G. M.; 2000)(Sporn, M. B.; 1996)(Sudhakar, A.; 

2009)(Vogelstein, B. et al.; 2013)(see Bibliography website section for references). 

Initially, a cell suffers a mutation that is not repaired and which affects the cells´ 

regulatory mechanisms. This first mutational event that leads to an abnormal proliferation 

rate of a single cell is called tumour initiation. As time passes, that cell will start to divide 

more frequently than its counterparts. At some point, these altered cells suffer yet another 

mutational event that turns those even more aberrant compared with the normal cells in 

the tissue. This continued accumulation of defects is called tumour progression. Tumour 

cells are selected towards their capacity to proliferate, survive, invade and metastasise in 

the same way as Darwinian natural selection occurs in living beings (i.e. somatic 

evolution – cancer cell formation is favoured – as opposed to organismal evolution – 

beings capable of maintaining their genome integrity across all of its cells). This clonal 

selection for progressively more cancerous cells is a result of a plethora of different 

factors (e.g. chemo or radiotherapy treatment, microenvironment factors) that influence 

the selection of a certain type of clone to the detriment of the others existing in the tumour. 

It is this heterogeneous cell population in cancer that is responsible for relapses after a 

certain treatment has being done in a patient. One additional problem in terms of cancer 

treatment is the fact that cancer has intra- and inter-heterogeneity (Yates, L. R.; Campbell, 

P. J.; 2012)(Cooper, G. M.; 2000)(Thomas, F, et al.; 2012)(DeVita, Jr., V. T.; Chu, E.; 

2008)(Gatenby, R. A.; Gillies, R. J.; 2004)(Aktipis, C. A., Nesse, R. M.; 2012)(Bendall, 

S. C.; Nolan, G. P.; 2012)(Sudhakar, A.; 2009)(Mardis, E. R.; 2012)(Vogelstein, B. et al.; 

2013)(Mendelsohn, J. et al.; 2008). 
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Fig.: 3.9 – The evolutionary procees by which a single mutated cell can lead to 

the formation of a heterogenous cancer mass (Yates, L. R.; Campbell, P. J.; 2012). 

 

3.6 Cancer Treatment 

The treatment of cancer consists in three main lines of approach: surgery, 

radiotherapy, and chemotherapy. Surgery was already practiced as far back as in ancient 

Egypt, were the very first description of cancer was made and discovered in an ancient 

papyrus dated from 3000 B.C., the Edwin Smith papyrus. In it, it is described what 

nowadays is considered to be a breast cancer and the fact that, at the time, there was no 

treatment available to cure this disease; cutting it off the body could only delay the 

progression of the aforementioned ailment. Radiotherapy consists on the use of ionizing 

radiation, more specifically X-rays to try and kill cancer cells by destroying their DNA. 

X-rays and their use as a means to fight against cancer were introduced in 1895, by 

Wilhelm Conrad Röntgen in Germany. Both surgery and radiotherapy treatment 

modalities were the dominat types of treatment given to cancer pacients until the 1960s 

decade, inclusively. Unfortunately, the cure rates resulting from the application of these 

treatments had plateaued at about 33% due to the existence of undetected 

micrometastases. Chemotherapy was, therefore, the path to follow next, the best cure rates 

obtained for combined chemotherapy provided to advanced cancer patients. The term 

chemotherapy was coined in the beginnings of the 1900s´decade in Germany by Paul 

Ehrlich. These new kind of treatment was based on the development of new and improved 
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drugs that could be used to treat diseases, one of them of course being cancer (DeVita, 

Jr., V. T.; Chu, E.; 2008)(Sudhakar, A.; 2009)(Papavramidou, N. et all; 2010)(Hajdu, S. 

I.;. 2004)(Baskar, R. et al.; 2012)(Fairchild, A. et al.; 2008)(Mendelsohn, J. et al.; 

2008)(see Bibliography website section for references). 

3.7 Risk Factors for Cancer 

Chronic diseases, including cancer, are mostly caused by environmental and 

lifestyle factors. These factors are responsible for 90-95% of all cancers, with genetics 

having a scarce contribution (5-10%) for the development of cancer (Anand, P., et al.; 

2008)(Senthilkumar, K.; Kim, S; 2013)(Brawley, O. W.; 2011). 

By changing a person´s lifestyle it is possible to drastically decrease the risk of 

ever developing cancer. The most avoidable risk factors for the prevention of cancer are 

the following: diet (30-35%), tobacco (25-30%), infections (15-20%), obesity (10-20%), 

and alcohol (4-6%) (Anand, P., et al.; 2008) (Danaei, G.; 2005)(Brawley, O. W.; 2011). 

3.8 A New Perspective about Cancer 

All the methods previously mentioned in this manuscript are used to treat cancer, 

most of the time when the disease has already developed in the body or when it is at an 

advanced state. Early detection of cancer helps, but inevitably, the majority of cancer 

patients only receive their diagnosis when the cancer has already advanced to a point 

where little hope for cure exists. Cancer prevention, on the other hand, deals with trying 

to diminish the incidence and mortality due to cancer by altering the modifiable risk 

factors that increase the cancer risk. This is done mainly by analysing the findings from 

different sources (e.g. epidemiology studies, basic research and clinical trials) that will 

then be used as a way to help to improve (i.e reduce) the cancer burden. Cancer 

chemoprevention was originally defined by Michael B. Sporn, in 1976, as the chronic 

usage of chemical agents (natural or synthetic) to try and reverse, suppress, delay or even 

prevent the emergence or further progression of an existing cancer. Dietary components 

have a key importance in the chemoprevention of cancer, specially the consumption of 

fruits and vegetables (Steinmetz, K. A.; Potter, J. D.; 1996)(Liu, R. H.; 2004)(Wargovich, 

M. J. et al.; 2001)(Steward, W. P.; Brown, K.; 2013)(Mettlin, C; 1997)(Tsao, A. S. et al.; 

2004)(Umar, A. Et al.; 2012) (Li, W. W. et al.; 2012)(Wolf, C. R.; 2001)(see Bibliography 

website section for references). 
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3.9 Relation between Diet and Disease 

 Many epidemiologic studies have shown that a diet with a high abundance and 

variety of vegetables and fruits is associated with a reduction in the incidence, risk and 

development of several types of cancer and cardiovascular diseases. In some cases, a high 

consumption of fruits and vegetables has led to a decrease in the risk of developing cancer 

up to 50% (Manchali, S.; Murthy, K. N. C.; Patil, B. S.; 2012)(Talalay, P.; Fahey, J. W.; 

2001)( Moiseeva, E. P.; Manson, M. M.; 2009)(Castro, I. M. et al.; 2008) (Rao, C. V.; 

2013)(Totusek, J. et al.; 2011)(Cartea,M. E. et al.; 2011)(Liu, R. H.; 2004). 

3.10 Cruciferous Plants – A Special Case 

 Among all the variety of vegetables that are eaten in a normal and healthy diet, 

cruciferous (also called Brassica) vegetables seem to be especially effective as cancer 

preventive agents against several types of malignancies, even to the extent of their 

consumption being reversely associated with cancer incidence at multiple different sites 

(e.g. lung, breast, colorectal and prostate). Colorectal cancer is a prime example of how 

the intake of this kind of vegetables in the diet can have a positive effect in disease 

prevention (Talalay, P.; Fahey, J. W.; 2001) (Wallig, M. A. et al.; 2005)(Rao, C. V.; 

2013)(Shapiro, T. A. et al., 2001)(Seow, A. et al.; 2002)(Totusek, J. et al.; 2011)(James, 

D. et al.; 2012)(Gasper, A. V. et al.; 2007)(Epplein,M. et al.; 2009)(Kurilich, A. C.; 

1999)(Scott, O. et al.; 2012)(Higdon, J. V., et al., 2007)(Wu, X. et al.; 2009)(Ishida, M. 

et al.; 2014)(Cartea,M. E. et al.; 2011). 

3.11 Importance of The Brassicaceae Family in General and B. oleracea in 

Particular 

The Brassicaceae family includes several species of crops (e.g. leaf vegetables, 

root vegetables, oilseed and condiments) that are cultivated in many parts of the globe 

because of their high nutritional value and agricultural economic importance. The 

majority of the species of cruciferous vegetables that are consumed all over the world 

belong to the Brassica genus (e.g  B. oleracea, B. rapa, B. napus, B. carinata, B. nigra 

and B. juncea). B. oleracea is the species of cruciferous vegetables that is most commonly 

seen in a healthy diet. This species is very diverse, morphologically, and it comprises 

multiple different varieties (sub species) of cultivars, including kale, collard greens, 

cabbage, Brussels sprouts, broccoli, kohlrabi, and cauliflower.  (Scott, O. et al.; 

2012)(Park, M. et al.; 2013)(Rosa, E. A. S.; Rodrigues, A. S.; 2001)(Sotelo, T. et al.; 



 

24 

 

 

2014)(Cartea,M. E. et al.; 2011)(Yu, J. et al.; 2013)(Parkin, I. A. P.; 2014)(Wu, X. et al.; 

2009)(Sotelo, T. et al.; 2014)(Ishida, M. et al.; 2014). 

 

Fig.: 3.10 – Different aspects of vegetables belonging to the Brassica genus (e.g. 

B. oleracea) (Aggarwal, B. B.; Ichikawa, H.; 2005). 

 

3.12 How Can Cruciferous Vegetables Prevent Cancer? 

Vegetable and fruit consumption is responsible for the intake of many different 

types of biologically active compounds [e.g. vitamins (C and E, for example), minerals, 

fibre, antioxidants, phenols, carotenoids, polyphenols, folate, isoflavonoids, indoles and 

others] that are thought to be responsible for the cancer-preventive properties of 

vegetables (Scott, O. et al.; 2012)(Higdon, J. V., et al., 2007)(Totusek, J. et al.; 

2011)(Gratacós-Cubarsí, M. et al.; 2010)(Park, M. et al.; 2013)(Kapusta-Duch, J.; 

Leszczynska, T.; 2013)(Liu, R. H.; 2004)(Kim, M. K.; Park, J. H. Y.; 2009). 

Phytochemicals (“phyto” means plant in the Greek language), or secondary 

metabolites, considered to be non-essential nutrients, are compounds that are present in 

plant-derived foods. These compounds are able to perform a myriad of different 

functions: they are able to modulate the activity of biotransformation enzymes, scavenge 

free radicals, alleviate inflammation, stimulate immune functions, inhibit malignant 

transformation, and regulate the growth of cancer cells. It is by doing all of this functions 
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that they provide a way by which the consumption of cruciferous vegetables may 

contribute to the reduction of the risk of developing cancer (Hennig, K. et al.; 

2014)(Lampe, J. W.; Peterson, S.; 2002)(Kapusta-Duch, J.; Leszczynska, T.; 

2013)(Cartea, M. E. et al.; 2011)(Talalay, P.; Fahey, J. W.; 2001)(Liu, R. H.; 2004). 

Beyond the nutritional value of cruciferous vegetables, these also have several 

secondary metabolites with health improvement benefits as it was previously mentioned 

(e.g. flavonoids, anthrocyanins, coumarins, carotenoids, antioxidant enzymes, terpenes 

and others). Of particular interest is the fact that these vegetables have high levels of 

glucosinolates, which are thought to be responsible for the chemopreventive effect 

provided by the consumption of this kind of vegetables. This type of phytochemical 

compound exists solely in 15 plant families belonging to the Capparales order, of which 

members of the Brassicaceae family possess the highest concentration (Wu, X. et al.; 

2009) (Castro, I. M. et al.; 2008)(Rao, C. V.; 2013)(Molina-Vargas, L. F.; 2013)(Epplein 

M. et al.; 2009)(Ishida, M. et al.; 2014)(Park, M. et al.; 2013)(Manchali,S. et al.; 

2012)(Seow; A. et al.; 2002). 

3.13 What are Secondary Metabolites? 

Secondary metabolites are usually small molecules (molecular weight less than 

3,000 Da) that are synthesized by a natural source, like plants, animals and 

microorganisms. These compounds were named like this because of two reasons: firstly, 

they are not synthesized by the general metabolic pathways; and secondly, they have no 

direct role in the growth, development and reproduction of the organism. Instead, these 

secondary metabolites are used as a means of defence against the habitat´s conditions in 

which the organism lives (Bhatnagar, I.; Kim, S.; 2010) (Martins, A; Vieira, H.; Gaspar, 

H; Santos, S; 2014). 

3.14 What are Glucosinolates? 

As mentioned before, glucosinolates (GSLs, GSs or GLs), also known as mustard 

oils glucosides, constitute a class of secondary metabolites that is very abundant in 

cruciferous vegetables (corresponding to approximately 1% of their dry weight), namely 

in the Brassicaceae family (Ratzka, A. et al.; 2002)(Kliebenstein D. J. et al.; 2005)(Park, 

M. et al.; 2013)(Ishida M. et al.;2014)(Sotelo, T. et al.; 2014)(James, D. et al.; 

2012)(Agrawal, A. A.; Kurashige, N. S.; 2003)(Talalay, P.; Fahey, J. W.; 2001)(Marca, 

M. L. et al.; 2012)(Zhang, J. et al.; 2015). 
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3.15 Chemical Structure of GSLs 

GSLs are β-thioglucoside N-hydroxysulfates with the molecular formula R-C(=N-

O-SO3
-)-S-glucose. These compounds (anionic thioglucosides) are sulphur- and nitrogen-

based molecules derived from glucose and an α-amino acid precursor. GSLs are made up 

of three moieties: a β-D-thioglucose, a sulfonated oxime and a variable aglycone (R) side 

chain moietie (Ishida M. et al.;2014)(Wu, X. et al.; 2009)(Kim, Y. B. et al.; 

2013)(Gratacós-Cubarsí, M. et al.; 2010)(Ratzka, A. et al.; 2002)(James, D. et al.; 

2012)(Redovnikovic, I. R. et al.; 2008)(Lambrix, V. et al.; 2001). 

 

Fig.: 3.11 – The intact and general structure of a GSL (Nugon-Baudon, L.; Rabot, 

S.; 1994). 

 

3.16 Classification of GSLs 

Up to date, approximately 200 different types of GSLs have been isolate from 

plants and identified so far. These natural products (NPs) are classified in accordance 

with the structure of the specific amino acid precursor that originated the GSL. As such, 

GSLs can be classified into three different groups: aliphatic, indolic, and aromatic. The 

aliphatic GSLs have a side chain that derived from alanine, leucine, isoleucine, valine and 

methionine (Met); while the aromatic GSLs have a side chain that derived from 

phenylalanine and tyrosine. On the other hand, all indolic GSLs R group derived from 

tryptophan. In Brassica crops, the majority of GSLs described had a side chain that was 

synthesized from Met (Ishida M. et al.;2014)(Kim, Y. B. et al.; 2013)(Sotelo, T. et al.; 

2014)( Rosa, E. A. S.; Rodrigues, A. S.; 2001)(Kliebenstein, D. J. et al.; 2005). 

Β-D-thioglucose 

Variable Side Chain 

Sulfonated Oxime 
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Fig.: 3.12 – The three groups of GSLs according to their derived amino acid side 

chain (Borgen, B. H.; 2002). 

 

3.17 How Abundant Are GSLs In Cruciferous Vegetables? 

The different types of GSLs present in plants and their respective concentrations are 

greatly influenced by several factors: genotype (i.e. different species and species variety), 

environmental (e.g. climate, soil fertility), developmental [i.e. different parts/tissues of 

the same plant and different developmental stages (i.e. sprouts can have 20-50 times more 

GSLs compared with mature market-stage plants) can constrain both the levels and types 

of GSLs present], and agronomic factors (i.e. cultivation conditions – fertilization, harvest 

time, plant position, soil type –,  post-harvest storage, etc.)(Shapiro, T. A. et al.; 

2001)(Sotelo, T. et al.; 2014)(Ishida, M. et al.; 2014)(Gratacós-Cubarsí, M. et al.; 

2010)(Nugon-Baudon, L.; Rabot, S.; 1994)(Sarıkamış, G. et al.; 2009). 

3.18 Are Raw and Cooked Vegetables Different? 

Brassica vegetables are normally consumed after being cooked. This process 

invariably alters the GSL content of these vegetables, leading to a lower intake of GSLs 

from the diet. The act of cooking the vegetables itself can lead to a drastic decrease of 

GSLs content between 30-60%. During the cooking process GSLs, which are water 

soluble molecules, are able to leach into the cooking water. Another fact that may 

contribute to the decrease in GSLs content in cooked vegetables is thermal degradation, 

without intervention of degradation enzymes. Both processes, leaching and thermal 

degradation will obviously depend upon several factors: the GSL type (i.e. chemical 

structure), the specific vegetable that is used (i.e. concentration and variety of GSLs), the 

size of the vegetable pieces, the temperature and cooking time, as well as the pH of the 
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cooking liquid. These two processes are possible explanation for the observed GSL 

content drops in cruciferous vegetables after they have been cooked (McNaughton, S. A.; 

Marks, G. C.; 2003)(Hennig, K. et al.; 2014)(Nugon-Baudon, L.; Rabot, S.; 1994)(Park, 

M. et al.;2013)(Rungapamestry, V. et al.; 2007). 

 Interestingly, different food processing techniques have different impacts on the 

GSL content of Brassica vegetables. Chopping, cooking, steaming, and microwaving, 

which are considered as being domestic processing techniques performed at home have a 

much higher impact than freezing, fermenting and hot packing, which are techniques 

considered to be of industrial level. The reasons for this remarkable difference remain 

unclear (Park, M. et al.; 2013). 

Another fact that may help explain the lower quantity of GSLs in cooked 

cruciferous vegetables, in comparison with uncooked ones, is the catalytic activity of the 

myrosinase enzyme (Nugon-Baudon, L.; Rabot, S.; 1994)(Yoshigae, Y. et al.; 

2013)(Hecht, S. S.; 1999)(Rungapamestry, V. et al.; 2007). 

3.19 Myrosinase  

The enzyme commonly called myrosinase (MYR), also called β-thioglucoside 

glucohydrolase (EC 3.2.3. l), belongs to a class of enzymes termed β-thioglucosidases. 

MYR is a dimeric glycoprotein with a molecular weight between 124-150 kDa. This 

highly glycosylated enzyme (i.e. the carbohydrates correspond to 20% of its molecular 

weight) is responsible for hydrolysing GSLs in order to produce an array of different 

compounds. Several MYR isoenzymes, which are enzymes with differences in their 

amino acid sequence but that are able to catalyse the same enzymatic reaction, have been 

discovered (Ratzka, A. et al.; 2002)(Kliebenstein, D. J. et al; 2005) (Nugon-Baudon, L.; 

Rabot, S.; 1994)(Benn, M.; 1977)(Ishida M. et al.; 2014) (Rask, L. et al.; 2000)(Botti, M. 

G. et al.; 1995)(Redovnikovic, I. R. et al.; 2008)(Bones, A. M.; Rossiter, J. T.; 

1996)(Eriksson, S. et al.; 2002)(Halkier, B. A.; Gershenzon, J.; 2006). 

3.20 MYR and GSLs Compartmentalisation 

MYR coexists with GSLs in the same plant, although they are both physically 

separated, with GSLs being located inside vacuoles in the cytoplasm of cells from various 

plant tissues, while MYR is located and stored within special cellular structures called 

myrosin granules that are exclusively present in a specific type of plant cell, called 
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idioblast or myrosin cell, or even toxic mine, that is scattered throughout the plant´s 

tissues. GSLs are not found in idioblasts, and likewise MYR is not found in non-idioblast 

cells. MYR expression can also be found on the cell wall external surface (Wink, M.; 

2010)(Benn, M.; 1977)(Bridges, M. et al.; 2002)(Zhang, Y.; 2010) (Nugon-Baudon, L.; 

Rabot, S.; 1994) )(Wu, X. et al.; 2009)(Andréasson, E. et al.; 2001)(Rask, L. et al.; 

2000)(Ahuja, I. et al.; 2015)(Hara, M. et al.; 2000)(Redovnikovic, I. R. et al.; 

2008)(Marca, M. L. et al; 2012). 

3.21 The Myrosinase-Glucosinolate System 

The myrosinase-glucosinolate (MYR-GSL) system, also known as the mustard oil 

bomb consists on a defence mechanism employed by cruciferous plants to defend 

themselves against generalist insects, herbivores and phytopathogens (i.e. plant disease 

agents – fungus, bacteria, and nematodes), as well as functioning as regulators of the 

interactions of the plant itself with specialist insects. The two main players in this system 

are GSLs and MYR. This system works by putting in contact both GSLs and MYR but 

only in the case where there is tissue disruption (Molina-Vargas, L.F.; 2013)(Ratzka, A. 

et al.; 2002)(Textor, S.; Gershenzon, J.; 2009)(Ishida M. et al.; 2014)(Bones, A. M.; 

Rossiter, J. T.; 1996)(Textor, S.; Gershenzon, J.; 2009)(Grubb, C. D.; Abel, S.; 2006). 

3.22 How Does It All Work? 

It is upon tissue damage, that can be caused by either chewing, preparation for 

cooking (e.g. slicing), or simply plant injury caused by herbivore insects, that both 

components – GSLs and MYR – are able to meet and initiate the enzymatic activity that 

leads to the production of volatile GSLs hydrolysis products (Agrawal, A. A.; Kurashige, 

N. S.; 2003) (Hennig, K. et al.; 2014)(Nugon-Baudon, L.; Rabot, S.; 1994)(Andréasson, 

E. et al.; 2001)(Wu, X. et al.; 2009)(Glendening, T. M.; Poulton, J. E.; 1988). 

3.23 GSL-MYR Reaction Process 

When MYR is put into contact with GSLs, the first will hydrolyse the second on 

the thioglucoside bond. This process leads to the release of the β-D-glucose moiety from 

the substrate, which subsequently leads to the formation of an unstable aglycone 

(sometimes also referred to as an aglucone) intermediate, with the molecular formula R-

C(-SH)=N-O-SO3
- , that is often referred to as thiohydroximate-O-sulphonate. This 

intermediate then undergoes a spontaneous rearrangement, which leads to the release of 
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a sulphate anion (SO4
2-) and the production of a single compound from a plethora of GSL 

degradation products – thiocyanates, isothiocyanates, and nitriles, among others (Ishida 

M. et al.; 2014)(Wu, X. et al.; 2009)(Nugon-Baudon, L.; Rabot, S.; 1994)(Bones, A. M.; 

Rossiter, J. T.; 1996)(Verhoeven, D. T. H. et al.; 1997)(Eriksson, S. et al.; 2002)(Ratzka, 

A. et al.; 2002)(Castro, I.M. et al.; 2008)(Botti, M. G. et al.; 1995)(Andréasson, E. et al.; 

2001). 

 

Fig.: 3.13 – The GSL-MYR reaction process, which leads to the formation of 

several GSLs degradation products. ESP – epithospecifier protein; ESM – 

epithiospecifier modifier; TFP – thiocyanate forming proteins; R-variable side chain 

(Zhang, Y; Talalay, P.; 1994)(Wu, X. et al.; 2009)(Tong, Z.; 2007)(Borgen, B. H.; 

2002)(Redovnikovic, I. R. et al.; 2008)(Rask, L. et al.; 2000)(Nugon-Baudon, L.; Rabot, 

S.; 1994)(Lambrix, V. et al.; 2001)(Hayes, J. D. et al.; 2008)(Alnsour, M.; 2013). 

 

3.24 Isothiocyanates – What are They? 

As metioned before, isothiocyanates (ITCs), also called mustard oils, are one of 

several end-products of the reactions catalyzed by MYR. When the GSL has an aliphatic 

side chain and the reaction medium has a neutral pH or a high temperature and there is 

no ESP, the formation of ITCs is favoured over the production of other hydrolysis end-

products. ITCs are the predominant product formed by the MYR-GSL system, closely 

followed by nitriles as the second main end products. It is the hydrolysis products, mainly 

ITCS, rather than the GSLs themselves that are the biological active compounds 

responsible for the chemoprotective effect conferred by the consumption of Brassica 
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vegetables. Additionally, these compounds are the ones responsible for the pungent odour 

and spicy or sharp, some even say acrid flavour that is so characteristic of the B. oleracea 

species as well as of some other cruciferous vegetables. The term mustard oil originated 

from the flavour of mustard seeds as well as from the oil extracted from them, which are 

rich sources of a type of ITC named allyl ITC, or more commonly known as just oil of 

mustard or mustard oil (Nugon-Baudon, L.; Rabot, S.; 1994)(Wu, X. et al.; 

2009)(Lambrix, V. et al.; 2001)(Wink, M.; 2010)(Kliebenstein, D. J. et al.; 2005)(Seow, 

A. et al.; 2002)(Park, M. et al.; 2013)(Hennig, K. et al.; 2014)(Agrawal, A. A.; Kurashige, 

N. S.; 2003)(Lampe, J. W.; Peterson, S.; 2002)(Ishida, M. et al.; 2014)(Zhang, Y. et al.; 

2006)(Molina-Vargas, L. F.; 2013)(Talalay, P.; Fahey, J. W.; 2001)(Kraker, J. de; 

Gershenzon, J.; 2011)(Ishida, M. et al.; 2014)(Zhang, Y.; Talalay, P.; 1994)(Remaud, G. 

S. et al.; 1997)(Kimball, E. S. et al.; 2006)(Jordt, S. et al.; 2004). 

3.25 ITCs´ Chemical Structure 

ITCs constitute a family of small compounds with the molecular formula R-

N=C=S. This kind of molecules are characterized by having an –N=C=S group and the 

fact that the side chain (R) can only be an alkyl or an aryl group. (Wu, X. et al.; 

2009)(Zhang, Y, et al.; 2006)(Tang, L.; Zhang, Y.; 2004)(Talalay, P.; Fahey, J. W.; 

2001)(Zhang, Y.; Talalay, P.; 1994). 

3.26 Cooked Vegetables, Uncooked Ones and MYR – What Should I Eat? 

ITCs are formed by MYR, as it was previously explained in this manuscript. 

However, the enzyme MYR is inactivated by high temperatures (i.e. heat), which happens 

when the vegetables are cooked; consequently, the quantity of ITCs that will be available 

from cooked vegetables after they have been ingested will be much smaller compared 

with uncooked ones. Nevertheless, GSLs from the diet can still be converted into ITCs. 

This happens because the bacteria from the microflora present in the gastrointestinal 

system have MYR-like activity (bacterial β-thioglucosidase), which results in the 

formation of ITCs, albeit the rate at which it happens is 3-10 times lower than that of plant 

MYR. This process is responsible for the conversion of about 40% of the GSLs that 

escape plant MYR. Another noteworthy way by which these GSLs can be converted into 

ITCs is by a thioglucosidase activity present in animal tissues (Hennig, K. et al.; 

2014)(Talalay, P.; Fahey, J. W.; 2001)(Hecht, S. S.; 1999)(Getahun, S. M.; Chung, F.; 

1999)(Zhang, Y.; 2010)(Wu, X. et al.; 2009)(Navarro, S. L. et al.; 2011). 
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3.27 How Are ITCs Chemopreventive Against Cancer? 

ITCs are capable of being chemopreventive against cancer because they are able 

to regulate several cellular mechanisms associated with cancer, including: modulation of 

Phase I and Phase II detoxification enzymes, induction of apoptosis, inhibition of cell 

proliferation, inhibition of angiogenesis, modulation of epigenetic mechanisms, 

activation of cell cycle arrest, among many others (Tang, L.; Zhang, Y.; 2005)(Yang, G. 

et al.; 2010)(Tang, L.; Zhang, Y.; 2004)(Zhang, Y. et al.; 2006)(Yoshigae, Y. et al.; 

2013)(Sarıkamış, G. et al.; 2009)(Rao, C. V.; 2013)(Watson, R. R.; Preedy, V. R.; 

2010)(Navarro, S. L. et al.; 2011). 

The main biological activity of ITCs is the regulation of carcinogen metabolism 

by the biotransformation enzymes. This task is accomplished firstly by the induction of 

detoxification enzymes (Phase II), and secondly by the repression of xenobiotic 

(carcinogen) activation enzymes (Phase I). This is the primary process by which dietary 

ITCs are able to be chemoprotective against cancer (Scott, O. et al.; 2012)(Epplein, M. et 

al.; 2009)(Higdon, J. V.; et al.; 2007)(Wallig, M. A. et al.; 2005)(Yang, G. et al.; 

2010)(Seow, A. et al.; 2002)(Castro, I. M. et al.; 2008)(Park, M. et al.; 2013)(Gasper, A. 

V. et al.; 2007)(Talalay, P.; Fahey, J. W.; 2001)(Totusek, J. et al.; 2011)(Hecht, S. S.; 

1999)(Hecht, S. S.; 2004). 

3.28 Compounds and Their Biotransformation Enzymes 

The organism is always and inevitably exposed to a myriad of different 

compounds, both exogenous (e.g. drugs, carcinogens, pesticides, pollutants, secondary 

plant metabolites, toxins) and endogenous (e.g. steroids, prostaglandins, bile acids), 

which are capable of exerting beneficial or harmful effects on the organism depending on 

the compound. The exogenous or foreign molecules to the organism are often designated 

by the term xenobiotics. All of these compounds (exo- and endogenous alike) are 

metabolized by different ubiquitous enzymes known collectively as biotransformation 

enzymes, drug metabolizing enzymes (DMEs) or xenobiotic metabolizing enzymes 

(XMEs). These enzymes are mostly expressed in the endoplasmic reticulum and in the 

cytoplasm of various human tissues (e.g. skin, lungs, nasal mucosa, eyes, kidneys, 

gastrointestinal tract). Most of the xenobiotic metabolism occurs primarilly in the liver 

because of several important factors: firstly, the liver consists in the largest internal organ 

in the human body; secondly, it is strategically well located inside the body, close to the 
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gastrointestinal tract as well as other nearby important organs; and thirdly and finally, it 

is considered to be the organ that has the highest concentration of XMEs. Though the 

drug metabolism performed by DMEs is important, it probably only accounts for less than 

1% of all the functions these enzymes carry out in the human body (Jancova, P. et al.; 

2010)(Gaikovitch, E. A.; 2003)(Penner, N. et al.; 2012)(Brandon, E. F. A. et al.; 

2003)(Nebert, D.W.; 1997)(Nebert, D. W.; Dalton, T. P.; 2006)(Yang, C. S. et al.; 

1992)(Irigaray, P.; Belpomme, D.; 2009)(Xu, C. et al.; 2005)(Rose, R. L.; Hodgson, E.; 

2004)(Sturgill, M. G.; Lambert, G. H.; 1997)(Ennulat, D. et al.; 2010)(Brandon, E. F. A. 

et al.; 2003). 

3.29 The Problem with Eliminating a Previously Absorbed Compound 

If an exogenous compound is absorbed by the organism because of its lipophilicity 

(i.e. can bind to lipid membranes and be transported around the body in the blood by 

lipoproteins because it is a lipid-soluble compound), it will end up becoming a problem 

when it time comes to be excreted from the body. The biotransformation process is 

responsible for turning an otherwise lipophilic compound into a more hydrophilic (i.e. 

polar or water-soluble) compound, in order to make it more easily excreted in the urine 

or bile. The excretion rote is dependent on several crucial factors of the compound to be 

excreted (e.g. chemical structure, molecular size, molecular weight, and polarity) and in 

some characteristics of the liver itself (e.g. active transport sites). The biotransformation 

process is usually separated into two phases: Phase I and Phase II (Higdon, J. V. et al.; 

2007)(Rose, R. L.; Hodgson, E.; 2004)(Brandon, E. F. A. et al.; 2003)(Penner, N. et al.; 

2012)(Gaikovitch, E. A.; 2003)(Sturgill, M. G; Lambert, G. H.; 1997)(Rollins, D. E.; 

Klaassen, C. D.; 1979)(Klaassen, C. D.; 1975)(Mutlib, A. E. et al.; 2000). 
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Fig.: 3.14 – Importance of the biotransformation process for the removal of 

exogenous substances from the body (Guttmacher, A. E.; 2003)(Percival, M.; 1997). 

 

3.30 Biotransformation Enzymatic Reactions and the Corresponding 

Enzymes 

Xenobiotics can be metabolized by Phase I (PI) reactions, also called 

functionalization reactions (e.g. oxidation, reduction, and hydrolysis) and by Phase II 

(PII) reactions (conjugation). Phase I reactions are responsible for exposing or adding a 

functional group (e.g. -OH, -NH2, -SH or COOH) to the parent compound resulting in a 

mild increase in its polarity. On the other hand, Phase II reactions are responsible for 

conjugating endogenous cofactors/ligants (i.e. water-soluble derivatives) with functional 

groups of the substrate in order to increase its hydrophilicity substantially, when 

compared with Phase I reactions. A compound can be metabolized by both 

biotransformation phases, one after the other (i.e. Phase I followed by Phase II), or by 

solely one of them, without the need of a phase precedence over the other. Though in 

general terms, it is more common for Phase II reactions to happen after Phase I. Phase II 

reactions occur much faster than Phase I reactions and as such, Phase I reactions are the 

limiting step in the detoxification process (i.e. excretion) (Nebert, D. W.; 1997)(Jancova, 

P. et al.; 2010)(Gerhauser, C. et al.; 1997)(Brandon, E. F. A. et al.; 2003)(Penner, N. et 

al.; 2012)(Gaikovitch, E. A.; 2003)(Wilkening, S. et al.; 2003)(Higdon, J. V. et al.; 
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2007)(Talalay, P; Fahey, J. W.; 2001)(Wilkening, S. et al.; 2003)(James, D. et al.; 

2012)(Percival, M.; 1997)(Wolf, C. R.; 2001). 

3.31 What is the Importance of Biotransformation? 

Rough estimates pointed out to the fact that nearly ¼ of all carcinogenic 

compounds are directly toxic in their natural; unmetabolize state, while the ¾ remaining 

of them are metabolically activated from pro-carcinogens to carcinogenic substances. 

Phase I enzymes are involved in both detoxification and carcinogen activation (i.e. 

bioactivation), albeit the last is not a common event. Bioactivation is achieved by 

increasing the polarity of a parent compound (in this case, a pro-carcinogen), which leads 

to the formation of a considerably more reactive compound [reactive oxygenated 

intermediate (ROI or ROM), which is the activated carcinogen] in comparison. Phase II 

enzymes are generally involved in xenobiotic or carcinogen detoxification through 

conjugation reactions in order to complete the detoxification cycle (Gaikovitch, E. A.; 

2003)(Nebert, D. W.; 1997)(Brandon, E. F. A. et al.; 2003)(Gerhauser, C. et al.; 

1997)(Hecht, S. S.; 2004)(Jancova, P. et al.; 2010)(Irigaray, P.; Belpomme, D.; 

2010)(Higdon, J. V. et al.; 2007)(Nakajima, M. et al.; 2001)(Wilkening, S. et al.; 

2003)(Nebert, D. W.; 1997)(Nebert, D. W.; Dalton, T. P.; 2006)(Rodriguez-Antona, C; 

Ingelman-Sundberg, M.; 2006)(Yoshigae, Y. et al.; 2013). 

3.32 Fundamentals of Cytochromes P450 

Cytochromes P450 (cytochromes P450, CYPs, P450s or CYP450s) are responsible 

for 70-80% of all Phase I xenobiotic metabolism, which makes them the main DMEs 

responsible for catalysing the reactions that can lead to carcinogen activation. CYPs exist 

in almost all the tissues in the body (e.g. small intestine, lungs, kidneys, placenta) but they 

are primarily expressed in the smooth endoplasmic reticulum of hepatocytes (i.e. liver 

cells), followed by mitochondrial expression. CYPs are a superfamily of heme-thiolate 

enzymes responsible for catalysing oxidation reactions mostly, and sometimes reduction 

and hydrolysis reactions. In addition to xenobiotic metabolism, CYPs are also involved 

in several other metabolic pathways (e.g. endobiotics metabolism), including: steroid, bile 

acids, corticosteroids and cholesterol biosynthesis, retinoic acids hydroxilation, synthesis 

and degradation of biogenic amines, metabolism of eicosanoids, vitamin D3 synthesis and 

metabolism, fatty acid metabolism (prostacyclins, thromboxane A2), and maintenance of 

calcium homeostasis (Guengerich, F. P.; 2008)(Gaikovitch, E. A.; 2003)(Irigaray, P.; 
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Belpomme, D.; 2010)(Penner, N. et al.; 2012)(Jancova, P. et al.; 2010)(Rodriguez-

Antona, C.; Ingelman-Sundberg, M.; 2006)(McKinnon, R. A. et al.; 2008)(Lynch, T.; 

Price, A.; 2007)(Sridhar, J. et al.; 2012)(Badyal, D. K.; Dadhich, A. P.; 2001)(Monga, S. 

P. S.; Cagle, P. T.; 2010)(Nassar, A. F. et al.; 2009)(Mi, L. et al.; 2011)(Talalay, P.; Fahey, 

J. W.; 2001)(Nebert, D. W.; Dalton, T. P.; 2006). 

3.33 Human CYP Families Responsible For Carcinogenesis 

CYPs are versatile monooxigenases (i.e. their principal action is to perform 

hydroxylations), though they can also act as dioxygenases and hydrolases. These Phase I 

enzymes are responsible for many reactions that take place in the body. They have many 

substrates that can be catalysed upon, though some CYPs also possess a certain degree of 

substrate specificity.  In the human genome, 57 active CYP genes and 58 pseudogenes are 

known to exist, of which five of them (i.e. CYP1A2, CYP2C9, CYP2C19, CYP2D6, 

CYP3A4, and CYP3A5) are held responsible for nearly 90-95% of all the drugs that are 

metabolized in the liver. CYP families CYP1-3/4 are considered the ones involved in drug 

metabolism, with CYP1-2 being associated with exogenous carcinogen activation, while 

the remaining CYP families are associated with catalysing enzymatic reactions upon 

endogenous substrates, which may lead to endogenous tumour promotion. Indeed, CYPs 

seem to be a major player in terms of xenobiotic metabolism and carcinogen activation, 

with genes that can count up to 1% of the human coding genome  (Guengerich, F. P.; 

2008)(Irigaray, P.; Belpomme, D.; 2010)(Penner, N. et al.; 2012)(Jancova, P. et al.; 

2010)(Kelly, S. L. et al.; 2006)(Rodriguez-Antona, C.; Ingelman-Sundberg, M.; 

2006)(Lynch, T.; Price, A.; 2007)(Sridhar, J. et al.; 2012)(Monga, S. P. S.; Cagle, P. T.; 

2010)(Nassar, A. F. et al.; 2009)(Jushchyshyn, M. I. et al.; 2003)(Ingelman-Sundberg, 

M.; Rodriguez-Antona, C.; 2005). 

3.34 How Do CYPs Work? 

Since CYPs are monooxigenases, they use oxygen in their reaction mechanism to 

oxidise their substrates. The oxidative cycle (or redox cycling) performed by CYPs is a 

rather complex process with many players involved such as: CYP enzyme, nicotinamide 

adenine dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD)-containing 

P450 reductase, among others (Gaikovitch, E. A.; 2003)(Guengerich, F. P.; 2008)(Penner, 

N. et al.; 2012)(Yang, C. S. et al.; 1992)(Monga, S. P. S.; Cagle, P. T.; 2010)(Nassar, A. 

F. et al.; 2009). 
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An inactive CYP has its iron atom (Fe) of the heme group (i.e CYP active site) in 

the ferric state (Fe3+). When the CYP binds a ligand (e.g. O2 or CO), the Fe atom is 

reduced to the ferrous state (Fe2+). After ligand binding occurs, the CYP enzyme can now 

activate molecular oxygen (O2), with the electrons provided by NADPH (electron donor) 

via a FAD-containing P450 reductase (electron bridge – also simply known as NDAPH-

P450 reductase or by its other name NADPH oxidoreductase). One atom of the molecular 

oxygen is incorporated in the CYP´s substrate (RH), converting it in the oxidized form 

(ROH) while the other oxygen is converted to H2O using reducing equivalents donated 

by NADPH. Afterwards, the CYP enzyme releases the now oxidised substrate (ROH) and 

enters the resting (inactive) state where the heme Fe atom in its oxidised state (Fe3+). 

NADPH-P450 reductase is required, because CYP enzymes are unable to directly bind 

NADPH; as such NADPH oxidoreductases help in the CYP activity by transferring the 

electrons necessary for the oxidative reaction from NADPH to the CYP. Moreover, there 

is another important enzyme that has a crucial role to perform in the CYP oxidative cycle, 

Cytochrome b5. This flavoprotein is also involved in the transference of electrons, but its 

main role is to increase the reduction rate and the substrate binding affinity of the CYP 

enzyme. With respect to mitochondrial CYP enzymes, ferrodoxin and ferrodoxin 

reductase are two other enzymes that are important in the electron transference process 

that takes place in the mytochrondria (Gaikovitch, E. A.; 2003)(Guengerich, F. P.; 

2008)(Penner, N. et al.; 2012)(Monga, S. P. S.; Cagle, P. T.; 2010)(Nassar, A. F. et al.; 

2009). 

 

Fig.: 3.15 – Catalytic mechanism (i.e. oxidative cycle) of the heme group of CYP 

enzymes. RH – substrate; ROH – oxidised substrate; Fe3+ – iron in the ferric state; Fe2+ – 

iron in the ferrous state; red – reduced; ox – oxidised (Guengerich, F. P.; 2008). 
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 3.35 ITCs and CYPs 

There are compounds present in the diet capable of binding to the active site of 

CYPs and serve as substrates or inhibitors of these enzymes. ITCs, which are dietary 

molecules, are capable of modulating CYP activity through several distinct mechanisms 

depending on the CYP isoform and the specific ITC in question. In general ITCs inhibit 

CYPs, though there has been some ITCs reported to be capable of inducing some of these 

enzymes. A plausible explanation for this seems to be the fact that some CYP genes have 

the xenobiotic response element (XRE) in their gene regulatory regions, which works in 

combination with the aryl-hydrocarbon receptor (AhR), which in turn is activated by 

binding ITCs. Additionally, some ITCs are what is called bifunctional inducers (e.g. they 

are capable of inducing both Phase I and II enzymes). Nevertheless, the consensus is that 

ITCs are primarily CYP inhibitors. ITC-mediated inhibition of CYPs works in the 

catalytic activity unit of these enzymes in a multitude of different ways with some of them 

being reversible and others irreversible, namely: direct inhibition of the CYP catalytic 

activity by binding of ITC to crucial residues (e.g. Cys) in the enzyme´s active site that 

ends up interfering with the binding of the substrate and O2, covalent protein modification 

(e.g. NADPH), competitive inhibition, non-competitive inhibition, uncompetitive 

inhibition or inhibition by a mechanism-based inactivator. Noteworthy is the fact that the 

–N=C=S group, characteristic of ITCs, seems to be essential for the inhibition process 

(Yang, C. S. et al.; 1992)(Zhang, Y.; Talalay, P.; 1994)(Hecht, S. S.; 1999)(Spitz, M. R. 

et al.; 2000)(Nakajima, M. et al.; 2001)(Jushchyshyn, M. I. et al.; 2003)(Wallig, M. A. et 

al.; 2005)(Gasper, A. V. et al.; 2007)(Peterson, S. et al.; 2009)(Wu, X. et al.; 2009)(Mi, 

L. et al.; 2011)(Navarro, S. L. et al.; 2011)(Zhang, Y.; 2012)(Yoshigae, Y. et al.; 

2013)(Hecht, S. S.; 2004)(Marca, M. L. et al.; 2012). 

3.36 A More Detailed Approach To Some ITCs-CYPs Inhibition Processes 

A diverse array of synthetic and natural ITCs is able to inhibit several different 

CYP enzymes through different mechanisms, which results in cancer chemoprevention. 

This fact is, however, dependent on the specific type of ITC used, the CYP isoform 

responsible for carcinogen activation, the animal species as well as the target tissue, and 

the specific carcinogen that was employed in the animal experimental treatment (Mori, 

Y. et al.; 2005)(Wu, X. et al.; 2009)(Marca, M. L. et al.; 2012)(Nakajima, M. et al.; 

2001)(Conaway, C. C. et al.; 1996)(Yoxall, V. et al.; 2005)(Zhang, Y.; 2012)(Molina-

Vargas, L. F.; 2013). 
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3.37 CYP inhibition by Benzyl-ITC 

Benzyl isothiocyanate, also known by the name benzyl-ITC (BITC) is a natural 

alkyl-aryl aromatic ITC that is especially abundant in garden cress plants in the form of 

the precursor GSL glucotropeolin. BITC is capable of inhibiting several rat CYP enzymes 

(CYP1A1, 1A2, 2B1, and 2E1) in in vivo rat liver microsomes as well as other human 

CYP proteins (2B6, and 2D6) and a rabbit CYP enzyme (2E1) by using a mechanism-

based inhibition process. CYP2B1 is inactivated by BITC in a time- and concentration-

dependent manner by binding and covalently modifying the CYP protein. Both human 

CYPs 2A6 and 2A13 enzymes are inhibited by this ITC (Marca, M. L. et al.; 2012)(Zhang, 

Y.; 2012)(Munday, R. et al.; 2008)(Nakajima, M. et al.; 2001)(Rao, C. V. et al.; 

1995)(Cheung, K. L.; Kong, A.; 2009)(Wu, X. et al.; 2009)(Yang, X. F.; Zeng, F. D.; 

2006)(Smith, T. J. et al.; 1990)(Stoner, G. D. et al.; 1998)(Molina-Vargas, L. F.; 

2013)(Goosen, T. C. et al.; 2001)(Zhang, Y. et al.; 2003)(Schlicht, K. E.; 2007)(Moreno, 

R. L. et al.; 1999)(Moreno, R. L. et al.; 2001)(Goosen, T. C. et al.; 2000)(Bendich, A.; 

Deckelbaum, R. J.; 2005). 

 

Fig.: 3.16 – Molecular structure of BITC (Tang, L.; Zhang, Y.; 2004) 

 

3.38 CYP inhibition by Phenethyl-ITC 

Phenethyl isothiocyanate, also termed phenethyl-ITC (PEITC) is also a natural 

alkyl-aryl aromatic ITC like the previously mentioned BITC. PEITC is commonly found 

in high quantity in watercress plants as the GSL gluconasturtin. PEITC is capable of 

inhibiting through multiple inhibition processes (i.e. competitive, non-competitive, 

mixed-type of competitive and non-competitive, and mechanism-based inhibition) a great 

multitude of human CYP isoenzymes (i.e. e.g. CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 

2E1, and 3A4) that were, at the time, expressed in in vivo microsomes from baculovirus-

infected cells. PEITC is also capable of inactivating CYP2B1 by protein modification in 

a time- and concentration dependent manner and direct inhibition of CYPs 1A1, 1A2, and 

2B1 in a dose-dependent way in rat liver microsomes. With regard to CYP1A2 inhibition, 
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PEITC is capable of binding to the CYP binding site and work as a competitive inhibitor; 

it is also capable of being metabolized by the CYP1A2 into a reactive intermediate 

metabolite that will then proceed to react with the enzyme, resulting in its inactivation by 

a mechanism called suicide inhibition. The rat CYPs 2E1 (inhibited by competitive 

inhibition in rat liver microsomes) and 2A3 as well as the human CYP2A13 enzyme are 

also inhibited by this ITC (Zhang, Y.; 2012)(Munday, R. et al.; 2008)(Nakajima, M. et 

al.; 2001)(Marca, M. L. et al.; 2012)(Conaway, C. C. et al.; 1996)(Rao, C. V. et al.; 

1995)(Cheung, K. L.; Kong, A.; 2009)(Wu, X. et al.; 2009)(Yang, X. F.; Zeng, F. D.; 

2006)(Smith, T. J. et al.; 1990)(Barcelo, S. et al.; 1996)(Smith, T. J. et al.; 1996)(Stoner, 

G. D. et al.; 1998)(Molina-Vargas, L. F.; 2013)(Conaway, C. C. et al; 1999)(Goosen, T. 

C. et al.; 2001)(Zhang, Y. et al.; 2003)(Schlicht, K. E.; 2007)(Morris, C. R. et al.; 

2004)(Thapliyal, R.; Maru, G. B.; 2001)(Moreno, R. L. et al.; 2001)(Ishizaki, H. et al.; 

1990)(Wildman, R. E. C. et al.; 2002)(Ioannides, C.; 2008). 

 

Fig.: 3.17 – Molecular structure of PEITC (Tang, L.; Zhang, Y.; 2004) 

 

3.39 CYP inhibition by 3-phenylpropyl-ITC And 6-phenyhexyl-ITC 

Both 3-phenylpropyl isothiocyanate, also known as 3-phenylpropyl-ITC or simply 

as phenylpropyl (PPITC), and 6-phenylhexyl isothiocyanate, also termed 6-phenyhexyl-

ITC or merely phenylhexyl (PHITC), are synthetic alkyl-aryl aromatic ITCs. These two 

compounds are known inhibitors of CYP2B1 (by competitive inhibition) and of human 

CYPs 2A6 and 2A13, with PPITC being capable of inhibiting them (i.e. the two last 

mentioned CYPs) by binding to the active sites of both of these enzymes. PPITC and 

PHITC are both longer alkyl chain homologues of the previously mentioned compound 

PEITC. The reason as to why they were initially synthesized to have longer alkyl chains 

might have to do with the fact that the length of the alkyl chain of the phenylalkyl moiety 

(Ph-[CH2]n-NCS, where n=0-6, 8, and 10) of ITCs constitutes an important factor in 

determining the inhibitory effect of the ITC (i.e. the longer the alkyl chain, the higher the 

inhibitory potency of the ITC). One such example is the fact that PHITC is nearly 50-100 
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times more powerful at inhibiting tumorigenesis than PEITC. This event might be 

explained if one considers the fact that the substrate access channel of the CYP enzyme 

active site may simply accommodate ITCs with variable alkyl lengths up to a certain point 

and that it may also have an optimal substrate binding preference for ITCs with a specific 

number of alkyl carbons. Another consequence of some ITCs having a longer alkyl chain 

moiety than others is the fact that it increases the ITC´s lipophilicity and additionally 

results in a mild chemical reactivity of the ITC towards GST (i.e. there is less ITC being 

eliminated, which translates into its cellular accumulation in the body), which might 

explain why PHITC is a better inhibitory agent than PEITC. Unfortunately, this effect has 

only been observed for ITCs with an alkyl chain length between C8-C10, the inhibitory 

effect declining for longer phenyl moieties. Furthermore, the length of the alkyl chain in 

ITCs is not essential for their inhibitory activity, but is rather responsible for its 

enhancement (Samaha, H. S. et al.; 1997)(Nishikawa, A. et al.; 1996)(Stoner, G. D. et al.; 

1998)(Smith, T. J. et al.; 1990)(Rao, C. V. et al.; 1995)(Marca, M. L. et al.; 

2012)(Conaway, C. C. et al.; 1996)(Wu, X. et al.; 2009)(Smith, T. J. et al.; 1990)(Stoner, 

G. D. et al.; 1998)(Conaway, C. C. et al.; 1999)(Nishikawa, A. et al.; 1996)(Schlicht, K. 

E.; 2007)(Meskin, M. S. et al.; 2002)(Weymarn, L. B. von et al.; 2007)(Goosen, T. C. et 

al.; 2000). 

 

Fig.: 3.18 – Molecular structure of PHITC (Tang, L.; Zhang, Y.; 2004)

 

Fig.: 3.19 – Molecular structure of PPITC (Tang, L.; Zhang, Y.; 2004) 
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4. Materials and Methods 

4.1 Introduction 

 A growing interest in in silico molecular modelling methods, and their widespread 

used has been seen in recent years, largely due to the increasing processing speed of 

digital computers and major devolopments in methodology.  

 In order to correctly model the interaction of a small ligand molecule with a 

macromolecule, certain aspects must be considered: the size of the molecules, the type of 

interactions (e.g. hydrogen bonds) between the molecules (ligand and receptor), the 

stabilities of both molecules and their electronic properties. All of these factors are to be 

taken into account when performing molecular modelling. This in turn allows the 

development of algorithms that are capable of correlating the chemical properties of 

certain molecules with their structures and, in the case of this work, to dock ligand-

receptor molecule pairs, producing docking results that are accurate when compared with 

experimental data. 

  Various theoretical approaches can be used in the modelling of molecules: the 

more rigourous, but slow, ab initio or molecular quantum chemical method; the semi-

empirical quantum chemical method; and the empirical force-field calculation method, 

more commonly known as molecular mechanics. For the modelling of large molecules 

(e.g. proteins and other biological macromolecules), the last method is the most 

frequently used one due to its simplicity and computationa efficiency. Molecular 

mechanics methodos can be used for various types of calculations, including energy 

minimization, conformational searching, molecular dynamics and receptor-ligand 

docking.   

Force-field based molecular mechanics methods are often described as “classical” 

since they produce classical trajectories for point charge/mass atoms.  Ab initio and semi-

empirical methods are quantum methods yielding molecular wave functions of the 

system.  

4.2 The Quantum Approach – Ab Initio 

 The ab initio calculation methods are quantum-based, using the Schrödinger 

equation to compute the energies and corresponding wave functions of a quantum system 

(e.g. molecule) containting electrons and nuclei. The ab initio method will use a basis set 
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for each molecule (i.e. finite set of atomic orbitals or basis functions centred in the nucleus 

of each atom that composes the molecule at hand to describe molecular orbitals that 

emcompass all the electrons in an atom) in order to solve the Schrödinger equation for 

that said molecule. 

ˆ ˆ( ) ( ) ( )T V r r E r      

Fig.: 4.1 – The Schrödinger equation. The wave function (Ψ) is dependente on the 

position of 𝑟. E is the energy of a quantum state described by a wave function Ψ , T and 

V are the kinetic and potential energy operators and their sum is generally represented as 

the single H (Hamiltonian operator). 

 

 

Fig.: 4.2 – Molecular orbital wave function (ΨM), ψAi are the atomic orbital 

functions and ci are the weights of every atomic orbital function in the molecular function. 

 

As an exact analytical solution of the Schrödinger equation for polyelectronic 

atoms does not exist, several approximate methdos were devised resulting in calculations 

that can be lengthy and difficult. The Born–Oppenheimer approximation postulates that 

electronic and nuclear degrees of freedom can be separated, so that the molecular wave 

function can be solved for a given set of nuclear coordinates. The simples and oldest ab 

initio method is the Hartree-Fock [or self-consistent field (SCF)] approximation. 

 

 

Fig.: 4.3 – In the Born–Oppenheimer approximation, the wave function of the 

molecule can be separated into its two components (electronic and nuclear), while also 

separating the vibrational and rotational components (see Bibliography website section 

for references). 

 

Using the Born–Oppenheimer approximation, the Schrödinger equation is solved 

by assuming the nuclei are in fixed spatial positions. The Hartree-Fock (SCF) methods 
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with an initial guess solution of the Schroedinger eqation and progressively refines it until 

convergence (self-consistency) is attained.  

 

Fig.: 4.4 – The Hartree-Fock method algorithm (see Bibliography website section 

for references). 

 

Generally, the ab initio calculation method is used when accurate values for 

molecular properties or parameters are required, or when studying mechanisms involving 

bond breaking/formation (e.g. catalysis), electron transfer, excited states, etc. In spite of 

this cases, molecular mechanics is mosty frequently employed when modelling due to its 

speed and simplicity. . 

4.3 The Classical Approach – Molecular Mechanics 

Contrary to ab initio, molecular mechanics (MM) is based on classical mechanics 

and it uses the atomic coordinates, charges and masses instead of atomic orbitals when 

modelling. MM also relies on the Born–Oppenheimer approximation but with a crucial 

difference: while quantum methods look for the electronic structure while keeping the 

nuclei fixed in space, the MM method will consider nuclear movements and treat the 

corresponding electrons only in an indirect fashion. This happens because the electrons 

and the nucleus of atoms are seen as aggregate point mass/charges, while the bonds 
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connecting them are seen as “springs” (harmonic approximation). In other words, MM 

will treat the molecule as if it was merely a collection of atoms bounded by elastic forces 

(bending, torsional energy, van der Waals energy, and electrostatics). These forces are 

are calculated from a series of potential energy functions comprising the molecular 

forcefield, and can be used to determine the lowest energy conformation of a molecule.  

 

Fig.: 4.5 – Potential molecular energy or molecular forcefield (U) corresponding 

to the sum of various energetic contributions, or potentials [bond length (r), bond angles 

(θ), dihedral angles (φ) and non-bonded interactions (d)] (Coelho, Lilian W. et al.; 1999). 

 

 

Fig.: 4.6 – The different forces that contribute to the potential energy of a 

molecule (see Bibliography website section for references). 

 

The term force-field corresponds to the set of energy functions and parameters 

used in the MM calculation, or in other words, it is a potential energy function used to 

calculate the potential energy of a molecular conformation as the sum of different 

individual terms. These force-fields contain multiple parameters describing different 

types of bonded and nonbonded interactions (i.e. atomic distances, bond angles, 

electrostatic interactions, van der Waals potentials), which can be derived from 

experimental work or quantum mechanical calculation.  
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Fig.: 4.7 – The covalent and non-covalent potentials that make up the force-field 

can be decomposed into simpler terms (see Bibliography website section for references). 

 

These force-field parameters remain fairly constant for the same type of atoms, 

bonds and chemical functions, which means that the same parameters can be used in many 

different strucutres as long as the atom types and chemical groups remain the same. 

Nowadays, there are many force-fields available for use in MM, with ever increasing 

terms to correctly describe a molecular structure. These force-fields usually differ in the 

form and parameters of the potential energy terms and in the type of system they are best 

suitedo to. 

4.4 The Classical Approach – Molecular Dynamics 

Molecular dynamics (MD) is used to simulate the movement of atoms and 

molecules by integrating the equations of motion of the system under the particular 

forcefield, allowing a glimpse of possible fluctuations and conformational changes that 

happen to a molecule or the trajectory of atoms in space during a fixed time window. This 

method allows the study of complex and dynamic biological processes (e.g. protein 

stabilitie, protein folding, conformational changes). By solving the Newtonian equations 

of motion of the system, it is possible to predicte how a molecule might move in space 

when the system is perturbed. Atoms move and interact with one another through the 

forces applied to them. These forces are calculated from the potential as described by the 

MM molecular forcefield.  

 

Fig.: 4.8 – The Newton equation of motion, where Fi corresponds to the force that 

leads to an atom´s acceleration (ai). The atom´s mass is mi. Fi can also be derived from 

the already mentioned potential energy (U) with respect to the atom´s coordenates. 
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Fig.: 4.9 – A simplified example of a MD algorithm (see Bibliography website 

section for references). 

 

An exact analytical solution to the Newton equations of motion is only possible 

for two-particle systems. For anything beyond that, only approximate solutions can be 

obtained for the atomic movements.Various numerical methods have been developed to 

integrate Newton´s laws by assuming that the inicial atom positions, velocities, and 

accelerations are know. 

 

Fig.: 4.10 – An approximate numerical solution for more than two atoms systems 

can be obtained using a Taylor series expansion. Its solution is dependente on knowing 

the initial position of the atoms r(t), their speed dr/dt, the corresponding atom´s 

acceleration d2r/dt2 as well as other important factors. 
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Accuracy of the solutions depends on the time timestep used – smaller time steps 

provide beter solutions but lengthier calculations. For biomolecular simulations time 

steps of the order of the femtosecond (10-15s) are normally used, and total simulations 

times range from pico- (1ps = 10-12 s) to nanosecond (10-9 s), though microsecond 

simulations are becoming commonplace. Small timesteps and long simluations times will 

result in extremely long simulations that can run for weeks or months on a desktop 

computer.  

4.5 Docking Program Methodologies 

Both programs used [AutoDock Vina (Vina) and AutoDock4 (AD4)] work in a 

similar way in the sense that they use a scoring function and a search algorithm in order 

to dock the ligand to its target macromolecule. The main difference lies in the way in 

which they operate and in the forms of both the scoring function and the search algorithm. 

Scoring functions are used to predict the energy of a certain ligand conformation and the 

choice of a particular function heaviuly depends on the intended speed and/or accuracy 

of the calculation. On another hand, the search algorithm will try and find the best (having 

the lowest value of the scoring function) docked pose of the ligand in the docking site. 

Autodock uses MM-type forcefields in order to dock a molecule to its target receptor.  

 

Fig.: 4.11 – The scoring function of AD4, which takes into account the 

dispersion/repulsion forces, electrostatic forces, influence of hydrogen bonds, desolvation 

and torsional entropy of the ligand (see Bibliography website section for references). 
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Fig.: 4.12 – Scoring function of Vina, which uses several terms common to AD4, 

while at the same time not using others (e.g. electrostatics) (see Bibliography website 

section for references). 

 

As for the search algorithm, while Vina uses a systematic algorithm, AD4 uses a 

stochastic one. The main differences between them are the following: though the 

systematic algorithm is exhaustive and deterministic it is only adequate for docking small 

ligands. The Stochastic algorithm, on the other hand, is random and, therefore the 

outcomes will varie but it is feasible for larger atom systems. 

The iterated local search algorithm is a way that was devised in order to get better 

results by doing a random perturbation to the system and start the local search again but 

from another point in its neighbourhood. This will allow the generation of better results 

than the ones produced from repeated random attempts. 

 

Fig.: 4.13 – The iterated local search algoritm works by doing perturbations to the 

system and then trying to find a new local minimum (see Bibliography website section 

for references). 
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The genetic algorithm used by Autodock will find the best solutions by following 

a Darwinian evolutionary path (i.e. it looks for new solutions by randomly mutating and 

crossing over previous solutions and selecting mutants according to their “fitness”). 

 

Fig.: 4.14 – The genetic algorithm works by applying to the system the same 

evolutionary principles that govern biological systems (see Bibliography website 

section). 

 

4.6 Molecular Construction of the ITC molecules 

Models for the previously mentioned ITC molecules (BITC, PEITC, PHITC, and 

PPITC) were created in a molecular modelling environment provided by the program 

“HyperChem”. 

HyperChem is an easy, useful and userfriendly software for building many kinds 

of molecules, which can then be visualized in a tridimensional (3D) fashion by the user. 

This program is also capable of performing several other different tasks related to the 

molecule at hand. 
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The ITCs 3D molecular structures were drawn in HyperChem, with the different 

atoms and bond types connecting them. Structures were finished by adding hydrogens 

(H) to them with the option “model build”, which ensures chemically correct structures. 

After this step, electrostatic point charges for all atoms belonging to the ITC structures 

were calculated using an ab initio quantum mechanical method, (Hatree-Fock single point 

calculation with medium complexity basis set. The molecule was then setup for the 

molecular mechanics forcefield MM+ and a 10ps molecular dynamics simulation was ran 

at 300K. This was done to ascertain the molecular dynamics behaviour (i.e. fluctuations 

and conformational changes) of the ITC structures. Furthermore, this simulation step also 

enables the user to see how the atoms that make up the molecule act when they are 

allowed to move and interact with one another in the structure and in a physical 

environment. Finally, a geometry optimization (energy minimization) was done on the 

end structure of the MD simulation, to produce a stereochemically correct molecular 

structure. 

4.7 Getting the CYP Molecules  

The human CYP molecules (CYP2A6, 2A13, 2B6, and 2C9) crystallographic structures 

needed for the in silico molecular docking experiment were downloaded from the Protein 

Data Bank (PDB) website (http://www.rcsb.org/pdb/home/home.do). This website 

consists of a database of structures for biological macromolecules and their respective 

ligands (if present), obtained using mostly two experimental methods: X-ray 

crystalography and Nuclear Magnetic Resonance (NMR) spectroscopy (see Annex 7.1 

and 7.2). 

4.8 X-ray Crystalography 

The majority of the protein strucutres stored in the PDB website were determined 

by X-ray crystallography. This technique employs X-ray diffraction to determine the 

atom positions in a crystal sample. Firstly, crystals of our macromolecule must be 

produced. Afterwards, an X-ray beam is shined on the crystal, resulting in multiple 

diffracted beams along specific directions, producing a pattern that depends on 

arrangement of atoms in the crystal lattice. It is this diffraction pattern, which is unique 

for each protein that allows the determination of its structure. After data analysis, structure 

determination, refinement and validation, the final structure is uploaded to the PDB 

website. 

http://www.rcsb.org/pdb/home/home.do
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4.9 Nuclear Magnetic Resonance Spectroscopy 

Nuclear magnetic resonance (NMR) spectroscopy is the second most frequently 

employed technique used to determine protein structure.  As opposed to what happens in 

X-ray crystallography technique, in which a crystalized form of the protein is needed to 

determine its molecular structure; the NMR protein structure determination can be done 

simply with an aqueous solution of our sample. This fact is very important, since not all 

proteins can be crystalized easily or at all (e.g. membrane proteins). This technique works 

by taking advantage of the effect of a strong magnetic field upon the nuclear spin of 

certain types of atoms. The spin will tend to orient under the magnetic field along, emiting 

or absorbing electromagnetic radiation at a precise frequency (i.e. resonance frequency). 

Unfortunately, this technique only works for atoms that have nonzero nuclear spin (only 

particular isotopic forms of certain elements have this property). The term spin is 

associated with the orientation state [+½ (or α) and -½ (or β)] that charged subatomic 

particles or even atomic nuclei have when they are immersed in a magnetic field. In NMR 

spectroscopy procedure, by convention, the magnetic field orientation is aligned with α, 

which results in an energy difference between both spin states that is dependent on the 

strength of the said magnetic field. These energy differences, which are affected by the 

presence, and distance from, nearby atoms in a protein, as well as the strength of the 

applied magnetic field, are what creates the detectable NMR signals. These signals are 

then analysed to produce a list of data that contains the atoms´ location and distance 

between them in order to build the molecular structure model of the molecules under 

study.  

4.10 Docking Procedure 

In order to perform the docking of the CYP molecules with the ITC ligands and 

the native ligands in the CYPS´ PDB files, the AutoDock Tolls (ADT) suite of programs 

(available here: mgltools.scripps.edu/downloads), AutoGrid4/AutoDock4 (AD4) 

(available here: http://autodock.scripps.edu.) and the AutoDock Vina (or just simply 

called Vina) (available here: http://vina.scripps.edu) programs were used, all of which 

were developed at The Scripps Research Institute, Callifornia (USA). The purpose in 

using these programmes is to search for the best conformation and energy for the 

interaction between ligand and receptor molecule. This is done by using a scoring 

function to try and predict the strength of the non-covalent interaction (i.e. binding 

affinity) between the two aforementioned molecules. This task is accomplished by 



 

53 

 

 

computing and using both the charges of the previously mentioned molecules as well as 

a systematic search for any chemical conformation of the ligand (flexible) in order to find 

its best binding geometries and locations in the receptor molecule [rigid (by default) or 

flexible]. The reason as to why the native ligands were also used in the docking procedure, 

apart from the ITCs themselves, was to compare the docking predictions made by both 

softwares with the existing positioning and location of the native ligands in their 

experimental complexes with CYP molecules. Comparison between theory and 

experiment is the best way to assess the performance and reliability of the docking 

procedures. 

4.11 ADT – Preparing the Ligand and Receptor for Docking  

Autodock Tools (ADT) is a suite of programs used to prepare both the receptor protein 

as well as the ligand for the docking procedure (available here: 

mgltools.scripps.edu/downloads). In this software program, both the protein to be used 

for docking, as well as the ligand, are corrected for any type of error (e.g. broken chains) 

that the PDB files downloaded from the PDB website may contain as well as being 

prepared for the docking procedure. 
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 Fig.: 4.15 – The graphical user interface (GUI) of ADT, with the heme group 

coloured in faint yellow in the centre of the 2FDY crystallographic receptor molecule of 

CYP2A6. 

 

In order to load the molecule into the software program, one needs to choose the 

“File” option in the Menu Bar and then select “Read Molecule”, followed by selection of 

the protein PDB molecular file. Since Protein Databank Files normally lack hydrogens, 

these must be added to the model. Polar hydrogens are of crucial importance for the 

docking process since they impact the interactions that happen between ligand and 

receptor molecule. This task is done by clicking in the option “Edit” in the Menu Bar and 

then selecting “Hydrogens”, followed by “Add” and the option “Polar Only”. Another 

pivotal factor to bear in mind is the fact that this program will automatically compile and 

add charges to a molecule every time its PDB file is open; another way to perform this 

task is to the user to add the charges to the molecular file by choosing that option (Edit – 

Charges – and then chose one of the charge options available) from the program´s Menu 

Bar. Unfortunatelly, ADT does not assign charges to metal ions, which constitutes a 

problem since these charges are taken into account when performing the actual docking. 

A simple way to deal with this problem is to open the protein PDBQT file, which will be 

latter explained in this manuscript, in a text editor (WordPad was used in this case) and 

manually alter the charge of the iron atom from 0.000 to +3.000. 

In order to input the ligand molecule, the user needs to select the option “Ligand” 

form the Tool Bar, followed by “Input”, “Open” and then selecting the ligand file that is 

to be used. In terms of atomic torsions (free bond rotations) that are present in the ligand 

molecule, the user can see and choose the torsion root, i.e. the central atom in the ligand 

to be used as the root of the molecule, by going to “Ligand”, “Torsion Tree”, “Detect 

Root”. ADT also allows the user to see the number as well as the type of bonds that exist 

in the ligand molecule. This can be done by choosing the following options from the Toll 

Bar: “Ligand”, “Torsion Tree”, “Choose Torsion” for the type of torsion bonds available; 

and “Ligand”, “Torsion Tree”, “Set Number of Torsions…” for the number of active 

bonds in the ligand molecule. The different types of bonds in the ligand are differentiated 

from one another by their colour (i.e green – rotatable; magenta – non-rotatable; and red 

– unrotatable). The rotatable bonds can be altered manually by the user in the window 

“Torsion Count” and then pressing “Done” when finished. Finally, the user saves the 
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ligand molecule in the PDBQT format by choosing “Ligand”, “Output”, “Save as PDBQT 

…” and naming the PDBQT ligand file.  

The Grid Menu in the Toll Bar is used o choose both the atom types (by choosing 

the ligand and the receptor molecule) as well as the Grid Box Parameters. The atom types 

are chosen by selecting “Grid”, “Macromolecule”, “Select …” and by doing this the 

receptor molecule is chosen as being the receptor and is saved in PDBQT format after it 

has been named. For the continuation of the atom type selection, the ligand needs to be 

choosen as well. For that, the user just needs to select “Grid”, “Set Map Types”; “Choose 

Ligand”. Now for the Grid Box parameters (i.e. the 3D space in the receptor molecule 

were the conformational search of the ligand will be performed in order to assess both the 

ligand´s conformation and location in the receptor) can be chosen from the Tool Bar by 

choosing the option “Grid”; “Grid Box”, followed by the appearende of the “Grid 

Options” painel. Since the aim of this master thesis project was to study the inhibition 

potential (i.e. binding affinity) of the ligands (i.e. ITCs) with the receptor molecules (i.e. 

CYP enzymes), it follows that the 3D search was centered in the active site (heme group) 

of these proteins. This task is accomplished by selecting the protein in the Dashboard and 

then following the protein aminoacid sequence in the Sequence Viewer until the heme 

group appears in sight, then it is just a matter of selecting it, which in turn coulours it in 

faint yellow in the 3D Viewer, and trying to place the grid box in such a way as to fully 

encompass the heme group and active site cavity. Hereafter it is of crucial importance to 

choose the values for the Grid Box Parameters. The values chosen for the Grid Box in the 

Grid Options window are of crucial importance for the docking procedure and they will 

be used latter in both Vina and AD4 programs, which are the ones that will actually 

compute the docking calculation and, therefore be responsible for the docking. In ADT, 

this step consists in merely a visual interpretation of the search parameters where, 

afterwards, Vina and AD4 will try to do the calculations for the docking. In the Grid 

Options window, the user selects the number of grid points in every dimension (X =22; 

Y = 22; Z = 22), which corresponds to the scope of the 3D search that will be performed 

by both docking programs. It is also necessary to choose the exact location where such a 

search will be carried out, and for that the user needs to centre the Grid Box with the heme 

group, which is different for every crystallographic structure. Since ADT measures the 

search space in points instead of angstrom, the spacing was changed to 1 angstrom. This 

way every search point corresponds to one angstrom. After all the adjustments of the Grid 
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Box, the user needs to choose the option “File” in the “Grid Options” windown and select 

“Close saving current”. 

 

Fig.: 4.16 – The grid box is centred in the heme group by altering the XYZ values 

for each dimension as well as the number of points in each one. 

 

Table: 4.1 – A list of the different grid box centre values for each crystallographic 

structure according to its type of CYP. 

CYP PDB Code Grid Box Centre 

X Y Z 

 

 

 

 

 

 

2A6 

1Z10 52 85 59 

1Z11 52 85 58 

2FDU 52 82 58 

2FDV 52 84 58 

2FDW 52 84 57 

2FDY 53 85 57 

2PG5 53 85 58 

2PG6 52 83 58 

2PG7 52 83 57 

3EBS -19 5 -6.5 

3T3Q -39 33 -50 
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3T3R -2 61 -58 

4EJJ -7 -15 -5 

4RUI -79 107 -87 

 

 

2A13 

2P85 23 -37 16 

3T3S 16 8 43 

4EJG 16 -13 37 

4EJH 27 -10 30 

4EJI 61 -23 26 

 

 

 

2B6 

3IBD 20 15 23 

3QOA -47 13 -19 

3QU8 -14 4 4 

3UA5 13 -2 45 

4I91 47 -13 -19 

4RQL 8 36 21 

4RRT 4 -11 -14 

 

2C9 

1OG2 14 69 21 

1OG5 -25 79 30 

1R9O 7 25 -4 

4NZ2 -53 -46 -21 

 

Following the completion of this step and having both the receptor and ligand files 

saved in the PDBQT format (i.e. includes all the atoms´ type and charge), the Vina 

docking procedure can now finally begin. 

4.12 Vina Docking Procedure 

This program will be responsible for performing the docking calculations, by 

means of a scoring function, between ligand and receptor, yielding binding affinity 

energies for the different conformations of the ligand-receptor complex. Additionally, 

Vina also presents the user with the most favourable conformations and locations of the 

ligand in the receptor. After Vina has been downloaded and successfully installed into 

one´s computer; in order to operate it, firstly the user needs to open the command line, 

which is located in the Accessories folder. After the command line has been open, the 

user only needs to get access to the usage summary of instructions on how to run Vina by 

typing its location in the respective file, followed by pressing the ENTER key on the 

keyboard. Alternatively, one just needs to type “vina --help” in the command line for the 

instructions to appear. To actually run the program Vina in an easy way, it is best to just 

place all the files of both the receptor and ligand in the PDBQT format, as well as a config 

file in the same folder. The purpose of using a config file is to further facilitate the process 
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of running Vina. This config file is written with the data from the previously used program 

ADT, more precisely the Grid Box parameter values, as well as the identification of the 

files that belong to the receptor and ligand molecules. If the user chooses to do so, there 

is another way of doing this instead of using a config file, which would be for the user to 

write down all of the config file data into the command line. Hereafter, when all the files 

needed to run Vina properly are assembled together in one folder, the user just needs to 

type in the command line the following: “the location of vina” --config “name of config 

file” --log “name of log file”, and then press the ENTRER key. After this has been done, 

Vina will then compute and give out the results in the form of two files: an out PDBQT 

file and a log text file. The log file contains all the information about the binding affinity 

energies, while the out file will have the data concerning the ligand position and 

conformational shape in the receptor molecule. 

 

Fig.: 4.17 – Example of a Vina config file. 

 

One particular crucial aspect of Vina is the exhaustiveness level, which 

corresponds to the number of runs (i.e. the number of docking calculations) the program 

will try to perform in order to dock the ligand with the receptor after there has been a 

slightly alteration of the conformation of the ligand or the receptor (if flexible residues 

have been chosen). Of important notice is the fact that the exhaustiveness level can also 
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be manipulated, hence the following methodology was adopted when dealling with poor 

docking results: when performing the docking, the exhaustiveness level should first be 

the default value (i.e. 8); but when the last result in a set of them has an energy affinity 

lower than -5.0 kacl/mol, then the docking should be repeated but with an exhaustiveness 

level equal to 10. Afterwards and if there is still a result with an energy level lower than 

the one required, then the exhaustiveness level should be changed to 50. This is done in 

order to ascertain if the Vina´s docking algorithm is capable of finding better solutions 

by increasing the number of runs. 

The Vina program just requires three simple things to work properly: the 

molecular structure of the ligand and receptor molecules used in the docking process, and 

the parameters of the Grid Box from ADT. Neither receptor protein nor ligand atom 

charge assignment is needed for it to work. Nevertheless, and since Vina was designed 

and built to work with the file format used for AutoDock 4 structure files, the input and 

output files must be in the PDBQT format. As such, though Vina does not need molecules 

with charge to work because it attributes charges according to the molecular structure of 

the molecules used for docking it still needs the structural files of those molecules in the 

PDBQT format (i.e. atom type and charge). 

4.13 PyMOL – The Molecule Viewer Tool 

PyMOL is a powerful but user friendly program tool used to visualize molecules, 

from proteins to small ligands. PyMOL is made up of two windows: a command (top 

window, know as PyMOL Tcl/Tk GU or external graphics user interface, GUI) and a 

graphics window (main window, known as PyMOL Viewer). The last one is where the 

molecular visualization takes place. The main goal in using this software program was to 

view the results of the docking process performed by Vina (i.e. the out PDBQT file). Even 

so, this program was also used to prepare the receptor protein for docking by performing 

several tasks, namely: elimination of water molecules, removal of any additional chains 

of the same protein, and deletion of the ligands that were crystalized together with the 

protein. This preparation for docking was achieved through several different commands 

that can be written in both PyMOL windows since both of them have a command line. 

To eliminate the water molecules, the user can choose to write in the command line the 

following: “remove HOH/”. Alternatively, the user can simply go to the “Object Menu 

Panel” located in the graphics window, choose the menu “A” (from action) and then chose 

the option “remove waters”. To remove any surplus amino acid chain from the PDB file, 
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one just has to write in the command line the following: “remove not chain a”. Finally, to 

delete any ligands that may come with the protein downloaded from the PDB site, the 

user can write, once again in the command line, “remove <name that the ligand has in the 

PDB website>”. Another way to do this is for the user to select the option “S” from the 

“Mouse Menu” at the right inferior corner of the graphics window. Alternatively, the user 

can go to the command window, choose the menu “Display”, followed by the option 

“Sequence” in order for the program PyMOL to show the sequence. This option enables 

the user to see the sequence of amino acids from a protein as well as its ligand(s), with 

the last one(s) placed generally at the end of the sequence. After scrolling down the 

sequence, the user just needs to select the ligand(s) with the right mouse button and then 

select the option “Remove” to delete the ligand(s). The elimination of the native ligand(s) 

step is very important for the docking process, since the presence of other ligand(s) other 

than the ones that are to be docked will inevitable interfere once Vina tries to dock the 

protein-native ligand complex with our desired ligand(s). Needtheless to say that before 

the removal of the water molecules and the deletion of the ligand(s) that may exist in the 

pdb file, one must write in the command line the following: “set retain_order, 1”. This 

command allows for the maintenance of the sequence order in the pdb file, which is vital 

for the latter use of the program AutoDock4 (AD4), since for it to work properly, it needs 

the input files to have the same exact order as they had when they were originaly extracted 

form the pdb website. 
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Fig.: 4.18 – The molecular visualisation program Pymol consists of an external 

GUI, smaller window, as well as the Pymol Viewer, where molecule display occurs. 

 

4.14 AutoGrid4/AD4 – Old and Outdated, but Useful and Practical 

AutoGrid4 and AD4 are two programs that need to be used one after the other, 

respectively, in order to produce docking output results. The first program is necessary 

for the generation and setting of several pre-calculated interaction energy maps of the 

receptor molecule which are then used by AD4 for the purpose of performing the actual 

docking. 

Autodock 4 (AD4) is an older software developed by the same research team that 

created Vina. The usage of this software for the docking procedure is closely tied to the 

fact that it is imperative to have strong evidence that the outcome predictions given out 

by Vina, regarding the docking of the ITCs molecules into the CYP enzymes, are both 

accurate and correct. This can be accomplished in two ways: one way, already mentioned 
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before, is to perform docking runs of the existing ligands in the CYPs molecular PDB 

files with those same CYPs in order to assertain if the obtained result predicitons are in 

aggreament with both the natural positioning and location of such ligands in their 

corresponding CYP molecules. A second way to further strengthen our predictions is to 

use an alternative docking program and procced to work with the same dockings that were 

performed in Vina. Since the program AD4 was made by the same developers that made 

Vina, it was though that this program would make the ideal choice for the task of 

producing an aditional set of for comparison with those obtained with Vina, thus having 

a further way in which to judge if the ITCs are well docked with the CYP molecules. 

The docking procedure is parcially the same as with Vina. Firstly, it is necessary 

to have both the ligand and receptor files in the PDB format. Afterwards both files are 

subjected to the same protocol that was used with the ADT suite of programs in order to 

have both molecular files in the PDBQT format. From here on out, the process largely 

differs from the one used in Vina. In the first place, it is crucial to prepare the AutoGrid 

Parameter File (GPF), which as the name implies, it is a file that is used by AutoGrid4 to 

create several different types of maps that take into account several factors (desolvation; 

electrostatics; and the types of atoms in both the ligand and receptor molecules). To do 

this, the user just needs to select the menu “Grid” in the Tool Bar and follow the same 

protocol that was mentioned before for this particular menu, since the map types are 

particularly dependent on the atom types that make up the ligand and the receptor. 

Afterwardds, the user merely has to save the GPF file by choosing “Grid”, “Output”, 

“Save GPF…”, name it and select “Save”. In order to start the AutoGrid4 program, the 

user has to choose the option “Run” located at the right corner of the Tool Bar, followed 

by “Run AutoGrid…”. Then it is only necessary to provide the location of the AutoGrid4 

program as well as for the GPF file as press the “Launch” button.When AutoGrid4 has 

reached its conclusion and stopped, it is then necessary to procced to the preparation of 

the AD4 Parameter File (DPF), which works in a similar manner to the GPF in the way 

that it consists in a file that is going to be used by AD4 for the purpose of performing the 

docking of the ligand into the receptor. For the creation of the DPF file the user needs to 

choose the option menu “Docking”, followed by “Macromolecule”, “Set Rigid 

Filename”, and then choose the receptor file. After having choosen the gridmaps of the 

corresponding macromolecule it is now essential to do the same with the ligand (i.e. 

another set of parameters that can be altered if the user sees fit, in this case all parameters 
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were left in default), for which the user needs to choose “Docking”; “Ligand”, 

“Choose…”, “Select Ligand”, and “Accept”. Next, it is necessary to set the search method 

as well as the number of evaluations per each run. For this to be executed, one just merely 

choses the menu “Docking”, “Search Parameters”, “Genetic Algorithm…”, “Accept”. As 

in the previous case of the ligand parameters, the values for the number of evaluations in 

the DPF file were left untouched. Afterwards, it was time for the Docking Parameters (i.e. 

another set of parameters which the user can alter freely), which were also left in the 

default values (“Docking”, “Docking Parameters…”, “Close”). Finally, to save the DPF 

file the user needs to choose “Docking”, “Output”, “Lamarckian GA…”, name it and 

press “Save”. This last part allows the saving of the file that will be used by the AD4 

program and which contains both docking parameters set by the user as well as 

instructions for a Genetic Algorithm Local Search, also called GA-LS, which consists in 

a heuristic yet very effective local search that tries to find solutions (i.e. high performance 

regions) in a vast and complex search space; in other words, what it tries to do is to find 

a solution when classical methods fail to even find one or are to slow to provide an answer. 

4.15 Modification of the Heme Group Partial Charges 

AD4 is expected to perform worse than Vina at protein-ligand docking due to the 

use of an older, less optimized algorithm; in an attempt to somewhat improve the AD4 

results, more accurate partial charges for the heme group were supplied. In another study 

(Shahrokh, K. et al.; 2012), it has been reported that adding heme partial charges results 

in an vast improvement of the docking results both in terms of the number of solutions 

found and closeness to experimental data. Bearing that fact in mind, the approach taken 

in order to improve AD4 results was to replace the heme partial charges given by the 

program mentioned earlier by a set of heme partial charges that are more robust and 

consistent with molecular docking simulations (Shahrokh, K. et al.; 2012). 

The docking partial charges assignment set chosen was the one from the full heme 

model (F-HM) IC6 for several reasons. Firstly, the IC*(4 or 6) species, a penta coordinate 

ferric species, is the one that corresponds to the heme state in which the dockings were 

and are supposed to be made (i.e. the Fe3+ state), because that is the state in which the 

ligand first interacts with the CYP molecule active site. Secondly, IC6 and IC4 show 

differences with the partial charges and spin density assignment and though the iron atom 

remains with very similar values in both species; notwithstanding, IC6 represents a closer 

agreement than IC4 with the mean spin densities after reorientation of the heme and its 
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comparison with the original optimization. Thirdly, since some of the other species 

docking parameter sets had oxygen (bound and unbound) present in the heme group, it 

was decided no to use such parameter sets because it would affect the docking 

performance (i.e. the programms are sensitive to the presence or absence of oxygen). 

Fourtly and final, the use of a fully extended heme group parameter set instead of the 

truncaded (T-HM) version of it yielded a better representation of the electrostatics 

potential of the heme group when compared with the T-HM, hence the choosing of the 

T-HM over the other would have impared the results of the docking simulations 

(Shahrokh, K. et al.; 2012). 

After choosing the F-HM IC6 file as the ideal one to use to replace the heme partial 

charges in the CYP molecules, a way to actually change those charges was in order. For 

that, a small script in phython was created that was used to replace the heme charges in 

the CYP molecules extracted from the PDB website with the F-HM IC6 set of atomic 

charges. 

 

Fig.: 4.19 – The python script that enabled the changing of the heme partial 

charges of the CYP molecules. 
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4.16 Creating Flexible and Rigid Files 

Up until now, only rigid docking has been described in this manuscript. As for 

flexible docking, what actually becomes flexible are the handpicked amino acid residues 

from the rigid receptor; since the ligand was made flexible in the very beginning of the 

docking process. Truthfully, the ligand has always been flexible, even in rigid docking, 

and the terms rigid/flexible, simply refers to the presence or absence of flexible groups in 

the receptor. 

In chossing the residues of the receptor protein to be made into flexible ones, the 

user has two approaches that can be used. Either choose the lowest value for the distance 

calculation between the atoms of the ligand and those from the receptor molecule until 

sufficient atoms are found to make up to 3 residues (minimum number of flexible residues 

to be used for the flexible dockings) or more (depending on technical constraints); or 

choose a distance value that has enough space to accommodate 3 or more residues but 

that has residues that are deemed appropriate, and as such, that are worthy to become 

flexible in the flexible residues file to be used in this type of docking procedure. In this 

work, residues from the receptor that were closest to the ligand were preferable, and 

therefore took precedence when there was the need to choose flexible residues. 

Nevertheless, if other residues seemed to be more appropriated to be made flexible, in 

order to achieve a better docking result, then some of those were also chosen so as to 

have, at the end, 3 flexible residues in the flexible residues file. 

To create flexible residues files for both Vina and AD4, one needs first to use both 

Pymol (used to see in a graphical way which residues are to be made flexible) and ADT 

(used to actually create the flexible residues files with the residues that were chosen in 

the previous programm). In Pymol, the user needs to load both the result file of the 

docking [Vina (pdbqt format) or AD4 (dlg format)] and the receptor protein file (pdb or 

pdbqt format can both be used but just one at a time). After this, in the Pymol comamd 

line window, the user has to type the following command, “split_states, <name given to 

the result file used>” in order to have all the possible results given for a specific ligand-

receptor docking separated. This step will allow a better visualization of the possible 

residues to take into account when chosing the flexible residues for that particular set of 

results in the ligand-receptor result file. Afterwards, the distance between the atoms of 

the ligand and the receptor is measured through this command: “distance <name to give 

to the result of this command>, <receptor file name>, <result file name>, <distance value 
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in angstrom to be measured between both molecules (ex.: 4.0) >”. Now, it is time to select 

those atoms in the receptor molecule that are located at the specified distance form the 

result file and to complete the residues to which the atoms selected belong to. In order to 

achieve this, first the user needs to write the command to select those atoms (“select 

<name to give to the result of this command>, <receptor file name> within <distance 

value in angstrom to be measured between the molecules used> of <result file name>”), 

and then the user has to go to the “select result name” in the object control panel located 

in the graphical user interface window, click with the right mouse button on top of the 

“select result name” and select “Modify”, “Complete”, “Residues”. Finally, the user just 

needs to type one last command: “iterate <name of the select result name> and name CA, 

print resn, resi”. This command will simultaneously give the names and sequence 

numbers of the selected residues in the receptor protein. Afterwards, the user simply has 

to choose the most appropriate residues to be made into flexible ones in ADT. 

In the ADT program, and before all else is done, the user needs to load the receptor 

protein in pdbqt format by going to the “Flexible Resiudes” menu located in the Tool Bar 

and choose the option “Input”, “Choose Macromolecule…”. After this step has benn 

carried out, it is time to select the residues by clicking in the “Select” menu in the Menu 

Bar, followed y the option “Select From String” and then proceed to add manually all the 

residues that are to be made into flexible ones; afterwards click dismiss. Now the user has 

to open the “Flexible Residues” menu once again and select “Choose Torsions in 

Currently Selected Residues…”. The following process is identical to the one applied to 

the ligand, in the sense that the user just needs to choose which bonds are to become 

rotatable by chosing between different types of bond torsions; next the user selects 

“Close”. Once again, the user needs to go to the “Flexible Residues” menu, but now select 

“Output”, “Save Flexible PDBQT…” to have the flexible residues file. Since the program 

Autogrid4 needs to calculate grids (for AD4) without having moving residues, there is 

the need to save a rigid receptor protein but without the said moving residues; for that the 

user merely has to do the same procedure for saving the flexible residues file with the 

important exception that instead of chosing “Save Flexible PDBQT” it is necessary to 

choose “Save Rigid PDBQT” in order to save the said rigid receptor file. 
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4.17 Flexible Docking in Vina and AD4 

After the formation of the rigid and flexible files of the receptor protein, it is time 

to perform the flexible docking. This type of docking protocol consists in fairly the same 

one that has already been used for the rigid docking, albeit with some small but very 

meaningful changes. When doing flexible docking it is very important not to use the entire 

receptor when asked for the macromolecule, but rather only the rigid portion of the 

receptor without the moving residues. This alteration to the docking protocol is 

implemented to prevent the docking programs from trying to dock a ligand with a receptor 

that has the same residues in a moving and unmovable states, simultaneouly. Since some 

of the flexible residues might get out of the search space, it is also necessary to increase 

the number of points in each dimension (X = 50, Y = 50, Z = 50) so as to be able to 

accommodate the docking movement of such residues. 

 In the program Vina, it is necessary to alter the config file in order for it to 

accommodate the flexible and rigid file options. The rest of the Vina protocol remains 

exactly the same as the one used for rigid docking. 

 

Fig.: 4.20 – Vina config file for flexible docking. The only changes to the rigid 

docking config file are related to the receptor and flexible sites. 
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In terms of flexible docking with the program AD4, there are also some small but 

crucial differences compared with rigid docking. Firstly, when creating the GPF file for 

the creation of the different grid maps, it is necessary to choose the rigid protion of the 

receptor by selecting the menu “Grid” in the Toll Bar, followed by the option 

“Macromolecule”, “Choose…” and selecting the file with the rigid portion of the receptor 

instead of the fully rigid receptor. Also, there is the need to specify the flexible residues 

file for the flexible docking, which is done by selecting “Grid”, “Set Map Types”, 

“Choose FlexRes…” and selecting the appropriate file containing said residues.  The 3D 

search space values are also incremented to 50 for each dimension because of the reasons 

mentioned before. This is carried out in the “Grid Options” window by changing the 

values manually after the next brief set of steps has been cleared: select “Grid”, “Grid 

Box…”. The remaining of the protocol for the creation of the grid maps that are going to 

be used in the actual docking is the same for both rigid and flexible docking. The final 

part that differs from the rigid docking concerns the creation of the DPF file to be used in 

the flexible docking with AD4. In order to create a DPF file that includes flexible residues, 

the same procedure of selecting the rigid and flexible portion of the receptor is necessary; 

for that, the next set of steps must be carried out: “Docking”, “Macromolecule”, “Set 

Rigid Filename…” and select the file providing the rigid portion of the receptor molecule. 

For the specification of the flexible part, the steps are as follows: “Docking”, 

“Macromolecule”, “Set the Flexible Residues Filename…” and then choose the file 

providing the flexible residues to the docking. As for the rest of the process, it is the same 

as the one previously used in the rigid docking.  

4.18 Meaningful Data Extraction and Result Compilation 

 An initial scanning of the available literature about ITCs-mediated inhibition of 

CYP enzymes revelead that several of those proteins had their activity inhibited in the 

presence of such ligand molecules. Furthermore, several articles even provided Ki values 

obtained from real live CYP-ITC binding inhibition assays, which were compiled and 

latter used as both a basis for choosing which ITCs-CYPs molecules to dock in a virtual 

environment as well as a way to further compare the results obtained from the docking 

experiment with experimental values. 

In the docking studies, a parallel was drawn between the type of results given out 

by Vina [binding affinity energy and root-mean-square deviation (RMSD)] and AD4 

[binding affinity, inhibition constant (Ki) and RMSD)] that would enable not only the 
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comparison between both programs but also between those set of results and the live 

experimental-driven (i.e. empirical) data found in the literature.  

The binding affinity energy is inversely correlated with how strong the affinity of 

a certain ligand is towards a specific receptor protein; the more negative the binding 

energy is, the stronger the affinity of that protein-ligand complex. 

The RMSD of a particular and specific ligand corresponds to a measurement value 

that emcompasses the existing difference between the atom positions of a docking 

predicted structure and its originally observed (i.e. lab-driven) position in a crystal; the 

more deviated a predicted structure is from the reference structure, the higher the RMSD 

for that structure will be. 

 

Fig.: 4.21 – Formula to calculate the RMSD value between two identical 

structures (a, b); N stands for heavy atoms in structure a, while min correspondes to the 

minimum of all the atoms (j) in structure b that belong to the same atom type (i) in 

structure a (Trott, O.; Olson, A. J.; 2010). 

 

The program Vina assumes the best docked ligand structure is the actual position 

of the ligand, and in doing so, it assigns the first docked ligand structure a RMSD value 

of 0. Vina will subsequently calculate the RMSD for the remaning ligand structures using 

the first one as reference. As such, the only means to have usable RMSD values for the 

best ligand structure is to use the program AD4. To actually use the RMSD values 

computed by AD4, the coordenates of both crystallographic structures to be compared 

have to be the same or at least they have to be very close together. This last aspect is 

essential in order to have an estimate as real as possible of how differente the ligand 

position would be if it was docked to another receptor molecule because AD4 uses the 

ligand’s original coordenates when calculating the RMSD. The alignment process is 

Where 
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worked out in PyMOL with the receptor molecules in the PDB format by following the 

next set of commands: load both molecules (“load <name of the crystallographic 

structure>)” to which a calculated estimate of RMSD is to be achieved one after the other; 

remove water molecules (“remove HOH/”) and additional molecular chains (“remove not 

chain a”); align the polypeptide chains (“align  <name of the crystallographic strcture to 

be aligned>, <name of the fixed crystallographic structure>,”); and finaly save the 

resulting alignment (save <name of the aligned crystallographic structure>, <name of the 

crystallographic strcture to be aligned>”). This last step ensures that the saved file is has 

the first crystallographic strcture but with coordenates that have been aligned with the 

second structure. 

The Ki values for specific complexes can be empirically obtained in a lab setting 

by running specific assays on those same complexes for which the Ki is to be known. 

Another way of doing this is to obtain it by running a docking program with exactly the 

same ligand and receptor protein. Of course the estimated Ki value generated by virtual 

docking will always have to be supported by concrete factual evidence provided by the 

experimental data. Accurately predicting a Ki through docking alone is quite difficult 

since many aspects need to be considered when estimating such a measurment (e.g. static 

receptor and absence of water molecules).  

While Vina binding affinities can be used to assess the docking performance, 

RMSD values produced by this program are unusable since they are calculated relative to 

the best docking mode and not the original ligand conformation (experimental 

conformation in the PDB file). Since both Vina´s and AD4 set of results were to be 

compared with the results provided by the articles in the current literature, it was thought 

to be more practical to convert the affinity binding energies into Ki values by using the 

same formula used by AD4 and then procced to compare all the results available at hand.  
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Fig.: 4.22 – Converting binding free energy into Ki (see Bibliography website 

section for references) 

 

 From both the formula shown above and the relevant information mentioned 

previously, one can conclude that a more stable ligand-receptor protein will lead to a more 

negative affinity binding energy (i.e. deltaG), which in turn will lead to a smaller Ki value, 

and vice-versa. 

 

 

 

 

 

 

 

 



 

72 

 

 

5. Results and Discussion 

The purpose of this work was to study how effective the binding, and therefore, 

the inhibition of CYP enzymes by ITCs actually is and, at the same time, to work out an 

assessment and comparative evaluation of the docking programs used. The present 

section is organized as a series of fundamental questions about the work that are each 

presented and answered based on the relevant results of the work. 

5.1 Are the best docked structures close to the experimental docked 

structures? 

After carefully viewing and analyzing both the out.pdbqt and log files from Vina 

and the .dlg files from AD4, one can conclude that, in the great majority of the cases, the 

orientation and placement of the best docked ligand structure are quite similar to those of 

the experimental crystallographic structure (see Fig. 5.1). However, the best docked 

structure is not always the one with the best (most negative) affinity energy – at the 

expense of a less negative G, the RMSD (relative to the crystal structure) of that 

structure will turn out to be smaller than the one for the other docked structure, which 

means that it will be closer, in terms of space positioning, to the crystallographic ligand 

structure. Nevertheless, even the best docked structures usually present a small 

displacement relative to the reference crystallographic structure. An explanation to this 

aspect may lie with either the serach algorithm (further improvement and refinment may 

lead to more accurate docking results) or the chosen docking parameters. Furthermore, 

despite the fact that the programs used have different docking algorithms, they were both 

capable of finding several best solutions of which simultaneously had the best affinity 

energy value and the 3D molecular orientation close to the experimental docked structure. 

Finally, the mean Ki values of the in-silico docked ligands obtained with Vina were, for 

the most part, in close agreement with the ones found in literature. As for the set of results 

from AD4 there were some large differences when compared with the Ki values obtained 

from experimental docking assays. Also, the number of results per set for each docking 

run was much higher in Vina than in AD4. This difference in the results can be explained 

by considering the fact that Vina has a more up to date search algorithm and docking 

function than AD4. Vina also uses a different set of docking parameters, which possibily 

influences the docking results, leading it to generate results that more closely resemble 
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the crystallographic strucutres and their corresponding Ki values than its counterpart (see 

Annex 7.3, 7.4, and the Supplementary Material). 

 

Fig.: 5.1 – The final result of the docking of the ligand D4G with its receptor file 

(CYP2A6 2FDY). As one can see, the best docked structure has a 3D conformation that 

is very close to the corresponding crystal ligand. 

 

5.2 Which program is better for rigid docking? 

Analysis of the Ki values obtained for the rigid docking using both programs 

revealed that Vina produces better results (i.e. lower Ki values) for the docked ligand than 

AD4. Vina was also capable of generating docking results that are more similar to the 

experimental data compared with AD4. This happens throughout all the ligand-receptor 

complexes that were produced and evaluated for their estimated Ki values. Nevertheless, 

there are a few exceptions; not all the results from Vina have the lowest Ki values when 

compared with AD4 [e.g. D4G-2FDY(CYP2A6)], though that may result from the fact 

that Vina works with an non-deterministic algorithm, a random number generator is used 

in the algorithm and the software may not always find the best solution in the set number 
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of iterations of the method. While this means that Vina will not always get the right 

answer, i.e. the best docked mode when compared with AD4, an increase in the 

exaustiveness of the search will normally provide a better solution. In general, Vina will 

normally find both quicker and better results for a ligand-protein complex docking 

prediction when compared with AD4. This is to be expected since Vina is endowed with 

a different and more up to date algorithm with increased accuracy and rapid response, 

allowing it to find better results than its predecessor, statistical speaking (see Fig. 5.2 and 

the Supplementary Material). 

 

Fig.: 5.2 – Comparison between Vina and AD4 Mean Ki value results for rigid 

mode using CYP2A6 receptor protein against ITCs and native ligands.  

 

5.3 Which program is better for flexible docking? 

As for the flexible docking, Vina still manages to produce the best docking results. 

Once again, this is explained by the fact that Vina uses a different and more up to date 

algorithm with increased accuracy and rapid response. The results in flexible mode 

derived from Vina are better than the ones from rigid mode because there is the selection 

of flexible residues around the docked ligand structure, which will alter the ligand binding 

site properties. This will result in a more adequate conformational space for the ligand to 

dock into the heme group of the protein, which will lead to a better output result for the 

docking calculation. Additionaly, the difference observed between both programs is 

greater in flexible than in rigid mode (see Fig. 5.3 and the Supplementary Material). 
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Fig.: 5.3 – Comparison between Vina and AD4 Mean Ki value results for flexible 

mode using CYP2A6 receptor protein against ITCs and native ligands. 

 

5.4 Are results generally better for flexible docking? 

After comparing the flexible and rigid docking results from both programs, a 

distinction is clearly visible between flexible docking and rigid docking. In Vina, flexible 

docking is only marginally better at producing lower Ki values from the predicted docking 

poses of the ligand when compared with rigid docking. In the case of AD4, however, the 

flexible docking results were actually worse, albeit only slightly more than the ones from 

rigid docking. As for the AD4´s RMSD values, there is a noticeable difference between 

flexible and rigid docking, with the last producing lower docking RMSD values for most 

of the native ligands. This may be due to the different docking algorithms employed by 

the two programs together with the altered fitting of the ligand into the receptor protein, 

brought about by choosing flexible residues in the macromolecule. Another possible 

explanation that may account for why this difference in Ki values is greater in AD4 than 

in Vina is the first´s energy function, which is used to estimate Ki. Finding the closest 

conformation (low RMSD) is not the same as finding the the best binder (low Ki). 

Calibration errors in the energy function may explain the observed discrepance. There is 

also the problem of the high RMSD values calculated by AD4 in flexible docking mode, 

since they should not be as high as they are because the receptor proteins only have about 

30-40 angstrom in diameter. A possible explanation may lie with the fact that perhaps the 

program AD4 has some kind of error that keeps it from correctly calculating the RMSD 
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for the docked ligands when the said docking has been performed in flexible mode (see 

Figs. 5.4, 5.5, 5.6 and the Supplementary Material). 

 

Fig.: 5.4 – Comparison between mean Ki values obtained for the rigid and flexible 

docking modes in Vina, using CYP2A6 receptor protein and ITCs and native ligands. 

 

 

Fig.: 5.5 – Comparison between mean Ki values obtained for the rigid and flexible 

docking modes in AD4, using CYP2A6 receptor protein and ITCs and native ligands. 
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Fig.: 5.6 – Comparison between RMSD values obtained for the rigid and flexible 

docking modes in AD4, using CYP2A6 receptor protein and the respective native ligands. 

 

5.5 Are the results better when docking a ligand to its crystallographic 

partner, as compared to docking to a different structure of the same CYP? 

Since there were several crystallographic structures of the same CYP molecule 

deposited in the PDB website, one interesting fact to know is whether or not the native 

ligands achieve a better docked state when docked to its crystallographic partner as 

opposed to other existing crystallographic structures of the same CYP molecule. For both 

programs, some few ligands do produce a better Ki when docked to its crystallographic 

partner, but for the majority of them, docking of the native ligand to its crystallographic 

partner does produce the lower Ki value available, though it is generally the second best 

result. In AD4, the rigid RMSD values are better when it is the result of the native ligand 

docking with its crystallographic partner. In terms of AD4 flexible RMSD values, the 

same pattern is also generally observed, but to a much lesser extent. This happens because 

in rigid docking the receptor molecule has adapated in order to accommodate the partner 

ligand and as such it will be more difficult to dock a non-partner ligand to an already 

induced fitted receptor. In flexible docking, on the other hand, the receptor can slightly 

adapte to accommodate a non-partner ligand, which may improve the docking results for 

a non-partner ligand. Though it is true that the receptor undergoes induced fitting in order 

to accommodate the ligand, perhaps some other crystallographic structure of the same 

CYP molecule offers a better 3D space in the heme group for other ligands other than its 
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own. Additionally, in terms of AD4 flexible RMSD values, it is noteworthy to mention 

that the program AD4 has a possible error that leads it to incorrectly calculate the RMSD 

value for ligands docked in flexible docking mode (see Annex 7.1 and the Supplementary 

Material). 

5.6 How different are the docking results for different crystallographic 

structures of the same CYP-ligand complex? 

Provided there were a few crystallographic structures in the PDB database that 

shared the same ligand-protein complex, it was interesting to try and compare how the 

same ligands would fare if they were to be docked to each other´s crystallographic 

receptor partner. This was performed with the AD4 program since this was the only one 

that provided useable RMSD values, which were a pivotal aspect of this comparison. The 

said docking experiment was done with the ligands 9PL-3T3Q (CYP2A6) and 9PL-3T3R 

(CYP2A6) and the respective CYP2A6 receptor crystallographic strcutures; and 0QA-

4EJH (CYP2A13) and 0QA-4EJI (CYP2A13) and the respective CYP2A13 receptor 

crystallographic strucutres. Unsurprisingly, flexible docking of these particular ligands 

continues to be worse than rigid docking in terms of their Ki values. In rigid mode, the 

docking of 9PL-3T3Q (CYP2A6) with its crystallographic partner is sligly better than 

with its homonym receptor 3T3R (CYP2A6). The same patter happens for the flexible 

docking of 9PL_3T3R. The flexible docking of 9PL-3T3Q (CYP2A6) with its 

crystallographic partner is a little bit worse than with 3T3R (CYP2A6). On the other hand, 

the flexible docking of 9PL-3T3R (CYP2A6) with its crystallographic partner yields a 

better Ki value than with the non-partner receptor molecule. In the case of CYP2A13, the 

rigid docking of 0QA-4EJH (CYP2A13) with its receptor crystallographic partner yields 

a little bit worse than with the crystallographic receptor 4EJI (CYP2A13), contrary to 

what happens for the rigid docking of 0QA-4EJI (CYP2A13). The flexible docking of 

CYP2A13 crystallographic partners yields the lowest Ki value when compared with 

docking between flexible non-crystallographic partners. Additionally, the rigid docking 

of 9PL-3T3R (CYP2A6) with its crystallographic partner yields the closest Ki result to 

the experimental data, while in the case of CYP2A13 was the 0QA-4EJH (CYP2A13) 

with rigid 4EJH (CYP2A13) that was closest to the experimental Ki. In general, the Ki 

values obtained do not varie much when compared within the same docking mode.  
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As for the RMSD values obtained from the docking, the flexible mode yields the 

highest (i.e. worst) RMSD values. The rigid docking of 9PL-3T3Q (CYP2A6) with its 

crystallographic partner results in a slightly worse RMSD value than with 3T3R 

(CYP2A6), while the docking of 9PL-3T3R with its crystallographic partner yields a 

better RMSD value than with 3T3Q (CYP2A6). The flexible docking between 

crystallographic partners of CYP2A6 yields the lowest RMSD value for that docking 

mode, albeit being more pronounced in the docking of 9PL-3T3R (CYP2A6). As for the 

CYP2A13, the docking between crystallographic partners yields a higher RMSD value 

for both docking modes, with rigid mode having better RMSD values than flexible mode 

for the docking between crystallographic partners. As for non-crystallographic partners, 

rigid docking results in RMSD values slightly better than the rigid docking of 

crystallographic partners. In flexible mode, the same patter observed for non-

crystallographic partner rigid docking is also present, albeit being much more pronounced 

than in rigid mode.  

By analyzing the data for the same CYP-ligand crystallographic complex docking, 

it is visible that rigid docking mode of AD4 is clearly better at finding lower RMSD and 

more accurate Ki values (i.e more closely resemble the experimental Ki values found in 

literature) than AD4 flexible docking mode. The difference between flexible and rigid 

RMSD values is perhaps due to the possible error in the way which AD4 calculates the 

RMSD for ligands docked in flexible mode. Nevertheless, more complexes of this type 

have to be available in order to make a statistically viable statement about wether or not 

AD4 is capable of establish a distinction between the docking of different crystallographic 

structures of the same CYP-ligand complex (see Figs. 5.7, 5.8, Annex 7.1 and the 

Supplementary Material). 
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Fig.: 5.7 - Comparison between the RMSD values obtained for the same 

CYP2A6-9PL complex of different crystallographic structures in both rigid and flexible 

docking modes in AD4.  

 

 

Fig.: 5.8 - Comparison between the RMSD values obtained for the same 

CYP2A13-0QA complex of different crystallographic structures in both rigid and flexible 

docking modes in AD4. 
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5.7 How do different ligands rank when docked to an apo structure of its CYP 

partner? 

There are three apo proteins (i.e. a receptor protein that was crystallized without 

ligands) in the list of CYPs procured from the PDB protein library. These CYPs (2PG6 and 

2PG7 from CYP2A6; and 1OG2 from CYP2C9) are receptor molecules in which induced 

fitting to accommodate ligands did not take place. As such, they constitute a further source 

of information on how the docking programs might predict the binding and inhibition of a 

receptor by a foreign ligand without having to crystalize the said ligand-receptor complex 

of interest (see Annex 7.1).  

By analyzing the Vina Ki values of both crystallographic structures of CYP2A6, it 

is visible that the best docked ligand structures are 9PL-3T3Q (CYP2A6), NCT-4EJJ 

(CYP2A6), and SNE-4RUI (CYP2A6). In the case of AD4, the same ligands also managed 

to score the best Ki values when docked to both 2PG6 and 2PG7. However in the Vina 

docking with 2PG7, COU-1Z10 (CYP2A6) is the one with the best Ki value in both types 

of docking, followed by SNE-4RUI (CYP2A6), 9PL-3T3Q (CYP2A6), and NCT-4EJJ 

(CYP2A6). In AD4 rigid mode, 9PL-3T3R (CYP2A6), 9PL-3T3Q (CYP2A6), NCT-4EJJ 

(CYP2A6) and SNE-4RUI (CYP2A6) are the ligands that managed to produce the best Ki 

values, while in flexible mode it was the ligands 8MO-1Z11 (CYP2A6), D1G-2FDU 

(CYP2A6), 9PL3T3R (CYP2A6), and NCT-4EJJ (CYP2A6). As for the RMSD values, the 

ligands D1G-2FDU (CYP2A6), D2G-2FDV (CYP2A6), D3G-2FDW (CYP2A6), D4G-

2FDY (CYP2A6), 8MO-1Z11 (CYP2A6), COU-1Z10 (CYP2A6), and EDO-2PG5 

(CYP2A6) are the ones with the lowest RMSD values in both flexible vs rigid modes as 

well as in the two CYP2A6 crystallographic apo proteins. Once again the RMSD values 

for AD4 flexible mode are too high, though the rigid RMSD is high as well. This is possibly 

explained by an error in the way which AD4 calculates the RMSD (see Figs. 5.9, 5.10, 5.11 

and the Supplementary Material). 
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Fig.: 5.9 – Comparison between Ki values obtained for the rigid and flexible 

docking modes in Vina, using CYP2A6 2PG6 receptor protein and respective CYP2A6 

native ligands. 

 

 

Fig.: 5.10 – Comparison between Ki values obtained for the rigid and flexible 

docking modes in AD4, using CYP2A6 2PG6 receptor protein and respective CYP2A6 

native ligands. 
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Fig.: 5.11 – Comparison between RMSD values obtained for the rigid and flexible 

docking modes in AD4, using CYP2A6 2PG6 receptor protein and respective CYP2A6 

native ligands. 

 

In the only apo protein available for CYP2C9, the ligands 2QJ-4NZ2 (CYP2C9) 

was the one with the smallest Ki, followed by SWF-1OG5 (CYP2C9) and FLP-1R9O 

(CYP2C9) in rigid docking in both programs. In Vina flexible docking, 2QJ-4NZ2 

(CYP2C9) had the smallest Ki followed by the ligand FLP-1R9O (CYP2C9) and SWF-

1OG5 (CYP2C9). In AD4 flexible docking, FLP-1R9O (CYP2C9) had the smallest Ki of 

the three CYP2C9 native ligands, followed by SWF-1OG5 (CYP2C9) and 2QJ-4NZ2 

(CYP2C9). In the case of the RMSD, however, 2QJ-4NZ2 (CYP2C9) was the ligand with 

the worst RMSD value of all the CYP2C9 ligands, SWF-1OG5 (CYP2C9) managed to 

have the lowest RMSD values of the ligand set. In this case, the RMSD values for flexible 

docking are also too high because of a possible error in the program AD4 that leads it to 

miscalculate the RMSD (see Supplementary Material). 

It seems that the ligand pocket located right above the heme group of the CYP2A6 

has a better affinity for ligands that are apolar, with metil groups and with a carbon ring 

in its structure. In the case of CYP2C9, it would seem it has an affinity for ligands with 2 

to 3 ring structures and with both methyl and oxygen groups (see Annex 7.2 and the 

Supplementary Material). 
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5.8 Are results worst when docking a ligand to a non-partner CYP? 

In order to assess if the docking programs were capable of distinguishing a true 

ligand from a experimentally known non-ligand molecule when performing the docking, 

it was of crucial importance to choose negative controls for the in-silico docking 

experiments carried out in this work. These non-partner ligands were chosen from the 

complete set of crystallographic ligands used in this work. Since these non-partner ligands 

were to be docked with the CYP molecules studied in this work, it was necessary that two 

conditions were fulfilled in order the molecules to be selected for the negative control 

docking runs. Four ligands were selected, one from every CYP molecule and the 

conditions were (1) each ligand showed inhibitory activity towards the CYP it was bound 

to in the PDB structure, and none other and (2) if more than one ligand could filled the 

previous condition, than the one choosen would be the ligand with the best docked Ki 

value for that particular CYP. This second condition would, in theory, minimize the 

possibility that the chosen ligand could inhibit other receptor molecules, and in particular, 

the other CYP molecules used in this work. As such, the four selected ligands for the role 

of negative controls were the following: D4G-2FDY (CYP2A6); IND-2P85 (CYP2A13); 

3QO-3QOA (CYP2B6); and 2QJ-4NZ2 (CYP2C9) (see Annex 7.1, 7.2 and the 

Supplementary Material). 

As it can be seen in rigid docking, the non-partner ligand 2QJ-4NZ2 (CYP2C9) 

seems to be the only one that is actually working as a negative control at all. In the case 

of rigid CYP2A6, the endogenous ligands EDO-2PG5 (CYP2A6) and D1G-2FDU 

(CYP2A6) achieved a worse docking Ki value than any of the controls used in the docking 

against this type of receptor, though 2QJ-4NZ2 (CYP2C9) managed to have a worse Ki 

than all the other ligands in the case of AD4 rigid docking. In the case of flexible AD4 

docking, the controls performed a little better than the native ligands. In rigid Vina 

docking, 2QJ-4NZ2 (CYP2C9) is the only negative controls that works as intended, while 

in flexible Vina docking, the negative controls performed better than the native ligands 

(see Fig. 5.2 – 5.5). 

In the case of CYP2A13, the control ligand 2QJ-4NZ2 (CYP2C9) stands, once 

again, above all the other ligands as being the worst ligand to dock with this CYP in both 

docking programs, albeit with a higher proeminence in AD4. The other two ligands, 
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however, are also incapable of performing bad enough to be considered negative controls 

(see Supplementary Material). 

In CYP2B6, it is the same story all over again for the other two controls other than 

2QJ-4NZ2 (CYP2C9), with one noticeable exception, 06X-3UA5 (CYP2B6). This ligand 

managed to achieve really bad docking results when compared with all the other ligands, 

endogenous and non-partner alike. This event may have something to do with the higher 

structural complexity of the 06X-3UA5 (CYP2B6) ligand when compared with 2QJ-

4NZ2 (CYP2C9), which might hamper down its docking, more so than what happens 

with 2QJ-4NZ2 (CYP2C9) (see Supplementary Material). 

Finally, in the case of CYP2C9, IND-2P85 (CYP2A13) was the only negative 

control ligand that managed to act like a proper negative control (see Supplementary 

Material). 

Nonetheless, if 2QJ-4NZ2 (CYP2C9) seemed to be a fine negative control in rigid 

docking, on the other hand, it was supplanted by many other ligands in flexible docking. 

Though flexible docking produces better results than its rigid counterpart, in Vina at least; 

this also means that making receptor residues flexible may increase the chances of having 

a bad ligand fitting better in the receptor molecule, thus giving out better Ki values than 

would be expected for what should have been a negative control. In regards to the other 

negative controls used, once in flexible docking, they were not capable of standing out as 

negative controls, even to the point where they were undistinguishable from the other 

ligands. Perhaps the only praiseworthy reference for the negative controls in flexible 

mode was of 3QO-3QOA (CYP2B6) when docked to CYP2A13 in Vina, which managed 

to stand out a little apart from the background of the other ligands, both endogenous and 

negative controls alike (see Fig. 5.2 – 5.5 and the Supplementary Material). 

In terms of RMSD values, the negative controls were not easily set apart from the 

rest of the ligands in both flexible and rigid modes. In CYP2A6, several native ligands 

had similar docking results to the negative controls. In CYP2A13, only 8MO-1Z11 

(CYP2A6), 9PL-3T3Q (CYP2A6) and 9PL-3T3R (CYP2A6) had RMSD values as high 

as the negative controls, though the rest of the native ligands did not perform much better. 

In CYP2B6, D2G-2FDV (CYP2A6), D3G-2FDW (CYP2A6) and SNE-4RUI (CYP2A6) 

had RMSD equaly bad as the negative controls 2QJ-4NZ2 (CYP2C9) and D4G-2FDY 

(CYP2A6). In CYP2C9, the negative controls had a RMSD very close to the native 
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ligands’ RMSD. A possible explanation for the AD4 flexible RMSD values to be so 

elevated compared with AD4 rigid RMSD may be due to the presence of an error that 

affects the way in which AD4 calculaes the RMSD for ligands docked in flexible mode 

(see Supplementary Material). 

Despite the fact that negative control ligands were carefuly selected based on the 

aforementioned reasoning, one must consider the fact that they belong to the same group 

with the rest of the ligands used in this work. As such, since they were capable of 

inhibiting CYPs, albeit different types of CYPS nonetheless, perhaps some of them were 

simply too structurally similar or chemically related to actually serve as usable docking 

negative controls. 

5.9 Are AD4 or Vina better or worse at docking specific chemical classes? 

With the exception that Vina can easily find better docking solutions than AD4, both of 

these programs seem to be able to best dock ligands with a few shared characteristics 

among themselves: non-polar molecules, with one to two (preferable) aromatic ring 

structures or a chair ring structure and with few to nil rotatable bonds. All of these 

characteristics make up the kind of structure the best docked molecules have in common 

with one another in both docking programs (see Annex 7.2 and the Supplementary 

Material). 

5.10 How good fare the ITCs when compared with the native ligands? 

The performance of the ITCs´docking status with the intended CYPs is not the 

best there is but it is also not the worst. In the CYP2A6 docking, there are some 

remarkably good results from Vina Ki values when compared with the native ligands. 

However, in AD4, the docking results seem more unstable and the ITCs are in agreament 

with the other native ligands in the sense that it does not seem to be any result that is 

capable of standing out from the rest (see Figs. 5.2 – 5.5). 

In the case of CYP2A13, Vina Ki values from the ITCs are in aggreament with 

the other ligand docking results, except PHITC, which had very good docking results with 

this particular type of CYP. As for the AD4 docking performance of this type of ligands, 

the picture is similar to CYP2A6 (See Supplementary Material). 

The docking with CYP2B6 seems to separate the ligands into three categories: the 

good, the bad, and the middle ones. The docking results for the ITCs fall in this last 
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category, indicating that they are just mild inhibitors of this type of CYP. In the program 

AD4, however, there does not seem to be any kind of distinct and fine separation between 

the docking results of the several native and ITC ligands (See Supplementary Material). 

Lastly but not least, CYP2C9 docking results from Vina clearly dictate that ITCs 

are very poor inhibitor ligands of this type of CYP, achieving the worst Ki values from 

all the ligands used in the in-silico docking experiment. In AD4, the docking difference 

still is that ITCs have performed poorly but it is not so transparent as the one from Vina, 

with some native ligands having equally or worst docking results than ITCs (See 

Supplementary Material). 

In the case of the mean RMSD values from AD4 for the docking, since the ITCs 

used in the docking were created in HyperChem, their RMSD values are not to be 

considered since they were, obviously, not compared with a structure naturally found on 

those receptor CYPs but rather from the 3D initial coordinates produced by the molecular 

drawing software. Nonetheless, there doesn’t seem to be any difference from those 

RMSD values when compared with the ones from the docking of the native ligands (See 

Supplementary Material). 

5.11 Is there a correlation between the experimental and the calculated 

docking results? 

For each ligand, the calculated Ki that is closest to the experimental value was 

selected, seeking to maximize the expected correlation between experiment and 

calculation. Though it can be said that Vina has slightly more dots on the X = Y line than 

AD4, there is not a clear correlation between the results from either program and the 

experimental data found in the literature. It is clear, however, that AD4 computed values 

have a strong tendency to be below the X=Y line, meaning that calculated values are 

almost always larger than the experimental ones (this is likely to be a calibration problem 

with the scoring function in AD4). It may be possible that parameter problems with either 

the scoring function or the search algoritm are contributing to the discrepancy observed 

between the calculated and experimental Ki results. There is also the possibility that some 

other unknown factor is influencing the calculated docking results and seting them further 

apart from the experimental ones. A more thourgh research is needed in order to elucidate 

what is causing this difference (see Figs. 5.12, 5.13, Annex 7.3, 7.4, and the 

Supplementary Material). 
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Fig.: 5.12 – Relationship between the experimental and Vina calculated Ki 

docking results for rigid and flexible mode. 

 

 

Fig.: 5.13 – Relationship between the experimental and AD4 calculated Ki 

docking results for rigid and flexible mode. 
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7. Annexes 

7.1 Receptor-Ligand Complex Identification 

CYPs Native Ligands 

Name PDB 

Code 

Scientific Name Common 

Name 

PDB 

Code 

Molecular 

Formula 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2A6 

1Z10 2H-1-benzopyran-2-one Coumarin COU C9 H6 O2 

1Z11 9-methoxy-7H-

furo[3,2-

G][1]benzopyran-7-one 

Methoxsalen 8MO C12 H8 O4 

2FDU N,N-dimethyl(5-

(pyridin-3-yl)furan-2-

yl)methanamine 

 D1G 

or 

Nic2c 

C12 H14 N2 O 

2FDV N-methyl(5-(pyridin-3-

yl)furan-2-

yl)methanamine 

 D2G 

or 

Nic2b 

C11 H12 N2 O 

2FDW (5-(pyridin-3-yl)furan-

2-yl)methanamine 

 D3G 

or 

Nic2a 

C10 H10 N2 O 

2FDY 4,4'-dipyridyl disulfide Adrithiol D4G C10 H8 N2 S2 

2PG5 1,2-ethanediol Ethylene 

Glycol 

EDO C2 H6 O2 

2PG6     

2PG7     

3EBS N-(4-

ethoxyphenyl)acetamid

e 

Phenacetin N4E C10 H13 N O2 

3T3Q (3S,4R)-3-ethyl-4-[(1-

methyl-1H-imidazol- 5-

yl)methyl]dihydrofuran

-2(3H)-one 

Pilocarpine 9PL C11 H16 N2 O2 

3T3R (3S,4R)-3-ethyl-4-[(1-

methyl-1H-imidazol- 5-

yl)methyl]dihydrofuran

-2(3H)-one 

Pilocarpine 9PL C11 H16 N2 O2 

4EJJ (S)-3-(1-

methylpyrrolidin-2-

yl)pyridine 

Nicotine NCT C10 H14 N2 

4RUI (1S,5S)-4-methylidene-

1-(propan-2-

yl)bicyclo[3.1.0]hexane 

Sabinene SNE C10 H16 

 

 

 

 

 

2P85  indole IND C8 H7 N 

3T3S (3S,4R)-3-ethyl-4-[(1-

methyl-1H-imidazol- 5-

yl)methyl]dihydrofuran

-2(3H)-one 

Pilocarpine 9PL C11 H16 N2 O2 
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2A13 

4EJG (S)-3-(1-

methylpyrrolidin-2-

yl)pyridine 

Nicotine NCT C10 H14 N2 

4EJH 4-

[methyl(nitroso)amino]-

1-(pyridin-3-yl)butan- 

1-one 

 0QA 

or 

NNK 

C10 H13 N3 O2 

4EJI 4-

[methyl(nitroso)amino]-

1-(pyridin-3-yl)butan- 

1-one 

 0QA 

or 

NNK 

C10 H13 N3 O2 

 

 

 

 

 

 

 

 

 

 

 

2B6 

3IBD 4-(4-

chlorophenyl)imidazole 

 CPZ C9 H7 Cl N2 

3QOA 4-benzylpyridine  3QO C12 H11 N 

3QU8 4-(4-

nitrobenzyl)pyridine 

 3QU C12 H10 N2 O2 

3UA5 O3-ethyl O5-methyl 2-

(2-

azanylethoxymethyl)- 

4-(2-chlorophenyl)-6-

methyl-1,4-

dihydropyridine- 3,5-

dicarboxylate 

Amlodipine 06X C20 H25 Cl 

N2 O5 

4I91 (+)-3,6,6-

trimethylbicyclo[3.1.1]

hept-2-ene 

(+)-alpha-

Pinene 

TMH C10 H16 

4RQL (1S,5S)-4-methylidene-

1-(propan-2-

yl)bicyclo[3.1.0]hexane 

Sabinene SNE C10 H16 

4RRT (1R,6S)-3,7,7-

trimethylbicyclo[4.1.0]

hept- 3-ene 

(+)-3-carene 3V4 C10 H16 

 

 

 

 

2C9 

1OG2     

1OG5  S-warfarin SWF C19 H16 O4 

1R9O  Flurbiprofen FLP C15 H13 F O2 

4NZ2 (2R)-N-{4-[(3-

bromophenyl)sulfonyl]-

2-chlorophenyl}- 3,3,3-

trifluoro-2-hydroxy-2-

methylpropanamide 

 2QJ C16 H12 Br Cl 

F3 N O4 S 
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7.2 Native Ligands Molecular Structure  

 

                

                         06X                                                                   0QA or NNK 

                

                            2QJ                                                                       3QO 

                

                           3QU                                                                       3V4 
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                            8MO                                                                      9PL 

                

                            COU                                                                     CPZ 

                

                     D1G or Nic2c                                                       D2G or Nic2b 
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                     D3G or Nic2a                                                              D4G 

                

                           EDO                                                                       FLP 

                

                           IND                                                                        N4E 
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                           NCT                                                                       SNE 

                

                           SWF                                                                      TMH 

 

 

 

 

 

 

 

 

 



 

114 

 

 

7.3 ITCs Ki values found in Literature 

Type of ITC Inhibition 

Mechanism 

CYP Isoform  Ki (μM) References 

BITC Non-

Competitive 

Inhibition 

2A6 4.1 Schlicht, K. E.; 

2007 

PEITC Competitive 

Inhibiton 

2A6 18.2 ± 2.5 

[COU] 

Nakajima, M. et 

al.; 2001 

PEITC Partial Non-

Competitive 

Inhibition 

2A6 0.37 Schlicht, K. E.; 

2007 

PHITC Non-

Competitive 

Inhibition 

2A6 19.9 Schlicht, K. E.; 

2007 

Weymarn, L. B. 

von et al.; 2007 

PPITC Non-

Competitive 

Inhibition 

2A6 2.6 Schlicht, K. E.; 

2007 

Weymarn, L. B. 

von et al.; 2007 

BITC Non-

Competitive 

Inhibition 

2A13 1.26 Schlicht, K. E.; 

2007 

PEITC Uncompetitive 

Inhibition 

2A13 0.03 Schlicht, K. E.; 

2007 

PHITC Non-

Competitive 

Inhibition 

2A13 1.1 Schlicht, K. E.; 

2007 

Weymarn, L. B. 

von et al.; 2007 

PPITC Non-

Competitive 

Inhibition 

2A13 0.1 Schlicht, K. E.; 

2007 

PPITC Non-

Competitive 

Inhibition 

2A13 0.14 

 

Weymarn, L. B. 

von et al.; 2007 

PEITC Non-

competitive 

Inhibition 

2B6 1.5±0.0 Nakajima, M. et 

al.; 2001 

PEITC Non-

competitive 

Inhibition 

2C9 6.5±0.9 Nakajima, M. et 

al.; 2001 

 

All of these different CYPs´ Ki were determined using human CYP enzymes 
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7.4 Endogenous Ligands Constants found in Literature 

Ligand Ligand 

Type 

CYP Isoform Ki (a) or Kd 

(b) or Ks (c) 

(μM) 

References 

0QA or 

NNK 

Substrate 2A6 (b) 1.4 DeVore, N. 

M.; Scott, 

E. E.; 2012 

8MO Non-

competitive 

inhibitor 

2A6 (a),(b) 1.9 Yano, J. K. 

et al.; 2005 

Lu, H. et 

al.; 2014 

Draper, A. 

J. et al.; 

1997 

8MO Non-

competitive 

inhibitor 

2A6 (b) 1.3 DeVore, N. 

M. et al.; 

2009 

Draper, A. 

J. et al.; 

1997 

9PL Mixed 

inhibitor 

2A6 (a) 101 ± 17 

[COU] ; 3.0 

± 0.5 [p-

Nitrophenol] 

DeVore, N. 

M. et al.; 

2012 

9PL Competitive 

inhibitor 

2A6* I208S ⁄ I300F ⁄ G301A ⁄ 

S369G 

(a) 49 ± 3 

[COU] 

DeVore, N. 

M. et al.; 

2012 

9PL Competitive 

inhibitor 

2A6 (b) 3.6 DeVore, N. 

M. et al.; 

2012 

9PL Competitive 

inhibitor 

2A6*I208S ⁄ I300F ⁄ G301A ⁄ 

S369G 

(b) 1.5 DeVore, N. 

M. et al.; 

2012 

COU Substrate 2A6 (b) 3.1 DeVore, N. 

M. et al.; 

2009 

COU Substrate 2A6*I208S/I300F/G301A (b) 6.0 DeVore, N. 

M. et al.; 

2009 

COU Substrate 2A6*I300F/G301A/S369G (b) 3.1 DeVore, N. 

M. et al.; 

2009 

COU Substrate 2A6*I308S/I300F/G301A/S369G (b) 2.3 DeVore, N. 

M. et al.; 

2009 

D1G or 

Nic2c 

type II 

spectra 

2A6 (a) 14.2 ± 9 Yano, J. K. 

et al.; 2006 

Lu, H. et 

al.; 2014 
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D2G or 

Nic2b 

type II 

spectra 

2A6 (a) 0.8 ± 0.2 Yano, J. K. 

et al.; 2006 

Lu, H. et 

al.; 2014 

D3G or 

Nic2a 

type II 

spectra 

2A6 (a) 0.1 ± 0 Yano, J. K. 

et al.; 2006 

Lu, H. et 

al.; 2014 

D4G Competitive 

inhibitor 

2A6 (a) 0.06 

[COU] 

Fujita, K.; 

Kamataki, 

T.; 2001 

EDO Substrate 2A6 (b) 81.2 ± 

13.7 

Sansen, S. 

et al.; 2007 

EDO Substrate 2A6*N297Q (b) 14.4 ± 

1.1 

Sansen, S. 

et al.; 2007 

EDO Substrate 2A6*L240C/N297Q (b) 22.8 ± 

3.6 

Sansen, S. 

et al.; 2007 

EDO Substrate 2A6*N297Q/I300V (b) 17.7 ± 

1.8 

Sansen, S. 

et al.; 2007 

N4E Substrate 2A6*I300F/G301A (b) 103 DeVore, N. 

M. et al.; 

2008 

N4E Substrate 2A6*I208S/I300G/G301A (b) 63 DeVore, N. 

M. et al.; 

2008 

N4E Substrate 2A6*I300F/G301A/G369S (b) 13 DeVore, N. 

M. et al.; 

2008 

N4E Substrate 2A6*I208S/I300F/G301A/G369S (b) 21 DeVore, N. 

M. et al.; 

2008 

NCT Substrate 2A6 (b) 103.0 DeVore, N. 

M. et al.; 

2009 

SNE Substrate 2A6 (b) 4.20 Shah, M. 

B. et al.; 

2015 

TMH Type I 

spectra 

Inhibitor 

2A6 (b) 0.17 Wilderman, 

P. R. et al.; 

2013 

0QA or 

NNK 

Substrate 2A13 (b) 4.4 DeVore, N. 

M.; Scott, 

E. E.; 2012 

8MO Non-

competitive 

inhibitor 

2A13 (a) 0.11 ± 

0.03 [COU] 

Weymarn, 

L. B. von et 

al.; 2005 

8MO Non-

competitive 

inhibitor 

2A13 (b) < 0.10 DeVore, N. 

M. et al.; 

2009 
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Weymarn, 

L. B. von et 

al.; 2005 

9PL Competitive 

inhibitor 

2A13 (b) 3 ± 1 DeVore, N. 

M. et al.; 

2012 

9PL Competitive 

inhibitor 

2A13 (a) 48 ± 4 

[COU]; 1.4 

± 0.1 [p-

Nitrophenol] 

DeVore, N. 

M. et al.; 

2012 

COU Substrate 2A13 (b) 2.7 DeVore, N. 

M. et al.; 

2009 

COU Substrate 2A13*L110V (b) 1.7 DeVore, N. 

M. et al.; 

2009 

COU Substrate 2A13*A117V (b) 1.8 DeVore, N. 

M. et al.; 

2009 

COU Substrate 2A13*S208I (b) 7.9 DeVore, N. 

M. et al.; 

2009 

COU Substrate 2A13*A213S (b) 3.4 DeVore, N. 

M. et al.; 

2009 

COU Substrate 2A13*F300I (b) 14.0 DeVore, N. 

M. et al.; 

2009 

COU Substrate 2A13*A301G (b) 4.2 DeVore, N. 

M. et al.; 

2009 

COU Substrate 2A13*M365V (b) 5.0 DeVore, N. 

M. et al.; 

2009 

COU Substrate 2A13*L366I (b) 0.57 DeVore, N. 

M. et al.; 

2009 

COU Substrate 2A13*G369S (b) 6.0 DeVore, N. 

M. et al.; 

2009 

COU Substrate 2A13*H372R (b) 1.5 DeVore, N. 

M. et al.; 

2009 

IND  2A13   

N4E Substrate 2A13 (b) 34 DeVore, N. 

M. et al.; 

2008 

N4E Substrate 2A13*L110V (b) 18 DeVore, N. 

M. et al.; 

2008 
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N4E Substrate 2A13*A117V (b) 20 DeVore, N. 

M. et al.; 

2008 

N4E Substrate 2A13*S208I (b) 108 DeVore, N. 

M. et al.; 

2008 

N4E Substrate 2A13*A213S (b) 65 DeVore, N. 

M. et al.; 

2008 

N4E Substrate 2A13*M365V (b) 135 DeVore, N. 

M. et al.; 

2008 

N4E Substrate 2A13*L366I (b) 2.2 DeVore, N. 

M. et al.; 

2008 

N4E Substrate 2A13*G369S (b) 97 DeVore, N. 

M. et al.; 

2008 

N4E Substrate 2A13*H372R (b) 20 DeVore, N. 

M. et al.; 

2008 

NCT Substrate 2A13 (b) 22.0 DeVore, N. 

M. et al.; 

2009 

06X Competitive 

inhibitor 

2B6 (a) 1.95 ± 

0.45 [BR] 

Katoh, M. 

et al.; 2000 

06X Non-

competitive 

inhibitor 

2B6 (a) 0.68 ± 

0.08 [BR] 

Katoh, M. 

et al.; 2000 

3QO Competitive 

inhibitor 

2B6* Y226H/K262R (b) 0.21 ± 

0.09 [7-

EFC] 

Shah, M. 

B. et al.; 

2011 

Korhonen, 

L. E. et al.; 

2007 

3QU Competitive 

inhibitor 

2B6* Y226H/K262R (b) 0.16 ± 

0.07 [7-

EFC] 

Shah, M. 

B. et al.; 

2011 

Korhonen, 

L. E. et al.; 

2007 

3V4 Inhibitor 2B6*Y226H, K262R (b) 1.82 Shah, M. 

B. et al.; 

2015 

Wilderman, 

P. R. et al.; 

2013 

CPZ Inhibitor 2B6*Y226H/K262R (c) 0.19 Gay, S. C. 

et al.; 2010 
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D2G or 

Nic2b 

type II 

spectra 

2B6 (a) 179 ± 11 Yano, J. K. 

et al.; 2006 

Lu, H. et 

al.; 2014 

D3G or 

Nic2a 

type II 

spectra 

2B6 (a) 95.5 ± 12 Yano, J. K. 

et al.; 2006 

Lu, H. et 

al.; 2014 

SNE Substrate 2B6* Y226H, K262R (b) 0.08 Shah, M. 

B. et al.; 

2015 

TMH Type I 

spectra 

Inhibitor 

2B6* Y226H, K262R (b) 0.22 Wilderman, 

P. R. et al.; 

2013 

TMH Type I 

spectra 

Inhibitor 

2B6* Y226H, K262R (c) 0.38 ± 

0.23 

Wilderman, 

P. R. et al.; 

2013 

2QJ type II 

spectra 

Truncated (UNP residues 30-

490) 2C9* K206E, I215V, 

C216Y, S220P, P221A, I222L, 

I223 

(b) 2.0 Brändén, 

G. et al.; 

2014 

Blanc, J. et 

al.; 2013 

D1G or 

Nic2c 

type II 

spectra 

2C9 (a) 111 ± 8 Yano, J. K. 

et al.; 2006 

Lu, H. et 

al.; 2014 

Blanc, J. et 

al.; 2013 

D2G or 

Nic2b 

type II 

spectra 

2C9 (a) 38.1 ± 5 Yano, J. K. 

et al.; 2006 

Lu, H. et 

al.; 2014 

Blanc, J. et 

al.; 2013 

D3G or 

Nic2a 

type II 

spectra 

2C9 (a) 5.9 ± 1.1 Yano, J. K. 

et al.; 2006 

Lu, H. et 

al.; 2014 

Blanc, J. et 

al.; 2013 

FLP Substrate 2C9*I490V (b) 9.6 Wester, M. 

R. et al.; 

2004 

SWF Substrate 2C9 (a) 1.5-4.5 (*) 
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(*) 

http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/Drug

InteractionsLabeling/ucm093664.htm, accessed on 20 April 2015 

 

7-benzyloxyresorufin (BR): CYP2B6 substrate – Katoh, M. et al.; 2000 

7-ethoxy-4-trifluoromethylcoumarin (7-EFC): CYP2B6 substrate – Shah, M. B. et al.; 

2011 

All of these different CYPs´ Ki, Kd and Ks were determined using human CYP 

enzymes. 

 

http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm093664.htm
http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm093664.htm

