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Resumo 

 

O propósito desta dissertação é a discussão do reconhecimento de emoção na 

voz. Para este fim, criou-se uma base de dados validada de discurso emocional 

simulado Português, intitulada European Portuguese Emotional Discourse 

Database (EPEDD) e foram operados algoritmos de classificação estatística nessa 

base de dados. 

EPEDD é uma base de dados simulada, caracterizada por pequenos discursos 

(5 frases longas, 5 frases curtas e duas palavras), todos eles pronunciados por 8 

atores—ambos os sexos igualmente representados—em 9 diferentes emoções 

(raiva, alegria, nojo, excitação, apatia, medo, surpresa, tristeza e neutro), baseadas 

no modelo de emoções de Lövheim.   

Concretizou-se uma avaliação de 40% da base de dados por avaliadores 

inexperientes, filtrando 60% dos pequenos discursos, com o intuito de criar uma 

base de dados validada. A base de dados completa contem 718 instâncias, 

enquanto que a base de dados validada contém 116 instâncias. A qualidade média 

de representação teatral, numa escala de a 5 foi avaliada como 2,3. A base de 

dados validada é composta por discurso emocional cujas emoções são 

reconhecidas com uma taxa média de 69,6%, por avaliadores inexperientes. A 

raiva tem a taxa de reconhecimento mais elevada com 79,7%, enquanto que o 

nojo, a emoção cuja taxa de reconhecimento é a mais baixa, consta com 40,5%. 

A extração de características e a classificação estatística foi realizada 

respetivamente através dos softwares Opensmile e Weka. Os algoritmos foram 

operados na base dados original e na base de dados avaliada, tendo sido obtidos os 

melhores resultados através de SVMs, respetivamente com 48,7% e 44,0%. A 

apatia obteve a taxa de reconhecimento mais elevada com 79,0%, enquanto que a 

excitação obteve a taxa de reconhecimento mais baixa com 32,9%. 
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Abstract 

The purpose of this dissertation is to discuss speech emotion recognition. It 

was created a validated acted Portuguese emotional speech database, named 

European Portuguese Emotional Discourse Database (EPEDD), and statistical 

classification algorithms have been applied on it. 

EPEDD is an acted database, featuring 12 utterances (2 single-words, 5 short 

sentences and 5 long sentences) per actor and per emotion, 8 actors, both genders 

equally represented, and 9 emotions (anger, joy, disgust, excitement, fear, apathy, 

surprise, sadness and neutral), based on Lövheim’s emotion model. We had 40% 

of the database evaluated by unexperienced evaluators, enabling us to produce a 

validated one, filtering 60% of the evaluated utterances. The full database 

contains 718 instances, while the validated one contains 116 instances. The 

average acting quality of the original database was evaluated, in a scale from 1 to 

5, as 2,3. The validated database is composed by emotional utterances that have 

their emotions recognized on average at a 69,6% rate, by unexperienced judges. 

Anger had the highest recognition rate at 79,7%, while disgust had the lowest 

recognition rate at 40,5%. 

Feature extraction and statistical classification algorithms were performed 

respectively applying Opensmile and Weka software. Statistical classification 

algorithms operated in the full database and in the validated one, best results 

being obtained by SVMs, respectively the emotion recognition rates being 48,7% 

and 44,0%. Apathy had the highest recognition rate: 79.0%, while excitement had 

the lowest emotion recognition rate: 32.9%. 

 
Key Words: theories of emotion, speech emotion recognition, emotional speech, 

speech database, statistical classification, SVM, Random Forests, ANN 
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CHAPTER 1: Introduction and Historic Context 

 

1.1. The context of speech emotion recognition 

 

The development of machine-learning is opening a window of new 

opportunities, the most popular ones being self-driving cars, fraud detection and 

recommendation algorithms, such as those developed by Spotify, Netflix, 

Amazon, Facebook. This dissertation will cover the field of speech emotion 

recognition through machine-learning, connecting the field of machine-learning, 

emotion expression theory, linguistics and low-level audio descriptors.   

Machine-learning is a technique to build models, through database pattern 

recognition. The idea is to have an algorithm that will analyze data in order to 

identify a pattern or to create a model. Machine-learning algorithms enables tasks 

such as recommendation, prediction or classification. For instance, our objective 

(speech emotion recognition) is classification and we must climb the following 

four steps:  

 The first step is to create a database containing several 

recorded audio speech files, each labeled with an emotion.  

 The second step is to create a database containing several 

instances, each being a vector, its entries being feature values 

extracted from each audio speech file from the previous 

database.  

 The third step is to have machine-learning algorithms analyze 

the previous database in order to discover a pattern connecting 

labeled emotions to recorded audio speech features. 

 The fourth step is to have that algorithm classify the emotion of 

an audio recorded speech. 
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More exactly, our objectives are the creation of a Portuguese acted 

emotional speech database based on Lövheim’s emotion model, and the statistical 

classification of emotional speech based on it. We will thus also discuss in depth 

database development methodology and, in particular, acted emotional speech 

database one. 

 

1.2. The Structure of this dissertation 
 

This dissertation contains five chapters: introduction and historic context, 

background and literature review, methodology, results discussion, and 

conclusion. In the next sections of this introductory chapter, we will discuss the 

pragmatics of speech emotion recognition, we will introduce the idea of an 

emotion and the different types of emotional speech databases. The following 

chapter will then address the state-of-the-art in emotion expression theory, speech 

emotion database development, audio feature extraction and statistical 

classification algorithms. The third chapter will address the methodology applied 

to build an acted Portuguese emotional speech database. In the fourth chapter, we 

will present and discuss the results of the quality of this database and the 

performance of several statistical classification algorithms based on it. Finally, the 

last paragraph is the conclusion of this dissertation: it is a reflection on our 

approach and results on emotional speech database creation and recognition, 

while suggesting future research on this field. 

 

1.3. The pragmatics of speech emotion recognition systems 

 

It is acknowledgeable that speech is the fastest and simpler human 

communication method; and, in addition to the message, it contains para-

linguistic information, such as speaker, language, emotion, gender, age, etc. It is, 

therefore, highly desirable that human-computer interaction is performed through 

speech. The machine can be a laptop, a humanoid robot, a robotic pet, a phone, a 



Speech Emotion Recognition Through Statistical Classification  

 5 

game console, a car, etc. Effectively, since the late 50s there has been tremendous 

research on speech recognition. (El Ayadi, Kamel, & Karray, 2011) Speech 

recognition systems performance is however limited by its incapacity to work 

under real-life environments: noisy rooms, emotional speech, etc. (Koolagudi & 

Rao, 2012) 

Furthermore, the semantics of any message is drastically altered by its 

para-linguistic information (emotions, speaker, age, etc.) making para-linguistic 

speech recognition desirable. For instance, the word “Okay” in English is used to 

express consent, disbelief, boredom or assertion. Therefore, speech recognition 

systems, not only have to be nose proof, but must be able to recognize para-

linguistic information, specially emotions. Ideally, these systems ought to be 

language, dialect, social class, culture, gender, age and speaker independent. 

It turns out that speech emotion recognition, aside from being useful to a 

more natural human-machine communication, has several other applications; 

Koolagudi et al. reported an extensive list of speech emotion recognition 

pragmatics, including the following ones: (Koolagudi & Rao, 2012) 

(1) To keep drivers alert, using an onboard car driving system. 

(2) To improve the quality of call-center services, analyzing their clients’ 

emotions during conversations. 

(3) To create emotion-interactive movies, games and E-tutoring: these 

would be more interesting, should they adapt themselves to the listener’s 

or student’s emotional state. 

(4) To index music or video by emotional content. 

(5) To analyze recorded or telephone conversations between criminals. 

(6) To analyze emergency services calls, evaluating the genuineness of 

requests; this is a helpful tool for fire brigades and ambulance services. 

(7) In aircraft cockpits, systems trained to stressed speech achieve better 

performance than those trained by normal speech. 

(8) To develop automatic natural speech to speech translation systems. 

 Speech emotion recognition pragmatics include also the following ones: 
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(9) To develop lie detectors; one example being the commercialized X13-

VSA PRO Voice Lie Detector 3.0.1 PRO. (Ramakrishnan, 2012) 

(10) To link languages by emotional expression similarity. (K. Scherer, 

2000) 

(11) To enable robot-robot communication through expression, enabling 

thus humans to understand what robots are communicating. (Crumpton & 

Bethel, 2016) 

(12) To diagnose psychological disorders, such as depression. (France et 

al., 2000) 

(13) To sort voice mail by emotional content. (Ramakrishnan, 2012) 

(14) Finally, to develop robots that perform as companions, tutors and 

caregivers. (Crumpton & Bethel, 2016) 

 

1.4. What is an Emotion? 

 

What is an emotion? One needs a written definition for every used word, 

one might think. However, pragmatically, much as a word has not a written 

definition, if it is understood by everybody, there is no need to define it. Thus, for 

example, even though a scent would not be defined as what it is perceivable 

through the nose, for one day, mankind will probably be able to experience scents 

without one, that is, through some neural stimulation, we all know what a scent is: 

and in the same fashion, we intuitively know what an emotion is. An emotion is a 

phenomenon, such as a scent or a sound is.  

Scents, sounds and emotions are phenomena; however, emotions 

distinguish themselves from the other phenomena, for it is not unusual that two 

persons approximately at the same moment and location will experience very 

similar scents, sounds or visions, but drastically different emotions. This is 

because this phenomenon reflects an interior state in contrast with the other 

previously stated phenomena that reflect exterior properties. And, in contrast to 

phenomena like hunger that do also reflect an interior state, emotions are related 
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to highly potential actions. Therefore, the study of emotion expression will reveal 

potential actions or action patterns, also known as personality. 

 

1.5. An introduction to emotional speech databases types 

 

An emotional speech database is a collection of emotional utterances, each 

labelled with an emotion. And these are classified according to the method used to 

create them. In this section, the classification of emotional databases is discussed. 

Emotional speech databases can be classified in many ways. For instance, 

Cowie considers five different issues: naturalness, scope, descriptors context and 

accessibility. (Douglas-Cowie, Campbell, Cowie, & Roach, 2003) We will 

introduce in this chapter the naturalness and the emotion descriptors issue. Then 

in the next chapter, we will discuss context. In the third chapter, while addressing 

the method used to create the EPEDD, we will address scope and availability. 

 

1.5.1. Naturalness 

 

In terms of naturalness, emotional speech databases are classified into 

three major categories: acted, induced and natural. An acted emotional database is 

defined as one in which the emotional speech was achieved through acting. An 

induced emotional database is defined as one in which the speakers have their 

emotions stimulated by controlled external factors, such as, for example, a movie, 

a picture, etc. Finally, a natural emotional speech database is defined as one in 

which the utterances are naturally occurred conversation recordings, such as some 

TV or radio interview, or a cockpit conversation of a crashed airplane, etc. 

(Koolagudi & Rao, 2012; Ramakrishnan, 2012; K. R. Scherer, 2003; Ververidis & 

Kotropoulos, 2006) As it is expected, each database type has its own advantages 

and disadvantages; these will be studied in the following sections.  
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1.5.1.1. Natural emotional databases 
 

Natural (or spontaneous) emotional databases can be obtained in a myriad 

of ways, for example, using TV shows, call center conversations, or even 

recorded cockpit conversations of crashed airplanes. As an example, the Belfast 

database used TV shows. (Douglas-cowie, Cowie, & Schröder, 2000) 

Apart from the obvious advantage of natural emotional databases being 

genuine, and thus, our reference, there are some other advantages, however more 

implicit. 

One of the implicit advantages is the possibility of studying emotion 

expression on different contexts. Section 2.3.2. being exclusively dedicated to the 

study of the context, we will return to the discussion of this advantage then. 

These databases are, on the one hand, reported to be characterized by 

featuring multiple concurrent emotions—a mixture of basic emotions. (Cowie & 

Cornelius, 2003; Koolagudi & Rao, 2012) The experience of a mixed emotion 

does not necessarily imply that its expression is also a mix of the expressions of 

both of the basic emotions. Should the expression of mixed emotions be a mix of 

the expression of each of the emotions, then one emotional speech database is 

completed if it features only the basic emotions, mixed emotions being redundant. 

In fact, another advantage of natural speech emotion databases is that these can 

feature many different emotions. In contrast, in acted speech emotion databases, 

the more emotions an actor is requested to enact, the better he must enact each 

one of them, so as to create a clear distinction between them. On the other hand, 

these databases are reported to predominantly feature low intensity emotions 

(Cowie & Cornelius, 2003): this is because speakers not always express their 

emotions conspicuously. Applying the same argument as above, a speech emotion 

database covering many degrees of should ideally be a natural one. 

What are the disadvantages of a natural emotional speech database? A first 

disadvantage is the effort to create one (Douglas-Cowie et al., 2003): firstly, for 
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ethical reasons, one ought not to record someone without their consent. 

(Koolagudi & Rao, 2012) Secondly, when a speaker knows that they are being 

recorded, the context being different, the way a speaker expresses their emotions 

might differ too. In fact, the creators of the Belfast project scanned through a 

myriad of TV interview shows, and found only a few in which the speakers had 

not been affected by the fact that they had been recorded. (Douglas-cowie et al., 

2000) Thirdly, all emotions might not be covered; and, even if all would be 

covered, some could still not be sufficiently represented. (Koolagudi & Rao, 

2012) 

Another disadvantage is related to the quality of the utterances. The 

microphones are not necessarily high quality, and if using utterances from 

different sources, they probably will not be the same. Furthermore, these 

recordings will usually be to a certain extent drowned in noise: a possible major 

problem when later dealing them with classification algorithms. Finally, the 

overlapping of utterances being impractical for analytical proposes, the number of 

emotional utterances is reduced. (Koolagudi & Rao, 2012) 

Last but not least, in this paragraph, we briefly review some natural speech 

emotional databases. Cowie et al. created the Belfast database, which is a natural 

and induced one using 201 clips from TV interview shows. (Douglas-cowie et al., 

2000) France et al. worked with multiple natural databases featuring normal 

subjects, major depressed patients and high-risk suicidal patients. (France et al., 

2000) Lee and Narayanan created one using call center conversations. The TUM 

AVIC database was created featuring five non-linguistic vocalizations. The VAM 

database was created featuring 47 talk show guests and 947 utterances 

(approximately 12 hours), applying a three-dimensional emotion theory. The 

RECOLA database was created featuring five social behaviors (agreement, 

dominance, engagement, performance, rapport) and using a two-dimensional 

emotion theory (approximately 7 hours). Finally, the AViD-Corpus was created 

so as to study minimal depression, mild depression, moderate depression and 

severe depression. (Valstar et al., 2013) 
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1.5.1.2. Induced emotional databases 
 

An induced (or elicited) emotional database consists in natural data 

created artificially. The idea is to gain more control over the data, at a cost in 

genuineness, while improving the quality of the speech material. 

The increase in quality is largely due to the fact that the moment and the 

location of the recording can be chosen. So, the location can be a sound proof 

studio, equipped with a high-quality microphone. The microphone can also be set 

up at the same amount of gain and located at the same distance from the speaker, 

during the entire experiment. 

When it comes to the available emotions, though the researcher will still 

not have a complete control over them, they will influence them. Some methods 

are, for example, making a speaker watch a movie or listen to a song, or engaging 

the speaker in a conversation about his dreams, his achievements, his losses and 

sorrows, his loves, etc. However, the use of a stimulus might not be 

straightforward: one stimulus may lead to different emotional reactions, 

depending on the speaker. Also, therefore, mixed emotions, though they may or 

may not be wanted, they will still be expressed. 

A big drawback on this approach is the hypothesis that speakers, since 

they know that they are being recorded, might express themselves less genuinely. 

And the utterances might even contain acoustic features specific to the 

acknowledgment of being recorded. (Koolagudi & Rao, 2012) 

Last but not least, in this paragraph, we briefly review some induced 

speech emotional databases. The FAU AIBO database was created featuring 51 

school children interacting with Sony AIBO pet robot (approximately 9 hours) 

(Batliner, 2004). The eNTERFACE database was created featuring 42 subjects, in 

a total of 1166 video sequences, exploring six discrete emotions (anger, disgust, 

sadness, happiness, surprise).  
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1.5.1.3. Acted emotional speech databases 
 

Acted (or simulated, or posed) emotional speech databases advantages are 

a product of the control the research has over them.  Not only is the researcher 

able to choose the space and the time of the recordings, as it was the case for the 

induced emotional speech database, but the researcher can also decide which 

sentences the actors must utter too. Thus, the researcher has control over the 

phonetic characteristics of the sentences and can have a dozen of actors uttering 

the same set of sentences. This is a major advantage, for it enables an accurate 

comparison between different emotional expressions. Moreover, the researcher is 

also able to decide which emotions are to be recorded; thus, the researcher can 

have each sentence, preferably emotionally neutral, repeated over each emotion, 

so as to achieve great comparability. 

In contrast, much as this approach is about control, acted emotions 

probably might never sound as natural emotions do. That is because the actor 

might probably overact certain acoustic features, while ignoring more subtle ones. 

And that is also because when a speaker is feeling a certain emotion, for example, 

being in love with someone, or anxiously struggling over a personal issue, that 

speaker, when acting, might slightly unconsciously express his true emotion. An 

interesting question that arises here is what does the actor think and feels when he 

acts. For, the closer he feels the desired emotion and the closer he thinks like he 

would think, experiencing that same emotion, the more accurate might the acted 

emotional speech database be. Therefore, the better the acting, the more natural 

the database is. And, an interesting experience that is yet to be done is to have a 

mixed database, featuring both natural and acted emotions, and having them being 

judged by experienced judges; the judges would judge whether each clip is acted 

or natural. Such test will reveal whether there are specific acting acoustical 
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features and probably it will reveal that the better an actor is, the fewer will be the 

specific acting acoustical features. 

Therefore, the Stanislavski method is the recommended acting method and 

in fact a commonly used one. (Burkhardt, Paeschke, Rolfes, Sendlmeier, & Weiss, 

2005; K. Scherer, 2000; Staroniewicz & Majewski, 2009) The idea is to 

remember a distant memory in which the desired emotion had been felt, in an 

attempt to feel again that emotion. The actor, feeling the requested emotion, will 

be more personally involved and thus the acting will be more natural. (Sawoski, 

2006) And, evidently, actors are free to be more creative by self-inducing 

themselves the requested emotions, for example, by listening to music—this 

inducing method differs from the inducing method that might be applied on an 

induced emotional database, because on these, speakers, instead of being self-

induced, they are induced by the researchers. 

 Typically, in acted emotional speech databases, the emotional utterances 

are not associated with a context, since it requires a longer recording time, larger 

budget and a greater acting expertise; an exception is the GEMEP corpus, 

featuring different contexts for each emotion. (Banziger, Pirker, & Scherer, 2006) 

 We don’t briefly mention any acted emotional speech database in this 

section, for we do that already in section 2.3.1. 

 

1.5.2. Descriptors 

 

An emotional speech database being a set of utterances, each labelled with 

an emotion, one of the steps when creating one is to label each utterance to its 

respective emotion. There are two paradigms on emotional descriptors: they are 

either discrete or continuous. (Douglas-Cowie et al., 2003) Though it is easier to 

label emotions discretely, continuous descriptors offer more detail. For natural 

and induced emotional speech databases, featuring emotions that do not 

necessarily fall entirely into any of the discrete categories, instead falling 

ambiguously into more than one category, should be described continuously. For 
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acted emotional speech databases, discrete emotional descriptors are the norm; 

however, the use of continuous descriptors might result in a more detailed 

emotion description. 
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CHAPTER 2: Background and Literature Review 

 

Speech emotion recognition is a product of four branches of knowledge: 

emotion expression theory, database creation methodology, low-level audio 

descriptors and statistical classification algorithms. This chapter will begin with 

an overview of the development in speech emotion recognition and then will 

discuss, in particular, the state-of-the-art of those four fields, in that order. 

 

2.1. An Overview of Developments in Speech Emotion Recognition. 

 

The first major work on emotion expression dates back to 1872, with 

Darwin’s work “The Expression of the Emotions in Man and Animals”. (Darwin, 

1872) One century afterwards, Ekman’s and Friesen’s famous publication of the 

Facial Action Coding System manual in 1977 teaches the readers to interpret 

facial expression of emotions. (P. Ekman & Friesen, 1975) Interestingly, both 

Darwin and Ekman believed evolution played an important role on the expression 

of emotions, making them rather universal. More recently, since the 90s, with the 

developing of robust machine-learning systems, emotion recognition systems 

have been being developed. 

Schuller et al. summarize the research development on speech emotion 

recognition, “We can sub-categorize the time-line of this field during the last 15 

years into three phases: some spurious papers on recognition of emotion in speech 

during the second half of the 90s (less than 10 per year), a growing interest until 

2004 (maybe some 30 per year), and then, a steep rise until today (>100 per 

year).” (Schuller, Batliner, Steidl, & Seppi, 2011) 

In particular, in the 90s, emotion recognition research began with the study 

of both facial and speech emotion expressions individually. For example, 

Nicholson et al. obtained a 50% speech emotion recognition rate using eight 
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different emotions. (Nicholson, Takahashi, & Nakatsu, 1999) But multimodal 

study of emotion expression, encompassing both facial and speech emotion 

expressions has rapidly caught attention, leading to improved emotion recognition 

performance; for example, Chen et al. obtained 97% recognition rate using an 

audiovisual database, whereas respectively 70% and 75% for visual and audio 

databases alone. (L. S. Chen, Tao, Huang, Miyasato, & Nakatsu, 1998) Since the 

2000s, multimodality has been being strongly encouraged, for most of the 

emotion recognitions systems developed still performed on an uni-modality 

perspective. (Douglas-Cowie et al., 2003) Multimodality embraces studying 

simultaneously facial expression, speech, gestures and any other possible 

modalities. The encouraged idea was to create richer, bigger and better emotion 

databases: thus, not only were researchers encouraged to approach multimodality, 

they were also encouraged to feature more languages, dialects, cultures, emotions, 

instances and to be more realistic. Another common concern, aside the 

development of richer, bigger and more realistic databases, was to focus on an 

increasing number of features and the exploration of different classifiers. All these 

concerns that accompanied the development of emotion recognition were 

emphasized by multiple challenges that have oriented researcher’s work during 

the last decade:  

Since the first speech emotion challenge appeared in 2009 (Schuller, 

Steidl, & Batliner, 2009), many challenges have been created. These tend not only 

report the previous studies on emotion recognition, but also to reflect the 

contemporary needs on this field and to challenge researchers on these. For 

example, the Interspeech 2010 Paralinguistic Challenge challenged researchers on 

paralinguistic studies such as the retrieval of age and gender through speech. 

(Schuller, Steidl, Batliner, Burkhardt, et al., 2013) Since then, Interspeech has 

been realizing a challenge on speech information retrieval every year. (Schuller et 

al., 2014, 2015; Schuller, Batliner, Burgoon, & Coutinho, 2016; Schuller, Steidl, 

Batliner, Vinciarelli, et al., 2013; Schuller, Steidl, et al., 2012; Schuller, Steidl, 

Batliner, Schiel, & Krajewski, 2011) Furthermore, ACM has been challenging 
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researchers to work on emotion and depression recognition through facial and 

speech modalities since 2011, releasing thus the Audio/Visual Emotion 

Challenges (AVEC); their aim is to investigate interaction between different 

modalities and to compare audiovisual signal processing and machine learning 

methods to advance recognition systems. (Ringeval, Schuller, Valstar, Cowie, & 

Pantic, 2015; Schuller, Valstar, et al., 2011; Schuller, Valstar, Eyben, Cowie, & 

Pantic, 2012; Valstar et al., 2013, 2016; Valstar, Schuller, Jarek, Cowie, & Pantic, 

2014) Finally, ICMI has also been challenging emotion recognition researchers 

since 2013 to work on real world observations, so as not to be limited to studio 

situations, releasing thus the Emotion Recognition in the Wild (EmotiW) 

challenges. (Dhall, Goecke, Joshi, & Gedeon, 2014, 2015; Dhall, Goecke, Joshi, 

Hoey, & Gedeon, 2016; Dhall, Goecke, Joshi, & Wagner, 2013) Last but not 

least, these challenges have been encouraging standardization in research and 

avoiding overlapping research, a problem that had previously been reported. 

 

2.2. A review of emotion theories 

 

Our main interest is the recognition of emotions in human speech. Therefore, 

we need a certain number of different emotions to recognize. And a basic 

understanding of each emotion.  

Some researchers ventured into listing emotion-related words. Cowie reviews 

that in English, 196 emotion words were found; in German 235 emotion words 

were found; in Italian, 153 emotion words were found. Cowie argues that 

generally languages do not multiply terms, unless needed. His example is that we 

usually struggle on grasping an emotion term to express how a certain work of art 

makes us feel. (Cowie & Cornelius, 2003) Therefore, one expects that a complete 

emotion theory should embrace a huge number of emotions. However, for 

emotion recognition purposes, a dramatically smaller number of recognizable 

emotions would be enough for a first approximation on this task. 
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There are many emotion theories, each featuring its own emotions and 

relations between them. We cannot cover them all, however, they can be 

classified through their similarities and differences. We will review discrete 

emotion theories and dimensional emotion theories. 

 

2.2.1. Discrete emotions theories 

 

Discrete emotion theories are emotion models in which the emotions do 

not share fundamental characteristics in common. (Paul Ekman & Cordaro, 2011) 

There are multiple theories of discrete emotions. Russell and Barrett review 7 

different types of discrete emotion theories. (Russell & Barrett, 1999)  

Often these models feature a concept reminiscent of the discrete emotion, 

the so-called basic emotion (or primary emotion or pure emotion). (Plutchik, 

1991) Much as basic emotions are understood differently by different researchers, 

they always represent a subset of discrete emotions, developing thus further the 

structure of emotions. The general idea is that the different possible combinations 

of the basic emotions would create all the discrete emotions. We will review three 

different discrete emotion theories.  

Ekman developed his own discrete theory: he supposes there is a small 

number of families of emotions, each family being a vast collection of emotions 

very similar to each other. Five of his families of emotions are anger, sadness, 

enjoyment, fear and disgust. He develops that anger, for example, includes 

berserk, indignation, vengeance, rage, etc. (Paul Ekman, 1993) He argues that 

those variations are social, in contrast to the families themselves, which are 

phylogenetic. Additionally, he defines basic emotions as discrete emotions that 

are evolutionary adaptations to the environment, in origin. For instance, he does 

not consider mood as emotion, considering moods as long-term phenomena that 

do not share the adaptive evolutionary quality of basic emotions. (Paul Ekman & 

Cordaro, 2011) His argument for the families of emotions arises from his study of 

human facial expressions, in which facial expressions of emotions within one 
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family are relatively similar, whereas facial expressions of emotions from others 

families drastically differ. (Paul Ekman, 1993) Furthermore, Ekman is particularly 

known for his work on the human facial expression of the following 6 basic 

emotions (or Ekman’s Big 6 Emotions): anger, sadness, fear, happiness, disgust 

and surprise. (P. Ekman & Friesen, 1975) 

Tomkins’ discrete model features eight basic emotions. These basic 

emotions are experienced with a variable intensity level. Tomkins labeled each of 

his eight basic emotions with two different names, one labeling a weaker intensity 

form of the same basic emotion. Writing the weaker form of the emotion first, 

these are: shame/humiliation, anger/rage, distress/anguish, contempt/disgust, 

fear/terror, surprise/startle, enjoyment/joy and finally, interest/excitement. 

(Lövheim, 2012; Tomkins, 1981) 

 Plutchick’s model also features eight basic emotions, these being fear, 

anger, sadness, acceptance, disgust, joy, expectation and surprise. However, each 

basic emotion has its own opposite basic one too: surprise contrasts with 

expectation, disgust contrasts with acceptance, sadness contrasts with joy and 

anger contrasts with fear. And, in contrast with the previous model, their intensity 

is labelled with three words instead of only two, as it was the case in Tomkins’ 

model. Moreover, Plutchick goes even further by representing each of the eight 

emotion on a circle, turning the model circumplex: this representation allows not 

only to express that each basic emotion is opposite to another one, but it also 

allows to express that each basic emotion is close to two others. Then, for each 

two adjacent basic emotions, Plutchick, combining these two, adds their 

combinations between these. Plutchick, therefore, is able to classifying 32 

emotions. (Plutchik, 2001) 

 

2.2.2. Dimensional emotion theories 

 

Dimensional emotion theories are those that represent all emotion in a 

vector space. There are many dimensional emotion theories, each having its own 
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set of vectors. Russell and Barrett reviewed several dimensional models, ranging 

from one to multiple dimensions. (Russell & Barrett, 1999) 

This classification can be dated back to Wilhelm Wundt, when he 

proposed a three-dimensional emotion theory, his dimensions being pleasure 

versus displeasure, arousal versus subduing, and strain versus relaxation. (Wundt, 

1897) 

Schlosberg proposed a three-dimensional model featuring circumplexity, 

half a century later; his dimensions being pleasantness versus unpleasantness, 

attention versus rejection and activation. These dimensions are similar to Wundt’s 

dimensions, the circumplexity being thus the difference between these.  In 

contrast to arousal, activation implies not only activity, but also reactivity, as 

Schlosberg argues expresses, in order to explain his choice of the word 

“activation”. (Schlosberg, 1954) 

Half a century later, Lövheim developed a model uniting Tomkins’ eight 

basic emotions with three monoamine neurotransmitters: dopamine (DA), 

serotonin (5-HT), and noradrenaline (NE). Representing the quantity of these 

three neurotransmitters respectively with three axes and assuming that each 

neurotransmitter has a maximum quantity, one obtains eight extremes states. So, 

basically, Lövheim argues that to each of these eight states corresponds one of 

Tomkins’ eight basic emotions. One of Lövheim arguments to support his theory 

was especially interesting, because it focused on the effects of each of these three 

neurotransmitters on our personality. Explaining that Dopamine is responsible for 

pleasure and addiction, whereas serotonin is responsible for a sense of superiority 

and, finally, noradrenaline is responsible for arousal, attentiveness and activity, 

Lövheim argues the following: (Lövheim, 2012) 
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Table 1: Relation between emotions and neurotransmitters in Lövheim's emotion model 

 
 Noradrenaline Dopamine Serotonin 

Shame Low Low Low 

Contempt High Low Low 

Fear Low High Low 

Anger High High Low 

Distress Low Low High 

Surprise High Low High 

Enjoyment Low High High 

Interest High High High 

 

Whereas Tomkins had only listed eight basic discrete emotions, Lövheim 

transforms this model into a dimensional emotion classification, interconnecting 

them. Again, these dimensions are similar either with Wundt’s or Schlosberg’s 

dimensions. Because this model unites neurology, a set of basic emotions and a 

dimensional theory, we will use this one for our own research. 

Finally, it is worth noting that the concept of basic emotions, previously 

defined in a discrete emotion context, can be brought into a dimensional emotion 

context: assuming that each dimension has a limit, then a basic emotion would be 

one that lies on one of the many vertices of a model. Therefore, in a two-

dimensional model, there are four basic emotions; and, in a three-dimensional 

model, there are eight basic emotions. 

 

2.2.3. Appraisal emotion theories 

 

 More recently, a new perspective on emotions has been gaining attention; 

this perspective, known as appraisal theories, developed the concept of emotion as 
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a process, instead of emotion as a state. The first papers introducing this theory 

date back to the 60s with M. B. Arnold and R. S. Lazarus being the pioneers. 

Appraisals cannot be categorized in any of the above mentioned theories, for they 

can be both discrete or dimensional, depending on the author. (Moors, Ellsworth, 

Scherer, & Frijda, 2013) Within a dimensional perspective, appraisals have many 

dimensions, these being novelty, valence, goal significance, cause, and 

norms/values legitimacy; and, in contrast with previous dimensional theories, this 

new perspective not only affords a description of the subjective experience of 

emotion, but also explains its cause. Furthermore, in an appraisal context, 

emotions are understood as action tendencies or intuitive actions, an organism’s 

more flexible approach to problem solving, in contrast to a deterministic 

approach. Moreover, in an evolution context, emotions, understood as action 

tendencies, can be considered adaptive. (Ellsworth, P. C., & Scherer, Ellsworth, & 

Scherer, 2003) 

 

2.3. A review on Emotional Speech Databases 
 

We have decided to create an acted emotional speech database. Therefore, 

for more information on these, for example, on acting technique, on the choice of 

actors, on the choice of the text material and other important questions, read 

subsection 3.1 in the methodology section. We will now begin by discussing the 

scope and, in the following section, we will discuss the context. 

 

2.3.1. Emotional acted speech databases scope 
 

For the purpose of reviewing acted speech emotional databases and 

studying their particular scope, we produced table 2. Furthermore, tables 3 to 8 

review their respective evaluation. 
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Table 2: Acted speech emotion databases review 

 

 

 As it can be remarked, acted emotional speech databases usually feature 

less than a dozen of actors, both genders equally represented. And, aside from 

Jovi et al. database, others usually feature no more than a dozen of utterances to 

Reference Speakers Utterances Language Emotions Evaluation Name 

(Burkhardt 

et al., 2005) 

5 actors 

and 5 

actresses 

5 short sentences and 

5 long sentences 

German 7 

emotions 

By 20 

subjects 

emoDB 

(Engberg & 

Hansen, 

1996) 

2 actors 

and two 

actresses 

9 sentences, 2 single 

words and 2 passages 

Danish 5 

emotions 

By 10 

subjects 

DES 

(Jovi, Ka, & 

Rajkovi, 

2004) 

3 actors 

and 3 

actresses 

30 short sentences, 30 

long sentences, 32 

single words and 1 

passage 

Serbian 5 

emotions 

By 30 

subjects 

GEES 

(Staroniewi

cz & 

Majewski, 

2009) 

7 amateur 

actors and 

6 amateur 

actresses 

10 sentences Polish 7 

emotions 

By both 

genders; and 

by 

musicians 

and non-

musicians 

 

(Banse & 

Scherer, 

1996) 

6 actors 

and six 

actresses 

2 sentences German 14 

emotions 

  

(Lima, 

Castro, & 

Scott, 2013) 

2 males 

and 2 

females 

Nonverbal vocal 

expression 

Does not 

apply 

8 

emotions 

By 20 

subjects 

 

(Castro & 

Lima, 2010) 

2 women 16 short sentences and 

16 short pseudo-

sentences 

Portuguese 7 

emotions 

By 20 

subjects 
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be uttered by all actors under, aside from Banse and Scherer’s database, a 

maximum of 8 emotions. Furthermore, their evaluation is usually performed by 20 

subjects. Large acted databases, featuring dozens of utterances to be uttered by 

dozens of actors, remain uncharted territory.   

 
Table 3: emoDB evaluation results 

Emotion anger neutral fear boredom happiness sadness disgust 

Recognition rate 96.9% 88.2% 87.3% 86.2% 83.7% 80.7% 79.6% 

Source: (Burkhardt et al., 2005) 

 

 
Table 4: DES evaluation results 

Emotion neutral surprise happiness sadness anger 

Recognition rate 60.8% 59.1% 56.4% 85.2% 75.1% 

Source: (Engberg & Hansen, 1996) 

 

Table 5: GEES evaluation results 

Emotion anger neutral happiness fear sadness 

Recognition rate 96.1% 94.7% 94.7% 93.3% 96.0% 

Source: (Jovi, Ka, & Rajkovi, 2004) 

 

Table 6: Staroniewicz et al. evaluation results 

Emotion happiness anger fear sadness surprise disgust neutral 

Recognition rate 68.2% 71.1% 40.5% 44.7% 72.5% 30.4% 73.4% 

Source: (Staroniewicz & Majewski, 2009) 

 
Table 7: Banse et al. evaluation results 

Emotion hot anger cold anger panic fear anxiety despair sadness disgust 

Recognition rate 78% 34% 36% 42% 47% 52% 15% 

Emotion elation happiness interest boredom shame pride contempt 

Recognition rate 38% 52% 75% 76% 22% 43% 60% 

Source: (Banse & Scherer, 1996) 

 

Table 8: Lima et al. evaluation results 

Emotion achievement amusement pleasure relief 

Recognition rate 77,7% 95,9% 85,9% 86,3% 

Emotion anger disgust fear sadness 

Recognition rate 78,3% 96,7% 70% 89,7% 

Source: (Lima et al., 2013) 
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Table 9: Lima et al. evaluation results 

Emotion anger neutral fear surprise happiness sadness disgust 

Sentence 

recognition rate 

77% 88% 75% 87% 75% 84% 50% 

Pseudo-sentence 

recognition rate 

74% 83% 56% 85% 59% 82% 60% 

Source: (Castro & Lima, 2010) 

 

Highest human recognition rates were obtained by Burkhardt et al. and 

Jovi et al, the former results being particularly remarkable since the emoDB 

features 7 emotions. On average anger is the highest recognizable emotion, while 

disgust is the least recognizable emotion. It is worth noting that Banse and 

Scherer’s database is particularly interesting for featuring as many as 14 different 

emotions, the least recognizable emotion still being two times higher than random 

guess (7%). Finally, Lima et al. study reveals that pseudo-sentences (nonsensical 

sentences that are highly resemble language) emotions were less recognizable. 

This is maybe due to the fact that these are harder to portray, since they have no 

meaning and sounding thus bizarre. 

 

2.3.2. Emotional speech database context 

 

An elegant way to define context is to define it as the variable that makes 

the same emotion being expressed differently, by the same person. For example, 

one does not express his emotions on a business reunion as one does on a family 

dinner, even if subject to the same emotion. Furthermore, we can remark that the 

effect of the context on the expression of emotions can be understood as the 

degree of concealment of emotions from other people. In fact, the idea of 

Ekman’s family of emotions is, on the one hand, a result of the influence of 

context—emotions may be being concealed, discerning thus hot anger from cold 

anger, for example (K. R. Scherer, 2003)—and, on the another hand a result of the 

influence of intensity. Now, in another paper, Cowie reviews evidence that 
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“listeners use context to determine the emotional significance of vocal features”. 

(Douglas-Cowie et al., 2003) Therefore, if developing an emotional database, one 

ought to always specify the context. Unfortunately, much as this has been done 

when creating natural emotional databases, the context has been ignored when 

dealing with acted emotional speech databases.  

Cowie identifies four types of context: semantic context, structural 

context, intermodal context and temporal context. The semantic context relates 

refers to the way certain words have an intrinsic emotional meaning; the author 

states that there is room for semantic and vocal signs interaction. Secondly, the 

structural context refers to the way syntax and prosody acts as a medium for 

emotional expression, through repetitions, interruptions, long or short sentences, 

intonation, stress patterns, etc. Thirdly, the intermodal context refers to the 

influence of modalities being used in communication: for instance, as Cowie 

points out, telephone conversations carry all emotional content through audio. 

Therefore, audio alone is able to convey a rich emotional meaning. Finally, the 

temporal context refers to the way emotion “ebbs and flows over time”, studying, 

for example, the emotional build-up occurrences. (Douglas-Cowie et al., 2003)  

These four types of contexts are methods that we, humans, may 

consciously or unconsciously use to mask or pretend emotions. What causes us to 

pretend to be feeling other emotions? There are three causes, each related to the 

speaker’s culture: the speakers and spectators, the local and the time of the day.  

(a) Depending on whom is the speaker engaging a conversation with, he 

may adapt his emotional expression: some examples of causes are 

teacher-student dialogues, friendship conversations, family 

conversations and conversations between strangers. Moreover, the 

presence of other people, though not speaking, might influence the 

emotional expression. Hot anger is more easily bluntly expressed if 

there are no nearby listeners, whereas, should there be any listener, the 

speaker would rather certainly opt to a cold anger. 
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(b) Depending on the location the conversation is taking place, the 

conversation may conceal more or less their emotions. For example, in 

a church, at the parliament, at work, speakers may feel the need to 

repress their emotions. 

(c) Finally, at night, so as not to wake up whoever may be asleep, 

emotions might be concealed. 

 

Then, the emotional speech database state-of-the art methodology having 

been discussed, we will now turn our attention into feature extraction and pattern 

recognition, the final processes in speech emotion recognition. 

 

2.4. Feature Extraction 

 

 The process of feature extraction can be divided into three parts: pre-

processing, feature extraction and post-processing. The first part, pre-processing, 

corresponds to the process of de-reverberation (room reverberation reducing) and 

de-noising, should they be needed; we will not cover these. Instead, we will cover 

feature extraction and post-processing, starting with the difference between local 

and global features, moving then to the different types of features, then feature 

normalization and finally feature selection. Once having understood feature 

selection, we will cover the field of pattern recognition in section 2.4. 

 

2.4.1. Local Features and Global Features 

 

Features can be extracted either locally or globally. Local features are 

extracted by dividing the whole clip into small intervals, called frames, and then 

extracting a feature vector from each one, while global features are extracted 

globally from the whole clip. Therefore, global features are fewer in number and 

they do not include temporal information. In terms of accuracy, the use of global 
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features hinder classification models that require a large number of features, such 

as the hidden Markov model (HMM) or the support vector machine (SVM), from 

working properly. Furthermore, global features are only efficient in distinguishing 

high activation/arousal emotions from low activation/ arousal ones. (El Ayadi et 

al., 2011) 

Special cases of local feature extraction are when each frame corresponds 

to a phoneme or to a voiced speech segment. Local feature extraction per 

phoneme requires robust phoneme segmentation algorithms and enable to 

compare phonemes under different emotions. In contrast, global feature extraction 

is easier to implement. (El Ayadi et al., 2011) 

 

2.4.2. Types of features 

 

Features are categorized into different types; however, each author 

presents a distinct set of categories. Gangamohan et al. categorize features into 

prosodic features, voice quality features and spectral features (Gangamohan, 

Kadiri, & Yegnanarayana, 2016); Koolagudi and Rao categorize features into 

prosodic features, vocal tract features and excitation source features (Koolagudi & 

Rao, 2012); Ayadi et al. categorize features into continuous speech features, voice 

quality features, spectral-based speech features and nonlinear TEO-based features 

(El Ayadi et al., 2011); finally, Schuller et al. makes the distinguish between 

acoustical and linguistic features. (Schuller et al., 2011) We will cover prosodic 

features, voice-quality features, spectral-based, cepstral-based and TEO-based 

features and finally, linguistic features. 

 

2.4.2.1. Prosodic Features 
 

This set of features consist on the patterns of intonation, intensity and 

duration. Prosody is necessary to make human speech natural (Koolagudi & Rao, 

2012) and comprehensible; in fact, prosody influences semantics. (Wennerstrom, 
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2001) Prosody can also express attitudes, such as doubt and assertiveness, while 

at the same time it can take the role of punctuation at structuring the discourse. 

(Wennerstrom, 2001) Prosodic features include the fundamental frequency (F0), 

intensity and timing features such as speaking rate, pause duration, average 

duration of voiced speech, syllables per second, etc. (Gangamohan et al., 2016) 

 

2.4.2.2. Voice Quality Features 
 

This type of feature “refers to the characteristic auditory coloring of an 

individual’s speech”, each speaker having its own “voice-quality signature”. This 

characteristic is expressed in terms of laryngeal and supralaryngeal settings. 

Emotions are reported to shape the voice quality; for example, fear induces a 

harsh voice, angriness and happiness induce a breathy voice,  etc. (Gangamohan 

et al., 2016) 

The adjectives used to portray voice-quality are all quite subjective, such 

as harsh, tense, modal, breathy, whisper, creaky and lax-creaky, hoarse, 

quavering, ingressive, falsetto, rough, etc.  (Douglas-Cowie et al., 2003; 

Ramakrishnan, 2012; Schuller, Steidl, Batliner, Burkhardt, et al., 2013) 

This type of features includes the following features: shimmer, jitter and 

harmonic-to-noise ratio (HNR). (El Ayadi et al., 2011; Schuller et al., 2009) 

Shimmer is a value that reflects the “changes in amplitude of the waveform 

between successive cycles”, whereas Jitter corresponds to the “changes in the 

frequency of the waveform between successive cycles”. (Sbattella et al., 2014) 

Amir et al. calculated the shimmer and jitter respectively by calculating the 

number of changes in sign of the intensity derivate and of the pitch derivative. 

Shimmer and jitter are stated to be shaped by age. (Schuller, Steidl, Batliner, 

Burkhardt, et al., 2013) Finally, the HNR is stated to be a “potential discriminator 

for the breathy voice”. 

 

2.4.2.3. Spectral-based, Cepstral-based and TEO-based Features 
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Spectral features, notably, the distribution of the spectral energy across the 

speech range frequency is shaped by the emotional content. For example, 

happiness correlates with high energy at the high frequency range, whereas 

sadness correlates with lower energy at that same range. This type of features, in 

contrast with previous features, are less tangible, in the sense that they are often 

expressed with complex mathematical expressions. But, one of the examples of 

spectral-based features is fairly understandable: “formant frequencies and their 

respective bandwidths”: F1, F2, F3, etc. (Gangamohan et al., 2016)  

The other spectral-based features can be extracted applying linear 

predictor coefficients (LPC), one-sided autocorrelation coefficients (OSALPC), 

short-time coherence method (SMC), and least-squares modified Yule-Walker 

equations (LSMYWE). (El Ayadi et al., 2011) 

Cepstral-based features can be derived from the corresponding linear 

features: linear predictor cepstral coefficients (LPCC) are derived from LPCs and 

OSALPCC are derived from OSALPC. Their efficiency in emotion recognition is 

still being discussed. (El Ayadi et al., 2011) Other cepstral-based features include 

mel-frequency cepstral coefficients (MFCC). (El Ayadi et al., 2011) 

 It is argued that non-linear features are needed to model speech. The 

Teager-energy-operator (TEO), a non-linear operator, was introduced by Teager 

and Kaiser. Some of the TEO-based features are TEO-decomposed FM variation 

(TEP-FM-Var), normalized TEO autocorrelation envelope area (TEO-Auto-Env), 

and critical band-based TEO autocorrelation envelope area (TEO-CB-Auto-Env). 

These type of features are reported to outperform others in speech stress 

recognition. (El Ayadi et al., 2011) 

 

2.4.2.4. Linguistic Features 
 

Linguistic features are needed because certain words, sentence 

constructions and para-linguistic phenomenons such as laughing, crying, sighs, 

yawns, hesitations, coughs, etc. express emotional content. (Schuller et al., 2011) 
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2.4.3. Feature Combination 
 

It is reported that combining different features enhances the statistical 

classification performance. (Koolagudi & Rao, 2012) Therefore, it is highly 

recommended to extract the the maximum number of features possible. In fact, 

emotion challenges have increased their number of features. (Schuller, Steidl, 

Batliner, Burkhardt, et al., 2013; Schuller et al., 2009; Schuller, Valstar, et al., 

2012; Valstar et al., 2013) 

 

2.4.4. Feature Normalization 
 

 Feature normalization is a necessary step if the extracted features have 

different units. The most common method for feature normalization reported to be 

through z-score normalization (El Ayadi et al., 2011): 

 

   
   

 
 

In which   is the value to be normalized,    is the value normalized,   is the mean 

and   is the standard deviation. 

 

2.4.5. Feature Reduction 
 

Feature reduction is a valuable step: it reduces storage, computational 

requirement (El Ayadi et al., 2011) and it has been reported that a filtered set of 

features may enhance the performance of statistical classification. (Schuller et al., 

2011) Though initially, feature reduction was designed heuristically, feature 

reduction algorithms are now commonly used. (Schuller et al., 2011) There are 

two approaches to feature reduction: feature selection and feature extraction (or 

feature transformation). In feature selection, a subset of the features is chosen, 

whereas in feature extraction, the initial features are mapped into a smaller set of 
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features, while preserving as much relevant classification information as possible. 

(El Ayadi et al., 2011) 

Reported to probably be the most common algorithm applied, the 

sequential forward search starts with an empty set and sequentially adds best 

features, at each step one or more features being deleted and others being chosen 

if suited. Another type of feature reduction algorithms is the hierarchical one: 

instead of optimizing the feature globally, for all emotion classes, it tries to 

optimize for groups of them. (Schuller et al., 2011) 

Linear or Heteroscedastic Discriminative Analysis (LDA) and Principal 

Component Analysis (PCA) and are the most popular feature transformation 

methods. On the one hand, LDA is a supervised algorithm and it is limited by its 

demanding of a least some degree of Gaussian distribution and linear distribution 

of the input space (Schuller et al., 2011), as well as  by the demanding that the 

“reduced dimensionality must be less than the number of classes”. (El Ayadi et 

al., 2011) On the other hand, PCA is an unsupervised algorithm and it has the 

disadvantage of requiring the guess of the dimensionality of the target space. It 

has been stated that it is not clear whether in fact it performs better than other 

feature reduction techniques.  (El Ayadi et al., 2011; Schuller et al., 2011) 

Finally, also reported to be worth mentioning in a speech emotion 

recognition perspective, there is the Independent Component Analysis (ICA) and 

the Non-negative Matrix Factorization (NMF). The former, a feature 

transformation algorithm, maps the feature space onto an orthogonal space, the 

target features having the attractive property of being statistically independent. 

The latter is reported to be mainly applied in large linguistic feature sets. (Schuller 

et al., 2011) 

 

2.5. Pattern Recognition 
 

As our goal is speech emotion recognition, we must label each observation 

with its respective emotion. In machine-learning, data-mining or pattern 
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recognition, learning can be categorized into different distinct types, such as 

supervised learning, unsupervised learning, reinforcement learning, etc. In 

supervised learning, we do know a priori each instance’s labels, whereas, in 

unsupervised learning, we do not know a priori each instance’s labels. (Kotsiantis, 

2007) Speech emotion recognition is, therefore, supervised learning, for we set a 

priori the possible emotions; furthermore, because our labels are not numbers, but 

categories (emotions), this is a statistical classification problem. 

Within statistical classification, there are several different steps: the first 

one is classifier selection, the second one is parameter selection, in which we 

modify parameters within the classifier; this step is followed by model learning, 

the one in which the classifier is trained; then, the final step is 

classification/regression: the moment in which our model is predicting new 

unlabeled observations. It is worth noting that some models are designed to 

predict multiple labels: this is multi-tasking learning—because we are interested 

only in emotion recognition, we will not cover this. (Schuller, Steidl, Batliner, 

Burkhardt, et al., 2013) Indeed, we will only overview the most used or 

appropriate classifiers in speech emotion recognition, specially SVMs, Random 

Forests, HMMs and Artificial Neural Networks (ANNs).  

Many different classifiers have been used in speech emotion recognition, 

for example: hidden Markov models (HMM), Gaussian mixture models (GMM), 

support vector machines (SVM), artificial neural networks (ANN), decision trees, 

fuzzy classifiers and k-nearest neighbors (k-NN). However, there is no agreement 

on which is the optimal classifier, each having its own advantages and 

disadvantages; and their performance depending on the database and feature 

selection. Moreover, researchers have combined different classifiers, also known 

as ensemble learning, so as to take advantage of all their merits. (El Ayadi et al., 

2011) Schuller et al. state that an appropriate classifier is one that tolerates high 

dimensionality, missing data, small data-sets and skewed classes, that solves non-

linear problems and that is efficient computationally and on memory costs. But 

the problem of a high dimensional feature set, leading to regions of the feature 
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space where data is too sparse, also known as “the curse of dimensionality”, is 

reported to be usually better addressed by feature reduction. For example, though 

the k-NN has been used since the very first studies and turned out to be quite 

successful for non-acted emotional speech as well, it suffers from “the curse of 

dimensionality”. (Schuller et al., 2011) 

HMMs have been widely used in isolated word recognition and speech 

segmentation. GMMs can be considered as special continuous HMMs which 

contain only one state; these are more appropriate for emotion recognition in 

speech when only global features are extracted. In fact, GMMs cannot model the 

temporal structure of training data. (El Ayadi et al., 2011) 

Generally, discriminative classifiers handle better small data sets; 

therefore, these are optimal for acted speech emotional datasets. Examples of 

popular discriminative classifiers are ANNs, SVMs and decision trees. (Schuller 

et al., 2011) We will now review each one of these. ANNs can be categorized into 

the three following types: multilayer perceptron (MLP), recurrent neural networks 

(RNN), and radial basis functions (RBF). MLP are relatively common in speech 

emotion recognition, whereas the latter is rarely being used in this application. 

However, ANNs are less robust to over fitting and require greater amounts of 

data, being therefore rarely used in speech emotion recognition (Schuller et al., 

2011); in fact, ANNs performance has been reported to be “fairly low in 

comparison with other classifiers”. (El Ayadi et al., 2011) 

A SVM can be a linear or a non-linear classification model; its goal is to 

establish a linear partition of the feature space into two categories. And, if not 

possible to linearly separate the feature space, the model applies the “kernel 

trick”, mapping the feature space into a higher dimensional one in which a linear 

separating hyperplane exists. Since only a subset of the training points—those 

close to the hyperplane—are used to train the classifier, this is a memory and 

computation efficient one. (Schölkopf, Burges, & Smola, 1998; Vapnik, 1998) 

Unfortunately, there is not a systematic method to find a desirable such a kernel 

function, leaving this method to heuristics. Moreover, kernels might induce 
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overfitting, making this process more complicated. (El Ayadi et al., 2011) 

Therefore, usually a hyperplane that does not perfectly separate the classes is 

preferable, leading to a greater robustness to the addition of new observations 

(Schölkopf et al., 1998; Vapnik, 1998).  Still, SVMs are widely used in speech 

emotion recognition and their performance is reported to be familiar (El Ayadi et 

al., 2011). 

Decision trees are also a non-linear classification model. In contrast to 

SVMs and ANNs, they have the advantage of having easily understandable 

logical decisions, especially if the trees have been pruned. (Schuller et al., 2011) 

Finally, Ayadi concludes that “the GMM achieve the best compromise 

between the classification performance and the computational requirements for 

training and testing.” (El Ayadi et al., 2011) And interestingly, Koolagudi et al. 

remarks that few are the studies that choose the classification model based on 

experimentation. (Koolagudi & Rao, 2012) 

Having overviewed individually the major classifiers in speech emotion 

training, we will address the idea of ensemble learning or multiple classification 

systems (MCS). There are three methods to combine different classifiers: 

hierarchical, parallel and serial. The idea of a hierarchy is to build a tree, in which, 

as we go more and more in depth, the number of available classes is diminished. 

The serial approach is a special case of that tree, in which each all classifiers are 

placed in a queue. Finally, in the parallel approach, classifiers work 

independently. (El Ayadi et al., 2011) A popular ensemble classifier is the 

Random Forests (RF), an ensemble of trees; it is practically immune to the “curse 

of dimensionality”, while still providing all the advantages of classification trees. 

(Schuller et al., 2011) 

Finally, we will now review results from speech emotion recognition 

tasks. As we will remark, these statistical classification results are overall 

considerably higher than human emotion recognition results. Luengo’s automatic 

speech emotion recognition results, based on 6 features (mean pitch, mean energy, 

pitch variance, skew of logarithmic pitch, range of logarithmic pitch and range of 
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logarithmic energy) and on a Basque acted speech emotional database, are 

reported in table 10. Furthermore, these results were overall slightly better than 

those based on 86 features, implying that a smaller number of features may be 

advantageous. 

 

 

 

Table 10: Luengo et al. speech emotion recognition using prosodic features 

 Anger Fear Surprise Distress Joy Sadness Neutral 

SVM on 6 

features 

94.9% 96.9% 90.5% 82.5% 90.7% 95.9% 94.9% 

GMM on 6 

features 

91.8% 92.8% 87.4% 75.3% 84.5% 85.6% 89.7% 

GMM on 

86 features 

90,7% 91,8% 82,1% 78,4% 70,1% 91,8% 88,7% 

Source: (Luengo, Navas, Hernáez, & Sánchez, 2005) 

 

 Chen’s automatic speech emotion recognition results, based on a mandarin 

acted speech emotional database, are reported in table 11. These results are 

particularly interesting for they compare two feature reduction methods, revealing 

that LDA tends to perform better on their database. 

 

Table 11: Chen et al. speech emotion recognition 

 Anger Fear Surprise Distress Happiness Sadness 

LDA+SVM 72.2% 37.2% 43.3% 42.8% 52.8% 53.3% 

PCA+SVM 56.7% 32.2% 35.0% 39.4% 42.8% 52.8% 

LDA+ANN 90.8% 44.2% 13.3% 9.6% 35.0% 51.7% 

PCA+ANN 92.5% 42.1% 7.1% 7.9% 29.6% 55.8% 

Source: (L. Chen, Mao, Xue, & Cheng, 2012) 

 

 Lin’s speech emotion recognition results, using the Danish Emotional 

Speech (DES) database, are reported in table 12. These results are interesting 

because they feature high speech recognition rates; unexpectedly, gender 
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independent results reveal higher recognition rates: this might be a result of 

employing a small database. 

 

Table 12: Lin et al. speech emotion recognition 

 Anger Surprise Happiness Sadness Neutral 

HMM (gender 

independent) 

100% 100% 94.7% 100% 100% 

SVM (female) 91.9% 91.7% 92.2% 97.5% 95% 

SVM (male) 86.9% 89.2% 86.7% 100% 84.2% 

Source: (Lin & Wei, 2005) 

  

Hu’s speech emotion recognition results, based on a mandarin acted 

speech emotional database, are reported in table 13. 

 

Table 13: Hu et al. speech emotion recognition 

 Anger Fear Happiness Sadness Neutral 

GMM (Female) 97.9% 78.4% 90.8% 98.6% 100% 

GMM (Male) 96.5% 91.1% 80.0% 96.3% 88.2% 

Source: (Hu, Xu, & Wu, 2007) 

 Before proceeding to the next chapter, it’s quite remarkable that Hu et al. 

results and Lin et al. results reveal that generally recognition rates on male 

utterances are higher than recognition rates on female utterances. Though little 

data is presented to draw any conclusion, such inquiry may reveal whether one 

gender reveals more emotional cues in speech. 
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CHAPTER 3: Methodology 

Our methodology is divided in two acts. The first one is the methodology 

used to design the European Portuguese Emotional Discourse Database (EPEDD). 

The second one is the methodology used to have a machine recognize emotions, 

based on the EPEDD. 

 

3.1. Portuguese Emotional Speech Database Design 

 

 Databases used for pattern recognition must be high-quality ones; 

otherwise, wrong prediction or undesired action might be performed by the 

machine. On the following sections, we will explain the method we followed so as 

to create the EPEDD, while reviewing research advice on emotional speech 

database design; we will begin by discussing the scope and the utterances. We 

will then move to the discussion of the recording conditions. Then, we will 

discuss the validation. Finally, we will briefly comment on the modalities and on 

the database availability. 

 

3.1.1. Scope 

 

Cowie defines the emotional speech database issue as the variable that 

cover emotions, speakers, genders, language, dialect and social setting. (Douglas-

Cowie et al., 2003) Aside from discussing these issues, we will discuss acting 

experience and technique. 

 

3.1.1.1. Number of speakers 
 

A reasonable number is needed to create a speaker independent emotion 

recognition system, for each speaker has its own voice quality and might have its 
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own individual emotional expression. For instance, 10 speakers, as was the case 

for the German Database (Burkhardt et al., 2005), is considered insufficient: in 

fact, new databases have been created featuring as much as 50 speakers. (Schuller 

et al., 2009) Though, because we do not have the means for such a big number, 

we chose 8 speakers. 

 

3.1.1.2. Age and Sex of the speakers 
 

The speakers are between 18 to 26 years old—this is a result of choosing 

to work with almost only acting school students. Both sexes are equally 

represented. 

 

3.1.1.3. Language, Dialect, Culture and Social Setting 
 

Our database is based on the continental Portuguese culture and language. 

There is not a single Portuguese acting emotional speech database, therefore it is 

important to create one. Both the south and the north of Portugal are represented. 

Culture is also important to keep in mind, because it may shape the way 

we express emotions. (El Ayadi et al., 2011) For example, Japanese society 

considers an open emotion display anti-social, furthermore, it is normal to smile 

when angry or embarrassed. (Staroniewicz & Majewski, 2009) Also, the social 

setting is by no means less important, because, for example, business type actions 

might be irritable in a social context. (Douglas-Cowie et al., 2003) As we were 

recording the actors, we did not tell them to imagine a specific social setting; such 

a task is too specific and would not only require a larger budget but probably also 

a specific acting training. Therefore, such a parameter is more suitable for a 

natural or induced speech database. 

However, we did tell them to express openly the emotions. This openness 

is a crucial parameter. If we would tell the actors to express anger while trying to 

hide it, instead of sounding like the traditional hot-anger, it would sound more like 
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the cold-anger. There is the hypothesis that the social setting—probably combined 

with the culture—is the same parameter as the emotional openness.  

Basically, much as the culture and social setting can be ignored in an 

acting speech database, they must be considered in a natural or induced speech 

emotional database. 

 

3.1.1.4. Acting Experience 
 

Researchers have been experimenting with actors with different 

experience background. Burkhardt’s emoDB was recorded with amateur actors 

(Burkhardt et al., 2005), the Polish Emotional Speech Database was recorded with 

professional, semi-professional and amateur actors (Staroniewicz & Majewski, 

2009) and the Danish Emotional Speech database was recorded only with semi-

professional actors so as to avoid exaggeration. (Engberg & Hansen, 1996) (El 

Ayadi et al., 2011) We have chosen to work with acting school students for 

budget reasons; actors being usually criticized for overacting the emotions, 

amateur actors usually having difficulty enacting emotions on command, we 

strongly believe that semi-professional actors or acting students hold the best 

results. 

 

3.1.1.5. Acting Method 
 

The actors would hear a brief description of the emotion requested; this 

step is crucial because emotion-related words are usually subjective. For example, 

actors would ask if it was a good or a bad surprise. And whether “interest” was 

related to “self-interest” or “romantic interest”. Also, the distinction between 

“sadness” and “apathy” needed to be clear for the actors. 

Then, applying the Stanislavsky method, they would utter each sentence in 

that emotion; i.e. the actor would reminisce a moment when they had felt the 

requested emotion in order to feel it again and express the utterance more 

genuinely. (Burkhardt et al., 2005) Because reading speech displays distinctive 
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characteristics, actors were not allowed to read the sentences while uttering them. 

(Douglas-Cowie et al., 2003) However, they were allowed and encouraged to 

utter as many times as they desired each sentence. The time needed per emotion 

was around between 10 to 15 minutes. If an actor would feel exhausted, we would 

also make a 15-minute pause. The average time per session was 2 hours. Finally, 

actors would be recorded independently so as not to have them interact to each 

other. 

Because we are interested in the analysis of prosody in speech, whispers 

and shouts were not allowed. Moreover, shouts disturb evaluation processes, 

because an evaluator, listening to a shout will immediately associate it to anger, 

without paying attention to other subtler prosodic, spectral and voice quality 

details. 

When recording actors, a first evaluation is performed, therefore this work 

is usually done by more than one person in order to pay attention to all the details 

(Engberg & Hansen, 1996) (Jovi et al., 2004); we strongly recommended such an 

approach because it will reduce the recording time. However, only half of the time 

were we able to have two evaluators during the recordings: myself and an actor 

director with a bachelor degree on psychology. 

Finally, a problem reported by Burkhardt (Burkhardt et al., 2005) is that 

the accent was not performed on the same words from emotion to emotion. 

Therefore, comparison between different sentences is harder. But we did not even 

suggest actors to try to maintain the same stress pattern, for fear that such an 

effort should compromise the actor’s overall performance.  

 

3.1.1.6. Emotions 
 

We recorded eight unambiguous emotional states: anger, sadness, joy, 

interest, fear, disgust, apathy and surprise, plus neutral as a control. These are the 

eight emotions in Lövheim’s model, the one we decided to base our research in, 

which is inspired by Tomkins’ model. (Lövheim, 2012) Though researchers might 
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prefer that emotion frequency in a database reflects their real distribution, we 

chose to have a uniform distribution, not being particularly interested in any 

specific emotion.  

One should also refer that moods (long-lasting emotions), can coexist 

temporarily with short-lasting emotions. For example, someone in a depressive 

mood, might suddenly get surprised or interested (Lövheim, 2012). The way such 

a coexistence reflects in speech remains to be studied. And, because we are asking 

actors to act momentarily emotions, such a question is important to be answered, 

in order to design optimal emotional speech databases. 

 

3.1.2. Utterances 

 

3.1.2.1. Sentences and Words 
 

Our corpus consists of two negative declarative sentences, four positive 

declarative sentences, two interrogative sentences and two imperative sentences. 

Half of these are short sentences; the other half are long ones. These are all as 

approximatively emotionally neutral as can be. Finally, these sentences could be 

used in everyday conversation and were inspired by the ones used in the emoDB 

(Burkhardt et al., 2005). In the following paragraphs, an explanation of our 

sentences is presented. 

Sentences too short are harder to be pronounced emotionally and, the 

longer the sentence is, the harder it is for the actor to continually be in the 

expected emotional state. (Amir, Ron, & Laor, 2000) Therefore, we constrained 

ourselves only to short and long sentences; so, phenomena like emotional build-

up and paragraph pausing and others requiring longer stretches of speech are to be 

studied ideally on natural or induced emotional speech databases. In fact, during 

the recordings, we also remarked that longer sentences were easier to be 

pronounced emotionally. Contrastingly, isolated words (for example, “Yes” and 

“No”) and paragraphs are found in many databases. (Jovi et al., 2004; Ververidis, 



Speech Emotion Recognition Through Statistical Classification  

 42 

Ververidis, Kotropoulos, & Kotropoulos, 2003) For example, the Serbian 

Emotional Speech Database features 32 isolated words, 30 short words sentences, 

30 long sentences, one passage and full phonetic balance. (Jovi et al., 2004) So, 

we decided to experiment and add the words “Yes” and “No” to the database, in 

an attempt to design a richer and more flexible database: the recognition of the 

emotional color of “yes” or “no” answers are particularly interesting. Actors did 

however struggle uttering these. However, big data validation requiring a 

considerable budget, we decided not to include single words within the dataset 

evaluation, because our database was already big enough, considering the 

validation effort it already would require. 

Dialogues being the most common form of speech, they ought to be a 

priority in studying (Saratxaga & Navas, 2006); however, for budget and practical 

reasons, our corpus consists in only monologue speech. Because, if monologue 

speech already presents a challenge to actors, dialogue speech would probably be 

even more difficult. Thus, dialogues should only be studied for natural or induced 

emotional speech databases. 

Some emotional speech databases do consist of non-sentences; much as 

these are certainly emotionally neutral, actors struggle uttering these, causing the 

naturalness of speech to decrease even further. (Burkhardt et al., 2005) 

The designers of the Basque emotional speech database certified that it 

would contain the most common words, creating thus a large acting emotional 

speech database. (Saratxaga & Navas, 2006) We are not sure of the importance of 

such a word rich database, moreover such a task was too time-consuming. 

Finally, these were the sentences we created and recorded (and their 

translation to English): 
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(1) Short Sentence No.1 

 

O António está dentro do elevador. 

António is inside the elevator. 

   .t’o.ni  iʃ.tˈa d’ .tɾ  d  i.lɨ.vɐ.d’oɾ 

 

(2) Short Sentence No.2 

 

Ela não me devolveu isso ontem. 

She didn’t give it back to me. 

‘ɛ.lɐ nɐ   mɨ dɨ.voɫ.vˈe  ‘i.s  ‘õ.tɐ   

 

(3) Short Sentence No.3 

 

Conta-me isso, sim. 

Tell me that, yes. 

 ’õ.tɐ mɨ is  s’  

 

(4) Short Sentence No.4 

 

Daqui por sete horas, ele já terá entrado. 

Within seven hours, he will already have arrived. 

dɐ. ˈi p ɾ sˈɛ.tɨ ‘ɔ.ɾɐʃ  ele ʒa tɨɾˈa  .tɾˈa.d  

 

(5) Short Sentence No.5 

 

Foi este o cesto que me deram? 

Was this the basket that they gave me? 

foi eʃtɨ   seʃtu  ɨ mɨ dɛ.ɾɐ   
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(6) Long Sentence No.1 

 

A gente está a comer nas rochas, ao lado do moinho do norte. 

We are eating on the rocks, next to the mill of the north. 

ɐ ʒˈ .tɨ ɨʃ.t’a ɐ  ’ .meɾ nɐʃ  ʀˈɔ.ʃɐʃ, ‘a  l’a.d  d  m .ˈi.ɲ  d  nˈɔɾ.tɨ. 

 

(7) Long Sentence No.2 

 

Porque é que as mochilas estão ali, debaixo da mesa? 

Why are the backpacks there, beneath the table? 

pˈoɾ. ɨ ɛ  ɨ ɐʃ m .ʃ’i.lɐʃ iʃ.tˈɐ   ɐ.l’i dɨ.bˈa .ʃ  dɐ m’e.zɐ 

 

(8) Long Sentence No.3 

 

Acaba de carregar isso para cima e põe-te de novo a ir para baixo. 

Finnish carrying that upstairs and come back downstairs again. 

ɐ. ’a.bɐ dɨ  ɐ.ʀɨ. ˈaɾ ‘i.s  p’ɐ.ɾɐ s’i.mɐ i po  tɨ dɨ n’ov.  ɐ iɾ p’ɐ.ɾɐ b’a .ʃ  

 

(9) Long Sentence No.4 

 

Aos fins-de-semana, eu ia sempre a casa e comprava húngaros. 

At the weekend, I would always go home and buy cakes. 

a ʃ fˈ ʃ dɨ sɨ.m’ɐ.nɐ e  i.ɐ s’ m.pɾɨ ɐ  ’a.zɐ i  õ.p’ɾa.vɐ ‘ . ɐ.ɾ ʃ 

 

       (10) Long Sentence No.5 

 

Eu não quero comer fora, quero é tomar um copo com o Francisco. 

I don’t want to eat at a restaurant, but I want to have a drink with Francisco. 

ew nɐ    ˈɛ.ɾ    .m’eɾ foɾɐ  ˈɛ.ɾ  ɛ t .m’aɾ    ’ɔ.p   õ   fr’ .siʃ.   
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3.1.2.2. Phonemes 
 

A representation of all phonemes is essential: this is a necessity for 

concatenative synthesis (Douglas-Cowie et al., 2003) and for classification 

algorithms applied on spectral features. Furthermore, certain phoneme 

combinations are considered necessary by the Basque Emotional Speech 

Database. (Saratxaga & Navas, 2006) Our completed corpus contains all the 

Portuguese phonemes, except for the phoneme “ʎ”. Furthermore, all the vowels of 

the Portuguese language were represented in the final words of the sentences. Our 

sources include the web page of the Instituto Camões (“Convenções e Transcrição 

Fonética,” n.d.) and the phonetic dictionary web page of the Instituto de Língua 

Teória E Computational (ILTEC). (“Dicionário Fonético,” n.d.) 

 

3.1.2.3. Other Sounds 

 

Finally, some databases include the study of sounds such as laughter 

moaning, screams and sobbing. (Lima et al., 2013) Because we are interested in 

novelty, there was no interest in including these types of sounds. 

 

3.1.3. Recording Conditions 

 

Much as emotion recognition in speech ought to perform equally well with 

noise and under different acoustic conditions, an acted emotional speech database 

recorded in studio conditions (high-quality microphone and an isolated room) are 

enough, because noise and reverberations can be artificially added for further 

examination. 

We recorded all actors in the same acoustically-treated and isolated room 

at the Universidade Católica do Porto. That room was large enough to 

accommodate the actors and the listeners together comfortably. Comfort was a 

priority because we wanted actors to be relaxed, for fear that anxiety should 
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contaminate the recordings. We used a high-quality microphone: DPA 4041-Sp 

(omnidirectional). We used it to minimize self-noise and correctly retrieve the 

spectral content. It was put 15 cm away from the mouth of the actor, in order to 

have a minimum pre-amplifier gain, and thus minimal extraneous noise. However, 

the shorter this distance, the higher the amplitude variation, should the actor move 

his head from the ideal position, and the more freely the actor can gesticulate; 

therefore, ideally, a 30 cm is advisable for future approaches, something we only 

concluded halfway across the test. 

 

3.1.4. Modalities 

 

Though our database consists only of audio recordings, emotional speech 

databases are moving from one modality towards multimodality, including facial 

expressions, gestures, text and physiologic parameters (Schuller et al., 2009), 

among others. However, multimodal databases do not render monomodal ones 

without value, because monomodality might have specific characteristics. For 

example, a phone conversation might deliver a richer emotional content than a 

face to face conversation. 

 

3.1.5. Availability 

 

Emotional speech databases are moving from seldom public to public 

available. (Schuller et al., 2009) Ours will be a public available one, as we feel 

peer-validation to be a cornerstone of research. 
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3.1.6. Evaluation and validation 

 

3.1.6.1. Database evaluation platform development 
 

After recording the actors, we must evaluate how accurate each of the 

emotional utterances is. Typically, this process is omitted, researchers assuming 

that actors performed accurately. In contrast, researchers usually conduct a human 

evaluation of the database. (Burkhardt et al., 2005; Jovi et al., 2004; Staroniewicz 

& Majewski, 2009) For that purpose, we will have the utterances evaluated by 

judges. Ideally, judges ought to be expert; examples of expert judges may include 

acting directors, sound engineers and woman musicians. On the one hand, acting 

directors and sound engineers are considered expert listeners because they 

professionally work with actors respectively in film production and in Automated 

Dialog Replacement (ADR). On the other hand, woman and musicians achieved a 

recognition rate 10% higher than respectively man and non-musicians. 

(Staroniewicz & Majewski, 2009) Though experienced judges are better, we 

worked with anonymous Portuguese voluntary judges, our budget being limited. 

Most of them were students from different Portuguese institutions of higher 

education. We divided the 718 utterances into 37 evaluations, designed with 

Google Forms, each featuring a maximum of 20 utterances to evaluate. The 

estimated time was 10 minutes per evaluation. 

Our objective being to acknowledge how accurate each of the emotional 

utterance is, we must not tell the experienced judges which emotion the actor was 

representing. Would the judges know a priori the emotions the actors had to 

represent, they would maybe unfortunately overestimate acoustic details of the 

emotion the actor tried to portray, while underestimating acoustic details of other 

existent mixed emotions. For each utterance, the judge must then decide the 

attempted emotion and its accuracy. For greater detail, the intensity of the 

emotion could also be required; however, to keep the evaluation simple, our 
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database being a small one, and our main objective being emotion retrieval, we 

did not request the intensity. 

The better a judge knows a speaker, the better he/she may retrieve his/her 

emotions. Consequently, so as not to have biased judges, the emotional utterances 

must be evaluated one at a time in a specific order, having judges listening to an 

utterance per every actor before repeating any actor. And once an utterance is 

evaluated, it cannot be evaluated again. Finally, the experienced judges will be 

allowed to listen repeatedly the same utterance. 

Last but not least, development of platforms for database validations or 

evaluations are necessary for avoiding overlapping work. 

 

3.1.6.2. Validation criteria 
 

An evaluated utterance to be considered validated had to meet the 

following criteria: 

(a) The utterance’s most voted emotion is the emotion the actor had 

pretended to express and the most voted emotion must be at least 

15% higher than the second most voted emotion, unless: 

(b) If the utterance’s most voted emotion is not the emotion the actor 

had pretended to express, it is not neutral and it has been voted by 

at least 68% of the evaluators, then the validated emotion is the 

one 68% of the evaluators voted for. 

(c) If the actor had pretended to express disgust, but evaluators have 

not voted it as disgust and at least 20% of the evaluators must 

have voted disgust, then the validated emotion is disgust. 

 

The first criteria certify stability and confidence in the validated emotion. 

However, to have a larger database, while trusting evaluators, criteria (b) was 

used. Also, few being the disgust utterances identified as disgust and this emotion 
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being particularly hard to identify, we decided to allow emotions being classified 

as disgust with low recognition rates.  

 

3.1.6.3. Database Evaluation Analysis 
 

 We extracted the following features on the validated database: 

 

(a) Gender independent emotion recognition rate (overall and per 

emotion) 

(b) Gender independent overall emotion recognition rate on short and long 

sentences 

(c) Gender dependent (male and female) emotion recognition rate (overall 

and per emotion) 

(d) Gender dependent (male and female) emotion recognition rate (overall 

and per emotion) on male actors 

(e) Gender dependent (male and female) emotion recognition rate (overall 

and per emotion) on female actresses. 

 

And we extracted the following features on the full database: 

 

(a) Percentage of equivalence between pretended emotion and 

evaluated emotion 

(b) Percentage of utterances validated 

(c) Percentage of utterances validated with a recognition superior to 50% 

(d) Percentage of utterances validated with a recognition superior to 70% 

(e) Average acting quality 

(f) Percentage of utterances with an acting quality superior to 3.1  

(g) Average acting quality on utterances with and acting quality superior 

to 3.1 

 



Speech Emotion Recognition Through Statistical Classification  

 50 

We decided to extract the percentage of utterances with an acting quality 

superior to 3.1 because we wanted to have an idea of the number of utterances 

with an acting quality above average. 

There is little research on comparing male overall emotion recognition 

rates with female emotion recognition rates and there is no research on comparing 

male emotion recognition per emotion with female emotion recognition per 

emotion. (Staroniewicz & Majewski, 2009) Furthermore, there has also never 

been research into the difference between women emotion recognition on women, 

women emotion recognition on men, men emotion recognition on women and 

men emotion recognition on men. Thus, we decided pursue this line of analysis. 

 

 

3.2. Speech Emotion Statistical Classification Method 
 

3.2.1. Speech Emotion Feature Extraction 
 

We used open source Opensmile software to extract audio features from 

each utterance.
1
 Opensmile has multiple available configuration settings, some 

having been designed to extract features for Interspeech emotion challenges. 

(Schuller, Steidl, Batliner, Burkhardt, et al., 2013; Schuller, Steidl, Batliner, 

Vinciarelli, et al., 2013; Schuller, Steidl, et al., 2012, 2011; Schuller et al., 2009) 

In fact, because many speech emotion recognition researchers were using this 

software for speech emotion feature extraction, we decided to use it too for 

practical reasons, while ensuring a better comparability of results. The number of 

features to be extracted is suggested to be somewhere between 1000 and 50000: 

we, therefore, applied the Interspeech 2013 configuration settings, extracting 6373 

features. This set includes prosodic features, voice-quality features (jitter, 

shimmer, HNR), and spectral and cepstral features (MFCCs). (Schuller, Steidl, 

Batliner, Vinciarelli, et al., 2013) So as to improve recognition, it is reported that, 

                                                 
1
 Should the reader be interested in more information on Opensmile, please visit their official 

website: http://audeering.com/technology/opensmile/ 
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as soon as speech recognition systems will be robust enough, linguistic features 

will be commonplace within speech emotion feature extraction. (Schuller et al., 

2009) 

 

3.2.2. Speech Emotion Statistical Classification 
 

 We used open source Weka software to statically classify the utterances 

per emotions.
2
 We began by applying Weka’s PCA algorithm on the full database 

and on the validated one, respectively, reducing the number of features from 6373 

to 457 and from 6373 to 53. Then we applied SVMs, Random Forests and ANNs, 

exploring multiple available parameters on both databases. 

 The recall equals to the rate of instances labeled with a specific 

emotion that the algorithm was able to identify, also usually referred as emotion 

recognition rate, while the precision equals to the rate of instances the algorithm 

correctly labeled. Weka computes both recall and precision; additionally, it also 

computes F-Measure. F-Measure is a harmonic mean between recall and 

precision. 

 

       
  

     
 

          
  

     
 

            
                

                
 

 

Usually speech emotion recognition researchers are only interested in 

recall values from statistical classification algorithms. However, having not 

defined the speech emotion recognition goal, whether we are more interested in 

achieving a high precision, detecting emotions very accurately, but at the expense 

of missing some, or we are interested in finding a huge quantity of emotions, but 

                                                 
2
 Should the reader be interested in more detailed information on Weka, please visit their official 

website: http://www.cs.waikato.ac.nz/ml/weka/  
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at the expense of some false positives, we will provide Recall and F-Measure 

values too, so as to be able to inspect whether some algorithms perform a higher 

recall or a higher precision. It was decided to use F-measure instead of precision, 

because this expression being a harmonic mean between precision and recall, it 

gives a better in insight to the overall algorithm performance. 
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CHAPTER 4: RESULTS AND RESULTS DISCUSSION 

 

4.1. Validation and Evaluation 

 

Though our intention was to have 37 different Google Forms evaluated, 

we ended up with having only 15 evaluated (40% of the database) achieving 116 

validated utterances. Our minimum requirement for an evaluation to be completed 

was 12 evaluators; however, the mean number of evaluators per utterance was 16. 

The clear majority of evaluators were female, leading to an underrepresentation of 

men, affecting thus any statistic concerned with emotion recognition by men. 

Moreover, not all emotions were equally validated in quantity, anger and neutral 

being drastically more numerous than disgust and sadness. Table 14 shows the 

number of utterances per emotion: 

 

Table 14: Number of instances per emotion 

Emotion anger joy excitement neutral fear sadness disgust apathy surprise 

Number 24 9 13 22 11 10 7 9 11 

  

 As it can be seen, not only does the emotion representation vary, but 

disgust, apathy, joy, fear, sadness and surprise have a very limited number of 

instances. Should the validation be complete, we would probably have on average 

2,5 times more instances per emotion. The following tables contain statistical 

results based retrieved from the performed evaluations: 

 

Table 15: Gender independent emotion recognition rates in validated utterances 

Overall recognition 69,6% 

Overall recognition on short sentences 67,3% 

Overall recognition on long sentences 70,9% 

Sadness recognition  60,6% 

Disgust recognition 40,5% 
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Surprise recognition 73,1% 

Excitement recognition 70,0% 

Neutral recognition 71,2% 

Anger recognition 79,7% 

Apathy recognition 54,7% 

Joy recognition 74,9% 

Fear recognition 69,9% 

 

Table 16: Gender dependent emotion recognition rates in validated utterances 

Overall recognition by men 68,3% 

Overall recognition by women 69,8% 

Sadness recognition by women 66,0% 

Disgust recognition by women 51,9% 

Surprise recognition by women 76,4% 

Excitement recognition by women 71,8% 

Neutral recognition by women 70,0% 

Anger recognition by women 83,2% 

Apathy recognition by women 55,7% 

Joy recognition by women 77,5% 

Fear recognition by women 67,5% 

 

Table 17: Database validation statistics 

Percentage of equivalence between pretended emotion and evaluated emotion 51,5% 

Percentage of utterances with an acting quality superior to 3.1  62,8% 

Percentage of utterances validated 40,3% 

Percentage of utterances validated with a recognition superior to 50% 32,9% 

Percentage of utterances validated with a recognition superior to 70% 18,8% 

 

Table 18: Average acting quality 

Average acting quality 2,2 

Average acting quality on utterances with and acting quality superior to 3.1 3,5 

Average male acting quality  1,84  

Average female acting quality  2,49  

 

Firstly, from the 290 evaluated utterances, only 40,3% were considered. 

Emotions recognition was on average 69.6%, ranging from 40,5% (disgust) to 
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79,7% (anger). These are quite good results, considering that random guessing 

would result on a recognition rate of 11%, evaluators having 9 hypotheses. It is 

conspicuous that disgust seems to be on average the hardest emotion to recognize, 

should anyone try to recognize it. The easiest emotion to be recognized appears to 

be anger; however, Staroniewicz et al. highest recognized emotion was surprise, a 

not common emotion in most of the databases. (Staroniewicz & Majewski, 2009) 

Additionally, short sentences had a 67,3% rate, in contrast to long 

sentences, which had a 70,9% recognition rate. This 3,5% difference is probably 

due to the fact that long sentences feature more emotion acoustic cues, since they 

are longer.  

In contrast with our expectations, emotion recognition by men was 1,5% 

better than by women. However, because there was a too small number of men 

evaluating the database, this data has little meaning. And, our evaluators being 

voluntaries, it is interesting that more women than men took part in the validation 

process: whether women are more solidary or they are more interested in an 

emotion evaluation inquiry. 

Only 51,5% of the sentences were recognized as the emotion the actors 

had pretended to express. Only 62,8% of the sentences were evaluated as at least 

3,1 in acting quality, on a scale from 1 to 5, the acting quality being on average 

only 2,1 and the acting quality on sentences with a quality higher than 3,1 being 

3,5. The acting was in fact a big limiter in our speech emotion database. We 

believe there are at least three reasons for this; the first is due to having worked 

with actors, the second is due to not having worked with the best actors. And the 

last reason is probably because, during the recordings, at least one expert in 

emotion recognition should have been present. 

Finally, only 32,9% and 18,8% of the sentences, respectively, had at least 

50% and 70% of the evaluators agreeing on the emotion. 
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4.2. Statistical Classification 

 

 We applied multiple statistical classification algorithms to the full 

database (both validated and non-validated instances) and to the validated 

database using the software Weka. Respectively, tables 19 to 24 contain data 

obtained applying SVMs, Random Forests and ANNs on the full database. Then, 

tables 25 to 30 contain data obtained applying SVMs and Random Forests on the 

full database. The data contained in the tables concerns only F-Measure and 

recognition rates (recall); for detailed data information on the results and on the 

implementation of these algorithms, please see the annexes.  

 

Table 19: SVM F-Measure values on the full database 

total anger joy excitement neutral 

48.9% 63.4% 32.9% 32.7% 60.0% 

fear sadness disgust apathy surprise 

49.1% 41.0% 39.7% 79.0% 41.8% 

 

Table 20: SVM recognition rates on the full database 

total anger joy excitement neutral 

48.7% 58,2% 33.8% 32.9% 63.8% 

fear sadness disgust apathy surprise 

52.5% 42.5% 36.3% 77.5% 41.3% 

 

Table 21: Random Forests F-Measure values on the full database 

total anger joy excitement neutral 

34.7% 52.0% 19.6% 13.5% 47.5% 

fear sadness disgust apathy surprise 

43.0% 23.0% 28.8% 56.4% 28.1% 
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Table 22: Random Forests recognition rates on the full database 

total anger joy excitement neutral 

36.8% 57.0% 17.5% 11.4% 65.0% 

fear sadness disgust apathy surprise 

46.3% 21.3% 25.0% 66.3% 21.3% 

 

Table 23: ANN F-Measure values on the full database 

total anger joy excitement neutral 

26.6% 34.4% 22.8% 18.6% 24.8% 

fear sadness disgust apathy surprise 

26.7% 24.0% 25.2% 42.0% 20.5% 

 

Table 24: ANN Recognition rates on the full database  

total anger joy excitement neutral 

26.2% 27.8% 26.3% 16.5% 25.0% 

fear sadness disgust apathy surprise 

28.8% 27.5% 25.0% 37.5% 21.3% 

 

Table 25: SVM F-Measure values on the validated database 

total anger joy excitement neutral 

44.1% 72.0% 37.5% 45.5% 69.6% 

fear sadness disgust apathy surprise 

18.2% 8.3% 33.3% 40.0% 25.0% 

 

Table 26: SVM recognition rates on the validated database 

total anger joy excitement neutral 

44.0% 75,0% 33.3% 38.5% 63.6% 

fear sadness disgust apathy surprise 

18.2% 10.0% 28.6% 33.3% 27.3% 

 

Table 27: Random Forests F-Measure values on the validated database 

total anger joy excitement neutral 

31.9% 55.3% 30.8% 0% 46.9% 

fear sadness disgust apathy surprise 

0% 26.7% 44.4% 33.3% 16.7% 
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Table 28: Random Forests recognition rates on the validated database 

total anger joy excitement neutral 

38.8% 87.5% 22.2% 0% 68.2% 

fear sadness disgust apathy surprise 

0% 20.0% 28.6% 22.2% 9.1% 

  

Table 29: ANN F-Measure values on the validated database 

total anger joy excitement neutral 

35.7% 47.1% 50.0% 15.4% 48.9% 

fear sadness disgust apathy surprise 

26.1% 10.5% 33.3% 26.7% 38.1% 

 

Table 30: ANN Recognition rates on the validated database 

total anger joy excitement neutral 

36.2% 50.0% 55,6% 15.4% 50.0% 

fear sadness disgust apathy surprise 

27.3% 10.0% 28.6% 22.2% 36.4% 

 

This paragraph is concerned with the discussion of the results obtained from 

the full database, while the next one is more concerned with those obtained from 

the validated one. SVM proved to be the best algorithm for our full database with 

an overall 48,7% emotion recognition rate, the Random Forests and the ANN 

being mediocre in comparison, respectively with an overall 26,2% and 36,8% 

emotion recognition rate: we will therefore turn our attention exclusively to the 

results from this algorithm. Our SVM results are similar to those from Chen et al. 

(L. Chen, Mao, Xue, & Cheng, 2012), but well below other reported results 

above. However, considering that we are working with 9 emotions, instead of the 

typical 5 or 7 emotions, our results are quite good. Apathy was the more 

recognizable emotion, which is very attractive, especially because rarely this 

emotion is found in speech emotion recognition tasks. In contrast, the confusion 

matrix reveals that sadness recognition rate would have been significantly higher, 

if we had not included apathy in our emotions to be recognized. Moreover, 
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surprise, excitement and joy were often misinterpreted between them; this 

misinterpretation might be the result of bad acting.  

The validated database exhibited quite unexpected results, thus interesting 

ones. SVM proved to be the best algorithm for our validated database with an 

overall 44,0% emotion recognition rate, the Random Forests and the ANN being 

lower in comparison, respectively with an overall 38,8% and 36,2% emotion 

recognition rate. We will turn for now our attention to the SVM results and then 

we will discuss the other two. The highest recognized emotion was anger, with a 

75% recognition rate, while the lowest recognized emotion was sadness, with a 

10,0% recognition rate.  In contrast, the gender independent sadness recognition 

was 60,6%.  This reflects that either the validation was poorly performed or the 

statistical algorithm requires larger data. In fact, there were only 10 sadness-

labeled instances, disgust was the poorest recognized emotion in the full database 

by the SVM and there were only 7 disgust-labeled instances in the validated 

database. Certainly, should one of the validation requirements be that any 

validated utterance’s emotion was equal to its pretended emotion, then sadness 

results would have been higher. Random Forests exhibited three unexpected 

results. The first one is the high recognition rate for anger-labeled instances. The 

second one are the zero-recognition rate for fear-labeled instances and for 

excitement-labeled instances. While the increased anger recognition implies that 

anger validation has been performed correctly, the decreased fear and excitement 

recognition is also probably a consequence of a lack of data or of a poorly 

validated database. Finally, ANN revealed three interesting results: a 55,6% joy 

recognition rate, the highest joy recognition rate and a 36,4% surprise recognition 

rate, a quite high recognition rate for surprise. The third result is that, though the 

database was smaller, its recognition greatly improved, implying that ANN might 

be the ideal algorithm on a carefully validated database. 

On the one hand, we can deduce that, though more work must be done to 

develop a larger and better validated database, so as to create a high-quality 

emotional speech dataset, each algorithm has its own set of best recognized 
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emotions. Ensemble statistical classification algorithms that attribute specific 

algorithms to recognize specific emotions might achieve great results. For 

example, one idea would be to have Random Forests recognize anger from all 

other emotions, then moving to SVMs to recognize neutral from the 7 other 

emotions and so on until ANNs recognize joy. In contrast to a serial ensemble 

classifier, another paradigm would be to apply a parallel ensemble classifier, in 

which one algorithms recognizes sums of emotions. For example, one algorithm 

could recognize the sum of joy and excitement, from the other emotions, and then, 

another algorithms (ANN) would distinguish joy from excitement. 

 On the other hand, having noticed that certain algorithms deliver 

significantly different F-measure values from recall ones, for certain emotions, for 

instance Random Forest anger recall is 32,2% higher that its F-Measure, speech 

emotion recognition systems can be developed so as to be directed at delivering 

either a high recall or a high precision, depending on the user goal. 
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CHAPTER 5: CONCLUSION 

The goal we proposed was to create a validated Portuguese speech emotion 

database and to achieve speech emotion recognition through statistical 

classification algorithms based on it, while discussing database development 

methodology and, in particular, acted emotional speech database one. 

Based on state-of-the-art acted speech emotional database methodology, we 

built the European Portuguese Emotional Discourse Database (EPEDD), limited 

however by budget. We evaluated 40% of the database, enabling us to produce a 

validated database, filtering 60% of the evaluated utterances. The validated 

database is small, containing only 116 instances for a total of 9 different emotion-

labels. Therefore, for further investigation on acted Portuguese speech emotion 

recognition, it is recommended to completely evaluate this future public available 

database. 

The average acting quality of the original database was evaluated, in a scale 

from 1 to 5, as 2,3, indicating that had we at least one expert listener or an 

experienced acting director present during the recordings, more utterances would 

have been validated, leading to an optimized process. And, should expert listeners 

be responsible for the validation, then an additional non-experienced evaluation 

would lead to evaluate non-experienced human emotion recognition ability or to 

generate a database containing only popularly recognizable emotional speech. For 

instance, the validated database that we created has its utterances recognized at a 

69,6% rate, by unexperienced judges. Databases featuring popularly recognizable 

emotions can have pragmatic interest, should the ability to mimic human emotion 

recognition rates be a goal. 

Moreover, the validated databases features anger as the highest recognizable 

emotion at a 79,7% rate, while disgust as the lowest recognized emotion at a 

40,5% rate.  A better recognition rate could have been obtained, had we created a 

more rigorous validation requirement; however, such a validation would 

unfortunately make our database even smaller. 
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In the scope of automatic speech emotion recognition, applying Opensmile 

and Weka software, we had respectively features extracted and statistical 

classification algorithms trained on the full database and on the validated one, 

SVMs proving to be the optimal algorithm for both. Respectively, the emotion 

recognition rates were 48,7% and 44,0%. Apathy had the highest recognition rate 

at 79.0%, while excitement had the lowest emotion recognition rate at 32.9%. 

Interestingly, SVM performance was lower in the validated database, probably 

due to a lack of data and maybe even due to a poorly performed validation. 

However, it is worth noting that Random Forests and ANN achieved relatively 

great emotion recognition rates on the validated database, respectively for anger 

(87,5%) and joy (55,6%). Finally, certain algorithms delivered significantly 

different F-measure values from recall ones, for specific emotions, for example, 

Random Forest anger recall was 32,2% higher that its respective F-measure. 

To optimize speech emotion recognition systems, more research is 

encouraged on ensemble statistical classification, directing specific algorithms to 

recognize specific emotions or groups of emotions. Furthermore, more research is 

also encouraged in precision oriented algorithms, since speech emotion 

recognition researchers tend to only retrieve recall values. 

Lövheim’s three-dimensional emotion model has been applied, including, 

aside from Ekman’s big 6 emotions, apathy and excitement. (Lövheim, 2012) 

These are unusual emotions to be recognized in emotion recognition systems; 

unexpectedly, apathy recognition rates were the highest using SVMs, whereas 

excitement were the lowest ones. We encourage more research based on Lövheim 

model, since more emotions are covered and it unites discrete and dimensional 

models, and neurology. Moreover, apathy being an emotion that reflects mental 

struggle, more research in this emotion is particularly encouraged. 

Last but not least, the development of large acted emotion databases, 

featuring a larger number of utterances uttered by a larger set of actors and under 

a larger set of emotions, for instance, based on Lövheim’s model, is important so 

to have a statistically large enough database for strong conclusions to be drawn. 
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Appendix A 

 

 The following pages contain Weka’s statistical classification algorithms 

output performed on the full database and on the validated one. The first three 

pages concern the full database, whereas the following ones concern the validated 

database. We begin by presenting SVM results, then we present Random Forest 

results and finally we present ANN results. 
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=== Run information === 

 

Scheme:       weka.classifiers.functions.LibSVM -S 0 -K 1 -D 3 -G 1.0E-5 -R 10.0 -N 0.5 

-M 40.0 -C 100000.0 -E 0.01 -P 0.1 -model -seed 1 

Instances:    718 

Attributes:   458 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

 

LibSVM wrapper, original code by Yasser EL-Manzalawy (= WLSVM) 

 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         350               48.7465 % 

Incorrectly Classified Instances       368               51.2535 % 

Kappa statistic                          0.4234 

Mean absolute error                      0.1139 

Root mean squared error                  0.3375 

Relative absolute error                 57.6601 % 

Root relative squared error            107.387  % 

Total Number of Instances              718      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC 

Area  Class 

                 0,582    0,031    0,697      0,582    0,634      0,597    0,775     

0,452     anger 

                 0,338    0,089    0,321      0,338    0,329      0,243    0,624     

0,182     joy 

                 0,329    0,085    0,325      0,329    0,327      0,243    0,622     

0,181     excitement 

                 0,638    0,061    0,567      0,638    0,600      0,548    0,788     

0,402     neutral 

                 0,525    0,077    0,462      0,525    0,491      0,424    0,724     

0,295     fear 

                 0,425    0,082    0,395      0,425    0,410      0,333    0,672     

0,232     sadness 

                 0,363    0,058    0,439      0,363    0,397      0,332    0,652     

0,230     disgust 

                 0,775    0,024    0,805      0,775    0,790      0,764    0,876     

0,649     apathy 

                 0,413    0,071    0,423      0,413    0,418      0,346    0,671     

0,240     surprise 
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Weighted Avg.    0,487    0,064    0,493      0,487    0,489      0,425    0,712     

0,318      

 

=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i   <-- classified as 

 46  3 16  1  3  0  1  0  9 |  a = anger 

  3 27 15 11  6  1 10  1  6 |  b = joy 

 11 14 26  1  7  1  5  0 14 |  c = excitement 

  0 10  0 51  2 10  3  1  3 |  d = neutral 

  0  4  4  6 42 13  3  1  7 |  e = fear 

  0  2  0  8 17 34  9 10  0 |  f = sadness 

  2 13  5  6  8 10 29  1  6 |  g = disgust 

  0  0  0  3  0 15  0 62  0 |  h = apathy 

  4 11 14  3  6  2  6  1 33 |  i = surprise 

Options: -P 100 -I 20000 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1  

 

RandomForest 

 

Bagging with 20000 iterations and base learner 

 

weka.classifiers.trees.RandomTree -K 0 -M 1.0 -V 0.001 -S 1 -do-not-check-capabilities 

 

=== Error on training data === 

 

Correctly Classified Instances         718              100      % 

Incorrectly Classified Instances         0                0      % 

Kappa statistic                          1      

Mean absolute error                      0.0717 

Root mean squared error                  0.1141 

Relative absolute error                 36.2863 % 

Root relative squared error             36.3167 % 

Total Number of Instances              718      

 

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC 

Area  Class 

                 1,000    0,000    1,000      1,000    1,000      1,000    1,000     

1,000     anger 

                 1,000    0,000    1,000      1,000    1,000      1,000    1,000     

1,000     joy 

                 1,000    0,000    1,000      1,000    1,000      1,000    1,000     

1,000     excitement 

                 1,000    0,000    1,000      1,000    1,000      1,000    1,000     

1,000     neutral 

                 1,000    0,000    1,000      1,000    1,000      1,000    1,000     

1,000     fear 

                 1,000    0,000    1,000      1,000    1,000      1,000    1,000     

1,000     sadness 

                 1,000    0,000    1,000      1,000    1,000      1,000    1,000     

1,000     disgust 
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                 1,000    0,000    1,000      1,000    1,000      1,000    1,000     

1,000     apathy 

                 1,000    0,000    1,000      1,000    1,000      1,000    1,000     

1,000     surprise 

Weighted Avg.    1,000    0,000    1,000      1,000    1,000      1,000    1,000     

1,000      

 

 

=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i   <-- classified as 

 79  0  0  0  0  0  0  0  0 |  a = anger 

  0 80  0  0  0  0  0  0  0 |  b = joy 

  0  0 79  0  0  0  0  0  0 |  c = excitement 

  0  0  0 80  0  0  0  0  0 |  d = neutral 

  0  0  0  0 80  0  0  0  0 |  e = fear 

  0  0  0  0  0 80  0  0  0 |  f = sadness 

  0  0  0  0  0  0 80  0  0 |  g = disgust 

  0  0  0  0  0  0  0 80  0 |  h = apathy 

  0  0  0  0  0  0  0  0 80 |  i = surprise 

 

 

=== Run information === 

 

Scheme:       weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 

-S 0 -E 20 -H a 

Instances:    718 

Attributes:   458 

 

=== Stratified cross-validation === 

 

Correctly Classified Instances         188               26.1838 % 

Incorrectly Classified Instances       530               73.8162 % 

Kappa statistic                          0.1695 

Mean absolute error                      0.1678 

Root mean squared error                  0.3586 

Relative absolute error                 84.9676 % 

Root relative squared error            114.1095 % 

Total Number of Instances              718      

 

 

=== Detailed Accuracy By Class === 

 

                TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC 

Area  Class 

                0.278    0.042    0.449      0.278    0.344      0.293    0.800 

    0.368     anger 

                0.263    0.130    0.202      0.263    0.228      0.118    0.585 

    0.150     joy 

                0.165    0.075    0.213      0.165    0.186      0.100    0.655 

    0.167     excitement 

                0.250    0.096    0.247      0.250    0.248      0.154    0.709 

    0.255     neutral 
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                0.288    0.108    0.250      0.288    0.267      0.169    0.674 

    0.221     fear 

                0.275    0.127    0.214      0.275    0.240      0.133    0.673 

    0.212     sadness 

                0.250    0.092    0.253      0.250    0.252      0.158    0.652 

    0.200     disgust 

                0.375    0.052    0.476      0.375    0.420      0.360    0.802 

    0.396     apathy 

                0.213    0.108    0.198      0.213    0.205      0.101    0.646 

    0.201     surprise 

Weighted Avg.    0.262    0.092    0.278      0.262    0.266      0.176    0.688 

    0.241      

 

 

=== Confusion Matrix === 

 

 a  b  c  d  e  f  g  h  i   <-- classified as 

22  5 12  6  6  6  9  1 12 |  a = anger 

 4 21  8 13  4 12  4  4 10 |  b = joy 

 6 14 13  4  9  9 10  2 12 |  c = excitement 

 3 16  3 20 13 11  3  7  4 |  d = neutral 

 3 11  8  9 23 10  6  3  7 |  e = fear 

 4 10  3 10 11 22  7  3 10 |  f = sadness 

 2 15  3  5  8  8 20  8 11 |  g = disgust 

 2  5  6  4  8 11 11 30  3 |  h = apathy 

 3  7  5 10 10 14  9  5 17 |  i = surprise 

 

 

 

 

=== Run information === 

 

Scheme:       weka.classifiers.functions.LibSVM -S 0 -K 1 -D 3 -G 1.0E-7 -R 10.0 -N 0.05 

-M 40.0 -C 1.0E7 -E 0.001 -P 0.1 -model -seed 1 

Instances:    116 

Attributes:   53 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

 

LibSVM wrapper, original code by Yasser EL-Manzalawy (= WLSVM) 

 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances          51               43.9655 % 

Incorrectly Classified Instances        65               56.0345 % 

Kappa statistic                          0.3505 

Mean absolute error                      0.1245 

Root mean squared error                  0.3529 

Relative absolute error                 64.3981 % 

Root relative squared error            113.5292 % 

Total Number of Instances              116      
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=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC 

Area  Class 

                 0.750    0.087    0.692      0.750    0.720      0.644    0.832     

0.571     anger 

                 0.636    0.117    0.560      0.636    0.596      0.495    0.760     

0.425     neutral 

                 0.385    0.039    0.556      0.385    0.455      0.408    0.673     

0.283     excitement 

                 0.182    0.086    0.182      0.182    0.182      0.096    0.548     

0.111     fear 

                 0.333    0.028    0.500      0.333    0.400      0.369    0.653     

0.218     apathy 

                 0.100    0.123    0.071      0.100    0.083      -0.020   0.489     

0.085     sadness 

                 0.273    0.095    0.231      0.273    0.250      0.165    0.589     

0.132     surprise 

                 0.333    0.037    0.429      0.333    0.375      0.332    0.648     

0.195     joy 

                 0.286    0.028    0.400      0.286    0.333      0.303    0.629     

0.157     disgust 

Weighted Avg.    0.440    0.079    0.453      0.440    0.441      0.369    0.680     

0.302      

 

=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i   <-- classified as 

 18  1  1  2  0  0  2  0  0 |  a = anger 

  0 14  0  0  0  2  4  0  2 |  b = neutral 

  3  1  5  1  0  1  0  2  0 |  c = excitement 

  2  1  0  2  0  4  1  0  1 |  d = fear 

  0  0  0  1  3  5  0  0  0 |  e = apathy 

  0  2  1  2  3  1  0  1  0 |  f = sadness 

  2  3  1  1  0  1  3  0  0 |  g = surprise 

  1  1  1  1  0  0  2  3  0 |  h = joy 

0 2  0  1  0  0  1  1  2 |  i = disgust 

=== Run information === 

 

Scheme:       weka.classifiers.trees.RandomForest -P 100 -I 20000 -num-slots 1 -K 0 -M 

1.0 -V 0.001 -S 1 

Instances:    116 

Attributes:   53 

 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

 

RandomForest 

 

Bagging with 20000 iterations and base learner 
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weka.classifiers.trees.RandomTree -K 0 -M 1.0 -V 0.001 -S 1 -do-not-check-capabilities 

 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances          45               38.7931 % 

Incorrectly Classified Instances        71               61.2069 % 

Kappa statistic                          0.2558 

Mean absolute error                      0.1809 

Root mean squared error                  0.2943 

Relative absolute error                 93.5315 % 

Root relative squared error             94.6869 % 

Total Number of Instances              116      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC 

Area  Class 

                 0.875    0.337    0.404      0.875    0.553      0.438    0.861     

0.616     anger 

                 0.682    0.287    0.357      0.682    0.469      0.322    0.806     

0.577     neutral 

                 0.000    0.010    0.000      0.000    0.000      -0.033   0.709     

0.245     excitement 

                 0.000    0.057    0.000      0.000    0.000      -0.076   0.646     

0.137     fear 

                 0.222    0.009    0.667      0.222    0.333      0.359    0.919     

0.620     apathy 

                 0.200    0.028    0.400      0.200    0.267      0.237    0.822     

0.274     sadness 

                 0.091    0.000    1.000      0.091    0.167      0.288    0.730     

0.368     surprise 

                 0.222    0.019    0.500      0.222    0.308      0.298    0.925     

0.557     joy 

                 0.286    0.000    1.000      0.286    0.444      0.523    0.649     

0.299     disgust 

Weighted Avg.    0.388    0.135    0.431      0.388    0.319      0.271    0.794     

0.445      

 

 

 

 

 

 

 

=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i   <-- classified as 

 21  3  0  0  0  0  0  0  0 |  a = anger 

  5 15  0  1  0  1  0  0  0 |  b = neutral 

 10  2  0  0  0  0  0  1  0 |  c = excitement 

  5  4  0  0  0  2  0  0  0 |  d = fear 

  2  3  0  2  2  0  0  0  0 |  e = apathy 
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  1  4  0  2  1  2  0  0  0 |  f = sadness 

  3  6  0  0  0  0  1  1  0 |  g = surprise 

  3  2  1  1  0  0  0  2  0 |  h = joy 

  2  3  0  0  0  0  0  0  2 |  i = disgust 
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=== Run information === 

 

Scheme:       weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 

-S 0 -E 20 -H a 

Instances:    116 

Attributes:   53 

 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances          42               36.2069 % 

Incorrectly Classified Instances        74               63.7931 % 

Kappa statistic                          0.2608 

Mean absolute error                      0.1428 

Root mean squared error                  0.3227 

Relative absolute error                 73.8536 % 

Root relative squared error            103.8129 % 

Total Number of Instances              116      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC 

Area  Class 

                 0.500    0.163    0.444      0.500    0.471      0.323    0.771     

0.435     anger 

                 0.500    0.128    0.478      0.500    0.489      0.366    0.832     

0.644     neutral 

                 0.154    0.107    0.154      0.154    0.154      0.047    0.670     

0.212     excitement 

                 0.273    0.086    0.250      0.273    0.261      0.180    0.724     

0.231     fear 

                 0.222    0.037    0.333      0.222    0.267      0.223    0.822     

0.387     apathy 

                 0.100    0.075    0.111      0.100    0.105      0.026    0.650     

0.179     sadness 

                 0.364    0.057    0.400      0.364    0.381      0.320    0.685     

0.324     surprise 

                 0.556    0.056    0.455      0.556    0.500      0.456    0.892     

0.397     joy 

                 0.286    0.028    0.400      0.286    0.333      0.303    0.814     

0.308     disgust 

Weighted Avg.    0.362    0.099    0.356      0.362    0.357      0.262    0.764     

0.383      

 

=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i   <-- classified as 

 12  2  7  2  0  0  1  0  0 |  a = anger 

  3 11  1  1  0  1  2  1  2 |  b = neutral 

  5  1  2  1  0  1  0  3  0 |  c = excitement 

  3  1  1  3  1  2  0  0  0 |  d = fear 

  2  1  0  1  2  2  1  0  0 |  e = apathy 
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  0  2  0  2  3  1  0  2  0 |  f = sadness 

  1  2  1  2  0  1  4  0  0 |  g = surprise 

  0  1  1  0  0  0  1  5  1 |  h = joy 

  1  2  0  0  0  1  1  0  2 |  i = disgust 


