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Abstract Sixteen Miocene, Pleistocene, and historic lava flows have been sampled in Lanzarote (Canary
Islands) for paleointensity analysis with both the Coe and multispecimen methods. Besides obtaining new
data, the main goal of the study was the comparison of paleointensity results determined with two different
techniques. Characteristic Remanent Magnetization (ChRM) directions were obtained in 15 flows, and
12 were chosen for paleointensity determination. In Thellier-type experiments, a selection of reliable
paleointensity determinations (43 of 78 studied samples) was performed using sets of criteria of different
stringency, trying to relate the quality of results to the strictness of the chosen criteria. Uncorrected and
fraction and domain-state corrected multispecimen paleointensity results were obtained in all flows. Results
with the Coe method on historical flows either agree with the expected values or show moderately lower
ones, but multispecimen determinations display a large deviation from the expected result in one case. No
relation can be detected between correct or anomalous results and paleointensity determination quality or
rock-magnetic properties. However, results on historical flows suggest that agreement between both
methods could be a good indicator of correct determinations. Comparison of results obtained with both
methods on seven Pleistocene flows yields an excellent agreement in four and disagreements in three
cases. Pleistocene determinations were only accepted if either results from both methods agreed or a result
was based on a sufficiently large number (n> 4) of individual Thellier-type determinations. In most
Pleistocene flows, a VADM around 5 3 1022 Am2 was observed, although two flows displayed higher values
around 9 3 1022 Am2.

1. Introduction

Knowledge about the characteristics and variations of the ancient Earth’s magnetic field can supply informa-
tion of great interest to gain a better understanding of the processes associated with the evolution of the
Earth’s profound interior. Paleomagnetic studies often only supply the directional information provided by
the remanence vector, but a better comprehension of the characteristics and variations of the geomagnetic
field also needs the information provided by the intensity of the paleofield vector. However, while paleo-
field directions are relatively easy to obtain as they are generally parallel to magnetization directions, deter-
minations of the absolute paleointensity of the Earth’s magnetic field are much more complicated, because
the magnetization intensity recorded in rocks is not equal, but only proportional to the field strength. To
date, several different methods for paleointensity determination have been used, but those based on the
method originally proposed by Thellier [Thellier and Thellier, 1959] are deemed to be the most reliable ones
to retrieve the absolute value of the field strength, as they rely on a rigorous physical background.

Through the acquisition of thermoremanent magnetisation (TRM) during their formation, volcanic rocks can
carry a geologically instantaneous and accurate record of the Earth’s magnetic field, allowing the retrieval
of absolute paleointensity values. However, as shown by the paleointensity database PINT2015.05 [Biggin
et al., 2010], existing data are still limited and not uniformly distributed. The failure rate of the experiments
is often large and the dispersion of paleointensity results is much higher than the scatter of standard direc-
tional results, often because erroneous determinations are regarded to depict a correct paleointensity result
[e.g., Calvo et al., 2002]. In Thellier-type experiments, several requirements have to be fulfilled in order for a
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sample to be able to provide a reliable paleointensity determination: (i) remanence must be a thermorema-
nent magnetization (TRM); (ii) samples must obey the Thellier laws of reciprocity, independence, and addi-
tivity of pTRMs [Thellier and Thellier, 1959], a condition which is fulfilled by noninteracting single-domain
(SD), but not multidomain (MD) particles [Shaskanov and Metallova, 1972; Levi, 1977; Bol’shakov and
Shcherbakova, 1979; Worm et al., 1988]; (iii) irreversible chemical/mineralogical or physical changes pro-
duced during heating [e.g., Kosterov and Pr�evot, 1998] must be prevented or, at least, minimized, as they
can have an effect on magnetic phases, resulting in spurious paleointensity estimates.

In recent years, new methods have been proposed to avoid or diminish problems related to chemical/min-
eralogical alterations during paleointensity experiments or the presence of MD grains. Dekkers and B€ohnel
[2006] have proposed a multispecimen (MS) method, which consists of the acquisition of a pTRM parallel to
NRM at a specific temperature and at a chosen field on a subspecimen taken from a sample, with the exper-
iment being repeated at the same temperature but at different fields on other subspecimens of the same
sample. The field which creates a magnetization that being added to the remaining NRM equals the speci-
men’s original NRM is supposed to have the strength of the original magnetizing field and to be more inde-
pendent of domain structure, as this approach would eliminate magnetic history effects. Alteration can also
be reduced by this method, as specimens are being heated only once, often to intermediate temperatures.
Fabian and Leonhardt [2010], however, consider that application of the MS method on samples containing
MD grains systematically overestimates paleointensity, and Michalk et al. [2008, 2010] have reported paleo-
intensity overestimates with the MS method on lavas containing a significant MD fraction. Fabian and Leon-
hardt [2010] proposed a new MS protocol which includes a domain-state correction but requires an extra
number of heatings and measurements.

Thellier-type and the MS method rely on different measurement protocols which are based on the acquisi-
tion of different energy equilibrium states related to temperature, applied field, demagnetizing field, etc., at
the different experimental stages included in the experiment. Comparison of the results obtained with a
Thellier-type and the MS method accompanied by detailed rock-magnetic experiments may provide useful
information, especially if experiments are performed on rocks in which magnetization was acquired in a
known field. In fact, consistency of paleointensity determinations obtained from methods relying on differ-
ent principles may support the reliability of such results [B€ohnel et al., 2009; De Groot et al., 2013, 2015; Mon-
ster et al., 2015a]. Furthermore, interesting information might be obtained when analyzing rock-magnetic
characteristics of sites in which results obtained with both methods agree or disagree.

Absolute paleointensity data are still scarce if compared to directional paleomagnetic results, so that new suc-
cessful determinations are always interesting in order to improve the existing database. Although several pale-
ointensity studies have been carried out in the Canary Islands, none has been performed in Lanzarote.
Previous paleomagnetic work in Lanzarote is also scarce [Watkins et al., 1966; Soler et al., 1984]. While in the
former study no definite information about the age of the analyzed lavas is provided (‘‘older lavas’’), Soler et al
[1984] deliver paleomagnetic results for two historical flows (1730 and 1824 A.D.).

For the reasons outlined above, in the present study, two Miocene, eight Pleistocene, and six historic lava
flows have been sampled in the island of Lanzarote (Canary Islands, Spain) for rock-magnetic, paleomagnet-
ic, and paleointensity analysis with both a Thellier-type method and the multispecimen method. Sampling
was performed with a gasoline-powered portable drill and both a magnetic and a solar compass were used
for sample orientation. Comparison of the measured magnetic and solar azimuth of the field correction
showed that only very few individual cores produced large significant deflections from the reference field,
and even these large deflections lay below 108. At a site level, observed deviations were low, with only flow
LZ5 showing a moderate 58 eastward declination anomaly. The mean of all samples with available solar azi-
muth data agreed exactly with the expected declination (4.68W), thus not showing any deflection at all.
Ages of nonhistorical flows (Table 1) were obtained in one case from a K-Ar dating directly performed on
the sampled unit [Coello et al., 1992]. In the other cases, dating was based on volcano-stratigraphic informa-
tion relying on available K-Ar ages in Lanzarote [Abdel-Monem et al., 1971; Coello et al., 1992].

2. Geologic Setting

Lanzarote belongs to the Canary Islands, an archipelago consisting of seven volcanic edifices situated in the
eastern Atlantic Ocean, 100–700 km west of the Sahara continental margin (Figure 1). As can be estimated
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from the magnetic anomaly pattern of the central Atlantic, the island group formed as a result of alkaline
magmas rising through a 150–175 Myr old oceanic crust [Roest et al., 1992]. The chronological and spatial
evolution of the volcanism from east to west in the Canary Islands has led several authors to interpret their
origin as produced during the eastward progression of the African plate over a mantle plume [e.g.,
Schmincke, 1973; Morgan, 1983; Hoernle and Schmincke, 1993; Carracedo et al., 1998], but the origin of the
archipelago is still debated. Anguita and Hern�an [2000] have proposed a so-called unifying model, partly
based on the three mainly cited theories, which include hypotheses about the hot spot, propagating frac-
tures, and uplifted blocks.

Lanzarote (846 km2) lies at the eastern edge of the island chain. Two distinct cycles of subaerial volcanic
activity have been recognized [Coello et al., 1992]. The first subaerial stage started during Miocene with the
formation of two independent shield volcanoes and tabular successions of lavas and pyroclastics during

Table 1. Paleomagnetic Resultsa

SITE AGE LAT LON N(n) L1P DEC INC a95 k PLAT PLON

Historical Flows
TM1 1824 29.01 346.25 10(10) 9 1 1 331.0 54.2 10.6 20 64.8 276.8
LZ9 1736 29.08 346.28 8(8) 356.8 56.6 11.8 23 81.5 328.9
TM3 1732/1736 28.99 346.26 9(9) 354.6 55.8 6.1 73 81.4 315.9
LZ2 1731/1732 28.99 346.17 10(11) 3 1 7 348.7 58.3 10.0 28 76.3 306.1
TM2 1731/1732 29.00 346.23 9(9) 351.7 59.0 5.1 104 77.2 136.0
TM4 1731/1732 28.99 346.26 7(8) 327.5 63.5 13.3 22 59.7 297.4
Pleistocene Flows
LZ1 PLE (Ion) 28.99 346.17 8(8) 360.0 49.5 3.4 260 88.6 344.8
LZ4 PLE (Ion) 28.98 346.17 8(8) 359.5 42.2 3.7 229 85.4 171.8
LZ5 PLE (Ion) 28.96 346.21 8(8) 17.5 36.3 3.4 266 71.9 101.2
LZ7 PLE (Ion) 29.08 346.28 8(8) 2.0 50.3 5.3 110 87.3 27.6
LZ10 PLE (Ion) 29.12 346.34 6(6) 14.1 37.3 8.3 66 74.8 106.0
LZ12 PLE (Ion) 29.00 346.51 8(8) 15.2 38.5 3.1 311 74.5 101.2
LZ3 0.92 Myr 28.93 346.18 8(8) 358.5 33.7 5.3 110 79.4 174.1
LZ8 PLE (Cal) 29.08 346.28 6(11) 4 1 2 6.3 52.1 7.0 100 83.5 40.8
Mean (Pleistocene flows) 8 6.9 42.7 7.9 76
Miocene Flows
LZ6 u. MIO 28.95 346.26 7(7) 327.5 70.6 5.2 137 55.2 313.5
LZ11 lm. MIO. 28.91 346.26 No coherent results

aSITE: flow number. AGE: age of the flow (LZ3: Coello et al. [1992]). LAT and LON: latitude and longitude of site. N(n): N: number of sam-
ples (specimens); in site mean calculations, N is the number of flows. (L1P): number of directly determined directions (L) and planes (P)
used for calculation of flow mean. DEC and INC: declination and inclination of ChRM. a95: Radius of 95% confidence cone. k: precision
parameter. PLAT and PLON: latitude and longitude of virtual geomagnetic poles.

Figure 1. Map of the Canary Islands, showing the location of Lanzarote, and a simplified geological sketch of this island including sampling
sites (modified from Marinoni and Pasquarè [1994] and Blanco-Montenegro et al. [2005]). LP: La Palma; H: El Hierro; G: Gomera; T: Tenerife;
GC: Gran Canaria; F: Fuerteventura; LZ: Lanzarote.
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upper Miocene and Pliocene [F�uster et al., 1968; Carracedo and Rodr�ıguez Badiola, 1993]. It began in what is
now the southern part of the island (Ajaches edifice, Figure 1) between 15.5 and 12.3 Ma and continued
toward the North (Famara edifice, Figure 1) in three pulses between 10.2 and 3.8 Ma [Coello et al., 1992].
After a long period of calm, which resulted in the erosion of the Miocene edifices, volcanic activity resumed
in the island with a new cycle (Figure 1) lasting from 2.7 Ma to historic times [Coello et al., 1992]. This cycle
was characterized by fissure eruptions and the emission of basaltic lavas. From 1730 to 1736 A.D., Lanzarote
suffered the longest eruption in historic times in the Canary Islands, the Timanfaya eruption (Figure 1), a
basaltic-type eruption with tholeitic composition. Twenty-three percent of the island was covered in differ-
ent eruptive phases, during which more than 30 volcanic cones were formed and 3–5 km3 of materials
were emitted [Carracedo et al., 1992]. The last eruption so far at Lanzarote Island occurred during 1824 A.D.
at Tinguat�on volcano.

3. Experimental Procedure

3.1. Sample Preparation
The main aim of the present study was to compare two different paleointensity determination methods
and to analyze the results of successful and unsuccessful experiments in relation to the rock-magnetic prop-
erties of the analyzed samples. Therefore, a specific sample preparation was required. A 0.9 cm diameter
core was drilled in the center of standard 2.54 cm diameter samples. This 0.9 cm diameter minispecimen
was used for the Thellier-type paleointensity experiments. The remaining 2.54 cm diameter sample was cut
into two ring-shaped specimens and one of them was cut into eight subspecimens and used for multispeci-
men paleointensity determinations. Nevertheless, per flow, only one (ring-shaped) sample was used for the
multispecimen approach. Being taken from the same main sample and surrounding, the material used for
Thellier-type paleointensity determinations should be considered as a certain guarantee that the magnetic-
mineralogical composition of specimens used in both methods is the same. Remaining material from the
main sample was used for rock-magnetic analysis. Other samples taken from the same core were used for
directional paleomagnetic analysis.

3.2. Rock-Magnetic Experiments
The main reasons to perform rock-magnetic experiments consisted in finding out the carriers of remanence,
obtaining information about their thermal stability and grain size, and as an additional criterion to appraise
the suitability of the studied sites for paleointensity determinations. These experiments included the mea-
surement of strong-field (38 mT) magnetization versus temperature (MS-T) curves, the determination of hys-
teresis parameters and the recording of isothermal remanent magnetization (IRM) acquisition curves, and
were carried out in the University of Burgos (Spain) with a Variable Field Translation Balance (VFTB). A first
series of measurements was performed on one to three whole-rock powdered samples chosen from all
flows. The following measurement sequence was applied: (i) IRM acquisition, (ii) hysteresis curve, (iii) back-
field, and (iv) strong-field magnetization versus temperature (MS-T) curve. In addition, a second series of
thermomagnetic measurements was performed on all remaining samples from which specimens had been
subsampled for paleointensity determination.

Hysteresis and IRM acquisition curves were recorded in a maximum applied field of approximately 1 T, and
hysteresis parameters were determined from hysteresis and backfield curves. Data were analyzed with the
RockMagAnalyzer 1.0 software [Leonhardt, 2006]. MS-T curves were recorded heating samples in air up to
600 or 7008C and cooling them down to room temperature.

3.3. Paleomagnetic Measurements
Paleomagnetic measurements were carried out with a superconducting 2G magnetometer at the paleo-
magnetic laboratory of the University of Burgos. Initially two pilot specimens were selected from each flow
for thermal demagnetization and two for alternating field (AF) demagnetization. Subsequently, the most
suitable demagnetization technique was chosen for each flow. Principal component analysis [Kirschvink,
1980] was used to calculate the directions of remanence components and the results obtained were ana-
lyzed with the Remasoft software [Chadima and Hrouda, 2006].
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3.4. Paleointensity Determinations
Two different methods were used for absolute paleointensity determination. One set of experiments was
carried out at the University of Burgos using a Thellier-type double heating method [Thellier and Thellier,
1959] as modified by Coe [1967]. Small (0.9 cm diameter) specimens subsampled from oriented standard
samples as previously described were employed for the experiments. Heating and cooling was performed
in an ASC TD-48 paleointensity oven in argon atmosphere for avoiding or at least lessening oxidation. After
having reached the programmed temperature in each heating step, samples were kept for some minutes at
that peak temperature and subsequently the oven was turned off allowing the samples to cool down natu-
rally during several hours. The laboratory field was left switched on for in-field steps during the whole
heating-cooling procedure. The experiment was carried out in 12 temperature steps between room temper-
ature and 5828C. After the third heating step at 2168C, pTRM-checks were performed after all but one heat-
ing step.

A second set of paleointensity experiments was performed with the multispecimen method proposed by
Dekkers and B€ohnel [2006] at the paleomagnetic laboratory of UNAM in Morelia (Mexico) using one sample
per flow. Two samples (sites LZ4 and LZ5) were subjected to the original procedure [Dekkers and B€ohnel,
2006], and in the remaining 10 cases, the extended protocols for fraction correction (FC) and domain-state
correction (DSC), proposed by Fabian and Leonhardt [2010], were applied. The multispecimen method was
carried out at a temperature of 4508C on subspecimens obtained from twelve 2.54 cm diameter ring-
shaped specimens from samples used for the Thellier experiments. These ring-shaped specimens were cut
into eight subspecimens and pressed into salt pellets in order to obtain standard-dimension cylindrical
paleomagnetic specimens. Experiments were performed using laboratory fields from 10 to 70 mT, with incre-
ments of 10 mT. The following measurement sequence was applied to samples subjected to the extended
protocol: (i) measurement of NRM; (ii) samples were oriented in such way that the natural remanent magne-
tization (NRM) directions of each subspecimen lay parallel to the axis of the heating chamber and were
heated at 4508C in a laboratory field with this axial direction, and then their remanences were measured;
(iii) specimens were set and heated as in the previous step but inverting the laboratory field direction. Then
their remanences were measured; (iv) Specimens were reheated in zero field and their remanences mea-
sured. (v) Step (ii) was repeated. Before remanence measurement, a weak 5 mT AF demagnetization step
was applied to erase viscous magnetization in all remanence measurements. All calculations (relative differ-
ences between pTRMs and NRMs) and corresponding correction factors are described in Fabian and
Leonhardt [2010]. Calculations were performed by means of the VBA software implemented by Monster
et al. [2015b]. In both sites, subjected to the original protocol of Dekkers and B€ohnel [2006], only the first
two steps were applied.

4. Paleomagnetic and Rock-Magnetic Results

4.1. Paleomagnetic Results
In most cases, samples displayed only a single main paleomagnetic component, often together with an ini-
tial weak overprint (Figures 2a and 2b). The latter could be removed at temperatures/fields below 3008C/15
mT. In a few samples, however, this viscous component appeared to be rather strong, showing an intensity
comparable to the characteristic remanent magnetization (ChRM) component (Figure 2c). In three other
flows (LZ2, LZ5, and LZ8), some or all samples displayed a strong secondary component, which in two of
them appeared more or less overlapped with the ChRM component, so that remagnetization circle analysis
had to be used in several cases. It is noteworthy that flow LZ2, which was emitted in a historical eruption in
the eighteenth century, is characterized by the presence of a strong viscous component. Table 1 displays
mean ChRM directions, which could be determined for each site except Miocene flow LZ11, which yielded
no coherent results. All display a normal polarity direction. Paleomagnetic results from the historic flows
were compared with expected directions (Figure 3) calculated with global model SHA.DIF.14k [Pav�on-Carra-
sco et al., 2014], which is based on a large amount of archeomagnetic and paleomagnetic directions from
lava flows compiled in the updated Geomagia50.v2 database [Donadini et al., 2006; Korhonen et al., 2008].
The expected directions obtained are D 5 3518, I 5 608 (1731/1732 A.D.); D 5 3508, I 5 608 (1736 A.D.); and
D 5 3418, I 5 568 (1824 A.D.). Directions from all historical sites agree with the expected ones (Figure 3). In
the case of site TM4, however, the mean declination shows a relatively large difference with the expected
one, although the angular difference between both directions is smaller than the a95 value obtained for
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that site. The mean of all Pleistocene directions agrees with the expected direction obtained from a geocen-
tric axial dipole (Figure 3). The only available Miocene direction, however, shows a significant disagreement
with the one obtained from the 10 Ma window of the synthetic apparent polar wander path for Africa (Fig-
ure 3) from Besse and Courtillot [2002]. This is not surprising, as the effect of secular variation is included in
this direction obtained from a single volcanic flow.

4.2. Thermomagnetic Curves
The two-tangent method [Gromm�e et al., 1969] was used to determine Curie points (TC) of MS-T curves.
Mainly three different kinds of behavior could be recognized. Type H samples (60% of all analyzed samples,

Figure 4a) displayed reversible curves
with a single ferromagnetic phase char-
acterized by a high Curie temperature
between approximately 5008C and
5758C, which matches low-Ti titanomag-
netite or slightly Al-substituted or Mg-
substituted magnetite. Samples were
regarded as being of type H when
besides showing the same phases in
both heating and cooling curves, the
difference between initial magnetization
at the start of the experiment and final
magnetization at the end lay always
below 620%. In most samples from his-
torical flows TM1 and TM3, this kind of
curves could also be found, but show-
ing considerably lower Curie tempera-
tures between 4508C and 5008C (Figure
4b). In one case, TC was even as low as
4188C, which would correspond to tita-
nomagnetite with a moderate but not
low Ti-fraction (x � 0.3). Nevertheless, in
some sites, it could be observed that
Curie temperatures from type H heating
curves were somewhat higher (10–
508C) than those from the cooling curve.
We do not think that this disagreement
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Figure 2. Orthogonal demagnetization vector plots. (a) Thermal demagnetization of LZ4-8-2. (b) AF-demagnetization of LZ7-7-2. (c) Thermal-demagnetization of LZ10-1-3. Solid symbols
are for the horizontal and open symbols for the vertical projection.

Figure 3. Stereographic projection of mean directions (circles) and 95%
confidence cones of historical (solid circles), Pleistocene (open circles), and
Miocene (grey circle) flows from Lanzarote. A grey star shows the expected
direction corresponding to the 10 Ma window of the African synthetic polar
wander path of Besse and Courtillot [2002] and a white star the expected
Pleistocene direction, calculated from a geocentric axial dipole. Expected direc-
tions for historical flows are shown with a grey square (1730–1736 A.D. eruptions)
and a white square (1824 A.D. eruption).
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is due to a difference between the recorded and the real specimen temperature, because the temperature
increase and decrease rate was set at a moderate rate of 208C per minute and the specimens were powdered,
thus displaying a large effective surface for heating and cooling. Changes in Curie temperature, however, can also
arise from cation reordering during heating in thermomagnetic experiments [Bowles et al., 2013]. On the other
hand, type H samples displaying highest Curie temperatures around or below 5008C in the heating curve often
showed slightly increased (10–308C) highest Curie temperatures in the cooling curves.

Type L samples (29% of all analyzed samples, Figure 4c) were characterized by irreversible thermomagnetic
curves with a low Curie temperature (between 708C and 2508C) and often a high Curie temperature phase
(between 5008C and 5758C), in both the heating and the cooling curve. Often the low TC phase appeared
less pronounced or was absent (site LZ6) in the cooling curve. The low-temperature phase would corre-
spond to titanomagnetite characterized by rather high titanium content (x � 0.5–0.7), and the high-
temperature phase to low-Ti titanomagnetite.

Figure 4. Normalized strong field magnetization-versus-temperature curves from lava flow samples from Lanzarote. (a) Type H curve. Sample LZ4-3-2. (b) Type H curve. Sample TM3-5-2.
(c) Type L curve. Sample TM4-3-3. (d) Type M curve. Sample TM2-5-2.
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Ten percent of the analyzed samples belonged to irreversible type M samples (Figure 4d), characterized by
the presence of a low Curie temperature phase (between 608C and 2608C) and an intermediate to high
Curie temperature phase (between 3508C and 5208C) in the heating curve, which in some cases was accom-
panied by a very weak magnetite fraction. In the cooling curve, a high TC-phase (low-Ti titanomagnetite)
and in some cases a low Curie temperature phase were observed. This type of curve was mainly found in
historic lava flow TM2.

4.3. IRM Acquisition and Hysteresis Experiments
In IRM acquisition curves, applied fields smaller than 200 mT were able to produce more than 90% of satura-
tion magnetization. Thus, these measurements indicate that low-coercivity phases are the main carriers of
remanence.

Hysteresis and backfield curves supplied hysteresis parameters such as MS (saturation magnetization), MRS

(saturation remanence), BC (coercivity), and BCR (coercivity of remanence). Hysteresis parameter ratios dis-
play a PSD (pseudo single-domain) behavior, as shown in the Day-plot [Day et al., 1977] in supporting infor-
mation Figure S1a. This behavior can also be interpreted as due to a mixture of single-domain (SD) and
multidomain (MD) grains [Dunlop, 2002]. Comparison with theoretical mixing curves for magnetite [Dunlop,
2002] yields a relative amount of MD particles in the mixture varying between approximately 20 and 80% in
most cases.

Though useful, information provided by Day-plots can be often ambiguous. Additional information about
domain states can be obtained from the shape parameter rHYS and the coercivity ratio BRH/BCR [Fabian,
2003]. Mixtures of fractions with highly contrasting coercivities arising from assemblages of various magnet-
ic components with different mineralogy or grain size may result in shape anomalies of hysteresis loops
[e.g., Roberts et al., 1995; Muttoni, 1995; Tauxe et al., 1996]. Shape parameter rHYS quantifies the shape of
the hysteresis loop, with rHYS> 0 for wasp-waisted and rHYS< 0 for pot-bellied loops. In the present study,
shape parameter rHYS yielded negative values in all but two cases, both belonging to historic volcanic flow
TM2 (supporting information Figure S1b). As rHYS is fairly independent of grain size within the SD-MD
region, variations in this parameter point to the presence of SP grains or additional mineral fractions [Fabi-
an, 2003]. In supporting information Figure S1b, the latter parameter is plotted against the BRH/BCR ratio.
High BRH/BCR ratios indicate large particles, while natural ensembles that contain SP particles display BRH/
BCR ratios below 1 [Fabian, 2003]. The variation of rHYS for most samples, except of four belonging to histor-
ic volcanic flows TM1, TM2, and TM3 and two to Pleistocene flow LZ12 is not very large, varying between
20.44 and 21.04. Thus, the larger differences in the BRH/BCR ratio of the studied samples should be mostly
attributed to their SD-MD trend. However, in the four aforementioned samples belonging to historic lavas,
BRH/BCR is smaller than 1, and rHYS has smaller negative values than those of the remaining samples or even
positive values, and may therefore indicate that SP particles or other mineral fractions are present.

5. Paleointensity Results

5.1. Paleointensity Determinations With the Coe Method
After analyzing paleomagnetic and rock-magnetic results, 12 out of 16 flows were preselected for paleoin-
tensity experiments with the Coe [1967] method. This first selection aimed to exclude those sites/samples
from the paleointensity experiments characterized by a large viscous overprint as well as samples with an
irreversible thermomagnetic behavior at relatively low temperatures. Although site LZ5 was characterized
by the presence of relatively large viscous overprints, some samples of that flow displayed a smaller vis-
cous component which could be erased at temperatures below 2008C or fields of 5–8 mT, and these sam-
ples were not rejected. Five of the preselected flows were emitted during the historical eruptions in
1731–1736 and 1824 A.D., and seven were Pleistocene flows. Interpretation of paleointensity results was
accomplished with the ThellierTool4.0 software [Leonhardt et al., 2004]. The reliability of a paleointensity
determination depends on the quality of the experimental conditions, the occurrence of alteration, and
the presence of remanent magnetization carried by MD grains. Statistical parameters and reliability crite-
ria for paleointensity determinations have been proposed to take into account these experimental condi-
tions [e.g., Selkin and Tauxe, 2000; Kissel and Laj, 2004; Paterson et al., 2014], but no particular criteria and
parameter set is generally applied. In the present study, some of the studied rocks belong to historic lava
flows, and the field intensity in which magnetization was acquired can be retrieved from models. In such
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a case, it can be interesting to relate the deviation of the results obtained from the known field to the
strictness of the chosen criteria. For this reason, the selection of successful paleointensity determinations
was performed based on sets of criteria of different stringency, assigning to each preliminary successful
determination a specific quality level A, B, or C (supporting information Table S1). The following criteria
were considered:

a. The number N of aligned points on the Arai plot, without considering data supposed to be produced by
viscous magnetization (VRM) acquired in situ. For all quality levels, N� 4.

b. NRM fraction factor f [Coe et al., 1978] calculated for a chosen segment of the NRM-pTRM diagram and
referred to the intersection between linear fit and y axis, the so-called ‘‘true NRM’’ [Leonhardt et al., 2004].
Fraction factor f varied between f� 0.5 for class A determinations and f� 0.35 for classes B and C ones.

c. The standard error/absolute slope of the best fit line on the NRM-pTRM diagram (ratio b) varied among
b� 0.1 (class A), b� 0.12 (class B), and b� 0.15 (class C).

d. The quality factor q [Coe et al., 1978], with (q 5 fg/b), varying between q� 2 (classes A and B) and q� 1
(class C).

e. d(CK) [Leonhardt et al., 2000] is the TRM-normalized difference between original TRM and the pTRM
check at a given temperature. It is similar to the difference ratio DRAT [Selkin and Tauxe, 2000], which is
normalized to the segment of the Arai plot used for paleointensity determination. It varied among
d(CK)� 5% (class A), d(CK)� 7% (class B), and d(CK)� 10% (class C).

f. Directions of NRM end-points obtained in the zero-field steps of the experiment must draw a straight
line pointing to the origin in the segment chosen for paleointensity determination. Maximum angular
deviation (MAD) of the anchored-to-the-origin fit should be smaller than 78 (class A) or 158 (classes B and
C). Furthermore, the angle a between the vector average of the data selected for paleointensity determi-
nation (which is anchored to the center of mass of the data) and the principal component of the data
(anchored to the origin) should be smaller than 158 for all classes.

g. Arai plots must not have a clearly concave-up shape, because in such cases, remanence is most likely
associated with the occurrence of MD grains [Levi, 1977]. This was checked by quantification of the cur-
vature k of the selected data points of the Arai plot [Patterson, 2011]. For classes A and B, curvature
k� 0.164, a threshold defined using samples with known grain sizes [Patterson, 2011], and for class C,
k� 0.270, a possible upper threshold mentioned by Patterson [2011], which nonetheless was not sup-
ported by all his data. To determine k, the Thellier GUI software [Shaar and Tauxe, 2013] was
employed.

Though not exactly equal, class A criteria are similar to those proposed by Kissel and Laj [2004] or Leonhardt
et al. [2000] (class A), but with a main difference in the case of fraction factor f, for which we require a more
demanding threshold f� 0.5. Type B criteria would be similar to those proposed by Selkin and Tauxe [2000]
or Leonhardt et al. [2000] (class B), although allowing a slightly higher uncertainty of the best fit line in the
Arai-plot. Class C determinations would allow a somewhat larger disparity between original TRM value and
pTRM check. In addition, curvature k is taken into account in all three classes. If the aforementioned criteria
are used, 43 samples out of 78 analyzed (55.1%) can be included into one of these three classes (supporting
information Table S1). Ten (12.8%) belong to class A, 17 (21.7%) to class B, and 16 (20.5%) to class C. Only
seven successful determinations yielded a fraction factor f smaller than 0.5, but d(CK) values were above 7%
in 11 cases, giving rise to most class C determinations. Determinations on 35 (44.9%) samples were rejected.
Most excluded samples did not fulfill criterion (g), regarding the presence of MD grains, or showed signifi-
cant alteration. In various cases, scattered Arai plots were obtained which did not allow paleointensity
determination. Supporting information Table S2 shows successful paleointensity determinations obtained
with the Coe method, Table 2 the corresponding mean flow values, and Figure 5 examples of a successful
and a failed paleointensity determination.

5.2. Paleointensity Determinations With the Multispecimen Method
The paleomagnetic behavior of samples from the 12 flows selected for paleointensity experiments was
characterized by a single component occasionally accompanied by a soft overprint, and MS-T curves gener-
ally displayed a reversible behavior, with a single phase characterized by a high Curie temperature between
approximately 5008C and 5758C. The chosen heating temperature of 4508C appeared suitable to remove
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possible overprints and lay slightly below the lowermost Curie temperature observed in type H curves, so
that it was less likely that heating was able to induce thermochemical alteration on the specimens.

Paleointensity results obtained with the multispecimen protocol are shown in supporting information
Tables S3a and S3b. As mentioned above, in two flows (LZ4 and LZ5), the original method as proposed by
Dekkers and B€ohnel [2006] (DB) was applied, while in the remaining ones, the extended protocols for frac-
tion correction (FC) and domain-state correction (DSC) [Fabian and Leonhardt, 2010] were used. Supporting
information Table S3a displays results of the standard, fraction corrected, and domain-state corrected deter-
minations, and supporting information Table S3 shows the alignment-corrected results for these determina-
tions [Monster et al., 2015b]. Reliability criteria listed in supporting information Tables S3a and S3b include
quality of the linear least squares fit (R2), an alteration criterion (ealt), and a check of whether or not the line-
ar regression intersects the y axis within the theoretically prescribed limits [Monster et al., 2015b]. In flows
LZ4 and LZ5 (supporting information Table S3a), the only criterion is the quality of the linear least squares
fit. De Groot et al. [2013] suggest that ealt� 3.

Table 2. Comparison of Mean Paleointensity Results Obtained With the Coe Method and Multispecimen Methodsa

Coe Method MSP-DB(NC) MSP-DSC(AC)

SITE N Intensity (mT) N Intensity (mT) N Intensity (mT)

Historical Flows
TM1 3 40.5 6 1.9 6 86.9 [79.3-N.A.] 6 43.9 [39.7–46.5]
LZ9 3 38.3 6 2.3 7 17.4 [11.0–25.5] 5 18.5 [14.0–25.4]
TM3 4 41.9 6 4.1 6 41.0 [35.6–44.0] 6 22.8 [20.3–29.1]
TM2 5 44.2 6 6.9 6 32.3[29.8–37.7] 6 21.7 [19.4–28.6]
TM4 4 39.9 6 4.3 6 43.3 [40.6–46.4] 6 30.7[26.2–33.9]
Pleistocene Flows
LZ1 6 46.9 6 3.1 6 35.0 [32.7–38.4] 4 30.7 [26.3–33.4]
LZ4 6 29.4 6 4.6 4 46.2 6 4.1
LZ7 2 27.7 6 3.3 4 29.3 [25.4–31.3] 4 23.0 [21.0–28.7]
LZ5 1 24.7 6 0.6 6 24.2 6 3.5
LZ10 3 27.3 6 3.4 7 20.6 [14.3–23.0] 6 12.6 [2.5–17.2]
LZ12 1 27.2 6 1.4 7 28.6 [14.5–33.4] 7 21.8 [19.8–22.8]
LZ3 5 45.9 6 5.8 6 45.1 [38.5–49.1] 6 28.8 [23.5–35.4]
Expected Paleointensity
1731/1732 44.9 6 0.9
1736 45.0 6 0.9
1824 44.3 6 0.9

aN (Coe method): number of samples used for calculation of mean paleointensities in each flow. Error is given by standard deviation.
In LZ5 (1 sample), paleointensity determination uncertainty is indicated. N (Multispecimen [Dekkers and B€ohnel, 2006] and domain-state
and alignment corrected [Fabian and Leonhardt, 2010]): number of specimens used for calculation of multispecimen paleointensities in
each flow. Lower and upper bound of the confidence interval of domain-state corrected samples are indicated. Expected paleointensity
values were calculated with model SHA.DIF.14k [Pav�on-Carrasco et al., 2014].
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Figure 5. Paleointensity determinations with the Coe method. (a) NRM-TRM plot of successful determination of specimen LZ4-3-2 (Pleisto-
cene flow). All points were used for paleointensity determination. (b) Unsuccessful paleointensity experiment on specimen LZ5-6-1 (Pleis-
tocene flow). Triangles represent pTRM-checks.
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Fraction and domain-state corrected deter-
minations without alignment correction yield
mostly unreliable results. In fact, in most
cases, no satisfactory linear regression can be
obtained from the data (supporting informa-
tion Table S3a). However, application of align-
ment correction greatly improves their linear
trend (supporting information Table S3b).
However, alteration parameter ealt� 3 is only
fulfilled by flows TM2 and LZ3. Linear fits
should intersect the y axis between (0, 21).
Failure to do so may indicate that something
besides domain-state-related processes is
affecting the paleointensity determination
[Monster et al., 2015b] and that the determi-
nation might be not reliable. While the great-
er part of alignment-corrected results from
historical flows fulfil this criterion, none of the
Pleistocene results do. Both sites studied with
the original MS method display a good linear
fit with R2> 0.95. Figure 6 shows examples of
paleointensity determinations with the MS
method.

In Figure 7a, paleointensity results obtained
with the Coe method and the uncorrected
Dekkers and B€ohnel procedure are shown.
These latter data have been chosen as they
are equivalent to the original MS method.
Figure 7b displays a comparison of results
from the Coe method and the domain-
state and alignment corrected procedure.

6. Discussion of Results

6.1. Quality of Thellier-Type
Paleointensity Results

Expected paleointensity results from the 1730–1736 and 1824 A.D. eruptions were calculated with model
SHA.DIF.14k [Pav�on-Carrasco et al., 2014], and paleostrength values obtained in the present study from his-
torical flows could be then compared with them. As paleointensity results obtained with the Coe method
have been classified into different levels according to certain quality criteria, it might be interesting to ana-
lyze the deviation of the results obtained from the known field to the strictness of the chosen criteria. As
shown by Table 2 and Figure 7, mean paleointensity values obtained with the Coe method on the historical
flows either agree within uncertainty limits with the expected ones or show a slightly lower than expected
value (TM4 and TM1). In flow TM3, only class A paleointensity determinations were obtained. In the remain-
ing four historical flows, however, no correlation between quality class and agreement with expected values
can be observed (supporting information Figure S2).

As shown in supporting information Figure S1, hysteresis parameter ratios display PSD behavior, and
approximately lie on an SD-MD mixing curve for magnetite as calculated by Dunlop [2002]. The lower the
MRS/MS and the higher the BCR/BC ratio, the more pronounced is the tendency toward an MD behavior.
Thus, a ratio QSD 5 (MRS/MS)/(BCR/BC) can give a rough picture of the domain structure of the data set, a
low value pointing toward MD-behavior, and a high one toward SD characteristics. Supporting information
Figure S3 shows that no relation can be observed between MD-behavior, difference between expected and
actual paleointensity and quality class of paleointensity determination in historical flows. Supporting

Figure 6. Paleointensity determinations with multispecimen methods.
(a) Paleointensity multispecimen determination with the method of Dekkers
and B€ohnel [2006]. Sample LZ5 (Pleistocene flow). Frac. pTRM-NRM (%):
Fraction of sample magnetization at different magnetizing fields compared
to original NRM; B: magnetizing field. (b) Paleointensity multispecimen
determination with domain-state correction and alignment correction
[Fabian and Leonhardt, 2010]. Domain-state and alignment corrected
magnetization ratio. B: magnetizing field. Sample TM1 (Historical flow).
QDSC,corr: figure modified from VBA Software Tool [Monster et al.,
2015b].
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information Figure S4 shows a plot of quality class of paleointensity determinations (including unsuccessful
determinations) against QSD ratio and no relation between both parameters can be observed.

6.2. Historical Flows
As shown by Table 2 and Figure 7, mean paleointensity values obtained with the Coe method on the histor-
ical flows either agree within uncertainty limits with the expected ones or show a slightly lower than
expected value (LZ9 and TM1). Paleointensity results from site TM3, which shows a good agreement, is only
based on class A determinations, but this relation cannot be generalized to other flows. On the other hand,
the paleointensity obtained in flow TM1 (erupted in 1824 A.D.) displays a small uncertainty and disagrees
with the expected one by approximately 10%. Results in this case were obtained from lower quality deter-
minations, but its lower paleointensity could be perhaps also explained with the bias induced by the crustal
field [Valet and Soler, 1999], due to the extensive volcanism of the 1730–1736 A.D. eruptions, which sur-
rounds this 1824 A.D. flow.

Multispecimen determinations with the uncorrected Dekkers and B€ohnel [2006] procedure, however, show
worse behavior. Two flows (TM3 and TM4) yield the expected results, but site TM2 shows a significant devia-
tion, and paleointensities obtained from flows LZ9 and TM1 display extremely anomalous values (both with
a large experimental uncertainty). It might be worth trying to correlate these results with the quality of pale-
ointensity determinations obtained on the same samples with the Coe method. However, no significant cor-
relation is observed, as correct paleointensity values on flow TM3 were obtained on specimens with class A
determinations with the Coe method, and those from TM4 from classes B and C determinations. Erroneous
results, on the other hand, were attained on classes A, B, and C samples, and only TM1 was based on clearly
lower quality determinations (supporting information Table S2).

MS paleointensity results obtained with the fraction-corrected protocol do not differ significantly from those
obtained with the uncorrected DB procedure (supporting information Table S3b), but DSC data show a dif-
ferent picture (Figure 7b). In that case, only flow TM1 yields a correct result, but all remaining historical flows
display clearly underestimated values. The result of flow TM1 points to an overestimation of the uncorrect-
ed MS-determination due to MD behavior, which is corrected by the DSC protocol, although ealt> 3%. In
flows TM3 and TM4, which displayed correct paleointensities, the underestimated DSC paleointensities may
be explained by considerable alteration due to successive heating during the extended MS procedure, but
despite absence of alteration a significant paleointensity decrease is also observed in TM2. The deviation
from the expected result observed on MS determinations in TM2 does not correlate with the class A correct
value obtained with the Coe experiment. The failure of MS paleointensity determinations in LZ9 is difficult

Figure 7. Comparison of paleointensity results obtained with the Coe and multispecimen methods. (a) Comparison between the Coe [1967] method and the multispecimen determina-
tion method of Dekkers and B€ohnel [2006]. (b) Comparison between the Coe [1967] method and multispecimen determination with domain-state correction and alignment correction
[Fabian and Leonhardt, 2010]. Results are shown with error bars. Expected palaeointensity results from the 1730–1736 A.D. and 1824 A.D. eruptions calculated with global model SHA.D-
IF.14k [Pav�on-Carrasco et al., 2014] are shown with two crossed grey bars. Dashed line at 458 is drawn to identify equality or inequality of results obtained with both methods.
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to explain. Type L MS-T curves of this flow show a reversible behavior at 4808C, and hysteresis parameters
show a PSD domain structure not specially biased toward MD behavior. The Thellier-type experiment per-
formed on the same sample yielded, however, a type C determination. It is worth to recall that in none of
these cases the individual paleointensity determinations performed on each sample with the Coe method
differ significantly from the flow mean.

6.3. Pleistocene Flows
Analysis of paleointensity results on the seven studied Pleistocene flows yields an excellent agreement
between the Coe and the MS-DB methods in flows LZ3, LZ5, LZ7, and LZ12, a moderate disagreement in
LZ10, and significant disagreements in LZ1 and LZ4 (Table 2 and Figure 7a). Nonetheless, if agreement of
results obtained with both methods is considered an indicator of correct determinations, as might be sug-
gested by the results attained on historical flows, no clear correlation arises between them and paleointen-
sity determination quality or rock-magnetic properties. In fact, only in flows LZ5 and LZ10, a class A
determination could be obtained. Samples from flows LZ3 and LZ10 show PSD domain structure in hystere-
sis curves with a slight bias toward SD behavior in the latter case. The paleointensity result with the Coe
method in site LZ5 is based on a single type A determination, as all other experiments led to rejection
because of concave-up-shaped Arai plots due to MD-behavior and alteration. Hysteresis measurements pro-
vided PSD grain sizes with more or less developed MD characteristics. In this case, the MS-DB experiment
seemed to be capable to produce similar paleointensity results as the one obtained with the Coe method,
although it had been performed on a sister specimen of a sample which yielded a failed paleointensity
determination with the Coe method because of MD behavior. Similarly, because of the same reason as well
as alteration at higher temperatures, the sample from flow LZ7 used for multispecimen experiments yielded
no paleointensity results in the Coe experiment. In this case, MD behavior was additionally confirmed by
hysteresis data. However, the multispecimen method seemed in this case capable to produce the same
paleointensity result than the mean of the two successful Thellier-type determinations of site LZ7. Hysteresis
measurements of LZ12 samples yield PSD grain sizes with a clear MD tendency.

Results from the remaining flows LZ1 and LZ4 are more difficult to interpret. If Thellier-type determinations
are considered by themselves, six out of eight type B and C determinations in flow LZ1, and six out of six
mostly type B determinations in flow LZ4 point to successful paleointensity determinations in both cases, as
the ratio of the standard deviation of the field estimates to the intensity average is clearly lower than 25%,
a limit proposed by Selkin and Tauxe [2000] to consider paleofield estimates reliable. These results disagree,
nevertheless, with those obtained from MS experiments. In site LZ4, hysteresis parameters show PSD behav-
ior with a strong MD bias. This MD behavior could have led to an overestimation of the MS determination,
as predicted by Fabian and Leonhardt [2010]. This again poses the question of why this MD behavior has
led to a successful (though lower quality) type C paleointensity determination with the Coe method on the
same sample or why in some cases, as also shown in the present study, acceptable paleointensity estimates
are attained with the MS-DB method on samples clearly affected by MD behavior. Regarding discordant
multispecimen and Thellier-type results in flows LZ1 and LZ4, it would be interesting to have the support of
more than one multispecimen determination per studied site. Comparison of Thellier-type and MS-DSC
paleointensity results shows a pronounced disagreement in all flows except in LZ7, where results agree
within error limits (no MS_DSC data were available for flows LZ4 and LZ5). In three cases, this behavior
might be explained by the occurrence of alteration during the expanded MS procedure (LZ1, LZ10, and
LZ12). However, flow LZ7 displays the highest ealt value while LZ3 shows no alteration at all (supporting
information Figure S3b).

6.4. Mean Paleointensity Results
In all studied flows, the ratio of the standard deviation of the field estimates obtained with the Coe method
to the intensity average was clearly lower than 25% (Table 2), although in flows LZ5 and LZ12, this criterion
was not taken into account because only a single determination was available. As a result, a mixed data set
was obtained in which for each flow both Thellier-type and a multispecimen paleointensity determination
were available. As discussed above, in certain cases, a good agreement between both methods was
observed, while in other cases, significant differences appeared, posing the question about which results
reflect the actual paleointensity value in the case of nonhistorical flows.
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All except one of the historical
flows analyzed in the present
study belong to the 1730–1736
A.D. eruptions. These four flows
either yielded the expected pale-
ointensity or a near value with
the Coe method. The MS-DB pro-
vided two determinations agree-
ing with the expected intensity,
and one moderately deviated
determination (Table 2). Taking
advantage of the fact that histori-
cal flows allow the comparison of
the results obtained with those
predicted by models, all paleoin-

tensity results which agreed with the models were taken into account. This procedure led to discard the moder-
ately deviated MS determination from TM2 and the extremely diverging determination from LZ9. A mean
paleointensity was calculated for each flow combining the single multispecimen result (if available) with all suc-
cessful Thellier-type data of each flow. Thus, the multispecimen determination was given the same weight as an
individual Thellier-type determination, as the former is based on an experiment performed on a single sample of
each flow. Subsequently, a mean of all four flows from the 1730–1736 A.D. eruption was calculated. The Thellier-
type and MS-DSC determinations on 1824 flow TM1 agree with the expected value and therefore the paleointen-
sity value obtained is based on three determinations with the Coe method and the MS-DSC.

In the case of the Pleistocene flows, one of the two following criteria had to be fulfilled in order to deem a
flow result reliable: (i) coincidence of paleointensity results obtained with both methods or (ii) a paleointen-
sity result based on a sufficiently large number (n> 4) of individual Thellier-type determinations. As no coin-
cidence of paleointensity results was observed between the Coe and the MS-DSC methods except in flow
LZ7, and the latter site was characterized by considerable alteration, Thellier-type results were only com-
bined with MS-DB determinations. Application of the aforementioned criteria lead to the rejection of flow
LZ10, where only three samples yielded successful determinations with the Coe method, and the paleoin-
tensity obtained did not agree with the multispecimen determination.

Mean paleointensity results are shown in Table 3 together with virtual axial dipole moments (VADM). In
most Pleistocene flows, a relatively weak VADM around 5 3 1022 Am2 was observed, although two flows
display higher values around 9 3 1022 Am2. Historical flows yield VADMs around 8 3 1022 Am2. Some new
paleointensity data from historical and Holocene lavas from the Canary Islands have been recently pub-
lished. Kissel et al. [2015] studied 37 historical to Holocene flows from Gran Canaria and Tenerife with the
original Thellier and Thellier [1959] method, obtaining VADMs between 5 and 16 3 1022 Am2, with a promi-
nent paleointensity peak around 600 B.C. De Groot et al. [2015] applied a multimethod paleointensity
approach to 19 lavas from Gran Canaria and Tenerife dating between 4000 B.C. and 1909 A.D. Their VADMs
vary between approximately 6 and 16 3 1022 Am2, and they also observe a paleointensity peak around 700
B.C. Monster et al. [2015a] performed a multimethod paleointensity study on nine flows from La Palma on
historical and Holocene age (�3.2 ka) and VADMs vary between 6 and 10�3 1022Am2.

7. Conclusions

A rock-magnetic, paleomagnetic, and paleointensity study was performed on 16 lava flows of Miocene,
Pleistocene, and historical age from Lanzarote (Canary Islands, Spain) with two main goals: (i) compare pale-
ointensity results obtained with two different techniques and (ii) obtain new paleointensity data. Paleoin-
tensity determinations were carried out with a Thellier-type method as modified by Coe [1967] and with the
multispecimen method [Dekkers and B€ohnel, 2006; Fabian and Leonhardt, 2010], and both methods were
applied on sister specimens of the same samples.

After analyzing paleomagnetic and rock-magnetic results obtained, 12 out of 16 flows were chosen for pale-
ointensity experiments. A selection of successful paleointensity determinations was performed based on

Table 3. Mean Paleointensity Results and Virtual Axial Dipole Moments (VADM)a

Flow N(n/MS) Paleointensity (lT) VADM (1022Am2)

Historical Flows
1824 1 (3/1) 41.4 6 2.3 8.20 6 0.06
1731–1736 4 (16/2) 40.2 6 1.7 8.0 6 0.3
Pleistocene Flows
LZ1 1 (6/0) 46.9 6 3.1 9.4 6 0.6
LZ4 1 (6/0) 29.4 6 4.6 5.8 6 0.9
LZ5 1(1/1) 24.5 6 0.4 4.85 6 0.08
LZ7 1(2/1) 28.2 6 2.5 5.6 6 0.5
LZ12 1(1/1) 27.9 6 1.0 5.5 6 0.2
LZ3 1(5/1) 45.8 6 5.2 9.1 6 1.0

aN(n/MS): N: number of flows used for calculation of mean paleointensities; n: num-
ber of determinations performed with the Coe method on individual specimens used
for calculation of mean paleointensities; MS: number of multispecimen determinations
used for calculation of mean paleointensities (for explanation, see text)
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sets of criteria of different stringency. In such way, the quality of the paleointensity results obtained could
be compared to the strictness of the chosen criteria, as part of the studied rocks belonged to historical lava
flows with magnetization acquired in a field which could be retrieved from models. Paleointensity values
obtained with the Coe method on the historical flows either agree within uncertainty limits with the
expected ones or show a moderately lower than expected value. Multispecimen determinations, on the oth-
er hand, show worse agreement, as one site shows a significant deviation from the expected result and two
other flows display extremely anomalous values. Nevertheless, no clear relation can be detected between
correct or anomalous results, rock-magnetic characteristics or paleointensity determination quality class.
Results on historical flows suggest that agreement between results from both methods seems to be, on the
other hand, a good indicator of correct paleointensity determinations

Comparison of paleointensity results obtained with both methods on the seven studied Pleistocene flows
yields an excellent agreement in four cases, a relatively small disagreement in one case and significant dis-
agreements in two more cases. Nonetheless, if agreement of results obtained with both methods is consid-
ered an indicator of successful determinations, as suggested by the results attained on historical flows,
again no clear correlation arises between them and paleointensity determination quality or rock-magnetic
properties.

The use of the extended MS protocol as proposed by Fabian and Leonhardt [2010] includes a procedure to
avoid paleointensity overestimates due to samples containing a significant MD fraction and provides criteria
to better assess the reliability of paleointensity determinations obtained. However, it includes an extra num-
ber of heating steps which may lead to alteration, as probably happened to several samples in the present
study. Therefore, caution must be exerted when choosing the most reliable results provided by the extend-
ed MS protocol.

A mean paleointensity has been calculated for the flows belonging to the 1730–1736 eruptions averaging
Thellier-type and multispecimen data, giving the same weight to a multispecimen determination as to an
individual Thellier-type determination. The same procedure was applied to the 1824 flow. In nonhistorical
flows in certain cases, a good agreement between Thellier-type and multispecimen methods was observed,
while in other cases, significant differences appeared, so that the question arises about which results reflect
the actual paleointensity value. It was decided that in the case of the Pleistocene flows, one of the two fol-
lowing criteria had to be fulfilled in order to deem a flow result reliable: (i) coincidence of paleointensity
results obtained with both methods or (ii) a paleointensity result based on a sufficiently large number of
individual Thellier-type determinations. Application of these criteria led to the rejection of the results of one
flow.
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