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ABSTRACT 
 

This research was begun for finding an appropriate industrial application of electron beam process. 

Particularly, since last decade, the surface treatment method using electron beam has been largely 

investigated. However, in the all published researches for Mg-alloys known for the world lightest-

weight metal, the energy density level of the electron beam surface treatment was limited at only 2.5 - 

3 J/cm2 and the electrochemical performance has not yet been enhanced for engineering application. 

In this thesis, the energy density was increased up to 10 J/cm2 with parameter optimization by 

applying large pulsed electron beam (LPEB) irradiation process on AZ31 plate specimens.  

Firstly, through mathematical modelling of energy absorptivity of LPEB, the pitch of 

irradiation pattern was anticipated to adequate value. Appling the prediction model, the temperature 

profile was simulated by 2-D heat transfer equation. The estimated result was verified by real-time 

temperature measurement. The process was assessed how to be progressed rapid quenching and 

tempering. At over 20 cycles, the substrate temperature was above eutectic point (220℃) of Mg-Al 

alloy, but it was not increased over 300℃ due to self-diffusion. To analyze the surface modification 

effects mechanically, it was demonstrated brightness, deformation of LPEB treated surface with the 

results of ball-on-disc wear test. The mechanical characteristics were enhanced by ~30% using LPEB 

process. For electrochemical analysis, the surface corrosion characteristics were qualitatively and 

quantitatively evaluated by 3-electrode cell test. Potentiodynamic polarization and electrochemical 

impedance spectroscopy was applied to evaluation. Then, low-field approximation and equivalent 

circuit modelling was used to certify the optimum LPEB parameter. At as-received sample, it 

presented irregular results since the oxide layer; it can protect the bare surface from corrosion, but it 

was easily damaged than the newly modified surface layer by LPEB process. The result was 

demonstrated that the electrochemical characteristics were improved by ~45%. 

In addition, using the scanning electron microscopy (SEM) and energy dispersive 

spectroscopy (EDS) analyses, the morphology and the microstructure with chemical composition 

transformation were detailed discussed by metallurgically. As a result, it was presented that the tool 

mark was eliminated with new wavy surface morphology and the Al content was increased up to 

maximum level when the energy density is 5 J/cm2
. Consequently, the LPEB irradiation was verified 

that it can efficiently fabricate nano-grained corrosion-resistant surface layer with activating surface 

alloying induced by vaporization and re-melting process in Mg-Al binary alloy system. However, the 

technology was analyzed to require more development because surface defects were appeared by 

LPEB process due to inhomogeneous evaporation of Mg such as crater, crack, and micro-pole. 
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B  the magnetic field 

q  the charge of electron (-1.61 × 10-19 C) 

v  the velocity of electron 
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ẑ  the z direction vector 

μ0  the magnetic constant 
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I  the current of emitted electron 

IA  the Alfven’s current 

Ua the accelerating voltage 
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P  the power 
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Cf the double layer capacitance in the film 
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Vd the velocity of disc 

ω the rotational speed of disc 
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Ⅰ. Introduction 

 

1.1. Background 

 

Todays, by amazing developments of the advanced material engineering, the non-ferrous alloys are 

gradually highlighted for a substitute of the traditional structural materials. In the avian and 

automobile industries, the steel (Fe-C-others) has been altered to the more innovate alloys based on 

aluminum (Al), titanium (Ti), magnesium (Mg) and the other non-ferrous metals (Ni, Co, Cr, Mo and 

etc.) . Referred to Figure 1-1, the Mg-alloys are going to be more and more fascinated among them. 

Generally, the reasons of the Mg-alloy’s competitiveness are (i) high machinability and (ii) high 

functionality. For the machinability, ‘mold and die-cast’ and ‘machining’, known as the easy and low 

cost process, are regularly used for producing the final Mg-alloy’s merchandize [1]. In the view of the 

functionality, the Mg-alloys are lighter than the Al-alloys by ~30%. Then, the biocompatibility of the 

Mg-alloys (Mg-Y-Nd-HRE) is also known as nobler to the Ti-alloys (Ti-6Al-4V, Ti-6Al-7Nb) in the 

some experimental cases applying for bio-implants [2]. From now on, the important issues of this 

thesis will be discussed; (i) surface treatment technologies for the Mg-alloys and (ii) methods to 

define the characteristics of Mg-alloys. 

 

 

 

 
Figure 1-1. (a) Mg production trend of 2002 - 2014 [3] and (b) the projected market size with 

compound annual growth rate (CAGR) of non-ferrous metals in 2015 - 2020 [4]. 
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First of all, the Mg is the world lightest-weight metal as the atomic number is 12, according 

to the periodic table. And then, because of a good moldability, the Mg-alloys are more recommended 

for the metal-based mass-production system than the newly developed composite materials such as 

fiber reinforced polymers (FRP) and nano-composites. Besides, its good damping and electromagnetic 

interference (EMI) shielding properties are also well acknowledged. However, for the reasons of the 

high chemical reactivity of the Mg in moisture with salty substances under marine environment and 

low friction durability in harsh scratched situation, it has not yet been widely utilized as a practical 

structural material. 

Then, the various surface treatment technologies for the Mg-alloys have been studied for 

more advancement in surface quality and sterilization. The technology development process can be 

divided into two other classes according to the manufacturing view. The first is reducing an 

environmental pollution. Commonly, the pollution is generated during the chemical reaction process. 

And, the second is improvement of surface quality eliminating the surface defects such as 

delamination, micro-pole, crater, crack, and etc. The most critical defect of surface treatment is the 

delamination because the incomplete adhesion and heterogeneous bonding separates between the 

coated hard film and the soft substrate materials. 

The surface treatment technologies for the Mg-alloys can be categorized to 10 divisions; 

‘grinding’, ‘polishing’, ‘buffing’, ‘dry-abrasive blasting’, ‘wet-abrasive blasting’, ‘barrel or bowl 

abrading’, ‘conversion coatings’, ‘organic coatings’, ‘cleaning’, and ‘plating’. Although simply the 

chemical polishing method can be used for enhancing the surface characteristics of the Mg-alloys in 

hand, the conversion coating method is actively studied for development of the standard film coating 

control systems such as electroplating, plasma electrolysis oxidation (PEO), and diamond-like carbon 

(DLC) coating. Until now, that research results show a many limitations, as you can check at the Table 

1-1. 

Electron beam (EB) is another prospective method can fulfil the environmental-friendly and 

less-defective surface modification as one of the directive energy beam irradiation (laser, ion) 

techniques. Particularly, for Mg-alloy enhancement, high-current pulsed-electron beam (HCPEB) 

process has been studied for the last decade [5-10]. Nevertheless, it needs more verification and 

advancement for optimizing the process parameters and corrosion characteristics of EB-treated Mg-

alloys are still unsuitable for engineering application. Also, in the previous documents, the energy 

density level of HCPEB process is suggested only at the limited to 2.5 - 3 J/cm2. Recently, according 

to Uno et al. [11] and Park et al. [12], large pulsed electron beam (LPEB) process shows distinct 

results compared to other EB processes, since it can cover the high energy density level up to 

maximum 10 J/cm2 [13]. 
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Table 1-1. Comparison of surface treatment technology for Mg-alloys. 

Method Principle Performances Limitations 

Chemical polishing Manual polishing 

using etchant 

Surface roughness reduction Manual process 

(cost) 

Electroplating Immersion in metallic 

solution 

Bright color nodular structure, 

high adhesion, and cheap 

Environmental 

pollution 

Plasma electrolysis 

oxidation (PEO) 

Anodizing with high 

electrical potential 

Nano-film construction, high 

hardness/corrosion resistance 

Hard 

controllability, 

delamination 

Diamond-like carbon 

(DLC) coating 

Sputtering and 

vacuum deposition 

Environmental-friendly, high 

hardness/corrosion resistance 

Long processing 

time, delamination 

Ion implantation Nitriding using ion 

beam 

Environmental-friendly, dense 

microstructure surface 

Long processing 

time, less quality 

Laser surface 

modification 

Focused laser beam 

irradiation 

Environmental-friendly, self-

quenching, and thick-film 

Long processing 

time, harsh surface 

Electron beam (EB) 

surface alloying 

Pulsed electron beam 

irradiation 

Low power consumption, 

reconstructed intermediate 

surface layer, fast 

Crater, less quality 
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1.2. Research Objectives 

 

The LPEB irradiation surface treatment for Mg-alloys is expected to several advantages; (i) high 

surface glossiness, (ii) high wear resistance, (iii) high corrosion resistance, and (iv) the possibility of 

mass-production. Although, there are various surface treatment methods of Mg-alloys, most of those 

methods are seen practically inefficient and cannot make better solution for the cost and defects. The 

LPEB treatment can overcome the previous problems by enhancing the surface quality without any 

other additional materials. Besides, the LPEB process enables to make fast and automatic finishing 

process. However, during the process of LPEB treatment, the working material is under vaporizing. 

Consider that the Mg-alloys are easily affected by heats and forces different from other heavy-metals, 

the most important issue is how to optimize the process parameters for appropriate LPEB treatment on 

Mg-alloys such as (i) irradiation pattern, (ii) energy density, and (iii) number of cycles. 

 To optimize the LPEB process, real-time monitoring and the performance examinations are 

needed. Firstly, for real-time monitoring, the temperature data of working material is investigated. 

Since the pulse duration is very short (~2 μs), it is impossible to measure the perfect temperature 

profiles. Nonetheless, it can show generally the temperature changes whether the metal is well alloyed 

or not during the total shots of LPEB. Secondary, the process performances will be verified by the 

result parameters of the mechanical and electrochemical characteristics; (i) surface deformation (i) 

wear resistance, and (ii) corrosion resistance. 

To determine whether the performance of the LPEB process is improved or degraded, the 

corrosion resistance properties are critically checked. Specifically, LPEB treatment can fabricate the 

stable and noble surface with eliminating the tool mark and reduce the surface defects known as weak 

to ‘pitting corrosion’. Then, it is expected to eliminate the α-β boundary known to be weak to 

‘Galvanic corrosion’ and construct dense grain microstructure with producing a nano-grained matrix 

and removing the slip planes related to dislocation and twining. Also, for preventing the delamination, 

it needs well balanced brittleness and flexibility properties. LPEB treatment can increase the surface 

hardness with sustaining the toughness of original Mg-alloys. The most anticipated effect is chemical 

composition transformation. In Mg-alloying technologies, the Mg-alloys containing the high enriched 

Al content are stronger than the low Al content. However, it is known as very difficult to increase the 

Al content more than 9 wt.% because the solute-solution distribution characteristics. Different from 

the conventional methods, the LPEB treatment fabrication is expected to enable the special surface 

alloying by increasing Al content of the Mg-alloy surfaces. The reason is LPEB irradiation can 

vaporize the Mg selectively under the optimized energy conditions. 

In this study, analysis has been demonstrated for evaluating the enhancements of the 
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mechanical and electrochemical properties of the Mg-Al alloys by the LPEB surface treatment. As a 

commonly commercialized Mg-Al alloy, AZ31 (Al 3%, Zn 1%) was assessed for the study because 

AZ31 has the most possibility for improvement of Al content among the other Mg-Al alloys (AZ91, 

AM60, and etc.). The energy density of LPEB was changed from 3 to 10 J/cm2 and simultaneously the 

number of cycles also was changed from 1 to 100 for finding optimum process parameters. Then, 

verification tests were repeatedly conducted; ball-on-disc wear test as mechanical analysis and 

potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) as electrochemical 

analysis. Lastly, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) 

analyses were applied for observation the microstructure and chemical composition transformations. 
 

 

 
Figure 1-2. Experimental process for parameter optimization of LPEB process on Mg-alloys. 
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1.3. Dissertation organization 

 

The introduction of this study is presented in Chapter 1. In Chapter 1, you can check the background 

knowledge of this thesis. Chapter 2 shows literature review. The literature review section is divided to 

the conventional surface treatment technologies for Mg-alloys and EB surface treatment. Then, 

Chapter 3 described the process optimization by introducing the experimental conditions and 

characterization results of the mechanical and electrochemical enhancements. Performances and 

limitations in the thesis of EB surface treatment for Mg-alloys are suggested in Chapter 3. The 

analysis of surface modification effects is comprised in Chapter 4. The metallurgical analysis is 

conducted for verification. Finally, Chapter 5 describes the conclusions and recommendations. This 

dissertation is laid out as follows in Figure 1-3. 

 

 

 
Figure 1-3. Flow chart of dissertation organization. 
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Ⅱ. Literature review 

 

This chapter presents the review of literature survey of the areas of studies. The literature review is 

divided into two groups; (i) surface treatment of Mg-alloy and (ii) EB surface treatment. The reviews 

on the LPEB process will include the results of the recent studies of electron beam surface treatment 

with various experimental parameters. The literature review of the characteristics of Mg-alloy will 

include the research on the electrochemical results of various surface treatments for the Mg-alloys. 

 

2.1. Surface treatment of Mg-alloy 

 

 
Figure 2-1. Mechanism of corrosion reaction on the surface of Mg-alloys. 

 

Encouragingly, Chen et al. [14] showed the commercially-produced Mg (CP-Mg) plates have a self-

organized oxide film by just remaining in atmosphere for a longtime. The oxide layer has been 

reported it can make well withstand the attacks from a corrosive environment. However, the oxide 

film is very thin (~1 um) and fragile according to Avedesian et al. [15]. Therefore, it is very easily 

removed by mechanical impact in engineering applications. Figure 2-1 represents the corrosion 

reaction of Mg-alloys. If the chloride ion is existed in water solution, the ‘galvanic corrosion’ is 

mainly occurred at the α-β grain boundary (inter-metallic element), because Mg has high metal 

ionization tendency, the sequence is ordered such as ‘Mg > Al > Zn > Fe > ∙∙∙’. Also, because of the 

‘pitting corrosion’ generated owing to exterior incursions, which is occurred at the local defects and 

activates the corrosive products are spread laterally to the other unscratched zone [16]. So, it is very 

important to maintain the surface homogeneity and stability. 
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Referred to Yavov et al. [17], the Mg-alloys are known as hard to hand polishing due to 

generate hydrogen gas (H2) easily explosive when the small Mg powders react with water (H2O), the 

chemical reaction is descripted below: 

 

Oxidation: 
2+

(aq)

-
(s)Mg Mg +2e→      (2.1) 

Reduction:  
--

2 (I) 2(g) (aq)2H O +2e H 2OH→ ↑ +     (2.2) 

Overall:    (s) 2 (I) 2( ) 2(g)Mg +2H O Mg(OH) +Hs→ ↓ ↑    (2.3) 

 

For this reason, many researchers have been challenged to develop more successful protection 

methods for the CP-Mg plate. Hence, there are many tries to protect the CP-Mg plate from the harsh 

engineering environments in the academic area of ‘alloying’ and ‘surface treatment’. 
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Figure 2-2. (a) Comparison of material specific strength (Gupta et al. [18]) and (b) Nyquist plot, (c) 

Bode magnitude plot, (d) Bode phase plot, and (e) XRD results of AZ31B, AM60, 

AMX602 and AZ91D specimens (Liao & Hotta [19]). 
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Ding et al. [20] has been asserted that the elemental Mg-alloying method is making 

appropriate multi-combination allotropic system with Al, zinc (Zn), manganese (Mn) and the rare-

earth materials (Y, Nd, and etc.). From the last 30 years, this approach has been produced the 

commercialized Mg-alloys. Famous AZ, AM series and WE43 were provided by ‘Magnesium 

Elecktron’. Figure 2-2 describes the mechanical performance of Mg-alloys and EIS diagram with 

XRD analysis results. The electrochemical impedance is ordered by Al content such that ‘AZ91D > 

AMX602 = AM60 > AZ31’. However, Mg-alloying with over enriched Al causes excessive brittleness. 

Hence, the maximum Al content is limited at ~9 wt.% in Mg-alloying process according to 

Pekguleryuz et al. [21]. Among them, the techniques of coatings manufacturing are ordered at Figure 

2-3 divided to 6 categories. But, the assembling is less strict because the techniques are complicatedly 

overlapped each other. To the next topic, it is managed to the detail information of the coating 

technologies of Mg-alloys. 

 

 

 

 

 

 

 
Figure 2-3. Conventional techniques of coating for Mg-alloys (Golabczak et al. [22]). 
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Following the surface treatment technology development history, the ‘chemical vapor 

deposition (CVD)’ is eligible to be firstly discussed. Referred to Ponja et al. [23], the mechanism of 

CVD is generating chemical reaction for coating the other stable materials. Because the most CVD 

processes are performed in liquid, it is so called as a ‘wet method’. For example, there are numerous 

CVD methods for enhancing the Mg-alloys. The simplest CVD method is the ‘chemical polishing’ 

[24], which are accompanied with toxicant chemical solution. The chemical polishing is used for 

erasing the debris of the surface. And then, the ‘immersion method’ is using CVD conducted in 

ethanol solution bath mixed with nitric acid and acetic acid. After the adequate immersion time, the 

protected thin-layer can be formed. Also, the ‘porous-media deposition’ makes doping the nano oxide-

film in sulfide acid solution using CVD. Among the well-known CVD methods, the ‘electroplating’ 

has been widely utilized for the conventional Mg-alloys surface treatment technology. Generally, it is 

using the copper pyrophosphate solution to protect the substrate materials. Especially, Dong et al. [25] 

introduced the ‘Chrome VI (Cr6+) pickle electroplating’. It shows the performances; bright color, 

nodular structure, and high adhesion. 

Recently, to avoid the toxicity to the human body and environmental pollution originating 

from the harmful chemical reagents, other alternatives have been actively reported. For instance, as 

the wet method, ‘anodizing’, ‘plasma electrolytic oxidization (PEO)’, ‘plasma spraying’, and ‘sol-gel’ 

techniques have been suggested. And as a ‘dry method’, ‘physical vapor deposition (PVD)’ and ‘direct 

energy beam irradiation method’ has been researched. The easiest way of the alternatives is anodizing. 

From Kwon et al. [26], the anodizing is using the mechanism of the ion transferring from the cathode 

to the anode materials in non-toxic solution. The PEO process is one of the anodizing methods. It is 

conducted with higher electrical potential than the basic anodizing process. Arrabal et al. [27] verified 

that performance of PEO; high corrosion resistance with less surface roughness. Since PEO can 

fabricate various functional coatings regardless of the target materials [28], it is anticipated to the best 

substitute for the conventional electroplating technologies. 

On the other hand, the PVD technologies of the Mg-alloys have been developed in the only 

lab-scale applications at present. However, the PVD methods are expected to the future manufacturing 

solution because it can make freely control the coating parameters. The essential mechanism of PVD 

is ‘ion implantation’ which is by ‘sputtering effect’ and ‘vacuum deposition’ in vacuum. For example, 

the one of the most popular PVD surface treatments is diamond-like carbon (DLC, sp3) and graphene 

(sp2) coatings. Following Tański and Tomasz [29], in order to coating the nano carbon composite 

layer which is working by CVD process with the acetylene gas (C2H2) in vacuum chamber, the 

plasma-enhanced chemical vapor deposition (PECVD) method has been adapted. Also Ishizaki et al. 

[30] showed the fabrication of super hydrophobic film using PECVD. 
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Peng et al. [31] showed the ‘nitriding process’ of the pure Mg. the process is activated by 

negative electrical charging on the substrate under nitrogen (N2) plasma. When N+ ion is collided with 

substrate atoms, interstitial ion implantation is occurred and it causes cascaded dislocation in lattice 

structure. Also, referred to Figure 2-4 (a), Höche et al. [32] investigated ‘ion beam surface 

modification’ method for enhancing the surface of Mg-alloys. Eventually, the suggested PVD surface 

treatment technologies can increase the overall surface properties of the Mg-alloys similar to the 

coating materials. However, the delamination problem has been not yet completely solved as shown at 

Figure 2-4 (b). 

 Todays, as one of directive energy beam irradiation methods, laser beam technology has been 

developed for surface alloying of the original surface of the Mg-alloys to reducing delamination 

problem. In Figure 2-4 (c), Zhou et al. [33] suggested ‘laser surface melting (LSM)’ with 

‘electromagnetic stirrer (EMS)’ to improve the corrosion resistance of Mg-alloys remarkably by re-

melting process with rapid self-quenching. It shows very thick (~1 mm) re-melting surface layer and 

deep heat affected zone (HAZ), but there are some plastic deformations with beam path due to the 

focused energy beam’s long duration as shown at Figure 2-4 (d). In Table 2-1, the current study trend 

of surface treatment for Mg-alloys is summarized in the view of corrosion analysis. 

 

 
Figure 2-4. (a) Ion trajectories of ‘SRIM2008 depth profile calculation’ using 100 keV N+ ions [32], 

(b) Irradiated samples after ‘Hardion+ technology treatments’ [32], (c) Schematic of LSM 

with EMS apparatus [33] and (d) LSM with EMS treated specimen [33]. 
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Table 2-1. Literature review on corrosion analysis of recent surface treatment method for Mg-alloys 

Anti-Corrosion Surface treatments 

: Authors (year) 
Mat. 

RE 

(CE) 

Results 

(As-received -> Treated) 

Laser (Ø 4 mm, 2 kW, 200 mm/m) 

: Majumdar et al. [34] (2003) 
MEZ 

SCE 

(Pt) 

Rp: 15.07 mΩ∙cm2 → 899.9 mΩ∙cm2 

icorr: 69 mA/cm2 → 1.5 mA/cm2 

Heat treatment (T6) 

: Zhou et al. [33] (2010) 
AZ91 

SCE 

(Pt) 

vcorr: 0.85 mm/y → 0.59 mm/y 

icorr: 0.039 mA/cm2→ 0.027 mA/cm2 

Chemical conversion (PO4
3-/Mn, Ce) 

: Rocca et al. [35] (2010) 
AZ91 

SCE 

(Pt) 

Rp: 1000 Ω∙cm2 → 15000 Ω∙cm2 

icorr: 0.35 mA/cm2 → 5 - 10 μA/cm2 

Ion implantation (65 keV N+ ions) 

: Höche et al. [32] (2011) 
AM50 

Ag/AgCl 

(Pt) 
Rp: 1512 Ω∙cm2 → 2472 Ω∙cm2 

HCPEB (3 J/cm2, Ø 60 mm, 15 pulses) 

: Bo et al. [36] (2011) 
AZ31 

SCE 

(Pt) 

icorr: ~0.01 mA/cm2 at -1.51 VSCE 

→ ~0.000001 mA/cm2 at -1.36 VSCE 

Chemical conversion (C14H28O2, FeCl3) 

: Zhao et al. [37] (2014) 
AZ31 

Ag/AgCl 

(Pt) 

Rp: 200 Ω∙cm2 → 1500 Ω∙cm2 

icorr: 20.75 → 0.02579 μA/cm2 

HCPEB (3 J/cm2, Ø 60 mm, 15 pulses) 

: Li et al. [6] (2014) 
AZ91 

SCE 

(Pt) 
icorr: 48 μA/cm2 at −1.59 VSCE 

Laser (600 W, 60 mm/s) 

: Taltavull et al. [38] (2014) 
AZ91 

Ag/AgCl 

(Graphite) 

vcorr: 0.46 mm/y → 0.10 mm/y 

icorr: 20.2 μA/cm2 → 7.3 μA/cm2 

PVD coating (MgAl + Al2O3) 

: Smolik et al. [39] (2015) 
AZ91 

Ag/AgCl 

(Pt) 
Ecorr: -1.5 VSCE → -1.18 VSCE 

HCPEB (3 J/cm2, Ø 60 mm, 15 pulses) 

: Hao & Li [5] (2016) 
AZ91 

SCE 

(Pt) 

icorr: ~0.1 mA/cm2  at  -1.55 VSCE 

→ ~0.001 mA/cm2  at  -1.25 VSCE 

Laser (1500 W, Ø 3mm, 600 mm/m) 

: Zhou et al. [33] (2017) 
AZ91 

SCE 

(Pt) 

icorr: 0.3595 mA/cm2 

→ 0.06869 mA/cm2 
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2.2. Electron beam surface treatment 

 

2.2.1. Large pulsed electron beam process 

 

The pulsed electron beam (PEB) is developed for magnifying the transferred heat generation power. 

Generally, the system of electron beam machine is divided to electron gun and vacuum chamber. And 

also, the electron gun consists of cathode filament, anode ring, solenoid lens, and high power supply 

unit. Simply describing the whole mechanism of the EB irradiation, firstly the electron is amplified by 

charging the cathode at emitter of the EB machine. It is enabled in plasma atmosphere. Using the 

anode ring charging in advance, the electron and the ion are steady dispersed. Theoretical modeling of 

electron beam is related to the electromagnetic laws. According to Mesyat [40], the theory of electron 

motion in vacuum has been studied in 1960 - 80s. Especially, it was documented that the LPEB is 

generated by ‘explosive electron emission (EEE)’ effect and it is accelerated by ‘explosive gap 

breakdown’ phenomenon and ‘Penning effect’. 

 The velocity of the emitted electrons is accelerated to one- or two-thirds of the speed of 

light induced a Lorenz force with electromagnetic fields. The force equilibrium of the electrons can be 

descripted as [40]: 

 

[ ( )]F q E v B= + ×         (2.4) 

2( / ) ( / )( )em dv dt F qv c v Eγ = − ⋅       (2.5) 

0 t s ˆB n I zµ=          (2.6) 

 

From Eq. (2.4), F is the Lorenz force, and E and B means the electric and magnetic fields, 

respectively. q is the charge of the electron (-1.61 × 10-19 C) and v is its velocity. Eq. (2.5) is 

expressed the relativistic equation of motion, written in Newton’s form. me is resting mass of the 

electron (~9.11 × 10-31 kg), γ is the relativistic factor (1/(1 - ν2/c2)1/2), and c is the speed of light (~3.00 

× 108 m/s). At Eq. (2.6), the magnetic field (B) is presented by constant form. It is directed to the 

emitter or the collector (ẑ) with the magnetic constant (μ0) of the vacuum, and the number of turns (nt), 

the current (Is) of the solenoid coil. Applying the theory of relativity in homogeneous electromagnetic 

field, the maximum current of the accelerated electron can be calculated using Alfven’s current 

according to Molokovsky and Sushkov [41]. 

 



15 

 

A 41.7 10 /I I v cγ≤ = ×        (2.7) 

6
a1 (1.96 10 )Uγ −≅ + ×        (2.8) 

5
a(5.95 10 / ) ( 1) / 2v Uγ γ≅ × +       (2.9) 

a33.7I U∴ ≤        (2.10) 

 

Where, I is the current of the emitted electron and IA [A] represents the Alfven’s current. From Eq. 

(2.8), Ua [V] is the accelerating voltage of the emitter. When the accelerating voltage is under 

magnitude of 4, the relativistic factor can be approximated to be ‘1’. Representing the maximum 

current equation by the function of the accelerating voltage, the energy density in central place can be 

estimated using the relation of ‘P = VI’. 

 

d0 a/ /E P S U I Sτ τ= =        (2.11) 

3/2 2 3/2 2
d0 a a33.7 ( ) / ( ) 33.7 ( ) / ( )E U r U rτ π η τ π∴ ≤ =    (2.12) 

 

Where, Ed0 [J/cm2] is the energy density at the center, P [W] means the power. Then, τ [s] is 

irradiation duration and S [cm2] is stand for the area of electron beam. r [cm] is the radius of electron 

beam. In an ideal case, the energy density can be estimated by applying the Alfvan’s current equation. 

Therefore, it is approximated that the energy density is mainly affected by the accelerating voltage. η 

is the efficiency for considering the real system. Following Rehn et al. [42], White and Aziz presented 

the energy loss model in penetration depth direction, which is estimated by Gaussian distribution. 

 
2 2

d d0 p( , ) ( )(1 )exp[ ( ) / (2 )]E z t E t z zβ σ= − − −     (2.13) 

p 0(143 622)z Z r= +        (2.14) 

0( 538ln 3740)Z rσ = − +        (2.15) 

a
0 d0r AE=         (2.16) 

6 73.92 10 1.562 10A Z− −= × + ×       (2.17) 
31.777 2.165 10a Z−= − ×       (2.18) 

 

Where, β is the energy reflection coefficient or so called backscattering coefficient and zp [μm] is the 

maximum absorptivity depth. σ [μm] is the standard deviation of absorbed electron location and Z is 
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the atomic number. The parameter of penetration range (r0) can be obtained from the Eq. (2.16). A and 

a are just fitting parameters for experimental results. Composed the all above equations, the 

appropriate PEB energy generation model at central position is can be completed. In Chapter 3, 

additional modelling and verification of the machine used in this thesis are discussed. 

Figure 2-5 shows schematic of pulsed electron beam equipment. According to Proskurovsky 

et al. [43], the first equipment applying PEB technology is introduced in Russia. The first equipment 

model ‘Nadezhda’ series is invented for using ‘EEE’ effects. Specifically, the EB source is called 

‘low-energy high-current electron beam (LEHCEB)’, many researches for surface modification of 

iron, Ti-alloys, Al-alloys and Ni-alloys are proposed using this machine. Then, at the almost same 

period, the new type of the PEB machine is created in named for ‘Gepulste ElektronStrahl Anlage 

(GESA)’ series in Germany by Engelko et al. [44]. Due to the machine is designed to vertical 

structure not horizontal, this machine can be adapted more conventionally. Also, similarly, in France 

and China, ‘HOPE’ series are development purposed to be surface treatment equipment. The EB 

source of GESA and HOPE is called ‘high-current pulsed-electron beam (HCPEB)’. More recently, in 

Japan, Uno et al. [11] introduce the new PEB surface treatment machine. This is called ‘Electron 

Beam PIKA Finish Machine (PIKA series, model: PF32B)’ produced by ‘Sodick’. They named the EB 

source is ‘large pulsed electron beam (LPEB)’. The detailed of this machine is well discussed in 

Chapter 3. 
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Figure 2-5. Schematics of the different types of PEB machine; (a) Nadezhda [36], (b) GESA [44], and  

(c) PIKA [11]. 

 

2.2.2. Surface modification by electron beam irradiation 

 

In this section, the published PEB surface modification researches are briefly discussed focused on the 

change of corrosion properties about the typical 4 metallic materials such as steel, Al-, Ti-, and Mg-

alloys. Firstly, PEB is generally used to mold steel for fabricating hardened surface layer. Zhang et al. 

[45] investigated the surface modification of AISI 304L austenitic stainless steel using HCPEB in the 

view of corrosion resistance. They showed that the pitting corrosion decreases on the surface 

immersed in seawater with increase EB pulses. The EIS measurement proved that the corrosion 

resistance is mostly doubled from ~31 kΩ∙cm2 to ~62 kΩ∙cm2 after 10 pulses. Also, Kim et al. [46] 

studied the surface modification of mold steel materials applying LPEB. Surface quality and 

glossiness of KP1, KP4 are remarkably improved using 10 J/cm2 energy density. For example, the 

corrosion rate of KP4 is decreased from 0.01688 mm/y to 0.00809 mm/y as a result of 

potentiodynamic polarization test in 1 wt.% NaCl solution. 
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 Next, the surface modification results of Al-alloys with HCPEB are reviewed by Rotshtein et 

al. [47]. The electrochemical impedance of Al6061 alloy is improved by HCPEB irradiation from 3 

degree of decade to 5 degree of decade resistance level (Ω∙cm2). They suggested that the enhancement 

is owing to the protective Al2O3 film formed after irradiation and second-phase particles under pulsed 

melting. For Ti-alloys, Walker et al. [48] showed that the corrosion behavior of LPEB irradiated Ti-

6Al-4V surfaces. OCP measurements and cyclic polarization curves in 3.5 wt.% NaCl solution 

supported that the corrosion rate is decreased from 923.2 to 5.478 nm/y. In the case of 15 and 25 

LPEB pulses on Ti-alloys, a homogenous α´-martensitic surface layer was fabricated within prior β-

grain boundaries by twining and slips. Similarly, Kim et al. [49] asserted that LPEB can improve the 

overall surface qualities of Ti-6Al-7Nb. From the results of EIS measurement in 1 wt.% NaCl solution, 

the corrosion impedance is increased from ~170 to ~260 kΩ∙cm2 in the 10 J/cm2 energy density used 

samples. 

 

 

 

 
Figure 2-6. (a) Surface SEM morphologies of AZ31 Mg-alloy after HCPEB irradiation with different 

pulses, (b) Evolution of friction coefficients with friction time, and (c) Potentiodynamic 

polarization curves of AZ31 before and after HCPEB treatment (15 pulses) [36]. 
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Lastly, the PEB treated Mg-alloys are also investigated by many researchers. According to 

Bo et al. [36], the surface of AZ31 can be enhanced by HCPEB (3 J/cm2). The EB process evaporated 

the Mg selectively in Mg-Al binary allotropic system. From Figure 2-6 (a), the surface morphology 

can be analyzed. Craters are generated at 10 pulses and twining structure is also detected at 15 pulses. 

The Al-enriched surface shows a nobler wear and corrosion resistance than the bare surface. It is 

given at Figure 2-6 (b), the friction coefficient is slightly decreased on the HCPEB treated surface. 

Then, Figure 2-6 (c) shows that the corrosion potential is increased and corrosion current is reduced 

(polarization test in 5 wt.% NaCl solution). They stated that the rapid quenching (~108 K/s) by 

HCPEB builds stable crystal grain structure and reduces the proportion of anode and cathode causes 

galvanic corrosion. Most recently, Hao & Li [5] (Figure 2-7) reported article using HCPEB (3 J/cm2) 

for increasing microhardness of AZ91 from 62.7 HK to 141 HK. And it is reported that corrosion 

current (polarization test in 3.5 wt.% NaCl solution) is reduced by two orders of magnitude. 

According to the EDS results, Al contents of the HCPEB treated surfaces (~8 μm thin-film) is 

increased from ~9 wt.% to more than 30 wt.%. Then, through the XRD results, it is shown that Mg is 

selectively vaporized by electron beam heating on the original grain structure with α-Mg (hcp) having 

weak slip plane and relatively rich Al is alloying with Mg newly converted to nano-grained metastable 

phase Mg3.1Al0.9 and strong grain structure β-Mg17Al12 formed is suggested to the main reason for the 

improvement. 

 

Figure 2-7. (a) HCPEB treated surface of AZ91, (b) EDS result of cross-section, (c) Microhardness 

modification through number of pulses, and (d) Polarization curve [5]. 
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Table 2-2. Literature review of pulsed electron beam surface treatment on Mg-alloys. 

Mat. Y. 
Authors 

(country)  
Equipment Parameters Results 

AZ91 16 
Hao & Li [5] 

(China) 

HCPEB 

(HOPE-I) 

3 J/cm2 (27 kV,  

0.007 Pa, 2.5 us),  

15 pulses 

Metastable α+β Mg3.1Al0.9 layer, 

nano-hardness, corrosion 

resistance improve 

AZ91 14 
Li et al. [6] 

(China) 

HCPEB 

(HOPE-I) 

3 J/cm2 (27 kV, 

0.007 Pa, 2.5 us),  

Nano-grained α+β Mg3.1Al0.9 

layer, corrosion resistance 

improve 

AZ91 09 
Li et al.[7]  

(China) 

HCPEB 

(Nadezhda-2) 

2.5 J/cm2 (27 kV, 

0.009 Pa, 1 us), 

β-Mg17Al12 layer, wear resistance 

improve 

AZ91 07 
Gao et al. [8] 

(China, France) 

HCPEB 

(Nadezhda-2) 

3 J/cm2 (1 us), 

Ø60 mm,  

15 pulses 

Nano-grained α-MgO, Al-

enriched layer, wear and 

corrosion resistance improve 

AZ31 11 
Bo et al. [36]  

(China, France) 

HCPEB 

(Nadezhda-2) 

3 J/cm2 (1 us), 

Ø60 mm, 

15 pulses 

Al-enriched layer, wear and 

corrosion resistance improve 

AZ31 05 
Gao et al. [10] 

(China, France) 

HCPEB 

(Nadezhda-2) 
2.5 J/cm2 (1 us),  

Al, Mn-enriched layer, micro-

hardness, wear resistance improve 
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Figure 2-8. Result comparisons of (a) corrosion current density, (b) corrosion potential of steel, Ti-

alloy, and Mg-alloy in potentiodynamic polarization analysis [5, 38, 46, 49, 50]. 

 

Figure 2-8 shows a several corrosion analysis results of the metallic alloys surface treatment 

among the direct energy beam irradiation process. In the polarization diagram, the corrosion current of 

Mg-alloy is remarkably improved rather than other materials, which associate with the corrosion rate. 

However, the corrosion potential is increased not so much, which represent originally poor at cathodic 

ionization of Mg-alloys rather than other metallic alloys. 

 

2.3. Summary 

 
Based on the literature reviews relating to the surface treatment of Mg-alloy, surface modification by 

electron beam irradiation, the researches on corrosion resistance enhancement has been summarized 

in this chapter. From now on, CVD, PVD, ion beam, laser, and EB are applied for improving the 

surface hardness, wear/corrosion resistance of Mg-alloys. The mechanism of PEB irradiation is 

explained by dynamics with electromagnetic forces in vacuum and electron beam energy absorption 

distribution for each material property. Most of studies on the PEB surface treatment of Mg-alloys 

have reported the effect of parameters on fabrication of the protective re-crystallization layer 

produced by HCPEB (2.5 - 3 J/cm2, 10 - 15 pulses) process. They tried to explain the evaluation of 

corrosion using 3-electrode cell tests (potentiodynamic polarization curve, EIS measurement). 
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Ⅲ. Surface modification of Mg-alloys using a large pulsed electron beam 

irradiation 

 
The surface modification of Mg-alloys is activated by electrical power using pulsed electron beam 

equipment. The mechanism of the EB surface treatment can be modeled by heat diffusion equation. 

The effects of LPEB process can be checked in macro scale. However, to analysis the surface 

modification phenomenon in micron level, it is required to investigate the energy absorption model 

affected by the atomic number of the working material and the parameters of LPEB process. 

Therefore, the mathematical modeling procedure is detailed descripted in this chapter. Then, using 

FDM simulation, the temperature profile is predicted and certified by the experimental results. Also, 

the entire experimental set up and the results of the mechanical and electrochemical characteristics 

analysis are also included in this chapter. 

 
3.1 Simulation of a large-pulsed electron beam irradiation 

 

 
Figure 3-1. Schematics of heat transfer mechanism when LPEB irradiation. 
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In this section, in order to anticipating heat treatment process appropriately, it is compromised to 

mathematical modeling of the energy density absorption distribution profile of the LPEB process 

which is for the simulation of ‘Electron Beam PIKA Finish Machine (PF32B)’. Figure 3-1 presents a 

heat transfer elements of LPEB irradiation. In the energy conservation equation (Eq. (3.1)), the heat 

source (SH [W/m3]) is modeled by electron beam energy distribution at the heating process. The all 

modeling process is conducted by MATLAB and the non-linear calculation is solved by finite 

difference method (FDM). The governing equation is expressed as: 

 

F
H p( ) ( )HTS k T c

t t
ρ ∂∂

= −∇ ∇ + +
∂ ∂

     (3.1) 

F F

1

0

T FPH L
MP FP


 −= ⋅ −


  

T MP

FP T MP

T FP

>

≤ ≤

<

      (3.2) 

 

Where, k is the thermal conductivity, ρ is the density, and cp is the specific heat (constant pressure) of 

the working material. The governing equation contains heat source in external term. The heat 

diffusion and storage elements with enthalpy of phase transformation are included in internal term. HF 

is the enthalpy of fusion, LF is the latent heat of fusion, FP and MP means each freezing point and 

melting point. The latent heat generation can be applied at the state of phase transformation using 

enthalpy form Jamshidinia et al. [51]. Because of the melting temperature of Mg-alloy are relatively 

low, the phase transformation element is very important to analysis of the temperature profile. The 

initial temperature (T0) and the maximum temperature (Tmax) are expressed by that: 

 

0T ST=         (3.3) 

maxT EP=        (3.4) 

 

Where, ST is service temperature in vacuum chamber, which is generally similar with a room 

temperature (27℃). EP is the evaporation point. If the surface temperature reaches at the evaporation 

point, it is vaporized and the debris contaminates the vacuum chamber. However, in this FDM 

simulation, the evaporation mechanism was not considered because it makes the calculation too 

complicate. The boundary conditions are given that: 
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At the surface:  

4 4F
d p r surr( ) ( ) ( )

2
HT dz TP k c h T T T T

z t t
ρ εσ∞

∂∂ ∂
= − + + + − + −

∂ ∂ ∂
  (3.5) 

At the side:  

p A A p B B

p A p B

( ) ( )

( ) ( )

k c T k c T
T

k c k c

ρ ρ

ρ ρ

+
=

+
      (3.6) 

 

For the boundary, the power density Pd [W/m2] is applied at the surface. Then, h means the 

coefficient of convection, ε equals the emissivity, and σr is Stefan-Boltzmann constant (5.67 × 10-8 

[W/(m2∙K4)]) for radiation. T∞ and Tsurr means each the ambient and the surrounding temperature in 

the vacuum chamber. The electron beam is pulsed for each 10 seconds, but the pulse duration time is 

only 2 μs. Therefore, in the rest time, the heat loss with convection and radiation is to be mainly 

considered. However, since the convection coefficient is generally very small at the vacuum condition, 

it was ignored. Also, even though the emissivity is dependent parameter, it was fixed at the constant 

value ‘0.3’. Then, at the side, the diffusion process is activated by a steel zig. In this study, it was 

simplified by the semi-infinite conduction at the between the two materials. TA and TB is the 

temperature of the different two materials. 

 

H d d/ ( , , , ) / ( )S P COE E x y z t COEτ= = ⋅      (3.7) 

2 2 2
d d( , , , ) ( , ) exp[ ( ) / ( ) ]E x y z t nE z t n x y rε= − +     (3.8) 

2 2
d d0 p( , ) ( )(1 )exp[ ( ) / (2 )]E z t E t z zβ σ= − − −     (3.9) 

3/2 2 6 3/2
d0 a a33.7 ( ) / ( ) 2.38 10 ( )E U r Uη τ π η −∴ = ≅ × ×    (3.10) 

 

From the Goldak’s semi-ellipsoidal heat source model (Goldak et al. [52]), the energy density 

of electron beam can be estimated by a normal distribution. Where, COE is center of energy 

absorption distribution. n and ε are adjustable values for adapting to Gaussian distribution. By 

synthesizing the z-depth direction energy distribution and Goldak’s semi-ellipsoidal heat source 

model, the semi-spherical shape of Goldak’s model can be formed. The model of the energy density at 

the center can be obtained from the given White & Aziz absorption model [42]. Therefore, based on 

the reported relations of the energy density, the LPEB heat transfer model can be obtained. Most of all, 

the LPEB energy density at the center can be figure out with the accelerating voltage. The beam 

radius of LPEB is 3 cm and the pulse duration time of LPEB is 2 μs. 
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Figure 3-2 (a) LPEB energy density at the center with accelerating voltage, (b) backscattering 

coefficient at different atomic number, (c) characteristic curve of energy density, and (d) 

electron beam energy absorptivity in magnesium with different accelerating voltage. 

 

 

The Figure 3-2 shows Alfvan’s current model is well-matched with SAS-NLIN method [13] 

at η is ~0.9 in the range of 15 - 30 kV. The error is result from the difference of ideal and real 

electromagnetic forces in vacuum condition. Also, the backscattering effect has an effect on the 

experimental value. The backscattering coefficient (β) was suggested by Staub method [53]. 

 
1- (1-cos( ))

0
κ θβ β=        (3.11) 

2.5
0 (1 exp( 0.0066 )ZB Bβ −= − −      (3.12) 

0.25
a1 exp( 1.83 )Uκ = − −       (3.13) 

a0.4 0.065ln( )B U= +       (3.14) 
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Where, β0 is backscattering coefficient when the electron beam irradiation path is not inclined. κ and 

B are the fitted parameters by experiment. θ means the angle of electron beam irradiation on the 

surface. Since the LPEB has spiral path, the θ is to be assumed at 45 degrees. The Figure 3-2 (b) 

shows the curve of backscattering coefficient. It is increased proportional to atomic number (Z). The 

backscattering coefficient of Mg-alloy is 0.25 – 0.27 in the region of interest for accelerating voltage. 

The modified model of electron beam energy density with backscattering effect is given at Figure 3-2 

(c) The theoretical model shows that 3, 5, 10 J/cm2 energy density of LPEB can be realized using each 

15, 22.5, 30 kV accelerating voltage with η is 0.9. The depth profile of energy absorptivity is depicted 

at Figure 3-2 (d) using the Eq. (3.9). 

 

 

 

 
Figure 3-3. (a) Gaussian distribution to the X-Y direction; the left graph is the experimental results 

and the right graph is the approximation result, (b) energy absorptivity of lateral direction, 

and (c) 3D energy absorption distribution of electron beam. 
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Figure 3-3 (a) indicates fitting lateral energy distribution of LPEB. To modelling, the 

experimental results of Daichi et al. [13] were used. The shape is possible to be fitted by Gaussian 

distribution. From the Eq. (3.8), when the adjustable parameter n is 0.90, the effectiveness of beam 

radius ε  was selected to 0.82. The result of lateral energy absorptivity is given at Figure 3-3 (b). 

The range is preserved at least 80% of the maximum value at the center is called effective beam 

diameter (Øeff), which was ~24 cm in this model. Consequently, Figure 3-3 (c) presents the three-

dimensional energy density profile of LPEB when the material is Mg and accelerating voltage is 22.5 

kV (Ed ≒ 4.8 J/cm2 at the center of the maximum absorption depth). 

 

 

 

 
Figure 3-4. (a) Thermal conductivity of AZ31 [54], (b) Temperature profile of LPEB irradiation of 

AZ31, (c) the single pulse of LPEB process, and (d) the multi pulses of LPEB process. 
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From Lee et al. [54], the thermal properties of AZ31 can be identification like Figure 3-4 (a). 

Figure 3-4 (b) shows a result of AZ31 temperature profile by FDM simulation, which is progressed 

using 2D backward difference scheme (xmax = 20 mm, zmax = 5 mm, and tfinal = 10 s) with Fo < 1/4. It 

is perceived that the heating curve is delayed at the melting point. The melting depth is estimated to 

~10 μm when the accelerating voltage is 22.5 kV. And the temperature of 4 μm depth region is 

increased up to the evaporation point per each pulse. For this reason, the real re-solidified layer is 

approximated to be 6 - 10 μm. Figure 3-4 (c) shows the profile of temperature change in the top 

surface, 1 mm depth, and the bottom. The temperature is abruptly declined as the rate of 2.6 × 104 K/s. 

Then, the temperature is ascended by 2.1 K per one LPEB pulse in all region of the material, finally it 

is converged at 270 - 280℃ when over 160 pulses shown at Figure 3-4 (d). Generally, Porter et al [55] 

presents the Mg-alloy is quenched to a temperature of 220℃ for 20 min followed by 90 s at 277℃ 

and finally water quenched for heat treatment. The eutectic solidification is activated by the high 

temperature at which the total driving force of transformation is declined. Therefore, the free energy, 

necessary to form α/β interfaces, is lowered. However, the number of pulses should be delicately 

controlled in order to consider the appropriate heat treatment performance with shape deformation 

because the evaporated region is continuously overlapped by the LPEB pulses. 
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3.2. Experimental setup 

 

3.2.1. Material 

 

The sample is square (40 mm by 40 mm by 5 mm) shaped and the surface is well polished (~5 μmRa) 

by the mechanical tools. When machining process, it is cautious that the powder of Mg is easily 

exploded if it reacts with water. Then, the surface is rinsed by ethanol. The chemical composition of 

the materials (AZ31, AM60, and AZ91) is displayed at [Table]. In this study, AZ31 is selected to the 

target material because its Al content is the least among them and its mechanical property is superior 

to the other. Also, AZ31 is well-matched the objectives of the LPEB process, which is increasing the 

surface Al content compared to the substrate for engineering application. AZ91 and AM60 samples 

were used for verifying the effects of surface modification. The all samples are provided from Korea 

testing & research institute (KTR). 

 

3.2.2. Surface treatment 

 

The photograph with schematics of ‘electron beam PIKA finish machine’ is depicted at Figure 3-5 

with the LPEB process conditions are suggested at Table 3-2. The Figure 3-5 (a) shows an image of 

the machine of LPEB process (model: PF32B), which is located at ‘MakeLAB’ in UNIST. The main 

three parameters of LPEB process are the energy density, the irradiation pattern, and the number of 

cycles. To find the optimum parameters of LPEB surface treatment for AZ31, many tests are 

accompanied  by trial and error. Then, it reduces the redundant cases simultaneously. Also, although 

the pulse duration is fixed at only ~2 μs, the machine can provide freely energy density up to 10 J/cm2 

to control the accelerating voltage at the cathode. Therefore, this machine can provide a larger 

electron beam energy density than HCPEB. To keep on the electron beam accelerating mechanism, 

the working chamber should be sustained a high vacuum state to be enable for plasma generation. In 

this experiment, the vacuum pressure is controlled by 0.05 Pa, which is displayed at Figure 3-5 (a). 

The plasma gas is argon (Ar).As shown that Figure 3-5 (b) the sample both end sides are fixed by a 

steel zig attached in the vacuum chamber and the bottom surface is completely detached. The 

irradiation pattern of LPEB is presented at Figure 3-5 (c). Considering the square-shaped Mg-alloy 

sample and the effective beam diameter, the pitch of stitching is determined to 20 mm and the stage is 

moved at 2 by 2 points using the LM guide and NC control. Hence, the 1 cycle is composed of 4 

LPEB pulses in this experiment. Since the single LPEB pulse can be irradiated per 10 - 20 s and the 

total vacuum adjusting time is ~12 m, the 40 cycles of LPEB process takes approximately 52 m. 
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Table 3-1. Material’s chemical composition 

wt. % Mg Al Zn Mn Si Ca Fe Cu Ni Others 

AZ91 Bal 8.3-9.7 0.35-1.0 0.15 0.10 - 0.005 0.030 0.002 0.02 

AM60 Bal 5.5-6.5 0.22 0.25 - - 0.005 0.010 0.002 0.003 

AZ31 Bal 2.5-3.5 0.7-1.3 0.20 0.10 0.04 0.005 0.04 0.005 0.30  

 

 

 
Figure 3-5. (a) Graphics of PIKA Finish Machine, (b) Set-up of LPEB process, and (c) Schematics of 

LPEB surface treatment process. 

 

Table 3-2. LPEB process parameters. 

Parameter (unit) Value 

Energy density (J/cm2) 3, 5, 7, and 10 

Pulse duration (μs) ~2 

Period (s) 10 - 20 

Beam diameter (mm) 60 

Irradiation pattern 2 by 2 

Pitch (mm) 20 

Number of cycles 1, 10, 20, 40, and 100 

Irradiation distance (mm) 30 

Vacuum pressure (Pa) 0.05 
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3.2.3. Other equipment 

 

 
Figure 3-6. Schematics of (a) the temperature monitoring system, (b) the ball-on-disc wear test system, 

and (c) the 3-electrode cell test system. 

 

 

[1] Temperature measurement 

 

The temperature is measured by using K-type thermocouple. Specification of K-type thermocouple is 

that the operating range is from -50℃ to 500℃, and the sampling time is almost 1 second. Figure 3-6 

(a) shows the location and wire connection of the temperature sensor. It is connected to the between 

the thermocouple and DAQ using feedthrough. The model of DAQ is ‘NI 9263’, and the software is 

‘LabVIEW 2011 Version’ which is used for signal processing. It is cautious that the measurement 

environment is very harsh because the high voltage electron beam pulse is far danger. Therefore, the 

over fluxed LPEB pulses can interfere with the temperature monitoring system when the temperature 

of the device is increased over a degree of the limit. 
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[2] Surface profile measurement & Ball-on-disc wear test 

 

The surface roughness can be measured by ‘Semi Auto Formtracer System (model: 525-421k-1)’. 

Also, the main purpose of 3D mapping using ‘Coordinate Measuring Machine (model: PGS)’ is 

checking the deformation of LPEB surface modification process. To measure the height of the sample 

accurately, a reference of the sample is fixed at the same point. The test is repeated at least 3 times. 

Then, the precision is 0.1 micron. ‘3D Formtracer (model: NV 3000)’ is also used for checking the 3D 

surface profile. Above all equipment is placed at ‘MakeLAB’ in UNIST. 

The device of ball-on-disc wear test is depicted at Figure 3-6 (b) which machine (model: 

UMT-2T) is installed at ‘MHMLAB’ in UNIST. This machine can measure the coefficient of friction 

during the rotational motion of the ball-on-disc. The normal force and the rotational speed with radius 

of the ball are the parameters of this test. The experiment is accomplished for checking the 

mechanical properties by the modification of LPEB treated sample. The weight loss and the height of 

the wear track were also measured. 

 

[3] 3-electrode cell test 

 

The electrochemical properties were evaluated by the 3-electrode cell test in 3.5 wt.% NaCl solution. 

Figure 3-6 (c) presents the configuration for potentiodynamic polarization and electrochemical 

impedance spectroscopy (EIS). ‘IviumStat’ is used for the potentiostat device with the software of 

‘IviumSoft’ and ‘ZView’. The apparatus is provided in UNIST. In this experiment, the LPEB treated 

Mg-alloy samples were used for working electrode. The reference of the cell is applying a standard 

calomel electrode (SCE) and the counter electrode is set to platinum. The measurement system can 

provide an ability to cover the -10 to 10 V range of DC voltage and micro current (-5 to 5 A) signal 

sensing as well as a high frequency (10 μHz - 8 MHz) AC signal input and output. It can provide to 

not only evaluate the corrosion-protecting performance qualitatively, but also analyses the information 

quantitatively by linear polarization method and equivalent circuit modeling.  

The potentiodynamic polarization is DC method for measuring the steady-state current by 

linear potential variation. In this study, the scan rate of the applied potential is 10 mV/s. Using low-

field approximation at the polarization curve, the Stern-Geary equation (Eq. (3.15)) can be estimated 

from Butler-Volmer equation. And, the corrosion penetration depth rate (vcorr) can be calculated by the 

Eq. (3.16). 
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Where, Rp is polarization resistance, βa and βc is each anodic and cathodic Tafel slop. The slop can be 

obtained by nomogram method. Then, Aw is atomic weight, zk is charge number of the metallic ion, 

and F is Faraday constant (96500 [C/mol]). The vcorr is just another expression of icorr for engineering 

application. 

Then, EIS is AC method by identifying the impedance applying frequency analysis, which is 

enabled by comparing the sinusoidal voltage input and output pass through the system. In this 

experiment, the amplitude of the oscillation is 1 V and the frequency is scanned from 200000 Hz to 

0.2 Hz. The amplitude is selected to larger value than the preferred condition (< 5mV). Since the 

small perturbation implies a linear relation of current density versus potential, the Eq. (3.15) can be 

applied to the experiment by assuming the charge transfer resistance (Rct) obtained value from the 

impedance plot is equal to the polarization resistance. For this reason, the large amplitude value can 

cause an error of the fundamental modeling but, in order to eliminating a white noise, it was 

indispensable. The corrosion test is repeated at least 3 times per one sample. 

 

 

 

 
Figure 3-7. The equivalent circuit model of (a) bare surface and (b) LPEB treated surface. 
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Figure 3-7 shows the modeling elements of electrochemical system. At the redox surface, 

charge transfer phenomenon of metallic materials is happened in ionic solution. Mostly, the system of 

the electrochemical reaction can be expressed by 2nd order equivalent circuit model. At Figure 3-7 (a), 

where, Rs is solution resistance, Rf means film resistance which is the represent of oxide layer, and the 

double layer capacitance in the film was modeled by Cf. The Rct is charge transfer resistance of the 

bare AZ31, and the Cdl is the double layer capacitance of the total redox surface as a phase shift 

element. After LPEB process, it is transformed a 1st order equivalent circuit model as shown to Figure 

3-7 (b) because the oxide layer is entirely eliminated by LPEB irradiation. However, the LPEB treated 

surface can be modelled by more stable impedance elements with the modified Rct and Cdl. The 

equivalent circuit modeling is practiced to EIS data by curve fitting process. In this process, the 

charge phase element (CPE) is used for modeling of the Cdl with depression parameter (n) and Q such 

that: 

 

( ) ( ) /nZ CPE j Qω −=        (3.17) 
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3.3. Results and discussion 

 

3.3.1. Temperature profile analysis 

 

 
Figure 3-8. Temperature profile at 1-, 5-mm depth of AZ31 sample during LPEB process. 
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According to the Figure 3-8, the simulation result is well corresponding with the 

experimental result. However, the thermocouple sensors were not as fast as catch with the temperature 

profile of LPEB process. It is assumed to be the Mg-alloy has large temperature diffusivity rather than 

the thermocouple. The principle of the LPEB process is basically identical to the general heat 

treatment; rapid quenching and tempering. Through the electron transmission and vibration in the 

surface, the temperature is increased at the melting point for a micro seconds. Then, during the rest 

time (10 - 20 s), the temperature is abruptly decreased at an ordinary state by a heat diffusion. It can 

be shown that Figure 3-8, it is increased about 3℃ per one LPEB pulse by 10 J/cm2 energy density 

and the temperature at 1-mm and 5-mm depth reaches almost 220℃ known as vacancy migration 

point of Mg-alloys. Above 220℃, its solute-solution distribution phenomenon with surface alloying 

can modify the microstructure [55]; Mg as the solution and Al as the solute. When the LPEB 

irradiation is more than 20 cycles (one cycle is 2 by 2 pattern), the temperature is periodically 

changed in 250 - 300℃. The reason of limitation is anticipated by a high temperature gradient 

formation and the activated radiation as self-chilling effects on the surface. 

 

3.3.2. Mechanical characteristics analysis 

 

 

 
Figure 3-9. Surface images of AZ31 samples at different number of cycles. 
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Figure 3-9 shows the photograph images of the surface of AZ31 samples when 15 kV and 22.5 kV 

accelerating voltages are used in LPEB process, which the color and brightness were different with 

the number of cycles (1, 10, 20, 40, and 100 cycles). The reason of using 15 kV firstly, this 

accelerating voltage is corresponding to 3 J/cm2; Hao & Li [5], Bo et al [36] and Gao et al [10] has 

been documented that the 3 J/cm2 is only used for the HCPEB surface treatment on Mg-alloys. 

Although the tool mark at the bare surface is removed in the all samples, the surfaces of 1 and 10 

cycles were worse than the initial state. Nonetheless, at the 20, 40 cycles shows more brightness 

surface, but at the 100 cycles, the color of the small part is changed to be blacked. So, it was verified 

that the surface of the Mg-alloys cannot completely modified to new surface layer when the 

unsatisfied number of cycles is applied for LPEB process, and vice versa. And the edge deformation is 

significantly appeared in 22.5 kV samples. Especially, in 100 cycle case, some cracks are detected at 

the edge. The crack is considered to be critical mechanical defects caused from tensile stress induced 

by higher brittleness. To sustain the sharp edge of the workpiece, the number of cycles is preferred to 

not so much. As a result, the 20 and 40 cycles are selected to the interested value of the number of 

cycles. 

 

 
Figure 3-10. Surface images of (a) AM60 and (b) AZ91 at different accelerating voltage. 
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 Then, Figure 3-10 presents the photograph images of the surface of AM60, AZ91 samples 

when the accelerating voltage is changed from 15 to 30 kV with the number of cycles is 40. At the 15 

kV case, the surface is shown to be not bright rather than 22.5, 30 kV cases. Also, the difference with 

AM60 and AZ91 is not large up to 22.5 kV even though they have different Al content. However, 

when the accelerating voltage is 30 kV, it was appeared that it is possible to generate the β-

precipitation on the AZ91 surface [55]. In addition to, the surface roughness of 30 kV cases seem to 

be slightly excessive for applying at the engineering application due to the lots of craters. From now 

on, it is supposed that the accelerating voltage of LPEB is represented by the energy density 

parameter such that the each 15, 22.5, 27, and 30 kV is equal to 3, 5, 7 and 10 J/cm2
. 

 

 

 

 
Figure 3-11. Deformation of AZ31 samples in height direction. 
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Figure 3-12. 1D surface roughness of AZ31 samples with different energy density. 

 

 

 
Figure 3-13. 3D surface profile of AZ31 samples with the surface roughness. 
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At the Figure 3-11, the deformation of z-depth is measured at 4 by 4 points using 

‘Coordinate Measuring Machine’ before/after LPEB process on AZ31 samples. The deformation was 

measurd to ~5 μm at 20 cycles with the all energy density caeses. Consiering the measurement error 

originated by the reference location changed at each experiments, It was apparantly observed that the 

maxium deformation (ΔZmax) is relatively increased by the growth of the enenrgy density. Especially, 

the number of cycles is seem to have huge effect on the deformation results of the LPEB proces by 

comparing with the cases of ‘5 J/cm2 - 20 cycles’ (ΔZmax = 4.7 μm) and ‘5 J/cm2 - 40 cycles’ (ΔZmax = 

13.0 μm).  

Figure 3-12 presents the 1D surface roughness of AZ31 samples according to each energy 

density cases with 40 cycles. The measurement is enabled by ‘Semi Auto Formtracer System’. The 

results are appeared to be less than 1 μmRa, but there are noticealbe tendancy such that the Ra and Rz 

value is increased at higher energy density condition. Hence, in order to control the quaility of the 

surface roughness adeqately, 3 – 7 J/cm2
 range is preffered to Mg-alloys in LPEB process. 

Then, referring the Figure 3-12, which was measureed by 3D formtracer, the surface 

roughness is transfromed to be harsher by more number of cycles. At ‘5 J/cm2 - 40 cycles’ (1.800 

μmRa), it shows appropriate performance rather than ‘5 J/cm2 - 100 cycles’ (4.160 μmRa). Generally, 

0.8 - 1.6 μmRa is recommended in engineering application. Therefore, it is requred to adequate 

number of cycles (less than 40 cycles) for LPEB process of AZ31 Mg-alloy. To sum up with the 

surface results such as color, brigthness, roughness and deformation of LPEB treated sample, the 

optimum values of energy density and number of cycles are close on 3 - 7 J/cm2 and 20 - 40 cycles. 
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Figure 3-14. COF profile of the Ball-on-disc wear test (a) ‘N = 10 N, Vd = 260 mm/s (ω = 500 rpm, rB 

= 5 mm)’, (b) ‘N = 20 N, Vd = 1 mm/s (ω = 2 rpm, rB = 5 mm)’, (c) ‘N = 20 N, Vd = 105 

mm/s (ω = 200 rpm, rB = 5 mm)’, and (d) maximum wear scar depth of the test (c). 
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In ball-on-disc wear test when ‘N = 10 N, Vd = 260 mm/s’ (Figure 3-14 (a)), the coefficient 

of friction (COP) of LPEB treated AZ31 surface was decreased from 10 to 50 seconds. From Figure 

3-14 (a), the COP of 20 and 40 cycles was recorded at maximum 0.24 while the bare surface was 

recorded at maximum 0.34. Also, it can be shown that the cases of 20 and 40 cycles were apparently 

more improved than the case of 10 cycles which was recorded at maximum 0.30. However, after 50 

sec, the COP was abruptly changed. The COP of the bare surface and the cases of 10 and 20 cycles 

were converged at around 0.23, but the COP of the 40 cycles was converged at around 0.25. 

Considering the amount of LPEB treated AZ31 layer removed by the contacted steel ball during the 

tests, the COP results when after 50 sec would be regarded as the original material’s mechanical 

properties. So, it could be assumed that the COP results are affected by the total scratched distance of 

the sample surface. 

Compared to the COP results of the ball-on-disc test when ‘N = 10 N, Vd = 260 mm/s’, when 

‘N = 20 N, Vd = 1 mm/s’ (Figure 3-14 (b)) shows different aspect by changing normal force and the 

speed of the contacted ball. In this test, the COP of LPEB treated AZ31 surface showed more stable 

than the bare surface from 50 to 150 sec. Following the Figure 3-14 (b), the COP of the 40 cycles was 

recorded at 0.23 - 0.25, the 10 and 20 cycles were recorded at 0.25 - 0.30, and the bare surface was 

recorded at 0.25 - 0.35. After 150 sec, the trend was continued, so it was assumed that the different 

results of COP were affected by the higher normal force of its ball-on-disc wear test. When ‘N = 20 N, 

Vd = 105 mm/s’ (Figure 3-14 (c)), the COP of 3, 7 and 10 J/cm2 cases are increased than the bare 

surface. In this test, the trend is kept to the end. Therefore, the insufficient or excessive energy can 

give the worse surface quality in the view of mechanical characteristics. In addition to, Figure 3-14 (d) 

represents that the 5 J/cm2 is the best LPEB condition as showing smallest depth of wear track. To 

sum up with the all results of three ball-on-disc wear tests, comparing the COP of the bare AZ31 

surface, the mechanical properties are apparently improved by LPEB irradiation and the ‘5 J/cm2 - 40 

cycles’ LPEB treated AZ31 surface is observed for the most superior case than the other. It implies 

LPEB irradiation repeated as many fabricates more distributed molten layer by a re-melting process. 

Then, its optimum energy density can create a new hardened surface on AZ31 by appropriate surface 

alloying. 
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Figure 3-15. 3D surface profile at wear scar of AZ31 samples in ‘N = 20 N, Vd = 105 mm/s’. 

 

Figure 3-15 represents the wear scar profile in LPEB treated AZ31 samples. According to 

those results, ‘5 J/cm2 – 40 cycles’ condition also shows the best performance among them by 

appearing the lowest wear scar depth (27.73 μm) and intermediate width (0.63 mm). This trade-off 

phenomenon can be explained by abrasive/adhesive wear mechanism. In macroscopic view, at higher 

surface roughness, the wear resistance is more degraded because abrasive wear can mainly affect to 

the mechanical contact between the ball and the surface. On the other hand, in microscopic view, the 

atomic attraction becomes more significant. Therefore, at lower surface roughness, the wear resistance 

is more degraded. 
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3.3.3. Electrochemical characteristics analysis 

 

 
Figure 3-16. Evans-Hoar diagram of AZ31 samples: (a) 40 cycles, (b) 20 cycles. 

 

The electrochemical properties are obtained by experiment of the 3-electrode cell test. First of all, 

Figure 3-16 provides that the corrosion potential (Ecorr) and the corrosion current density (icorr) based 

on the results of the potentiodynamic polarization. Ecorr is preferred as high because the ionization 

tendency of the material is lessened with high open circuit potential (OCP = Ecorr). Conversely, icorr is 

preferred to low because it determines the rate of ionization. According to the Figure 3-16 (a), Ecorr of 

the ‘Bare 1’ AZ31 sample is -1579 mVSCE, and the LPEB treated AZ31 sample applied ‘5 J/cm2 - 40 

cycles’ is improved to -1421 mVSCE. The potential difference is 158 mVSCE; it indicates some positive 

changes were occurred in that surface such as modifications of the chemical composition and the 

grain structure. However, the corrosion properties were not improved by ‘3 J/cm2 - 40 cycles’. 

Although the Ecorr was slightly ascended, the icorr was negatively changed. Generally, the icorr is more 

significant to evaluate the corrosion resistance. Figure 3-16 (b) indicates that 20 cycles are insufficient 



45 

 

to improvement of the electrochemical properties. Also, the results of ‘Bare 2’ and ‘Bare 3’ shows 

different aspect of polarization curve. It is expected that it was caused from the locally different 

surface state. 

The results of the corrosion properties can be expressed quantitatively at Table 3-3. At ‘5 

J/cm2 - 20 cycles’, the corrosion rate (vcorr = 3.50 × 10-4) was the slowest. Comparing to the ‘Bare 3’ 

(vcorr = 4.91 × 10-4), it was reduced by 29%. Then, the Tafel slopes (βa, βc) represent the modeling 

parameter for estimating Rp using Eq. (3.15). Among the LPEB treated samples, the Rp of ‘5 J/cm2 - 40 

cycles’ was the most superior to the other parameter. The Rp of ‘3 J/cm2 - 40 cycles’ was calculated by 

461.6 kΩ∙cm2. At the LPEB treated sample of ‘5 J/cm2 - 40 cycles’ was estimated to 882 kΩ∙cm2. It is 

observed that the 91% improvement of corrosion resistance at the optimum energy density parameter. 

The number of cycles was not significant in the polarization tests. On the other hand, the Rp of and 

‘Bare 3’ is larger than the LPEB treated sample. The Rp of ‘Bare 3’ was estimated to 905 kΩ∙cm2. The 

each bare surface sample shows abnormally large difference at changed their measurement location. 

Its unstable characteristic changes are also observed in the polarization curves. In Figure 3-16 (b), the 

plot of ‘Bare 3’ was abruptly curved in the between -1400 to -1300 mVSCE. The unstable curve 

indicates the presence of the frail oxide layer. 

 

 

Table 3-3. Corrosion analysis results obtained by linear polarization method. 

AZ31 Ecorr 
(mVSCE) 

icorr 
(mA/cm2) 

vcorr 
(mm/year) βa βc 

Rp 
(kΩ∙cm2) 

Bare 1 -1579 3.30ｘ10-5 7.23ｘ10-4 0.248 0.225 658.4 

Bare 2 -1595 4.35ｘ10-5 9.54ｘ10-4 0.253 0.204 490.3 

Bare 3 -1559 4.59ｘ10-5 10.1ｘ10-4 0.515 0.383 905.0 

3J-40C -1570 4.71ｘ10-5 10.3ｘ10-4 0.208 0.263 461.6 

5J-40C -1421 2.46ｘ10-5 5.40ｘ10-4 0.192 0.275 882.8 

5J-20C -1576 1.60ｘ10-5 3.50ｘ10-4 0.126 0.127 748.3 

10J-40C -1596 2.96ｘ10-5 6.49ｘ10-4 0.239 0.235 735.1 

10J-20C -1601 3.76ｘ10-5 8.25ｘ10-4 0.241 0.226 625.8 
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Figure 3-17. (a), (b) Nyquist plot, (c), (d) Bode magnitude plot, and (e), (f) Bode phase plot of AZ31. 
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Figure 3-17 shows the results of electrochemical impedance spectroscopy. At Figure 3-17 (a), 

the curve of the ‘Bare 1’ is plotted by the double circle shape. The circle at low frequency seems to 

represent the oxide layer of the AZ31. Therefore, it can be assumed that the circle at high frequency 

represents the original impedance of the bare surface. It is supported by Figure 3-17 (b), the ‘Bare 4’ 

shows only single circle without additional impedance elements different from ‘Bare 5’. Referring to 

Figure 3-17 (c), (d), it can be checked the impedance changes versus frequency. At 10 - 100 Hz, it is 

observed that the magnitude of ‘Bare 1’, ‘Bare 5’ was decreased. Especially, at Figure 3-17 (d), the 

‘Bare 4’ shows unstable curves at low frequency rather than the other LPEB treated sample. It implies 

the LPEB process fabricates more stable surface layer by re-melting process substituting the oxide 

layer. Generally, this instability was occurred at the sample presented by single circle in Nyquist plot. 

Thus, Figure 3-17 (d) indicates that if some mechanical abruption is occurred such as scratching and 

pitting, the corrosion resistance can be critically reduced by the oxide layer is removed. To sum up the 

results of the AZ31 bare surfaces, it was verified the additional requirement for fabricating a 

corrosion-protection layers on AZ31 although it has been recognized the function of the oxide film is 

very important. 

 

 

 

Table 3-4. Fitting results of equivalent circuit modelling for EIS curve. 

AZ31 Rs 
(kΩ∙cm2) 

Qf 
(nF) 

nf 
Rf 

(kΩ∙cm2) 
Qdl 

(nF) 
ndl 

Rct 
(kΩ∙cm2) 

Bare 1 10.90 166.7 0.517 249.8 0.000151 1.24 411.7 

Bare 4 5.704 - - - 0.334 1.23 249.8 

Bare 5 6.430 0.001214 0.642 419.2 0.00850 0.998 263.9 

3J-40C 10.04 - - - 0.00578 1.22 423.9 

5J-40C 4.160 - - - 0.00480 1.08 995.1 

5J-20C 7.037 - - - 0.0307 1.17 741.0 

10J-40C 8.214 - - - 0.00513 1.16 675.7 

10J-20C 11.43 - - - 0.0269 1.24 607.2 

 

 

 



48 

 

At Table 3-4, the modelling parameters used in this simulation are provided. The Rs was 

estimated to 4 - 12 kΩ∙cm2, in the tests. Since the value of Rs is relatively small, the state change of 

NaCl solution can be dismissed. If the system has film elements, the Qf and nf were obtained with Rf. 

The Rf was significant compared to Rct, but the value of charge phase elements showed no special 

feature. The best LPEB parameter was determined by evaluating the Rct. the Rct was crucially affected 

by the energy density. Although the LPEB process did not show good performance when applying 3 

and 10 J/cm2, the Rct was improved relatively large by 5 J/cm2. To compare with ‘3 J/cm2 - 40 cycles’ 

(423.9 kΩ∙cm2) and ‘5 J/cm2 - 40 cycles’ (995.1 kΩ∙cm2), it was increased by 135%. The number of 

cycles did not induce a major modification, but there are some tendencies such that the more LPEB 

cycles were irradiated, the more increment of Rct was appeared. Then, the Rct of the ‘Bare 1’ was 

estimated to 411.7 kΩ∙cm2. Therefore the bare surface was increased by 142% after LPEB process. 

However, in order to evaluate the corrosion resistance at the original surface, the oxide film resistance 

(Rf) is also to be concluded. Therefore, considering the total corrosion resistance of ‘Bare 1’ (Rcorr = 

Rct+ Rf = 661.5 kΩ∙cm2) and ‘Bare 5’ (Rcorr = Rct+ Rf = 683.1 kΩ∙cm2), it showed an improvement of 

45% - 50%.  

 

3.4. Summary 

 

In this chapter, LPEB surface treatment on AZ31 is simulated using prediction model and investigated 

by mechanical and electrochemical analysis. The energy absorption profile of the depth and the lateral 

is approximated using Gaussian distribution, which is affected by the atomic number and the 

accelerating voltage. The prediction model helps for selecting the optimum parameters of the LPEB 

process on AZ31 (irradiation pattern, energy density, and number of cycles). The pitch of the 

irradiation pattern is established to 20 mm by energy absorption model and the accelerating voltage 

candidates are shorted to 15 - 30 kV. Then, the FDM simulation is reasonably matched with the results 

of temperature measurement. The temperature of AZ31 is reached at 220℃ when over 20 cycles 

which enables the eutectic reaction of Mg and Al. 

In mechanical characteristics analysis, the surface roughness and color with brightness are 

presented. As a result, it was proved that the surface of Mg-alloy is easily evaporated by LPEB and 

the new more brightness surface layer is fabricated when energy density is over 3 J/cm2. Also, the 

deformation diagram and ball-on-disc wear test is used for parameter optimization of LPEB process. 

In the coefficient of friction analysis, the large number of cycles is preferred to withstand the wear 

even though the deformation is increased. And, at 5 J/cm2 cases, the surface hardening was magnified. 

In electrochemical characteristics analysis, the corrosion resistance of each AZ31 sample is 
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evaluated by the potentiodynamic polarization test and EIS in 3.5 wt.% NaCl solution. Although, at 

some cases, the corrosion resistance of the bare surface is larger than the LPEB treated surface due to 

the oxide layer, it was very unstable. Finally, ‘5 J/cm2 - 40 cycles’ condition showed the best 

performance for protecting the corrosion as well as the mechanical contact. 
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Ⅳ. Metallurgical investigations on the surface of large pulsed electron 

beam treated Mg-alloys 

 
4.1. Introduction 

 
 
Figure 4-1. (a) Phase diagram of Mg-Al system and (b) schematics of LPEB surface modification 

onto Mg-alloys. 
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Figure 4-1 (a) shows the phase diagram of Mg-Al alloy system. It is easily dissolved by eutectic 

reaction and melted at the higher temperature with higher Al content. However, since the evaporation 

point of the Mg (1091℃) is relatively lower than the other metal, especially such as Al (2470℃), the 

high energy density of LPEB parameter is possible to cause unfavorable surface quality in 

inhomogeneous Mg-alloys. The principle of the modification on LPEB treated surface is shown at 

Figure 4-1 (b). Simultaneously the oxide layer is removed by LPEB, the new nano-grained metastable 

gradient layer formed by LPEB, which is can be divided into re-melted layer, heat affected zone, and 

the original grain structure. The number of cycles of the LPEB parameter is also well controlled to 

satisfy the stable qualities because the effects of the LPEB surface modification is due to the repeated 

re-melting process with rapid self-quenching. 

 

 
Figure 4-2. The crystal structures of the two phases in the transformation system α-Mg/β-Mg17Al12: (a) 

hcp α-Mg, (b) bcc β-Mg17Al12 and (c) schematic diagram between hcp and bcc structures 

(Liu et al. [56]). 

 

Figure 4-2 presents the mode of crystal structures of Mg-Al lattice. The microstructure is 

transformed to new re-crystallized layer has more dense and well distributed β particles in α grains. 

Even though the α-phase has denser hcp structure, the β-phase has more complicated relationship 

between Mg and Al. Therefore the β structure is preferred to withstand the wear/corrosion attacks. On 

the other hand, the problem of brittle failure, such as delamination, can be generated at over enriched 

β structure film coated by surface treatment (PEO, DLC, LSM, and etc.). For these reason, it is 

important to sustain the ductile property of the original Mg-alloys. It is expected that the gradient 

layer fabricated by LPEB process is performed to such intermediate roles between the brittle coated 

film and the ductile original substrate.  



52 

 

For metallurgical analysis, the micron level images and chemical composition data are 

required. The SEM & EDS analysis were implemented to examination, which is performed by ‘Nano 

Nova SEM (model: Nano 230)’ at UCRF in UNIST. It can be visualization for the morphology of the 

Mg-alloy’s microstructure by a continuous electron beam scanning. Then, at 20 kV accelerating 

voltage condition, the EDS analysis was executed. The EDS identifies the chemical composition of 

the Mg-alloy sample. It can evaluate the Al content in LPEB treated surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 

 

4.2. Microstructure transformation 

 

 
Figure 4-3. SEM image of LPEB treated AZ31 and AM60 at different energy density. 
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Figure 4-4. SEM image of LPEB treated (a), (b) AZ31, (c), (d) AZ91 and (e) – (h) defects. 
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Figure 4-3 shows the SEM image of the LPEB treated Mg-alloys as changed by energy density. In 

Figure 4-3 (a) - (d), it is presented that the results of AZ31. In case of bare surface, the sharpened tool 

marks are mainly observed. Fundamentally, the general machining/grinding process for Mg-alloys 

could not remove the micro edges. However, the LPEB treated surface shows completely different 

surface morphologies. The tool mark is entirely removed in the surface with re-melting process. In 

addition, the new protruding contours are detected in LPEB treated surface. Then, it seems to the 

effects of surface modification depends on the beam energy density level. At 3 J/cm2, the surface 

shows the clear morphology in magnified view although it is little curved at large area. At 10 J/cm2, it 

is shown that the surface is transformed to be harsher with many defects. In 5 J/cm2, the surface 

clearness is presented to the medium class but there are some micro poles in magnified view.  

According to Figure 4-3 (e) - (h) indicates similar results of energy density parameter at AM60. In its 

more magnified images of AM60 surface, small particles are detected. The size of the particles is 

increased by higher energy density condition. Evenly, at 10 J/cm2, the aggregated mountains of the 

particles are appeared. It is anticipated that the β-Mg17Al12 particles are actively formed in the LPEB 

treated surface when high energy density conditions due to the alloying effects. 

 In Figure 4-4 (a) - (d), the effects of the number of cycles of LPEB are certified. Comparing 

the 10 cycles and the 40 cycles at same energy density, the more number of cycles shows the more 

turbulence structure such as wavy surface. At 10 cycles, the surfaces show just plane structure, but, at 

40 cycles, it is modified to more grooved shape. The reason is expected to the over repeated dissolved 

process. However, even though the morphologies of 40 cycles are shown more waved structure, 

following to the results of chapter 3, the 40 cycles could fabricate better distributed α-β metastable 

layer than the 10 cycles. Also, that snake-skin-like-surface expects to improve hydrophobic 

characteristic of Mg-alloys. From Figure 4-4 (e) - (g), the defects of LPEB treated surface are 

presented. As shown at Figure 4-4 (e), the over wavy surface can be generated by over repeated LPEB 

cycles. Adequate waviness could improve the corrosion resistance to be high hydrophobic, but it is 

also could reduce the corrosion resistance because that rough surface is weak at pitting corrosion. 

Then, at Figure 4-4 (f) – (h), it is demonstrated that the crater, crack and micro pole were frequently 

detected in micro range at the LPEB treated surface. It is supposed that the defects are produced from 

the inhomogeneous evaporation by the excessive heat energy applied at Mg-alloys. 

 To sum up the SEM image analysis, the qualities are largely affected by the energy density 

and the number of cycles of LPEB process. Especially, the grain boundary, vulnerable to galvanic 

corrosion, is not detected in LPEB treated surface. Nonetheless, the limitations of LPEB process are 

confirmed such as crack, micro pole and the particle aggregation. Finally, it is verified that the LPEB 

process can fabricate the nano-grained α-β stable surface layer on the Mg-alloys 
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4.3. Chemical composition transformation 

 

 
Figure 4-5. (a) Cross-section SEM image of LPEB treated AZ91 (5 J/cm2 – 5 cycles), (b) the result of 

EDS line tracing of (a), and (c) - (h) Al/Mg content profiles of LPEB treated surface of 

Mg-alloys: (c) AZ31 at the energy density change, (d) AZ31at the number of cycles 

change, (e) AM60 at the energy density change, (f) AM60 at the energy density change, 

(g) AZ91 at the energy density change, and (h) AZ91 at the number of cycles change. 
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The chemical composition of the Mg-alloys is completely transformed by LPEB process. In Figure 4-

5, the grain structure results of the LPEB treated AZ31, AM60, and AZ91 are presented using EDS. 

According to Figure 4-5 (a), the dense nano-grained structures are appeared at LPEB treated surface. 

When the energy density was 5 J/cm2, the thickness of re-melting surface layer was 6 - 7 μm. It is 

reasonably verified by LPEB simulation results at Chapter 3. Also, referring Figure 4-5 (b), it was 

discovered the higher Al contents at the all LPEB treated surface compared to the bare. This special 

effect can be described to selective evaporation attributed by Al (MP: 660℃, BP: 2470℃) has 

relatively high boiling point compared to Mg (MP: 650℃, BP: 1091℃). Therefore, there is some 

optimum range of selective evaporation of Mg in Mg-Al alloy system. 

For find the optimum parameter of LPEB process, it was determined that the ‘Al/Mg content 

ratio’ is reached at maximum. According to Figure 4-5 (c), (e), and (g), the 5 J/cm2
 was proved the 

best energy density condition. Between 4 and 6 J/cm2, some optimum range for enrich Al content is 

existed. Then, from Figure 4-5 (d), (f), and (h), the best number of cycles was verified to the 40 cycles 

case. It is anticipated that LPEB repeated more and more, the gap of Mg and Al content is more 

amplified. Conversely, the defects are also amplified by large number of cycles according to surface 

SEM results. Therefore, the optimum parameter of LPEB process can be selected to ‘5J/cm2 - 40 

cycles’ in the view of the chemical composition with minimizing the defects of LPEB process. At 

Figure 4-5 (d), the Al content of AZ31 sample is increased from 1.65 to 15.8 wt.% by LPEB process 

using ‘5 J/cm2 - 40 cycles’. Likewise, at Figure 4-5 (f), it is increased from 5.86 to 25.6 wt.% and at 

Figure 4-5 (h), it is increased from 5.38 to 33 wt.%. The increment of Al content can explain the 

formation of the new crystalized surface layer. 

In conclusion, this EDS results are significantly used to analysis the improvement of the 

mechanical and electrochemical characteristics because the modified chemical composition results are 

well-matched with the results of the wear/corrosion tests in Chapter 3. The 5 J/cm2 parameter is 

specially designed for the Mg-alloys. Mostly, the higher energy density of LPEB has been performed 

for surface treatment process. However, since the difference of the evaporation point of the Mg and 

Al, the optimum energy level is existed for appropriate LPEB process. 
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Figure 4-6. EDS results of (a) as-received AZ31, (b) the AZ31 surface treated by the optimum LPEB  

process (5 J/cm2 - 40 cycles), (c) the particle in the surface of AM60, and (d) the location 

of corrosion test of AZ31 sample treated by LPEB process (10 J/cm2 – 10 cycles). 

 

Finally, Figure 4-6 presents the total chemical composition of the samples. In Figure 4-6 (b), 

it is appeared some carbon component. Even though it could be generated by dirt in the vacuum 

chamber, it seems to be more related to other metal component, especially Al because, at the bare of 

AZ91, the carbon was also detected. Using Figure 4-6 (c), it can be verified the identity of the 

particles aggregated in LPEB treated AM60 surface presented at Figure 4-4 (h). The Al content of the 

particle is abnormally high rather than other place. Therefore, it is estimated that the remained 

Mg17Al12 components are aggregated not solidified in the Mg grains. Figure 4-6 (d) shows the 

corrosion product of LPEB treated AZ31. At the fractured position, the large oxide component is 

detected. It is supposed that the component is attributed to pure Mg in corrosion product is easily 

reacted with oxygen in atmosphere or OH- in water because there are only small Al content with some 

Na, Cl components. In conclusion, it is demonstrated that it is actually important to fabricate the well 

distributed and dense Mg-Al alloy system for withstand the galvanic corrosion generated in α-β grain 

boundary and other unknown attacks. At the ‘5 J/cm2 - 40 cycles’, it is anticipated the recrystallization 

process is extremely activated than other LPEB conditions. 
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4.4. Summary 

 

The metallurgical investigations of the LPEB treated Mg-alloys sample were demonstrated in the 

chapter. Applying the SEM & EDS analysis, the information of the surface morphologies and 

chemical components was obtained. Then, the limitations of the energy density and number of cycles 

of LPEB parameter are specified using the qualitative evaluation of the sample surfaces. Also, it was 

proved that the variable defects are generated by LPEB process such as crack, micro pole and the β-

particle aggregation. Then, the EDS result substantiates the optimum parameter of LPEB process. The 

‘Al/Mg content ratio’ is used for finding the optimum parameter and some additional EDS analysis in 

the whole chemical component modification is accompanied. Finally, the ‘5 J/cm2 - 40 cycles’ was 

selected to the optimum parameter of the LPEB surface treatment for the Mg-alloys. 
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Ⅴ. Conclusions and recommendations 

 

5.1 Conclusions 

 

This dissertation presents a technique to improve corrosion resistance of Mg-alloys using LPEB 

process. Fabrication of a nano-grained Al enriched metastable layer on as-received AZ31 large-area 

surface with lower power consumption is purpose of LPEB. In previous studies, parameters of pulsed 

electron beam for Mg-alloys are limited such that irradiation pattern is fixed at only center of 

workpiece, energy density is 2.5 - 3 J/cm2
 and optimum number of pulses is 15 [5, 6, 8, 36]. To 

overcome the previous corrosion improvement performance with parameter optimization, mechanical 

and electrochemical characteristics analysis and metallurgical verifications are described in each 

Chapter 3 and Chapter 4. The following conclusions were obtained from this dissertation. 

 

- The optimum irradiation pattern is estimated applying mathematical modelling. The pitch of 

stitching process is selected less than effective diameter (Øeff) 24 mm. 

- The electron beam energy absorption profile is modeled using Gaussian distribution. The 

maximum penetration depth is increased at low atomic number and high accelerating voltage. 

For Mg-alloys, the accelerating voltage is shorted to 15 - 30 kV. 

- In the rest of LPEB pulse, the temperature is increased over eutectic migration point of Mg-

alloys (220℃) at more than 20 cycles with repeated rapid self-quenching effect. The re-

melted depth is predicted to 6 - 10 μm by FDM simulation at 22.5 kV. 

- The brightness and the deformation of LPEB treated surface indicate the condition of 3 - 7 

J/cm2 and the 20 - 40 cycles is preferred. The corrosion resistance (Rcorr) is improved by 45% 

at the ‘5 J/cm2 - 40 cycles’ with the 30% reduced COF. 

- The microstructure of LPEB treated surface presents less grain boundary morphology with 

removed tool mark. The larger energy density and number of cycles cause the more defects 

such as crack, micro-pole, and β-Mg17Al12 particle aggregation due to inhomogeneous 

evaporation. 

- According to EDS analysis, the ‘5 J/cm2 - 40 cycles’ is verified to fabricate maximum Al-

enriched surface. The Al content of AZ31 is increased from 1.65 to 15.8 wt.% by LPEB 

process.  

- Finally, the ‘5 J/cm2 - 40 cycles’ is selected to the optimum parameter of LPEB process for 

AZ31 and it shows similar EDS results at other Mg-alloys (AM60, AZ91). 
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5.2. Recommendations 

 

Although the optimized LPEB process provides improved corrosion-protection performance, the 

limitations are remained such as relatively low corrosion characteristics and surface defects. For 

developing one-step surface treatment method of Mg-alloys, additional finishing mechanism and 

technology can be applied to in the LPEB system. The recommendations for future work are 

described. 

 

[1] Hybrid LPEB nitriding process 

 

In order to fabricate the denser microstructure on Mg-alloys, it can be applied to hybridize the LPEB 

process with PVD technologies. Among them, the nitriding is simply adapted into the LPEB system 

because its ion implantation apparatus could be set up in vacuum chamber of LPEB machine. High-

frequency (10 MHz) & high-voltage (400 V) DC pulse power generator will be required to begin this 

study. 

 

[2] Hybrid LPEB sintering process 

 

Due to the inhomogeneous material composition of Mg-alloys, there are appeared many craters on 

LPEB treated surface. To reduce the unfavorable defects, it can be considered to applying hybrid 

LPEB process with powder sintering technology. The mechanism is scattering the Al powder on the 

working materials during LPEB process. Simultaneously, the powder could be filling at the 

inhomogeneous region and sintered by LPEB irradiation. This study will need the appropriate pump 

control technique with powder bead system in vacuum chamber. 

 

[3] Vibrating table with electromagnetic coil system 

 

It is proved that and electromagnetic field during LSM can activate distribution of grain structure at 

re-melted process [33]. Also, extreme high frequency vibration can affect the recrystallization of 

inhomogeneous Mg-alloys. For this reasons, the equipment is expected to deactivate the crater 

generation with well distributed surface layer. To enable vibrating motion in vacuum chamber, 

additional actuator will be designed. And it is considered that electromagnetic field can affect the 

electron beam direction. 
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