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Abstract

Carbon Fiber Reinforced Plastic (CFRP) has been widely used in various industrial areas due to

its corrosion resistance, stiffness and high strength-to-weight ratio. However, the machining process

of CFRP composite material is complex compared to that of metals. The reason is the unique

properties of CFRP composite, such as anisotropy and inhomogeneous characteristics. Therefore,

many defects, such as uncut fiber, delamination and tool wear, occur in the process of CFRP

machining. To prevent defects in CFRP machining, we discuss important factors, cutting mechanism

and chip formation. Based on these, numerical models are suggested for cutting forces and damage

prediction. It will help optimize machinability and productivity of CFRP machining.

In this study, we developed numerical solutions to predict cutting forces along the fiber orientation

in each machining condition in CFRP orthogonal cutting. There are preliminary force prediction

model and force prediction model according to varying fiber orientation. The first one is from

Bhatnagar’s CFRP force prediction model. This model is proved with CFRP orthogonal cutting in

each fiber orientation. This model shows that cutting force and thrust force are increased as

increasing feed rate similar to the experimental results. High feed rate can increase the depth of cut

in machining. This developed model is more accurate than Bhatnagar’s model in wider area in the

condition of high feed rate. The reason is that epoxy region contained in preliminary force prediction

model rises in wider area.

The other model is modified force prediction model for varying fiber orientation. This model was

expanded from Zhang’s CFRP force model. Zhang commented this cutting mechanism can be

applied only in fiber orientation below 90°. He proved this in low speed CFRP cutting experiments.

We did CFRP orthogonal cutting in high cutting speed over 80m/min. We applied similar cutting

mechanism into modified model along all the fiber orientation from 0° to 180°. Force prediction

model for all the fiber orientations has similar tendency as the experimental results. The prediction

credibility is from 50% to 98.5%. Errors can be generated by many factors in CFRP machining.

From this modified force prediction model for varying fiber orientation, damage prediction model

can be suggested referring to Jahromi’s damage prediction model. It is based on energy balance in

each fiber material. This damage prediction model has similar curve tendency as experimental

results. It shows no defect along the fiber orientation from 0° to 90°. However, in the range of fiber

orientation from 90° to 180°, it starts making defects inside UD CFRP workpiece because of fiber

crush. It is verified by CT X-ray internal inspection. We need to consider poor machinability in the

range of fiber orientation over 90°. In conclusion, this process will help optimize machinability in

CFRP machining.
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1. Introduction

1.1. Background

Carbon Fiber Reinforced Plastic (CFRP) has extremely good strength and light material which

contains carbon fibers and resins. It means that CFRP has high strength-to-weight ratio. This

composite material has great dimensional stability and corrosion resistance compared to metal alloys

[1-3]. Demands of CFRP is increasing rapidly. These days, CFRP is representatively used as

aerospace, automotive, and sports goods. Its application has been increased rapidly and it will consist

this tendency as shown in Fig. 1-1.

Fig. 1-1 Global demand for carbon fiber from 2008 to 2020

[Mark Holmes et al. (2014), materialstoday]

However, CFRP is somewhat difficult to be applied to the industry because it is anisotropic and

inhomogeneous different from metal’s physical properties [4, 5]. In CFRP machining, it decreases

the attachment between fibers and resins. And it causes delamination to be generated [6].
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Delamination is representative of defects in CFRP machining. Since there are many defects, such as

delamination and tool wear during machining of CFRP composites, the optimization of machining

is essential to improve the productivity. For machinability, it must be prevented. For applying it to

the industries, its machinability is the most important point. Many engineers try to improve the

machinability in CFRP machining.

There are three kinds of CFRP as Uni-direction (UD) CFRP, Multi-direction (MD) CFRP, and

Fabric CFRP depending on methods of manufacturing. As shown in Fig. 1-2, UD CFRP is composed

of only one same direction in each stack floor. MD CFRP has 0°/90° stack floors. Lastly, fabric

CFRP has fibers woven. In this research, UD CFRP and MD CFRP are used.

(a) (b)

Fig. 1-2 (a) Uni-direction(UD) CFRP, Multi-direction(MD) CFRP, (b) Fabric CFRP

1.2. Research objectives and approach

This research is basically about orthogonal machining of Carbon Fiber Reinforced Plastics

(CFRP). This is important for dimensional accuracy and better surface finish in machining.

Composite materials’ characteristics are introduced previously. CFRP has different characteristic

from the metal. Representatively, it is anisotropic and inhomogeneous. Therefore, the machining of

CFRP is more complicate than that of metal. Fiber orientation, brittle behavior and other mechanisms

are considered. This paper is motivated to develop some models by specific mechanism to predict

the cutting forces along the fiber orientation. This study suggest two kinds of force prediction

numerical models. The first one is preliminary model applied by Bhatnagar force prediction model

[7]. The second one is modified model according to varying fiber orientation applied by Zhang L.C.

CFRP machining mechanism and force prediction model [8].

For this prediction validation with experiments, orthogonal machining of CFRP is proper to

consider them. It is because CFRP orthogonal cutting is easy to find out characteristics of CFRP

along the fiber orientation. This research would be helpful for optimization and productivity in CFRP
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machining.

In addition, according to the parameters such as material properties, feed rate, and cutting speed,

the force and machinability are affected. These parameters are considered when some numerical

models are constructed like Fig. 1-3.

The goal of this research is to develop theoretical and numerical prediction models for analyzing

the cutting forces in Carbon Fiber Reinforced Plastics (CFRP) machining and to experiment CFRP

orthogonal machining for analyzing the characteristics of composite materials. The parameters are

presented by experiments such as tensile test and friction test. After that simple modeling is modified

by applying Bhatnagar’s model [7]. But it has a limit about fiber orientation. It is because the shear

strength cannot be decided in all fiber orientations. For complementing this, modified model is

supposed to be made by applying Zhang’s model [8]. This model can be solved in condition of all

fiber orientations.

Force prediction model along all fiber orientations can be applied to predict damage zone in CFRP

machining. After previous research, Delamination prediction model can be supposed to be

developed including machining parameters such as feed rate and cutting speed as shown in Fig.1-3.

This can be helpful for optimizing the machinability in CFRP machining. Developed models can

also expand from orthogonal machining to the drill machining.

Fig. 1-3 Parameters and types of numerical modeling
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1.3. Dissertation organization

This research is about the modified theoretical analysis of Carbon Fiber Reinforced Plastics

(CFRP) machining. In this numerical modeling and experiment, it can be helpful to identify the

properties of CFRP machining and increase reliability of numerical model by experimental

validation.

For this goal, this study includes four steps:

Step 1: Determine CFRP properties by trying out tensile test and friction test.

Step 2: Develop force numerical prediction models.

Step 3: Experiment CFRP orthogonal cutting for identifying the force along the fiber orientations.

Step 4: Verify the results of numerical modeling compared to the experimental results.

Numerical modeling is for estimating the force and defects in CFRP machining. The objective of

this thesis is to find optimal modeling for predicting the force generated by orthogonal cutting along

the fiber orientation. Two models are supposed to be suggested, one for preliminary modeling and

one for modified modeling for all the fiber orientations. Fig. 1-4 shows overall modeling procedure

in CFRP machining. Numerical modeling is affected by parameters as feed rate, cutting speed in

machining and material’s properties.

Force prediction modeling can also affect the defects prediction afterwards. Depending on the

force prediction model, damage prediction model can be suggested. Lastly, force and damage

prediction models are needed to be validated by experimental results along the fiber orientation and

depending on the machining parameters. The objective of this study is to develop the numerical

solution for force and damage prediction in CFRP machining and optimize CFRP machining for

minimizing defects.
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Fig. 1-4 Flow chart for the organization of the dissertation
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2. Literature review

This literature review includes five main components:

(1) Industrial applications of CFRP machining

(2) Introduction of CFRP orthogonal cutting characteristics

(3) Numerical modeling of CFRP machining

(4) Flow of research about theoretical prediction model in CFRP machining

Literature review can help find out direction of this thesis. The history of research about CFRP

machining is not long compared to metal cutting research’s history. Therefore, complementing

numerical modeling of CFRP machining by understanding material’s property is essential to

improve machinability.

2.1. Introduction of CFRP machining

As mentioned previously, CFRP has many advantages such as high strength to weight ratio, high

stiffness and high corrosion resistance. Therefore, CFRP material is proper for many applications in

engineering area. Today, CFRP is widely used in aerospace, automotive, and sports goods. Long

time ago, in the late 1960s, it is used in the construction industry for the first time.

Fig. 2-1 The XXsys carbon fiber jacket site filament winding technique (USA) [9]
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Fig. 2-1 representatively shows main application as complement and reinforcement materials.

The composite with high strength to weight ratio is proper to complement concrete. It is formed

around the pillar of the bridge [9]. It can enhance durability. As shown in this application, forming

and machining CFRP materials are inevitable to suit the different structures in each application.

In this thesis, we identify CFRP machining. There are representatively three kinds of CFRP

machining. First one is orthogonal cutting. It is defined as the workpiece forming process in 2

dimensional face [10]. It can occur the deformation in a single plane. In this process, fiber orientation

is important point to decide machinability different from metal cutting as shown in Fig. 2-2 [11]. As

shown in Fig. 2-2 (b), Fiber orientation angle is decided clockwise between feed way and fiber

arrangement [12]. It can have advantages of identifying CFRP machining characteristics such as

cutting forces, uncut and delamination along the fiber orientation.

(a) (b)

Fig. 2-2 Schematic of orthogonal cutting; (a) Metals, (b) UD-FRP [12]

Secondly, milling has some cutting edges of one tool which removes the workpiece. There are

face milling and end milling in methods as Fig. 2-3. It has similar mechanism as CFRP orthogonal

cutting. Cutting forces, uncut and delamination depends on the fiber orientation in CFRP milling

[13-15].

Lastly, Drilling is the most common machining process in metal and composites cutting. It is

called hole making process. It is considered as the workpiece forming procedure in 3 dimensional

space. In Fig. 2-4, inlet and outlet of workpiece after CFRP drilling can be seen. Outlet of the

workpiece has many defects such as uncut and delamination. It is affected by machining condition

like feed rate and rotating speed. High feed rate and low rotating speed can make defects more with

less machinability[16, 17]. This tendency can be also seen in other types of CFRP machining.
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Fig. 2-3 Types of milling operations [18]

Fig. 2-4 Machinability of CFRP drilling [19]

2.2. Characteristics in CFRP orthogonal machining

For fundamentally studying CFRP machining, orthogonal cutting is decided to identify. In this

section, 4 factors are considered as key factors to decide machinability in CFRP orthogonal

machining. There are (1) Force, (2) Chip formation, (3) Fiber orientation, (4) Delamination in CFRP

orthogonal cutting. These factors are related to one another and they affect the machinability of

CFRP machining.
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2.2.1. Cutting forces in CFRP orthogonal machining

In CFRP orthogonal cutting, cutting forces are generated. The force generated along the feed

direction is defined as cutting force along the fiber orientation [20]. And the force generated

perpendicular to the feed direction and along the depth of cut is called thrust force. Metal cutting

has smooth change of the cutting forces. On the other hand, there are many fluctuations of cutting

forces change in CFRP orthogonal machining as shown in Fig. 2-5 [12]. This tendency is because

each fiber in CFRP materials is cut off when the tool goes through the workpiece. From this force

data, we can get the mechanism of CFRP machining different from metal cutting.

Fig. 2-5 Cutting force diagram in CFRP orthogonal cutting [12]

2.2.2. Fiber orientation in CFRP orthogonal machining

In manufacturing CFRP, aligned carbon fiber is synthesized with resin such as epoxy. So, CFRP

has fiber orientation angle in each layer. As shown in Fig. 2-6, fiber orientation changes according

to the tool feed direction in CFRP orthogonal cutting. It can affect cutting mechanism, force change

and delamination [21-24].
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Fig. 2-6 Fiber orientation relative to the cutting direction [22]

2.2.3. Chip formation in CFRP orthogonal machining

Chip formation is important factor to find out mechanism of CFRP machining and estimate the

machinability. It can help optimize the system in CFRP machining. The chip formation of CFRP

machining is different from the metal cutting. The chip formation is usually continuous in metal

cutting, however the chip formation of composites is discontinuous and the chip is type of dust.

Therefore, it is difficult point to analyze CFRP machining. By using Scanning Electron Microscope

(SEM), chip morphology can be seen as Fig. 2-7. In the range of fiber orientation, 0° ≤ � < 90°,

the chip morphology is relatively smooth surface. There is little crack on the surface of the fibers.

On the other hand, we can see rough surface of the fibers and the chips crash down in the range of

fiber orientation, 90° ≤ � < 180°.

(a) (b)

Fig. 2-7 Chip morphology SEM photos of carbon fiber with orientation angles along the fiber

direction; (a) 0° ≤ � < 90° fiber orientation, (b) 90° ≤ � < 180° fiber orientation [25]
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2.2.4. Delamination in CFRP orthogonal machining

Delamination is damage zone of composite materials where layers are split. Repeated cyclic

stresses by the force change and impact can cause this defects in CFRP machining. In CFRP

orthogonal cutting, Separate layers can cause significantly decreasing mechanical toughness and

durability. Delamination can be also the reason of reinforcement corrosion. It can occur oxidization

of reinforcement [26, 27]. Most defects is generally occurred in the fiber orientation over 90° as

shown in Fig.2-8. This result can be identified by numerical solution and experimental validation.

In this damage prediction model [28], there is input parameter of force. Actually, there are many

researches about numerical force prediction model but there is few theoretical force prediction

models in the range of the fiber orientation over 90°. For predicting the damage zone, numerical

force prediction model in the range of the fiber angle over 90° is essential. This research has an

importance to enhance the machinability of CFRP machining.

Fig. 2-8 Comparison of experimental and analytical results for predicting damage [28]
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2.3. Numerical solutions to predict force in CFRP machining

In this study, identifying CFRP orthogonal cutting is important because it can show force change

along the fiber orientation according to the feed rate and cutting speed. To predict the force in CFRP

orthogonal cutting, there are 3 kinds of numerical solutions.

First one is theoretical model. Only a few researchers have tried to analyze theoretical solution

for predicting force from the mechanics of chip formation by (Takeyama et al., 1988 [29]; Bhatnagar

et al., 1995 [7]; Zhang et al., 2001 [8]). It has many advantages of short time consumed when

simulating and it can be identified by cutting mechanism. On the other hand, it is inevitable to adjust

many assumptions.

Secondly, there is experimental numerical model to predict force by (Jamal et al., 2008 [18]).

Experimental numerical model has advantages of high accuracy compared to other methods with

experimental parameters, �� ,�� . However, it needs preliminary experimental results and it has

possibility of getting different results depending on conditions.

Lastly, Finite Element Method (FEM) is good for identifying CFRP cutting process in CFRP

orthogonal machining. It can show the predicted failure modes identified for different fiber

orientation angle by (Abena et al., 2015 [30]). It has good point about visualization and showing

chip formation predicted. Its limit is sometimes too much time needed and different results

depending on the computers.

These numerical methods are inevitable to be verified by CFRP machining results such as cutting

force and thrust force. Representatively, CFRP orthogonal machining is the most effective to find

out the relationship between cutting forces and fiber orientation angle. In this process, numerical

prediction model has become more accurate.

These numerical force prediction models are important to define characteristics of CFRP

machining and achieve optimization of machinability in each machining parameters such as feed

rate and depth of cut in CFRP machining. As mentioned previously, especially in theoretical damage

prediction model [28], there is input parameter of force which is not defined yet. So we have an

effort to establish theoretical model which predicts force in the range of all the fiber orientation from

0° to 90°.

2.4. Flow of research about theoretical solution to predict force and delamination in CFRP machining

The machinability of CFRP machining is associated with the chip formation along the fiber

orientation [31-34]. For identifying theoretical force prediction model, it is essential to understand
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chip formation. There are many researches about chip formation. Firstly, this study was reported by

Koplev. And he showed a micrograph of two specimens in 1983 [35]. One is machined perpendicular

to fiber orientation angle. And the other is parallel to the fiber orientation as shown in Fig.2-9.

(a) (b)

Fig. 2-9 Cross section of specimens in CFRP cutting; (a) fiber angle 90°, (b) 0° [35]

Afterward, diverse fiber orientation has been researched in composite machining. D. H. Wang

suggested the cutting mechanism by diverse fiber orientation in composite orthogonal cutting shown

in Fig. 2-10 [36], representatively.

Fig. 2-10 Cutting mechanisms in the orthogonal machining of composite [36]
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In the fiber orientation below 90°, fiber is cut by cutting tool. In the fiber orientation angle over

90°, it occurs fiber bending, delamination and shearing. It can generate defects. High thrust force

can be generated by elastic recovery of the fibers critically in fiber orientation below 90°.

For identifying machinability of CFRP cutting, it is principal to predict damage zone along the

fiber orientation in each machining condition. It is necessary to find out machinability especially in

fiber orientation over 90°. X. M. Wang and L. C. Zhang observed the microstructure concentrating

the range of fiber orientation over 90° as shown in Fig. 2-11 [37].

(a) (b)

Fig. 2-11 Cross section of specimens in CFRP cutting; (a) fiber angle 90°, (b) 180° [37]

These chip formation researches can help understand cutting mechanism and establish numerical

force prediction model. Takeyama and Iijima (1988) proposed chip formation in composite

machining can be affected by shearing the composite along the shear plane with shear angle, ∅ as

shown in Fig. 2-12 [29].

Fig. 2-12 Orthogonal cutting model of composite [29]

∅: Shear angle, θ: Fiber angle, ��: Shear fiber angle
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In this model. Merchant’s theory of minimum cutting energy determine the shear plane angle, ∅.

And the shearing stress in the shear plane is only a function of fiber orientation angle, θ. The fiber

orientation angle, θ is limited as less than 90°. This type of cut is 2 dimensional. The effect of

temperature can be ignored. Shearing the composite occur in the condition of minimizing the cutting

energy.

In Bhatnagar’s model (1995), it was assumed that the chip flow in UD CFRP machining is almost

equal to the plane of the fiber [7]. It means, the shear plane angle, ∅ coincides with the fiber

orientation angle, θ. In this model, direction definition of fiber angle, θ is reverse that is different

from other thesis. It is also assumed that this model is reasonable in the range of the fiber orientation

over 90°. In addition, the Iosipescu shear test was implemented to get the in-plane shear strength for

CFRP. The shearing stress in the shear plane is only a function of fiber angle, θ.

L. C. Zhang (2001) suggested mechanics model base on the observations of CFRP orthogonal

cutting with cutting tool nose radius [8]. According to this model, the cutting zone is divided in 3

regions shown in Fig. 2-13.

Firstly in Region 1, cutting forces are generated by chip along the rake face of the cutting tool.

This chipping region includes the material subjected to shearing along the shear plane. This region

contains the actual depth of cut, ��. So, this region is important to consider machining parameter

such as feed rate in numerical solution. However, the amount of the cutting forces in this region is

not big compared to metal cutting. It is because the chip is continuous in metal cutting. On the other

hand, the chip is just dust type in CFRP machining.

Secondly in Region 2, cutting forces are occurred by the indentation force in tool nose radius. It

is round edge of the tool. Tool nose is pressing the fiber. This force can be most significant in

resultant force.

Lastly in Region 3, Cutting forces are generated under the tool in CFRP machining. Bouncing of

the fiber in CFRP workpiece can affect cutting forces because fiber has elastic properties under the

tool.

Finally, this thesis identifies validation of numerical solution by comparing with experimental

results when depth of cut and fiber orientation change. This material is MTM56 and the effective

modulus in Region 3, �� is 5.5GPa. This specimen thickness is 4mm. This comparison can be seen

in Fig. 2-14 (a). We follow this thesis by using MATLAB code. This result is shown in Fig. 2-13

(b).
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(a)

(b) (c)

Fig. 2-13 The cutting diagram in CFRP orthogonal machining; (a) Region 1, (b) Region 2, and

(c) Region 3 [8]

(a) (b)

Fig. 2-14 Comparison between numerical model predictions and experimental results of MTM56

in (a) thesis [8], (b) using MATLAB code

In this research area, there are many other models which is from microstructure of fiber and micro-

buckling of fiber in CFRP. Jaromi suggested micro-buckling of the fiber as shown in Fig. 2-15 [38].

Qi’s model [39] was based on deflection function of Representative Volume Element (RVE) and it
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concentrates on micro-deflection similar to Jaromi’s model. And Chen recently also find out micro-

deflection and micro-buckling of fiber [40].

Fig. 2-15 Schematic of a single fiber under lateral force [38]

These models are not modeling of the chip formation. However, this model has limit of low

accuracy and complicated parameters to get such as fiber volume fraction, ��, fiber spacing, c, and

shear strain of matrix, ℶ. Therefore, this study is supposed to adopt theoretical force prediction

model from chip formation in CFRR machining.

However, these researches have limit which is only the case of low speed machining. Actually,

Koplev had the condition of 14m/min cutting speed [35], D. H. Wang did experiment with 4, 9,

14m/min [36], and X. M. Wang had the cutting speed of 1m/min. In addition Takeyama’s cutting

speed condition is 0.38mm/min [37]. Bhatnagar’s cutting speed condition is 1.18m/min [7], and L.

C. Zhang [8] has condition of 1m/min. all the researches are about low speed machining. In this

study, we can find out difference in other condition such as high speed machining.

Except to the other models from micro-buckling which has low accuracy and complicated

parameters to get, numerical force prediction models from the chip formation have the limit of

predicting only in the range of fiber orientation below 90°. And we need to find out force prediction

model for predicting this damage zone and estimating machinability. As mentioned previously, most

defects are occurred in the fiber orientation over 90°. This is also mentioned in Zhang’s study as

shown in Fig. 2-16 [8]. Therefore, we have an effort to expand the original model to all the fiber

orientations in theoretical approach from the chip formation in this study.
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Fig. 2-16 Effect of fiber orientation in surface roughness [8]

For this objective, we decide to apply Bhatnagar’s model and L. C. Zhang’s model into

preliminary model and numerical model for predicting force according to varying fiber orientation.

Preliminary model can include MD CFRP material and enhance the accuracy of predicting force.

Modified model can identify the force change in the fiber orientation from 0° to 180°.
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3. Numerical modeling

3.1. Numerical model for predicting force

In this section, force prediction numerical models are introduced. The first one is preliminary

model for predicting force. Its reference is Bhatnagar’s force prediction model [7]. This model has

a condition of fiber orientation, � < 90° and Uni-direction (UD) CFRP. In this condition, it is

possible to assume shear angle is equal to the fiber orientation. From this model, modified model is

developed to consider Multi-direction (MD) CFRP and Epoxy region.

The second is numerical model for predicting force according to varying fiber orientation. It

would be helpful to complement the first introduced model because change of the force can be

detected continuously as the fiber orientation changes. This original model is Zhang LC’s model [8].

This model has a condition of fiber orientation, � < 90°. This research can expand this model to

the model along all range of the fiber orientation, 0° ≤ � < 180°. This research has an importance

to enhance the machinability of CFRP machining by putting this model into damage prediction

model.

3.1.1. Preliminary model for predicting force

Orthogonal cutting is representative of two-dimensional cutting. Therefore, we can identify the

characteristics affected by fiber orientation. In this procedure, horizontal force and vertical force are

occurred as shown in Fig. 3-1.

Fig. 3-1 Schematic of CFRP orthogonal cutting
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It can help identify the characteristics of CFRP machining. For estimating the force by numerical

solution in CFRP orthogonal machining, Bhatnagar’s force numerical model is considered

fundamentally [7].

Original Bhatnagar’s force prediction model considers the chip flow in machining unidirectional

FRPs. This model is suggested as (3-1) and (3-2).

�� =
���� ���(����)

���� ���(������)
(3-3)

�� =
���� ���(����)

���� ���(������)
(3-4)

In these equations, �� and �� are the cutting force and the thrust force respectively, �� is the

shear strength along the fiber orientation, �� is the area of composite’s undeformed chip area, ��

is the composite’s friction angle, and � means the rake angle of the tool.

New model is modified to consider Multi-direction (MD) CFRP and Epoxy in matrix because

Bhatnagar’s force numerical model is only applied to Uni-direction (UD) CFRP. This model is as

shown in (3-3) and (3-4). This model is only applied in case of fiber orientation, � < 90°. In this

condition, shear angle, ∅ is assumed to be fiber orientation, �. It is related to the chip formation

along the fiber orientation. Lastly, epoxy’s chip formation is suggested to be similar to the fiber chip

formation.

�� = ��(
�� ���(����)

���� ���(������)
+

�� ���(����)

���� ���(������)
) (3-3)

�� = ��(
�� ���(����)

���� ���(������)
+

�� ���(����)

���� ���(������)
) (3-4)

In these equations, �� and �� are the cutting force and the thrust force respectively, �� is the

shear strength along the fiber orientation, �� is the area of fiber’s undeformed chip area, �� is the

area of epoxy’s undeformed chip area, �� is the fiber’s friction angle, �� is the epoxy’s friction

angle, and � means the rake angle.
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3.1.2. Numerical model for predicting force according to varying fiber orientation

Fig. 3-2 Flow chart for force prediction model according to varying fiber orientation

In the preliminary model for predicting force, there are some limits that it is only applied to the

fiber orientation, � > 90° and discontinuous model. In this study, other approach model is

suggested by understating and complementing previous models. This research can expand Zhang’s

model to the model depending on all the range of the fiber orientation, 0° ≤ � < 180°. This

research has an importance to enhance the machinability of CFRP machining by applying this model

into damage prediction model. This force prediction model suggests three distinct regions in the

deformation mechanisms of CFRP machining as shown in Fig. 3-3. This model was first represented

by Zhang [8].

Region 1 has a depth of cut, ��. In the region 1, chipping is generated by CFRP cutting along the

tool’s upper side. In this region, similar mechanism can be seen as section 3.1.1. Preliminary model

for predicting force. Region 2 covers the area of tool nose. We consider Region 2 is the most effective

region because the chipping in Region 1 is just dust type. It’s not continuous chip like metal cutting.

It means, chipping is not effective in CFRP machining. Region 3 is where composite bouncing is

occurred in the region of the lowest area of the tool.
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Fig. 3-3 Schematic of CFRP orthogonal cutting

3.1.2.1. Region 1 – Chipping

In region 1, chipping occur in the process with sharp cutting tool. In Fig. 3-4, there is theoretical

shear plane formed when fracture of fibers occurs. As shown in this figure, Chipping would be

generating the cutting force and thrust force. This chipping region is important because it contains

machining parameter such as feed rate.

The effects along the depth of cut which is affected by feed rate are shown only in this region.

These specific equations are as shown in (3-5) and (3-6). (3-5) is along the cutting direction and (3-

6) is along the thrust direction.

��� =
�����(���∅ ���(∅����)����∅)
��
��
���(��∅)��������(��∅)����

(3-5)

��� =
�����(���∅ ���(∅����)����∅)
��
��
���(��∅)��������(��∅)����

(3-6)

In these equations, ��� and ��� are the cutting force and the thrust force respectively in region

1, �� is the shear strength along the fiber orientation, �� is the shear strength along the direction

normal to fiber orientation. ℎ is the width of a workpiece, �� is the depth of cut in machining, ∅

is the shear angle, � is the friction angle, � means the rake angle of a cutting tool, and � is fiber
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orientation.

Fig. 3-4 Schematic of CFRP orthogonal cutting in Region 1

For calculating these force equations, ∅ needs to be found. Following the general cutting

mechanics, (3-7) and (3-8) are suggested.

���∅ =
������

������
(3-7)

�� =
��

���
(3-8)

In this equation, ��� is the chip thickness. CFRP is a typical brittle material in machining. In

this reason, it could be assumed that �� is 1. Therefore, It is determined by (3-9).

∅ ≈ ����� �
����

������
� (3-9)

3.1.2.2. Region 2 – Pressing

Fig. 3-5 show how to analyze cutting mechanism in Region 2. In Region 2, the force is caused
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from the tool nose. Tool nose presses the workpiece and it is generating the deformation. It seems

like the process of generating plowing force. In CFRP, these indentation forces are affected by the

fiber orientation, �.

Fig. 3-5 Schematic of CFRP orthogonal cutting in Region 2

As shown in Fig. 3-5, the indentation forces are calculated by adding the force generated in

upper tool nose and the other force generated in lower tool nose. These specific equations about

indentation forces in Region 2 are shown in (3-10) and (3-11).

�� =
�

�
��
���∗�

���
(3-10)

�� =
�

�
��
���∗�

���
(3-11)

In these equations, �� and �� represent indentation forces in the direction normal to the fiber

orientation. �∗ is the effective elastic modulus of CFRP material along the �� and �� direction.

ℎ is the width of the workpiece, �� is the tool nose radius. �� and �� are the widths of the contact

between tool and workpiece.

�� and �� can be calculated as (3-12) and (3-13).

�� = �� sin � (3-12)
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�� = �� cos� (3-13)

The effective elastic modulus �∗ is defined by (3-14).

�∗ =
�

����
(3-14)

Where, E is Young’s modulus of CFRP material along the �� and �� direction. � is the minor

Poisson’s ratio. Therefore, the resultant force is � = �� + ��. Finally, the total cutting force and

thrust force in Region 2 is determined as (3-15) and (3-16).

��� = �����(���� + �����) (3-15)

��� = �����(���� − �����) (3-16)

In these equations, ��� and ��� are the cutting force and the thrust force respectively in Region

2, ����� is �(�) ∗ � in which, �(�) is a factor related to the fiber orientation. It is function of

fiber orientation to be determined by experiment. � is the friction coefficient.

3.1.2.3. Region 3 – Bouncing

In Region 3, the tool is caused by the workpiece material bouncing in the clearance face. Fig. 3-

6 shows the cutting mechanism in region 3.

For calculating simply, the bouncing is complete is assumed. In this condition, the bouncing back

height is same as the radius of tool, ��. The contact length along the clearance face is � =
��

����
as

shown in Fig. 3-6.
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��� =
�

�
����ℎ���

�� (3-17)

��� =
�

�
����ℎ(1 − ���������) (3-18)

In these equations, ��� and ��� are the cutting force and the thrust force respectively in Region

3, �� is the effective modulus of the materials in Region 3. α is the clearance angle.

Fig. 3-6 Schematic of CFRP orthogonal cutting in Region 3

3.1.2.4. The total cutting forces

The sum of the cutting forces and the thrust forces each is the total forces.

�� = ��� + ��� + ��� (3-19)

�� = ��� + ��� + ��� (3-20)

In these equations (3-12) and (3-13), �� and �� are total cutting force and total thrust force

respectively in case of fiber orientation, � < 90°. In low speed machining, fiber bending occurred
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in case of fiber orientation, � > 90°. It needs other mechanisms for this. On the other hand, no fiber

bending occurred in case of fiber orientation, � > 90° in high speed machining. We can also get

the evidence of this assumption from chip formation in CFRP orthogonal machining also for

experimental validation in Chapter 4. In this research, it considers the high speed machining (Cutting

speed > 80m/min). Therefore, it is considered to put (180° − �) into this model instead of � in

case of fiber orientation, � > 90°.

3.2. Numerical model for predicting damage

In this section, damage prediction numerical model is applied from the force prediction model.

As discussed previously, previously mentioned force prediction model according to varying fiber

orientation is suggested to be applied as shown in Fig. 3-7. This can help estimate machinability

along all the fiber orientations and find out optimized machining conditions.

Fig. 3-7 Flow chart for showing the organization of damage prediction model

Damage prediction model suggests micro-scale analysis in the deformation mechanisms of CFRP

machining as shown in Fig. 3-8. In Fig. 3-8, ������� is the shear strain in the matrix material, 2c

is fiber spacing and r means fiber’s radius. This model was first represented by Jahromi [28]. This
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analysis is followed by a few assumptions. It is 2-dimensional deformation. Fiber has no shear and

matrix material has no compression or extension. Normal stress in fiber is negligible. Tool nose

radius is assumed to be zero.

Fig. 3-8 Schematic of micro-scale cutting mechanism in CFRP machining

In this study, we use energy balance theory. This theory is applied in a situation that a single fiber

is surrounded by matrix material. Total energy can be shown mathematically as (3-21). First term is

the work exerted by the external force, ��������. Second term is strain energy of the fiber influenced

by the external force. And last term is the shear strain energy of matrix material.

� = −∫ ��������
�

�
�
��

��
� �� +

�

�
∫ ����
�

�
�
���

���
�
�

�� + �� �−
���

�

���
+ �� �1 +

�

�
�∫

��

��

�

�
��� = 0

(3-21)

In this equation (3-21), U is the total energy, v is the deflection of a fiber, �� is fiber’s elastic

modulus, �� is fiber’s second moment of area, �� is matrix area, �� is matrix’s shear modulus,

�� is matrix’s shear strength and L is length of reinforcement. In this equation, we define the

external force in a single fiber, �������� as (3-22). H is total width of workpiece and �� is cutting

force calculated from previous force prediction model.
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�������� = ��(
��

�
) (3-22)

According to fiber orientation, there are two cases of cutting mechanism. If the fiber orientation

is less than90°, tool push fiber’s face and fiber is cut. If the fiber orientation is bigger than90°, fibers

can be tangent to the tool rake side and they break. Therefore, each case has different boundary

conditions.

After applying boundary conditions in the range of fiber orientation less than90°, the fiber

deflection, � can be shown as (3-23). In the range of fiber orientation bigger than90°, the fiber

deflection, � can be shown as (3-24). In this equation, Θ is fiber orientation and γ is rake angle

of the tool.

� = −
��������

�����
��(

�

�
− �) (3-23)

� =
�

��
�

��

�����
� (−2	���������� + 6(� −

�

�
− �)���� + 3����������) (3-24)

In the last, L values calculated from energy balance equation should be the damage length along

the fiber direction. Damage length along the fiber direction needs to change over to damage length

along the depth. (L ∗ sinθ − ��) is damage length along the depth. �� is depth of cut. If (L ∗

sinθ) is less than depth of cut, ��, there is no damage in applicable condition. In the opposite case,

there is damage occurred.
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4. Experimental validation

4.1. Experimental validation of preliminary model for predicting force

In this section, it is considered that fiber angle direction is reverse to original definition of other

thesis. It means, fiber angle, (180° − �) in this model is actually applied to original definition of

fiber orientation, θ as previously mentioned in Fig. 3-2.

4.1.1. MD CFRP property test

In this section, MD CFRP is used to validate preliminary numerical model. So we need to identify

its shear strength along the fiber orientation angle and friction angle from friction coefficient of MD

CFRP. In this purpose, we did tensile test and friction test of MD CFRP.

4.1.1.1. Tensile test

MD CFRP workpieces are prepared for each fiber orientation of 20° , 40° , 60° . This fiber

orientation is based on the surface outside of both directions. Tensile test equipment is INSTRON

5982 model. Each workpiece is fixed by upper and downer vise as shown in Fig. 4-1. The strain rate

condition is 1mm/min in tensile direction. It is because CFRP is tendency to be brittle.

Fig. 4-1 Tensile test of MD CFRP by INSTRON 5982
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This experiment is implemented at two times in each case. As increasing the deformation, each

fiber is broken and sounds plosive. The fracture is occurred along the fiber orientation. It is because

resin has lower strength than the fiber.

As a result of tensile test, MD CFRP with the fiber orientation of 40°, 60° is easily deformed

compared to the other with the fiber orientation of 20°. We can conclude shear stress can affect this

fracture and shear stress is most critical in the orientation of 45°. Therefore, MD CFRP with the fiber

orientation of 40°, 60° is weak with deformation. This result is shown in Fig. 4-2 and Fig. 4-3.

(a)

(b) (c)

Fig. 4-2 Stress-strain curve of MD CFRP tensile test; (a) 20°, (b) 40°, (c) 60°

In Fig. 4-2, there are some fluctuations in tensile strength. It means, each fiber is cut off and

stress decreases temporarily. Peak value in these graphs is tensile strength in each fiber orientation.

And in Fig. 4-3, tensile strength of the cases along the fiber orientation are arranged in one graph.
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From tensile strength, we can get shear strength of each fiber orientation by using coordinate

transformation. The shear strength can be seen in Table 4-1.

Fig. 4-3 Tensile strength of each fiber orientation in tensile test

Table 4-1 Tensile strength and shear strength of each fiber orientation

Experiment 20_deg 40_deg 60_deg

Tensile strength(MPa) 313.1616 161.9618 177.52725

Shear strength(MPa) 100.65 79.75 76.87

4.1.1.2. Friction test

30*30*3 (mm) MD CFRP workpiece is prepared for friction test. Friction angle is needed to

complete numerical model. In friction test, Universal Mechanical & Tribology tester (UMT) is used

to find out the coefficient of friction. The method of this friction test is repetitive scratch test. Tip

used in this experiment is hard metal with cemented carbide. And tip angle is 45°. The velocity of

the tip is 2mm/s and the distance is 20mm. The number of repetition is 10 times. Induced force is

20N.
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Firstly, friction is increased rapidly and becomes steady state. As a result of friction test, MD CFRP

has about 0.8 friction coefficient in all the fiber orientations, 20°, 40°, 60° as shown in Fig. 4-4.

From this, we can obtain friction angle by using this equation, β = ������. β is friction angle, μ

is the coefficient of friction.

(a)

(b) (c)

Fig. 4-4 Friction coefficient of each fiber orientation in friction test

4.1.2. Experimental setup

A 3mm multidirectional carbon plain with epoxy resin matrix is used in this experiment as shown

in Fig. 4-5. This MD CFRP is stacked in 0°/90°. Resin content in this CFRP is 33% and it is

thermosetting. The number of prepreg ply is 11. This is made by the method of autoclave which is

used to implement industrial processes for elevated temperature and pressure. In this material

property, shear strength is obtained by tensile test and fiber’s friction angle is from the coefficient
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of friction in friction test. Fiber’s friction angle is about 38.66°. Epoxy friction coefficient is from

0.4 to 0.5 [41]. So, epoxy friction angle is about 21.8°.

Fig. 4-5 Workpiece of MD CFRP orthogonal cutting

In CFRP orthogonal cutting, insert tool which is uncoated CBN hard metal N123J2-0620-0002-

BG H10F from Sandvik corporation. And jig and key are made by SUS material designed as shown

in Fig. 4-6.

Fig. 4-6 Drawings of jig and key for CFRP orthogonal cutting
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Fig. 4-7 Experimental setup of the orthogonal machining for CFRP material

CNC machine for CFRP orthogonal cutting is decided as TSL-6 model of S&T corporation.

Chuck in CNC can fix the jig. And tool dynamometer is chosen as 9127B of KISTLER corporation.

Tool is put on this dynamometer. This experimental set can be seen as Fig. 4-7.

4.1.3. Comparison between experimental and analytical results

For validate preliminary force prediction model, we compare analytical results with experimental

results. The condition of rake angle, γ is 0° . And cutting speed is constant, 80m/min. This

comparison can be seen as Fig. 4-8 in the condition of feed rate 0.15mm/rev. Fig. 4-8 (a) is cutting

force in each fiber orientation. This cutting force is changed along the fiber orientation because

deformation mechanism changes in each condition. Cutting force errors in Bhatnagar’s model are

0%, 10.8%, 0% in fiber angle, 20°, 40°, 60° respectively. Cutting force errors in epoxy added

preliminary model are 0%, 6.1%, 0% in fiber angle, 20°, 40°, 60° respectively. Fig. 4-8 (b) is thrust

force in each fiber orientation. Thrust force also changed along the fiber angle. Thrust force errors

in Bhatnagar’s model are 0%, 0%, 12.4% in fiber angle, 20°, 40°, 60° respectively. Thrust force

errors in epoxy added preliminary model are 13.3%, 10%, 9.8% in fiber angle, 20°, 40°, 60°

respectively.

The other comparison in the condition of feed rate 0.21mm/rev can be seen as Fig. 4-9. Feed rate

is faster than previous case. Fig. 4-9 (a) is cutting force in each fiber orientation. This cutting force

is diverse along the fiber orientation in each condition. Cutting force errors in epoxy added
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preliminary model are 5.3%, 0%, 0% in fiber orientation angle, 20°, 40°, 60° respectively. Cutting

force errors in epoxy added preliminary model are 5.3%, 0%, 0% in fiber angle, 20°, 40°, 60°

respectively. Fig. 4-9 (b) is thrust force in each fiber orientation. Thrust force also changed along

the fiber orientation angle. Thrust force errors in Bhatnagar’s model are 13.9%, 0%, 10.3% in fiber

angle, 20°, 40°, 60° respectively. Thrust force errors in epoxy added preliminary model are 11%,

5.5%, 1% in fiber angle, 20°, 40°, 60° respectively.

(a) (b)

Fig. 4-8 Comparison between numerical and experimental results in terms of (a) cutting forces and

(b) thrust forces with cutting speed, 80m/min and feed rate, 0.15mm/rev

(a) (b)

Fig. 4-9 Comparison between numerical and experimental results in terms of (a) cutting forces and

(b) thrust forces with cutting speed, 80m/min and feed rate, 0.21mm/rev

Overall, it can be seen that cutting force and thrust force are increased as increasing feed rate in

both of the predicted and experimental results. Feed rate can affect the depth of cut and increase area
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of machining. In smaller area, Bhatnagar’s model has less error than epoxy added preliminary model.

On the other hand, preliminary model is more accuracy than Bhatnagar’s model in wider area in the

condition of feed rate 0.21mm/rev. The reason of this tendency is that epoxy contained in model

rises in wider area.

4.1.4. Summary

This preliminary force prediction model can contribute to predict cutting forces in terms of the

fiber orientation over 90° defined by the original fiber angle definition. It can help predict damage

zone in CFRP machining. Especially, it can enhance the accuracy in high depth of cut. However,

this model has limit that it is impossible to establish definite shear strength along each fiber

orientation. It is inevitable to select several fiber orientation angles for this model. It is not

continuous. For understanding definite cutting mechanism flow of force change, force prediction

model according to varying fiber orientation is essential. So, next model from Zhang’s model [8] is

chosen to develop continuous force prediction model along all the fiber orientation angles.

4.2. Experimental validation of numerical model for predicting force and damage according to

varying fiber orientation

It is considered that fiber angle direction is following the original definition of fiber orientation,

θ as previously mentioned in Fig. 3-3. In this section, modified force prediction model can detect

cutting forces change along all the fiber orientations, 0° ≤ θ < 180° and we need to compare the

numerical model with experimental results for enhancing credibility of prediction. This model was

first represented by Zhang [8] and expanded.

4.2.1. Experimental setup

A 3mm unidirectional carbon plain with epoxy resin matrix is used in this experiment as shown

in Fig. 4-10. Resin content in this UD CFRP is 33% and it is thermoset material. The number of

prepreg ply is 11. This is made by the method of autoclave which is used to implement industrial

processes for high temperature and high pressure.
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Fig. 4-10 Workpiece of UD CFRP orthogonal cutting

Overall UD CFRP composite material’s properties list can be shown in Table 4-2. Other

experimental equipment setting and method are same as section 4.1. Experimental validation of

preliminary model for predicting force. The effective modulus of UD CFRP material in Region 3,

�� is 4GPa. The workpiece thickness, ℎ is 3mm.

Table 4-2 List of overall UD CFRP composite material’s properties

Young’s modulus, � 7.7GPa
Shear strength along

the fiber, ��
85Mpa

Poisson’s ratio, � 0.32
Shear strength normal

to the fiber, ��
60MPa

Friction angle 30° Friction coefficient 0.15

4.2.2. Comparison between experimental and analytical results

For identifying certainty of this modified force prediction model, we need to compare analytical

results with experimental results. The condition of rake angle, γ is 0°. And clearance angle, α is

7°. In this section, it is assumed that high speed cutting has different mechanism compared to low

speed cutting. For this, we decide that first condition is the cutting speed 80m/min and the other

condition is the cutting speed 6m/min. Feed rate is constant, 0.15mm/rev.
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Overall, we can identify the high fluctuation of force change compared to general metal cutting.

It can critically affect the machinability of CFRP cutting. In Fig. 4-11 (a), thrust force is more than

cutting force in all range of the fiber orientation in high speed cutting. On the other hand, as shown

in Fig. 4-11 (b), thrust force is more than cutting force at first. But cutting force is over the thrust

force in fiber orientation over 90° in low speed cutting. Fiber bending in the range of fiber

orientation over 90° is occurred more critically in low speed machining condition. It is because chip

must be cut before following tool’s rake face in high speed cutting and chip can be following tool’s

rake face in low speed cutting. This bending chip can make the cutting force higher in low speed

condition, 6m/min. Cutting force fluctuation is also more critical in low speed cutting. It is the reason

of poor machinability in low speed machining condition especially in the range of fiber orientation

over 90°.

(a) (b)

Fig. 4-11 Cutting forces in UD CFRP orthogonal cutting with cutting speed, (a) 80m/min, (b)

6m/min and feed rate, 0.15mm/rev

It can be also verified by chip morphology as shown in Fig. 4-12 by Scanning Electron

Microscope (SEM). In the range of fiber orientation below 90°, fiber can be cut smoothly. On the

contrary, in case of fiber orientation over 90°, fiber bending and crush are occurred. Especially, in

low speed cutting as shown in Fig. 4-12 (c) and (d), the difference along the fiber orientation is

remarkable. We can infer fiber bending in the range of fiber orientation over 90° is occurred more

critically in low speed machining condition. This result can support that cutting force is over the

thrust force in fiber orientation over 90° in low speed cutting. In this study, we concentrate on high

speed machining process.
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(a) (b)

(c) (d)

Fig. 4-12 Microscopic image: chip formation in UD CFRP machining with cutting speed 80m/min

in (a) θ < 90°, (b) 90° ≤ θ and 6m/min in (c) θ < 90°, (d) 90° ≤ θ

(a) (b)

Fig. 4-13 Comparison between numerical and experimental results in terms of (a) cutting forces

and (b) thrust forces with cutting speed, 80m/min and feed rate, 0.05, 0.10, 0.15mm/rev
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(a) (b)

Fig. 4-14 Comparison between numerical and experimental results in terms of (a) cutting forces

and (b) thrust forces with cutting speed, 120m/min and feed rate, 0.05, 0.10, 0.15mm/rev

(a) (b)

Fig. 4-15 Comparison between numerical and experimental results in terms of (a) cutting forces

and (b) thrust forces with cutting speed, 160m/min and feed rate, 0.05, 0.10, 0.15mm/rev

Table 4-3 Cutting forces prediction error with cutting speed, 80m/min

Feed rate(mm/rev) 0.05 0.10 0.15

Cutting force error
Min 9.5%

Max 25%

Min 10%

Max 27.3%

Min 9.5%

Max 25%

Thrust force error
Min 25%

Max 50%

Min 15%

Max 22.2%

Min 7.7%

Max 13.3%
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Table 4-4 Cutting forces prediction error with cutting speed, 120m/min

Feed rate(mm/rev) 0.05 0.10 0.15

Cutting force error
Min 2.5%

Max 44.4%

Min 1.5%

Max 13.6%

Min 2.7%

Max 12%

Thrust force error
Min 3%

Max 34.3%

Min 5.5%

Max 26.3%

Min 3.7%

Max 16.7%

Table 4-5 Cutting forces prediction error with cutting speed, 160m/min

Feed rate(mm/rev) 0.05 0.10 0.15

Cutting force error
Min 7.7%

Max 12%

Min 5%

Max 8 %

Min 2.5%

Max 5%

Thrust force error
Min 3.2%

Max 27.3%

Min 5.5%

Max 10.9%

Min 10%

Max 17%

From cutting forces and chip formation analysis, cutting mechanism of the fiber orientation below

90° and over 90° is similar. Therefore, we apply coordinate transfer into numerical solution. On the

basis of this numerical solution, continuous cutting force graph can be set and compared to

experimental results. As shown in Fig. 4-13, Fig. 4-14 and Fig. 4-15, it is suggested that cutting

forces tendency of numerical solution is compared to experimental results with cutting speed, 80,

120 and 160m/min. Table 4-3, Table 4-4 and Table 4-5 suggest error percentage of numerical

solution in each condition. As feed rate and cutting speed are increasing, both cutting force and

thrust force are increasing. Similar tendency can be seen between numerical solution and

experimental results.

Fig. 4-16 Microscopic image: tool round-edge by scanning electron microscope (SEM)



- 43 -

However, experimental results have lower cutting forces than numerical prediction model in

almost all cutting conditions except to the condition of cutting speed, 160m/min and feed rate,

0.15mm/rev. In the condition of low feed rate, cutting depth of cut can be smaller than tool round

edge. As shown in Fig. 4-16, diameter of tool round edge is 79.13μm by Scanning Electron

Microscope (SEM). Therefore, pressing force in Region 2 can be decreasing in experiments

compared to the numerical solution in low feed rate.

Overall, it can be seen that cutting force and thrust force are increased as increasing feed rate and

cutting speed in both of the predicted and experimental results. Feed rate can affect the depth of cut

and increase cutting area. Cutting speed can increase amount of tool pressing force. This numerical

force prediction model is got from 3 regions of cutting mechanism. This model has tendency of

higher cutting forces than experimental results in almost all conditions except to the condition of

cutting speed, 160m/min and feed rate, 0.15mm/rev. The reason of this tendency is because round

edge of the tool. In conclusion, this modified force prediction model has accuracy from 50% to

98.5%.

4.2.3. Summary

We implement UD CFRP orthogonal cutting for identifying cutting forces change depending on

the fiber orientation. In conclusion, we can identify the high fluctuation of force change compared

to general metal cutting. It can critically affect the machinability of CFRP cutting.

In addition, suggested force prediction numerical model in this section can contribute to predict

cutting forces along all the fiber orientations from 0° to 180° defined by the original fiber angle

definition. This model is expanded from Zhang’s force prediction model in CFRP machining [8] and

cutting mechanism by chip formation. This prediction model has similar tendency of experimental

results. Cutting force prediction model accuracy is from 50% to 98.5%. Especially, it can be seen as

high accuracy in high feed rate. It is because tool pressing force is decreasing in low feed rate. The

error can be generated by other factors in manufacturing UD CFRP workpiece.

Fully developed force prediction model can be used for damage prediction model. It can help

predict damage zone along all the fiber orientations in each cutting conditions. Overall, this is

objective to develop modified force prediction model according to varying fiber orientation and

apply into damage prediction model. This will be optimizing CFRP machining.

4.3. Experimental validation of damage prediction model
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The objective of this section is to predict damage zone along all the fiber orientations in each

machining condition. And stabilize the prediction by experimental validation in this section. In this

section, it is also considered that fiber angle direction is following the original definition of fiber

orientation, θ as previously mentioned in Fig. 3-3. Previously, force prediction model according to

varying fiber orientation is already developed. Based on this solution, we apply into damage

prediction model. It was firstly suggested by Jahromi [28]. Work by the cutting force, fiber bending

strain energy and matrix shear strain energy are equilibrium by energy balance theory.

4.3.1. Experimental setup

A 3mm unidirectional carbon plain with epoxy thermoset resin matrix is used in this experiment

as shown in Fig. 4-10. Overall UD CFRP composite material’s properties list can be shown in Table

4-2. All the experimental equipment setting and method are same as section 4.2. Experimental

validation of numerical model for predicting force according to varying fiber orientation.

Additionally, micro-scale material properties are needed in this section. Fiber and epoxy

properties list can be shown in Table 4-6 respectively. This micro-scale properties are referred by

Jahromi [28] and T-300 CFRP composite properties.

Table 4-6 List of fiber and epoxy material’s properties in UD CFRP composite

Fiber diameter, �� 7��
Matrix fracture strain,

��
0.10

Fiber young’s modulus,

��
230Gpa

Matrix shear strength,

��
146MPa

Fiber flexural strength,

��
1.8Gpa

Matrix shear modulus,

��
1.37GPa

4.3.2. Comparison between experimental and analytical results

For identifying accuracy of CFRP damage prediction model, we need to compare numerical

solution with experimental results. The condition of rake angle, γ is 0°. And clearance angle, α is

7°. Cutting speed is 80m/min and feed rate is 0.05, 0.10, 0.15mm/rev. After UD CFRP cutting

experiments, we observe workpiece internal surface for identifying machinability and defects such

as delamination by CT X-ray image as shown in Fig. 4-17. We define the average damage length
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along the depth including all the layers is final delamination value because it is affected by cutting

energy.

(a) (b) (c)

Fig. 4-17 CT X-ray image: internal delamination of UD CFRP machining with cutting speed,

80m/min and feed rate, (a) 0.05, (b) 0.10, (c) 0.15mm/rev

This damage prediction model can contribute to predict defects such as delamination in terms of

the fiber orientation defined by the original fiber angle definition. As shown in Fig. 4-18, the graph

from numerical solution shows similar tendency with experimental results. As we predicted, it shows

good machinability along the fiber orientation from 0° to 90°. In the range of fiber orientation from

90° to 180°, it starts making defects inside UD CFRP workpiece. Damage zone is wider in numerical

prediction model than experimental results. This result is because damage is occurred in

concentration from adhesion of workpiece in experimental case.

High prediction credibility of this damage prediction model can be seen in the condition of fiber

orientation from 130° to 150°. There are damage length prediction errors, minimum 2.3%, 12.5%

and 1.8% in the condition of feed rate, 0.05, 0.10 and 0.15mm/rev respectively in Table 4-7. The

errors are from many factors when manufacturing composite materials. Cutting mechanism

including fiber strain, matrix strain and fiber matrix decomposition is not simple in experimental

execution.
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Fig. 4-18 Comparison between numerical and experimental results in terms of damage length with

cutting speed, 80m/min and feed rate, 0.05, 0.10, 0.15mm/rev

Table 4-7 Error percentage of damage length prediction model with cutting speed, 80m/min

Feed rate(mm/rev) 0.05 0.10 0.15

Damage length

prediction error
Min 2.3% Min 12.5% Min 1.8%

4.3.3. Summary

This damage prediction model can contribute to predict defects such as delamination along all the

fiber orientation from 0° to 180° defined by the original fiber angle definition. This is contributed

by force prediction model according to varying fiber orientation. This prediction model is expanded

from Jahromi’s force prediction model in CFRP machining [28]. This modified damage prediction

model has similar curve tendency as experimental results by CT X-ray. It shows good machinability

along the fiber orientation from 0° to 90°. In the range of fiber orientation from 90° to 180°, it starts

making defects inside UD CFRP workpiece. Therefore, we need to consider poor machinability in

the range of fiber orientation over 90°.
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Damage prediction model can help predict amount of damage zone along all the fiber orientations

in each cutting conditions. In conclusion, this model is objective to predict and prevent defects such

as delamination. This will be optimizing CFRP machining.
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5. Conclusions

5.1. Summary

In this study, we try to develop numerical solutions to predict cutting forces and damage along

the fiber orientation in each machining condition in CFRP orthogonal cutting. These models are

objective to predict and prevent defects such as delamination. This can be optimizing CFRP

machining.

Section 2 suggested to analyze the main factors such as fiber orientation, chip formation and

delamination affecting CFRP machining. We decided to theoretical model for predicting force and

damage in CFRP machining. It is suggested from chip formation and cutting mechanism. This can

contain the machining factors in model.

In section 3, we develop numerical models for predicting cutting forces and defects such as

delamination along the fiber orientation. There are preliminary force prediction model and force

prediction model according to varying fiber orientation. The first one is from Bhatnagar’s CFRP

force model [7]. This model depends on each separate fiber orientation. The other one is force

prediction model according to varying fiber orientation. This model was expanded from Zhang’s

CFRP force model [8]. From this force prediction model, damage prediction model can be suggested

referred to Jahromi’s damage prediction model [28]. It is based on energy balance in each fiber

material.

In section 4, numerical prediction models are validated by experiments. Firstly, preliminary force

prediction model can be seen that cutting force and thrust force are increased as increasing feed rate

similar to the experimental results. High feed rate can increase the depth of cut in machining. In

smaller area, Bhatnagar’s model has less error than epoxy added preliminary model. This developed

model is more accuracy than Bhatnagar’s model in wider area in the condition of feed rate

0.21mm/rev. The reason is that epoxy region contained in preliminary force prediction model rises

in wider area.

Force prediction model according to varying fiber orientation is expanded from Zhang’s CFRP

force model [8]. Zhang commented this cutting mechanism can be applied only in fiber orientation

below 90°. He proved this in low speed CFRP cutting experiments. We did CFRP orthogonal cutting

in high cutting speed over 80m/min. We apply similar cutting mechanism into modified model along

all the fiber orientation from 0 ° to 180° . Force prediction model according to varying fiber

orientation has similar tendency as the experimental results. The prediction credibility is from 50%

to 98.5%. Errors can be generated by many factors in CFRP machining.
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From this force prediction model, damage prediction model can be suggested referred to Jahromi’s

damage prediction model [28]. It is based on energy balance in each fiber material. This damage

prediction model has similar curve tendency as experimental results. It shows no defect along the

fiber orientation from 0° to 90°. However, in the range of fiber orientation from 90° to 180°, it

starts making defects inside UD CFRP workpiece. In conclusion, we need to consider poor

machinability in the range of fiber orientation over 90°.

5.2. Conclusions and contributions

This study has objectivity of predicting cutting characteristic such as cutting forces and

delamination in CFRP machining. This is validated by experimental results. We apply it into

optimizing CFRP machining process and cutting conditions. The main contribution of this project is

to establish numerical force prediction model along all the fiber orientations from 0° to 180° in

high speed cutting in CFRP machining. Damage prediction model can be also suggested by applying

force prediction model according to varying fiber orientation including machining parameters.

Lastly, we identify CFRP machining characteristics such as chip formation and delamination by

using SEM and CT X-ray equipment.

The principal contributions are:

(1) Preliminary force prediction model has high accuracy compared to the original model in high

feed rate because of epoxy region included but limit as non-continuous force prediction model

over 90° in CFRP machining.

(2) We identify relation of cutting forces vibration and machinability in CFRP machining.

(3) We identify the difference between high speed cutting and low speed cutting of CFRP

orthogonal machining is suggested.

(4) We discuss about chip formation depending on the fiber orientation and feed rate. It is from

chip morphology by using SEM equipment.

(5) Force prediction model from Zhang can be applied in high speed cutting of CFRP machining

and it describes the cutting forces along all the fiber orientation.

(6) We observe internal defects such as delamination along the fiber orientation by using CT X-

ray. Defects are occurred intensively in the range of fiber orientation over 90° in high feed

rate.
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(7) From this modified force prediction model, damage prediction model can be suggested based

on the energy balance with cutting forces. It includes machining parameters such as feed rate.

(8) Cutting forces and delamination prediction models of CFRP orthogonal machining can be

used to expand the analytical model of CFRP milling and drilling process by coordinate

transfer.

5.3. Future work

In this research, numerical models for predicting cutting forces and delamination in CFRP

machining are suggested. They are validated by CFRP orthogonal cutting. It is kind of 2 dimensional

analysis. Furthermore, we can consider 3 dimensional analysis about CFRP machining. It contains

thrust force and delamination of decomposing layers. This model can be referred by Meng’s model

[42]. Meng’s model contains coordinate transfer from 2 dimensional cutting to 3 dimensional cutting.

And experimental constant is adjusted. It can be validated by CFRP drilling process. Luo also

identifies 3 dimensional drilling model for predicting force and delamination of CFRP and CFRP/Ti

stack materials [43, 44].
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