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Abstract

Hawkes Processes (HPs) capture self- and mutual-excitation between events when the arrival of one

event makes future ones more likely to happen in time-series data. Identification of the temporal covari-

ance kernel can reveal the underlying structure to better predict future events.

In this work, we present a new framework to represent time-series events with a composition of

self-triggering kernels of Hawkes Processes. Our automatic decomposition procedure is composed of

three main steps: (1) discretized kernel estimation through frequency domain inversion equation asso-

ciated with the covariance density, (2) greedy kernel decomposition through four base kernels and their

combinations (addition and multiplication), and (3) automated report generation. In addition, we report

the first multiplicative kernel compositions along with stationarity conditions for Hawkes Processes. We

demonstrate that the new automatic kernel decomposition procedure performs better to predict future

events than the existing framework in real-world data.



Contents

Abstract 1

I. Introduction 1

II. Point Processes 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Problem Definition and Thesis Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Examples of Point Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Point Processes on the Real Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

III. Hawkes Processes 8
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Mathematical Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Methods of Kernel Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 Parametric Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.2 Nonparametric Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Examples in Real-World Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.1 Hawkes Processes in Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.2 Hawkes Processes in Earthquake/Seismicity . . . . . . . . . . . . . . . . . . . . 14

3.4.3 Hawkes Processes for Networked Analysis of Social Networks . . . . . . . . . . 15

IV. Discretized Kernel Estimation 16
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Relation between first- and second-order statistics and kernel function . . . . . . . . . . 16

4.3 Empirical Nonparametric Estimation of Covariance . . . . . . . . . . . . . . . . . . . . 20

4.4 Hilbert Transform and Cepstral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4.1 Hilbert Transform description . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4.2 Integrating in the Complex Domain: The Cauchy Integral . . . . . . . . . . . . 22

4.4.3 Relation to the Fourier Transform and Cepstral Analysis . . . . . . . . . . . . . 24

4.5 Minimal Phase Solution of the Phase Indeterminacy Problem . . . . . . . . . . . . . . . 25

4.6 Summary: Discretized Kernel Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 26

V. Automatic Kernel Decomposition 28
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.1 Self-Exciting Base Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Greedy Kernel Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Stationarity Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Analysis of Higher-Order Kernel Decomposition . . . . . . . . . . . . . . . . . . . . . 32



5.3.1 EXP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3.2 PWL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3.3 SQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3.4 SNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3.5 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

VI. Report 34
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Automated Report Generation for Hawkes Processes . . . . . . . . . . . . . . . . . . . 34

6.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

VII.Experiments 37
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.2.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.2.2 Financial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.2.3 Earthquake Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

VIII.Conclusion 48
8.1 Summary of Thesis Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Acknowledgements 50

I. Mathematical Derivation of Stationarity Criteria for Multiplicative Combinations of Ker-
nels 54
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.1.1 EXP x EXP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.1.2 EXP x PWL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.1.3 EXP x SQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.1.4 EXP x SNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.1.5 PWL x PWL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.1.6 PWL x SQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.1.7 PWL x SNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.1.8 SQR x SQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.1.9 SQR x SNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.1.10 SNS x SNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

II. Log-likelihood formula for HPs 58
B.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2



List of Figures

2.1 Applying diversity to a human detector, previously noisy and uncertain, leads to a sepa-

rated, cleaner set of predictions. Source: (Kulesza, 2012). . . . . . . . . . . . . . . . . . 5

2.2 An example of a Counting Process N(t). . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 An example of a Non-homogeneous Poisson Process. Since the number of people ar-

riving at a restaurant throughout a day peaks during mealtimes and drops during the

remaining periods, it is reasonable to assume that the underlying intensity varies with time. 7

3.1 “Immigrant-Birth Representation” of a Hawkes Process. A branching process, evidenc-

ing the immigrants (squares) and its descendant events (circles). Source: (Laub, 2015). . 9

3.2 An example of an Intensity Function of a self-triggering Point Process λ (t). . . . . . . . 10

3.3 Buy (in blue) and Sell (in red) operations in a stock may be seen as two complementary

HPs, with price jumps increasing the arrival of Buys while inhibiting the Sell operations 14

4.1 Discretized covariance estimate from a sequence generated with exponential kernel. . . . 19

4.2 Discretized covariance estimate from a sequence generated with square kernel. . . . . . 19

4.3 Discretized covariance estimate from a sequence generated with sinusoidal kernel. . . . . 20

4.4 Diagram of triangular kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5 A diagram of the integral, in the complex domain, of a piecewise smooth curve. . . . . . 23

4.6 New closed contour, defined for when a is located over the old contour. Source: (Jo-

hansson, 2006). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.7 Amplitudes of original and resulting Z f (ω) function. . . . . . . . . . . . . . . . . . . . 25

5.1 The four base kernel types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 A diagram for the Kernel Decomposition Algorithm. . . . . . . . . . . . . . . . . . . . 30

7.1 Technology: Comparison among loglikelihood of Decomposition Algorithm model (blue)

and the usual exponential Hawkes model (red), fitted through Gradient descent. . . . . . 40

7.2 Technology: (a) Comparison among loglikelihood of first- (green) and second-level

(blue) of Decomposition Algorithm. (b) Difference among loglikelihood of first- and

second-level for each sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.3 Healthcare: Comparison among loglikelihood of Decomposition Algorithm model (blue)

and the usual exponential Hawkes model (red), fitted through Gradient descent. . . . . . 41

7.4 Healthcare: (a) Comparison among loglikelihood of first- (green) and second-level (blue)

of Decomposition Algorithm. (b) Difference among loglikelihood of first- and second-

level for each sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.5 Industrial Goods: Comparison among loglikelihood of Decomposition Algorithm model

(blue) and the usual exponential Hawkes model (red), fitted through Gradient descent. . . 42



7.6 Industrial Goods: (a) Comparison among loglikelihood of first- (green) and second-

level (blue) of Decomposition Algorithm. (b) Difference among loglikelihood of first-

and second-level for each sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.7 Services: Comparison among loglikelihood of Decomposition Algorithm model (blue)

and the usual exponential Hawkes model (red), fitted through Gradient descent. . . . . . 43

7.8 Services: (a) Comparison among loglikelihood of first- (green) and second-level (blue)

of Decomposition Algorithm. (b) Difference among loglikelihood of first- and second-

level for each sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.9 Utilities: Comparison among loglikelihood of Decomposition Algorithm model (blue)

and the usual exponential Hawkes model (red), fitted through Gradient descent. . . . . . 44

7.10 Utilities: (a) Comparison among loglikelihood of first- (green) and second-level (blue)

of Decomposition Algorithm. (b) Difference among loglikelihood of first- and second-

level for each sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.11 Q-Q Plots from Kernel Decomposition estimation over the Earthquake Dataset sequences. 47

4



List of Tables

5.1 Four base kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Stationarity Condition of the four Base Kernels. . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Stationarity Condition for Multiplicative Combination of the four Base Kernels. . . . . . 32

7.1 Confusion matrices among the four basic kernel types for original horizon length (left)

and histogram-based horizon length (right). . . . . . . . . . . . . . . . . . . . . . . . . 38

7.2 List of stocks selected for each category. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.3 Number of resulting valid sequences for each category. . . . . . . . . . . . . . . . . . . 39

7.4 Aggregate comparison, among the Gradient Descent based HP model and the first- and

second-level decompositions of the proposed algorithm, for each of the five datasets. . . 40

7.5 Frequency of estimated kernel type of first level decomposition for (a) 100-point and (b)

20-point grid resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.6 Frequency of estimated kernel type of second level decomposition for (a) 100-point and

(b) 20-point grid resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



List of Abbreviations

CIF Conditional Intensity Function. 8, 9, 11, 14

HP Hawkes Process. 1, 3, 6, 8–11, 13, 14, 17, 48

HPP Homogenous Poisson Process. 6, 8, 9

NHPP Non-homogenous Poisson Process. 6

PP Poisson Process. 8, 9



Chapter I

Introduction

Point Processes [1] have been used for modeling time-events series data. Hawkes Processes (HP) [2]

are point processes for modeling self-exciting behavior, i.e., when the arrival of one event makes future

events more likely to happen. This type of behavior has been observed in various domains, such as

earthquakes, financial markets, web traffic patterns, crime rates [3, 4] and social media [5].

As an example, in high-frequency finance, buyers and sellers of stocks demonstrate herding behavior

[6, 7]. After the main earthquake, several aftershocks follow according to a time-clustered pattern [8].

In web data, hyperlink proliferation across pages exhibit self- and mutual-excitation [9]. In criminology,

gang-related retaliatory crime patterns are grouped in time [3]. In social media, the ‘infectiousness’ of

posts can be shown to be modeled through a self- and mutual-excitement assumption [5].

In Hawkes Processes analysis, some parametric kernels capture intra-domain typical behaviors, e.g.,

quick time-decaying exponential excitation in the case of finance and web data [10, 9]; slower power-

law decay in earthquake-related data [8]; and periodicity-inducing sinusoidal kernel in TV-watching data

[11].

Choosing a proper kernel type may significantly contribute to learning the model parameters and

better predicting future events. Kernel parameters may be fitted in the data through the gradient descent

method over a likelihood function penalized by a regularization criterion (e.g., Akaike Information Cri-

terion) on the number of parameters [12]. Another method of kernel estimation is through the use of

the power spectrum of the second order statistics of the process: covariance density and normalized co-

variance [2]. These are well defined when the self-triggering function induces what is called stationary

behaviour.

In this work, we present an automatic kernel selection and learning algorithm for Hawkes Processes.

Given four types of base kernels (EXP,PWL,SQR and SNS), our algorithm finds the best fitting kernel.

For handling composite types of events, we develop a new kernel decomposition method which repre-

sents the composition (sum and product) of different kernels. For verifying the stationarity property of

each composite kernel, we also derived analytical expressions for the stationarity conditions. To our best

knowledge, this is the first multi-class kernel decomposition framework for HPs.

The main steps of the automatic framework, which will be thoroughly explained in the following

sections, are then: discretized kernel estimation and greedy kernel decomposition. An automatic frame-

work for extracting relevant typical features of self-excitement from raw data would likely make the

Hawkes Processes analysis faster and conveniently expressed through a human-readable report. Thus,

the automated generation of such a report is also discussed.

Automatic analysis frameworks for Gaussian Processes (GPs) are proposed in [13] and [14]. How-

ever, due the fundamental distinctions between GPs and HPs (such as stationarity conditions and causal-

ity assumptions for the latter), the techniques proposed for GPs can not be extended to HPs in a straight-

1



forward manner. We include additional references in the Chapter 8.

In the following, we give a general view of Point Processes in Chapter 2. In Chapter 3, we review the

Hawkes Processes models. In Chapters 4 and 5, we will introduce the steps of our kernel decomposition

algorithm up to two kernels, together with a theoretical analysis of when there may be a composition

of more than two kernels. Chapter 7 includes experiments on our decomposition method, followed by

conclusions in Chapter 8.
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Chapter II

Point Processes

2.1 Introduction

Point processes are probabilistic models, for capturing temporal and spatial characteristics of discrete

event arrivals, which arose from the need to deal with integer-valued counting of events such as queues

(people arriving in a store) [1], earthquake shocks [8], war death counts [15] and paper citations [16].

This chapter intends to introduce the thesis goal and serve as a general view of the field of Point

Processes, with its main qualitative and quantitative aspects being loosely explained along with a good

number of real-world examples, for facilitating understanding. It is divided into the following sections:

• Problem Definition and Thesis Goal

• Examples of Point Processes

• Point Processes on the Real Line

2.2 Problem Definition and Thesis Goal

The problem to be studied is the probabilistic prediction of future events of some given type. Given a

sequence of said time events, represented through a vector with their corresponding time coordinates, as

in:

(t1, t2, ...tn),

we are interested in predicting the probability of a future event at t’ (tn < t ′).

In the case of the present work, the types of events studied exhibit self-exciting behaviour, which is

when the occurrence of an event makes further events more likely to happen. This type of behaviour,

which will be further explained in Chapter 3, can successfully model several types of data. As an

example:

• In high-frequency finance, buyers and sellers of stocks demonstrate herding behaviour [6, 7].

• After the main shock, several earthquakes’ aftershocks follow according to a time-clusterized

pattern [8].

Given our goal of analyzing this type of behaviour, we propose a framework for finding the best pre-

dictive model with compositions of heterogeneous types of self-excitation between events, developing a

way to:

• Automatically interpret self-exciting behaviour in several domains of data, in a multi-type ap-

proach

• And make it available to the general public, in the form of an automatically generated report

3



2.3 Examples of Point Processes

This section aims on giving a brief and intuitive view of the main aspects and concepts related to Point

Processes. They are strongly related to the modeling of a variety of real-world situations. As some

examples of its importance and pervasiveness on real world phenomena:

• People arriving in a store can be modeled as a sequence of event arrivals, with a time coordinate

associated with each person. The rate of arrivals will most likely vary throughout daily, weekly

and yearly periods, and properties such as this seasonality of arrivals are well-studied subjects on

the field of Queueing Theory.

• Given that fixing machines deals mainly with replacing whole parts, the times of replacements of

broken mechanical parts of some machine can be understood as a temporal sequence of discrete

events, in which the length of each consecutive interval is independent of the length of the previous

ones, being sampled from a probability distribution such as Exponential. This is the main concept

behind the subject of Renewal Processes, a subtype of Point Process.

• Spatiotemporal patterns of occurrences of earthquakes have long been studied, mostly in countries

prone to high seismic activity, for very practical reasons, with the clustering patterns of both

geographical and temporal coordinates of the shocks also being modeled through point processes.

In this case, the coordinates of each shock will be associated with the value of its magnitude,

usually measured in the Richter scale. This magnitude coordinate can be treated as a so-called

mark of the event, and the sequence of shocks may then be modelled as a Marked Point Process,

a subtype of point process.

• In [15], civilian deaths in Iraq, along with their corresponding times, were modeled as point

processes with arrival rates which varied in predictable ways.

• By considering criminal activities with its spatio-temporal coordinates stored as a sequence, and

being influenced by criminological research demonstrating a contagion-like dynamics in which

crimes can spread through local environments, s.a., burglars repeatedly attacking clusters of nearby

targets because the offenders may then be well acquainted with local vulnerabilities, and gang

shooting inciting waves of retaliatory violence in the territories of rival gangs, [4] proposes a point

process for modeling this formation of crime clusters in space and time, with regularities similar to

those of earthquakes’ time series. A Predictive Policing software, denominated ’Predpol’, based

on this model, predicted criminal occurrences at twice the rate of the police department’s experi-

enced crime analysts, in the city of Los Angeles.

• Determinantal Point Processes (DPP) enjoyed a recent surge in popularity in Machine Learning

research,for introducing repulsion and consequently diversity in datasets, thus potentially increas-

ing the generalization power of ML algorithms.[17]. By treating a dataset as a set in which more

similar data points are located closer to each other, and considering the instantiation of a specific

4



Figure 2.1: Applying diversity to a human detector, previously noisy and uncertain, leads to a separated,

cleaner set of predictions. Source: (Kulesza, 2012).

data point as a point process event, a DP works by influencing the instantiation in a way that

data points close to the currently selected point are inhibited, forcing the next event to come from

a region of less similarity, therefore increasing the diversity of the training data sequence. The

usefulness of this repulsion effect is also demonstrated in detection algorithms (see Figure 2.1)

• Academic citation counts may also fall under the scope of Point Process modeling. By considering

each time in which a specific paper is cited as being part of a sequence of events, [16] proposes a

point process model for predicting and analyzing its future scientific impact.

• Social Media activity can also be understood as a point process. By considering the time coordi-

nate of an specific action, one may obtain sequences of discrete events. [5] then shows how the

‘tweeting’ activity of highly influential people will propagate itself in a cascaded way throughout

its ’followers’, then the ’followers of its followers’, and so on.

2.4 Point Processes on the Real Line

Perhaps the type of point process with the most intuitive representation, point processes on the Real Line

are those in which the Lebesgue measurable space taken into consideration is a subset of R1, usually

considered the time dimension.

The four possible interpretations given to this kind of Point Process are in terms of:

• Sequences of time intervals

• Counting measures

• Sequences of points

• Non-decreasing integer-valued step functions

When analyzing a point process as a Counting Measure, it is irrelevant whether the process is described

on the real line or not. For the three other ways of defining the process, however, the order properties

of the reals are considered in an indispensable way. Although the said methods of description may be

5



Figure 2.2: An example of a Counting Process N(t).

capable of being extended into dimensions of higher order, they become unavoidably less natural and,

regarding the case of the ‘sequences of intervals’ description, decidedly artificial [1].

A point process representation of a sequence of n time-events is expressed by a vector of the form

(t1,t2, ... , tn). Treating the real line as a time axis, the vector can be intuitively associated with a so-called

Counting Process N(t), s.t.:

• dN(t) = 1, if there is an event at time t;

• dN(t) = 0, otherwise.

An example of Counting Process is shown in Figure 2.2. We are going to see it later that the dNt on

real line allows for giving a explicit analytical expression for the intensity function of Hawkes Processes

(HPs).

This type of point process may be described through its temporal intensity function (λ (t)), which

can be understood as the instantaneous expected rate of arrival of events, or the expectation of derivative

of the Counting Process N(t):

λ (t) = lim
h→0

E[N(t +h)−N(t)]
h

(2.1)

This intensity function, if existing, uniquely characterizes the finite-dimensional distributions of the

point process [1]. A simple example of this function would be the constant mean rate of arrival, µ , in

the case of a Homogeneous Poisson Processes (HPPs).

In some cases, it is reasonable to assume that this rate of arrival will vary throughout the period of

observation, what is the case of the so-called Non-homogeneous Poisson Processes (NHPPs). Consider,

for example , the number of people arriving at a restaurant, which is bound to peak strongly at typical

mealtimes but drop throughout the remaining hours. This example is illustrated at Figure 2.3, from [18].
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Figure 2.3: An example of a Non-homogeneous Poisson Process. Since the number of people arriving

at a restaurant throughout a day peaks during mealtimes and drops during the remaining periods, it is

reasonable to assume that the underlying intensity varies with time.
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Chapter III

Hawkes Processes

3.1 Introduction

Being arguably the simplest type of Point Process, Poisson Processes (PPs), both in the Homogeneous

and Non-homogenous case, have in common the fact that each event is independent of all the others,

this being even more evident in the case of processes in the real line.

By glancing back at the examples given in chapter 2, one may notice that many of those point

to the possibility of interactions between events: Criminal activities in a certain neighborhood making

subsequent ones more likely, Earthquake shocks triggering further aftershocks around the same location,

among others.

These may be modeled by a process described with a so-called Conditional Intensity Function (CIF),

i.e., a function corresponding to the rate of arrivals in a specific instant in a way that it depends on

previously occurred events, the History of the process. Moreover, we are mostly interested in those

processes in which one event makes future ones more likely, a phenomenon denominated self-excitation

or self-triggering.

HPs, a more general type of point process, which deal with self-exciting phenomena in a rather

elegant and analytical way, are the subject of the present chapter.

3.2 Mathematical Definition

Hawkes processes model the intensity function in terms of the self-excitement: when the arrival of an

event makes subsequent arrivals more likely to happen [19]; and can be described through the following

conditional intensity function λ (t):

λ (t) = lim
h→0

E(N(t +h)−N(t)|H(t))
h

= µ +
∫ t

−∞

φ(t−u)dN(u), (3.1)

where:

• H(t) is the history of the process, the set containing all the events up to time t;

• µ is called background rate, or exogenous intensity, which is usually fixed as the mean of a HPP;

• φ(t) is denominated self-triggering kernel, or excitation function;

From this function, one may notice that the intensity at time t will likely be affected by events which

happened before the time t, described by the history of the process. Furthermore, the self-triggering

kernel function is assumed to be:
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Figure 3.1: “Immigrant-Birth Representation” of a Hawkes Process. A branching process, evidencing

the immigrants (squares) and its descendant events (circles). Source: (Laub, 2015).

• Causal,

φ(t) = 0, for t < 0

• Positive:

φ(t)≥ 0, for t ≥ 0

The first assumption certifies that the CIF of the process is completely defined by its History, while

the second one ensures that past events always act in the direction of increasing the intensity, thus

exciting, or triggering, the process. Negative-valued kernels are assumed in the case of the so-called

self-damping, or self-correcting, processes, which are outside the scope of this work. One may also

notice that, if the kernel function is null for all t, the intensity function reduces to that of a HPP.

This expression for the CIF is also written with the convolution operator (‘?’):

λt = µ +φt ?dNt , (3.2)

where the convolution operator corresponds to:

A?Bt =
∫
R

AsBt−sds =
∫
R

At−sBsds (3.3)

From [2], we have that, if :

||φ ||=
∫

∞

0
φ(t)dt ≤ 1, (3.4)

The stationarity criteria can be quickly understood through the point-of-view of what is defined as

Immigrant-Birth Representation [20]. This accounts for defining a realization of a HP as a combination

of events caused by the exogenous intensity, called “Immigrants”, and events generated from the excita-

tion effects from these immigrant events, the “Descendants”. This derives from the fact that, in essence,

a HP realization is a recurrent superposition of PPs: The first PP would be from the baseline intensity

considered alone. Then, for each resulting event, a further PP, with the intensity function defined by the

kernel function, would result. Then, further realization will be extracted from each of these resulting

descendants, indefinitely. Figure 3.1 is a visualization of this concept. The integral expression for the

kernel function is the expected number of events in the corresponding process realization which will be

caused by a specific event.
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Figure 3.2: An example of an Intensity Function of a self-triggering Point Process λ (t).

From this recurrence relation, it is straightforward to see that each event caused by the background

rate will result in a tree of descendant events. For the process to no ‘blow up’, it is necessary that the

resulting tree is of finite length, what is only achieved when the stationary criteria, here seen as the

branching ratio of the tree, is less than 1.

If the expression in 3.4 is satisfied, then the corresponding process will reach wide-sense stationary

behavior, from which the asymptotic steady arrival rate:

Λ =
µ

(1−||φ ||)
, (3.5)

can be obtained, along with its covariance function, which is independent of t:

ν(τ) = E(dN(t)dN(t + τ)). (3.6)

Estimating Λ and ν(τ), also referred to as first- and second-order statistics, respectively, requires

wide-sense stationarity assumptions which, besides being analytically convenient, are also connected to

the fact that, in real data, the chain of self-excitedly induced further events will always be of finite type,

or without ‘blowing up’, what corroborates the practicality of the estimated model.

It is worth mentioning, though, that some point processes may have statistics of first- and second-

order satisfying stationarity assumptions without consequently being stationary, i.e., non-stationary pro-

cesses may possess stationary first- and second-order moments [1].

3.3 Methods of Kernel Estimation

Regarding the HPs’ field of study, much of the research efforts are directed towards modeling the back-

ground rate and kernel function best suited for a given sequence of events.
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Accurately estimating the kernel structure may help with understanding the underlying dynamics

of the self-excitation and also with predicting future events. These kernel estimation methods can be

roughly divided between:

• Parametric Methods: in which the estimated kernel function is represented by a continuous

function, e.g., an exponentially-shaped function:

φ(t) = αe−β t (3.7)

, with parameters α and β .

• Nonparametric Methods: in which the output kernel estimate is a finite grid, with its values

computed at specific coordinates, e.g.:

φ(t) =
[
φ(0.1) φ(0.34) φ(0.42)

]
=
[
0.073 0.036 0.032

]
(3.8)

In the following, we shall give a concise account of the main peculiarities of each type. Then, in

Section 3.4, we briefly explain how these different methods are approached regarding some intra-domain

problems in the topics of High-frequency Finance, Earthquake Frequency Modeling and Network Anal-

ysis of Web Data.

3.3.1 Parametric Methods

Gradient Descent

Originally proposed in [12], for an exponential kernel, this method starts by assuming a continuous

parametric function for the kernel.

By this, it is possible to go from Equation 3.2 and a given sequence of events (t1, ..., tn) to an

analytical calculation of the value of the CIF at any point of the time interval for which the sequence is

considered. From this CIF expression, it is possible to compute the likelihood value for the sequence,

i.e., the probability that the referred sequence was generated by a HP with the assumed parameters 1.

The method then proceeds by attempting to tune the randomly initialized kernel parameters in a way

that this likelihood, here in its logarithmic form (‘log-likelihood’), is maximized. As an example, for the

exponential kernel of Equation 3.7, these derivatives would be calculated w.r.t. µ , α and β .

A pseudocode of the procedure is given in Algorithm 1.

Algorithm 1 Gradient Descent based Kernel Estimation
1: Input learning rate, sequence of events, and initial parameters

2: Calculate gradient of log-likelihood formula w.r.t. each parameter

3: Update each parameter with gradient magnitude weighted by the learning rate

4: Stop when magnitude of gradient is too small or too many iterations were reached

1The derivation of the likelihood formula in terms of the CIF is given in B
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3.3.2 Nonparametric Methods

Expectation-Maximization

For this method, the kernel is defined as a finite grid with a fixed set of m points, equally spaced by time

intervals δ t. It works by iterating along two steps towards convergence of the values for the background

rate and the kernel grid [21, 15].

For a sequence composed of n events, the two steps are:

• Expectation: Calculating probabilities of event j being generated by the background rate (p j j) and

being generated by event i (pi j), what results in a n-by-n probability matrix s.a.2:

[p11 p12 p13 · · · p1n

p22 p23 · · · p2n

p33 · · · p3n
. . .

...

pnn]


where

pk
i j =

φ k(ti− t j)

µk +∑
j−1
i=1 φ k(ti− t j)

and

pk
i j =

φ k(ti− t j)

µk +∑
j−1
i=1 φ k(ti− t j)

• Update values of mµ and φ according to these probabilities:

µ
k+1 =

1
T

n

∑
j=1

pk
j j,

and

φ(mδ t)k+1 =
1
δ t ∑

i, j∈Am

pk
i j

where Am corresponds to all possible pairs of events which satisfy mδ t ≤ |ti− t j|≤ (m+1)δ t.

Repeating these steps up to convergence leads to final estimates of µ and the kernel grid.

A variant of this method [15] calculates the matrix of probabilities in the same way, but the Maxi-

mization step is carried out by solving a discretized Ordinary Differential Equation with a regularization

term for enforcing smoothness of the obtained solution.

Covariance Spectrum-based

In [2], the relations between the Fourier Transforms of both the stationary covariance ν(τ) and the exci-

tation function φ(t) are derived while assuming that the latter belongs to a class of exponential functions,

2Note that, by the assumption of causality on the kernel, an event can not have been generated by an event which happened

after it, what results in the triangular aspect of the matrix.
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i.e., given a φ(t), assumed to be a linear compositions of exponentials satisfying the stationarity property

in 3.4, it is shown to be possible to analytically derive properties of the covariance 3.

The method proposed in [7] works in the inverse direction: Trying to obtain an estimate of φ(t)

through an estimate of ν(t). In practice, this is carried out by solving a so-called Wiener-Hopf equation,

s.a.:

m(t) = φ(t)+φ(t)?m(t), (3.9)

where

ν(t) = Λm(t). (3.10)

In practice, this equation is solved through discretization (Nystrom Method) with the Numerical Inte-

gration technique of Gaussian Quadrature. A variant of this method was proposed in [10], and will be

throughly explained in Chapter 4.

3.4 Examples in Real-World Data

Effective modeling of interactions between sequential events, such as the one provided by the HPs

framework, has been found useful in a variety of domains. In this section, we concisely explain the

underlying empirical assumptions made on the models, and more specifically on the self-triggering

kernels, when working with Financial, Earthquake and Social Network related data.

3.4.1 Hawkes Processes in Finance

Previous empirical studies have provided evidence that the impact of price itself has, on many aspects,

some universal properties and is the main source of price variations, what reinforces the notion of a

endogenous nature, in other words, a internal feedback mechanism, of price fluctuations. This is con-

trasting with the classical notion of an external, exogenously generated, flux of information directing the

prices towards a primary value [22].

In this endogeneity scenario, Hawkes Processes have become more and more present in the high-

frequency finance domain, due to its structure being naturally adapted to model systems in which the

discrete nature of the jumps in Nt is relevant, making the model remarkably suited to modeling high-

frequency data [23]. Moreover, Hawkes Processes’ parameters, along with their corresponding straight-

forward interpretations, lead to a notedly simple and flexible interpretation of the complex intraday

dynamics of modern electronic markets.

When modeling financial data with HPs, one is mostly concerned with real-time, or ‘tick’, data,

which is more closely related to the aforementioned intra-day dynamics. The goal is to verify how

strongly the price variations in a specific stock affects further transactions (‘Buys’ or ‘Sells’) on itself or

in another stock. Also, since most of the small variations in the price must be due to noise, only large

3The Fourier Transform f̂ (ω) of a time function f(t), f̂ (ω) =
∫
R f (t)e−iωtdt, basically consists of decomposing it into its

basic frequencies.

13



Figure 3.3: Buy (in blue) and Sell (in red) operations in a stock may be seen as two complementary HPs,

with price jumps increasing the arrival of Buys while inhibiting the Sell operations

enough jumps are considered, what is done through thresholding over a absolute or percentual value.

The Buys and Sells may be considered as the same type of event or separately, as in Figure 3.3[24].

When modeling High-Frequency Financial data, the kernels are usually assumed to be of exponential

type. Some recent works, however, point to the better performance of Power-Law shaped kernels in some

contexts [25].

3.4.2 Hawkes Processes in Earthquake/Seismicity

Earthquakes’ occurrences around some area are also modeled as a point process sequence. Omori’s Law

(1879) already conjectured that the sequence of aftershocks following a major earthquake shock would

distribute itself according to a power-law shaped intensity, s.a:

n(t) =
K

(t + c)p , (3.11)

where n(t) represents the frequency of aftershocks per unit time interval.

The proposed ETAS (Epidemic-Type Atershock Sequences) model works a slightly different Power-

Law shaped self-triggering kernel for the resulting CIF [8]:

λ (t|Ht) = µ + ∑
ti<t

K
(t− ti + c)p (3.12)

The parameters of this CIF are fitted through Gradient-Descent based methods, s.a. the ones in sub-

section 3.3.1. Some additional Power-Law functions may be added to the kernel function, along with

some regularization parameter, which will determine if the improvement of the likelihood probability

surpasses the computational cost of dealing with a more complex model.
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3.4.3 Hawkes Processes for Networked Analysis of Social Networks

Regarding Web Data, the modeling focuses on social networks’ actions and hyperlinks insertions on

pages. Both of these are treated as hierarchical actions, with ‘followers’ being influenced by the actions

of popular profiles or websites but having little influence in their primary action.

By treating a ‘retweet’ [5] or a hiperlink insertion [9] as a time event, it is possible to quantify the

strength of the influence of some website or celebrity by the number of descendant events it is most

likely responsible for.
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Chapter IV

Discretized Kernel Estimation

4.1 Introduction

This chapter aims on providing all assumptions, methods and derivations regarding the extraction of a

discretized kernel estimation from raw time data sequences. All the steps are originally developed in

[10] for the case of symmetrically networked multivariate Hawkes Processes, and we intend here to give

a through description of the underlying theory of each step of the method for the univariate case.

Here, the discretized kernel estimation may be optional when a direct optimization of kernel structure

is possible. Unfortunately, discontinuous functions (SQR, SNS) do not allow such optimization (e.g.,

gradient descent). In this work, we use the discretized kernel estimation as an unified method for both

continuous (EXP, PWL), discontinuous kernels (SQR, SNS) and, most importantly, their combinations.

Furthermore, another great advantage of this step, compared with traditional sequential methods, is

the fact that the value of ν for each value of τ can be calculated independently, while, in gradient descent,

the value of the parameters at step t must be obtained before the values for step t +1. When combined

with parallelization of the loops, in our case, this step greatly improved the speed of obtainment of the

most likely parametric representations of the sample processes.

One of the key principles of the method is the one-to-one relation between first- and second-order

statistics of stationary HP (normalized stationary temporal covariance) and its corresponding causal self-

triggering kernel function, i.e., given a certain pair of first- and second-order statistics, obtained under

the stationarity assumption, one can find the only corresponding causal triggering kernel function which

induces the aforementioned stationarity. This is explained in the following sections:

• Relation between first- and second-order statistics and kernel function

• Empirical nonparametric estimation of covariance

• Hilbert Transform and Cepstral Analysis

• Phase Indeterminacy and Minimal-Phase condition

4.2 Relation between first- and second-order statistics and kernel func-
tion

The aim of this section is to show the relation between the temporal covariance function and the mag-

nitude of the kernel function. It is shown, in [2], that this relation admits closed-form solutions for the

case of kernels expressed as summations of exponential terms.
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In the case of a more generally shaped kernel, this relation leads to a phase indeterminacy problem

which is solved with the help of stationarity assumption and Hilbert Transform-based cepstral analysis

techniques for minimal phase filter estimations, i.e, based on the stationarity assumptions, one can show

that the true kernel which satisfies the indeterminate phase equation is the minimal phase solution, which

is obtained with widely used cepstral analysis techniques.

Regarding Point Processes in general, the covariance function, or second-order statistics, may be

described in more than one way. And, in fact, there does not seem to exist a class of point processes

with tractability, similarly to Gaussian Processes [26], whose properties of second-order are coextensive

with those of general point processes, with HPs getting close to fulfilling this role, but without entirely

doing so [1].

The analytical relation between covariance and kernel function developed in [2] for a class of expo-

nential functions was a very remarkable result regarding this topic. In some cases, it may be equivalent

simply to the variance on the length of the time intervals among consecutive events. In the present work,

however, the concept of covariance corresponds to the expectation of the product of the number of ar-

rivals in different times of the sequences. The nonlinearity of positivity and integer counting of these

number of arrivals is usually associated with difficulties surrounding treatment of moment measures in

Point Processes.

For expressing the modulus of the kernel function in terms of the stationary covariance, it is conve-

nient to represent the Counting Process function of a stationary process in terms of the asymptotic mean,

which would be its expected value, and an uncorrelated variation term of mean zero (i.e., a martingale):

dNt = λtdt +dMt (4.1)

Using this relation, we may express equation 3.2 as:

λt = µ +φ ?dNt = µ +φ ?λt +φ ?dMt , (4.2)

from which we have that:

(Iδ −φ)?λt = µ +φ ?dMt . (4.3)

Defining:

ψt =
∞

∑
i=1

φ
?i
t , (4.4)

with φ ?n referring to the n-th order auto-convolution operation,e.g., φ ?2
t =

∫
R φsφt−sds, one may observe

that the convolution of φt by the inverse of (I−φt) is just the term by ψt , from which we get to:

λt = (I−φ)−1 ?µ +(I+ψt)?φtdMt = Λ+ψt ∗dMt , (4.5)

given that the term (I−φt)
−1 ?µ = (I−|φ |)−1, i.e., just the asymptotic mean, Λ. By the very definition

of stationarity, one has that the covariance function is independent of t, i.e., it only depends of the

relative spacing τ among the countings. In the stationary case, by expanding the Counting Process (dNt)

terms in the Equation 4.2 for the covariance function as a summation of the expected number of arrivals
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(λt ∗dt) and a uncorrelated brownian motion (martingale) (dMt), representing the random variations in

this expected value, one gets the resulting four terms:

ντ = E(dNtdNt+τ)

= E((λtdt +dMt)(λt+τd(t + τ)+dMt+τ))

= E(λtdtλt+τ)+E(λtdMt+τ)+E(dMtλt+τd(t + τ))+E(dMtdMt+τ)

The fourth term is the estimation of two uncorrelated brownian motions, and thus the expectation for

τ 6= 0 is simply 0. For τ = 0, the expectation will be the asymptotic mean, Λ, given that the jump sizes

of the process dNt are always of size 1:

E(dMtdMt) = Λdt, if τ = 0 (4.6)

A compact way of describing this term would be using the Dirac delta function:

E(dMtdMt+τ) = Λδτdtd(t + τ). (4.7)

Regarding the term E(λtdMt+τ), we have that, using equation 4.5 for the intensity function:

E(λtdMt+τ)dt (4.8)

= E(ψt ?dMtdM†
t+τ (4.9)

=
∫
R

ψt−sE(dMsdMt+τ)ds (4.10)

=
∫
R

ψt−sΛδs−t−τ = ψ−τΛdtd(t + τ) (4.11)

In a similar way, the term E(dMtλt+τ) results in:

E(dMtλt+τ)d(t + τ) = Λψτdtd(t + τ) (4.12)

Using the result for the third term, the first term results in:

E(λtλt+τ)dtd(t + τ) = (ΛE(λt+τ)E((ψ ?dMt)λt+τ))dtd(t + τ)

=

(
ΛΛ

† +
∫
R

ψt−sE(dMsλt+τ)ds
)

dtd(t + τ)

=

(
ΛΛ

† +
∫
R

ψt−sΛψs−t−τ

)
dtd(t + τ)

=
(
ΛΛ

† + ψ̃ ?Λψτ

)
dtd(t + τ)

, where ψ̃t = ψ−t . The full expression is then:

E(dNtdNt+τ) = (ΛΛ+Λδ−τ +Λψτ +Λψ−τ + ψ̃ ?Λψτ)dtd(t + τ) (4.13)
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Figure 4.1: Discretized covariance estimate from a sequence generated with exponential kernel.

Figure 4.2: Discretized covariance estimate from a sequence generated with square kernel.
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Figure 4.3: Discretized covariance estimate from a sequence generated with sinusoidal kernel.

4.3 Empirical Nonparametric Estimation of Covariance

In practice, the estimation of the covariance from Equation 4.2 is done at discrete time steps δ :

ν
(h)
τ,δ=

1
T

bT/δc

∑
i=1

(dN(h)
iδ −dN(h)

(i−1)δ )(dN(h)
iδ+τ
−dN(h)

(i−1)δ+τ
), (4.14)

From [1], we have that, in this case, the extracted function is actually a Kernel Density Estimation of

the actual covariance function. The equivalent kernel is a triangular one, with bandwidth h:

g(h)t =

(
1− t
|h|

)+

, (4.15)

as in figure 4.4.

From figure 4.4, one can see that the triangular kernel function can be expressed as the sum of three

ramp functions. Working with the Fourier transform restriction, i.e., (z = iω , with ω ∈ R), we have its

equivalent expression in the frequency domain:

ĝ(h)iω =
eih

z2h
− 2

z2h
+

e−zh

z2h
=

2cos(ωh)−2
z2h

=

2
(

cos2
(

ωh
2

)
− sin2

(
ωh
2

)
− cos2

(
ωh
2

)
− sin2

(
ωh
2

))
z2h

=
4

ω2h
sin2(

ωh
2
),
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Figure 4.4: Diagram of triangular kernel.

Along with equation 4.13, this result leads to a relation between the estimated covariance and the kernel

function. Assuming the window size h for the estimation of the covariance, we have that:

ν
(h)
τ =

1
h

E
(∫ h

0
dNs

∫
τ+h

τ

dN†
s −

∫ h

0
dNsΛ

†h−Λh
∫

τ+h

τ

dN†
s +ΛΛ

†h2
)

=
1
h

E
(∫ h

0

∫
τ+h

τ

dNtdNt+τ − (Λh)2
)

=
1
h

∫ h

0

∫
τ+h

τ

(Λδ−τ +ψ−τΛ+Λψτ + ψ̃ ?Λψτ)dtd(t + τ)

Putting together the assumptions and derivations of sections 4.2 and 4.3 results in:

ν
(h)
t = g(h)t (I+ψ

†
t )Λ(I+ψ

†
t ) (4.16)

This can be expressed as:
ν
(h)
t

Λg(h)t

= |I+ψ
†
t |2, (4.17)

which is a phase indeterminacy problem. The solution, to be found in the next sections, will be shown

to be, according to the stationarity and causality assumptions for the kernel, the minimal phase solution.

4.4 Hilbert Transform and Cepstral Analysis

This section aims on describing the main concepts related to the Hilbert Transform and the obtainment

of the minimal-phase realization of the kernel function. Most of this section, and the next one, draws

from the explanations of [27].

4.4.1 Hilbert Transform description

The Hilbert Transform f̂ (t) of a function f(t) is defined for all t by:

f̂ (t) =
1
π

P
∫

∞

−∞

f (τ)
t− τ

dτ, (4.18)

when the referred integral exists. This definition in the time domain is a convolution between the Hilbert

transformer 1/(πt) and a function f(t).
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Usually, it is not possible to analytically calculate the Hilbert Transform description as an ordinary

improper integral, because of the pole at τ = t. Generally, what is calculated is the so-called "Cauchy

Principal Value" of the integral, the "P" in front of the integral, which is defined as:

lim
ε→0+

(∫
ξ−ε

α

f (x)dx+
∫

β

ξ+ε

f (x)dx
)

(4.19)

It allows the integral in Equation 4.18 to be computed for larger number of functions.

The relation between a real-valued function f(t) and its Hilbert Transform f̂ (t) is such that, together,

they result in a so-called “strong analytic function”. This “strong analytic signal” is expressed through its

amplitude along with its phase, and the derivative function of the phase corresponds to the instantaneous

frequency of the signal. When applying the Fourier Transform to this “strong analytic signal”, the

resulting spectrum of the signal in the frequency domain is one-sided. We are going to see later that this

property is strongly related to the causality of the obtained kernel.

4.4.2 Integrating in the Complex Domain: The Cauchy Integral

It is possible to motivate the Hilbert Transform in a more figurative way through the use of the Cauchy

Integral for the calculation of analytical solutions of the definition in Equation 4.18. Visualizing the

function in the C domain will likely make the solution of the integral more concrete and understandable.

The intention here is to demonstrate how the singularity of the improper integral can be dealt with,

through the use of Complex Variables concepts. Again, most of the material of this section draws from

explanations in [27].

First, let be an integral in the complex z-plane defined as:∮
Γ

f (z)
z−a

dz, (4.20)

which is denominated as Cauchy Integral. Being f(z) analytic and Γ a piecewise smooth closed contour

in a open domain, such as the one in Figure 4.5, we have that the Cauchy Integral theorem can be applied

as: ∮
Γ

f (z)
z−a

dz =

2πi f (a), if a is inside Γ

0, if a is outside Γ

(4.21)

This is a well known result regarding Functions of one Complex Variable. For understanding what

happens when a lies over the contour Γ, it helps to define a new contour such as the one in Figure 4.6.

Then as the radius ε goes to zero, the value of the integral along the semi-circle Γε tends to πi f (a), i.e.,

half of the value of the residue from when the pole is fully contained in the closed contour.∮
Γ

f (z)
z−a

dz = 2πi f (a). (4.22)

In practice, the integral over γR, in Figure 4.5 vanishes as R→ 0 when

| f (z)|< C
|z|

(4.23)
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Figure 4.5: A diagram of the integral, in the complex domain, of a piecewise smooth curve.

Figure 4.6: New closed contour, defined for when a is located over the old contour. Source: (Johansson,

2006).
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for some constant C > 0. The same result applies if, for m > 0,:

| f (z)|<C|eimz|. (4.24)

Thus, in the case of singuarities in integrals, such as the one in the definition of Hilbert Transform, it is

convenient to visualize the function in the C domain and, with the help of some results from the theory

of Functions of One Complex Variable for the case of integrals over closed contours, obtain analytical

solutions for these once unsolvable integrals.

4.4.3 Relation to the Fourier Transform and Cepstral Analysis

In this section, we intend to show the relation of the Hilbert Transform with the Fourier Transform of

a signal, and how this relation will be useful for obtaining a causal and positive kernel from the phase

indeterminacy relation of Equation 4.17.

The Fourier Transform of a signal f(t) is defined as:

F(ω) =
∫
R

f (t)e−iωtdt, (4.25)

with its inverse defined as:

f (t) =
1

2π

∫
R

F(ω)eiωtdω (4.26)

In the case of real-valued signals, such as the estimated kernel, the right-sided axis, corresponding to the

positive-valued frequencies, contains the whole information of the time-domain waveform.

Considering F(ω) as the Fourier Transform of a real valued function, it is possible to define a

function Z f (ω), which is equal to zero for all negative-valued frequencies, i.e.:

Z f (ω) = F(ω)+ sgn(ω)F(ω), (4.27)

where:

sgn(ω) =


1, for ω > 0

0, for ω = 0

−1, for ω < 0

(4.28)

The amplitude of the resulting signal Z f (ω) is shown in Figure 4.7. By writing the Inverse Transform

of Z f (ω) as:

z f (t) = f (t)+ ig(t), (4.29)

we have that

g(t) F−→ (−isgn(ω))F(ω) (4.30)

From the fact that −isgn(ω) is the Inverse Fourier Transform of 1/(πt), we have that

g(t) = f (t)?
1
πt

= P
∫
R

f (τ)
t− τ

dτ = H f (t) = f̂ (t), (4.31)

i.e., g(t) is equivalent to the Hilbert Transform of f(t). Therefore, adding the term iH( f (t) to a signal f (t)

will cause it to have a one-sided (positive) Fourier spectrum, what is the main idea behind the minimal

phase filter extraction through Cepstral Analysis.
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|F(ω)|

|Zf (ω)|

ω0 ω0

Figure 4.7: Amplitudes of original and resulting Z f (ω) function.

4.5 Minimal Phase Solution of the Phase Indeterminacy Problem

The Phase Indeterminacy problem, such as the one in Equation 4.17, is generally a very difficult one.

Therefore, it is usually necessary to constrain it to the more tractable case of a minimal phase solution

of the system. The key idea for reconstructing a complete Fourier spectrum given only the amplitude is

the sufficiency of real and imaginary parts of the Fourier and Hilbert Transforms, in the case of causal

sequences [28].

The minimal phase condition of a may be concisely defined as that of being causal, positive and

stable. In the continuous case, stability corresponds to having all the poles in the left-side of the complex

plane. In the discrete case, it corresponds to not having poles outside the unit circle.

Given a Fourier Transform F(ω) of a signal, it is possible to summarize three equivalent expressions

of the minimum phase condition as the following:

• log|F(ω)| and arg[F(ω)] are Hilbert transforms of each other;

• F(ω) has no poles or zeros outside the left side of the complex plane;

• There exists a causal and stable inverse system with system function F `1(ω) such that F(ω)F `1(ω)=

1.

In Section 4.4.3, it was already shown that if a sequence is causal, then the real and imaginary parts

of its Fourier Transform are related by the Hilbert Transform integral.

Based on the stationarity assumptions, it is possible to show that the only causal filter is the obtained

minimal phase solution of the Equation 4.17. From the Theorem in [29], we have that, given a real filter

with Fourier Transform amplitude | f̂iω | satisfying:∫
R

log
(
| f̂iω |

)
1+ω2 dω < ∞, (4.32)
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then the filter defined by

giω = e− log(| f̂iω |)+iH(log(| f̂iω |)) (4.33)

is the only causal solution of Equation 4.17, therefore, the only one satisfying the assumptions on the

self-exciting kernel made in Chapter 3, which is both minimal phase and has amplitude | f̂iω |= |ĝiω |,
being simply the minimal phase realization of | fiω |, .

From

(I+ ψ̂iω) = (I− φ̂iω)
−1, (4.34)

let us define

Eiω = |I− φ̂iω |−2 (4.35)

It is possible to show that ĝiω = (I− φ̂iω)
−1 is a minimal phase filter by demonstrating that, given the

stationarity assumptions on the kernel φ̂iω , all the poles and zeros of ĝiω have negative real part:

1. If iω is a zero of (I− φ̂iω)
−1, then it is a pole of φ̂iω . But we have, from the stationarity condition

on φ̂iω , that |φ̂iω |≤
∫
R|e−iωt |φtdt, and thus φ̂iω can only have poles with negative real part.

2. If iω is a pole of (I− φ̂iω)
−1, then |φ̂iω | is equal to 1, what contradicts the stationarity assumption.

Therefore, (1− φ̂iω)
−1 has no pole.

In conclusion, the only solution of the phase indeterminacy problem which satisfies the stationarity

assumptions on the self-exciting kernel is the minimal phase solution.

A pseudocode with the main steps of the method is shown in Algorithm 2

Algorithm 2 Discretized kernel Estimation

1: Input: sequence (t1, t2, ..., tn) and resolution of output grid, h.

2: Calculate τmax (horizon) and h (window size).

3: Compute discrete approximation of covariance, ν
(h)
τ .

4: Undo Kernel Density Estimation of Discretized Covariance in the Frequency Domain ← Divide

empirical ν by g(h)iω

5: Extract minimal phase filter realization of ψiω

6: Get φiω from ψiω

7: Convert φiω to the time domain, for getting the Discretized Kernel Estimate in the time domain, φ(t)

4.6 Summary: Discretized Kernel Estimation

Hereby, a summary of the method is presented. This step is fully described in [10], and basically consists

of building an estimator of φ(t) from empirical measurements of ν(τ), the stationary covariance.

Given a finite sequence of ordered time-events in [0,T], we fix a window size of h, and estimate ν(τ)

as:

ν
(h)
τ =

1
h

E
(
(
∫ h

0
dNs−Λh)(

∫
τ+h

τ

dNs−Λh)
)

(4.36)
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In practice, this estimation is done at discrete time steps δ :

ν
(h)
τ,δ=

1
T

bT/δc

∑
i=1

(dN(h)
iδ −dN(h)

(i−1)δ )(dN(h)
iδ+τ
−dN(h)

(i−1)δ+τ
), (4.37)

where dN(h)
iδ is the total number of events happening between t = iδ and t = iδ + h. The speed of this

procedure can be greatly improved through parallelization.

From Theorem 1 in [10], we have that, given g(h)t = (1− |h|t )
+, i.e., a triangular kernel density

estimator with bandwidth “h”, we have the following relation in Laplace domain:

ˆ
ν
(h)
z = ĝz

(h)(1+ ψ̂
?
z )Λ(1+ ψ̂

?
z )

†, (4.38)

where1:

ψ̂z =
+∞

∑
n=1

φ̂
n
z =

φ̂z

(1− φ̂z)
. (4.39)

Working with the Fourier transform restriction, i.e., (z = iω , with ω ∈ R) and given that:

ĝ(h)iω =
4

ω2h
sin2(

ωh
2
), (4.40)

we get to:

(1+ ψ̂
?
z )Λ(1+ ψ̂

?
z )

† =

ˆ
ν
(h)
z

ĝz
(h)

, (4.41)

where we fix h = δ , so we do not bother with cancellations of ĝ(h)z . And then, from:

|1+ ψ̂iω |2=
ν̂
(h)
z

Λĝz
(h)

, (4.42)

we get to the discretized estimation of φt by taking the inverse Fourier transform of:

φ̂iω = 1− e− log|1+ψ̂iω |+iH(log|1+ψ̂iω |), (4.43)

in which the operator H(·) refers to the Hilbert transform.

1Given a function ft , f̂z is its Laplace Transform, and the “?” symbol corresponds to its conjugate
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Chapter V

Automatic Kernel Decomposition

5.1 Introduction

• Four base kernels and their typical behaviours

• Stationarity Condition derivation

5.1.1 Self-Exciting Base Kernels

From the definition of the conditional intensity function, the self-excitement of the process is expressed

through the kernel function φ(t). For the kernel decomposition, four base kernels will be used for

identifying and estimating typical triggering behaviors:

• EXP(α ,β ): The decay exponential kernel is parameterized by the amplitude α and decay rate β ,

and is useful for modeling quick influence decay, such as in finance or web data [9], in which

initial transactions/hyperlinks have a lot of impact initially but gradually reduce their influence

over time:

EXP(α,β ) = αe−β t (5.1)

• PWL(K,c,p): The power law kernel is parameterized by the amplitude K, the exponent p, and

the constant c, such as in Equation (5.2), and has been prevalent in earthquake [8] and social

media-related data [5], modeling a slower decaying trend than the exponential:

PWL(K,c, p) =
K

(t + c)p (5.2)

• SQR(B,L): The pulse kernel is described by the amplitude B and the length L. Being a trivial,

steady, self-exciting dynamics on its own, it may also work as an offset level for the combined

triggering with other kernel types, in the case of addition, and as a horizon truncation, in the case

of multiplication1:

SQR(B,L) = B(u(t)−u(t−L)) (5.3)

• SNS(A,ω): A truncated sinusoidal, parameterized by the amplitude A and the angular velocity

ω . This type of kernel base function captures well the self-excitement of periodic events, such as

TV watching-related data (IPTV) [11], in which watching one episode of a TV program makes

the viewer more likely to watch further ones. Since these shows are usually broadcasted weekly,

1u(t) is the step function
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Figure 5.1: The four base kernel types.

the TV-watching behavior will likely demonstrate this weekly self-excitement. Also, according to

[3], homicide rates show a pronounced seasonal effect, peaking in the summer and tapering in the

winter:

SNS(A,ω) = Asin(ωt), (5.4)

for t ∈ [0,
π

ω
], and 0, otherwise.

Type Equation

Exponential (EXP(α ,β )) αe−β t

Power-Law (PWL(K,c,p)) K
(c+t)p , (p > 1)

Pulse (SQR(B,L)) B(u(t)−u(t−L))

Sinusoidal (SNS(A)) Asin(ωt), t ∈
[
0, π

ω

]
Table 5.1: Four base kernels
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Figure 5.2: A diagram for the Kernel Decomposition Algorithm.

EXP(α ,β )
α

β
PWL(K,c,p)

Kc1−p

p−1
, (p > 1) SQR(B,L) BL SNS(A,ω)

2A
ω

Table 5.2: Stationarity Condition of the four Base Kernels.

5.2 Greedy Kernel Decomposition

For expressing the discretized estimation in terms of the four base kernels, the following steps are exe-

cuted:

1. Calculate residues (L1-error) w.r.t the four basic kernels {EXP, PWL, SQR, SNS};

2. Check whether the estimated parameters of the kernels satisfy the stationarity condition, by using

the closed-form expressions from table 5.2;

3. Among those estimated kernels which satisfy the said condition, select the kernel with the mini-

mum residue MR1 (denominated K1);

4. Calculate residues w.r.t. a total of 8 kernel expansions, resulting from 2 operations (addition and

multiplication) per base kernel {+EXP, *EXP, +PWL, *PWL, +SQR, *SQR, +SNS, *SNS}, while

fixing the optimized parameters for K1, in the case of Additive Combination, and recalculating all

the parameters, in the case of Multiplicative Combination;

5. Among those estimated combinations which satisfy the spectral radius condition (calculated in

closed form from Table 5.3), select the kernel with minimum residue MR2, denominated K2;

6. If MR1 < MR2/η (η would act as a regularization parameter), pick K1 . Else, pick K2.

A diagram of this algorithm is shown in Algorithm 1.
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Algorithm 3 Automatic Decomposition of HP Kernels

1: input = kest

2: f it1 = fit(kest ; /0,{EXP, PWL, SQR, SNS})
3: K1 = index_o f _kernel(min_residue( f it1))

4: MR1 = min_residue( f it1)

5: f it2 = fit(kest ;K1,{+EXP,* EXP,+PWL,*PWL,

+SQR,*SQR,+SNS,*SNS})
6: MR2 = min_residue( f it2)

7: K2 = index(min_residue( f it2))

8: out put = None

9: if ||φK1 ||< 1 then
10: out put = K1

11: end if
12: if ||φK2 ||< 1 then
13: if output 6= None then
14: if MR1 ≥ 1

η
MR2 then

15: out put = K2

16: end if
17: else
18: out put = K2

19: end if
20: end if
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Base Kernel Base Kernel Condition

EXP(α ,β ) EXP(α ,β ) α1α2/(β1 +β2) (closed under multiplication)

EXP(α ,β ) PWL(K,c,p) αKβ p−1eβcΓ(1− p,βc)

EXP(α ,β ) SQR(B,L)
(
αB(1− e−βL)

)
/β

EXP(α ,β ) SNS(A,ω)
(

Aαω(1+ e
−βπ

ω )
)
/(ω2 +β 2)

PWL(K1,c1, p1) PWL(K2,c2, p2) ≤ (K1K2)/
(
(p1 + p2−1)min(c1,c2)

(p1+p2−1)
)

(upper bound)

PWL(K,c,p) SQR(B,L)
(
KB(c−(p−1)− (c+L)−(p−1))

)
/(p−1)

PWL(K,c,p) SNS(A,ω) ≤ KA
(
(c+ π

ω
)1−p− c1−p

)
/(1− p) (upper bound)

SQR(B,L) SQR(B,L) BL

SQR(B,L) SNS(A,ω) 2AB/ω

SNS(A,ω) SNS(A,ω) πA/(2ω)

Table 5.3: Stationarity Condition for Multiplicative Combination of the four Base Kernels.

5.2.1 Stationarity Conditions

As a quick way of evaluating the validity of the estimated models regarding the stationarity criterion,

we developed closed-form expressions, either in the form of equality or as an upper bound, listed in

Table 5.2, for the case of a single kernel, and Table 5.3, for multiplicative combinations of two kernels
2. The conditions for additive combinations can be derived from the conditions for single kernels in a

straightforward manner.

The kernel is said to induce stationarity if the result of the expression calculated using the estimated

parameters belongs to the interval [0,1). This can be justified both from the point-of-view of Hawkes

Process as a branching process, also called immigrant-birth representation [20], and of the boundedness

of the spectral radius (largest absolute value among the eigenvalues) of the excitation matrix. 3

5.3 Analysis of Higher-Order Kernel Decomposition

A sequential additive decomposition of the discretized estimation vector is rather straightforward, since

one may just set the residual vector from the previous stages as the input of the next ones.

In the case of multiplicative decomposition, it is nontrivial to find the result of intraclass decompo-

sition. To the best of our knowledge, no analysis on multiplicative HP kernel decomposition is reported

yet.

Here, we provide a new upper bound over an interclass kernel product of unknown degree, as in:

[EXP]k1× [PWL]k2× [SQR]k3× [SNS]k4 (for ki ∈ Z∗),

where the operator “[·]k” corresponds to the set of functions which can be decomposed into a k-th order

product of kernels, e.g:

2 Γ(·, ·) is the well-known Incomplete Gamma Function: Γ(a,y) =
∫

∞

y ta−1e−tdt
3For the Univariate HP case, the excitation matrix has dimension one, being only the excitation function, φ(t).
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[EXP]k = α1e−β1x ∗α2e−β2x ∗ ...∗αke−βkx︸ ︷︷ ︸
k terms

.

By deriving the four possible intraclass kernel products, one may observe that the typical self-exciting

behavior features of each kernel type are preserved, as in the following.

5.3.1 EXP

[EXP]k1 reduces to the case of a single exponential with α = ∏
k1
i=1 αi and β = ∑

k1
i=1 βi, thus still account-

ing for its ‘quick-decay’ behavior: [EXP]k1 ⊂ [EXP];

5.3.2 PWL

[PWL]k2 is lower bounded by a single PWL kernel with K =∏
k2
i=1 Ki, c=max(c1, ...,ck2) and p=∑

k2
i=1 pi,

thus still accounting for its ‘slow-decay’ behavior;

5.3.3 SQR

[SQR]k3 reduces to a single SQR kernel with B = ∏
k4
i=1 Bi and L = min(L1, ...,Lk4), thus still accounting

for its ‘steady-triggering’ behavior: [SQR]k3 ⊂ [SQR];

5.3.4 SNS

[SNS]k4 has A=∏
k4
i=1 Ai and a ‘spikier’ aspect (higher bandwidth), thus still accounting for its ‘periodicity-

inducing’ behavior.

Thus, on deepening the decomposition algorithm by overly increasing the number of levels above 2,

we may be, in fact, adding little information on the qualitative aspect of the self-exciting behavior anal-

ysis of the data while making it more prone to overfitting on the noisiness of the discretized estimation

vectors.

5.3.5 Upper Bound

Furthermore, regarding the boundedness of the higher-order decompositions, from the exact results for

EXP and SQR intraclass decompositions and the upper bounds for the PWL and SNS ones, we have

that:

[EXP]k1× [PWL]k2× [SQR]k3× [SNS]k4

≤ αe−βx K
(x+ cupper)p BAsin(ωx)

≤ αBKAe−βx

(x+ cupper)p

= EXP(α,β )×PWL(K,cupper, p)k2×SQR(B,L)×A,

for 0≤ x≤ min(L,
π

ω
), and 0 otherwise.
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Chapter VI

Report

6.1 Introduction

Regarding automatic analysis of time series, it is of relevance to make the extracted parameters readily

available. One possible way of doing this is through an automatically generated report. The current

version of this report is built with HTML and Bootstrap, and read through a web browser. There, the

quantitative and qualitative aspects of the analysis are accompanied by visualization plots for the first

and second levels of decomposition.

6.2 Automated Report Generation for Hawkes Processes

After estimating the likelihood-maximizing base kernel combination, the report is generated with a

description of the corresponding parameters and its most relevant aspects, such as:

• Decay-Rate, which would be associated with decaying kernels, EXP and PWL. A exponential

decay rate is described as ‘a quick decaying triggering influence’, and the power-law decay may

be described as ‘a slowly decaying triggering influence’, with its respective parameters being put

in evidence;

• Steady-Rate Influence, equivalent to an offset level from the SQR kernel type. It is described as

‘a steadily triggering influence’, with the parameter B put into evidence;

• Triggering Horizon, associated with discontinuous kernels, SNS and SQR. It is described as ‘a

horizon of triggering influence’, with the parameter L, in the SQR case, or the value of (
π

ω
), in

the SNS case, put into evidence;

• Induced Periodicity, in the case of the SNS kernel type. It is described as ‘a periodicity-inducing

triggering influence’, with the value of (
2π

ω
), from the SNS case, put into evidence.

6.3 Examples

In this section, we present some examples of the report:
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Chapter VII

Experiments

7.1 Introduction

For testing the validity of the kernel decomposition framework, we conducted experiments with:

• Synthetic Data;

• Financial Data

• Earthquake Data

Synthetic data sequences were used for evaluating the effectiveness of a scale-independence strategy

for setting the maximum value of τ in Equation 4.37. In the financial data experiments, quantitative

comparisons were made among the first and second levels of the decomposition framework over a set of

time sequences, and also among our decomposition framework and an estimation method largely used

in financial applications, described in [12]. In the earthquake data experiments, we evaluate the overall

triggering behavior of earthquakes through the relative frequency of each estimated kernel type, out of

the four base kernels.

7.2 Experimental Results

For real-world data sets, no prior information about the kernel (type and parameters) is available. Thus,

we use the log-likelihood of the kernel function over the time sequence as a quality criterion.

Given a realization (t1, t2, ..., tk) of some regular point process on [0,T], its log-likelihood (l) is ex-

pressed as:

l =
k

∑
i=1

log(λ (ti))−
∫ T

0
λ (u)du. (7.1)

7.2.1 Synthetic Data

As a means of evaluating the overall precision and efficiency of the kernel decomposition framework,

experiments with synthetic data from the corresponding four basic kernel types were performed.

Simulation algorithms related to Hawkes Processes, from which synthetic time sequences data may

be obtained, are divided into two main categories: cluster-based [30] and intensity-based [31]. For the

proposed experiments, the “Thinning” algorithm, an intensity-based one, was used, mainly because the

parametric representations of the kernel types make it very convenient to accurately calculate the value

of the intensity function throughout the whole simulation horizon.
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Predicted

E
X

P

PW
L

SQ
R

SN
S

A
ct

ua
l

EXP 7 3 0 0

PWL 4 6 0 0

SQR 0 3 7 0

SNS 0 0 0 10

Predicted

E
X

P

PW
L

SQ
R

SN
S

A
ct

ua
l

EXP 8 2 0 0

PWL 2 8 0 0

SQR 0 1 9 0

SNS 0 0 0 10

Table 7.1: Confusion matrices among the four basic kernel types for original horizon length (left) and

histogram-based horizon length (right).

The referred algorithm, whose full denomination is “Ogata’s Modified Thinning Algorithm”, basi-

cally consists of simulating time sequences using a exceedingly high constant value for the intensity

function and then thinning out the generated events using rejection sampling with regards to the locally

calculated actual values of the intensity.

For an automatic decomposition framework willing to perform effective analysis of several domains

of data, scale-independence is indispensable, as time sequences of disjoint datasets may occur in time

scales differing by several orders of magnitude. As an example, earthquake events’ occurrences in a

sequence are spaced by intervals of monthly and yearly scales. Thus, setting a horizon of a few months

as the maximum value of τ in Equation (4.37) might result in a satisfactory discrete estimation grid, but

using the same time length for estimating the triggering behavior of a finance-related sequence would

require an impractically large grid resolution for making itself effective.

A histogram of all the time intervals between events in a sequence may be readily generated, and

is an indicator of the overall magnitude of the spacing among the events. Thus, as a rule of thumb, the

horizon length for τ may be set as the smaller time interval strictly larger than 95% of the sequence’s

intervals. In practice, this value of horizon length is obtained with the help of a histogram composed by

100 bins.

First, we generated 10 sequences with the ’Thinning algorithm’ [31], in the time range of 0 to

100000, for each of the four basic kernel types, with predefined kernel parameters and influence horizon

of 6.6 1. Then, the decomposition framework was used for building confusion matrices over the sets of

sequences for both the original horizon length (i.e., 6.6) and the histogram-based horizon length. The

confusion matrices are shown in Table 7.1.

7.2.2 Financial Data

For the experimental setting, we picked companies in the NASDAQ and NYSE lists of Yahoo Finance for

five categories: Technology, Healthcare, Services, Industrial Goods and Utilities. We extracted tick data

from every two minutes of 30 business days (04/07/2017 to 05/18/2017 for Technology and 04/17/2017

to 05/25/2017 for the others). Whenever a stock price changed by some magnitude higher than some

1By influence horizon, we mean that the excitation effect of each kernel is considered null for t > 6.6.
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CATEGORY STOCKS

Technology

’CSCO’,’GOOGL’,’HPQ’,’INTC’,’IBM’,’MSFT’,

’ORCL’,’TXN’,’XRX’,’AAPL’,’ANGI’,’LITH’,’IAC’,

’FB’,’LOCMQ’,’YELP’,’GRPN’,’AMZN’,’GCI’

Healthcare

’BCRX’,’CUTR’,’AMRI’,’INSY’,’PDCO’,’CERS’,

’ACAD’,’FLDM’,’ACRX’,’ELGX’,’ALXN’,’PFE’,’JNJ’,

’MCK’,’MRK’,’NVS’,’UNH’,’GSK’,’AZN’,’SNY’

Industrial Goods

’GE’,’MMM’,’BA’,’HON’,’UTX’,’LMT’,’CAT’,

’GD’,’DHR’,’ABB’,’ITW’,’RTN’,’NOC’,’DE’,

’EMR’,’ETN’,’WM’,’CRH’,’CMI’,’WY’,’ROP’

Services

’BABA’,’CMCSA’,’HD’,’DIS’,’MCD’,’CHTR’,’PCLN’,

’UPS’,’SBUX’,’UNP’,’WBA’,’TWX’,’COST’,’NFLX’,

’LOW’,’CNI’,’FDX’,’FOXA’,’CSX’,’TJX’,’LVS’

Utilities

’NEE’,’DUK’,’D’,’SO’,’NGG’,’AEP’,’PCG’,

’EXC’,’SRE’,’PPL’,’EIX’,’ED’,’KEP’,’XEL’,’PEG’,

’WEC’,’ES’,’DTE’,’BIP’,’HNP’

Table 7.2: List of stocks selected for each category.

threshold, an event was logged in the corresponding time sequence. Ten different percentual thresholds,

increasing at equally spaced intervals from 0.03% to 0.3%, were applied. This procedure resulted in sets

of valid sequences specified in Table 7.3, since the remaining ones did not contain enough points for the

splitting between training and validation subsequences.

The 80% of the first elements for each sequence were then used as training data, and the remaining

20% were used for validation, i.e., we estimated the parameters of the kernel using the first 24 days and

then calculated the log-likelihood on the last 6 days of each sequence. We compared the log-likelihoods

of first and second level decompositions, we observed that the second level, with composite kernels,

resulted in a higher log-likelihood in a significant number of sequences for all the categories, as shown

in Table , what corroborates the idea of a more flexible model of the kernel providing a more accurate

Category Valid Sequences

Technology 70

Healthcare 117

Industrial Goods 53

Services 61

Utilities 48

Table 7.3: Number of resulting valid sequences for each category.
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Figure 7.1: Technology: Comparison among loglikelihood of Decomposition Algorithm model (blue)

and the usual exponential Hawkes model (red), fitted through Gradient descent.

Dataset l(K1,K2)> l(Exp.Hawkes) l(K2)> l(K1)

Technology 67.14% 98.53%

Healthcare 62.39% 92.31%

Industrial 64.15% 94.34%

Services 54.09% 85.25%

Utilities 77.08% 93.75%

Table 7.4: Aggregate comparison, among the Gradient Descent based HP model and the first- and

second-level decompositions of the proposed algorithm, for each of the five datasets.

description of the underlying dynamics of the process. The percentual outperformance of second level

decomposition over the first level one, for each category, is shown in Table 7.4. The differences among

first and second levels for each sequence are shown in Figures 7.2, 7.4, 7.6, 7.8 and 7.10.

When comparing the performance of the best estimation among the two levels and the usual Expo-

nential HP model used in financial analysis, fitted through the gradient-based method from [12], it is

possible to see that the Decomposition Algorithm exhibited a much more robust performance. Although

the Exponential HP performed well in some sequences, it tended to get stuck in local maxima with very

poor performance, usually leading to unstable or negative combinations of parameters. The percent-

age of outperformance of the Decomposition Algorithm for each category is shown in Table 7.4. The

comparisons for each sequence are shown in Figures 7.1, 7.3, 7.5, 7.7 and 7.9.

7.2.3 Earthquake Data

In lists regularly published by seismological services of most countries habituated to the occurrences of

earthquakes, one can obtain relevant information, such as the epicenter of each shock, focal depth, in-

strumental magnitude and origin time of each earthquake occurrence. Statistical analyses of earthquake

catalogues and assessment of earthquake risk in a geophysical area can then be performed through the

use of parametric models on the sequences of origin times, obtained by largely ignoring the remaining

information. On further analyzing these fitted models, one can then identify and decompose components

such as evolutionary trend, periodicity and clustering [8]. Again, the need to insert scale-independency,

in the form of the aforementioned histogram-related heuristics, in the decomposition framework makes
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(a)

(b)

Figure 7.2: Technology: (a) Comparison among loglikelihood of first- (green) and second-level (blue)

of Decomposition Algorithm. (b) Difference among loglikelihood of first- and second-level for each

sequence.

Figure 7.3: Healthcare: Comparison among loglikelihood of Decomposition Algorithm model (blue)

and the usual exponential Hawkes model (red), fitted through Gradient descent.
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(a)

(b)

Figure 7.4: Healthcare: (a) Comparison among loglikelihood of first- (green) and second-level (blue)

of Decomposition Algorithm. (b) Difference among loglikelihood of first- and second-level for each

sequence.

Figure 7.5: Industrial Goods: Comparison among loglikelihood of Decomposition Algorithm model

(blue) and the usual exponential Hawkes model (red), fitted through Gradient descent.
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(a)

(b)

Figure 7.6: Industrial Goods: (a) Comparison among loglikelihood of first- (green) and second-level

(blue) of Decomposition Algorithm. (b) Difference among loglikelihood of first- and second-level for

each sequence.

Figure 7.7: Services: Comparison among loglikelihood of Decomposition Algorithm model (blue) and

the usual exponential Hawkes model (red), fitted through Gradient descent.
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(a)

(b)

Figure 7.8: Services: (a) Comparison among loglikelihood of first- (green) and second-level (blue)

of Decomposition Algorithm. (b) Difference among loglikelihood of first- and second-level for each

sequence.

Figure 7.9: Utilities: Comparison among loglikelihood of Decomposition Algorithm model (blue) and

the usual exponential Hawkes model (red), fitted through Gradient descent.
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(a)

(b)

Figure 7.10: Utilities: (a) Comparison among loglikelihood of first- (green) and second-level (blue)

of Decomposition Algorithm. (b) Difference among loglikelihood of first- and second-level for each

sequence.

EXP PWL SQR SNS

0 99 1 0

EXP PWL SQR SNS

0 97 2 1

Table 7.5: Frequency of estimated kernel type of first level decomposition for (a) 100-point and (b)

20-point grid resolution.

itself imperative, as earthquakes events are separated by time intervals of monthly or yearly scales. Thus,

the estimation horizon for financial data, for example, lasting usually only a few seconds, would hardly

capture the overall aspect of the triggering behavior in this case.

The data considered for the experiment was a set of 100 time sequences extracted from the USGS

NCSN Catalog (NCEDC database), from the day of 1966/Jan/01 to 2015/Jan/01. The Latitude range

was [30,55], and the Longitude range was [-140,-110]. Different length intervals and resulting areas

were considered. Whenever the magnitude of an event exceeded some threshold, its time coordinate

was added to the corresponding input time sequence. The magnitude thresholds were varied among 2.5,

3.0, 3.5 and 4.0; and the grid resolution was set to 20 and 100 points. For 20-point grid resolution,

the relative frequency of each kernel was (EXP,PWL,SQR,SNS) = (0,97,2,1). For the 100-point grid

resolution, the relative frequency was (0,99,1,0). The results of first and second level decompositions

are shown in Tables 7.5 and 7.6.

The results indicate a strong agreement with the long standing assumption of a power-law shaped

kernel for the intensity of aftershocks’ ocurrences (‘Omori’s Law’ (1894)). Q-Q plots from the estimated
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PWL + EXP PWL × SQR SQR + EXP

58 19 1

PWL × EXP PWL + SNS

14 8

PWL + EXP PWL × SQR SQR + SQR

91 4 2

PWL × EXP PWL × PWL SNS + EXP

1 1 1

Table 7.6: Frequency of estimated kernel type of second level decomposition for (a) 100-point and (b)

20-point grid resolution.

models are shown in Figure 7.11.
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Figure 7.11: Q-Q Plots from Kernel Decomposition estimation over the Earthquake Dataset sequences.
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Chapter VIII

Conclusion

Hawkes processes are temporal point processes which capture self-exciting discrete events in time series

data. To predict future events with HPs, an appropriate kernel is selected by hands, previously. In

this work, we proposed a new temporal covariance-based kernel decomposition method to represent

various self-exciting behaviors. We also present a model (structure/parameter) learning algorithm to

select the best HP kernel given the temporal discrete events. The stationarity conditions are derived

to guarantee the validity of the kernel learning algorithm. In experiments, we demonstrate that the

proposed algorithms perform better than existing methods to predict future events by automatically

selecting kernels.

8.1 Summary of Thesis Achievements

The contributions of the present work may be summarized as:

• Proposing a framework for automatic estimation, decomposition and analysis for Univariate Hawkes

Processes;

• Introducing a Histogram-based heuristics for Horizon-setting in Nonparametric Estimation Meth-

ods, along with its advantages;

• Deriving analytical expressions and upper bounds for a variety of combinations of parametric

kernel functions;

• Evidencing the advantage of a richer parametric structure for description of HP kernels on real-

world data.

8.2 Future Work

Two directions for future work would be on expanding the multi-class kernel framework for more general

types of HPs: the multivariate and the spatiotemporal cases.

In the multivariate case, events in one sequence may affect the CIF of another sequence. Thus, not

only the overall aspect of the excitation kernel would be of importance, but also the structural properties

of the network in which all the concurrent processes are situated. This type of analysis could be applied

to the study of Social Networks, in which the attitudes of certain nodes, the celebrities, have a strong

influence on the remaining of the users. By identifying and analyzing these hugely influential nodes,

companies may optimize the effectiveness of their online marketing strategies.

Regarding the spatiotemporal case, which is useful for the statistical study of criminal occurrences,

for example, it would be of interest to analyze possible base kernels for capturing the spatial relations
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among events. So far, this relation is assumed to depend solely on the magnitude of the distance be-

tween the occurrences, but some nonrotationally invariant types of dependency may satisfactorily help

modeling some more intricate aspects of the excitation effect.

8.3 Related Work

A spectral analysis approach to a one-dimensional self-exciting point process was introduced in [2].

Recently, the spectral method was extended to non-parametric kernel estimation for symmetrically net-

worked HPs [10].

A Likelihood Maximization method was used on a class of parametric kernels for the excitation

matrices in [12], while a series of works for likelihood maximization methods for power-law shaped

kernels on seismology and earthquake data modeling were compiled in [8] . However, in [7], it is argued

that, being designed for univariate Hawkes Processes, these methods can hardly be used to handle large

amounts of data where the kernel function is not well localized compared to the exogenous inter-events

time. Subsequently, an extensive analysis of spectral methods for non-parametric kernel estimation on

networked HPs is performed.

In [3], Networked HPs are explored for analysis and modeling of stock-trading and crime data. A

variant of the spectral method for networked HPs, with excitation matrix composed by linear combina-

tions of decaying-exponentials, there referred to as ‘excitation modes’, is developed in [9]. An iterative

log-likelihood maximization for non-parametric kernel estimation is presented in [32].

In [11], a maximum-likelihood estimator with a Sparse-Group-Lasso regularizer is introduced. In

[20], an extensive mathematical treatment of the so-called ‘genuine multivariate’ Hawkes Processes,

along with some considerations on the case of large-scale and networked data analysis, is provided.

In [15], a nonparametric Expectation-Maximization algorithm for Multi-scale Hawkes Processes under

the assumption of exponential triggering kernels is proposed, while, in [33], a large-scale inference

algorithm for kernels modeled after a summation of exponentials is introduced.

Automatic analysis frameworks for Gaussian Processes (GPs) are proposed in [13] and [14]. How-

ever, since the very concept of kernel is distinct between HPs and GPs, the techniques proposed and

analyzed in this paper were developed entirely independently.
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Appendix I

Mathematical Derivation of Stationarity Criteria for Multiplicative
Combinations of Kernels

A.1 Introduction

This appendix introduces the full derivations of stationarity criteria for the second order multiplicative

compositions of the four base kernels.

A.1.1 EXP x EXP

For the combination “EXPxEXP”, we have that, for stationarity to be achieved:

0≤
∫

∞

0
EXP(α1,β1)EXP(α2,β2)dx < 1 (A.1)

0≤
∫

∞

0
α1eα1x

α2eβ2xdx < 1 (A.2)

Thus:∫
∞

0
α1e−β1x

α2e−β2xdx =
∫

∞

0
(α1α2)e−(β1+β2)xdx =

∫
∞

0
αe−βxdx =

α

β
=

α1α2

β1 +β2
(A.3)

So, this case reduces to the case of a single exponential.

A.1.2 EXP x PWL

For the combination “EXPxPWL”, we have that, for stationarity to be achieved:

0≤
∫

∞

0
EXP(α,β )PWL(K,c, p)dx < 1 (A.4)

0≤
∫

∞

0
αe−βx K

(x+ c)p dx < 1 (A.5)

Thus: ∫
∞

0
αe−βx K

(x+ c)p dx = αK
∫

∞

0
(x+ c)−pe−βxdx

= αKeβc
∫

∞

βc
(x+ c)−pe−β (x+c)dx

= αKeβc
β

p
∫

∞

βc
(β (x+ c))−pe−βxdx

= αKeβc
β

p
Γ(1− p,βc), (A.6)

where Γ(·, ·) is the well-known Incomplete Gamma Function: Γ(a,y) =
∫

∞

y ta−1e−tdt.
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A.1.3 EXP x SQR

For the combination “EXPxSQR”, we have that, for stationarity to be achieved:

0≤
∫

∞

0
EXP(α,β )SQR(B,L)dx < 1 (A.7)

0≤
∫ L

0
αBe−βxdx < 1 (A.8)

Thus:

∫ L

0
αBe−βxdx =

[
αBe−βx

β

]L

0

=
αB(1− e−βL)

β
(A.9)

So, in the case of a multiplicative combination, the SQR kernel acts as a truncation horizon.

A.1.4 EXP x SNS

For the combination “EXPxSNS”, we have that, for stationarity to be achieved:

0≤
∫

∞

0
EXP(α,β )SNS(A,ω)dx < 1 (A.10)

0≤
∫ π

ω

0
Aαe−βxsin(ωx)dx < 1 (A.11)

Where:

∫ π

ω

0
Aαe−βxsin(ωx)dx =

∫ π

ω

0
Aαe−βx eiωx− e−iωx

2i
dx

=
Aα

2i

[
e(−β+iω)x

−β + iω
− e(−β−iω)x

−β − iω

] π

ω

0

=
Aα

2i

[
(−β − iω)e(−β+iω)x− (−β + iω)e(−β−iω)x

β 2 +ω2

] π

ω

0

=

[
Aαe−βx

2i
2iωcos(ωx)−2β sin(ωx)

β 2 +ω2

] π

ω

0

=
Aα

2i
−2iω(e

−βπ

ω −1)
β 2 +ω2 =

Aαω(1+ e
−βπ

ω )

(ω2 +β 2)
(A.12)

A.1.5 PWL x PWL

In the case of the combination “PWLxPWL”, an upper bound is derived as follows:

0≤
∫

∞

0
PWL(K1,c1, p1)PWL(K2,c2, p2)dx < 1 (A.13)
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0≤
∫

∞

0

K1

(x+ c1)p1

K2

(x+ c2)p2
dx < 1 (A.14)

Then: ∫
∞

0

K1

(x+ c1)p1

K2

(x+ c2)p2
dx≤

∫
∞

0

K1K2

(x+min(c1,c2))p1+p2
dx

=
K1K2

(p1 + p2−1)min(c1,c2)(p1+p2−1) (A.15)

A.1.6 PWL x SQR

For the combination “PWLxSQR”, we have that, for stationarity to be achieved:

0≤
∫

∞

0
PWL(K,c, p)SQR(B,L)dx < 1 (A.16)

0≤
∫ L

0

KB
(x+ c)p dx < 1 (A.17)

Where: ∫ L

0

KB
(x+ c)p dx =

[
KB

(1− p)(x+ c)(p−1) ]

]L

0
=

KB(c−(p−1)− (c+L)−(p−1))

p−1
(A.18)

So, once again, the SQR kernel acts as a truncation horizon.

A.1.7 PWL x SNS

In the case of the combination “PWLxSNS”, an upper bound is derived as follows:

0≤
∫

∞

0
PWL(K,c, p)SNS(A,ω)dx < 1 (A.19)

0≤
∫ π

ω

0

KAsin(ωx)
(x+ c)p dx < 1 (A.20)

Where:

∫ π

ω

0

KAsin(ωx)
(x+ c)p dx≤

∫ π

ω

0

KA
(x+ c)p dx

=

[
KA

(1− p)(x+ c)(p−1) ]

] π

ω

0

= KA
((c+ π

ω
)1−p− c1−p)

1− p
(A.21)
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A.1.8 SQR x SQR

For the combination “SQRxSQR”, we have that, for stationarity to be achieved:

0≤
∫

∞

0
SQR(B1,L1)SQR(B2,L2)dx < 1 (A.22)

0≤
∫ min(L1,L2)

0
B1B2dx < 1 (A.23)

Where: ∫ min(L1,L2)

0
B1B2dx = B1B2min(L1,L2) = BL (A.24)

So, the multiplicative combination of two SQR kernels may be reduced to the case of a single SQR

kernel.

A.1.9 SQR x SNS

In the case of combinations of discontinuous kernels (SQR and SNS), we assume they have the same

starting and ending points, i.e., L =
π

ω
. So, for the combination “SQRxSNS”, we have that, for station-

arity to be achieved:

0≤
∫

∞

0
SQR(B,L)SNS(A,ω)dx < 1 (A.25)

0≤
∫ π

ω

0
ABsin(ωx)dx < 1 (A.26)

Where:

∫ π

ω

0
ABsin(ωx)dx =

2AB
ω

(A.27)

A.1.10 SNS x SNS

In the case of combinations of discontinuous kernels (SQR and SNS), we assume they have the same

starting and ending points. So, for the combination “SNSxSNS”, we have that, for stationarity to be

achieved:

0≤
∫

∞

0
SNS(A1,ω)SNS(A2,ω)dx < 1 (A.28)

0≤
∫ π

ω

0
A1A2sin2(ωx)dx < 1 (A.29)

Where: ∫ π

ω

0
A1A2sin2(ωx)dx =

∫ π

ω

0
A
(1− cos(2ωx))

2
dx =

πA
2ω

(A.30)
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Appendix II

Log-likelihood formula for HPs

B.1 Derivation

This derivation follows the steps on [19]. Given a realization (t1, t2, ..., tk) of some regular point process

observed over the interval [0,T], the log-likelihood is expressed as:

l =
k

∑
i=1

log(λ (ti))−
∫ T

0
λ (u)du (B.1)

Proof. Let be the joint probability density of the realization:

L = f (t1, t2, ..., tk) =
k

∏
i=1

f (ti) (B.2)

It can be written in terms of the Conditional Intensity Function. We can then find f in terms of λ :

λ (t) =
f (t)

1−F(t)
=

dF(t)
dt

1−F(t)
=−dlog(1−F(t))

dt
, (B.3)

where, given the history up to last arrival u, H(u), F(t) is then defined as the conditional cumulative

probability distribution of the next arrival time Tk+1:

F(t) = F(t|H(u)) =
∫ t

u
f (s|H(u))ds (B.4)

Integrating both sides of equation (B.3) over (tk, t):

−
∫ t

tk
λ (u)du = log(1−F(t))− log(1−F(tk)) (B.5)

Given that the realization is assumed to have come from a so-called simple process, i.e., a process in

which multiple arrivals cannot occur at the same time, we have that F(tk) = 0 as Tk+1 > tk, which

simplifies equation (B.5) to:

−
∫ t

tk
λ (u)du = log(1−F(t)) (B.6)

Further rearranging the expression:

F(t) = exp
(
−
∫ t

tk
λ (u)du

)
, (B.7)

and

f (t) = λ (t)exp
(
−
∫ t

tk
λ (u)du

)
(B.8)
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Thus, the likelihood becomes:

L =
k

∏
i=1

f (ti) =
k

∏
i=1

λ (ti)exp
(
−
∫ ti

ti−1

λ (u)du
)

=

[
k

∏
i=1

λ (ti)

]
exp
(
−
∫ tk

0
λ (u)du

)
(B.9)

Given that the process is observed on [0,T ], the likelihood must include the probability of seeing no

arrivals in (tk,T ]:

L =

[
k

∏
i=1

f (ti)

]
(1−F(T )) (B.10)

Through using the formulation of F(t), we have that:

L =

[
k

∏
i=1

λ (ti)

]
exp
(
−
∫ T

0
λ (u)du

)
(B.11)

Finally, getting the logarithm of the expression, we have the formula for l:

l =
k

∑
i=1

log(λ (ti))−
∫ T

0
λ (u)du (B.12)
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