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ABSTRACT

Scientific applications process truly large amounts of multi-dimensional datasets. To effi-

ciently navigate such datasets, various multi-dimensional indexing structures, such as the R-tree

[1], have been extensively studied for the past couple of decades.

Since the GPU has emerged as a new cost-effective performance accelerator, now it is

common to leverage the massive parallelism of the GPU in various applications such as medical

image processing [2], computational chemistry [3], and particle physics [4].

However, hierarchical multi-dimensional indexing structures are inherently not well suited

for parallel processing because their irregular memory access patterns make it difficult to exploit

massive parallelism [5]. Moreover, recursive tree traversal often fails due to the small run-time

stack and cache memory in the GPU [6].

First, we propose Massively Parallel Three-phase Scanning (MPTS) R-tree traversal algo-

rithm to avoid the irregular memory access patterns and recursive tree traversal so that the GPU

can access tree nodes in a sequential manner. The experimental study shows that MPTS R-tree

traversal algorithm consistently outperforms traditional recursive R-Tree search algorithm for

multi-dimensional range query processing.

Next, we focus on reducing the query response time and extending n-ary multi-dimensional

indexing structures - R-tree, so that a large number of GPU threads cooperate to process a single

query in parallel. Because the number of submitted concurrent queries in scientific data analysis

applications is relatively smaller than that of enterprise database systems and ray tracing in

computer graphics. Hence, we propose a novel variant of R-trees Massively Parallel Hilbert

R-Tree (MPHR-Tree), which is designed for a novel parallel tree traversal algorithm Massively

Parallel Restart Scanning (MPRS). The MPRS algorithm traverses the MPHR-Tree in mostly

contiguous memory access patterns without recursion, which offers more chances to optimize the

parallel SIMD algorithm. Our extensive experimental results show that the MPRS algorithm

outperforms the other stackless tree traversal algorithms, which are designed for efficient ray

tracing in computer graphics community.

Furthermore, we develop query co-processing scheme that makes use of both the CPU

and GPU. In this approach, we store the internal and leaf nodes of upper tree in CPU host

memory and GPU device memory, respectively. We let the CPU traverse internal nodes because

the conditional branches in hierarchical tree structures often cause a serious warp divergence

problem in the GPU. For leaf nodes, the GPU scans a large number of leaf nodes in parallel based

on the selection ratio of a given range query. It is well known that the GPU is superior to the

CPU for parallel scanning. The experimental results show that our proposed multi-dimensional

range query co-processing scheme improves the query response time by up to 12x and query

throughput by up to 4x compared to the state-of-the-art GPU tree traversal algorithm.
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Chapter 1. Introduction

In this dissertation, we investigate the problem of parallel multi-dimensional range query

processing on the GPU. Graphics processing unit (GPU) is now widely used for high-performance

parallel computation as a cost effective solution [7]. GPUs enable large independent datasets to

be processed in a SIMD (single instruction multiple data) fashion, so a broad range of computa-

tionally expensive but inherently parallel computing problems, such as medical image process-

ing, scientific computing, and computational chemistry, have been successfully accelerated by

GPUs [2, 8, 3, 9, 10, 11, 12, 13]. While GPU-accelerated systems achieve superior performance

for computationally expensive scientific applications, there still exist many scientific computing

domains that have not yet leveraged the parallel computing power of the GPU.

In many scientific disciplines, sensor devices and simulators generate a truly large amount

of data. Such datasets are commonly comprised of sets of multi-dimensional arrays where each

array has spatial or temporal coordinates; for instance, location and time information from

sensor devices in two or three-dimensional spaces. To efficiently navigate such datasets, many

scientific data file formats, such as NetCDF [14] and Hierarchical Data Format(HDF) [15], have

been developed. Since one of the most common access patterns for such scientific datasets is

multi-dimensional range query, some external indexing libraries such as GMIL and FastQuery

have been developed to improve the range query performance [16, 17]. However, such data

formats and indexing libraries still do not fully support multi-dimensional indexing that allows

direct access to the subsets of datasets using ranges of spatial and temporal coordinates.

The multi-dimensional indexing tree structures are used not only for high performance

scientific data analysis applications but also for general purpose applications, such as geographic

information systems, collision detection in computer graphics. In computer graphics community,

bounding volume hierarchy (BVH) tree structures and kd-trees are the most commonly used

data structures for ray tracing and collision detection [18, 19]. The database community also has

improved multi-dimensional indexing structures for the past couple of decades. R-Tree [1] and its

variants are most commonly used for multi-dimensional range query processing as of today [20,

21, 22, 23]. R-Tree can be considered as a particular class of BVH as it uses hierarchically

wrapping bounding boxes but has a degree larger than 2.

Regardless of their popularity, it has been reported that hierarchical multi-dimensional tree

structures are inherently not well suited for parallel processing as their tree traversal paths are

not deterministic because of large branching factors [24]. Moreover, their irregular memory

access patterns make it difficult to exploit massive parallelism [5]. On a GPU, recursive tree
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traversal often fails owing to its tiny run-time stack and small cache memory. Therefore, various

brute-force linear scanning approaches instead of hierarchical tree-structured indexing have been

employed in the literature [25, 26].

In computer graphics community, various techniques have been proposed to overcome the

problems [27, 28, 29, 30]. Foley et al. [27] proposed to restart tree traversal instead of back-

tracking. Hapala et al. [28] proposed to enable backtracking via auxiliary parent link pointers.

Horn et al. [31] employed a small stack that leaks from the bottom when the fixed-sized stack

becomes full. While these algorithms are designed for computer graphics applications and they

are proven to improve query processing throughput, they are not designed to improve query

response time of individual queries. In scientific applications, the number of concurrent queries

is usually orders of magnitude smaller than the number of rays in computer graphics. Hence,

such task parallel stackless tree traversal algorithms are not sufficient in scientific applications

domain.

In this dissertation, we present GPU-based stackless tree traversal algorithms - Massively

Parallel Three-phase Scanning (MPTS), Massively Parallel Restart Scanning (MPRS) and a

novel variant of R-trees - MPHR-tree [6, 24], which is designed for MPRS traversal algorithm.

MPTS and MPRS are alternative tree traversal algorithms that scan R-tree leaf nodes in a

sequential fashion in order to avoid backtracking and minimize the warp divergence while ef-

fectively pruning a large portion of the tree nodes. They are shown to outperform CPU-based

indexing, brute-force scanning methods on the GPU and other stackless tree traversal algorithms

in terms of both query response time and query processing throughput.

We also present Hybrid tree, which partitions the R-tree into internal tree nodes and leaf

nodes and stores them in CPU host memory and GPU device memory, respectively. The leaf

nodes are stored as a single contiguous array. By statically partitioning the R-tree index into

the CPU and GPU parts, we can concurrently utilize both the CPU and GPU and maximize the

parallelism. For the internal tree nodes, the CPU achieves better performance than the GPU

because it does not suffer from the warp divergence problem caused by conditional branches in

the hierarchical tree structures. For the leaf nodes, this work proposes to scan a large number

of leaf nodes in parallel according to the selection ratio of the range query. For such parallel

scanning, the GPU is known to be superior to the CPU. The experimental results show that

our multi-dimensional range query co-processing scheme improves the query response time by

up to 12x and query processing throughput by up to 4x compared to the state-of-the-art GPU

tree traversal algorithm.
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1.1 Thesis and Contributions

In this dissertation, I support the following thesis statement:

Graphics processing units can improve multi-dimensional range query performance by an

order of magnitude or more.

To this end, I design, implement, and evaluate the novel tree structures and tree traversal

algorithms to leverage the massive parallelism of the GPU.

The key contributions of this dissertation are summarized as follows.

• MPTS tree traversal algorithm and the performance comparison with CPU-

based R-tree tree traversal algorithm

The MPRS improves the utilization of GPU architecture for range query processing and

avoids the irregular search path by transforming the tree traversal problem into a se-

quential data processing problem. Our experimental results demonstrate how the MPTS

R-Trees algorithm effectively prunes out irrelevant tree nodes while it places very little

overhead on the GPU. The search time of MPTS algorithm on the GPU Fermi M2090 is as

low as 20% of parallel R-trees on quad-core Intel Xeon E5506 architecture and consistently

outperforms brute-force scanning methods.

We have also compared the braided parallel indexing and data-parallel partitioned in-

dexing, and presented experimental results that show braided parallel indexing improves

system throughput when a large number of concurrent queries are submitted and data-

parallel partitioned indexing helps improve individual query response time. We postulate

the two parallel indexing schemes can be adaptively employed in the case when the query

arrival distribution changes dynamically.

• Massively Parallel Processing of N-ary Multi-dimensional Index

To maximize the core utilization of the GPU, we let the degree of indexing tree nodes to

be a multiple of the number of cores in a GPU streaming multiprocessor (SMP) so that

all the bounding boxes of a single tree node can be compared against a given query in par-

allel while avoiding warp-divergence. Data parallel or braided parallel [32] indexing shows

significantly higher performance than task parallel indexing in terms of global memory

access reduction and SIMD efficiency.

• Massively Parallel Hilbert R-Tree and MPRS Range Query Algorithm

Multi-dimensional range query may overlap multiple bounding boxes of a single tree node.

Hence, legacy multi-dimensional range query algorithms use recursion or stack and visit

the overlapping child nodes in depth-first order. However, since the run-time stack on
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the GPU is tiny, we develop a variant of multi-dimensional indexing trees - MPHR-tree,

where each tree node embeds the largest leaf index (monotonically increasing sequence

number of a leaf node, or a Hilbert value) of its sub-tree, which helps avoid the recursion

and irregular memory access. The embedded leaf index is necessary for a novel multi-pass

range query algorithm - MPRS (Massively Parallel Restart Scanning) that traverses the

MPHR-tree structures in a mostly sequential manner. MPRS avoids visiting the nodes

that have visited by keeping track of the largest index of visited leaf nodes.

• Comparative Performance Study of Skip Pointer, Short Stack, and Parent

Link Algorithm for N-ary Multi-dimensional Indexing Trees

Skip pointer [30], short stack [31] and parent link [28] are the traversal algorithms for

multi-dimensional indexing tree structures used in ray tracing to resolve the tiny run-

time stack problem of the GPU. These stackless ray tracing algorithms are not designed

to traverse tree structures in data parallel fashion but in task parallel fashion (i.e., each

GPU processing unit processes its own individual ray). To compare their performance

with our range query algorithms, we adopt skip pointer, short stack, and parent link

algorithms for n-ary multi-dimensional indexing structures, make a block of GPU threads

concurrently process a single query.

• Query co-processing on heterogeneous architectures

We present a novel co-processing scheme for multi-dimensional range query. Our algorithm

asynchronously executes CPU and GPU computations and effectively overlaps the query

processing time. By leveraging both the CPU and GPU, we can reduce the amount of

brute-force scanning on the GPU and the number of internal nodes visited on the CPU.

• Dynamic GPU block scheduling for multiple range queries

Balancing the workloads between the CPU and GPU is important in improving the

query processing throughput and response time. To efficiently process multiple concur-

rent queries, we propose a dynamic GPU block scheduling algorithm that assigns more

GPU blocks to the queries that can be rapidly processed by sequentially accessing a large

number of leaf nodes.
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1.2 Thesis Organization

The remainder of this dissertation is organized as follows. In chapter 2, we describe previ-

ous related work. In chapter 3, we briefly introduce CUDA programming model and parallelism

for query processing on the GPU. We also present a novel range query algorithm, MPTS,

for GPU architecture. Then we compare the indexing performance with CPU-based R-Tree

Search Algorithm. Chapter 4, we present our adaptation of stackless tree traversal algorithms

and introduce a novel MPHR-tree indexing structure and MPRS range query processing algo-

rithm that avoids backtracking when traversing the indexing trees. We discuss how its parallel

construction and search operation can be performed in a SIMD fashion and evaluate and anal-

ysis the performance. In Chapter 5, we propose and evaluate our heterogeneous co-processing

scheme for multi-dimensional indexing with the-state-of-the-art GPU-based tree structures and

tree traversal algorithms. Chapter 6, we conclude this dissertation.
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Chapter 2. Related Work

GPU has been repeatedly reported that it offers unprecedented performance in various ap-

plications and it has also been studied to improve the performance of database SQL processing in

addition to the index parallelization [33, 34, 35, 36, 37]. Bakkum et al. have implemented SQLite

database virtual machine on the GPU and improved the performance of SELECT queries [35].

They transformed the internal B+-tree implementation of the database table of SQLite into a

straightforward row-column format in order to accelerate the query processing on the GPU. Che

et al. [33] reimplemented a set of computationally demanding general purpose applications on

the GPU and showed that they can benefit from data parallelism. He et al. implemented a set of

data-parallel relational query processing primitives such as map, split, sort, and one-dimensional

cache-conscious search tree on GPU [34]. Govindaraju et al. [36] also proposed GPU-aware al-

gorithms for several common database operations such as conjunctive selections, aggregations,

and semi-linear queries. However, they did not parallelize the tree traversal algorithms.

In spatio-temporal database community, there has been extensive research on multi-dimensional

indexing tree structures, starting with the seminal work on R-trees [1]. R-tree is a balanced tree

structure whose tree node consists of an array of minimum bounding boxes (MBBs). The MBB

of a tree node is the smallest multi-dimensional box that encompasses all the data in the sub-

tree, i.e., the MBB in R-tree leaf node encloses nearby spatial objects and the MBB of internal

tree nodes encloses all the underlying MBBs of lower level sub-trees in a hierarchical way. There

were also some efforts to parallelize the R-trees in shared-nothing environment [38, 39]. Kamel

proposed Multiplexed R-trees [40], Koudas et al. proposed Master R-trees [41], for a machine

with a single CPU and multiple disks. For distributed parallel cluster machines, Master Client

R-trees was proposed by Schnitzer et al. [42]. Nam et al. compared the challenges and problems

of designing distributed multi-dimensional indexes for data-intensive scientific applications [39].

The distributed multi-dimensional indexing structures have numerous usages in various contexts

including distributed and parallel query processing systems [43].

NVIDIA has been increasing the number of concurrent threads per streaming multiproces-

sor in their product line-up of GPUs, but the shared memory sizes of SMPs have been minimally

enlarged [44]. CUDA threads use the fast shared memory as their run-time stack, but the latest

Tesla GPUs have only 64K bytes of shared memory. Due to the tiny stack sizes, recursive search

algorithms of multi-dimensional indexing structures often fail. In addition, it is well known that

hierarchical tree structures are inherently not well suited for parallel processing because their

irregular memory access patterns make it difficult to exploit a large number of processing units
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on the GPU. Although a large number of multi-dimensional indexing structures have been pro-

posed, the search algorithms of those methods are similar in a sense that they recursively prune

out the sub-trees depending on whether a given query range overlaps the bounding boxes of

sub-trees.

For data parallel tree-structured index, Zhou et al. proposed to compare multiple keys of

B+-trees at the same time using SIMD instruction [45]. Kaldewey et al. [46] also proposed a

parallel search algorithm, called P-ary search, for one-dimensional sorted lists and showed that

it outperforms binary search algorithm on GPU. Kim et al. presented FAST (Fast Architecture

Sensitive Tree), which rearranges a binary search tree into tree-structured blocks to maximize

data-level and thread-level parallelism on GPU architecture [47]. Each block of FAST is the unit

of parallel processing in a single streaming multiprocessor (SMP) of GPU. The block of FAST is

similar to the node of disk-based R-trees in a sense that its size is chosen to avoid the bandwidth

bottleneck between main memory and GPU device memory. These works are one-dimensional

data structures that do not need back-tracking. For multi-dimensional range queries, there can

be several child nodes to visit. After one path is taken and the path search is completed, it

is necessary to back-track to the last place where there were multiple choices in paths so that

another path can be taken. Since recursive back-tracking algorithm does not perform well in

current GPU architecture, we propose a sequential range query processing algorithms.

To avoid the recursive tree traversal in multi-dimensional indexing, Luo et al. [48] proposed

a parallel R-tree traversal algorithm on the GPU. They employ a queue in the shared memory

of SMP to avoid recursion(i.e., stack operations). Their algorithm transforms the R-tree search

into a breadth-first search (BFS). But storing tree nodes to visit in the shared memory is not

very scalable since GPUs provide very small shared memory space. Moreover, the shared queue

requires atomic write operation which hurts concurrency and performance. Our studies are

more scalable since it does not depend on the size of shared memory.

In the computer graphics community, various techniques have been proposed to overcome

the tree recursion problem on the GPU [27, 28, 29, 30, 49, 50]. Foley et al. [27] proposed kd-

restart algorithm for ray tracing using kd-trees. Later, Hapala et al. [28] proposed a traversal

algorithm - parent link for bounding volume hierarchies that does not need a stack and minimizes

the memory needed for ray tracing. In their proposed method, each tree node has an auxiliary

parent link pointer to its parent node so that it can backtrack to the parent node by following

the pointer. Horn et al. [31] extended Foley’s kd-restart algorithm by employing a small fixed-

sized stack so that the number of restart from the root node is minimized but fixed-sized

stack leaks from the bottom when it becomes full. While these algorithms are designed for

computer graphics applications and proven to improve query processing throughput, they are

not designed to improve the query response time of individual queries. In scientific applications,
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the number of concurrent queries is usually orders of magnitude smaller than that of the number

of rays in computer graphics. Hence, such task-parallel stackless tree traversal algorithms are

not sufficient in the scientific applications domain. Although kd-restart algorithm can not be

employed for multi-dimensional range query processing because it tracks crossing points of the

ray with the region boundaries of kd-tree leaf nodes, the stackless tree traversal algorithms

proposed by Hapala et al. [28], Horn et al. [31], and Smits et al. [30] can be extended to n-ary

tree structures for parallel query processing by simple modification of the algorithms, which will

be discussed in detail in Chapter 3.

Recently, Shahvarani et al. [51] proposed the HB+tree, similar to our Hybrid tree, which

also utilizes both the CPU and GPU. In the HB+-tree, internal nodes are duplicated in the

GPU device memory so that the GPU can concurrently process them in parallel. Unlike the

HB+tree, we use the GPU for leaf node scanning instead of internal node traversal. The

experimental results show that parallel leaf nodes scanning on the GPU is more effective in

utilizing the high-memory bandwidth of GPUs. In addition, the HB+tree is designed for the

one-dimensional query, whereas we propose a co-processing scheme for multi-dimensional range

query in Chapter 4.

Nearest neighbor query (k-NN) is another important class of multi-dimensional query that

finds closest points given a set of points in multi-dimensional space [52, 53, 25]. Garcia et al. [54]

have proposed brute-force k-NN search algorithms for the GPU and Cayton presented a two-

level brute-force search algorithm called Random Ball Cover (RBC) [55]. In RBC algorithm,

some random points are used as representative points for subsets of the dataset, and the amount

of work for nearest neighbor queries are substantially reduced by pruning out some subsets using

the representative points. This work is different from ours in that RBC targets high dimensional

point datasets, while our work focuses on the relatively low dimensional range queries and

proposes a novel tree traversing algorithm for hierarchical tree structures are known to be very

effective for low dimensional datasets.

FastQuery is a parallel indexing software framework designed for modern supercomputing

platforms [17]. It exploits parallelism on distributed multi-core resources using one-dimensional

bitmap indexing. It builds a huge bitmap index for sub-arrays for large scientific datasets and

processes queries in parallel by partitioning the bitmap index. For multi-dimensional scientific

queries, Su et al. [56] proposed a parallel multi-level bitmap indexing scheme that supports

partitioning queries over multi-dimensions based on query profile. Our work is different from

theirs in a sense that our tree traversal algorithms leverage a large number of cores in GPU

accelerators while their indexing framework targets cluster servers and it does not employ GPUs.

Our experimental results show the MPHR-trees and Hybrid Tree can be easily extended to large

scale GPU cluster servers.
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Chapter 3. Multi-dimensional Range Query Processing with

R-Tree on the GPU

In this chapter, we propose a novel MPTS (Massively Parallel Three-phase Scanning) R-

tree traversal algorithm for multi-dimensional range query, which converts recursive access to

tree nodes into a sequential access. Our extensive experimental study shows that MPTS R-

tree traversal algorithm on NVIDIA Tesla M2090 GPU consistently outperforms traditional

recursive R-trees search algorithm on Intel Xeon E5506 processors.

3.1 Background on CUDA

To process a large amount of data in parallel, a CUDA program spawns thousands of

extremely lightweight parallel threads, and they execute the kernel function on the GPU to

access small portions of the large input dataset in parallel. A CUDA thread block consists of a

set of CUDA threads that share intermediate data results and cooperate on memory access with

the other threads through synchronization mechanisms that CUDA provides. The threads in

the same thread block can efficiently share data through a small but low latency shared memory.

In addition to the small shared memory, GPU comes with a relatively large DRAM memory,

called global (device) memory, which is shared and accessed by all CUDA threads.

A warp is the minimum thread scheduling unit in CUDA architecture, but the warp is not

controllable by programmers. Instead, programmers can specify the number of blocks and the

number of threads per block when invoking a CUDA kernel function. The blocks are distributed

across the multiple SMPs, and multiple threads in a single block are executed by a set of CUDA

processing units in a single SMP concurrently. Tesla K20m GPU contains 192 CUDA processing

units, and it can execute a single warp of 32 threads in a single clock cycle on average. Note that

the number of concurrent threads in a block can be limited if the amount of memory (CUDA

registers, shared memory, and constant memories) required by threads exceeds the capacity of

memory that reside in the SMPs.

3.2 Braided Parallel Indexing vs Data Parallel Partitioned In-

dexing

In GPU computing, braided parallelism implies that multiple independent jobs run in par-

allel on different SMPs and each independent job is processed in a data parallel fashion across

multiple processing units in a single SMP. Braided parallelism is commonly used in GPU ap-
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(a) Braided Parallel Indexing (b) Data Parallel Partitioned Indexing

figure 3.1: Braided Parallel Indexing vs Data Parallel Partitioned Indexing

plications since it fits nicely with SIMD architecture of the GPU. However, braided parallelism

does not scale when the number of submitted tasks is small.

Since maximizing the utilization of GPU processing units plays the key role in improving

the performance of GPU applications, we compared two approaches that parallelize index search

operations. One method is braided parallelism that assigns a different query to each SMP, i.e.

a GPU that has 16 SMPs can execute 16 queries concurrently. Since there’s only a single index

in GPU memory, the index will be shared by all the SMPs, but different parts of the index

will be accessed to serve different queries. As task parallelism scales with a large number of

concurrent jobs, this braided parallel query processing improves query processing throughput

when a large number of queries are continuously submitted. However, it would not help reduce

the execution time of running each query.

In order to improve the response time of the individual query, we devised another method

that makes maximum use of data parallelism, where we partition the index into sub-indexes

and distribute them to each SMP. Partitioning spreads and decreases the amount of work to

be done for a single query across multiple SMPs because each SMP has a smaller partitioned

index to work on. Partitioning a large index will decrease the size of the index by a factor

of the number of SMPs. When a range query is submitted, all the SMPs compare the same

given query range with its own partitioned index and returns the list of the data objects whose

multi-dimensional coordinates overlap with the given range. This approach can help decreasing

the query execution time of a single query since the amount of work is reduced and spread

across more number of processing units.

Figure 3.1 illustrates the differences between braided parallel indexing scheme and data

parallel partitioned indexing scheme. To refer to the data parallel partitioned indexing, we use

the term partitioned indexing for short. In braided parallel indexing shown in Figure 3.1a, each
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figure 3.2: Massively Parallel Exhaustive Scanning on the GPU (MPES)

SMP processes different user query, hence if the fewer number of queries are submitted than

the number of available SMPs, the utilization of processing units would be poor. However, in

data parallel partitioned indexing shown in Figure 3.1b, the same single query is processed by

all SMPs concurrently with different partitioned indexes, thus utilization would be higher than

that of braided parallel indexing even when the number of submitted queries is small.

3.2.1 Massively Parallel Exhaustive Scanning (MPES) on the GPU

Although GPU programming model such as CUDA or OpenCL has improved for general

purpose applications, GPUs are still very restrictive in many senses. For examples, SIMD

execution model of GPUs is not well suitable for irregular data access patterns because branching

is very time-consuming operation on the GPU. If threads of a warp take different branch paths

due to data-dependent conditions, the warp will execute each thread serially. In order to

avoid this problem, data-dependent algorithms should be carefully redesigned. An algorithm of

traversing a tree-structured multi-dimensional index is one of the data-dependent algorithms as

we will describe in section 3.3.

An easy way of taking the advantages of a large number of processing units on GPU is

to apply brute-force algorithms. In various fields including multi-dimensional query processing,

brute-force algorithms on GPUs are drawing attentions since it is completely data-independent

and effectively utilizes a large number of processing units. In database community, brute-force

search algorithms for high dimensional datasets have been extensively studied in the literature

because of its superior search performance to other sophisticated tree-structured indexes when

datasets are in high dimensions [57]. The traversal algorithms of R-Trees and its variants are
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Algorithm 1 R-tree Search Algorithm

void RTreeSearch(Node* n, MBB* query)

1: // this is an internal node in the tree

2: if n.level > 0 then

3: for i← 0, Number Of Child Nodes do

4: if MBBOverlap(query, n.child mbb[i]) then

5: RTreeSearch(n.child[i], query);

6: end if

7: end for

8: else

9: // this is a leaf node

10: for i← 0, Number Of Child Nodes do

11: if MBBOverlap(query, n.child mbb[i]) then

12: // Found overlapping data

13: SaveOverlappingData(n.child[i]);

14: end if

15: end for

16: end if

designed to visit as small number of tree nodes as possible, i.e. in log-scale. Thereby recursive

search functions, as shown in Algorithm 1, or using while-loop with user-defined stack or queue

are being used for the irregular tree node traversal patterns. The recursive search algorithms

that prune out unnecessary nodes have been shown to outperform brute-force search algorithms

for low dimensional datasets in many studies. However, for high dimensional datasets, the

recursive search algorithms suffer from the well known curse of dimensionality problem - the

exponential growth of hyper-volume as a function of dimension [58]. For high dimensional

vector datasets, k-nearest neighbor (kNN) queries [59] are more common access patterns than

orthogonal range queries, and it has been shown that the brute-force kNN search algorithms on

GPU show good performance [55, 54].

One of the features that distinguishes CUDA programming model with CPU based pro-

gramming model is its limited support of recursion. In CUDA programs, recursive algorithms

can cause memory problems because very small and slow off-chip local memory is used for

runtime stack. For instance, a Tesla M2090 GPU has only 48KB L1 cache and 512K off-chip

local memory. For this reason, early CUDA programming model did not support recursion at

all. Although CUDA started supporting recursive function calls since version 3.1, the recursive

functions can easily crash if the size of function arguments is large. In CUDA 5.0, dynamic

parallelism allows a kernel function to call other kernel functions recursively, but still it does
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Algorithm 2 Braided Parallel MPES Algorithm on the GPU

void BraidedParallelMPES(MBB* node, MBB* query, int *totalHit, int numOfThreads, int

numOfData)

1: // GPU block id and thread id

2: int bid← blockIdx.x;

3: int tid← threadIdx.x;

4: for i← 0, numOfData do

5: if node[i+ tid].boundary.contain(query[bid].boundary) then

6: saveResult(tid, node[i+ tid].data);

7: end if

8: i+ = numOfThreads;

9: end for

Algorithm 3 Data-Parallel Partitioned MPES on the GPU

void DataParallelPartitionedMPESonGPU(MBB* node, MBB* query, int *totalHit, int nu-

mOfThreads, int numOfBlocks, int numOfData)

1: // GPU block id and thread id

2: int bid← blockIdx.x;

3: int tid← threadIdx.x;

4: int start← (numOfdata/numOfBlocks) ∗ bid;

5: int finish← (numOfdata/numOfBlocks) ∗ (bid+ 1);

6: for i← start, finish do

7: if node[i+ tid].boundary.contain(query.boundary) then

8: saveResult(tid, node[i+ tid].data);

9: end if

10: i+ = numOfThreads;

11: end for

not provide a solution to the tiny size of run-time stack in GPU architectures. Instead of using

the recursive functions, user-defined stack in global memory can be employed, but at the cost

of significant performance degradation [60]. Therefore, if possible, it is desirable to modify and

redesign recursive algorithms and transform random data access patterns into sequential data

processing in order to maximize the utilization of a large number of GPU processing units and

get the maximum performance out of SIMD architecture.

In section 3.3, we describe how the recursive tree traversal algorithm that needs back-

tracking has been transformed into a sequential range query algorithm that effectively eliminates

memory space problems and prunes out unnecessary nodes. In order to evaluate the performance

improvement over the brute-force algorithms, we implemented a massively parallel exhaustive

search (MPES) function as a performance baseline as shown in Algorithm 2 and 3. MPES
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search function simply transforms a range query search operation into a stream data filtering

process that is well suited for GPU acceleration. As illustrated in Figure 3.2, MPES divides the

total number of multi-dimensional data objects - N by the number of CUDA threads in each

SMP - K, and each thread compares the N/K number of data elements with a given query

range to detect whether they overlap or not. For the data-parallel partitioned indexing approach

described in section 3.2, each thread compares the N/(K ·M) number of data elements where

M is the number of SMPs.

3.3 Massively Parallel Three-Phase Scanning (MPTS) R-Trees

on the GPU

In database systems, the degree of n-ary tree structures is determined by the page size of

disk storage. However, for GPU indexing, the degree of tree node is set to a multiple of the

number of processing units in a GPU block. In our experiments, good search performance is

achieved when the degree of tree nodes is four times larger than the number of cores in a GPU

block, i.e., four child nodes per GPU thread. If the degree of a tree node is 256, the R-tree

node size becomes greater than 10 KB, and GPUs that have 48 KB of shared memory can store

maximum four tree nodes, which means searching indexing trees taller than five is not feasible.

In practice, shared memory is consumed not only to stack the tree nodes to visit but also to

store shared variables to coordinate CUDA threads within a block. Thus, the recursive search

function on the GPU may suffer from a stack-overflow problem even for a small tree height, like

three, and stack-less traversal is preferred on the GPU.

In order to address this problem, we propose and discuss an alternative tree traversal algo-

rithm that navigates tree nodes sequentially in this section, which we named Massively Parallel

Three-phase Scanning (MPTS). This algorithm is very simple but as effective as recursive search

function as we will show in the experimental section. As shown in Algorithm 1, traversing R-

Trees on CPU needs a loop to iterate the array of minimum bounding boxes (MBBs) of child

tree nodes. To exploit massively parallel CUDA architecture and to alleviate the I/O resource

competition, this loop is parallelized with a number of threads. In MPTS search algorithm,

a set of threads in a CUDA block cooperate to check in parallel if the MBBs of child nodes

overlap a given query, i.e., the number of threads in each block is set equal to the number of

node fan-outs (the maximum number of child nodes). Since current GPU architecture executes

an instruction in the unit of warp (32 threads), the number of node fan-outs should be equal to

a multiple of 32.

This parallel search scheme is desirable for SIMD architecture since all the threads in a

single block read the same tree node and each thread independently determines whether a child
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figure 3.3: MPTS R-Tree Search with Sibling Check

node overlaps a given range query. After all the threads are done with comparing a query

with MBBs of child nodes, they should agree with which child node to visit next if there are

more than one overlapping child node. The recursive search algorithm shown in Algorithm 1

navigates down one of the overlapping nodes, and it back-tracks to the current node so that it

visits another overlapping node. This recursion needs a large run-time stack space especially

when the size of the tree structure is large. Current run-time stack frame stores which child

nodes of the current node overlap so that when it back-tracks to current stack frame it restores

the overlap information without comparing the MBBs and chooses the next child node to visit.

However, the recursive range query function is not scalable since it often fails when the size of

the index is large and query range is also large. 1

To avoid back-tracking, MPTS search algorithm selects at most one child node to visit

no matter how many child nodes overlap a query. As shown in Figure 3.3, MPTS search

algorithm keeps choosing the leftmost node in each level in the first phase, (Steps 1-3), and in

the second phase, the rightmost node in each level is visited (Steps 4-6). Any node that is not

in between the leftmost and rightmost nodes has no chance of overlapping the query. If there

is an overlapping node out of the leftmost and rightmost nodes, it contradicts that they are the

leftmost or rightmost nodes. This pruning process determines which nodes are irrelevant and

reduces the number of tree nodes to visit. The leftmost and rightmost scanning algorithm is

1In order to overcome this drawback, we implemented a non-recursive R-tree search function that stores

overlap information in global memory. I.e., recursion is converted into a loop where a thread inserts the address

of overlapping child nodes into a queue in global memory. When a block of threads are done with processing

current tree node, they fetch the next tree node from the queue, compare the MBBs of its child nodes again,

and repeat. Unfortunately, it turned out that this design makes the global memory access a serious performance

bottleneck and performs extremely poor. Thus we do not show its performance in experimental results.
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Algorithm 4 Leftmost/Rightmost Scanning Algorithm of MPTS

Ndoe* Find LeftRightmostNode(Node *root, MBB *query, int LR-

Flag)

1: shared int Ovlp[NumberOfChildNodes];

2: shared Node node;

3: node← root;

4: while node != NULL do

5: if node′slevelishigherthanone then

6: // internal nodes, keep choosing left/rightmost child

7: if node.child[tid].child and MBBOverlap(query, node.child[tid].mbb) then

8: // if child[tid] exists and the MBB of child[tid] overlaps a query

9: Ovlp[tid]← tid;

10: end if

11: syncthreads()

12: // parallel reduction to find out

13: // the leftmost/rightmost overlapping child

14: // Ovlp[0] holds the index of leftmost/rightmost child

15: Ovlp[0]← parallelReduction(Ovlp, LRFlag)

16: if none of the branches overlaps then

17: node = NULL;

18: if LRFlag == LEFT and there is a right sibling then

19: node← (Node∗)((char∗)node+ TREENODESIZE)

20: end if

21: if LRFlag == RIGHTandthereisaleftsibling then

22: node← (Node∗)((char∗)node− TREENODESIZE)

23: end if

24: else

25: // fetch the leftmost/rightmost child node

26: node← node.branch[Ovlp[0]].child;

27: end if

28: syncthreads()

29: else

30: // this is a level-1 node (a parent of the leaf node)

31: return(long)node;

32: end if

33: end while

given in Algorithm 4. After identifying the leftmost level-1 (parent of leaf node) node and the

rightmost level-1 node, all the level-1 nodes in between are scanned in the last phase as shown
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in Algorithm 5. If a level-1 node has an MBB of child leaf node that overlaps the query, the

child leaf node is fetched and compared against the query.

In the example shown in Figure 3.3, let us assume a single warp consists of three threads

and the maximum child nodes of each tree node are also three. In step one (circled one in the

figure), two threads will find the red-colored left and middle MBBs (A and B) of the root node

overlap a given query range. The third thread will find out that the root node doesn’t have

third child node and wait for the other two threads to finish. In the leftmost search phase, the

middle overlapping MBB B will be ignored but the left child node A will be chosen and visited.

A simple parallel reduction algorithm can be employed to identify which overlapping MBB is

located in the leftmost position in the tree structure. In order to avoid shared memory bank

conflicts, we employed sequential addressing for the parallel reduction. In step 2, again the first

and second threads find out the left and middle MBBs (C and D) overlap, and C will be chosen

just because it is located in the leftmost position among them. In step 3, threads will find out

none of the MBBs (G and H) overlap. In traditional recursive tree traversal algorithms, we

should go back to the parent node, but back-tracking should be avoided in GPU environment.

Instead, we can blindly navigate down further following the rightmost child node (i.e. H → Q

and R) although we know they do not overlap. This approach will increase the distance between

leftmost and rightmost nodes and the probability of false hits. Although it will hurt the query

processing performance as a result, it does not harm correctness of the query results since the

real leftmost (rightmost) overlapping node will be located on the right (left) side of the false

leftmost (rightmost) nodes. In the last parallel scanning phase, the nodes between leftmost and

rightmost nodes are scanned in parallel and any non-overlapping nodes are filtered out.

A better way of avoiding false hits and reducing the distance between leftmost and rightmost

nodes is the sibling jump shown in steps 3, 4, and 5 of Figure 3.3, which fetches its right sibling

node when there’s no overlapping MBB in the current node. In our implementation of MPTS

search, we rearrange tree nodes in a breadth-first manner while transferring the index from host

memory to GPU global memory, thus it is trivial to fetch an adjacent sibling. The tree index

in GPU global memory is stored in a single contiguous block, thus we can easily calculate the

memory address of adjacent siblings by adding the fixed tree node size to the current node’s

memory address. In step 3 shown in Figure 3.3, instead of visiting the child node that has Q

and R, MPTS jumps to its sibling node in step 4. Again the MBB I of the sibling node also

does not overlap, hence it jumps again to the node that has J and K. When none of the MBBs

overlap, MPTS keeps jumping until the sibling node has an overlapping child node or there is

no more sibling node. In step 5, J does not overlap but K does, and the child node pointed by

K is the level-1 node. So we return the memory address of the child node as the leftmost level-1

node. Note that as we jump to siblings in the higher level of trees, the number of pruned out
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Algorithm 5 Braided Parallel MPTS R-Trees Algorithm

void MPTS RTree RangeQuery(Node* root, MBB* query)

1: // GPU block id and thread id

2: int bid← blockIdx.x;

3: int tid← threadIdx.x;

4: // search leftmost and rightmost overlapping nodse in the level one

5: Node ∗ leftMost← Find LeftRightmostNode(root, query[bid], LEFT );

6: Node ∗ rightMost← Find LeftRightmostNode(root, query[bid], RIGHT );

7: if leftMost == NULL or rightMost == NULL then

8: return;

9: end if

10: while leftMost <= rightMost do

11: // fetch the next level one node and filter it out.

12: for i← 0, leftMost.NumOfChilds do

13: Node ∗ leaf ← leftMost.child[i];

14: if MBBOverlap(query[bid], leaf.child[tid].mbb) then

15: saveResult(tid, leaf.child[tid].data);

16: end if

17: end for

18: leftMost += TREENODESIZE;

19: end while

leaf nodes increases exponentially.

In the second phase, MPTS search algorithm will find out the rightmost level-1 node in a

similar way. In the last parallel scanning phase, the level-1 nodes between the leftmost and the

rightmost nodes are scanned and when the MBB of their leaf nodes overlap the query, the leaf

node is accessed and the overlapping data object will be returned (step 9 and 10). The leftmost

search and the rightmost search phases can run concurrently in a separate group of threads for

further optimization. But the overhead of the first and second phase is not very significant since

the number of tree nodes that need to be fetched from global memory is just O(logk N), where

the N is the number of indexed data.

As we navigate down the trees we access the one and only child node in each level. Hence

MPTS search algorithm does not require back-tracking or global memory access. The penalty

of eliminating the back-tracking is that we may have to visit more number of leaf nodes. The

leftmost leaf and the rightmost leaf node can be located very far from each other in the tree

structure. In traditional R-trees, the MBBs of a tree node are stored in random order. Thus,

MPTS search algorithm might have to scan all the leaf nodes even for a very small query

range. Although CUDA is known for its outstanding performance of processing consecutive
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data in parallel, scanning all the leaf nodes should be avoided for performance reasons. The

performance of MPTS search algorithm depends on how many tree nodes are accessed. Usual

tree height of R-trees is 4 or 5 when the tree node size is 4K bytes and the number of the indexed

data object is about a million. Thus, leftmost and rightmost search phases are not significant

overhead, but the number of visited nodes in the last scanning phase can be O(n) in the worst

case where n is the number of indexed data. In order to narrow down the distance between the

leftmost leaf node and rightmost leaf node, we employed Hilbert space filling curve [61] which is

well known for its property of preserving spatial locality. Using Hilbert space filling curve, we

rearranged MBBs of an R-tree nodes so that sibling nodes have very high spatial locality. When

tree structure has higher spatial locality between tree nodes, the range of search paths becomes

narrower and the number of leaf nodes between the leftmost leaf node and the rightmost leaf

node decreases.

3.4 Multi-threaded R-trees Search on the CPU Multi-cores

Multi-core processors are now being widely used in many application domains including

scientific applications. But the performance of the applications is mainly affected by their

algorithms, i.e., how much portion of the algorithms is parallelized. The MPTS search algorithm

is not well suited for multi-core processors for many reasons. First of all, the performance of

modern CPU cores is much faster than GPU processing units. CPUs do not have problems

with conditional branch and recursion. Also, the number of cores in multi-core processors is not

as large as the preferred number of tree node fan-outs. Moreover, L1 caches and local memory

each core of multi-core processors has will be wasted by redundant data.

Hence, we implemented two simple parallel R-tree indexing schemes on multi-core archi-

tectures in a different way from MPTS. One way is to let all the cores share the same R-tree

index and assign a different query to each core. We will refer to this scheme as RTree-MultiCore

in the experimental section. The other parallel indexing scheme is to partition a single R-tree

into the number of cores in a multi-processor, and a single query is processed by all the cores

that search their own partitioned small indexes. We denote this indexing scheme as partRTree-

Multicore (Partitioned R-trees Search on CPU Multi-cores). This partRTree-Multicore parallel

indexing parallelizes a single search operation of R-trees while RTree-Multicore does not. Note

that in partRTree-Multicore the number of partitioned-trees (N) is dependent on the number

of available cores in CPU, but the N can be set greater than the number of cores to improve

resource utilization.

This partRTree-Multicore approach allows us to search small independent indexes in paral-

lel. When inserting a new data, we choose an index to store the data in a round-robin fashion.
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Alternatively, we can employ Hilbert space filling curve [61] as a de-clustering method so that

each core gets a similar amount of load for any shape of range query and we can maximize par-

allelism. However, in our experimental study not shown in the chapter, the simple round-robin

assignment performed almost equally well with a Hilbert space filling curve. The experimental

results presented in section 3.5 used round-robin selection.

3.5 Evaluation

3.5.1 Experimental environment

We measure the search performance of the proposed parallel range query algorithms on a

machine running Centos 5.8 with CUDA Toolkit 4.1. The machine has Intel Xeon 8 Core E5506

2.13GHz processor, 12GB DDR3 memory, and Tesla Fermi M2090 GPU card. The Tesla Fermi

M2090 has 16 SMPs and each SMP has 32 GPU processing units, which enables 512 (16x32)

threads to run concurrently.

To evaluate the proposed parallel indexing schemes, we used the spatial data generator [62]

developed by Yannis Theodoridis and generated synthetic 4 dimensional point data sets in uni-

form, normal, and Zipf’s distribution, but we only present the experimental results of uniform

distribution since the results of the other distributions are similar. We also evaluate the per-

formance of parallel algorithms using real datasets - two dimensional MBBs that encompass

California polyline streets.

As for the performance metrics, we measure TBQET (Total Batch Query Execution Time)

for query processing throughput and QET (Query Execution Time) for query response time.

TBQET is the elapsed time between the time when the first query in a batch was submitted

and the time when the last query in the batch was finished, i.e. small TBQET implies high

system throughput. The other metric, QET is the elapsed time between the time when a single

query was submitted to GPU kernel function and the time when the query was returned back

to the host. We average the QET for 1000 queries, which shows how fast an individual query

is executed and returned.

As an optimization effort, memory coalescing is commonly used in CUDA programming

in order to reduce the number of memory transactions. As an R-tree node consecutively stores

MBBs for CUDA threads, each thread accesses adjacent memory space for each child node. Thus

memory coalescing optimization can be naturally dealt with in R-trees. Another commonly

used ad-hoc optimization technique that can be employed for further performance improvement

is data transfer overlapping with kernel execution so that a new query and previous query

results can be transferred while searching R-trees. In the experiments shown below, we did not

employ such ad-hoc optimizations for both the GPU and CPU. With such ad-hoc optimizations,
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figure 3.4: Throughput with Varying Number of Blocks and Threads per Block

including SSE (Streaming SIMD Extensions), the novel R-tree traversal algorithm and the

traditional recursive R-tree search would perform faster than presented in the following section.

We compiled the codes with default optimization options using nvcc 4.1 and gcc 4.1.2.

3.5.2 Experimental results

We run experiments with various numbers of blocks and threads to find out when the

utilization of GPU processing units is maximized while avoiding resource contention. Figure 3.4

shows the TBQET for 1000 4 dimensional queries. As we increase the number of blocks up

to 128, the elapsed search time decreases sub-linearly as illustrated in Figure 3.4a. When the

number of blocks is greater than 128, the search time improvement seems minimal or sometimes

we observe that the performance gets worse.

For the experiments shown in Figure 3.4b, we increase the number of threads. Note that

the number of threads in each block is equal to the number of node fan-outs for the MPTS R-

trees as we discussed in section 3.3. The search performance of MPES improves as we increase

the number of threads up to 512, however, a larger number of threads don’t help improve the

utilization of GPU processing units and it does not reduce the search time either. On the

contrary, MPTS R-trees shows the best performance when the number of fan-outs (threads) is

256. When the number of fan-outs is smaller than 256, the search performance is slow because

the utilization of GPU processing units is low. As the number of fan-outs increases, the tree

height of R-trees decreases but the amount of work to be done by a single block increases and

it also hurts the search performance because an SMP is flooded with too many threads. If the

number of fan-outs decreases, the tree height of MPTS R-trees increases but less amount of

work is assigned to a single block, which hurts the utilization of GPU processing units. The

best search performance of MPTS R-trees is observed when the number of threads is 256, and

this number is different from the best number of MPES because the search pattern of MPTS
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figure 3.5: Effect of the Number of Indexed Data

R-trees is different from MPES. For the rest of the experiments, we fix the number of CUDA

blocks to 128 and fixed the number of node fan-outs to 256, which is the best configuration for

the MPTS R-trees.

In Figure 3.5a, we measure the total batch query execution time (TBQET) for a thousand

of 4-dimensional queries as we increase the number of indexed data from 100 thousands to 10

millions. The range query selection ratio2 used for this set of experiments is 1%. For MPTS

R-trees, the number of blocks is 128 and the number of threads (node fan-outs) is 256. The

performance of RTree-Multicore (Multi-Threaded R-trees on CPU) is measured with 4 threads

on Intel Xeon E5506 processor.

As the number of indexed data increases, MPES needs to scan more number of data and

the search time increases linearly. Note that both the x-axis and y-axis in Figure 3.5a are in

log-scale. The search time of MPTS R-tree increases as more number of data are indexed, but

the search time of MPES and RTree-Multicore is getting slower at a faster rate as we index more

data. The performance gain of MPTS R-trees mostly comes from the less number of visited

nodes. Figure 3.5b shows that the number of visited nodes of MPTS R-trees is about 1030 ∼

2465 times less than that of MPES. An interesting result is that the number of visited nodes

of MPTS R-trees is almost the same with that of RTree-Multicore. In our experiments, MPTS

R-trees visit about 12% (20% in the worst case) more tree nodes than recursive R-trees search

algorithm on average. This result is showing that three-phase scanning is almost as effective as

recursive tree traversal algorithm and has a great potential to be a replacement of tree traversal

algorithms on the GPU.

The next sets of experiments compare the performance of the data-parallel partitioned

indexing and the braided parallel indexing that we discussed in section 3.2. Data-parallel par-

titioned indexing focuses on improving the response time of a single query while the braided

2Selection ratio refers to the ratio of the number of selected data to the number of indexed data for a query.
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figure 3.6: Braided Parallel Processing vs Data-parallel Partitioned Indexing

parallel batch query processing focuses on improving the overall system throughput when many

queries are concurrently submitted to the system.

Figure 3.6a shows that braided parallel query processing with MPTS R-trees outperforms

the data-parallel partitioned MPTS R-trees indexing in terms of the system throughput as we

expected. However as we index more number of data, the performance gap between braided

parallelism and data parallel partitioned indexing becomes smaller, but still significant. With

a larger number of indexed data, MPTS R-tree search is much more effective than brute-force

MPES, hence even the data-parallel partitioned MPTS R-trees outperforms the braided parallel

MPES when the number of index data is larger than 3 millions.

In the experiments shown in Figure 3.6b, we evaluate the average query response time

of individual queries. When the number of indexed data is less than 400,000, partitioned

MPES yields the fastest QET. However as the number of indexed data grows, the data-parallel

partitioned MPTS R-trees outperforms partitioned MPES, which indicates that tree structured

indexing and MPTS search algorithm helps reduce the query response time of individual queries

especially when the size of the dataset is very large. Although the braided parallel query

processing improves the system throughput as shown in Figure 3.6a, we show from this set of

experiments that it is not effective in improving query response time.

Figure 3.7 and 3.8 show the performance of index search for various dimensions, from

two to sixty-four dimensions. For the experiments in high dimensions, we generate 1 million

uniformly distributed hyper-cube data varying the number of dimensions, and submit 1,000

synthetically generated range queries in uniform distribution. The average selection ratio of the

queries is adjusted to 1% for all the dimensions.

With high dimensional datasets, the exponential growth of the space causes various phe-

nomena related to the curse of dimensionality problem. As discussed in section 3.2.1, it has
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figure 3.7: Throughput and Number of Visited Nodes High Dimensions

been well known that brute-force linear scanning works faster than sophisticatedly designed tree

structured indexes when the datasets are in high-dimensional space [23]. Our experiments also

confirm this fact. As the dimension increases, multi-threaded R-trees (RTree-Multicore) do not

perform well and its search time becomes much slower than that of MPES.

The three-phase scanning algorithm of MPTS R-trees works in a very similar way with

brute-force linear scanning except that it reduces the range of scanning by the help of tree-

structured indexing. When the dataset is in lower dimension than 16, MPTS R-trees win MPES

by big time, but as the dimension increases, the performance gap between MPTS R-trees and

MPES keeps decreasing because of the notorious curse of dimensionality problem.

The number of visited nodes shown in Figure 3.7b illustrates how efficiently the three-phase

scanning algorithm prunes out non-overlapping leaf data. The three-phase scanning algorithm

of MPTS R-trees visits almost the same number of nodes with the regular recursive R-tree

search algorithm. In the worst case, about 28% more nodes were visited when the datasets are

in 2 dimensions. With 4 dimensional datasets, 8% more nodes were visited. But less than 1%

more nodes were visited in higher dimensions (> 4) in our experiments. In high dimensions, the

number of visited nodes by MPES is fewer than that of MPTS R-trees, but the query processing

time of MPES is slower than MPTS R-trees. This can be explained by R-tree node utilization.

Although the number of visited nodes in MPES is fewer, the number of MBB comparisons using

MPES is greater than MPTS R-trees because only 66% of maximum node fan-outs are used by

R-tree nodes on average. In another word, although MPTS R-trees access global memory more

often, the processing time of a memory block in MPTS R-trees is shorter than MPES because

33% of the memory block is empty in MPTS R-trees and the number of instructions executed

by a warp is fewer.

Figure 3.8 shows average query response time for individual queries. The data-parallel

partitioned indexing schemes shown in Figure 3.8b processes individual queries more than 100
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figure 3.8: Query Execution Time in High Dimensions
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figure 3.9: Throughput and Number of Visited Nodes with Varying Selection Ratio

times faster than braided parallel indexing shown in Figure 3.8a, In Figure 3.8a, RTree-Multicore

shows faster performance than braided parallel MPTS R-Trees and MPES in terms of single

query processing, but MPTS R-Trees and MPES with data-parallel partitioned indexing on

the GPU outperform both braided-parallel and data-parallel partitioned R-Trees indexing on

multi-core CPUs (RTree-Multicore and partRTree-Multicore).

Figure 3.9 and 3.10 show how much MPTS search algorithm is sensitive to the selection

ratio of queries. When the selection ratio is small, the distance between the leftmost overlapping

leaf node and the rightmost overlapping leaf node will be likely to be short. In such a case the

MPTS search will visit much fewer tree nodes than MPES.

In the experiments shown in Figure 3.9, we increase the selection ratio from 0.5% to 20%.

The number of indexed data is 1 million and we submit 1,000 queries. Interestingly, the indexing

scheme that suffers from increased selection ratio is not MPTS R-trees but RTree-Multicore on

quad core Intel Xeon E5506. Again MPTS search algorithm visits almost the same number

of tree nodes with recursive search algorithm, but the TBQET of MPTS R-Trees is much

smaller than RTree-Multicore because MPTS R-Trees process them with a much larger number
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figure 3.10: Query Execution Time with Varying Selection Ratio

of cores. Throughout in our experiments, MPTS search algorithm has been consistently shown

to effectively prune out non-overlapping leaf data. No matter how large or small the selection

ratio is, the three-phase scanning algorithm of MPTS R-trees visits almost the same number of

nodes with the regular R-tree search algorithm. In the worst case, about 15% more nodes were

visited when the selection ratio was 0.5%, 15% more nodes when selection ratio was 1%, and

less than 1% more nodes when selection ratio was higher than 1%.

When the selection ratio is small, brute-force MPES does not perform very well. But as

the selection ratio increases, the number of tree nodes to visit increases and RTree-Multicore

becomes slower than MPES. When the selection ratio is 20%, the query processing throughput

of MPES is about 4 times higher than multi-threaded R-trees (RTree-Multicore) and MPTS

R-trees yields about 7 times higher system throughput than RTree-Multicore.

Figure 3.10 shows the data-parallel partitioned indexing helps accelerate individual query

processing. In data-parallel partitioned indexing, MPES processes queries even slightly faster

than MPTS R-trees when the selection ratio is higher than 8%, this is because of the overhead

of leftmost and rightmost search phases. It should be noted that the query processing time

of MPES slightly increases as selection ratio increases. This is not because MPES scans more

number of data with higher selection ratio, but it is because of the function that compares

the MBB overlap of a node and a query. The function stops comparing coordinates of MBBs

immediately when they do not overlap. But if they overlap, all the coordinates have to be

checked, so it takes more time with higher selection ratio.

In the set of experiments shown in Figure 3.11a, we evaluate the performance of multi-

threaded R-trees (RTree-Multicore) on various different multi-core CPUs. The number of

threads is determined by the number of cores, i.e., we run 4 threads for a single socket quad

core CPU (i7-3770), 8 threads for dual socket quad core CPU (Xeon E5506), 12 threads for dual

socket 6 core CPUs (Xeon E5649), 24 threads for dual socket 12 core CPU (Opteron 6174), and
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figure 3.11: Performance evaluation on various multi-core architectures

quad socket 6 core CPU (Xeon X7460). The query processing throughput of quad Xeon X7460

(24 threads) is only 3 times greater than that of i3-530 (2 threads), and only 1.7 times faster

than i7-3770 (4 threads). This result is showing that in multi-core architectures the number of

cores is not determining the tree index search performance, but the processing power and clock

speed of each core is also important. In the experiments shown in Figure 3.11b, we measure

the query processing throughput with increasing number of threads on 24 core machines. The

throughput increases sub-linearly as we run more concurrent threads, but it saturates when the

number of threads is larger than the number of available cores.

In addition to the synthetic point datasets, we evaluate the proposed parallel indexing

schemes using real spatial datasets - that contains one million two-dimensional MBBs of Cal-

ifornia streets. As shown in Figure 3.12, the result is not quite different from the synthetic

datasets. MPTS R-trees consistently outperforms MPES and multi-threaded R-trees (RTree-

Multicore). When the selection ratio is less than 3%, RTree-Multicore outperforms MPES, but

when it is higher than 3%, MPES performs better. In Figure 3.12b, the number of visited node

with MPES is about 3 times greater than that of RTree-Multicore, but MPES takes the advan-
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figure 3.12: Performance evaluation using San Francisco roadmap data

tage of massive parallelism to win. However still MPTS R-tree yields the highest throughput

because it visits almost the same number of tree nodes with regular R-trees, and those nodes

are visited in parallel by a large number of GPU processing units.

3.6 Summary

In this work, we proposed parallel multi-dimensional range query algorithm for GPU. The

proposed scheme improves the utilization of GPU architecture for range query processing and

avoids the irregular search path by transforming the tree traversal problem into a sequential

data processing problem. Our experimental results demonstrate how the proposed algorithm -

MPTS R-Trees effectively prunes out irrelevant tree nodes while it places very little overhead

on the GPU. The search time of MPTS algorithm on the GPU Fermi M2090 is as low as 20%

of parallel R-trees on quad-core Intel Xeon E5506 architecture and consistently outperforms

brute-force scanning methods.

We have also compared the braided parallel indexing and data-parallel partitioned index-

ing, and presented experimental results that show braided parallel indexing improves system

throughput when a large number of concurrent queries are submitted and data-parallel parti-

tioned indexing helps improve individual query response time. We postulate the two parallel

indexing schemes can be adaptively employed in the case when the query arrival distribution

changes dynamically.
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Chapter 4. Exploiting Massive Parallelism of the GPU for

Multi-dimensional Indexing

In this chapter, we introduce a novel parallel tree traversal algorithm - Massively Parallel

Restart Scanning (MPRS) for multi-dimensional range queries that avoids recursion and irreg-

ular memory access. The MPRS algorithm traverses hierarchical tree structures with mostly

contiguous memory access patterns without recursion, which offers more chances to optimize the

parallel SIMD algorithm. Our experiments show braided parallel MPRS range query algorithm

achieves at least 80% SIMD efficiency while task parallel tree traversal algorithm shows only

9%-15% SIMD efficiency. Moreover, braided parallel MPRS algorithm accesses 7∼20 times less

amount of global memory than task parallel parent link algorithm by virtue of minimal warp

divergence.

4.1 Existing Stackless Ray Traversal Algorithms

In computer graphics, stackless ray traversal algorithms have been proposed for efficient ray

tracing on the GPU because a large number of rays are traced in parallel and the overhead of

using run-time stack can be very high. Some of the stackless ray tracing algorithms can not be

used for multi-dimensional range query processing directly, but there are other stackless search

algorithms that can be adopted for multi-dimensional range queries with some modifications to

the algorithms. For instance, kd-restart ray tracing algorithm divides a ray into smaller line

segments and reduces the bounding boxes of the lines. Unlike line intersection query processing,

multi-dimensional range query processing can not reduce the total size of bounding box without

dividing multi-dimensional query range into small fragmented regions. In this chapter, we list

a couple of stackless ray tracing algorithms and discuss the extensions of them we adopted for

multi-dimensional range query processing.

4.1.1 Exhaustive Scanning on GPU

As we described earlier, the tree node traversal pattern is inherently irregular and recursive

function call on the GPU is very slow. Therefore, instead of traversing spatial indexing struc-

tures recursively, we implemented a simple but massively parallel exhaustive search function as

a CUDA kernel function to transform range query search into a streaming data filtering process,

and to exploit SIMD execution model of CUDA architecture.

When the total number of multi-dimensional datasets to search is N , we simply divide it

by a given number of GPU threads and each thread compares whether every single element of
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the assigned dataset overlaps the given query.

4.1.2 User-defined Stack in Global Memory

Another simple way of avoiding recursion is to store the activation record information in

a user-defined stack using a large but slow global memory on the GPU. However, a previous

study [60] shows the global memory access becomes serious bottleneck since a large number

of concurrent CUDA threads should wait for an exclusive lock when they need to perform the

stack operations.

4.1.3 Kd-restart for Range Query Processing

Kd-restart algorithm [27] eliminates the stack operations by restarting the search at the

root of the tree. Instead of back-tracking, the kd-restart algorithm traverses a tree structure

multiple times from root node to a leaf node. In each leaf node it visits, the algorithm computes

a crossing point of the ray with hyper-plane boundaries of the leaf node. With the piercing

point along the ray, kd-restart algorithm truncates the ray and searches the kd-tree with the

updated ray from root node. Since the ray is truncated per each restarted traversal, it avoids

visiting already visited leaf nodes.

The kd-restart algorithm is designed to process each ray independently using a single GPU

thread. In ray tracing, it is easy to track a point along a given ray that pierces a hyper-plane

of a visited leaf node. However, if a query is not a line segment but a multi-dimensional region,

pruning out visited regions will not create a simple rectangular region, which will complicate

the next restart. Hence, kd-restart algorithm can not be directly applied in multi-dimensional

range query processing. Another problem with kd-restart algorithm is that its memory access

pattern is very irregular, and the number of tree node accesses for each query is very diverse,

which significantly hurts SIMD efficiency.

4.1.4 Rope Tree

In order to avoid backtracking to previously visited tree nodes, auxiliary links - ropes

between neighboring tree nodes can be added to kd-trees [63, 29]. Havran et al. [63] proposed

rope tree where each node has pointers called ropes which stores the neighboring nodes in each

dimension, i.e., a 3-dimensional kd-tree node has 6 ropes. Ray tracing traversal that pierces one

of the faces of a tree node can simply follow the rope of the face. Rope tree does not need stack

operations since only one of the faces will be pierced by a given ray. Popov et al. [29] extended

the rope tree and showed it shows higher ray tracing throughput than CPU-based ray tracers.

However, the rope tree algorithm can not be simply adopted for multi-dimensional range

query processing since multi-dimensional range query does not pierce a single point of faces.
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Moreover, n-ary bounding volume hierarchies or R-trees should have 2× n faces and ropes per

dimension. If a query overlaps multiple MBB, more than one ropes should be traversed and

thereby stack operations can not be eliminated.

4.1.5 Parent Link

Another simple strategy is to traverse the hierarchical tree structure as in graph traversal.

Hapala et al. [28] proposed a parent link search algorithm for bounding volume hierarchies. In

their proposed bounding volume hierarchies, each tree node stores a pointer to its parent node.

When a tree traversal needs to backtrack to its parent node, the parent node can be fetched from

global memory using the parent pointer. Although parent link algorithm eliminates the stack

operations, the backtracking using parent pointer requires additional global memory accesses.

Parent link algorithm can be used not only for ray tracing but also for n-ary data parallel

range query processing, thus we develop parent link algorithm for n-ary R-tree and multi-way

BVH to compare against our MPRS algorithm. As we will show in the experiments section,

parent link algorithm shows decent performance.

4.1.6 Skip Pointer

Skip pointer [30] is similar to rope tree in a sense that each tree node has an auxiliary link

to its right sibling node or a right sibling of its parent node. Figure 4.1 illustrates the n-ary tree

structure with skip pointers. If the current tree node is not hit by a ray, skip pointer is followed

instead of backtracking to its previously visited parent node. Unlike rope tree, skip pointer does

not take into account the ray direction, which is known to incur performance penalty.

Since skip pointer algorithm does not consider any direction preference, we can adopt it

for multi-dimensional range query in order to avoid stack operations and make search path visit

always non-visited node. If a tree node has no overlapping child node, skip pointer algorithm

follows the skip pointer to visit a right sibling node or a sibling of its parent node.

Although skip pointer algorithm avoids visiting already visited tree node, skip pointer may

visit a large number of tree nodes if data objects are not stored preserving spatial locality.

For example, suppose leaf node D and G in Figure 4.1 have overlapping data objects. After

processing node D, the skip pointer tree traversal algorithm will visit all the rest of the tree

nodes, i.e, E, F , C, G, H, I, and J . Note that the skip pointer transforms hierarchical tree

structure into sequential memory block in depth first order, hence even if tree node D does not

overlap, node D must be accessed in order to access its right sibling node E in skip pointer

traversal. As we will show in the experiments section, skip pointer works quite well when

selection ratio is high and the degree of tree nodes is small, and when data points are clustered

and stored having spatial locality in tree structures.
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figure 4.1: Query Processing with Skip Pointer

4.1.7 Short Stack for R-tree

Horn et al. [31] extended Foley’s kd-restart algorithm by employing a stack of bounded

size. Pushing a new node onto stack will delete the node at the bottom of stack. When a tree

traversal backtracks, it first searches the short stack. If the short stack is not empty, the parent

node can be visited by accessing the topmost node on the stack. If the stack is empty, it restarts

the search operation at the root of the tree again as in kd-restart.

Since the short stack algorithm can be used for n-ary tree structures and range query pro-

cessing, we implemented the short stack algorithm for parallel R-trees and multi-way bounding

volume hierarchies. For multi-dimensional range queries, the short stack helps reducing the

number of global memory accesses compared to parent link and skip pointer. However, as we

will show, it incurs non-ignorable amount of overhead due to stack operations. Also, the stack

miss ratio increases when the degree of tree node is large and tree height is tall.

4.2 Multi-dimensional Indexing Structures on the GPU

In scientific data analysis applications, the size of data sets is usually enormous but the

number of submitted concurrent queries is relatively smaller than that of enterprise database

systems and ray tracing in computer graphics. Hence in this work, we focus on reducing the

query response time and extending n-ary multi-dimensional indexing structures - R-tree, so that

multiple GPU threads cooperate in order to process a single query in parallel.

Multi-dimensional indexing structures present several challenges in parallel computation.

First, tree nodes are connected using pointers. If shared memory is not provided as in shared-

nothing environment, tree nodes are local only to one process. Second, their irregular tree

structures and the hierarchical but irregular tree traversal patterns make it difficult to achieve

good load balance and to maximize the utilization of parallel computing resources. As GPUs

provide both shared and global memory, we focus on the latter challenge.
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figure 4.2: Hilbert Curve: Multi-dimensional range query overlaps some number of runs (S1∼S4)

on Hilbert curve, i.e., the data objects that overlap a multi-dimensional query range are discon-

tinuously stored.

4.2.1 Massively Parallel Hilbert R-Tree (MPHR-Tree)

To avoid stack operations and recursion, we developed Massively Parallel Hilbert R-tree

(MPHR-tree). MPHR-tree tags each leaf node with a sequential number - leaf index from left

to right, and internal tree nodes of MPHR-tree store the maximum leaf index of its sub-trees as

shown in Figure 4.2 and Figure 4.3. While traversing the tree structure, the query processing

threads keep track of the largest leaf index that they have visited. The maximum leaf index

stored in each tree node is used to avoid recursive back-tracking and re-visiting previously

visited nodes. Instead of the sequential leaf index, Hilbert value of data objects can be used to

allow dynamic insertion of data object into previously constructed MPHR- tree, but the Hilbert

value usually requires larger amount of storage, and multiple data objects can be mapped to

the same Hilbert value if the level of Hilbert curve is not fine-grained enough to distinguish all

the data objects.

Scientific datasets are usually static, i.e, they do not change once they are acquired from

sensor devices. Taking advantage of this, we sort the multi-dimensional data objects using a

space filling curve - Hilbert curve that preserves good spatial locality [61]. As Hilbert curve

clusters spatially nearby objects, we can create tight bounding boxes for the sorted datasets.
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With the bounding boxes, R-trees can be constructed in a bottom-up fashion as in Packed

R-trees [21]. The bottom-up construction makes the node utilization of low level trees nodes

almost 100%, however it may result in large overlapping regions for the bounding boxes in root

node.

Parallel sorting on the GPU has been studied in many recent literature including [64]. In

order to sort the Hilbert values of the multi-dimensional data, we employed Thrust [65], which

is an open source C++ STL-like GPU library that implements many core parallel algorithms

including radix sort. After sorting the entire data objects using the radix sort on the GPU, B

number of consecutive data objects are stored in the same leaf node where B is the maximum

number of data that the leaf node can hold. After assigning all the data objects to leaf nodes,

the bottom-up constructed MPHR-tree builds MBB of leaf nodes via parallel reduction and

stores the MBB in their parent nodes. After creating parent nodes, the bottom-up construction

goes up one level, and repeats until only one root node is left. This construction can be easily

parallelized on the GPU.

4.2.2 Multi-way Space Partitioning Bounding Volume Hierarchy

Alternatively, we can build a tree structure in a top-down fashion by recursively partitioning

the datasets. This approach will reduce the overlap amount in high level tree nodes, but it may

decrease the node utilization of leaf nodes. In order to eliminate any overlap between bounding

boxes, we can employ binary space partitioning (BSP) or multi-way space partitioning (MSP)

method. In MSP style partitioning, each split results in disjoint sub-spaces. However, since

MSP takes less advantage of spatial locality compared to space filling curve, spatially nearby

objects can be scattered across distant leaf nodes. In our experiments, we compare the stackless

multi-dimensional range query processing algorithms using both the bottom-up constructed

MPHR-tree and the disjoint multi-way MSP BVH.

4.3 Massively Parallel Tree Traversal Algorithms

4.3.1 MPRS: Massively Parallel Restart Scanning

Massively Parallel Restart Scanning (MPRS) algorithm - a multi-dimensional range query

processing algorithm we propose traverses the hierarchical tree structures from root node to

leaf nodes multiple times as in kd-restart algorithm [27]. For a given range query, no matter

how many MBB of child nodes overlap a given query range, our MPRS algorithm always selects

the leftmost overlapping child node unless all its leaf nodes have been already visited. Once it

determines which child node to access in the next level, it does not store the overlapping child

node information in the current tree node as an activation record but immediately discards it
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Algorithm 6 MPRS Range Query Algorithm

void MPRS RangeQueryKernel(Node* root, MBB query)

1: shared int Ovlp[NumberOfChildNodes];

2: int visitedLeafIdx← 0

3: for all tid← 1, numThreads do

4: node← root

5: while visitedLeafIdx < root.maxLeafIdx do

6: while node is an internal node do

7: Ovlp[tid]← INT MAX

8: // each thread compares a query with the bounding box of its child node

9: if tid < node.numChildren and visitedLeafIdx < node.leafIdx[tid] and

Overlap(query, node) then

10: Ovlp[tid]← tid // If an overlapping child node is unvisited

11: end if

12: syncthreads()

13: // parallel reduction to find out the leftmost overlapping child

14: leftmost← parallelReduction(Ovlp)

15: if leftmost == INT MAX then

16: // If there’s no overlapping child node, update the visitedLeafIdx

17: visitedLeafIdx← node.maxLeafIdx // restart the search from root

18: node← root;

19: else

20: node← node.child[leftmost] // fetch the leftmost child node

21: end if

22: syncthreads()

23: end while

24: while node is a leaf node do

25: if tid < node.numChild and Overlap(query, node) then

26: hitF lag ← true

27: SaveOverlappingData(node.data[tid])

28: end if

29: visitedLeafIdx← node.maxLeafIdx

30: if hitF lag == true then

31: node← node.rightSibling // fetch next sibling node

32: else

33: node← node.parent // parent check

34: end if

35: end while

36: end while

37: end for
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figure 4.3: Massively Parallel Restart Scanning with MPHR-tree Structure

because our MPRS algorithm does not backtrack to already visited tree nodes.

The MPRS range query algorithm resembles the B+-tree search algorithm in that both

search algorithms scan leaf nodes. In one-dimensional B+-tree, range query traverses hierarchi-

cal trees to find out the leftmost (smallest) data value within the query range, and performs leaf

level scanning until it finds out a data value greater than query range and terminates the search.

However, in multi-dimensional space, data objects that overlap a given query range may not

be located in a single span of leaf nodes. Even after sorting the multi-dimensional data objects

using the Hilbert space filling curve, a query range may overlap leaf nodes in multiple segments

on the Hilbert curve. For example, a range query illustrated as a shaded box in Figure 4.2

overlaps four Hilbert curve segments - S1, S2, S3, and S4.

The MPRS search algorithm finds out the smallest (in terms of the Hilbert curve index)

multi-dimensional data object that overlaps a query range (D3 in Figure 4.2). After it finds

out an overlapping data object that has the smallest Hilbert value, it starts scanning its next

sibling data objects to find out if they also overlap. Due to the spatial locality property of

Hilbert space filling curve in multi-dimensional space, it is highly likely that the right sibling

data objects also overlap and they could be on the same continuous segment on the Hilbert

curve (D4 ∼ D11). While scanning data objects along the continuous segment on the Hilbert

curve, it needs to jump to the starting position (D33) of the next segment (S2) on the Hilbert

curve if it visits a non-overlapping data object (D12).

Our MPRS search algorithm scans and compares the overlap of a given query with data

objects on the continuous Hilbert segment in a massively parallel way using a large number of

threads on the GPU. If any single thread finds an overlapping data object, the scanning keeps

fetching the next group of data objects and compares the overlap. However while scanning data

objects on the Hilbert curve, all threads may find out none of the data objects are in the query

range. If so, it stops scanning leaf nodes and restarts traversing MPHR-tree to find out the
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starting point of the next Hilbert curve segment that overlaps the query range.

When restarting tree traversal, MPRS search algorithm uses the leaf index stored in tree

nodes in order to avoid visiting already visited leaf nodes. In restarted tree traversal, any tree

node whose maximum leaf index is smaller than the maximum leaf index of previously visited

leaf nodes is ignored. This is simply because if we have visited a leaf node v there’s no reason

to visit internal tree nodes which are parent nodes of v’s left siblings. In each restart traversal,

only if a tree node overlaps a query and it is the leftmost child node that has at least one

unvisited leaf node, the tree node is accessed in the next level.

If all the overlapping data objects are stored in a single span of consecutive leaf nodes,

the root node is accessed only once, which is the best case. Due to the clustering property of

Hilbert curve, it is unlikely that the overlapping leaf nodes are widely spread throughout a large

number of leaf nodes interleaved by non-overlapping leaf nodes. However, there might still be a

chance that some nearby data objects can be spread across many non-contiguous sections of a

Hilbert curve. In such a case, multiple restart tree traversal is necessary to skip a large number

of non-overlapping sections of the Hilbert curve.

In order to reduce the number of restart tree traversal, we employ minimal backtracking,

i.e, instead of starting a new tree traversal from root node immediately after visiting a non-

overlapping leaf node, our MPRS algorithm fetches a parent of the last visited leaf node from

global memory. In the parent node, it checks if it has any other leaf node that overlaps the

query range and has a leaf index higher than the maximum leaf index of previously visited leaf

nodes. If the parent node does not have such an overlapping leaf node, MPRS algorithm starts

another tree traversal from root node. If the parent node has an overlapping but unvisited leaf

node, leaf node scanning continues from the leaf node. In our experiments, the parent node

check reduces the number of restart tree traversal by 20 ∼ 27%.

The detailed MPRS algorithm is described in Algorithm 6. MPRS RangeQueryKernel() is

the kernel function that processes a single multi-dimensional range query in parallel. A block of

threads fetches a tree node from global memory and each thread compares a query range with a

bounding box of a child node in parallel. After storing the overlap flags in shared memory array

(Ovlp), the leftmost and unvisited overlapping child node is identified by parallel reduction and

the child node is fetched from global memory. If none of the child nodes overlap the query range,

the largest leaf index of its sub-tree replaces the current maximum leaf index of visited tree

nodes - visitedLeafIdx and it starts tree traversal from root node again. The visitedLeafIdx

is compared against each child node’s maximum leaf index, and if visitedLeafIdx is larger than

a child node’s maximum leaf index, the child node is ignored.

Figure 4.3 shows an example of MPHR-tree and the MPRS search path for the data objects

and the query illustrated in Figure 4.2. In the beginning, visitedLeafIdx is set to 0 and each
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thread compares the MBB of each child node with a query range. Suppose the query range

overlaps MBB - R1, R3, and R4 in the root node. The MPRS algorithm ignores R3 and R4,

and visits the leftmost child node I1 ( 1©). Again, the query is compared with the MBB in the

node I1, and the leftmost overlapping leaf node L1 is selected ( 2©). Once we reach a leaf node,

the multi-dimensional coordinates of the data objects in the leaf node L1 are compared with

the given query range. If some of the data objects overlap in a leaf node, its right sibling leaf

node L2 will be visited and checked for overlapping data ( 3©). Note that it is trivial to compute

the memory address of a right sibling node since when we construct MPHR-trees the leaf nodes

are stored in a big contiguous memory block, thus we can simply add the constant size of a

tree node to the starting address of a current node. With such a contiguous memory block,

scanning leaf nodes can take advantage of CUDA memory access optimization techniques such

as memory coalescing which gives a big performance gain. In the example, MPRS algorithm

keeps visiting right sibling leaf nodes L3 and L4. However because L4 has no overlapping data

objects, its right sibling leaf node L5 is not accessed but we check its parent node I1 ( 4©). Note

that I1 was a previously visited node in this example, but note that parent check may visit an

unvisited internal tree node if an overlapping section of Hilbert curve is long. Since I1 does not

have any other overlapping child node which was never visited, MPRS algorithm restarts the

search from root node.

When leaf node scanning stops, the visitedLeafIdx is set to 16 that is the largest leaf

index stored in node I1. In the next restart traversal, although R1 overlaps the query range,

R1’s leaf index 16 is not greater than the current visitedLeafIdx, thus thread 1 ignores R1.

Thread 2 also ignores R2 since its MBB does not overlap the query range. Thread 3 detects

the overlap between R3 and the query, and since its leaf index 48 is greater than the current

visitedLeafIdx, I3 will be selected as the next child node to visit ( 5©). Thread 4 will also find

its MBB R4 overlaps, but I4 will not be accessed since it is not the leftmost overlapping child

node in current tree traversal. In I3, L9 will be selected as the child node to visit ( 6©). In L9,

data objects that overlap the query - D33, D34, D35, and D36 are found. Thus, its right sibling

nodes L10, L11, L12, L13, and L14 are scanned and the visitedLeafIdx will be updated to 56

( 7©). Since L14 does not have any overlapping data object, parent check optimization fetches

its parent node I4 from global memory. In node I4, R17 is the only MBB that overlaps but

its leaf index 52 is smaller than the current visitedLeafIdx 56, hence it returns after setting

visitedLeafIdx to 64 ( 8©). In the next round of restart, a block of threads do not find any

overlapping child node in the root node that has a leaf index value greater than 64. Finally, the

search kernel function returns and the search finishes.
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4.3.2 Analysis of Massively Parallel Restart Scanning

The complexity of the MPRS range query algorithm is as follows:

Theorem 1 The search complexity of the MPHR search algorithm is O(C × logBN + k),

where C is the number of Hilbert curve segments that overlap a given multi-dimensional query

range, N is the number of data objects stored in the tree, B is the number of degree of tree

nodes, and k is the number of leaf nodes that contain data objects within query range.

Proof. The number of restarting tree traversal is C - the number of spans of contiguous

overlapping level height− 1 nodes (parents of leaf nodes) in MPHR-trees. Each tree traversal

from a root node to a leaf node visits a single tree node in each tree level and the height of

the MPHR-tree is logBN , thus C × logBN tree nodes are accessed to find unvisited leftmost

overlapping leaf nodes in total.

For each identified unvisited leftmost leaf node, leaf scanning visits some number of right

sibling leaf nodes. Since the sibling leaf nodes are accessed only if they have overlapping data

objects, the total number of visited leaf nodes is k. Note that the k is determined by selection

ratio of range query.

C can be as large as ⌈N/B2⌉/2 in the worst case if there exist no two or more consecutive

overlapping nodes in level height − 1, i.e., an overlapping level height − 1 node and a non-

overlapping level height − 1 node take turns. In such a case, whenever an overlapping level

height − 1 node is found by tree traversal from root node, its adjacent non-overlapping right

sibling node will trigger another tree traversal from root node. Hence, ⌈N/B2⌉× 1/2 times tree

traversal from root node will be needed in that case. Then, the total number of visited tree

nodes in the worst case is O(⌈N/B2⌉ × 1/2× logBN + k), and all the level height − 1 nodes

will be visited.

In [66], the maximum number of continuous runs on the Hilbert curve for a given multi-

dimensional range query is analyzed, but the number of consecutive level height − 1 nodes in

MPHR-trees can not be determined by the number of continuous runs if the data objects are

not uniformly distributed on the Hilbert curve. Thus, C can be as large as ⌈N/B2⌉/2 in the

worst case, but note that in such a worst case, the recursive R-tree search algorithm will also

visit all the higher level tree nodes and half of the level height−1 nodes (⌈N/B2⌉×1/2). In our

experiments with real scientific datasets, the number of restart tree traversal (C) rarely exceeds

30 when the data set consists of 32 million three dimensional objects.
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4.4 Evaluation

4.4.1 Experimental environment

In this section, we evaluate and analyze the performance of stackless range query processing

algorithms on the GPU. We conduct the experiments on a CentOS Linux machine that has quad

AMD Opteron 8 Core 6128 2.0GHz processors (NUMA system) and 64 GB DDR3 memory with

NVIDIA Tesla M2090 GPU which has 512 CUDA cores that can host maximum 1536 resident

threads. We use CUDA 5.5 for all the experiments.

The bottom-up construction method of the MPHR-tree described in Section 4.2.1 makes the

node utilization of most low level trees nodes 100%, however it may result in large overlapping

regions for the bounding boxes in upper level nodes. The large overlapping region is known for

the main cause of poor multi-dimensional range query performance. In order to eliminate any

overlap between bounding boxes, we implemented disjoint space partitioning bounding volume

hierarchy - multi-way MSP bounding volume hierarchy, which is similar to K-D-B-tree [67]. It

should be noted that spatially nearby objects in our n-ary MSP bounding volume hierarchy can

be scattered across highly distant leaf nodes since it does not take advantage of a space filling

curve. Using the MPHR-tree and the MSP multi-dimensional indexing trees, we compare the

performance of stackless multi-dimensional range query processing algorithms - skip pointer,

parent link, short stack, and MPRS described in Section 4.1 and 4.2.1.

To evaluate the MPHR-trees and the MSP BVH with the stackless range query process-

ing algorithms, we index three dimensional Integrated Surface Database (ISD) point datasets

available at NOAA National Climatic Data Center. The datasets are associated with two-

dimensional geographic information (latitude and longitude coordinates) and time as well as

numerous sensor values collected by over 20,000 stations such as wind speed and direction,

temperature, pressure, precipitation, etc. For the experiments, we index 40 million values, each

consists of latitude, longitude, time, and a pointer to the sensor value, collected from the year

2010 to 2012. With the three dimensional ISD datasets, we synthetically generate five sets of

160,000 queries with various selection ratio, which determines the range of queries and how

many data objects overlap the range of a given query. We also evaluate the indexing methods

with other real datasets including remotely sensed AVHRR (Advanced Very High Resolution

Radiometer) GAC (Global Area Coverage) level 1B datasets, but do not present their results

since the results are similar with the presented analysis. In addition to the real datasets, we

synthetically generate 64 million point and rectangular datasets in uniform, normal, and Zipf’s

distribution in order to evaluate the indexing schemes in high dimensional spaces, but we only

present the results of uniform distribution since the comparative performance results with the

other distributions are similar.
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As for the performance metrics, we measure the average query response time that is the

average time for the GPU kernel function to return the search results back to the CPU host for

a single search query. Note that the GPU kernel lauching overhead and data transfer time are

not included in the average query response time. We also measure the warp execution efficiency

using NVIDIA profiler to show SIMD efficiency, and the number of visited tree nodes since

the number of visited tree nodes is the most important performance factor that determines the

query response time.

4.4.2 Experimental results

Parallel Construction of MPHR-trees

table 4.1: Construction Time of Massively Parallel Hilbert R-trees on Tesla M2090

Time (sec) Number of Inserted Data (millions)

2 4 8 16 32 40

Sorting 0.138 0.295 0.582 1.110 2.299 2.866

Memory

Transfer 0.036 0.070 0.139 0.277 0.552 0.689

MPHR-tree

Construction 0.003 0.005 0.011 0.021 0.042 0.053

Total Time 0.177 0.370 0.732 1.408 2.893 3.608

It must be noted that the performance of index construction is not as important as the

performance of query processing in scientific data analysis applications since scientific datasets

do not change once they are stored and the constructed index does not have to be rebuilt. Even

though the index creation is not the dominant operation in processing scientific datasets and the

parallel bottom-up index construction is not the main contribution of this work, we measure

the parallel index construction performance because the performance of constructing packed

R-tree in parallel on the GPU has not been reported in literature to the best of our knowledge

and the cost of building the tree index on the CPU is very high compared to a search cost.

Table 4.1 shows the elapsed time of constructing MPHR-trees in a bottom-up fashion on

a single NVIDIA M2090 GPU. In the experiments, the MPHR-tree construction spends more

than 77% of its total construction time (2.866 seconds for 40 millions of data) on sorting Hilbert

values, while the bottom-up parallel construction of the MPHR-trees takes only about 1.4% of

its total construction time (0.053 seconds) 1 Overall, it takes less than 4 seconds to construct a

1On AMD Opteron 6128 CPU, it takes 1.72 seconds to construct the MPHR-trees with 40 million data objects
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multi-dimensional index for 40 millions of data on an NVIDIA M2090 GPU.

Braided Parallelism

In order to maximize the utilization of GPU cores, which plays a key role in improving the

query response time and query processing throughput, we compare two different parallel index

search approaches on the GPU. In GPU computing, braided parallelism implies that multiple

jobs run concurrently on different SMs, and multiple GPU cores in each SM concurrently process

a single job in a data parallel fashion [32]. The braided parallelism is commonly used in high

performance GPU applications to maximize throughput as well as to improve the execution

time. In braided parallel indexing, a single MPHR-tree or a single MSP BVH in global memory

is shared by multiple SMs, and each SM accesses different parts of the tree to process its own

query. The other approach we compare is the data parallelism. In order to maximize the data

parallelism, we developed partitioned indexing. In partitioned indexing, a single MPHR-trees

is partitioned into multiple sub-trees, and a single query is processed by all the SMs that access

their own partitioned trees. The partitioned indexing can help even further decreasing the query

execution time of a single query since the amount of work is reduced and spread across more

processing units.
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figure 4.4: Query Processing Performance With Braided Parallel Index and Partitioned Index

in a bottom-up fashion without including sorting time, which is 32 times slower than bottom-up construction on

the GPU. Also, note that the Hilbert value sorting on AMD Opteron 6127 CPU takes about 10 seconds to sort

40 millions of data.
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figure 4.5: Search Performance with Varying the Degree of Tree Nodes

In the experiments shown in Figure 4.4, we used the braided parallel MPHR-tree indexing

and data parallel partitioned MPHR-tree indexing to measure the query processing throughput

and average query response time with varying the number of indexed data objects. In terms

of the average query execution time, the partitioned indexing exhibits about 45%∼160% faster

performance than the braided parallel indexing, however the braided parallel indexing processes

9.4∼16.8 times larger number of range queries than the partitioned indexing. Since the braided

parallel indexing shows much higher query processing throughput while its query response time

is slightly slower than the braided parallel indexing, we use braided parallel indexing for the

rest of the experiments.

The maximum number of resident blocks per SM in an NVIDIA M2090 GPU is eight,

and the number of SMs in a M2090 GPU is 16, thus the best query processing throughput is

achieved with 128 (16x8) thread blocks in our experiments. For the rest of the experiments that

use braided parallel indexing, the number of CUDA thread blocks for the index search kernel

function is fixed to 128, i.e., 128 concurrent queries can be processed in parallel on a single GPU

using braided parallel indexing.
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Varying Degree of Tree Nodes

In the experiments shown in Figure 4.5, we vary the degree of tree nodes (the number

of child nodes) and measure the average query response time and the total amount of global

memory accesses. When the degree is B, the braided parallel indexing lets B GPU threads

access the same tree node, and the B bounding boxes in the node are concurrently compared

against a given query range. For braided parallel indexing, we didn’t measure the average query

execution time for smaller degrees than 32 since smaller degrees need fewer number of CUDA

cores than the warp size and it will hurt the CUDA core utilization (SIMD efficiency). When

the degree is a multiple of warp size, the query execution time with parent link and MPRS

algorithm improves but other stackless algorithms including skip pointer algorithm perform

much worse. Hence we do not plot the performance of them due to the scale of the graph. As

described in section 4.1.6, skip pointer needs to visit more leaf nodes as the degree of tree node

increases even if they do not overlap a query range.

In addition to the braided parallel indexing, we implemented task parallel indexing schemes

- MPRS(Task Parallel) and ParentLink(Task Parallel), where each CUDA thread processes a

different query as in ray tracing. In task parallel indexing, we let each SM process 32 queries in

parallel no matter what the degree of tree node is. If the degree is k, each thread sequentially

compares k MBB with its own query. As we increase the degree of tree node, the tree height

decreases and the number of accessed tree nodes per query also decreases, but since the size

of a tree node increase with a larger degree, the total amount of global memory accesses per

query increases as shown in Figure 4.5b. Moreover a large degree of tree node does not help

improving the average query execution time since the number of bounding boxes to compare

with a given query per each tree node increases. If the degree of tree is too small, the size of

tree node becomes smaller than L1 cache line size, hence binary tree may over-fetch unnecessary

parts of global memory. As a result, binary tree accesses 77% more data than 4-ary trees in

the experiments. However as the degree increases, the size of tree node grows and it results in

accessing a larger amount of data from global memory.

Figure 4.5b shows task parallel parent link algorithm accesses about 7∼20 times more

data from global memory than braided parallel MPRS algorithm. This is because task parallel

indexing schemes access scattered memory blocks as we described earlier and it ends up reading

the same tree nodes multiple times due to warp divergence and L1 cache replacement.

Figure 4.5c shows the warp execution efficiency of braided parallel MPRS range query

algorithm is much higher than that of task parallel algorithms. Warp execution efficiency is the

ratio of the average active threads per warp to the maximum number of threads per warp, which

indicates SIMD efficiency [44]. If each thread in a block processes a different range query, the

number of tree node accesses per thread diverges in task parallelism, i.e., a query whose range
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is wider will visit more tree nodes than a query whose range is smaller. However, in braided

parallel indexing, all threads in a block accesses the same tree nodes, hence its warp execution

efficiency is determined by the tree node utilization. If all tree nodes are completely packed,

the warp execution efficiency of braided parallel indexing will be almost 100%. As our MPRS

range query algorithm visits mostly leaf nodes and it visits fewer number of internal tree nodes

than parent link, warp execution efficiency of MPRS algorithm is consistently higher than 80%

while parent link algorithm yields about 65% warp execution efficiency when the degree is 32.

MPHR-Trees vs. disjoint MSP BVH
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figure 4.6: Average Query Response Time with MPHR-Tree
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figure 4.7: Average Query Response Time with disjoint MSP BVH

In Figure 4.6 and Figure 4.7, we compare the stackless multi-dimensional range query pro-

cessing algorithms with two braided parallel indexing schemes - MPHR-tree shown in Figure 4.6a

and disjoint MSP BVH shown in Figure 4.7a. Overall, MPHR-tree consistently shows faster

average query execution time than disjoint MSP BVH. When the number of indexed datasets

is 32 millions, MPRS algorithm with MPHR-tree processes range queries 2.8 times faster than

parent link algorithm with disjoint MSP BVH (0.016 msec vs. 0.046 msec).

When MPHR-tree indexes 32 million 3D data points, parent link algorithm exhibits the
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second fastest average query execution time per query (0.022 msec) and the skip pointer shows

the slowest average query execution time (0.045 msec) which is 2.8 times higher query execution

time than that of MPRS. In order to analyze the performance differences between the stackless

range query processing algorithms, we measured the number of visited tree nodes per query.

With 32 million of data points, the MPRS algorithm accesses 85 tree nodes from global memory

per each query on average, and it restarts tree traversal 9 times. Short stack algorithm accesses

63 tree nodes from global memory, pushes 4 tree nodes onto short stack and reads 54 tree nodes

from the short stack in shared memory. Although the number of push operations is small, the

overhead of push operation is much higher than reading small necessary part of a tree node

from global memory since push operation reads an entire tree node from global memory and

stores it in shared memory. Although reading shared memory is faster, it still causes some

I/O overhead, and as a result, the query execution time with short stack algorithm is higher

than that of MPRS algorithm. Parent link algorithm accesses about 108 tree nodes from global

memory, and skip pointer algorithm visits about 690 tree nodes, which is about 1.3 times and

8.1 times higher number than the number of global memory accesses of MPRS respectively.
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figure 4.8: R-Tree: Search Performance with Varying Selection Ratio

Selection Ratio

In the experiments shown in Figure 4.8, we varied the selection ratio of queries with the

MPHR-tree. As the selection ratio grows, a larger number of leaf nodes must be visited and the

number of visited nodes increases almost linearly as the selection ratio increases. As a result,

the query response time increases and the query processing throughput decreases.

When the selection ratio is 0.01%, i.e., a query retrieves 4,000 data objects from the indexed

40 million data objects, the MPRS algorithm accesses only 84 tree nodes taking 0.017 msec

while the second best parent link algorithm visits 108 tree nodes taking 0.023 msec. As the

selection ratio increases, the performance gap between the MPRS and the parent link algorithm

grows because a larger number of overlapping data objects are stored in contiguous leaf nodes.

When the selection ratio is 6.25%, the parent link algorithm (2.38 msec) takes 1.73 times longer
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than the MPRS (1.37 msec) algorithm. Interestingly, skip pointer algorithm shows comparable

performance (1.50 msec) to MPRS algorithm when selection ratio is high. However, when

selection ratio is small, the skip pointer visits 8.3 times more tree nodes than MPRS and

exhibits the worst performance. On the contrary, as the selection ratio increases, short stack

suffers from low data reuse ratio and exhibits 2.75 times slower query execution time than

MPRS.

Performance in High Dimensions

For the last set of experiments shown in Figure 4.9, we measure the search performance

with varying the number of dimensions of synthetic datasets. Although the dimension of the

real-world scientific datasets is hardly bigger than four for practical reasons, the number of

dimensions is known as one of the important performance factors to evaluate multi-dimensional

indexing structures. 2. In order to generate synthetic 64 million high dimensional data objects

and 1000 queries of which selection ratio is 1%, we used a random number generator.
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figure 4.9: Search Performance with Varying Number of Dimensions

In high dimensions, it is well known that hierarchical multi-dimensional indexing trees do

not perform well because the volume of the space grows exponentially. In R-tree, the amount of

overlap between the minimum bounding boxes of upper level tree nodes exponentially increases.

Even for the disjoint MSP BVH, a large number of sub-partitions are likely to overlap a query

range in high dimensions because 40 million data points do not need more than 26 splits. Hence

the ratio of pruning sub-trees is usually very low in high dimensions. This is the well-known

curse of dimensionality problem [58]. In high dimensions (> 64), a brute-force exhaustive

scanning of all the data objects often performs faster than hierarchical tree structured indexing.

The brute-force exhaustive scanning can effectively utilize a large number of processing units on

2For high dimensional datasets, k-NN nearest neighbor query seems to be a more interesting and important

problem than orthogonal range queries. The MPRS range query algorithm can be easily adapted to handle k-NN

queries based on the min-max distance, but it is out of scope of this work.
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the GPU, hence we compare the performance of the stackless tree traversal algorithms against

brute-force ExhaustiveScan which is the performance baseline.

Since the ExhaustiveScan scans the entire indexed data objects, the number of accessed

data nodes is independent of the dimensions. Note that the ExhaustiveScan has only data nodes

without hierarchical structure. For the experiments shown in Figure 4.9, we indexed 64 million

data points in two dimensions, but as we increase the dimensionality, we reduce the number of

indexed data objects since the global memory size of Tesla M2090 GPU is limited to 6 GBytes.

I.e., in 4 dimensions, we can index only 32 million data points, and in 64 dimensions, we index 2

million data points. Therefore, the number of visited nodes decreases linearly as the number of

dimensions increases. When the dimension is smaller than 8, most of the stackless tree traversal

algorithms with MPHR-tree outperforms the brute-force exhaustive scanning. But when the

dimension is higher than 8, the brute-force ExhaustiveScan shows comparable performance to

the MPRS algorithm and it’s even faster than short stack and parent link algorithm.

This experimental result also confirms that MPRS algorithm and MPHR-tree do not per-

form well in high dimensions as with other tree structured indexing schemes. As shown in

Figure 4.9b, although MSP BVH does not have overlapping region between tree nodes, it does

not work well in high dimensions for the same reason why K-D-B-tree does not perform well in

high dimensions.

With the 64-dimensional datasets and 1% selection ratio range queries, the MPRS search

algorithm visits 77% of tree nodes in MPHR-trees. Interestingly, the performance gap between

skip pointer and MPRS algorithm decreases as the dimension increases, and the skip pointer

outperforms the MPRS algorithm when the dimension is higher than 16. And skip pointer

outperforms parent link algorithm since the selection ratio is 1%. Note that Figure 4.9a shows

the skip pointer works faster than parent link when the selection ratio is 1%, but still MPRS

works faster even when the selection ratio is as high as 6.25%. If selection ratio is high and

data points are in high dimensions, skip pointer keeps visiting sibling leaf nodes similar to

the brute-force exhaustive scanning, which explains its relatively good performance in high

dimensions.

In summary, the MPRS algorithm consistently outperforms all the other indexing schemes

in terms of throughput and query execution time in dimensions lower than 16. However the

performance gap decreases as the dimension increases.
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4.5 Summary

In this work, we present a novel parallel multi-dimensional indexing structure, MPHR-trees

and MPRS tree traversal algorithm for multi-dimensional range query processing on the GPU.

It has been known that multi-dimensional indexing structures are not well suited to parallel

systems due to recursion and irregular tree access patterns. MPRS tree traversal algorithm (i)

uses a large number of GPU threads to process a single query in a SIMD fashion in order to

improve the query execution time, (ii) avoids warp-divergence by fetching only a single tree

node in each step for a block of threads in a streaming multiprocessor, (iii) avoids recursion or

stack operations by restarting tree traversal and avoiding visiting previously visited tree nodes

by tracking the largest leaf index of visited tree nodes, (iv) and accesses mostly contiguous

memory block by leaf node scanning.

We also extended several stackless ray tracing algorithms - short stack, parent link, and skip

pointer for multi-dimensional range query with n-ary indexing trees, and conducted comparative

performance study and showed our MPRS range query processing algorithm outperforms the

other stackless tree traversal algorithms mainly because our MPRS algorithm accesses mostly

sequential memory blocks and does not backtrack to previously visited tree nodes.
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Chapter 5. Co-Processing Heterogeneous Parallel Index

Although we successfully leverage a large number of cores in the GPU for multi-dimensional

indexing, we found that the GPU-based tree-structured indexing has some limitations. First,

the internal node traversal on the GPU still suffers from the warp-divergence problem. Another

important limitation is that the entire index must fit in GPU device memory. If an index is

larger than the GPU device memory, some parts of the index must be managed in host memory.

Recent advancements in GPU technologies have enabled GPUs to directly access host memory

via NVLink [68]. However, because the tree traversal path is non-deterministic, on-demand

tree node fetching from host memory can significantly reduce query processing performance.

To mask the tree node-fetching overhead, we can partition an index into sub-indexes and make

the CPU process one of the sub-indexes while fetching another sub-index from host memory to

GPU device memory.

To address these limitations, we propose Hybrid tree, which partitions the R-tree into

internal tree nodes and leaf nodes and stores them in CPU host memory and GPU device

memory, respectively. The leaf nodes are stored as a single contiguous array, which we refer to

as a leaf array. By statically partitioning the R-tree index into the CPU and GPU parts, we

can concurrently utilize both the CPU and GPU and maximize the parallelism. For the internal

tree nodes, the CPU achieves better performance than the GPU because it does not suffer from

the warp divergence problem caused by conditional branches in the hierarchical tree structures.

For the leaf nodes, this work proposes to scan a large number of leaf nodes in parallel according

to the selection ratio of the range query. For such parallel scanning, the GPU is known to be

superior to the CPU.

The experimental results show that our proposed multi-dimensional range query co-processing

scheme improves the query response time by up to 12x and query processing throughput by up

to 4x compared to the state-of-the-art GPU tree traversal algorithm.

5.1 Hybrid Tree Structure

To co-process a multi-dimensional range query using both the CPU and GPU, we propose

Hybrid tree, which partitions a multi-dimensional index into upper tree and leaf array, as shown

in Figure 5.1. The upper tree is a traditional multi-dimensional tree-structured index that

resides in the CPU host memory, and the leaf array is a contiguous memory block in the

GPU device memory that comprises leaf nodes. For the upper tree, any multi-dimensional

indexing structures, such as the R-tree, bounding volume hierarchy (BVH), or KDB-trees, can

– 50 –



!"#$%&'(")*%+,%-./

0'1+2'%&'(")*%+,%3./

R1 R2

R3 R4 R5

R12 R13 R14 R15 R16 R17 R18 R19 R20R9 R10 R11

Upper Tree

Leaf Array

Query Overlap

!"##$%&'()*"+"''&'),-"..$./)0#-".1#$2& 3)45 !"##$%&'()*"+"''&'),-"..$./

6

7

8

4

9

:

R21 R22 R23

Root

2 4 6

I1 R6 R7 R8

8 11 14

I2

6 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

L1 L2 L3 L4 L5 L6

Chunk[0] Chunk[1] Chunk[2]

;<
Skip node visits

D
43

D
44

D
25

D
26

D
27

D
28

D
29

D
30

D
31

D
32

D
35

D
36

D
37

D
38

D
39

D
40

D
41

D
42

D
33

D
34

D
45

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
17

D
18

D
19

D
20

D
21

D
22

D
23

D
24

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

figure 5.1: An example of a co-processing Hybrid tree with CPU and GPU: Leaf node scanning

on the GPU (step 4) overlaps the next tree traversal on the CPU in time(steps 5-7)

be employed.

The leaf array is logically partitioned into small chunks. Each chunk corresponds to a leaf

node in a legacy R-tree, except that the chunks are stored adjacent to each other in a single

large contiguous memory block, and the size of a chunk does not have to be equal to that of the

internal tree nodes. For each leaf node, we build a minimum bounding box (MBB) and store

it in the upper tree. As we increase the size of a leaf node, the number of leaf nodes decreases

and the size of the upper tree decreases accordingly. In the legacy R-tree, the size of a tree

node is determined by disk block size. However, since our Hybrid tree is an in-memory index,

the size of each leaf node should be determined considering the relative processing power of the

GPU and CPU. If the GPU is more powerful, more workload should be assigned to it. We can

increase the workload of the GPU by increasing the size of a leaf node or can ask the GPU to

process multiple leaf nodes. In each leaf node, we store n×k data points, where k is the number

of data points that each GPU thread should process and n is the number of threads in a single

GPU block.

The size of the MBB is a critical performance factor affecting the search performance of

indexing structures. To reduce the size of the MBBs of leaf nodes, data points in the chunk

array must be clustered. For this purpose, we employ a Hilbert space-filling curve [61] that

assigns a one-dimensional value to each multi-dimensional point for maintaining good spatial

locality. In other words, data points close to each other in multi-dimensional space are given

similar Hilbert index values. Using the Hilbert index value, we sort the data points and store

them in the leaf array. Sorting is an expensive operation; however, the GPU can accelerate

sorting via various parallel sorting algorithms [69, 11].

Data layout on the GPU device memory is known to have a critical performance impact. A

common access pattern into a multi-dimensional index is the comparison of a query’s coordinate
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Algorithm 7 Co-Processing Range Query with Hybrid Tree

void Hybrid RangeQueryProcessing(MBB query, Node root node, int

scan size)

1: long scan start← 0;

2: long scan end← 0;

3: while true do

4: // traverse upper tree : ignore left sub-tree

5: // whose leaf index is smaller than scan end

6: scan start = TraverseUpperTreeOnCPU(query, root node, scan end);

7: // no more node overlaps in upper tree

8: if scan start == 0 then

9: // terminate query

10: break;

11: end if

12: // Start parallel scanning of leaf array on the GPU

13: ScanLeafArrayOnGPU(query, scan start, scan size);

14: // We restart the tree traversal without waiting

15: // for the GPU to finish parallel scanning.

16: scan end = (scan start+ scan size);

17: end while

and the MBB coordinates in a particular dimension, which can be performed in a SIMD fashion.

To reduce the number of device memory accesses, we store the sorted data points in the leaf

array as a structure of arrays (SoA) layout shown as follows.

structure {

float min[nDims*nDegrees]; // lower bounds

float max[nDims*nDegrees]; // upper bounds

}

With this layout, the coordinates of the data points in the same dimension are contiguously

stored. Hence, this minimizes the number of cache lines that are brought into the memory.

Additionally, we can efficiently check the coordinates in a SIMD fashion. If we store the data

points in an array of structures (AoS) layout,it may fetch as many cache lines as the number of

data points in the worst case.
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5.2 Query Co-Processing in Hybrid Tree

In our query co-processing algorithm, we let the CPU process the upper tree while the GPU

processes the leaf array. In traditional tree-structured indexing, only one tree node is accessed

at any level, i.e., we need to visit one of the child nodes at the next level or return to its parent

node for backtracking.

In our novel co-processing algorithm described in Algorithm 7, we make GPU scan a certain

number of leaf nodes in the leaf array. Brute-force exhaustive scanning poorly performs on the

CPU because it has a small number of cores and memory bandwidth is low. However, the GPU

provides higher memory bandwidth and it has more processing units than CPU. Hence, brute-

force exhaustive parallel scanning on the GPU often performs better than on the CPU, which

performs better when executing sophisticated and sequential algorithms. If an algorithm having

a high branching factor is executed on the GPU, it poorly utilizes the high memory bandwidth

and suffers from low computational power. But if simple brute-force algorithms are executed

in the GPU, its low computational power is compensated by the high memory bandwidth and

massive parallelism that benefit from a low branching factor.

While the GPU asynchronously processes the leaf array via brute-force exhaustive scanning,

we make CPU restart the upper tree traversal from the root node once again. But this time, the

traversal of the tree structure only involves visiting the leaf nodes that have not been visited.

Since we know which part of the leaf array will be concurrently handled by the GPU, we can

make CPU skip visiting the parent nodes of the leaf nodes that will be accessed by the GPU.

This is achieved by adding the max leaf node index into the leaf array field in each internal tree

node. In Figure 5.1, the numbers in the second row of each tree node are the max heap of the

leaf node index. When we traverse the upper tree, we compare the leaf node index of each child

node with the largest leaf node index of the leaf array to be accessed by the GPU (referred to

as scan end). By preventing each traversal from visiting tree nodes whose leaf node index is

smaller than the scan end, we can avoid revisiting leaf nodes.

To make the CPU and GPU effectively co-process the internal tree nodes and leaf nodes,

respectively, the amount of workload in the CPU and GPU must be similar. In our co-processing

scheme, the balance between the CPU and GPU workloads can be controlled by the scan size.

The scan size is the number of leaf nodes to be scanned by the GPU. In legacy multi-dimensional

index traversal, we backtrack to a parent node after visiting its leaf node. However, in our co-

processing algorithm, we make the GPU visit multiple sibling leaf nodes. If the scan size is set

to be too small, the GPU will wait until the CPU finds the starting point of the next leaf node

scan (scan start). If the scan size is chosen to be too large, the CPU will wait for the GPU to
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finish its brute-force leaf node scanning. This scanning will ultimately access a large number of

data points that do not overlap a given query range.

The detailed co-processing algorithm is described in Algorithm 7. First, the upper tree

is traversed by the CPU. TraverseUpperTreeOnCPU() is a function that the CPU executes to

traverse the upper tree in host memory(line 6). Note that this function visits the child nodes

from left to right when multiple child nodes overlap a given query. Therefore, the starting

leaf node index of leaf node scanning scan start monotonically increases from left to right. If

TraverseUpperTreeOnCPU() finds that there are no more overlapping nodes in the upper tree,

it returns 0 and the query processing will be terminated (line 8∼10). If start scan is not zero,

we execute the kernel function - ScanLeafArrayOnGPU() for brute-force scanning(line 13). Since

the main CPU thread does not wait for GPU function to finish, TraverseUpperTreeOnCPU()

and ScanLeafArrayOnGPU() are executed asynchronously. That is, CPU traverses the upper

tree and identifies which parts of the leaf array needs to be scanned while GPU scans previously

identified portion of the leaf array.

Instead of scanning multiple sibling leaf nodes, we may consider simply increasing the size of

a leaf node. However, as demonstrated in our experiments, the scan size needs to be adjusted

per query because the optimal scan size varies depending on the range query selection ratio.

The selection ratio is the portion of data points that overlap a given range query. In other

words, if all leaf nodes overlap a given query, the selection ratio is 1. If none of the leaf nodes

overlap, the selection ratio is 0. As the selection ratio increases, a larger number of leaf nodes

must be visited.

Figure 5.1 illustrates an example of co-processing a multi-dimensional range query with

Hybrid tree index. First, we set scan end to 0 and search the upper tree from root node ( 1 ).

In the root node, we compare the MBB of the first child node (R1) with a given query. Suppose

R1 overlaps the query and its leaf node index (6) is greater than scan end (0), we stop further

comparisons and visit the child node I1 ( 2 ). In node I1, we compare the query with the MBB

of each child node from left to right. Assume that R3 does not overlap the query; however,

R4 and R5 overlap. Because R4’s leaf node index (4) is greater than scan end (0), we visit

its child node L2. In L2, we find that R13 overlaps the query range ( 3 ) and launch the GPU

kernel function to scan the leaf array on the GPU ( 4 ). Although R13 is the MBB of only

three data points (13, 14, and 15 in this example), the GPU kernel function compares one leaf

node with the query and with a larger number of leaf nodes specified by the scan size ( 4 ).

In this example, the GPU kernel function scans five leaf nodes (total 15 data points in total).

After launching the GPU kernel function to process the leaf array, we immediately start the

tree traversal for the same query but with an updated scan end parameter. Because the GPU

kernel function will consider the data points up to 27, the next tree traversal only looks for the
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figure 5.2: Multiple Query Scheduling

internal tree nodes whose leaf node index is greater than 8 (27 data points). In the root node

( 5 ), we compare the query with the first entry. Although R1 overlaps the query range, its leaf

node index (6) is smaller than scan end (8). Hence, this time we do not visit I1. Assume that

the next MBB R2 overlaps the query range. Because R2’s leaf node index (14) is greater than

scan end (8), we visit I2. In I2 ( 6 ), we find that the first MBB R6 overlaps the query range.

However, because its leaf node index (8) is not greater than scan end (8), we do not visit L4

but L6 ( 7 ). In L6, we launch the GPU kernel function with new scan start (12) ( 8 ). After

launching the GPU kernel function, we update the scan end. When we return to the root node

of the upper tree for the next traversal, we find that the largest leaf node index is not greater

than the scan end and finish the query processing.

5.3 Multiple Query Scheduling

When multiple queries arrive in a batch, our co-processing scheme spawns multiple CPU

threads and assigns a query to each thread in order to concurrently navigate the internal tree

nodes. The search paths of multiple queries are commonly different and each query needs to

scan different parts of the leaf array as shown in Figure 5.2. When a thread reaches the parent

node of a leaf node (step 2 in Figure 5.2), we determine the scan size and the number of GPU

blocks to be used for scanning the leaf array. If there is a single outstanding query, we can use

all available GPU blocks for it. However, when multiple queries are concurrently executed, a

smaller number of GPU blocks should be allocated to each query.

Although the multiple query scheduling problem has proved to be an NP-complete prob-

lem [70], it has also been proved that multiple heuristic approaches effectively reduce the query

processing time and improve the query processing throughput. For heterogeneous range query

co-processing, we propose a heuristic GPU block scheduling algorithm that adjusts the number

of GPU blocks based on each query’s selection ratio.

Queries that have a high selection ratio perform better when we increase the scan size and
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the GPU accesses more leaf nodes in parallel. Therefore, we need to assign more GPU blocks

to them so that they can scan a larger number of leaf nodes with higher parallelism. However,

it is not an easy problem to know the selection ratio of a query in advance. This is because the

selection ratio depends on the distribution of the datasets. Hence, a larger query range does

not always result in a higher selection ratio. In our heuristic GPU block scheduling algorithm,

we predict the selection ratio of a query as follows.

After determining the leftmost leaf node that has an overlapping MBB, we scan the MBBs in

the current node (the parent of the leaf node) from right to left to find the rightmost overlapping

leaf node. If the rightmost overlapping leaf node is far from the leftmost one, it is likely to have

high selection ratio. Thus, we assign more GPU blocks to the query. Otherwise we assign a

small number of GPU blocks. In other words, if the offset distance between the leftmost and

rightmost leaf nodes is greater than k, we assign k GPU blocks to the query. If the offset

distance is smaller than 8, we use 4 GPU blocks in our implementation.

5.4 Evaluation

We now evaluate and analyze the performance of heterogeneous query co-processing using

Hybrid tree. For the upper tree in the host memory, we implemented two versions: an R-tree

and Linear Bounding Volume Hierarchy (LBVH) [71]. LBVH is a linear BVH that employs

Morton codes to reduce the size of the minimum bounding box. Because we construct the

upper tree in a bottom up fashion, we observe that the search performance and construction

time of LBVH are slightly faster than those of the R-tree. Hence, we present the performance

of Hybrid tree that employs LBVH as its upper tree. For the parallel scanning of a leaf node

array, we implemented a GPU kernel function using CUDA 7.0, which scans the SoA array in

a brute force fashion. We compare the performance of Hybrid tree with that of an MPHR-

tree [24], which is the state-of-the-art multi-dimensional index on the GPU. We also compare

its performance with that of a legacy R-tree [1] that executes only on the CPU and a variant of

the R-tree called R-tree(LeafOnGPU), which we modified for heterogeneous co-processing. In

R-tree(LeafOnGPU), we set the size of leaf nodes to be 512x larger than that of normal tree

nodes, which corresponds to a scan size of 512 in Hybrid tree. As in our Hybrid tree, R-

tree(LeafOnGPU) co-processes range queries, i.e., the CPU traverses internal tree nodes. Once

it reaches a leaf node, the GPU scans the large leaf node in parallel, which contains as many

as 98,304 data points. R-tree(LeafOnGPU) also asynchronously calls the GPU kernel function.

Hence, while the GPU scans the data points in the leaf node, the CPU returns to its parent

node and continues to traverse internal tree nodes until it finds another leaf node that overlaps

with the given range query.
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5.4.1 Experimental Environment

We conduct experiments on an Ubuntu 14.10 Linux machine that is powered by dual 8 core

Intel Xeon E5-4620 (2.0 GHz) GPUs with hyper-threading enabled, 128 GB DDR3 memory,

and dual NVIDIA Tesla K20m GPUs. The Tesla K20m GPU has 13 streaming multiprocessors

(SM) and 5 GB global memory.

In our experiments, we use real datasets - the three-dimensional Integrated Surface Database

(ISD) point datasets - which are available for download from NOAA’ National Climatic Data

Center. The datasets are associated with two-dimensional geographic information (latitude and

longitude coordinates) and time as well as numerous sensor values collected from over 20,000

stations such as wind speed and direction, temperature, pressure, precipitation, etc. For the ex-

periments, we index 40 million points, each comprising latitude, longitude, time, and a pointer

to the sensor values. The datasets were collected from 2010 to 2012. In addition to the real

datasets, we also synthetically generated 100 million point datasets with various distributions;

however, we do not present these experiments except for those with the uniform distribution

because the results of the other distributions are similar. For the real and synthetic datasets, we

synthetically generated five sets of queries with various selection ratios (0.01%, 0.05%, 0.25%,

1.25%, and 6.25%).

5.4.2 GPU Kernel Launch Overhead

table 5.1: GPU Kernel Launch Overhead with or without Hilbert Space Filling Curve and

K-means Clustering

Unclustered Hilbert Curve K-Means

Time(msec) 0.81 0.046 0.065

GPU Kernel Launches 39.60 2.54 3.27

CPU Node Visits 165.29 14.77 19.07

GPU Node Visits 10136.67 650.03 837.57

In the first set of experiments, we evaluate the kernel launch overhead and the effect of the

clustering property of the leaf node array. In Table 5.1, we index three-dimensional 40 million

data points of NOAA Integrated Surface Database (ISD) datasets. We set the number of GPU

blocks and scan size to 128, 256, respectively. Then, we assign one GPU block for two leaf

nodes, which spawns 192 GPU threads that process two data points per thread (49 K points

in total). When the data points in the leaf node array are not clustered, a single query with
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a selection ratio of 0.01% traverses the internal tree nodes approximately 39 times on average.

When we cluster the data points in the leaf array using a Hilbert curve, the number of internal

tree node traversals decreases to 2.54 (1/15th of 39) and the query response time decreases by

1/17. We also clustered the data points using a k-means clustering algorithm. We varied the

number of clusters (k) as the k-means clustering algorithm does not group an equal number

of points per cluster. In other words, even if k is set to the number of leaf nodes, a single

cluster can span multiple leaf nodes, which can result in a larger number of overlaps among the

MBBs than for the MBBs generated from the Hilbert curve. Compared to the unclustered leaf

node array case, k-means clustering requires fewer GPU kernel launches and reduces the query

response time. However, we find that k-means clustering falls short and it is outperformed by

Hilbert curve clustering.
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5.4.3 Various GPU Thread Block & Scan Size

In the experiments shown in Figure 5.3 and Figure 5.4, we index 100 million three-

dimensional data points and measure the amount of memory accessed in accordance with varying

scan size and the number of GPU blocks and the average query response time of 1,000 queries.

When the scan size is set to a single leaf node (i.e., the number of GPU blocks is equal to the

scan size), its performance is mostly determined by the performance of searching the upper

tree using the CPU, except it has an additional overhead of launching GPU kernel function for

each leaf node. As shown in Figure 5.3, most of the accesses to the index occur in the upper tree.

However, as we increase the scan size, more workload is assigned to the GPU kernel function

and the CPU accesses fewer internal tree nodes.

We can adjust the amount of GPU workload using two parameters; the number of GPU

blocks and the number points processed by a single GPU thread. When we fix the number of

blocks and increase the number of points per thread, the query response time becomes faster

up to a certain extent. If we assign only one data point per GPU thread, we observe that the

overhead of creating a GPU thread becomes the dominant performance factor and it affects the

query response time. However, if we make a single GPU thread process too many points, the

GPU visits too many non overlapping data points, which also affects the query response time.

As shown in Figure 5.3, a larger scan size causes more GPU device memory to be accessed.

Note that the GPU block creation overhead can be different across the GPU architecture

models and platforms. However, in our testbed machine - K20m, processing four data points

per each GPU thread results in the best performance in most cases. In the worst case, the

query response time becomes 6x slower when each thread processes 1,024 data points. These

results show that choosing the right workload per GPU thread is a key performance factor in
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figure 5.6: Profiled Results with Various Selection Ratio

query co-processing.

When we increase the number of GPU blocks instead of increasing the number of data

points per thread, it better utilizes a large number of streaming multiprocessors in the GPU

and the query processing performance improves. Note that multiple thread blocks concurrently

access different parts of the leaf array. However, if the number of GPU blocks exceeds the

number of available GPU blocks (208 in K20m), the performance improvement saturates as the

extra GPU blocks are serialized.

When we use 128 GPU blocks and each thread processes two data points, the query response

time is 12x faster than that of the MPRS algorithm with the MPHR-tree. Note that the amount

of memory access is minimized when the scan size is 8 leaf nodes; however, its query response

time is not smaller than that when the scan size is 256 leaf nodes. This is because even though

we access a larger amount of GPU device memory, the memory is concurrently accessed and it

does not degrade the performance.

Figure 5.4 also shows the query response time of the MPRS tree traversal algorithm us-

ing the MPHR-tree. The MPRS algorithm is similar to our heterogeneous parallel index co-

processing in the sense that it also performs brute-force linear scanning for leaf nodes. However,
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the MPHR-tree manages all internal nodes in the GPU device memory and it navigates the

internal tree nodes in the GPU. The MPRS algorithm and MPHR-tree are comprehensively

explained in the original MPHR-tree paper [24]. Although the MPRS algorithm eliminates

backtracking and accesses mostly contiguous memory blocks, it irregularly visits internal tree

nodes because the branch prediction of the hierarchical indexing structures is difficult. The per-

formance improvement of our heterogeneous co-processing over the MPHR-tree mostly comes

from the overhead of the internal tree node traversals.

In the experiments shown in Figure 5.5, we set the number of GPU blocks to 128 and varied

the scan size. When a GPU block processes a single leaf node, it suffers from the high kernel

launch overhead and shows the worst performance. When the selection ratio is higher than

0.25%, a larger scan size effectively reduces the number of internal tree node traversals and

leaf node array scans. However, making each thread process more leaf nodes does not always
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result in better performance. When the selection ratio is lower than 0.25%, a large scan size

performs poorly because it increases the number of unnecessarily accessed data points that do

not overlap.

Figure 5.6a shows the global memory load throughput that we measured using nvprof

profiler. In the experiments, we varied the selection ratio of range queries. The global memory

load throughput shows the amount of bytes loaded from the GPU device memory per second.

In the Tesla K20m GPU, the theoretical max bandwidth of device memory is 200 GB/s. While

the device memory load throughput of our Hybrid tree is 28 ∼ 61 GB/s, that of the MPHR-tree

is less than 10 GB/s. This demonstrates that the MPRS algorithm fails to leverage the high

bandwidth of GPU global memory because of its irregular internal tree node traversals.

Figure 5.6b shows the number of average conditional branch instructions executed per

query. As we increase the selection ratio, more tree nodes are accessed and more if statements

are called. When the selection ratio is 6.25%, the MPRS algorithm requires a 94x number of

conditional branches, which degrades the global memory load throughput and query response

time.

Figure 5.7a shows the average number of bytes accessed per query. When the selection ratio

is 0.01%, Hybrid tree accesses approximately 3x the amount of bytes than MPRS. However,

when the selection ratio is 6.25%, Hybrid tree accesses no more than 2x the number of bytes

from the device memory. Note that the global memory load throughput of Hybrid tree is more

than 10x higher than that of MPRS when the selection ratio is 6.25% as shown in Figure 5.6a.

This indicates that although MPRS accesses a similar amount of device memory, its internal

tree node traversal and branch divergence problem prevent it from taking advantage of the high

memory bandwidth. When the selection ratio is 0.01%, the legacy R-tree accesses only 0.7 MB

of the host memory. However, as the selection ratio increases, it accesses almost similar amounts

of memory as other co-processing schemes. As for R-tree(LeafOnGPU), it has a very large leaf

node; however, its node utilization is not 100%, unlike the MPHR-tree and Hybrid tree. This

is because we construct the R-tree structure in a top-down manner without using space-filling

curve. For these reasons, R-tree(LeafOnGPU) accesses a much larger number of bytes than the

others when the selection ratio is small.

Figure 5.7b shows the query response time. For Hybrid tree, we use 128 GPU blocks and

we set the scan size to 512. That is, each GPU block scans four leaf nodes. When the selection

ratio is 0.01%, the query response time of Hybrid tree is 8x, 12x, and 14x faster than that

of R-tree(LeafOnGPU), MPRS, and R-tree respectively. Although MPRS uses the GPU, its

performance with a very low selection ratio is not significantly better than that of the legacy

R-tree on the CPU because MPRS spends most of its execution time on internal node visits

and spends less time on brute-force linear scanning of the leaf nodes. R-tree(LeafOnGPU)
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outperforms MPRS and the legacy R-tree by leveraging both the CPU and GPU. However,

it suffers from poor node and CPU utilization. Because the size of leaf nodes is considerably

large, the number of internal tree nodes is much smaller than that of Hybrid tree. Hence, the

CPU often becomes idle while the GPU is processing a large leaf node. Decreasing the size of

the leaf nodes degrades the performance because the GPU kernel function get launched more

frequently. For these reasons, R-tree(LeafOnGPU) is consistently outperformed by Hybrid tree.

When the selection ratio is 6.25%, Hybrid tree is 2x and 6x faster than R-tree(LeafOnGPU)

and MPRS respectively.

5.4.4 Throughput of Batch Query Processing

When queries arrive in a batch, our co-processing scheme spawns multiple CPU threads

and schedules the GPU blocks for concurrent co-processing. Figure 5.8 shows the effectiveness

of our dynamic GPU block scheduling algorithm. In our experiments, we varied the size of

query batches and selection ratio of each query.

As a baseline, we show the performance of static scheduling, which assigns 208/N GPU

blocks to each query, where N is the number of queries. In other words, when there is only one
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query submitted, we assign 208 GPU blocks to the query. If there are 4 concurrent queries, we

process each query using 52 GPU blocks.

In our dynamic GPU block scheduling algorithm, we determine the number of GPU blocks

according to the distribution of overlapping MBBs in the parent of the leaf node, as described

in section 5.3. If the offset distance between overlapping MBBs is greater than 104, we assign

104 GPU blocks to each query. Hence, if more than 2 queries need 104 GPU blocks, the number

of scheduled GPU blocks will exceed the capacity of our testbed K20m GPU.

Figure 5.8b shows the number of GPU blocks scheduled per query when the number of

concurrent queries is varied. As each batch comprises multiple queries, the total number of

launched GPU blocks decreases when static scheduling is employed; however, it does not de-

crease linearly. This is because with a smaller scan size, we need more internal node traversals,

which call more GPU kernel functions.

When a batch comprises a small number of queries, our dynamic scheduling obtains a

performance similar to that of static scheduling. However, as the batch contains more than 4

queries, our dynamic GPU block scheduling algorithm effectively adjusts the scan size for each

query and utilizes the GPU blocks more efficiently than static scheduling. Therefore, when the

number of concurrent queries is between 4 and 16, the query processing throughput is higher

than that in a case wherein a single query is processed at a time (i.e., the number of concurrent

queries = 1). Compared to static scheduling, our dynamic scheme yields approximately 1.5x,

2.5x, and 4x higher query processing throughput when the batch size is 8, 16, and 32 respectively.

5.5 Summary

In this work, we presented a novel multi-dimensional range query co-processing scheme

that utilizes both the CPU and GPU. Because the large branching factor in a tree-structured

index makes it difficult to parallelize tree traversal algorithms, we make use of the CPU for

hierarchical tree traversal and the GPU for brute-force linear scanning. In the co-processing

scheme, balancing the workload between the CPU and GPU is important for improving the

performance. To leverage both the CPU and GPU, we asynchronously call the GPU kernel

function that scans multiple leaf nodes in parallel and restart the internal node traversal while

the GPU is accessing leaf nodes. This co-processing scheme effectively overlaps the CPU and

GPU computations in time. Additionally, our co-processing scheme considers the selection ratio

of range queries to adjust the workload between the CPU and GPU.

We believe that this is the first work that proposes a GPU block scheduling algorithm for

multiple multi-dimensional range queries. Our proposed scheduling algorithm determines the

number of GPU blocks to be used based on the selection ratio of each query predicted while
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traversing the internal tree nodes. The key idea of our multiple query scheduling algorithm is to

assign more GPU blocks to the queries that can be rapidly processed by sequentially accessing

a large number of leaf nodes.

Our performance study using the real and synthetic datasets confirms that the proposed

heterogeneous co-processing scheme improves the query response time by up to 12x and the

query processing throughput by up to 4x.
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Chapter 6. Conclusion

In this dissertation, we investigate the problem of multi-dimensional range query processing

on the GPU. It has been known that multi-dimensional indexing structures are not well suited to

parallel systems due to the recursion and irregular tree access patterns. To address this problem,

we propose a tree traversal algorithm - MPTS that does not require the stack operation and

access tree nodes in a sequential manner. The experimental results show that our MPTS tree

traversal algorithm consistently outperforms traditional recursive R-Tree search algorithm for

multi-dimensional range query processing.

To reduce query response time, we propose a novel parallel multi-dimensional indexing

structure, MPHR-trees and tree traversal algorithm MPRS. The MPRS tree traversal algorithm

(i) uses a large number of GPU threads to process a single query in a SIMD fashion in order

to improve the query execution time, (ii) avoids warp-divergence by fetching only a single tree

node in each step for a block of threads in a streaming multiprocessor, (iii) avoids recursion or

stack operations by restarting tree traversal and avoiding visiting previously visited tree nodes by

tracking the largest leaf index of visited tree nodes, (iv) and accesses mostly contiguous memory

block by leaf node scanning. We also extended several stackless ray tracing algorithms - short

stack, parent link, and skip pointer for multi-dimensional range query with n-ary indexing trees

and conducted comparative performance study and showed our MPRS range query processing

algorithm outperforms the other stackless tree traversal algorithms mainly because our MPRS

algorithm accesses mostly sequential memory blocks and does not backtrack to previously visited

tree nodes. We showed that braided parallel indexing outperforms task parallel indexing in terms

of the amount of global memory accesses and SIMD efficiency and MPHR-tree outperforms

disjoint multi-way MSP bounding volume hierarchy because of high node utilization in low

level tree nodes.

Furthermore, we present a novel multi-dimensional range query co-processing scheme that

utilizes both the CPU and GPU. Because the large branching factor in a tree-structured index

makes it difficult to parallelize tree traversal algorithms, we make use of the CPU for hierarchical

tree traversal and the GPU for brute-force linear scanning. In the co-processing scheme, balanc-

ing the workload between the CPU and GPU is important for improving the performance. To

leverage both the CPU and GPU, we asynchronously call the GPU kernel function that scans

multiple leaf nodes in parallel and restart the internal node traversal while the GPU is accessing

leaf nodes. This co-processing scheme effectively overlaps the CPU and GPU computations in

time. Additionally, our co-processing scheme considers the selection ratio of range queries to
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adjust the workload between the CPU and GPU. We believe that this is the first work that

proposes a GPU block scheduling algorithm for multiple multi-dimensional range queries. Our

proposed scheduling algorithm determines the number of GPU blocks to be used based on the

selection ratio of each query predicted while traversing the internal tree nodes. The key idea of

our multiple query scheduling algorithm is to assign more GPU blocks to the queries that can

be rapidly processed by sequentially accessing a large number of leaf nodes. The experimental

results show that our proposed multi-dimensional range query co-processing scheme improves

the query response time by up to 12x and query processing throughput by up to 4x compared

to the state-of-the-art GPU tree traversal algorithm.

The multi-dimensional range query processing algorithm is one of the most important

problems in various fields including high performance computing. For example, in computer

graphics, GPUs accelerate 3D image rendering, and some image rendering techniques that

can utilize 3D index such as ray tracing, collision detection, ambient occlusion, and volume

visualization, will take the advantages of an efficient multi-dimensional range query processing

on the GPU.
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