ccreative

 commons

 commons}
$\begin{array}{lllllllllll}\text { C } & \mathrm{O} & \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{N} & \mathrm{S} & \mathrm{D} & \mathrm{E} & \mathrm{E} & \mathrm{D}\end{array}$

저작자표시-비영리-변경금지 2.0 대한민국
이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 숩게 요약한 것입니다.

$$
\text { Disclaimer } \square
$$

c)Collection

Long non-coding RNA SENCR is a positive regulator of ETV2

Yujin Jeong
Department of Biological Sciences

Graduate School of UNIST

Long non-coding RNA $S E N C R$ is a positive regulator of ETV2

Yujin Jeong

Department of Biological Sciences

Graduate School of UNIST

Long non-coding RNA SENCR is a positive regulator of ETV2

A thesis
submitted to the Graduate School of UNIST
in partial fulfillment of the requirements for the degree of
Master of Science

Yujin Jeong

7/20/2017 of submission

Long non-coding RNA SENCR is a positive regulator of ETV2

Yujin Jeong

This certifies that the thesis of Yujin Jeong is approved.

7/20/2017
kim seamy fern
Advisor: Professor Jeong Beom Kim

Professor Jeong Beom Kim

Professor Chan Young Park

Professor The Io Park

Abstract

Although long non-coding RNAs (lncRNAs) have emerged as novel regulator of cell fate and gene expression, the regulation of vascular specific transcription factor by lncRNA in generation of induced endothelial cells (iEndo) has not been studied yet. In this study, ETS variant 2 (ETV2) converts human fibroblasts into iEndo, and smooth muscle and endothelial cell enriched migration/differentiationassociated long non-coding RNA (SENCR) was identified as a regulator of ETV2. iEndo showed similar morphology, endothelial cell markers, and tubular structure formation compared to human umbilical vein endothelial cell (HUVEC). Furthermore, over-expression of SENCR increased ETV2 gene and protein expression by enhancing ETV2 promoter activity through recruitment of PSPC1. This is the first study demonstrates the role of SENCR contributed to ETV2 activation in generation of iEndo.

ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY

Content

Abstract 1
List of figures and tables 4
Abbreviations 5-6
I. Introduction 7-121. Pluripotent stem cells2. Direct conversion3. Endothelial cells4. ETV25. Long non-coding RNA6. SENCR
7. Objective
II. Materials and Methods 13-18

1. Cell culture2. Cloning plasmids
2. Lentivirus packaging
3. Endothelial cell induction
4. RNA extraction and cDNA synthesis
5. Immunofluorescence staining
6. Flow cytometry analysis
7. Tubule formation assay
8. Western blotting
9. Luciferase assay
10. RNA pulldown
11. Database searching
12. Criteria for protein identification
III. Results 19-301. Direct conversion of iEndo from human fibroblasts2. Screening of endothelial cell specific IncRNA
13. ETV2 is regulated by IncRNA SENCR
14. Detection of SENCR binding proteins
15. SENCR recruits PSPC1 to ETV2 promoter for activation
IV. Discussion 31-32
V. References 33-44
VI. Acknowledgement 45

List of figures and tables

Introduction

Diagram 1. Definition of direct conversion
Table 1. Direct conversion from fibroblasts into iEndo using Yamanaka factors
Table 2. Direct conversion of iEndo using endothelial lineage transcription factors
Diagram 2. Localization of lncRNA
Table 3. Primer sets used for gene analysis in RT-PCR and qRT-PCR

Result

Figure 1.1. Illustrations of experimental procedure
Figure 1.2. Morphological changes of fibroblast into iEndo during direct conversion
Figure 1.3. Endothelial cell specific marker expression
Figure 1.4. Tubule-structure formation of iEndo
Figure 2.1. Screening of candidate lncRNA expression
Figure 2.2. Vector constructs for SENCR IncRNA induction
Figure 2.3. SENCR gene structure and isoform sequences
Figure 3.1. ETV2 gene expression and protein expression after infection of SENCR
Figure 3.2. Estimation of ETV2 promoter by dual-luciferase promoter assay
Figure 4.1. ETV2 gene expression and protein expression after infection of SENCR
Figure 4.2. GO term analysis of SENCR binding proteins
Figure 4.3. The number of RNA-binding proteins
Table 4. SENCR RNA binding proteins analyzed by LC-MS
Figure 5.1. Estimation of ETV2 promoter by dual-luciferase promoter assay
Figure 5.2. Schematic mechanism of ETV2 regulated by SENCR and PSPC1

Abbreviations

7-Aminoactinomycin D (7-AAD)
Androgen receptor (AR)
Bicinchoninic acid assay (BCA)
BMP/OP-responsive gene (BORG)
Bone morphogenetic protein (BMP)
Central polypurine tract (cPPT)
c-Myelocytomatosis oncogene (c-Myc)
Dulbecco's modified eagle medium (DMEM)
Embryonic stem cells (ESCs)
Embryoid body (EB)
Endothelial nitric oxide synthase nitric oxide synthase 3 (eNOS /NOS3)
Enhanced chemiluminescence (ECL)
Epidermal growth factor (EGF)
ETS variant 2 (ETV2, ER71, Etsrp)
Fluorescence-activated cell sorting (FACS)
Fetal bovine serum (FBS)
Fibroblast growth factor 2 (FGF2)
Fluorescein isothiocyanate (FITC)
Forkhead box C2 (FOXC2)
Forkhead box O1 (FOXO1)
Friend leukemia integration 1 (FLI1)
GATA binding protein 2 (GATA2)
Gene ontology (GO)
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
Growth arrest specific 5 (GAS5)
Induced pluripotent stem cells (iPSCs)
Insulin-like growth factor (IGF)
Kinase insert domain receptor, fetal liver kinase-1, VEGF receptor 2 (KDR, FLK1, VEGFR2)
Kruppel-like factor 2/4 (Klf2/4)
Human embryonic kidney cells 293 that express the SV40 large T antigen (HEK293T)
Human umbilical vein endothelial cell (HUVEC)
Horseradish peroxidase (HRP),
LIM domain only 2 (LMO2)
Liquid chromatography-mass spectrometry (LC-MS)

Long non-coding RNA (lncRNA)
Long terminal repeats (LTRs)
Minimum Essential Medium (MEM)
Myocardial infarction associated transcript (MIAT)
Micro RNA (miRNA)
Mouse embryonic fibroblasts (MEFs)
Mouse tail-tip fibroblasts (TTFs)
Myogenic differentiation 1 (MyoD1)
NK2 homeobox 5 (NKX2.5)
Non-essential amino acids (NEAA)
Paraformaldehyde (PFA)
Paraspeckle component 1 (PSPC1)
Phosphate buffered saline (PBS)
Platelet derived growth factor receptor alpha (PDGF α)
Platelet endothelial cell adhesion molecule/cluster of differentiation 31 (PECAM-1/CD31)
POU class 5 homeobox 1 (Oct3/4)
Polypyrimidine tract-binding protein 1 (PTBP1)
Quantitative PCR (qPCR)
RNA polymerase II transcription (Pol II)
Room temperature (RT)
Smooth muscle and endothelial cell enriched migration/differentiation-associated long non-coding RNA (SENCR)
Small nucleolar RNA (snoRNA)
Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
Spleen focus-forming virus promoter (SFFV)
SRY (sex determining region Y)-box2/7 (Sox2/7)
T cell acute lymphocytic leukemia 1 (TAL1)
TEK receptor tyrosine kinase (TEK, TIE2)
Transfer RNA (tRNA)
SENCR variant 1/2 (S1/2)
Vascular endothelial cadherin/Cluster of differentiation 144 (VE-cadherin/CD144)
Vascular endothelial growth factor (VEGF)
Von Willebrand factor (vWF)
Woodchuck hepatitis virus post-transcription regulatory element (WPRE)
X-inactive specific transcript (XIST)

I. Introduction

1. Pluripotent stem cells

Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass of blastocysts. The essential characteristics of ESCs are self-renewal and pluripotency ${ }^{1}$. In 1998, human blastocyst-derived, ESCs having normal karyotypes, high levels of telomerase activity, pluripotent stem cell surface markers were established ${ }^{2}$. Due to its self-renewal and pluripotency, human ESCs are expected to possess a high potential to treat incurable diseases. However, human ESCs have been limited in stem cell research and therapy by a number of issue such as immune rejection ${ }^{3}$ and ethical issues ${ }^{4-5}$.

Induced pluripotent stem cells (iPSCs) emerged as a propitious alternatives which can avoids ethical concerns and immune rejection. Because it was generated from adult somatic cells, researchers have been able to use iPSCs as an alternative to ESCs to avoid ethical issue. In addition, since the origin of the cells is the patient's own, the problem of immune rejection is eliminated. In 2006, Yamanaka and his college developed a method to generate iPSCs by retroviral transduction of Oct3/4, Sox2, Klf4 and c-Myc into mouse embryonic fibroblasts (MEFs) and mouse tail-tip fibroblasts (TTFs) ${ }^{6}$. Then, human iPSCs were generated from adult human fibroblast with same approach by same group ${ }^{7}$. iPSCs shares similar morphology with ESCs, and have similar characteristics of ESCs including self-renewal, telomerase activity marker gene expression and pluripotency. Four major factors $O c t 3 / 4^{8-9}, S_{0} 2^{10}$, $K l f 4^{11}$ and $c-M y c^{12}$ which have been named as Yamanaka factors or OSKM factors, have been exhibited to contribute to the maintenance of pluripotency and the rapid proliferation.
Although iPSCs were spotlighted as an alternative of ESCs to generate patient-specific stem cells to study developmental biology, drug development, and a new cell-based therapies, it has not become entrenched in therapeutic application yet ${ }^{13}$. One of the major concerns of iPSCs is the tumorigenicity. iPSC clones transduced by retrovirus contain numerous random integrations of transduced genes that have potential to be reactivation. Approximately 20% of germline chimeric mice from iPSCs exhibited tumor occurrence result from reactivation of the $c-M y c$ transgene ${ }^{14}$. Thus, non-integrating induction methods using adeno-viral plasmid vector ${ }^{15-16}$, Sendi-viral plasmid vector ${ }^{17}$, episomal vector ${ }^{18-19}, \mathrm{mRNA}^{20}$, protein ${ }^{21}$ and transposons ${ }^{22-23}$ have been developed to generate iPSCs. However, their efficiency and reliability is lower than the lenti- or retro-virus reprogramming approach ${ }^{24}$, and the non-integrating induction methods are not completely free from safety risks also ${ }^{25}$.
Numerous methods of the differentiation from PSCs into vascular cells have been established ${ }^{26-29}$. Conventionally, two methods are generally used to different human PSCs to vascular cells. First one is embryoid body (EB) formation method ${ }^{30-31}$. However, it is often time-consuming since the peak expression of endothelial genes occurs after $10-15$ days of induction ${ }^{32}$, and is inefficient $(1 \%-5 \%)^{31,}$ ${ }^{33-34}$. The other method is monolayer-directed differentiation ${ }^{35-36}$. It offers increased efficiency (5-

ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY 20%), but it depends on undefined supplements, co-culture ${ }^{35,37-38}$, heterogeneous cell aggregates ${ }^{39}$, conditioned medium ${ }^{36}$ or inconstant yields of vascular cells ${ }^{40}$.

2. Direct conversion

Direct reprogramming or direct conversion is a method to convert one cell into another with bypassing the pluripotent state. Since this method bypasses pluripotent stage, it does not require further differentiation into specific cell lineage, and also can eliminate tumorigenic potential caused by any residual undifferentiated cells ${ }^{41}$.

The first discovery of direct conversion is the change of mouse fibroblasts into myoblasts through transfection of DNA isolated from induced or primary myoblasts ${ }^{42}$. Subsequent studies identified that MyoD1, a critical transcription factor for specification of the skeletal muscle lineage during early development, could induce muscle-specific characteristics when delivered into fibroblasts. After that, a number of studies reported conversion of one type of cells into another by delivering transcription factors, proteins of RNA, and this method is called as direct conversion or direct reprogramming ${ }^{43}$.
Direct conversion of somatic cells such as fibroblasts into other cell types holds a great therapeutic promise. To date, many types of somatic cells such as hepatocyte ${ }^{44-46}$, cardiomyocyte ${ }^{47-48}$, astrocyte ${ }^{49}$, renal tubular epithelial cell ${ }^{50}$ and macrophage ${ }^{51}$ as well as adult stem cells such as oligodendrocyte progenitor cell ${ }^{52}$, hepatic stem cell ${ }^{53}$, neural stem cell ${ }^{54}$, epiblast stem cell ${ }^{55}$ and hematopoietic stem cell ${ }^{56}$ were generated from fibroblast by direct conversion.

Another notable concept of reprogramming is in vivo reprogramming. A number of previous studies demonstrated reprogramming of cell in vivo such as pancreatic acinar cells into β-cells ${ }^{57}$, cardiac fibroblasts into cardiomyocytes ${ }^{58}$ and astrocytes into neuroblasts ${ }^{59}$. Recently, in vivo hepatic reprogramming of myofibroblasts with adenoviral vector ${ }^{60}$ and adeno-associated viral vector ${ }^{61}$ were reported.

Diagram 1. Definition of direct conversion.

3. Development of blood vascular and endothelial cell

In mammalian development, vascular progenitors emerge from the lateral and posterior mesoderm ${ }^{62}$. The development of blood vessel system occurs by two distinct processes. One is the vasculogenesis, defined as de novo vessel formation through differentiation of angioblasts. The other is the angiogenesis defined as primary vessel remodeling secondary from pre-existing vessels and the stage of specification of the arterial, venous vessels ${ }^{63-65}$.

The basic constituents of the vascular system, endothelial and blood cells are determined very early during ontogeny ${ }^{64}$. The first structure of endothelial and hematopoietic cells is the blood islands of the extraembryonic yolk sac at embryonic day (E) 7.5 in mice ${ }^{66}$. Blood islands are mesoderm cell aggregates of the common progenitor of endothelial and blood progenitor cells which is called as hemangioblast ${ }^{67-68}$. The inner cells become blood progenitor cells, while the outer cells become angioblast, the progenitor of blood vessel. Angioblast is a multipotent cell which is capable of giving rise to the key elements cells (pericytes, smooth muscle cells, fibroblasts) during 'angiogenesis'. Although, the concept and term are imprecise yet, this cell constitutes endothelial progenitor cell (EPC) or vascular progenitor cells (VPC). Nonetheless, researchers focused on generation of EPC or VPC in vitro through differentiation of PSCs and direct conversion has been progressed since these cells are proliferative and can give rise to many offspring ${ }^{69-72}$.

The hemangioblast co-expresses $\operatorname{BRACHUURY}(T)$ and the receptor tyrosine kinase FLK1 (VEGFR2, KDR $)^{73}$. FLK1 is essential for yolk-sac blood-island formation and vasculogenesis in embryo ${ }^{74}$. BMP, Notch, and Wnt signaling is necessary for efficient FLK1+ mesoderm formation from ESC ${ }^{75}$. $E T V 2$ is required for the differentiation of $F L K 1 / P D G F R \alpha$ cells into vascular/hematopoietic mesoderm ${ }^{76}$.

The synthesis of new vessels through endothelial cells has an enormous potential in clinical application such as treatment of ischemic vascular disease. However, adult stem cell therapy has problems of immune rejection and is limited in supply of donor cells ${ }^{77-78}$. Thus, patient-specific endothelial cell or early stage progenitor cell from induced from hPSCs or direct conversion is a promising cell source for cell therapy. Recently, two studies showed the feasibility of OSKM in direct conversion of fibroblast into induced endothelial cell (iEndo) (Table1).

Group	Starting cell	Final cell	TFs
Margariti, A $(2012, \text { PNAS })^{79}$	Human fibroblasts $($ CRL-2097, CCL-186, CCL-153)	Partial iPSC and iEndo	OCT4, SOX2, c-MYC, KLF4
Li, J (2013, Arterioscler Thromb Vasc Biol)	Human fibroblasts (CRL-2097, BJ)	iEndo	OCT4, KLF4

Table 1. Direct conversion from fibroblasts into iEndo using Yamanaka factors.

4. ETS variant 2 (ETV2) gene

ETS variant 2 (ETV2) gene, a member of erythroblast transformation-specific (ETS) family, is an important transcription factor in development of hematopoietic and endothelial lineage. Members of ETS family transcription factors have been implicated in vasculogenesis, angiogenesis, and hematopoiesis ${ }^{81}$. Knock-down of Etsrp, the zebrafish homologue to mammalian ETV2, resulted in major vascular defects in zebrafish ${ }^{82-83}$. Similarly, Etv2 deficient mice lead to complete loss of embryonic blood and vascular structure ${ }^{75}$ and embryonic lethality at approximately E9.0 to E9.5 ${ }^{75,84}$. ETV2 cooperatively interact with many transcript factors in development of hemato-endothelial lineage ${ }^{85}$. GATA2 is co-expressed and interacts with ETV2 via protein-protein interaction between ETV2 and GATA2 which is mediated by the interaction of Ets and Gata domains ${ }^{86}$. Ets factors function combinatorially with FOXC transcription factors through a composite DNA binding site, the FOX:ETS motif, which is bound robustly by FOXC2 and ETV2, and the two proteins bind the element simultaneously ${ }^{87}$. ETV2 is also regulated by other transcription factors. ETV2 is considered as a downstream target gene of $N K X 2.5^{84}$ and VEGF/Flkl signaling ${ }^{88}$. Nkx2.5 binds to an evolutionarily conserved $N k x 2.5$ response element in the Etsrp 71 promoter and induces the Etsrp 71 gene expression in mouse embryo. FLK1 is upstream of ETV2 and is necessary for ETV2 expression. The ETV2 promoter activity is increased by VEGF in the presence of their ligand FLK1. There are many other direct downstream targets of ETV2 such as $T I E 2^{84}, S O X 7^{89}, L M O 2^{90}, F L I 1^{91}$ and miR-130a a^{92} that contribute endothelial lineage specification.

ETV2 has an enormous power to induce vascular endothelial cells. There are many studies that demonstrated that generation of iEndo using ETV2 alone or ETV2 with other transcription factors (Table 2). Also, the efficiency of endothelial cell derived from human ESCs were increased by addition of exogenous $E T V 2^{93}$. Furthermore, reactivation of $E T V 2$ transduced by lenti-virus contributed vascular repair and regeneration in adult hindlimb ischemia mouse model ${ }^{94}$. Similarly, reactivation of ETV2 gene in mature iEndo induced immature iEndo ${ }^{95}$.

Group	Starting cell	Final cell	TFs
Ginsberg, M $(2012, \text { Cell })^{96}$	Human mid-gestation amniotic cells	Endothelial cells	ETV2, FLII, ERG
Han, J.K $(2013, \text { Circulation })^{97}$	Mouse adult fibroblasts	Endothelial cells	Foxol, Er71, Klf2, Tall, and Lmo2
Morita, R $(2015, ~ P N A S)^{98}$	Human adult skin fibroblasts	Endothelial cells	ETV2
Lee, S $(2017, \text { Circ Res })^{95}$	Human postnatal dermal fibroblasts	Early and late endothelial cells	ETV2

Table 2. Direct conversion of iEndo using endothelial lineage transcription factors.

5. Long non-coding RNA

Although $\sim 90 \%$ of the eukaryotic genome is transcribed, mRNAs account only for $1 \%-2 \%$ of total RNAs. The rapid development and application of high-throughput deep sequencing suggested that a large number of RNA molecules are non-coding RNAs ${ }^{99}$. Also, the genome-wide transcriptome analyses have identified that human genome contains thousands of long noncoding RNAs (lncRNAs) ${ }^{100}$. These RNAs are classified as long RNA (processed transcript length >200nucleotide) that are different from short RNAs (processed transcript length <200nucleotide) such as tRNA, miRNA and snoRNA ${ }^{101}$.

Wherase lncRNAs are types of RNA which lack protein-coding potential, transcription and post transcription modification of these lncRNAs is similar to the protein-coding mRNAs in which are transcribed by RNA polymerase II (Pol II), and transcribed RNAs are modifeied by 5'-capping, polyadenylation, and histone modifications associated with Pol II transcriptional elongation ${ }^{102}$.

Although localization of mRNAs is specifically distributed to ribosomes in the cytoplasm, localization of lncRNA is more varied than mRNA. The location of lncRNA were identified in XIST on the inactive X chromosome ${ }^{103}$, Gomafu, also known as MIAT, in the subnuclear domains ${ }^{104}, B O R G$ restricted to the nucleus ${ }^{105}$ and GAS5 exported to the cytoplasm ${ }^{106}$.

Diagram 2. Localization of IncRNA.
LncRNAs have emerged as novel regulators of gene expression and played roles in diverse biological process, such as proliferation, differentiation, and development through various modes of action ${ }^{107-108}$. With developmental expression patterns of tissue specific genes, lncRNA may be orchestrators and some reports have already related their role in specification of germ-layer and adult cells ${ }^{109-111}$. Especially, there are many studies of lncRNAs in cell-fate programming and reprogramming. Some $\operatorname{lncRNAs}$ have role in maintaining of the pluripotency ${ }^{106,112}$, adult stem cell state ${ }^{113}$, while others promote or regulate lineage specification ${ }^{112,114}$. Also, some lncRNAs regulate chromatin states for activation ${ }^{115-116}$ or repression ${ }^{117}$ of epigenome. Their functions are often facilitated by protein partners that impart the ability to activate or repress gene expression or posttranscriptionally regulate other RNAs.

6. Smooth muscle and endothelial cell enriched migration/differentiation-associated long non-coding RNA (SENCR)

SENCR is a human vascular-enriched lncRNA located on the chromosome 11 and exists as 2 isoforms which are a full length, SENCR variant 1 (S1) and an alternative spliced variant, SENCR variant $2(\mathrm{~S} 2)^{118}$. Although $S E N C R$ is placed in antisense orientation from within the first intron of a protein-coding gene called Friend leukemia virus integration 1 (FLII), an important transcription factor of endothelial cell and blood cell formation, no significant correlation is found between FLII and SENCR yet. Regardless of the similarity of expression of two genes in developmental time course over time, knockdown of SENCR with small interfering RNA (siRNA) had little or no effect on FLII expression ${ }^{118-119}$. Also, S2 seemed to be more specific to vascularization than S1 since S1 expressed more broadly expressed in various tissues ${ }^{118}$.

SENCR was considered as an early lncRNA in mesodermal and endothelial cell commitment and function. During endothelial cell differentiation from human ESCs, exogenously introduced SENCR reduced the expression of pluripotent, endodermal and ectodermal genes, but it enhanced the expression of mesodermal genes ${ }^{119}$.

In addition to endothelial cells, SENCR is also involved in smooth muscle cells proliferation and migration ${ }^{120}$. Also, SENCR expression is down regulated in patients with endothelial cell dysfunction and atherosclerotic vascular disease ${ }^{119}$. As a result of the previous finding, SENCR is considered as a novel candidate target molecular for treatment of vascular diseases.

7. Objective

There are studies of lncRNAs that regulate pluripotency and differentiation. Furthermore, various lncRNAs involved in vascular function and specification have been demonstrated. LncRNA SENCR and ETV2, a transcription factor related to vasculature formation, is widely studied in several fields such as vascular specification and generation of iEndo. However, the study demonstrated the relationship of lncRNA and vascular specific transcription factor is unclear. In this study, vascular specific lncRNA SENCR was investigated in regulation of ETV2, a potent transcription factor in vascular development.

II. Materials and Method

1. Cell culture

CRL-2097 fibroblasts from the ATCC (Manassas, VA, USA) were cultured on 0.1% gelatin coated dishes (sigma, G1890) in MEM media : Minimum Essential Medium 1X (Gibco, 11095-080) supplemented with 10% fetal bovine serum (FBS) (Gibco. 10099-141), 1mM sodium pyruvate (Gibco, 11360-070), 1X MEM non-essential amino acids (NEAA, Gibco, 11140-050) and Penicillin/Streptomycin (Gibco, 15140-122). HEK293T from the ATCC (Manassas, VA, USA) (ATCC® CRL-3216 ${ }^{\text {TM }}$) were cultured in DMEM media: Dulbecco's Modified Eagle Medium 1X (Gibco, 10313-021) supplemented with 10% FBS, 2 mM L-glutamine (Gibco, 25030-081), and Penicillin/Streptomycin. HUVEC from the ATCC (Manassas, VA, USA) (ATCC® CRL1730 ${ }^{\text {TM }}$) were cultured EGM2 Bullet kit (EGM2) (EBM2 supplemented with FBS, heparin, hydrocortisone, ascorbic acid, Gentamycin/amphotericin, FGF2, VEGF, IGF, and EGF) (Lonza, cc-3162).

2. Cloning plasmids

Plasmid containing human ETV2 was a gift from RIKEN (W01A065G01). ETV2 was amplified with Phusion High-Fidelity DNA polymerase (NEB, M05305). SENCR variant1 and 2 were amplified with KOD plus polymerase (TOYOBO, KOD-2011) from HUVEC cDNA. The cDNA were inserted lentiviral vector through sub-cloning using TOPO TA cloning kit with pCR2.1-TOPO plasmid (Invitrogen, 45-0641). Episomal vector plasmid (pCXLE-hOCT3/4-shp53-F) was a gift from Shinya Yamanaka (Addgene plasmid \#27077). After remove shp53 and hOCT3/4 region, SENCR variant 1 and 2 were inserted into the backbone. ETV2 promoter sequence ($+1 \sim-1.5 \mathrm{~kb}$) was amplified using KOD plus polymerase from genomic DNA of human H9 cell line. The sequence was inserted into pGL3-basic vector after TA cloning. PSPC1 sequence was amplified from HEK293T cDNA using KOD plus polymerase. Then, it was inserted into p3XFLAG-CMV vector after TA cloning.

3. Lentivirus packaging

Before transfection, HEK293T cells were confluent with $40 \sim 60 \%$ on the 10 cm plate. A lentiviral expression vector containing human ETV2 gene was co-transfected with psPAX2 and VSV-G constructs into HEK293T using X-tream Gene 9 DNA Transfection Reagent (Roche, 06365787001). Cells were incubated for 48 hours $37^{\circ} \mathrm{C}$. Lentivirus was harvested from the culture supernatant and concentrated using ultra-centrifuge (Beckman) for 1 hour 30 minute at 80000 g .

4. Endothelial-like cells induction

Human fibroblasts (HF134, CRL-2097) are seeded at 10,000 cells on 0.1% gelatin-coated 6-well dish. Next day, $4 \mu \mathrm{~g} / \mathrm{ml}$ protamine sulfates (Sigma, P4505) were added for approximately 30min before infection. After 24 hours, media containing virus was removed and changed into EGM2 supplemented with BMP4 (Peprotech, 120-05ET), CHIR99021 (Sigma, SML1046), FGF2 (Peprotech, 100-18B), VEGF (Peprotech, 100-20) for 5 days. On Day6, media was changed into EGM2 supplemented with FGF2 and VEGF.

5. RNA extraction and cDNA synthesis

Total RNA from cultured cell lysate were extracted with RiboEx (GeneAll, 301-001). Mix vigorously with Chloroform (Merck, 102445) and centrifuge at 12000 xg for 15 minutes in $4^{\circ} \mathrm{C}$. RNA in aqueous phase was precipitated after adding iso-propanol (Merck, 109634). After washing with 75% Ethanol (Merck, 100983) and drying, RNA was dissolved by RNase-free water. For synthesis of the complementary DNA, $1 \mu \mathrm{~g}$ of RNA was transcribed with M-MuLV reverse transcriptase (NEB, M0253L) according to the manufacturer's instructions.

6. Gene expression analysis

The detection of complementary DNA expression for the specific genes was performed using reverse transcription PCR (RT-PCR) and quantitative real-time PCR (qRT-PCR). For qRT-PCR, the relative expression of different sets of genes was quantified to GAPDH mRNA. qRT-PCR was performed using with $\mathrm{iQ}^{\mathrm{TM}}$ SYBR green supermix (Bio-RAD, 170-8882AP). For, RT-PCR, taq polymerase (Thermo, 10342-020) was used according to the manufacturer's instructions.

7. Immunofluorescence staining

Cells were fixed with 4% paraformaldehyde (PFA) (WAKO, 163-20145) in 1X PBS (Biosesang, P2007) for 10 min . Cells were washed with 0.05% Tween-20 (Sigma, P9749)/PBS (PBS-T) and permeabilized with 0.1% Triton X-100 (Sigma, T9284) in 1X PBS for 10 min. After blocking with 4\% FBS/PBS for 30 min , cells were incubated with primary following antibodies; anti-PECAM (CD31) (DSHB, P2B1), anti-VE-cadherin (SantaCruz, sc-9989), anti-vWF (Abcam, AB6994) overnight at $4^{\circ} \mathrm{C}$ or 1 hr at RT. After washing with PBS-T and incubated with secondary antibodies conjugated with Alexa-488 or Alexa-594 (Invitrogen) and visualized by fluorescence microscopy after counterstaining with Hoechst 33342 (Thermo, 62249).

8. Tubule formation assay

Matrigel should be thawed before experiment at $4^{\circ} \mathrm{C}$. 96well plates was coated with $50 \mu \mathrm{l}$ matrigel (Corning, 354234) and it should be on ice. Solidify the gel at $37^{\circ} \mathrm{C}$ for 30 min . 3×10^{4} cells were seeded on matigel coated 96 well plates and cultured in EGM2 supplemented with FGF2 and VEGF.

9. Western blotting

Cells were washed with PBS and lysed by RIPA buffer. Protein concentration was determined by the BCA assay (Thermo, 23228). Equal amounts of protein were separated by SDS-PAGE and transferred onto nitrocellulose membranes. The membranes were incubated with primary antibodies, anti-ETV2 (Abcam, ab170821) and anti- β actin (Sigma, A1978), in 7\% non-fat dry milk (BIO-RAD, 170-6404) overnight at $4^{\circ} \mathrm{C}$. HRP- anti-rabbit and anti-mouse secondary antibodies were used as $1: 5000 \mathrm{in} 7 \%$ milk. Membranes were imaged using Clarity ${ }^{\text {TM }}$ western ECL substrate (BIO-RAD, 170-5061) and a ChemiDoc ${ }^{\text {TM }}$ MP imaging system (BIO-RAD).

10. Luciferase assay

Promoter activity was assessed by transiently transfecting HEK293T cells with plasmids of dualluciferase containing firefly (pGL3-basic) and Renilla (pRL-TK) luciferase reporters using the Xtream Gene 9 transfection reagent according to manufacturer's instructions. 36 hours later, cells were lysated through passive lysis 5X buffer (Promega, E1941). After reagent with substrates was added, the luciferase activity in cell lysate was measured by GLOMAX 96 micrometer luminometer (Promega). Firefly luciferase activity was normalized to that of Renilla.

11. RNA pulldown

RNAs were synthesized from linearized pCR2.1-TOPO plasmid encoding SENCR variant1 and 2 through T7 RNA polymerase (Roche, 10881767001) according to the manufacturer's instructions. RNA biotinylation was carried out using biotin RNA labeling mix (10X) (Roche, 11685597910) according to the manufacturer's instructions. RNAs and protein lysate of CRL-2097 was bound at $4^{\circ} \mathrm{C}$ for 2 hours. Then, washed streptavidin magnetic particles (Roche, 11641778001) was added into the mixture and bound at $4^{\circ} \mathrm{C}$ for 1 hours. After washing of particles which capture RNA-protein complex, 4X SDS dye and NP40 buffer ($150 \mathrm{mM} \mathrm{NaCl}, 0.5 \%$ Tween-20, 50 mM Tris, pH 8.0) were added and boiled at $99^{\circ} \mathrm{C}$ for 5 minutes. The samples are loaded into the acrylamide gel and visualized with coomassie staining solution (0.025% Coomassie Brilliant blue R250, 40% methanol, 10% glacial acetic acid).

12. Database searching

Charge state deconvolution and deisotoping were not performed. All MS/MS samples were analyzed using Sequest (Thermo Fisher Scientific, San Jose, CA, USA; version 1.0) and X! Tandem (The GPM, thegpm.org; version CYCLONE (2010.12.01.1)). Sequest was set up to search the Human-201601 _contam database (unknown version, 150364 entries) assuming the digestion enzyme stricttrypsin. X! Tandem was set up to search a reverse concatenated Human-2016-01_contam database (unknown version, 300728 entries) also assuming stricttrypsin. Sequest and X! Tandem were searched with a fragment ion mass tolerance of 1.00 Da and a parent ion tolerance of 50 PPM . C of cysteine was specified in Sequest and X! Tandem as a fixed modification.

13. Criteria for protein identification

Scaffold (version Scaffold_4.7.5, Proteome Software Inc., Portland, OR) was used to validate MS/MS based peptide and protein identifications. Peptide identifications were accepted if they could be established at greater than 87.0% probability to achieve an FDR less than 1.0% by the Scaffold Local FDR algorithm. Protein identifications were accepted if they could be established at greater than 94.0% probability to achieve an FDR less than 1.0% and contained at least 2 identified peptides. Protein probabilities were assigned by the Protein Prophet algorithm (Nesvizhskii, Al et al Anal. Chem. 2003;75(17):4646-58). Proteins that contained similar peptides and could not be differentiated based on MS/MS analysis alone were grouped to satisfy the principles of parsimony. Proteins were annotated with GO terms from NCBI (downloaded Feb 19, 2017) and NCBI (downloaded Feb 20, 2017). (Ashburner, M et al Nat. Genet. 2000;25(1):25-9).

Table 3. Primer sets used for gene analysis in RT-PCR and qRT-PCR.

Gene	Accession. No or Reference	Sequence
CD31	NM_000442.4	$\begin{aligned} & \text { F : GCTGTTGGTGGAAGGAGTGC } \\ & \text { R : GAAGTTGGCTGGAGGTGCTC } \end{aligned}$
ERG	NM_182918.3	$\begin{aligned} & \text { F : TGGGCGGTGAAAGAATATGG } \\ & \text { R : TGAGGTAGTGGAGATGTGAGAG } \end{aligned}$
FLK1	NM_002253.2	F : CCCCTTGAGTCCAATCACAC R : TTCCTCCAACTGCCAATACC
vWF	NM_000552.4	F: CTGGACGTGATCCTTCTCCT R : CTCAGCAAATGGGCTTTCTC
VE-CADHERIN	NM_001795.4	F : ACGGGATGACCAAGTACAGC R : ACACACTTTGGGCTGGTAGG
NOS3	NM_000603.4	F: GGGTCCTGTGTATGGATGAG R : GGGGCTGAAGATGTCTCGG
GAPDH	NM_002046.5	F: GACCCCTTCATTGACCTCAACTACATG R : GCCTTCTCCATGGTGGTGAACAC
NORAD	NR_027451.1	F : TCCTGTTTACAGCGAGGCAA R : CCATCTCCATCAACCCAGAAGA
MALAT1	NR_002819.4	F: GTGATGCGAGTTGTTCTCCG R : CTGGCTGCCTCAATGCCTAC
LINC00323	NR_024100.1	F: TTCAGGAGGAGGGTTGGTCA R : GCTCACTGCTAAGAGGAGGC
sONE	NR_133652.1	F: CTCCATGTCATCTACCTGCAC R : CTTCTGGGTGTCTGTGGTC
TUG1	NR_110492.1	F: TAACAGCCCTCCACTCCAGAT R : AGGCACCAGCTTCAAAACCC
LINC01529	NR_104176.1	F: CACTCACCTATGACCCTTAACC R : AGCTTCCTCAAACTGTTCCG
LINC01531	NR_040046.1	F: CAAGTGATTCTCCTACCTCAGC R : GCAGATCACTTTAGGTCAGGAG
TIE-AS1,3	Li et al, 2010, Blood	F: CAGCAGACACAGAAAAAGCATC R : TGGCTAGGACCTCCAGTATGAT

TIE1-AS2	Li et al, 2010, Blood	F : GATGCCCAGGATAGCTATGAG R : TGACCAGTCTGACCCTTACAG
MIR503HG	NR_024607.1	F : AGGTAGAAGGTGGGGTCTGC R : ACTGGAGGAAGCCGGATG
PUNISHER	NR_027032.1	F : GTCCTCCACTCCACCTCAAA R : TGAGTTCCTGATCGTGTCCA
LOC105375568	XR_956358.1	F : CAAAACACGTACATATGCCCTG R : GCCCTCCATACCAATAGTTCTC
LOC1079686861	XR_001758717.1	F : CAATACTGACCATCGGACTGAC R : ATTCATGTGCCTGTCCTAAG
SENCR	NR_038908.1	F : GCTCTACCGACCTTCAAACTAC R : AGTCCTTTCTGGCTGAATGAG
ETV2	NM_014209.3	F : GGACCTGTGGAACTGGGATG R : ATGTCTCTGCTGTCGCTGTCG

III. Result

1. Direct conversion of iEndo from human fibroblasts

Several reports have demonstrated the contribution of ETV2 in induction of endothelial cell fate. To directly convert from human fibroblasts (CRL-2097 and HF134) into iEndo, fibroblasts were transduced with lenti-viral plasmid encoding coding region of human ETV2 gene (Fig. 1.1a). Cells were infected by lenti-virus encoding human ETV2 gene for 24 hours and cultured in endothelial induction media for 5 days. After that, the media was switched to endothelial maintenance media until endothelial morphology was emerged. Endothelial characteristics were exhibited after 14 days (Fig. 1.1b). Cells remained spindle shape at 1 day after infection. After cells were cultured in endothelial induction media for 5days, bright morphology was emerged but they still remained elongated shape. At day 14 after infection, the morphology of fibroblasts was changed into cobble-stone like shape(Fig. $1.2 \mathrm{~b})$. However, the control groups including no switch into endothelial media after ETV2 infection or no ETV2 infection with endothelial media did not change their morphology (Fig. 1.2b). iEndo expressed endothelial cell-related genes such as CD31, ERG, FLK1, vWF and VE-CADHERIN after day 14. However, nitric oxide synthase 3 (NOS3), also known as endothelial NOS (eNOS), was not expressed in iEndo (Fig. 1.3a). iEndo also exhibited protein expression of endothelial cell markers, vWF, VE-CADHERIN, and CD31 (Fig. 1.3b). Furthermore, iEndo formed tubular structure which is an intrinsic function of endothelial cell when cultured on matrigel-coated dishes (Fig. 1.4). These results demonstrate ectopic expression of ETV2 alone is sufficient to directly convert fibroblasts into iEndo which exhibit primary endothelial characteristics.

Figure 1.1 Illustrations of exprerimental procedure. (a) The scheme of direct conversion for the generation of iEndo from fibroblast by ETV2 induction . (b) Lent-viral vector construct encoded ETV2 transcription factor.

Figure 1.2. Morphological change of fibroblasts into iEndo during direct conversion. (a) Experimental groups are fibroblasts which are infected to ETV2 lenti-virus and cultured in endothelial media. D1: 1day after ETV2 infection. D6: 6days after infection and cultured in endothelial induction media for 5days, D14: 14days after infection of the cells. After endothelial induction media was switched into endothelial maintenance media on D6, the cells are cultured in endothelial maintenance media for 8 days. (b) Control groups are included no ETV2 induction and no endothelial induction media and maintenance media. Scale bars: $250 \mu \mathrm{~m}$

Figure 1.3. Endothelial cell specific marker expressions. (a) Gene expression was analyzed by RTPCR and (b) protein expression was analyzed by immunocytochemistry. Positive controls: HUVEC (human umbilical vein endothelial cells). Negative controls: parental fibroblasts, HF134 and CRL2097. HE: HF134 infected ETV2. CE: CRL2097 infected ETV2. Scale bars: $100 \mu \mathrm{~m}$

Figure 1.4. Tubule-structure formation of iEndo. Tubule-structure formation assay iEndo on matrigel-coated dishes 3 days after culture on matrigel. Scale bars: $250 \mu \mathrm{~m}$

2. Screening of endothelial cell specific IncRNA

To find the relationship with vascular specific lncRNA, expression of lncRNAs were also checked. Several lncRNAs reported to be related to vascular endothelial lineage development or function was selected as the candidate IncRNAs. Candidate lncRNAs were screened through RT-PCR amplification from primary endothelial cell (HUVEC) and iEndo cDNA template. Some lncRNAs were specifically expressed in endothelial cells but not in the fibroblasts (Fig.2.1).

Figure 2.1. Screening of candidate IncRNA. Expression of lncRNA which are related to vascular development or function was screened by RT-PCR.

Among them, $S E N C R$ was focused on the further analysis in this study. To determine the relationship between SENCR and ETV2, lenti-viral vector and episomal vector was inserted to SENCR lncRNA both isoforms for induction (Fig. 2.2). Because SENCR have two isoforms, variant 1 and variant 2, both S1 and S2 were amplified with different length. S1 consist of 3 exons with a length of 1060bp. But, S2 consist of 2 exons with a length of 539bp respectively (Fig. 2.3).

Figure 2.2. Vector constructs for SENCR IncRNA induction. (a) Lenti-viral vector constructs encoded $S E N C R$ variant 1 or 2 (b) Episomal vector constructs encoded $S E N C R$ variant 1 or 2.

3. ETV2 is regulated by lncRNA SENCR

To determine which vascular specific transcription factor have the potential to be regulated by SENCR, two cell lines, HEK293T, and CRL-2097, were infected with SENCR. Over-expression of SENCR resulted in increase of ETV2 gene expression in both cell lines. A similar pattern was observed in S1 and S2 (Fig. 3.1a). Also, ETV2 protein expression level was slightly increased in ETV2 and SENCR co-infected group more than ETV2 single infected groups. However, ETV2 protein expression was not detected when S1 or S2 were over-expressed alone (Fig. 3.1b). Furthermore, ETV2 promoter activity was estimated using dual-luciferase promoter assay. 1.5 kb region of ETV2 promoter was used for estimation of ETV2 promoter activity and this sequence was inserted in luciferase promoter reporter vector. When S 1 or S 2 was overexpressed, ETV2 promoter activity was enhanced in HEK293T cells dose-dependently. The highest ETV2 promoter activity was found when 200ng of S2 RNA plasmid was transfected (Fig 3.2). These findings indicate that SENCR activates ETV2 promoter and increases ETV2 gene and protein expression.

ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY
(a)
(b)
>KF806591.1
AGGGCCTGTGCGTAGAGTTTAAGCAGTGTGGAGATATTTCTTCACTTTTCCTTAGGGTGTCC ACATCAAGACCCTGAGGCCATCTTACCACCCTTCTGGATCAGAAGAGGCCTTCAGAGCCCT CCGCTGCCGAGACGCGGCAGACTCCCAGAGCGGCTCACCCACTCATCGAAGCGGATTCTG GGCGGTTTCGGGCTGACCCGCGCTGTCAGGGCGCGGACTCCATTCCGGGCGCATTGTTAG GAGAAGGGGCCCCTCGGGGCGGCGCGCCTCGACCCTGGGCTCCCGGTGCCCGCAGAGG GCGGAGATCCGCGGCGCCCTAGGCCACCTATCCGCATCTTCTCGAGCCAAACCCCCAGCG CTTACCCGGACCCGACGGCCCAAGCACTGACTCCCAGGCAAGAGTCGCCCTTCCTGGTCC CCAGGGAACTGACACTACCGCGGGACGTTCCCTCTAGGACAGTCAGCAGGTCCCAGGAGC GCAGCACGCAACAGCGCAGAGCAGACCCAGACTTTTCCCGGGGTGAGACCCGGAGGCCC GCGCTCTGGACCGTCCTCCCTACCCAGCCTGGAGGCCGGCGTTCCCCGGCCCAACCCGG AGACCTCCCCGCCTCCCTCCTGGGCCGCCGCGCGCCCCAGTTGGAGCAGCCTCGAGGGG CTGGGCCCTTTCGGCCGGACTCCCTTCTCCCGGACATCCAAAACAGGTTACCTTGTCCACG CTCTCCGGACCACGCTTTGGACTTGCTCACTTTTATTTAAGAGTCCGACGGGGGAAAGAGG GAAAAAAAATCCAGAGGAGATCCAAGTCAATTGGAAGAAAAAATTTCAAAAGGGTGTCCACA GAGGCGAAAAAAGCCCAGGCTCTACCGACCTTCAAACTACAACAGAGCTTTCAGGAGAATG CGGAGAGACGGCTTCCCACCCGGACCTCACCAGAAACCCGCACACCCCAGCCACATTGCT CCTCATTCAGCCAGAAAGGACTCCAACTCCACCACCAGGAGGCCCCCCTTCCTGGTGCTG GCCAGTTGCAGAGGCTGTTCATGGCATCCCACAGGTGGCGACTGCCCCCCACCCTCCTCC TAGCACTTTAGAGGGTCCCTCTGTGGCAGACACCATGGCTAGGTTTCTCTTTCCAACTCCTG TTGGTCTGGCAAGTGACAGATCATCTTCACTACATTAATCAGTAGTCACCCGAACATTCCTAT ACTGTCCCCCAATTCCTTTCAGCACCAGCTGCCTCCCCCACTGGAATTATTCAATATGGAAC TAGATTAAATTGAAGACTTGCCCTTTAGTTTTTAAAAAAAAAAAAAAAAAAAAA

Abstract

>KF806590. 1 AGGGCCTGTGCGTAGAGTTTAAGCAGTGTGGAGATATTTCTTCACTTTTCCTTAGGGTGTCC ACATCAAGACCCTGAGGCCATCTTACCACCCTTCTGGATCAGAAGAGGCCTTCAGACCCAG GCTCTACCGACCTTCAAACTACAACAGAGCTTTCAGGAGAATGCGGAGAGACGGCTTCCCA CCCGGACCTCACCAGAAACCCGCACACCCCAGCCACATTGCTCCTCATTCAGCCAGAAAG GACTCCAACTCCACCACCAGGAGGCCCCCCTTCCTGGTGCTGGCCAGTTGCAGAGGCTGT TCATGGCATCCCACAGGTGGCGACTGCCCCCCACCCTCCTCCTAGCACTTTAGAGGGTCC CTCTGTGGCAGACACCATGGCTAGGTTTCTCTTTCCAACTCCTGTTGGTCTGGCAAGTGAC AGATCATCTTCACTACATTAATCAGTAGTCACCCGAACATTCCTATACTGTCCCCCAATTCCTT TCAGCACCAGCTGCCTCCCCCACTGGAATTATTCAATATGGAACTAGATTAAATTGAAGACTT GCCCTTTAGTTTTTAAAAAAAAAAAAAAAAAAAAA

Figure 2.3. SENCR gene structure and isoform sequences. (a) Schematic representation of exons of S1 and S2. S1 consist of 3 exons but S2 consist of 2 exons (b) Whole sequence are references form NCBI (S1: KF806591.1, S2: KF806590.1).

Figure 3.1. ETV2 gene expression and protein expression after infection of SENCR. (a) aRT-PCR analysis of ETV2 gene expression at 3 days after infection of SENCR in HEK293T and CRL2097 cell lines. (b) Western blot analysis of ETV2 protein expression at 3 days after infection of ETV2, SENCR of ETV2 and SENCR in HEK293T cell lines. Con: no infection, S1: SENCR variant 1, S2: SENCR variant 2, E: ETV2, ES1: ETV2+SENCR variant1, ES2: ETV2+SENCR variant 2.

Figure 3.2. Estimation of $\boldsymbol{E T V} 2$ promoter by dual-luciferase promoter assay. The fold change of ETV2 promoter activity after overexpression of S1 or S2. Con: no infection, S1: SENCR variant 1, S2: SENCR variant 2, 100: 100ng, 200 200ng

4. Detection of SENCR binding proteins

To demonstrate the mechanism of $S E N C R$ in regulation of ETV2 expression, SENCR binding protein candidates were screened. SENCR RNAs were successfully synthesized in vitro from plasmid encoding SENCR gene sequence. Also, anti-sense RNA was generated and used as a negative control (Fig. 4.1a). Through RNA pulldown analysis, some proteins bound to the SENCR sense RNA were detected. However, the negative controls, bead-only and antisense RNA, also bound to proteins non-
specifically (Fig. 4.1b). So, additional experiment was needed to distinguish SENCR sense RNA specific proteins. The binding proteins were analyzed by shot gun in gel digestion for the LC-MS analysis. Within the proteins identified 33 proteins categorized into the RNA binding proteins in gene ontology (GO) term. Also, the proteins were categories into other ontology categories biological process and cellular component (Fig. 4.2). Also, the results suggest 683 proteins bound to SENCR sense RNA only without binding of bead (Fig. 4.3 and 4.4).

Figure 4.1. ETV2 gene expression and protein expression after infection of SENCR. (a) Gel images of SENCR RNA transcripts. S1: SENCR variant 1, S2: SENCR variant 2 (b) Coomassie blue stained SDS gel image of RNA binding proteins.

5. SENCR recruits PSPC1 to ETV2 promoter for activation

To further investigate how SENCR activate ETV2 gene, protein, and promoter, the candidate proteins were applied to the ETV2 promoter luciferase assay. Within 53 candidate protein, the rate of PTBassociated proteins and proteins which formed complex with PTB-associated proteins was high. Among them, higher activation of ETV2 promoter was observed after addition of PSPC1, one of the 53 candidate protein. Only S 1 or S 2 RNAs activated ETV2 promoter 1.9- and 1.4-fold respectively in consistence with previous result. Furthermore, co-transfection of PSPC1 with RNAs showed increased ETV2 promoter activity by 3.9 -fold and 3.6 -fold when co-transfected with S1 or S2 respectively. However, there was a slight increase in PTBP1, a negative control that was not on the list, transfected group (Fig. 3f). The results indicate that SENCR RNAs bind to PSPC1 protein and recruit it to ETV2 promoter for activation (Fig. 3g).

Figure 4.2. GO term analysis of SENCR binding proteins. Pie charts indicate SENCR binding proteins are analyzed as molecular function, biological process, and cellular component of GO term category.

Figure 4.3. The number of RNA-binding proteins. Venn diagram of SENCR-binding proteins analyzed by LC-MS. Yellow color indicates the number of $S E N C R$ sense RNA specific proteins.

AOAO24R1 X8 HUMAN (+1) DHX35_HUMAN
PAXB1_HUNAN
XRCC5_HUMAN
AOAO2R1A3_HUMAN (+1)
LAS1L_HUMAN
AOAO24R326 HUMAN (+2) SP16H_HUMAN
AOAO24R4AO_HUMAN $(+1)$
AOAO24RT3 HUMAN $(+1)$
AOAO24R1N4 HUMAN $(+1)$ NWNOH L-ASIH
B4DZCO_HUMAN (+2)
A8KAP3_HUMAN (+4)
AOAO24R228 HUMAN (+4)
AOAO24R228 HUMAN(+4)
 AOAO24R652_HUMAN (+3) AOAO24R7CT_HUMAN +5)
DESP HUMAN DESP HUMAN
 B4EO22-HUAN
Q3BV99 HMAN
Q1271_HUMAN DDX21_HUMAN
BLDYO9__UMMAN (+2) B4DVO9 HUMAN $(+2)$
TERA HUMAN $(+1)$
U520_HUMAN
 AOAOC4DGX2_HUMAN (+3)
DYHCT HUMMAN
QQUEH6 HUMAN
 AOA024RDP4_HUMAN $(+1)$
A8KA83_HUMAN $(+1)$ A8KA83_HUMAN (+1) AOAO24R74M_HUMAN (+3)
HOY449_HUMAN AOAO24QZN4_HUMAN (+2)

Table 4. SENCR RNA binding proteins analyzed by LC-MS
Identified Proteins (157/472)
Splicing factor, proline- and glutamine-rich $O S=$ Homo sapiens $G N=S F P Q$ PE $=1 \quad$ SV $=2$
Probable ATP-dependent RNA helicase DDX17 OS=Homo sapiens GN=DDX17 $P E=1 \quad$ SV $=1$ ATP-dependent RNA helicase A OS=Homo sapiens $G N=D H \times 9 \quad P E=1 \quad S V=4$
ATP-dependent RNA helicase DHX36 OS=Homo sapiens $G N=D H X 36$ PE $=1 \quad \mathrm{SV}=2$ Titin OS=Homo sapiens GN=TTNPE=1 SV=1

Nucleoporin 153 kDa , is oform CRA a OS=Homo sapiens GN=NUP $153 \mathrm{PE}=4 \mathrm{SV}=1$
ATP-dependent RNA helicase DDX 5 (Fragment) OS $=$ Homo sapiens $\mathrm{GN}=\mathrm{DDX} 5 \mathrm{PE}=2 \mathrm{SV}=1$ Junction plakoglobin, isoform CRA a OS=Homo sapiens GN=JUP PE=4 SV=1
Probable ATP-dependent RNA helicase DHX35 OS $=$ Homo sapiens $\mathrm{GN}=\mathrm{DHX} 35 \mathrm{PE}=1 \mathrm{SV}=2$ Microtubule-associated protein OS=Homo sapiens GN=MAP4 $\mathrm{PE}=1 \mathrm{SV}=1$ PAX3- and PAX7-binding protein 1 OS=Homo sapiens GN=PAXBP1 PE $=1 \mathrm{SV}=2$
X -ray repair cross-complementing protein $5 \mathrm{OS}=$ Homo sapiens $\mathrm{GN}=\mathrm{XRCC} 5 \mathrm{PE}=1 \mathrm{SV}=3$ Ubiquititn-activating enzyme E1 (A1S9T and BN75 temperature sensitivity complementing
Ribosomal biogenesis protein LAS1L OS $=$ Homo sapiens GN=LAS1L PE $=1$ SV $=2$ Ribosomal biogenesis protein LAS1L OS=Homo sapiens $G N=L A S L L E=1 S V=2$
Ribosomal protein L29, isoform CRA a OS $=$ Homo sapiens $G N=$ RPL29 $P E=4 S V=1$

Nucleolin, isoform CRA b OS=Homo sapiens $\mathrm{GN}=\mathrm{NCLPE}=4 \mathrm{SV}=1$
Heterogeneous nuclear ribonucleoprotein F, isoform CRA_a $O S=$ Homo sapiens $\mathrm{GN}=H$ HRPF $P \mathrm{PE}=4 \mathrm{SV}=1$
X -ray repair complementing defective repair in Chinese hamster cells 6 (Ku autoantigen, 70 KDa), isoform CRA_a OS=Homo sapiens $\mathrm{GN}=\mathrm{XRCC6}$ PE $=4 \mathrm{SV}=1$
HIV Tat-specific factor 1 OS=Homo sapiens GN=HTATSF1 $\mathrm{PE}=1 \mathrm{SV}=1$
CDNA FLJ51771, highly similar to SWVSNF-related matrix-associatedactin CDNA FLJ78483, highly similar to Homo sapiens elongation factor Tu GTP binding domain contain 2 =

ATP-dependent RNA helicase DDX3X OS=Homo sapiens GN=DDX3X PE=1 $\mathrm{SV}=1$
Guanine nucleotide binding protein-like 3 (Nucleolar)-like, isoform CRA a OS $=$ Homo sapiens $\mathrm{GN}=\mathrm{GNL} 3 \mathrm{~L}$ PE=4 SV=1 Guanine nucleotide binding protein-like 3 (Nucleolar)--ike, is
RPL14 protein OS $=$ Homo sapiens $G N=$ RPL14 $\mathrm{PE}=1 \mathrm{SV}=1$

Methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1 , methenyltetrahydrofolate cyclohydrolase, formyltetrahydrofolate synthetase,
isoform CRA_a OS=Homo sapiens $G N=$ MTHFD1 $\mathrm{PE}=3 \mathrm{SV}=1$ Interleukin enhancer binding factor $3,90 \mathrm{kDa}$, isoform $\mathrm{CRA}=1 \mathrm{OS}=$ Homo sapiens $\mathrm{GN}=\mathrm{LLF} 3 \mathrm{PE}=4 \mathrm{SV}=1$
Desmoplakin $\mathrm{OS}=$ Homo sapiens $\mathrm{GN}=\mathrm{DSP} \mathrm{PE}=1 \mathrm{SV}=3$ Desmoplakin OS=Homo sapiens $\mathrm{GN}=\mathrm{DSP} \mathrm{PE}=1 \mathrm{SV}=3$
Cisplatin resistance-associated overexpressed protein, is CDNA, FLL95650, highly similar to tomo sapiens kary, isoform CRA (importin) beta 1 (KPNB1), mRNA $\mathrm{G}=\mathrm{OS}=$ Homo sapiens $\mathrm{PE}=2 \mathrm{SV}=1$ cDNA FLJ56274, highly similar to Transketolase (EC 2.2.1.1) OS=Homo sapiens PE=2 SV=1
Synaptosomal-associated protein (Fragment) OS=Homo sapiens GN=SNAP23 PE $=1$ SV=1 P37 AUF1 OS=Homo sapiens $\mathrm{PE}=2 \mathrm{SV}=1$
Nucleolar RNA helicase $2 \mathrm{OS}=$ Homo sapiens $\mathrm{GN}=\mathrm{DDX} 21 \mathrm{PE}=1 \mathrm{SV}=5$ Nucleolar RNA helic ase $2 \mathrm{OS}=$ Homo sapiens $\mathrm{GN}=\mathrm{DDX} 21 \mathrm{PE}=1 \mathrm{SV}=5$
Interleukin enhancer-binding factor $2 \mathrm{OS}=$ Homo sapiens $\mathrm{GN}=\mathrm{LLF} 2 \mathrm{PE}=1 \mathrm{SV}=1$ Transitional endoplasmic reticulum ATPase OS=Homo sapiens $G N=V C P \quad P E=1 \quad$ SV $=4$
U5 small nuclear ribonucleoprotein 200 kDa helicase OS=Homo sapiens $G N=S N R N P 200$ PE $=1 \quad$ SV=2 Proteasome subunit alpha type-5 OS=Homo sapiens GN=PSMA5 $P E=1 \quad \mathrm{SV}=3$
Pre-mRNA-processing factor 40 homolog A OS=Homo sapiens GN=PRPF $40 \mathrm{APE}=1 \mathrm{SV}=2$

cDNA FLJ60424, highly similar to Junction plakoglobin OS=Homo sapiens $\mathrm{PE}=2 \mathrm{SV}=1$
39 S ribosomal protein L 22 , mitochondrial $\mathrm{OS}=$ Homo sapiens $\mathrm{GN}=\mathrm{MRPL} 22 \mathrm{PE}=1 \mathrm{SV}=1$
Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens $\mathrm{GN}=\mathrm{DYNC} 1 \mathrm{H} 1 \mathrm{PE}=1 \mathrm{SV}=5$
A (IV) collagen (Fragment) OS=Homo sapiens $\mathrm{GN}=\mathrm{COL} 4 \mathrm{~A} 6 \mathrm{PE}=4 \mathrm{SV}=1$
A6(IV) collagen (Fragment) OS=Homo sapiens GN=COL4A6 PE=4 SV=1
Chaperonin containing TCP1, subunit 6 A (Zeta 1), isoform CRA_a OS=Homo sapiens GN=CCT6A PE=3 SV=1
Endoplasmin OS=Homo sapiens $\mathrm{GN}=$ HSP90B1 $\mathrm{PE}=1 \mathrm{SV}=1$
Bifunctional glutamate/proline--tRNA ligase $\mathrm{OS}=\mathrm{Homo}$ sapiens $\mathrm{GN}=$ EPRS $\mathrm{PE}=1 \mathrm{SV}=5$
Bifunctional glutamate/proline-tRNA ligase $\mathrm{OS}=$ Homo sapiens $\mathrm{GN}=$ EPRS $P \mathrm{EE}=1 \mathrm{SV}=5$
Paraspeckle component 1 , isoform CRA $\mathrm{bOS}=$ Homo sapiens $\mathrm{GN}=\mathrm{PSPC1} \mathrm{PE}=4 \mathrm{SV}=1$
cDNA FLJ78586, highly similar to Homo sapiens VAMP (vesicle-associated membrane protein)-associated protein A, 33kDa (VAPA),
mRNA OS=Homo sapiens $P E=1 S V=1$
Chaperonin contaianing TCPI, subunit 8 (Theta) variant (Fragment) OS=Homo sapiens $\mathrm{PE}=2 \mathrm{SV}=1$
Family with sequence similarity 32 , member A , isoform CRA_a OS=Homo sapiens GN=FAM32A PE=4SV=1 Nuclease-sensitive element-binding protein 1 (Fragment) OS=Homo
Vinculin, isoform CRA_C OS=Homo sapiens GN=VCLPE=4 SV=1

Accession Number
AOAOAOMRPO_HUMAN (+1)
COPA HUMAN
D3DTW3_HUMAN (+1)
LAP2A HUMAN
A0A024R2PO_HUMAN (+3)
A0A024R9Y7_HUMAN (+2)
B4EOR6_HUMAN (+1)
C1PHA2_HUMAN
Q13344_HUMAN
Q53HV2_HUMAN (+2)
A4DOS8_HUMAN
AKP8L_HUMAN
A0A024RDW4_HUMAN (+2)
A8K614_HUMAN (+2)
EIF3M HUMAN
A0A024R592_HUMAN (+8)
A6NCQO_HUMAN (+3)
B4DS43_HUMAN
B2R5W2_HUMAN (+4)
Q53XM7_HUMAN (+1)
PRP6_HUMAN
ROA3_HUMAN
RBMX_HUMAN
B2R8R5_HUMAN (+1)
Q53FS6_HUMAN (+1)
B3KTJ9_HUMAN (+1)
DDHD1_HUMAN
SAHH_HUMAN
A0A087WZ13_HUMAN (+1)
gi\|109048
Q619T8_HUMAN
A0A024RD93_HUMAN (+2)
DNLI3_HUMAN
A0A024R2T6_HUMAN (+2)
A0A087WZV1_HUMAN
MFAP1_HUMAN
RBM14_HUMAN
A0A024RD01_HUMAN (+1)
Q53HU8_HUMAN (+2)
G3V359_HUMAN (+1)
SF3B5_HUMAN
J3QRU4_HUMAN (+2)
PDIA1_HUMAN (+2)
XPO2_HUMAN
CPSF1_HUMAN (+1)
B2R6H6_HUMAN (+1)
B7Z8Z6_HUMAN
A0A024R814_HUMAN (+1)
E9PKZO_HUMAN (+1)
A2A3R6_HUMAN (+2)
CALL5_HUMAN (+1)
Q53FA5_HUMAN (+1)
Q5T670_HUMAN (+1)
AOA024R1N1_HUMAN (+1)

dentified Proteins (157/472)

Accession Number	Molecular	Anti	Bead	Sense		
HNRH2 HUMAN	49 kDa	1		1.59E+08		
D6W507_HUMAN	17 kDa	2159400	1			
B5BU08_HUMAN (+1)	28 kDa	1		$1.39 \mathrm{E}+07$		
gil125644\|sp	P02441	KRA3_SHEEP	14 kDa	995020	1	
B4DPH9_HUMAN (+4)	22 kDa	609410	1	61476		
A0A024RDH8_HUMAN (+1)	13 kDa	1		102810		
PYRG1_HUMAN	67 kDa	3831400	1			
IF6_HUMAN	27 kDa	583180	1			
B4DH02_HUMAN (+2)	94 kDa	1	1	528		
B5BUB1_HUMAN (+1)	50 kDa	1569700	1			
A0A024RBB7_HUMAN (+9)	45 kDa	1910000	1			
PDIAG HUMAN	48 kDa	2498100	1			
A0A024R158_HUMAN (+4)	136 kDa	277990	1			
THOC2_HUMAN	183 kDa	1	1	739410		
DHX57_HUMAN	156 kDa			4413900		
A0AO24R713_HUMAN (+4)	54 kDa	3826000	1			
A0AO24R1A4_HUMAN (+2)	18 kDa	239370	1			
H0Y4R1_HUMAN (+1)	51 kDa	1		218		
ABK4C8_HUMAN (+2)	24 kDa	1		729750		
DYH2 HUMAN	508 kDa	1		1252700		
GOG8J_HUMAN (+1)	72 kDa			4571300		
HOYL69 HUMAN (+2)	26 kDa			1115500		
Q8TBK5_HUMAN	33 kDa	219100	1			
F8VPD4_HUMAN (+1)	236 kDa	330180	1			
B1AK87 HUMAN (+4)	29 kDa	1024900		239710		
C9JJ19_HUMAN (+1)	26 kDa	1		69520		
AOAO24ROL2 HUMAN (+1)	45 kDa	1		175970		
A8K5K0_HUMAN (+2)	96 kDa	1		1611000		
A0A024R6W0_HUMAN (+3)	47 kDa	2394100	1			
B4DS57_HUMAN (+4)	75 kDa	413040	1			
AOAO24R5H8_HUMAN (+3)	24 kDa	730210	1			
PCNP_HUMAN	19 kDa	387070	1			
AOAO9ONBY2 HUMAN (+1)	73 kDa	640850	1			
EIF3I HUMAN (+2)	37 kDa	934180	1			
CALX HUMAN	68 kDa	1	1	152270		
A0A024R2Z6 HUMAN (+1)	61 kDa	2463400				
RUVB2 HUMAN	51 kDa	1126200	1			
Q9H273 HUMAN	20 kDa	462620	1			
A0A087XOH9 HUMAN (+1)	114 kDa	129110	1			
A0AO24R5AT_HUMAN (+1)	68 kDa	2963200	1			
A0A024QZK8 HUMAN (+1)	37 kDa	1	1	408170		
A7E2Y5_HUMAN (+1)	254 kDa	229360	1			
SYAC_HUMAN	107 kDa	298830	1			
HV320 HUMAN	13 kDa	1	1	11728		
A0A087WTP3_HUMAN (+2)	73 kDa	1	1	1127900		
B5BU25_HUMAN (+2)	53 kDa	1	1	213060		
B7Z3E3_HUMAN (+2)	101 kDa	1354100	1			
A0A024R895_HUMAN (+6)	32 kDa	1402600	1			
A0A087WWK8_HUMAN (+3)	124 kDa	48447	1			

Identified Proteins (157/472)
Heterogeneous nuclear ribonucleoprotein $\mathrm{H} 2 \mathrm{OS}=$ Homo sapiens GN=HNRNPH2 PE=1 SV=1 HCG1990625, isoform CRA_a OS=Homo sapiens GN=hCG_1990625 PE=4 SV=1 U2 small nuclear RNA auxilary factor 1 is oform a OS=Homo sapiens GN=U2AF KERATIN, HIGH-SULFUR MATRIX PROTEIN, IIIA3 gi|71384|pir||KRSHA3 keratin high-sulfur
cDNA FLJ55895, highly similar to Ras-related protein Rab-7 OS=Homo sapiens $\mathrm{PE}=2 \mathrm{SV}=1$ Ribosomal protein L34, is oform CRA_a OS=Homo sapiens GN=RPL34 PE=4 SV=1
CTP synthase $1 \mathrm{OS}=$ Homo sapiens $\mathrm{GN}=$ CTPS1 $\mathrm{PE}=1 \mathrm{SV}=2$

CTP synthase $1 \mathrm{OS}=$ Homo sapiens $\mathrm{GN}=\mathrm{CTPS} 1 \mathrm{PE}=1 \mathrm{SV}=2$
Eukaryotic translation initiation factor $6 \mathrm{OS}=$ Homo sapiens $\mathrm{GN}=\mathrm{EIF} 6 \mathrm{PE}=1 \mathrm{SV}=1$
Eukaryotic translation initiation factor 6 OS=Homo sapiens GN=EIF6 PE=1 SV=1
cDNA FLJ50510, highly similar to Heat shock 70 kDa protein $4 \mathrm{OS}=$ Homo sapiens $\mathrm{PE}=2 \mathrm{SV}=1$
DNA helicase (Fragment) OS=Homo sapiens GN=RUVBL1 PE $=2$ SV $=1$ Protein disulfide-isomerase A6 OS=Homo sapiens GN=PDIA6 PE=1 $\quad \mathrm{SV}=1$

THO complex subunit $2 \mathrm{OS}=$ Homo sapiens $\mathrm{GN}=\mathrm{THOC} 2 \mathrm{PE}=1 \mathrm{SV}=2 \mathrm{SV}=2$ Dihydrolipoyl dehydrogenase OS=Homo sapiens GN=DLD PE=4 SV=1 Ubiquitin-conjugating enzyme E2L 3, isoform CRA_a OS=Homo sapiens GN=UBE2L3 PE=3 SV=1
Inosine-5'-monophosphate dehydrogenase 2 (Fragment) OS=Homo sapiens GN=IMPDH2 PE=1 SV=1 60 s ribosomal protein L13 OS=Homo sapiens GN=RPL13 PE=2 SV $=1$
Dynein heavy chain 2, axonemal OS=Homo sapiens $G N=D N A H 2 ~ P E=2 S V=3$

Proteasome subunit alpha type (Fragment) $\mathrm{OS}=$ Homo sapiens $\mathrm{GN}=\mathrm{PSMA4} \mathrm{PE}=1 \mathrm{SV}=1$
60 r ribosomal protein $L 6 O S=$ Homo sapiens $G N=R P L 6 \quad P E=2 S V=1$
CAD protein $O S=$ Homo sapiens $G N=C A D ~ P E=1 S V=1$
CAD protein OS=Homo sapiens $\mathrm{GN}=\mathrm{CAD} \mathrm{PE=1} \mathrm{SV}=1$
Capping protein (Actin filament) muscle Z-line, beta, is oform CRA_a OS=Homo sapiens GN=CAPZB PE=1 $\mathrm{SV}=1$
Uncharacterized protein OS = Homo sapiens $\mathrm{GN}=\mathrm{MGC20255} \mathrm{PE}=4 \mathrm{SV}=1$
cDNA FLJ78309, highly similar to $\mathrm{SV}=1$
mRNA OS=Homo sapiens $\mathrm{PE}=2 \mathrm{SV}=1$
Aspartate aminotransferase OS=Homo sapiens $\mathrm{GN}=\mathrm{GOT}, \mathrm{PE}=3 \mathrm{SV}=1$
cDNA FLJ53176, highly similar to Nuclear autoantigenic sperm protein $\mathrm{OS}=$ Homo sapiens $\mathrm{PE}=2 \mathrm{SV}=1$
cDNA FLJ53176, highly similar to Nuclear autoantigenic sperm protein OS=Homo sapiens $P E=2$ SV $=1$
RAB6A, member RAS oncogene family, isoform CRA_b OS $=$ Homo sapiens $G N=$ RAB6A $P E=3 S V=1$
PEST proteolytic signal-containing nuclear protein OS=Homo sapiens GN=PCNP PE=1 SV=2
Protein disulfide-isomerase A4 OS=Homo sapiens GN=ERP70 PE=3 SV=1
Eukaryotic translation initiation factor 3 subunit I OS=Homo sapiens GN=EIF3I PE=1 SV=1
Calnexin OS=Homo sapiens GN=CANX $\mathrm{PE}=1 \mathrm{SV}=2$
Guanine nucleotide binding protein-like 3 (Nucleolar), is oform CRA_b OS=Homo sapiens GN=GNL3 PE=4 SV=1
RuvB-like 2 OS=Homo sapiens $\mathrm{GN}=\mathrm{RUVBL} 2 \mathrm{PE}=1 \mathrm{SV}=3$
Serologically defined breast cancer antigen NY-BR-87 (Fragment) OS
RNA-binding protein 26 OS=Homo sapiens $\mathrm{GN}=$ RBM26 $\mathrm{PE}=1 \mathrm{SV}=1$ TAF6-like RNA polymerase II, p300/CBP-associated factor (PCAF)-associated factor, 65 kDa , isoform CRA_a OS=H
Heterogeneous nuclear ribonucleoprotein $\mathrm{H} 3(2 \mathrm{H} 9)$, isoform CRA_a OS=Homo sapiens GN=HNRPH3 PE=4 SV=1 DnaJ (Hsp40) homolog, subfamily C, member 13 OS=Homo sapiens $\mathrm{GN}=\mathrm{DNAJC} 13$ PE=2 SV=1
Alanine--tRNA ligase, cytoplasmic OS=Homo sapiens GN=AARS PE=1 SV=2

Alanine--tRNA ligase, cytoplasmic $O S=H o m o$ sapiens $G N=A A R S \quad P E=1 \quad S V=2$
Far upstream element-binding protein $2 \mathrm{OS}=$ Homo sapiens $\mathrm{GN}=\mathrm{KHSRP}$ PE=1 SV=1
U2 small nuclear RNA auxiliary factor 2 is oform b OS $=$ Homo sapiens $\mathrm{GN}=\mathrm{U} 2 \mathrm{AF} 2 \mathrm{PE}=2 \mathrm{SV}=1$
Reticulon $\mathrm{OS}=$ Homo sapiens $\mathrm{PE}=2 \mathrm{SV}=1$
SET translocation (Myeloid leukemia-associated), isoform CRA_b OS=Homo sapiens GN=SET
Q motif and SEC7 domain-containing protein 1 OS=Homo sapiens GN=IQSEC1 PE=1 SV=1

Figure 5.1. Estimation of ETV2 promoter by dual-luciferase promoter assay. The fold change of ETV2 promoter activity after overexpression of SENCR, binding protein or SENCR and binding protein.

Figure 5.2. Schematic mechanism of ETV2 regulated by SENCR and PSPC1. SENCR is seemed to recruit PSPC1 protein to ETV2 promoter for activation.

IV. Discussion

Recent direct conversion studies of endothelial cells have revealed the importance of the ETV2 gene in generation of induced endothelial cells ${ }^{95-98}$. In this study, human fibroblasts switched cell fate into endothelial cells by inducing lentiviral vector encoding single transcription factor ETV2. In previous study, generation of iEndo by induction of ETV2 results from synergistic interaction between ETV2 and FOXC2. Endogenous expression of the FOXC2 in fibroblast coordinate with exogenously introduced ETV2 through a composite DNA-binding site, the FOX:ETS motif. Conserved FOX:ETS motif is identified as numerous endothelial enhancer and promoters ${ }^{87}$. Moreover, knockdown of FOXC2 in fibroblasts resulted in not only significantly reduced ERG and FLII expression after ETV2 infection, but also markedly suppressed endothelial induction ${ }^{98}$. Consistent with previous studies, this report demonstrate that ETV2 single factor has enough power to generate iEndo from two fibroblast cell lines, CRL-2097 and HF134.

After endothelial induction, some population showed cobble-stone like morphologies but other population remained spindle shape. To increase the efficiency of endothelial conversion, two step endothelial induction protocol was developed in this study by modifying the previous protocol ${ }^{96-98}$. In this study, the efficiency of endothelial cell generation was up to 29.4% (data not shown), which higher efficiency than the previous studies ($4 \sim 20 \%)^{96-98}$. iEndo also showed endothelial lineage gene expression, protein expression and tubule formation function. However, the expression of NOS3 gene was not detected. Although mouse iEndo generated by direct conversion from fibroblast successfully produced nitric oxide (NO) ${ }^{97}$, the human NOS3 gene has never been expressed in other studies ${ }^{95-96,98}$. Production of NO by NOS3 is important in vivo because the endothelium plays a central role in regulating smooth muscle tone ${ }^{121}$, blood pressure ${ }^{122-123}$, plasma levels of cholesterol ${ }^{124-125}$ and maintaining homeostasis ${ }^{123,}{ }^{126}$ through the production of NO by NOS3 which is regulated by mechanical stimuli, cytokines and growth factors. Therefore, a further study to discover additional transcription factors or stimuli for acquirement of NOS3 function in iEndo is needed. Another function of endothelial cell is tubular structure formation. iEndo successfully formed capillary structure that means iEndo is considered as functional endothelial cells.
iEndo also expressed vascular specific lncRNAs similar to HUVEC. Among the lncRNAs, we focused on SENCR. SENCR was identified as vascular cells, endothelial cell and smooth muscle cell, regulator ${ }^{118,}{ }^{120}$. Also, SENCR plays a role of commitment and function during human ESCs differentiation into endothelial cells ${ }^{119}$. Regardless of the overlap of the chromosomal location of SENCR and FLII gene, the influence of SENCR modulation on FLI expression and vice versa has not yet been described. Boulberdaa et al. demonstrated that two genes were irrelevant through gain- and loss-of-function experiment in endothelial cells ${ }^{119}$. Therefore, we anticipated that there would be a vascular transcription factor that is regulated by SENCR. Since ETV2 was found to be a strong
transcription factor in vascular formation, we examined whether there was a interaction between SENCR and ETV2. In this report, SENCR was identified as an activator of ETV2 through recruitment of PSPC1 protein to ETV2 promoter. This is the first study demonstrates ETV2 activation by lncRNA and their binding protein. PSPC1 was first identified as a structural protein of the subnuclear structure called the paraspeckle ${ }^{127}$. Previous studies found PSPC1 have capacity to bind other noncoding RNAs ${ }^{128-129}$. This protein have important role in other mesoderm lineage cell such as RNA maturation in adipogenesis ${ }^{130}$ and regulation of androgen receptor(AR)-mediated transcriptional activity in spermatogenesis ${ }^{131}$. AR is a ligand-inducible transcription factor. Expression of AR in vascular cells was identified in previous reports ${ }^{132}$. Therefore, it may be expected that there is a correlation of AR mediated endothelial transcription regulation through lnc RNA.

Upon vascular development, expression of ETV2 was consistently increased on the first day of differentiation and silenced in fully differentiated endothelial cells. SENCR expression was not dependent on ETV2 silencing at the end of differentiation. This asks the question of how SENCR remained expressed as well in endothelial cell and raises the need for further experimentation to reveal other related mechanisms.

V. Reference

1. Thomson, J. A.; Marshall, V. S., Primate embryonic stem cells. Current topics in developmental biology 1998, 38, 133-65.
2. Thomson, J. A.; Itskovitz-Eldor, J.; Shapiro, S. S.; Waknitz, M. A.; Swiergiel, J. J.; Marshall, V. S.; Jones, J. M., Embryonic stem cell lines derived from human blastocysts. Science (New York, N.Y.) 1998, 282 (5391), 1145-7.
3. Jin, X.; Lin, T.; Xu, Y., Stem Cell Therapy and Immunological Rejection in Animal Models. Current molecular pharmacology 2016, 9 (4), 284-288.
4. King, N. M.; Perrin, J., Ethical issues in stem cell research and therapy. Stem cell research \& therapy 2014, 5 (4), 85.
5. Condic, M. L.; Rao, M., Alternative sources of pluripotent stem cells: ethical and scientific issues revisited. Stem Cells Dev 2010, 19 (8), 1121-9.
6. Takahashi, K.; Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126 (4), 663-76.
7. Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131 (5), 861-72.
8. Nichols, J.; Zevnik, B.; Anastassiadis, K.; Niwa, H.; Klewe-Nebenius, D.; Chambers, I.; Scholer, H.; Smith, A., Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998, 95 (3), 379-91.
9. Niwa, H.; Miyazaki, J.; Smith, A. G., Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature genetics 2000, 24 (4), 372-6.
10. Avilion, A. A.; Nicolis, S. K.; Pevny, L. H.; Perez, L.; Vivian, N.; Lovell-Badge, R., Multipotent cell lineages in early mouse development depend on SOX2 function. Genes \& development 2003, 17 (1), 126-40.
11. Li, Y.; McClintick, J.; Zhong, L.; Edenberg, H. J.; Yoder, M. C.; Chan, R. J., Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4. Blood 2005, 105 (2), 635-7.
12. Cartwright, P.; McLean, C.; Sheppard, A.; Rivett, D.; Jones, K.; Dalton, S., LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 2005, 132 (5), 885-96.
13. Hyun, I.; Hochedlinger, K.; Jaenisch, R.; Yamanaka, S., New advances in iPS cell research do not obviate the need for human embryonic stem cells. Cell Stem Cell 2007, 1 (4), 367-8.
14. Okita, K.; Ichisaka, T.; Yamanaka, S., Generation of germline-competent induced pluripotent stem cells. Nature 2007, 448 (7151), 313-7.

Okita, K.; Nakagawa, M.; Hyenjong, H.; Ichisaka, T.; Yamanaka, S., Generation of mouse induced pluripotent stem cells without viral vectors. Science (New York, N.Y.) 2008, 322 (5903), 94953.
16. Zhou, W.; Freed, C. R., Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 2009, 27 (11), 2667-74.
17. Fusaki, N.; Ban, H.; Nishiyama, A.; Saeki, K.; Hasegawa, M., Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy. Series B, Physical and biological sciences 2009, 85 (8), 348-62.
18. Yu, J.; Hu, K.; Smuga-Otto, K.; Tian, S.; Stewart, R.; Slukvin, II; Thomson, J. A., Human induced pluripotent stem cells free of vector and transgene sequences. Science (New York, N.Y.) 2009, 324 (5928), 797-801.
19. Okita, K.; Matsumura, Y.; Sato, Y.; Okada, A.; Morizane, A.; Okamoto, S.; Hong, H.; Nakagawa, M.; Tanabe, K.; Tezuka, K.-i.; Shibata, T.; Kunisada, T.; Takahashi, M.; Takahashi, J.; Saji, H.; Yamanaka, S., A more efficient method to generate integration-free human iPS cells. Nat Meth 2011, 8 (5), 409-412.
20. Warren, L.; Manos, P. D.; Ahfeldt, T.; Loh, Y. H.; Li, H.; Lau, F.; Ebina, W.; Mandal, P. K.; Smith, Z. D.; Meissner, A.; Daley, G. Q.; Brack, A. S.; Collins, J. J.; Cowan, C.; Schlaeger, T. M.; Rossi, D. J., Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010, 7 (5), 618-30.
21. Kim, D.; Kim, C. H.; Moon, J. I.; Chung, Y. G.; Chang, M. Y.; Han, B. S.; Ko, S.; Yang, E.; Cha, K. Y.; Lanza, R.; Kim, K. S., Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 2009, 4 (6), 472-6.
22. Kaji, K.; Norrby, K.; Paca, A.; Mileikovsky, M.; Mohseni, P.; Woltjen, K., Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 2009, 458 (7239), 771-5.
23. Woltjen, K.; Michael, I. P.; Mohseni, P.; Desai, R.; Mileikovsky, M.; Hamalainen, R.; Cowling, R.; Wang, W.; Liu, P.; Gertsenstein, M.; Kaji, K.; Sung, H. K.; Nagy, A., piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009, 458 (7239), 76670.
24. Schlaeger, T. M.; Daheron, L.; Brickler, T. R.; Entwisle, S.; Chan, K.; Cianci, A.; DeVine, A.; Ettenger, A.; Fitzgerald, K.; Godfrey, M.; Gupta, D.; McPherson, J.; Malwadkar, P.; Gupta, M.; Bell, B.; Doi, A.; Jung, N.; Li, X.; Lynes, M. S.; Brookes, E.; Cherry, A. B.; Demirbas, D.; Tsankov, A. M.; Zon, L. I.; Rubin, L. L.; Feinberg, A. P.; Meissner, A.; Cowan, C. A.; Daley, G. Q., A comparison of non-integrating reprogramming methods. Nat Biotechnol 2015, 33 (1), 58-63.
25. Gore, A.; Li, Z.; Fung, H. L.; Young, J. E.; Agarwal, S.; Antosiewicz-Bourget, J.; Canto, I.; Giorgetti, A.; Israel, M. A.; Kiskinis, E.; Lee, J. H.; Loh, Y. H.; Manos, P. D.; Montserrat, N.; Panopoulos, A. D.; Ruiz, S.; Wilbert, M. L.; Yu, J.; Kirkness, E. F.; Izpisua Belmonte, J. C.; Rossi, D. J.; Thomson, J. A.; Eggan, K.; Daley, G. Q.; Goldstein, L. S.; Zhang, K., Somatic coding mutations in human induced pluripotent stem cells. Nature 2011, 471 (7336), 63-7.
26. Park, C.; Afrikanova, I.; Chung, Y. S.; Zhang, W. J.; Arentson, E.; Fong Gh, G.; Rosendahl, A.; Choi, K., A hierarchical order of factors in the generation of FLK1- and SCL-expressing hematopoietic and endothelial progenitors from embryonic stem cells. Development 2004, 131 (11), 2749-62.
27. Tada, S.; Era, T.; Furusawa, C.; Sakurai, H.; Nishikawa, S.; Kinoshita, M.; Nakao, K.; Chiba, T.; Nishikawa, S., Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 2005, 132 (19), 4363-74.
28. Nostro, M. C.; Cheng, X.; Keller, G. M.; Gadue, P., Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. Cell Stem Cell 2008, 2 (1), 60-71.
29. Patsch, C.; Challet-Meylan, L.; Thoma, E. C.; Urich, E.; Heckel, T.; O'Sullivan, J. F.; Grainger, S. J.; Kapp, F. G.; Sun, L.; Christensen, K.; Xia, Y.; Florido, M. H.; He, W.; Pan, W.; Prummer, M.; Warren, C. R.; Jakob-Roetne, R.; Certa, U.; Jagasia, R.; Freskgard, P. O.; Adatto, I.; Kling, D.; Huang, P.; Zon, L. I.; Chaikof, E. L.; Gerszten, R. E.; Graf, M.; Iacone, R.; Cowan, C. A., Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat Cell Biol 2015, 17 (8), 994-1003.
30. Levenberg, S.; Golub, J. S.; Amit, M.; Itskovitz-Eldor, J.; Langer, R., Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 2002, 99 (7), 4391-6.
31. James, D.; Nam, H. S.; Seandel, M.; Nolan, D.; Janovitz, T.; Tomishima, M.; Studer, L.; Lee, G.; Lyden, D.; Benezra, R.; Zaninovic, N.; Rosenwaks, Z.; Rabbany, S. Y.; Rafii, S., Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFbeta inhibition is Id1 dependent. Nat Biotechnol 2010, 28 (2), 161-6.
32. Levenberg, S.; Zoldan, J.; Basevitch, Y.; Langer, R., Endothelial potential of human embryonic stem cells. Blood 2007, 110 (3), 806-14.
33. Wang, H.; Charles, P. C.; Wu, Y.; Ren, R.; Pi, X.; Moser, M.; Barshishat-Kupper, M.; Rubin, J. S.; Perou, C.; Bautch, V.; Patterson, C., Gene expression profile signatures indicate a role for Wnt signaling in endothelial commitment from embryonic stem cells. Circulation research 2006, 98 (10), 1331-9.
34. Li, Z.; Suzuki, Y.; Huang, M.; Cao, F.; Xie, X.; Connolly, A. J.; Yang, P. C.; Wu, J. C., Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem
cells and differentiated endothelial cells in living subjects. Stem Cells 2008, 26 (4), 864-73.
35. Vodyanik, M. A.; Bork, J. A.; Thomson, J. A.; Slukvin, II, Human embryonic stem cellderived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 2005, 105 (2), 617-26.
36. Kane, N. M.; Meloni, M.; Spencer, H. L.; Craig, M. A.; Strehl, R.; Milligan, G.; Houslay, M. D.; Mountford, J. C.; Emanueli, C.; Baker, A. H., Derivation of endothelial cells from human embryonic stem cells by directed differentiation: analysis of microRNA and angiogenesis in vitro and in vivo. Arterioscler Thromb Vasc Biol 2010, 30 (7), 1389-97.
37. Kelly, M. A.; Hirschi, K. K., Signaling hierarchy regulating human endothelial cell development. Arterioscler Thromb Vasc Biol 2009, 29 (5), 718-24.
38. Wang, Z. Z.; Au, P.; Chen, T.; Shao, Y.; Daheron, L. M.; Bai, H.; Arzigian, M.; Fukumura, D.; Jain, R. K.; Scadden, D. T., Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat Biotechnol 2007, 25 (3), 317-8.
39. Sumi, T.; Tsuneyoshi, N.; Nakatsuji, N.; Suemori, H., Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Development 2008, 135 (17), 2969-79.
40. Orlova, V. V.; Drabsch, Y.; Freund, C.; Petrus-Reurer, S.; van den Hil, F. E.; Muenthaisong, S.; Dijke, P. T.; Mummery, C. L., Functionality of endothelial cells and pericytes from human pluripotent stem cells demonstrated in cultured vascular plexus and zebrafish xenografts. Arterioscler Thromb Vasc Biol 2014, 34 (1), 177-86.
41. Panopoulos, A. D.; Ruiz, S.; Izpisua Belmonte, J. C., iPSCs: induced back to controversy. Cell Stem Cell 2011, 8 (4), 347-8.
42. Lassar, A. B.; Paterson, B. M.; Weintraub, H., Transfection of a DNA locus that mediates the conversion of 10T1/2 fibroblasts to myoblasts. Cell 1986, 47 (5), 649-56.
43. Davis, R. L.; Weintraub, H.; Lassar, A. B., Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 1987, 51 (6), 987-1000.
44. Huang, P.; Zhang, L.; Gao, Y.; He, Z.; Yao, D.; Wu, Z.; Cen, J.; Chen, X.; Liu, C.; Hu, Y.; Lai, D.; Hu, Z.; Chen, L.; Zhang, Y.; Cheng, X.; Ma, X.; Pan, G.; Wang, X.; Hui, L., Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 2014, 14 (3), 370-84.
45. Simeonov, K. P.; Uppal, H., Direct reprogramming of human fibroblasts to hepatocyte-like cells by synthetic modified mRNAs. PloS one 2014, 9 (6), e100134.
46. Kim, J.; Kim, K. P.; Lim, K. T.; Lee, S. C.; Yoon, J.; Song, G.; Hwang, S. I.; Scholer, H. R.; Cantz, T.; Han, D. W., Generation of integration-free induced hepatocyte-like cells from mouse fibroblasts. Scientific reports 2015, 5, 15706.
47.

Ieda, M.; Fu, J. D.; Delgado-Olguin, P.; Vedantham, V.; Hayashi, Y.; Bruneau, B. G.; Srivastava, D., Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010, 142 (3), 375-86.
48. Zhao, Y.; Londono, P.; Cao, Y.; Sharpe, E. J.; Proenza, C.; O'Rourke, R.; Jones, K. L.; Jeong, M. Y.; Walker, L. A.; Buttrick, P. M.; McKinsey, T. A.; Song, K., High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun 2015, 6, 8243.
49. Caiazzo, M.; Giannelli, S.; Valente, P.; Lignani, G.; Carissimo, A.; Sessa, A.; Colasante, G.; Bartolomeo, R.; Massimino, L.; Ferroni, S.; Settembre, C.; Benfenati, F.; Broccoli, V., Direct conversion of fibroblasts into functional astrocytes by defined transcription factors. Stem cell reports 2015, 4 (1), 25-36.
50. Kaminski, M. M.; Tosic, J.; Kresbach, C.; Engel, H.; Klockenbusch, J.; Muller, A.-L.; Pichler, R.; Grahammer, F.; Kretz, O.; Huber, T. B.; Walz, G.; Arnold, S. J.; Lienkamp, S. S., Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors. Nat Cell Biol 2016, 18 (12), 1269-1280.
51. Feng, R.; Desbordes, S. C.; Xie, H.; Tillo, E. S.; Pixley, F.; Stanley, E. R.; Graf, T., PU. 1 and C/EBPalpha/beta convert fibroblasts into macrophage-like cells. Proc Natl Acad Sci U S A 2008, 105 (16), 6057-62.
52. Kim, J. B.; Lee, H.; Arauzo-Bravo, M. J.; Hwang, K.; Nam, D.; Park, M. R.; Zaehres, H.; Park, K. I.; Lee, S. J., Oct4-induced oligodendrocyte progenitor cells enhance functional recovery in spinal cord injury model. The EMBO journal 2015, 34 (23), 2971-83.
53. Yu, B.; He, Z. Y.; You, P.; Han, Q. W.; Xiang, D.; Chen, F.; Wang, M. J.; Liu, C. C.; Lin, X. W.; Borjigin, U.; Zi, X. Y.; Li, J. X.; Zhu, H. Y.; Li, W. L.; Han, C. S.; Wangensteen, K. J.; Shi, Y.; Hui, L. J.; Wang, X.; Hu, Y. P., Reprogramming fibroblasts into bipotential hepatic stem cells by defined factors. Cell Stem Cell 2013, 13 (3), 328-40.
54. Kim, S. M.; Kim, J. W.; Kwak, T. H.; Park, S. W.; Kim, K. P.; Park, H.; Lim, K. T.; Kang, K.; Kim, J.; Yang, J. H.; Han, H.; Lee, I.; Hyun, J. K.; Bae, Y. M.; Scholer, H. R.; Lee, H. T.; Han, D. W., Generation of Integration-free Induced Neural Stem Cells from Mouse Fibroblasts. The Journal of biological chemistry 2016, 291 (27), 14199-212.
55. Han, D. W.; Greber, B.; Wu, G.; Tapia, N.; Arauzo-Bravo, M. J.; Ko, K.; Bernemann, C.; Stehling, M.; Scholer, H. R., Direct reprogramming of fibroblasts into epiblast stem cells. Nat Cell Biol 2011, 13 (1), 66-71.
56. Pereira, C. F.; Chang, B.; Gomes, A.; Bernitz, J.; Papatsenko, D.; Niu, X.; Swiers, G.; Azzoni, E.; de Bruijn, M. F.; Schaniel, C.; Lemischka, I. R.; Moore, K. A., Hematopoietic Reprogramming In Vitro Informs In Vivo Identification of Hemogenic Precursors to Definitive Hematopoietic Stem Cells.

Developmental cell 2016, 36 (5), 525-39.
57. Zhou, Q.; Brown, J.; Kanarek, A.; Rajagopal, J.; Melton, D. A., In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008, 455 (7213), 627-32.
58. Qian, L.; Huang, Y.; Spencer, C. I.; Foley, A.; Vedantham, V.; Liu, L.; Conway, S. J.; Fu, J.-d.; Srivastava, D., In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 2012, 485 (7400), 593-598.
59. Niu, W.; Zang, T.; Zou, Y.; Fang, S.; Smith, D. K.; Bachoo, R.; Zhang, C.-L., In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat Cell Biol 2013, 15 (10), 1164-1175. 60. Song, G.; Pacher, M.; Balakrishnan, A.; Yuan, Q.; Tsay, H. C.; Yang, D.; Reetz, J.; Brandes, S.; Dai, Z.; Putzer, B. M.; Arauzo-Bravo, M. J.; Steinemann, D.; Luedde, T.; Schwabe, R. F.; Manns, M. P.; Scholer, H. R.; Schambach, A.; Cantz, T.; Ott, M.; Sharma, A. D., Direct Reprogramming of Hepatic Myofibroblasts into Hepatocytes In Vivo Attenuates Liver Fibrosis. Cell Stem Cell 2016, 18 (6), 797-808.
61. Rezvani, M.; Espanol-Suner, R.; Malato, Y.; Dumont, L.; Grimm, A. A.; Kienle, E.; Bindman, J. G.; Wiedtke, E.; Hsu, B. Y.; Naqvi, S. J.; Schwabe, R. F.; Corvera, C. U.; Grimm, D.; Willenbring, H., In Vivo Hepatic Reprogramming of Myofibroblasts with AAV Vectors as a Therapeutic Strategy for Liver Fibrosis. Cell Stem Cell 2016, 18 (6), 809-16.
62. Yamashita, J.; Itoh, H.; Hirashima, M.; Ogawa, M.; Nishikawa, S.; Yurugi, T.; Naito, M.; Nakao, K.; Nishikawa, S., Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 2000, 408 (6808), 92-6.
63. Poole, T. J.; Coffin, J. D., Vasculogenesis and angiogenesis: two distinct morphogenetic mechanisms establish embryonic vascular pattern. The Journal of experimental zoology 1989, 251 (2), 224-31.
64. Flamme, I.; Frolich, T.; Risau, W., Molecular mechanisms of vasculogenesis and embryonic angiogenesis. Journal of cellular physiology 1997, 173 (2), 206-10.
65. Risau, W., Mechanisms of angiogenesis. Nature 1997, 386 (6626), 671-4.
66. Haar, J. L.; Ackerman, G. A., A phase and electron microscopic study of vasculogenesis and erythropoiesis in the yolk sac of the mouse. The Anatomical record 1971, 170 (2), 199-223.
67. Choi, K., The hemangioblast: a common progenitor of hematopoietic and endothelial cells. Journal of hematotherapy \& stem cell research 2002, 11 (1), 91-101.
68. Choi, K.; Kennedy, M.; Kazarov, A.; Papadimitriou, J. C.; Keller, G., A common precursor for hematopoietic and endothelial cells. Development 1998, 125 (4), 725-32.
69. Kurian, L.; Sancho-Martinez, I.; Nivet, E.; Aguirre, A.; Moon, K.; Pendaries, C.; VolleChallier, C.; Bono, F.; Herbert, J.-M.; Pulecio, J.; Xia, Y.; Li, M.; Montserrat, N.; Ruiz, S.; Dubova, I.; Rodriguez, C.; Denli, A. M.; Boscolo, F. S.; Thiagarajan, R. D.; Gage, F. H.; Loring, J. F.; Laurent, L.
C.; Izpisua Belmonte, J. C., Conversion of human fibroblasts to angioblast-like progenitor cells. Nat Meth 2013, 10 (1), 77-83.
70. Lu, S. J.; Feng, Q.; Caballero, S.; Chen, Y.; Moore, M. A.; Grant, M. B.; Lanza, R., Generation of functional hemangioblasts from human embryonic stem cells. Nature methods 2007, 4 (6), 501-9.
71. Liu, F.; Bhang, S. H.; Arentson, E.; Sawada, A.; Kim, C. K.; Kang, I.; Yu, J.; Sakurai, N.; Kim, S. H.; Yoo, J. J.; Kim, P.; Pahng, S. H.; Xia, Y.; Solnica-Krezel, L.; Choi, K., Enhanced hemangioblast generation and improved vascular repair and regeneration from embryonic stem cells by defined transcription factors. Stem cell reports 2013, 1 (2), 166-82.
72. Vereide, David T.; Vickerman, V.; Swanson, Scott A.; Chu, L.-F.; McIntosh, Brian E.; Thomson, James A., An Expandable, Inducible Hemangioblast State Regulated by Fibroblast Growth Factor. Stem cell reports 2014, 3 (6), 1043-1057.
73. Huber, T. L.; Kouskoff, V.; Fehling, H. J.; Palis, J.; Keller, G., Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 2004, 432 (7017), 625-30.
74. Shalaby, F.; Rossant, J.; Yamaguchi, T. P.; Gertsenstein, M.; Wu, X. F.; Breitman, M. L.; Schuh, A. C., Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995, 376 (6535), 62-6.
75. Lee, D.; Park, C.; Lee, H.; Lugus, J. J.; Kim, S. H.; Arentson, E.; Chung, Y. S.; Gomez, G.; Kyba, M.; Lin, S.; Janknecht, R.; Lim, D.-S.; Choi, K., ER71 Acts Downstream of BMP, Notch, and Wnt Signaling in Blood and Vessel Progenitor Specification. Cell Stem Cell 2008, 2 (5), 497-507.
76. Kataoka, H.; Hayashi, M.; Nakagawa, R.; Tanaka, Y.; Izumi, N.; Nishikawa, S.; Jakt, M. L.; Tarui, H.; Nishikawa, S., Etv2/ER71 induces vascular mesoderm from Flk1+PDGFRalpha+ primitive mesoderm. Blood 2011, 118 (26), 6975-86.
77. Landmesser, U.; Hornig, B.; Drexler, H., Endothelial function: a critical determinant in atherosclerosis? Circulation 2004, 109 (21 Suppl 1), Ii27-33.
78. Davignon, J.; Ganz, P., Role of endothelial dysfunction in atherosclerosis. Circulation 2004, 109 (23 Suppl 1), Iii27-32.
79. Margariti, A.; Winkler, B.; Karamariti, E.; Zampetaki, A.; Tsai, T. N.; Baban, D.; Ragoussis, J.; Huang, Y.; Han, J. D.; Zeng, L.; Hu, Y.; Xu, Q., Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels. Proc Natl Acad Sci U S A 2012, 109 (34), 13793-8.
80. Li, J.; Huang, N. F.; Zou, J.; Laurent, T. J.; Lee, J. C.; Okogbaa, J.; Cooke, J. P.; Ding, S., Conversion of human fibroblasts to functional endothelial cells by defined factors. Arterioscler Thromb Vasc Biol 2013, 33 (6), 1366-75.
81. Oikawa, T.; Yamada, T., Molecular biology of the Ets family of transcription factors. Gene

2003, 303, 11-34.
82. Pham, V. N.; Lawson, N. D.; Mugford, J. W.; Dye, L.; Castranova, D.; Lo, B.; Weinstein, B. M., Combinatorial function of ETS transcription factors in the developing vasculature. Developmental biology 2007, 303 (2), 772-83.
83. Sumanas, S.; Lin, S., Ets1-related protein is a key regulator of vasculogenesis in zebrafish. PLoS Biol 2006, 4 (1), e10.
84. Ferdous, A.; Caprioli, A.; Iacovino, M.; Martin, C. M.; Morris, J.; Richardson, J. A.; Latif, S.; Hammer, R. E.; Harvey, R. P.; Olson, E. N.; Kyba, M.; Garry, D. J., Nkx2-5 transactivates the Etsrelated protein 71 gene and specifies an endothelial/endocardial fate in the developing embryo. Proc Natl Acad Sci U S A 2009, 106 (3), 814-9.
85. De Val, S.; Black, B. L., Transcriptional control of endothelial cell development. Developmental cell 2009, 16 (2), 180-95.
86. Shi, X.; Richard, J.; Zirbes, K. M.; Gong, W.; Lin, G.; Kyba, M.; Thomson, J. A.; KoyanoNakagawa, N.; Garry, D. J., Cooperative interaction of Etv2 and Gata2 regulates the development of endothelial and hematopoietic lineages. Developmental biology 2014, 389 (2), 208-18.
87. De Val, S.; Chi, N. C.; Meadows, S. M.; Minovitsky, S.; Anderson, J. P.; Harris, I. S.; Ehlers, M. L.; Agarwal, P.; Visel, A.; Xu, S. M.; Pennacchio, L. A.; Dubchak, I.; Krieg, P. A.; Stainier, D. Y.; Black, B. L., Combinatorial regulation of endothelial gene expression by ets and forkhead transcription factors. Cell 2008, 135 (6), 1053-64.
88. Rasmussen, T. L.; Shi, X.; Wallis, A.; Kweon, J.; Zirbes, K. M.; Koyano-Nakagawa, N.; Garry, D. J., VEGF/Flk1 signaling cascade transactivates Etv2 gene expression. PloS one 2012, 7 (11), e50103.
89. Behrens, A. N.; Zierold, C.; Shi, X.; Ren, Y.; Koyano-Nakagawa, N.; Garry, D. J.; Martin, C. M., Sox7 is regulated by ETV2 during cardiovascular development. Stem Cells Dev 2014, 23 (17), 2004-13.
90. Koyano-Nakagawa, N.; Kweon, J.; Iacovino, M.; Shi, X.; Rasmussen, T. L.; Borges, L.; Zirbes, K. M.; Li, T.; Perlingeiro, R. C.; Kyba, M.; Garry, D. J., Etv2 is expressed in the yolk sac hematopoietic and endothelial progenitors and regulates Lmo2 gene expression. Stem Cells 2012, 30 (8), 1611-23.
91. Abedin, M. J.; Nguyen, A.; Jiang, N.; Perry, C. E.; Shelton, J. M.; Watson, D. K.; Ferdous, A., Fli1 acts downstream of Etv2 to govern cell survival and vascular homeostasis via positive autoregulation. Circulation research 2014, 114 (11), 1690-9.
92. Singh, B. N.; Kawakami, Y.; Akiyama, R.; Rasmussen, T. L.; Garry, M. G.; Gong, W.; Das, S.; Shi, X.; Koyano-Nakagawa, N.; Garry, D. J., The Etv2-miR-130a Network Regulates Mesodermal Specification. Cell reports 2015, 13 (5), 915-23.
93. Lindgren, A. G.; Veldman, M. B.; Lin, S., ETV2 expression increases the efficiency of primitive endothelial cell derivation from human embryonic stem cells. Cell Regeneration 2015, 4 (1), 1.
94. Park, C.; Lee, T. J.; Bhang, S. H.; Liu, F.; Nakamura, R.; Oladipupo, S. S.; Pitha-Rowe, I.; Capoccia, B.; Choi, H. S.; Kim, T. M.; Urao, N.; Ushio-Fukai, M.; Lee, D.; Miyoshi, H.; Kim, B. S.; Lim, D. S.; Apte, R. S.; Ornitz, D. M.; Choi, K., Injury-Mediated Vascular Regeneration Requires Endothelial ER71/ETV2. Arterioscler Thromb Vasc Biol 2016, 36 (1), 86-96.
95. Lee, S.; Park, C.; Han, J. W.; Kim, J. Y.; Cho, K.; Kim, E. J.; Kim, S.; Lee, S. J.; Oh, S. Y.; Tanaka, Y.; Park, I. H.; An, H. J.; Shin, C. M.; Sharma, S.; Yoon, Y. S., Direct Reprogramming of Human Dermal Fibroblasts Into Endothelial Cells Using ER71/ETV2. Circulation research 2017, 120 (5), 848-861.
96. Ginsberg, M.; James, D.; Ding, B. S.; Nolan, D.; Geng, F.; Butler, J. M.; Schachterle, W.; Pulijaal, V. R.; Mathew, S.; Chasen, S. T.; Xiang, J.; Rosenwaks, Z.; Shido, K.; Elemento, O.; Rabbany, S. Y.; Rafii, S., Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFbeta suppression. Cell 2012, 151 (3), 559-75.
97. Han, J. K.; Chang, S. H.; Cho, H. J.; Choi, S. B.; Ahn, H. S.; Lee, J.; Jeong, H.; Youn, S. W.; Lee, H. J.; Kwon, Y. W.; Cho, H. J.; Oh, B. H.; Oettgen, P.; Park, Y. B.; Kim, H. S., Direct conversion of adult skin fibroblasts to endothelial cells by defined factors. Circulation 2014, 130 (14), 1168-78.
98. Morita, R.; Suzuki, M.; Kasahara, H.; Shimizu, N.; Shichita, T.; Sekiya, T.; Kimura, A.; Sasaki, K.; Yasukawa, H.; Yoshimura, A., ETS transcription factor ETV2 directly converts human fibroblasts into functional endothelial cells. Proc Natl Acad Sci U S A 2015, 112 (1), 160-5.
99. Ponting, C. P.; Belgard, T. G., Transcribed dark matter: meaning or myth? Human molecular genetics 2010, 19 (R2), R162-8.
100. Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D. G.; Lagarde, J.; Veeravalli, L.; Ruan, X.; Ruan, Y.; Lassmann, T.; Carninci, P.; Brown, J. B.; Lipovich, L.; Gonzalez, J. M.; Thomas, M.; Davis, C. A.; Shiekhattar, R.; Gingeras, T. R.; Hubbard, T. J.; Notredame, C.; Harrow, J.; Guigo, R., The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome research 2012, 22 (9), 1775-89.
101. Quinn, J. J.; Chang, H. Y., Unique features of long non-coding RNA biogenesis and function. Nature reviews. Genetics 2016, 17 (1), 47-62.
102. Guttman, M.; Amit, I.; Garber, M.; French, C.; Lin, M. F.; Feldser, D.; Huarte, M.; Zuk, O.; Carey, B. W.; Cassady, J. P.; Cabili, M. N.; Jaenisch, R.; Mikkelsen, T. S.; Jacks, T.; Hacohen, N.; Bernstein, B. E.; Kellis, M.; Regev, A.; Rinn, J. L.; Lander, E. S., Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009, 458 (7235), 223-7.
103. Vallot, C.; Rougeulle, C., Long non-coding RNAs and human X-chromosome regulation: a coat for the active X chromosome. RNA biology 2013, 10 (8), 1262-5.
104. Tsuiji, H.; Yoshimoto, R.; Hasegawa, Y.; Furuno, M.; Yoshida, M.; Nakagawa, S., Competition between a noncoding exon and introns: Gomafu contains tandem UACUAAC repeats and associates with splicing factor-1. Genes to cells : devoted to molecular \& cellular mechanisms 2011, 16 (5), 479-90.
105. Zhang, B.; Gunawardane, L.; Niazi, F.; Jahanbani, F.; Chen, X.; Valadkhan, S., A novel RNA motif mediates the strict nuclear localization of a long noncoding RNA. Molecular and cellular biology 2014, 34 (12), 2318-29.
106. Xu, C.; Zhang, Y.; Wang, Q.; Xu, Z.; Jiang, J.; Gao, Y.; Gao, M.; Kang, J.; Wu, M.; Xiong, J.; Ji, K.; Yuan, W.; Wang, Y.; Liu, H., Long non-coding RNA GAS5 controls human embryonic stem cell self-renewal by maintaining NODAL signalling. Nat Comтип 2016, 7, 13287.
107. Khalil, A. M.; Guttman, M.; Huarte, M.; Garber, M.; Raj, A.; Rivea Morales, D.; Thomas, K.; Presser, A.; Bernstein, B. E.; van Oudenaarden, A.; Regev, A.; Lander, E. S.; Rinn, J. L., Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 2009, 106 (28), 11667-72.
108. Rinn, J. L.; Chang, H. Y., Genome regulation by long noncoding RNAs. Annual review of biochemistry 2012, 81, 145-66.
109. Klattenhoff, C. A.; Scheuermann, J. C.; Surface, L. E.; Bradley, R. K.; Fields, P. A.; Steinhauser, M. L.; Ding, H.; Butty, V. L.; Torrey, L.; Haas, S.; Abo, R.; Tabebordbar, M.; Lee, R. T.; Burge, C. B.; Boyer, L. A., Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 2013, 152 (3), 570-83.
110. Li, K.; Blum, Y.; Verma, A.; Liu, Z.; Pramanik, K.; Leigh, N. R.; Chun, C. Z.; Samant, G. V.; Zhao, B.; Garnaas, M. K.; Horswill, M. A.; Stanhope, S. A.; North, P. E.; Miao, R. Q.; Wilkinson, G. A.; Affolter, M.; Ramchandran, R., A noncoding antisense RNA in tie-1 locus regulates tie-1 function in vivo. Blood 2010, 115 (1), 133-9.
111. Kurian, L.; Aguirre, A.; Sancho-Martinez, I.; Benner, C.; Hishida, T.; Nguyen, T. B.; Reddy, P.; Nivet, E.; Krause, M. N.; Nelles, D. A.; Rodriguez Esteban, C.; Campistol, J. M.; Yeo, G. W.; Izpisua Belmonte, J. C., Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development. Circulation 2015, 131 (14), 1278-90.
112. Lin, N.; Chang, K. Y.; Li, Z.; Gates, K.; Rana, Z. A.; Dang, J.; Zhang, D.; Han, T.; Yang, C. S.; Cunningham, T. J.; Head, S. R.; Duester, G.; Dong, P. D.; Rana, T. M., An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Molecular cell 2014, 53 (6), 1005-19.
113. Kretz, M.; Webster, D. E.; Flockhart, R. J.; Lee, C. S.; Zehnder, A.; Lopez-Pajares, V.; Qu, K.;

Zheng, G. X.; Chow, J.; Kim, G. E.; Rinn, J. L.; Chang, H. Y.; Siprashvili, Z.; Khavari, P. A., Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes \& development 2012, 26 (4), 338-43.
114. Kretz, M.; Siprashvili, Z.; Chu, C.; Webster, D. E.; Zehnder, A.; Qu, K.; Lee, C. S.; Flockhart, R. J.; Groff, A. F.; Chow, J.; Johnston, D.; Kim, G. E.; Spitale, R. C.; Flynn, R. A.; Zheng, G. X.; Aiyer, S.; Raj, A.; Rinn, J. L.; Chang, H. Y.; Khavari, P. A., Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 2013, 493 (7431), 231-5.
115. Yang, Y. W.; Flynn, R. A.; Chen, Y.; Qu, K.; Wan, B.; Wang, K. C.; Lei, M.; Chang, H. Y., Essential role of lncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. eLife 2014, 3, e02046.
116. Wang, K. C.; Yang, Y. W.; Liu, B.; Sanyal, A.; Corces-Zimmerman, R.; Chen, Y.; Lajoie, B. R.; Protacio, A.; Flynn, R. A.; Gupta, R. A.; Wysocka, J.; Lei, M.; Dekker, J.; Helms, J. A.; Chang, H. Y., A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011, 472 (7341), 120-4.
117. Di Ruscio, A.; Ebralidze, A. K.; Benoukraf, T.; Amabile, G.; Goff, L. A.; Terragni, J.; Figueroa, M. E.; De Figueiredo Pontes, L. L.; Alberich-Jorda, M.; Zhang, P.; Wu, M.; D'Alo, F.; Melnick, A.; Leone, G.; Ebralidze, K. K.; Pradhan, S.; Rinn, J. L.; Tenen, D. G., DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 2013, 503 (7476), 371-6.
118. Bell, R. D.; Long, X.; Lin, M.; Bergmann, J. H.; Nanda, V.; Cowan, S. L.; Zhou, Q.; Han, Y.; Spector, D. L.; Zheng, D.; Miano, J. M., Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA. Arterioscler Thromb Vasc Biol 2014, 34 (6), 1249-59.
119. Boulberdaa, M.; Scott, E.; Ballantyne, M.; Garcia, R.; Descamps, B.; Angelini, G. D.; Brittan, M.; Hunter, A.; McBride, M.; McClure, J.; Miano, J. M.; Emanueli, C.; Mills, N. L.; Mountford, J. C.; Baker, A. H., A Role for the Long Noncoding RNA SENCR in Commitment and Function of Endothelial Cells. Molecular therapy : the journal of the American Society of Gene Therapy 2016, 24 (5), 978-90.
120. Zou, Z. Q.; Xu, J.; Li, L.; Han, Y. S., Down-regulation of SENCR promotes smooth muscle cells proliferation and migration in $\mathrm{db} / \mathrm{db}$ mice through up-regulation of FoxO1 and TRPC6. Biomedicine \& pharmacotherapy = Biomedecine \& pharmacotherapie 2015, 74, 35-41.
121. Furchgott, R. F.; Zawadzki, J. V., The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980, 288 (5789), 373-6.
122. Huang, P. L.; Huang, Z.; Mashimo, H.; Bloch, K. D.; Moskowitz, M. A.; Bevan, J. A.; Fishman, M. C., Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 1995, 377 (6546), 239-42.
123. Wood, K. C.; Cortese-Krott, M. M.; Kovacic, J. C.; Noguchi, A.; Liu, V. B.; Wang, X.; Raghavachari, N.; Boehm, M.; Kato, G. J.; Kelm, M.; Gladwin, M. T., Circulating blood endothelial nitric oxide synthase contributes to the regulation of systemic blood pressure and nitrite homeostasis. Arterioscler Thromb Vasc Biol 2013, 33 (8), 1861-71.
124. van Haperen, R.; de Waard, M.; van Deel, E.; Mees, B.; Kutryk, M.; van Aken, T.; Hamming, J.; Grosveld, F.; Duncker, D. J.; de Crom, R., Reduction of blood pressure, plasma cholesterol, and atherosclerosis by elevated endothelial nitric oxide. The Journal of biological chemistry 2002, 277 (50), 48803-7.
125. Ozaki, M.; Kawashima, S.; Yamashita, T.; Hirase, T.; Namiki, M.; Inoue, N.; Hirata, K.; Yasui, H.; Sakurai, H.; Yoshida, Y.; Masada, M.; Yokoyama, M., Overexpression of endothelial nitric oxide synthase accelerates atherosclerotic lesion formation in apoE-deficient mice. The Journal of clinical investigation 2002, 110 (3), 331-40.
126. Wei, X.; Schneider, J. G.; Shenouda, S. M.; Lee, A.; Towler, D. A.; Chakravarthy, M. V.; Vita, J. A.; Semenkovich, C. F., De novo lipogenesis maintains vascular homeostasis through endothelial nitric-oxide synthase (eNOS) palmitoylation. The Journal of biological chemistry 2011, 286 (4), 2933-45.
127. Andersen, J. S.; Lyon, C. E.; Fox, A. H.; Leung, A. K.; Lam, Y. W.; Steen, H.; Mann, M.; Lamond, A. I., Directed proteomic analysis of the human nucleolus. Current biology : CB 2002, 12 (1), 1-11.
128. Chen, L. L.; Carmichael, G. G., Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Molecular cell 2009, 35 (4), 467-78.
129. Yamazaki, T.; Hirose, T., The building process of the functional paraspeckle with long noncoding RNAs. Frontiers in bioscience (Elite edition) 2015, 7, 1-41.
130. Wang, J.; Rajbhandari, P.; Damianov, A.; Han, A.; Sallam, T.; Waki, H.; Villanueva, C. J.; Lee, S. D.; Nielsen, R.; Mandrup, S.; Reue, K.; Young, S. G.; Whitelegge, J.; Saez, E.; Black, D. L.; Tontonoz, P., RNA-binding protein PSPC1 promotes the differentiation-dependent nuclear export of adipocyte RNAs. The Journal of clinical investigation 2017, 127 (3), 987-1004.
131. Kuwahara, S.; Ikei, A.; Taguchi, Y.; Tabuchi, Y.; Fujimoto, N.; Obinata, M.; Uesugi, S.; Kurihara, Y., PSPC1, NONO, and SFPQ are expressed in mouse Sertoli cells and may function as coregulators of androgen receptor-mediated transcription. Biology of reproduction 2006, 75 (3), 352-9. 132. Torres-Estay, V.; Carreno, D. V.; San Francisco, I. F.; Sotomayor, P.; Godoy, A. S.; Smith, G. J., Androgen receptor in human endothelial cells. The Journal of endocrinology 2015, 224 (3), R131-7.

Acknowledgement

Because many people cheered up me, I was able to work hard for my experiment. I am grateful for the support of everyone who helped to complete this paper.

I would like to appreciate to my supervisor, Professor Jeong Beom Kim, for accepting me as a master's degree graduate student. This thesis was supervised by Professor Jeong Beom Kim. Experimental guidance and teaching which I was given during graduation course will not be forgotten. Also, I would like to appreciate to my thesis examining committee, professor Chan Young Park and professor Tae Joo Park. I learned many things from their advice and comment at my thesis defense presentation.

I have received various advice and support from my colleagues. Firstly, I would like to appreciate to Postdoctoral fellows, Dr. Sang Min Lee who designed and led the direction of lncRNA mechanism study with me and taught molecular experimental technique to me and Dr. Seok Jin Lee who taught us what graduate student should learn basically. Also, I want to express my gratitude to my laboratory senior students. Thanks to Myung Rae Park, Hyunah Lee and Soo Young Park who contributed to set up experiments about generation and characterization of endothelial cells. Your diverse advices have greatly influenced me to finish my degree. Also, thanks to Dong Gyu Nam who taught writing thesis from start to end and discussed about presentation with me. You will soon become a wonderful scientist because you do your best in everything. And, thanks to Hong Dae Seo and Ji Hoon Son who are junior students in this laboratory. I could not help you much, but I hope that your passion for studying will last. And, thanks to my friends who entered at the same time, Ji-hye Park and Juchan Lim. I believe we can succeed on our own field and meet again. Additionally, thanks to calcium dynamics laboratory students who helped setting up protein works and luciferase assay experiments. Thank you for helping the experiments in the middle of busy days.

Lastly, I want to share my accomplishment with big supporters, my mother and sister. The unstinted love of my family made me stronger. Thank you for always cheering me so that I could do my best in my study.

The authors declare no conflict of interest.

