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Abstract: Autophagy is a highly conserved catabolic mechanism that mediates the degradation
of damaged cellular components by inducing their fusion with lysosomes. This process provides
cells with an alternative source of energy for the synthesis of new proteins and the maintenance of
metabolic homeostasis in stressful environments. Autophagy protects against cancer by mediating
both innate and adaptive immune responses. Innate immune receptors and lymphocytes (T and B)
are modulated by autophagy, which represent innate and adaptive immune responses, respectively.
Numerous studies have demonstrated beneficial roles for autophagy induction as well as its
suppression of cancer cells. Autophagy may induce either survival or death depending on the
cell/tissue type. Radiation therapy is commonly used to treat cancer by inducing autophagy in
human cancer cell lines. Additionally, melatonin appears to affect cancer cell death by regulating
programmed cell death. In this review, we summarize the current understanding of autophagy and
its regulation in cancer.
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1. Introduction

The term autophagy is derived from the Greek word meaning “self-eating” [1]. Autophagy is
a catabolic process in which intracellular components are sequestered and degraded for recycling [2].
This process occurs under conditions of amino acid starvation, glucose deprivation, oxygen deficiency,
growth factor withdrawal, and cellular damage [3]. The degradation of damaged or long-lived
proteins and organelles provides the cell with a new energy source for the recovery of homeostasis
despite metabolic stress [3]. Three different types of autophagy have been identified: macroautophagy,
microautophagy, and chaperone-mediated autophagy [1,4]. Macroautophagy results in the degradation
of long-lived cytosolic proteins and organelles following their fusion with the lysosome and
autophagosome, which engulfs the substrate [4]. In microautophagy, the substrates are directly
engulfed by the vacuole membrane and subsequently degraded [5]. Microautophagy can be observed
in some plant species during seed germination to degrade starch granules and storage proteins [6].
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During chaperone-mediated autophagy, the target substrates are selected in a chaperone-dependent
manner and translocated to the lysosome for degradation [7].

Among the three mechanisms, macroautophagy is the most common [1] and has received the most
attention [5]. This review focuses on macroautophagy (referred to hereafter as autophagy) and its roles
in the immune system and cancer. Since autophagy involves the transfer of cytoplasmic substrates to
lysosomes, it has been implicated in both innate and adaptive immunities [8]. Innate immune receptors
recognize pathogens, trigger the release of inflammatory cytokines, and induce pathogen removal
through autophagy.

Defective autophagy and apoptosis may contribute to disease pathogenesis, including cancer [3,9],
whereas the preservation of cellular homeostasis via autophagy is important for cancer prevention [10].
However, autophagy is a “double-edged sword”, because it not only suppresses but also promotes
cancer cell survival [9,10]. These paradoxical functions of autophagy in cancer remain to be
fully elucidated.

2. The Initiation of Autophagy during Cancer

In cancer cells, autophagy is regulated by phosphatidylinositol 3-kinase (PI3K)/mammalian
target of rapamycin (mTOR) and activated protein kinase (AMPK) pathways [11]. The activation of
PI3K results in the production of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), which
then binds to Akt [11], activating it and several downstream pathways, including mTOR [12]. AMPK is
activated in response to energy depletion to induce autophagy [11]. Thus, autophagy inhibits cancer,
whereas the inhibition of autophagy enables the growth of precancerous cells [12,13]. During the early
stages of cancer cell development, protein synthesis rather than degradation is required for cancer cell
growth [14,15]. Therefore, autophagy inhibition during these stages can cause cancer cell growth [15].
During the advanced stages of cancer, autophagy is upregulated because cancer cells exploit autophagy
for their survival under starved conditions (Figure 1) [12,16]. Based on these observations, autophagy
inhibition may be a therapeutic strategy for cancer during its early stages [15].
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Figure 1. Decreased autophagy may favor cancer cell growth during the early stages of cancer
progression. During the precancer stages, the inhibition of autophagy contributes to tumor growth.
During the early stages of cancer, autophagy acts as a tumor suppressor, and the inhibition of autophagy
can allow for the growth of cancer cells. Specifically, protein degradation by autophagy may interrupt
tumor growth, suggesting that autophagy inhibition may be a therapeutic strategy for early cancer.
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3. Autophagy as an Innate Immune Response against Cancer

Innate-immunity-mediated autophagy is regulated by the activation of innate immune receptors,
including Toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD)-like receptors
(NLRs) [11]. TLRs induce inflammatory cytokine production by activating the NF-κB and
mitogen-activated protein kinase (MAPK) pathways, mainly through myeloid differentiation primary
response 88 (MYD88)-dependent pathways, either alone or in collaboration with Toll/interleukin-1
receptor (TIR) domain-containing adaptor molecule 1 (TICAM1)-dependent pathways [17–19].
TLRs are usually expressed in cancer cells, and are responsible for the regulation of autophagy
as well as several immune responses [11]. Autophagy triggered by TLR3 and TLR4 was shown to
contribute to the progression of lung cancer [17]. However, several studies have suggested that TLR
activation enhances the survival, proliferation, and metastasis of cancer cells [17,20–23]. Furthermore,
TLRs trigger the release of proinflammatory cytokines, chemokines, and immunosuppressive factors,
leading to immune evasion and enhanced cancer cell resistance [17,23].

While TLRs sense microbes on the cell surface, NLRs, which are important components of the
innate immune system, recognize cytosolic bacteria. NOD1 and NOD2 detect intracellular microbes
incorporating meso-diaminopimelic acid (iE-DAP) and muramyl dipeptide (MDP), respectively [24].
TLRs as well as NOD1 and NOD2 activate the NF-κB and MAPK pathways [24]. Moreover, they
participate in regulating autophagy by interacting with ATG16L1, which mediates autophagosome
formation and facilitates bacterial invasion through the cell membrane into the cells (Figure 2) [11,25,26].
NOD2 also recognizes invasive bacteria, thereby triggering autophagy and leading to NOD2-mediated
host defenses [27]. Both NOD1 and NOD2 are thought to engage not only in innate and adaptive
immune responses, but also in the interaction between autophagy and cancer [11,28]. By altering
the balance between pro- and anti-inflammatory cytokines, NOD1 and NOD2 modulate the risk
of cancer [28]. However, much remains to be learned about the contributions of TLR and NLR to
cancer immunity.
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Figure 2. Toll-like receptors (TLRs) and Nod-like receptors (NLRs) regulate autophagy and the innate
immune responses. Pathogens are identified by TLRs and NLRs. TLRs activate NF-κB through
MyD88-dependent pathways, leading to the production of pro-inflammatory cytokines and the
formation of autophagosomes that sequester intracellular p athogens. NLRs recognize cytosolic
bacteria. The NLRs NOD1 and NOD2 detect γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) and
muramyl dipeptide (MDP), respectively, and induce autophagosome formation. In this step, ATG16L1
facilitates bacterial trafficking. The pathogens are ultimately removed through autophagy.
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4. Autophagy as an Adaptive Immune Response against Cancer

An adaptive immune response depends on the identification of extracellular or intracellular peptide
epitopes presented by major histocompatibility complex (MHC) class II and I molecules, which are
recognized by CD4+ and CD8+ T cells, respectively [29]. Antigen presentation is an important immune
process accompanying the initiation of an adaptive immune response to protect organisms from pathogens.
MHC II allows antigens to be identified by T cell receptors expressed by CD4+ T cells [30]. In addition,
the antigen presentation step is known to be enhanced by autophagy through the acceleration
of delivery of pathogen-related peptides to lysosomes [29,31]. Indeed, it has been reported that
autophagy can affect γδ T cell-mediated interleukin (IL)-17, interferon (IFN)-γ, and IL-22 production
in an IL-1 secretion-dependent manner, suggesting that autophagy is a pivotal regulator of immune
responses [32]. Autophagy also modulates T and B lymphocytes, and plays a role in T cell survival,
proliferation, homeostasis, and activation [11,33]. Basal autophagy is required for T cells to maintain
homeostasis, and autophagy-related proteins are associated with T cell activation. Indeed, defective
autophagy evoked by the deletion of pro-autophagic mediators such as Atg3, Atg5, Atg7, BECN1,
and class III phosphoinositide 3-kinase/Vpas34 can disturb T cell homeostasis and survival [11].
Additionally, autophagy plays a role in B cell development and survival. Especially, Atg5 is essential
for B cell development, and it may allow for a transition between pro- and pre-B cell stages in
bone marrow [11].

The autophagy protein Atg7 is required for T lymphocyte survival, and autophagy-deficient T cells
exhibit increased reactive oxygen species generation, presumably due to the insufficient degradation
of mitochondrial components [34]. Several studies have shown that defective autophagy induced by
the ablation of pro-autophagic molecules, such as Vps34 and PI3K, is harmful to mitochondrial quality
control, leading to a disruption of T cell homeostasis and survival [11,35,36]. In cancer, autophagy
may induce not only the survival but also the death of T cells. In addition, autophagy may promote
the helper T lymphocyte response, thus enhancing tumor recognition [37]. Alternatively, autophagy
may provide cancer cells with a survival advantage, protecting them against immunosurveillance by
suppressing CD4+ and CD8+ T cells [38]. Based on these observations, autophagy is thought to play
a dominant role in T cell function.

Autophagy is needed for the survival and differentiation of B cells as well [39]. Atg5,
an autophagy-related gene, contributes to B cell survival during development [40]. B cell activation is
induced by tumor-derived autophagosomes (Dribbles), which sequester various tumor antigens in
a TLR4/MYD88-dependent reaction [41]. However, autophagy has been explored less in B cells than
in T cells.

5. Autophagy and Its Regulatory Function on Cancer Cell Fate

5.1. Autophagy Suppresses Tumor Development and Induces Cancer Cell Death

A relationship between disrupted autophagy and cancer development has been demonstrated.
For example, BECN1, an autophagy-related gene required for autophagosome formation, seems to
act as a tumor suppressor, and certain brain tumors have been attributed to insufficient BECN1
expression [42]. A lack of the Beclin-1 protein was suggested to be involved in the malignant
transformation of cells [43], and levels of the autophagy marker microtubule-associated protein 1 light
chain 3 α (LC3) are reduced in cancer cells [44].

An interaction between autophagy and apoptosis to alleviate necrosis, leading to tumor suppression,
has been proposed [45]. Autophagy may act as a tumor suppressor to limit tumor size [12].
These observations suggest that autophagy hinders tumor progression. Moreover, by sequestering
damaged organelles, inducing cell differentiation, increasing protein catabolism, and promoting
autophagic cell death, autophagy protects cells from becoming malignant [46]. Thus, while autophagy
supports cell survival, it may also promote cell death in cases of imbalanced cell metabolism.
Under the latter condition, autophagic cellular consumption surpasses the cellular capacity for protein
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synthesis [3]. However, autophagy may also protect cells from apoptotic cell death [15]. Furthermore,
autophagy may induce cancer progression by increasing DNA damage and genomic instability [47].

5.2. Autophagy Drives Cancer Cell Survival

The well-known tumor suppressor protein, p53, can modulate autophagy. This protein has dual
roles depending on the subcellular localization; p53 favors autophagy in the nucleus, whereas it
suppresses autophagy in the cytoplasm. Under a normal environment, p53 levels are regulated
by Mdm2-mediated ubiquitination. Under stressful conditions, p53 accumulates as a result of
post-transcriptional modifications that allow it to avoid Mdm2-mediated degradation [48]. p53 in the
nucleus then binds to several genes coding for pro-autophagic modulators [48]; p53 in the cytoplasm
suppresses autophagy by inhibiting AMPK and activating mTOR [49].

Although the primary role of autophagy seems to prevent cancer, once a tumor develops, autophagy
is exploited by cancer cells and has a protective role [9]. Indeed, cancer cells exploit autophagy to adapt
to a stressful environment and maintain homeostasis in the presence of cellular stress. Cancer cells,
especially their poorly vascularized internal regions, have been shown to utilize autophagy for survival
under starvation and low-oxygen conditions [12,14]. Interestingly, autophagy-induced cancer cell
survival is enhanced in cancer cells with defective apoptosis. Apoptotic cell death is suppressed
in response to metabolic stress because of overexpression of the apoptotic inhibitor BCL2 [3].
The suppression of apoptosis prolongs cells survival, and may cause the uncontrolled proliferation
of malignantly transformed cells that otherwise would have undergone apoptotic cell death [3,50].
These apoptosis-defective cancer cells undergo autophagy to extend their lifespan, as sustained
autophagy not only nourishes the cells but also reduces their size, allowing them to survive under
nutrient-poor/starvation conditions [3]. However, over time, the prolonged shrinkage and nutrient
restoration can inhibit recovery, and, ultimately, induce cell death (Figure 3) [3]. Thus, while autophagy
may induce cancer cell survival, as depicted in Figure 1, the cells eventually die due to sustained
autophagy. In other words, both the survival and death of apoptosis-defective cancer cells under
metabolic stress are dependent on autophagy.
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Figure 3. Apoptosis-defective cancer cells exploit autophagy to extend their survival, but eventually die.
During the later stages, cancer cells require autophagy to survive under nutrient-deficient conditions.
To survive under this environment, the cells may acquire nutrients recycled from damaged organelles
through autophagy. Although the prolonged starvation can lead to cell death, cancer cells extend their
life expectancy through autophagy.

5.3. Autophagy as a Candidate for Cancer Immunotherapy

Radiation therapy is the most commonly used treatment for cancer, as it possesses tumor
growth-delaying properties [51,52]. Radiation induces autophagy in human cancer cell lines [52].
Autophagy following radiation therapy can have both cytoprotective and cytotoxic effects [52].
Autophagy induction can enhance the effect of radiation therapy in human oral squamous cancer cell
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by sensitizing the cells to irradiation. Additionally, the PI3K/Akt pathway (which is a major regulator
of autophagy) is believed to regulate the cytotoxicity of post-radiation autophagy [52]. Conversely,
other studies have shown that suppressing autophagy may augment radio-sensitization in human
glioma cells [52,53]. Therefore, Janus-faced autophagy may induce either survival or death depending
on the cell/tissue type [52].

Anti-cancer therapies can induce autophagy in apoptosis-defective cells, as the resultant
cytotoxicity may evoke progressive autophagy, leading to autophagic cell death [3]. Therefore, the
therapeutic induction of autophagy may contribute to cancer cell removal. As described above, cells
defective in apoptosis undergo autophagic death. This property has been exploited in the development
of anti-cancer therapies, which cause cells to become resistant to apoptosis [54]. Thus, promoting
autophagic death in cancer cells can be a therapeutic approach for cancer treatment [54].

Generally, harmful stimuli induce apoptosis and autophagy during the early stages of cancer [55].
In a previous report, we discussed the therapeutic potential of the chronobiological hormone,
melatonin, against colon cancer [56]. It has been reported that impaired melatonin release may be
observed in patients suffering from colorectal cancer [56,57], and this cancer is prevalent in night-shift
workers, suggestive of an association between melatonin and oncogenesis [56,58]. According to our
previous study, melatonin increased HCT116 colorectal cancer cell death during the early stages by
activating apoptosis and autophagy, which is supported based on the upregulation of bax, cleaved
caspase 3, Beclin1, and LC3, as well as decreased AKT/pAKT expression [56]. Moreover, we observed
a growth inhibition of cancer cells mediated by melatonin receptors. We also observed time-dependent
MT1 downregulation and early upregulation of RORα in cancer cells. As the membrane melatonin
receptor, MT1 may have an antiproliferative effect and is known to be overexpressed in malignant
cells; melatonin-mediated anticancer effects may cause MT1 downregulation in a time-dependent
manner. RORα, which is a type of nuclear melatonin receptor, mediates immune function. Therefore,
early upregulation of RORα is believed to be due to the early tumor suppressive effect of melatonin
through its nuclear receptors [56].

High-mobility group box 1 protein (HMGB1) is a nuclear protein that functions as a transcriptional
enhancer and mediates inflammatory responses [59]. HMGB1 is secreted from inflammatory cells
to evoke inflammation by binding to receptors such as the receptor for advanced glycation end
products (RAGE) and TLR2/4 [55]. HMGB1 release is involved in the immune response against
cancer cells [60]. This protein is not released from apoptotic cancer cells, indicating that apoptotic
cell death is non-inflammatory [61]. HMGB1 has also been shown to inhibit apoptosis while
promoting autophagy [55]. Reduced HMGB1 expression may increase cancer cell sensitivity by
limiting autophagy [55]. Based on the association between autophagy and apoptosis in cancer cells,
HMGB1 may be an important therapeutic target in cancer treatment.

Recently, autophagy has been proposed to regulate the stemness of cancer stem cells (CSCs) [62].
Since CSCs can regenerate and differentiate, they are considered a major hurdle in the development of
anticancer therapies. The stemness of CSCs can be increased through the eliminating and/or recycling
properties of autophagy [62]. The optimal regulation of autophagy for improved cancer treatment has
not been thoroughly characterized; however, CSC-stemness modulation through autophagy may be
a potential therapeutic strategy.

6. Conclusions

As discussed above, inhibiting autophagy increases cancer cell growth; thus, promoting
autophagy may suppress cancer during its early stages. In late-stage cancer, cancer cells use autophagy
to protect themselves from anti-cancer therapy. Therefore, autophagy inhibitors (e.g., bafilomycin A1)
can evoke cancer cell death through apoptosis and act as a cancer suppressor during these stages.
In other words, autophagy limits cancer cell development and promotes the survival of existing cancer
cells. Since cancer cells primarily undergo autophagy for self-protection, the inhibition of autophagy
has generally been proposed as a therapeutic strategy against cancer. However, the promotion of
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autophagy may result in anti-cancer activity by inducing cytotoxic immune cells. Indeed, within the
same cancer, both inhibition and promotion of autophagy may be beneficial. Therefore, an optimal
combination of autophagy inhibition and promotion, according to the properties of the cancer, is
needed. A better understanding of the roles of autophagy in cancer and immunity, and whether its
induction or suppression will provide the desired effect, requires further study.
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