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Abstract

Most software developments do not use any of the existing theories and for-
malisms. This leads to a loss of precision and correctness on the resulting soft-
wares. Two different approaches to formal techniques have been raised in the past
decades: one focus on data aspects, and the other focus on the behavioural aspects
of the system.

Some combined languages have already been proposed to bring these two schools
together. However, as far as we know, none of them has a related refinement
calculus. Using Circus as the specification language, we can describe both data and
control behaviour.

The objective of this work is to formalise a refinement calculus for Circus. A
refinement strategy for Circus, new refinement laws and their proofs are presented.
The proofs are based on an extension of the existing Circus semantics, which is based
on the unifying theory of programming. This extension, and its mechanisation, and
the proof of the laws on PowerProof are also part of this work.

We intend to provide a tool that supports the Circus refinement calculus. Fur-
thermore, as an extension of the existing refinement strategy for Circus, we present
a translation strategy for Circus programs. This translation strategy can be used
as a guideline in the translation of Circus programs to Java. Furthermore, the
mechanisation of this translation is also feasible.

We present a case study, a safety-critical fire protection system, that, as far as
we know, is the largest case study on the Circus refinement calculus. We present
the refinement of its abstract centralised specification to a concrete distributed one.
Finally, the translation of the concrete specification of the system to Java, using
our translation strategy, is also presented.

Throughout this mini-thesis, some sections, and even chapters are not written.
They have not been removed from the mini-thesis on purpose. Our intention is to
give an idea of the scope and the structure of our final thesis, which is discussed in
details in the final chapter of this document.
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Chapter 1

Introduction

In this chapter we present the motivation for the use of formal methods, Circus, and
its refinement calculus. Furthermore, the objectives and an overview of the whole
dissertation are also discussed.

1



1.1 Motivation

Most software developments do not use the already existing theories and formalisms.
This lack of formalism raises difficulties in developing a relatively low cost trust-
worthy software, where the time of development is controllable. Milner affirms that
software development theories are as important as computing theories [18]. The ex-
perience with the informal techniques is the main reason for using formal methods
in the development processes.

Throughout the past decades two schools have been developing formal tech-
niques for precise, correct, and concise software development. However, they have
taken different approaches: one of them has focused on data aspects of the system,
while the other one has focused on the behavioural aspects of the system.

Languages like Z [34], VDM [15], Abstract State Machines [5], and B [2], use a
model-based approach, where mathematical objects from set theory form the basis
of the specification. Although possible in a rather difficult and implicit fashion,
specification constructs to model behavioural aspects such as choice, sequence, par-
allelism, and others, are not explicitly provided by any of these languages.

On the other hand, CSP [13, 26] and CCS [19] provide constructs that can be
used to describe the behaviour of the system. However, they do not support a
concise and elegant way to describe the data aspects of the system.

Many attempts were made in order to bring these two schools together. In
these attempts, both data and behaviour aspects of the system are dealt together.
Combinations of Z with CCS [11, 31], Z with CSP [27], and Object-Z with CSP [9]
are some of these attempts to combine both schools. As far as we know, however,
none of them has a related refinement calculus. This lack of support for refinement
in a calculational style as that presented in [20] has motivated the creation of
Circus [33, 1].

Circus characterises systems as processes, which group constructs that describe
data and control behaviour. The Z notation [30] is used to define most of the data
aspects, and CSP, and guarded constructs are used to define behaviour. The seman-
tics of Circus is based on the unifying theories of programming [14], a framework that
unifies the programming science across many different computational paradigms.

In [1], a refinement strategy for Circus, as well as some refinement laws, was
presented. However, the verification of the laws, the proposition of a comprehensive
set of refinement laws, and further case studies were left as future work.

1.2 Objectives

The main objective of this work is to provide a refinement calculus for Circus. As
discussed above, in [1] the authors have introduced a generic refinement strategy
for Circus. Their case study, however, refines an abstract specification to a concrete
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one. We intend to go further in our strategy and case studies: the refinement from
an abstract specification to a Java code is the objective of our work.

First, refinement notions for Circus processes and their constituent actions must
be presented. In order to verify the usefulness and soundness of the set of laws
proposed in [1], a more significant case study on the refinement of Circus programs
is taken into account. This case study is a safety-critical fire protection system, and,
as far as we know, it is the largest case study on the Circus refinement strategy. The
transformation of an abstract centralised specification of this system to the Java
implementation of a distributed one is in the scope of this work. A significant set
of laws that raises from this case study is documented.

The proof of the existing and the new laws is another objective of this work. We
intend to use an extension of the semantics of Circus programs, presented in [33], as
a basis. In [33], a Circus program is represented as a Z specification. This allows us
to use ProofPower [3] to mechanise the model of Circus, and to prove all the laws
of the refinement calculus of Circus. Furthermore, this provides a basis for proving
any property of Circus programs. In the end of this work, we intend to present a
final reference for Circus semantics.

A strategy for the translation of Circus programs to Java is another objective of
our work. Such a systematic strategy can be used as a guideline for implementing
Circus programs, and further, as a guideline for mechanising the translation of Circus

programs to Java.
Finally, we intend to provide a prototype of a tool that supports the refinement

calculus for Circus presented in this work.

1.3 Outline

In Chapter 2, we present an introduction to Circus. Both its syntax and its semantics
are presented here. As the semantics of Circus programs is based on the unifying
theory of programming, we also present an introduction to this framework before
actually presenting the semantics of Circus.

Chapter 3 discusses the refinement notions for Circus processes and their con-
stituent actions. The simulation technique and the refinement strategy presented
in [1] are also discussed in this chapter. Finally, this chapter presents some of the
new refinement laws proposed in this work.

In Chapter 4, we present the aspects involving the implementation of a prototype
of a tool that supports the application of the refinement calculus of Circus.

Chapter 5 presents a safety-critical fire protection system as our case study on
the refinement calculus of Circus. We present its abstract centralised specification,
and then, its refinement to a distributed system.

In Chapter 6, a strategy for implementing Circus programs in JCSP [25, 24] is
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presented. First, we present a brief introduction to JCSP, a Java library that can
be used to support the implementation of CSP programs in Java. Then, we present
the translation strategy itself. In order to illustrate the translation strategy, we
present the translation of our case study.

Finally, an overview of the contributions of our work, related works, and topics
for future work are presented in Chapter 7.
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Chapter 2

Circus

In this chapter we introduce Circus, a concurrent language which is appropriate for
refinement. It is based on imperative CSP [26], and adds specification facilities in
the Z [34] style. This enables both state and communications aspects to be captured
in the same specification, as in [29].

Circus is a language that is not only suitable for the specification of concurrent
and reactive systems; it has also a theory of refinement associated to it. Its objective
is to give a sound basis to the development of concurrent and distributed system in
a calculational style like that of [20].

In Section 2.1 we briefly present the syntax of Circus, and in Section 2.2 we
present some of the semantic definitions of Circus.
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2.1 Syntax

2.1.1 Circus Programs

In the same way as Z specifications, Circus programs are formed by a sequence of
paragraphs.

Program ::= CircusPar∗

Here, CircusPar∗ denotes a possibly empty list of elements of the syntactic category
CircusPar of Circus paragraphs.

Each of these paragraphs can either be a Z paragraph, here denoted by the
syntactic category Par, definition of channels, a channel set definition, or a process
definition.

CircusPar ::= Par | channel CDecl | chanset N == CSExp

| ProcessDefinition

The syntactic category Par is that of Z paragraphs defined in [30]. The syntactic
category N is that of valid Z identifiers.

In the following sections, the main constructs of Circus are illustrated using a
simple example: a small variation of an example presented in [33]. We describe
a process that, when requested, outputs the Fibonacci sequence (See Figure 2.1).
The process may also be restarted, in which case, it output the Fibonacci sequence
from the beginning again.

2.1.2 Channel Declarations

All the channels that are used within a process must be declared. The syntactic
categories Exp and Schema-Exp are those of Z expressions and schema expressions
defined in [30].

CDecl ::= SimpleCDecl | SimpleCDecl; CDecl

SimpleCDecl ::= N+ | N+ : Exp | [N+]N+ : Exp | Schema-Exp

In a channel declaration, we declare the name of the channel and the type of the
values it can communicate. However, if the channel does not communicate any
value, but it is used only as a synchronising event, its declaration contains only its
name; no type is defined.

A channel declaration may declare more than one channel of the same type.
In this case, instead of a single channel name, we have a comma-separated list of
channel names.

Generic channel declarations introduce a family of channels. For instance, the
declaration channel [T ] c : T declares a family of channels c. For every actual
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channel out : N

channel restart
chanset FibAlphabet == {| out , restart |}

process Fib =̂
begin

state FibState =̂ [x , y : N]

InitFibState =̂ [FibState ′ | x ′ = y ′ = 1]
InitFib =̂ out !1 → out !1 → InitFibState
OutFibState =̂ [∆FibState; next ! : N | next ′ = y ′ = x + y ∧ x ′ = y ]

OutFib =̂ µX • var next : N • OutFibState;
(

out !next → X
2 restart → Skip

)

FibCycle =̂ µX • InitFib;OutFib;X

• FibCycle
end

Figure 2.1: A Fibonacci Generator

type S , we have a channel c[S ] that communicates values of type S . Channels can
also be declared using schemas that group channel declarations, but do not have
a predicate part. This follows from the fact that the only restriction that may be
imposed to channels is the type it communicates.

Our example process outputs natural numbers through the channel out . Fur-
thermore, it may be restarted through channel restart .

channel out : N

channel restart

The channel restart is used just for synchronisation. So, it does not have a type.

2.1.3 Channel Set Declarations

We may introduce sets of previously defined channels in a chanset paragraph.
In this case, we declare the name of the set and a channel-set expression, which
determines the channels that are members of this set. The empty set of channels
{||}, channel enumerations enclosed in {| and |}, and expressions formed by the Z set
operators are the elements of the syntactic category CSExp.

In our example, we declare the alphabet of the process as a channel set as follows.

chanset FibAlphabet == {| out , restart |}

7



This is not really used in our simple example, but channel sets are important to
make definitions more concise.

2.1.4 Process Declarations

The declaration of a process is composed by its name and by its specification. A
process is specified as a (possibly)parametrised process, or as an indexed process.

ProcessDefinition ::= process N =̂ ParProc | process N =̂ IndexProc

If a process is parametrised or indexed, we first have the declaration of its param-
eters. The syntactic category Decl is the same as in [30]. Afterwards, following a
•, in the case of parametrised processes, or a �, in the case of indexed processes,
we have the declaration of the process body (an element of the syntactic category
Proc). In both cases, the parameters may be used as local variables in the definition
of the process. If the process is not parametrised, we have only the definition of its
body.

ParProc ::= Decl • Proc | Proc

IndexProc ::= Decl � Proc

A process may be explicitly defined, or it may be defined in terms of other
processes (composed processes).

Proc ::= ExpProc | CompProc

An explicit process definition is delimited by the keywords begin and end; it is
formed by a sequence of process paragraphs and a distinguished nameless main
action, which defines the process behaviour, in the end. Furthermore, in Circus we
use the Z notation to define the state of a process. It is described as an schema
paragraph, after the keyword state.

ExpProc ::= begin PPar∗ state Schema-Exp PPar∗ • Action end

The syntactic category Schema-Exp is that of Z schema expressions.
Our example in Figure 2.1 is defined in this way.

process Fib =̂ begin state FibState =̂ [x , y : N] . . . • FibCycle end

The schema FibState describes the internal state of the process Fib: it contains
two natural numbers x and y ; the latter records the last value output, and the
former records the value output before the last. The behaviour of Fib is described
by the unnamed action after a •. The process Fib behaves like the recursive action
FibCycle that we described latter in this section.
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2.1.5 Compound Processes

In Circus, processes may be defined in terms of other previously defined processes
using the process name, CSP operators, iterated CSP operators, or indexed opera-
tors, which are particular to Circus specifications.

CompProc ::= N | Proc; Proc | Proc 2 Proc | Proc u Proc

| Proc |[ CSExp ]| Proc | Proc ||| Proc | Proc \ CSExp

| o
9 Decl • Proc | 2Decl • Proc | uDecl • Proc

| ‖Decl |[ CSExp]| • Proc | |||Decl • Proc

| ParProc(Exp+)
| IndexProcbExp+c | Proc[N+ := N+]
| o

9 Decl � Proc | 2Decl � Proc | uDecl � Proc

| ‖Decl |[ CSExp ]| �Proc | |||Decl � Proc

Processes P1 and P2 can be combined in sequence using the sequence opera-
tor: P1;P2. This process executes the process P2 after the execution of P1 termi-
nates. The external choice P1 2 P2 initially offers events of both processes. The
performance of the first event resolves the choice in favour of the process that per-
forms it. Differently from the external choice, the environment has no control over
the internal choice P1 u P2, in which the process internally (non-deterministically)
resolves the choice.

In the parallelism operator, Circus follows the alphabetised approach adopted
by [26], instead of that adopted by [13]: when processes are put in parallel, the set
of events on which they synchronise must be explicitly specified. Events that are
not listed occur independently. For instance, the process P1 |[cs ]|P2 synchronise on
the set of events cs . Processes can also be composed in interleaving. For instance,
a process that outputs the Fibonacci sequence through the channel out twice can
be defined as follows.

FibTwice =̂ Fib ||| Fib

However, an event restart leads to a non-deterministic choice of which Fib process
of the interleaving actually restarts: one of the processes restarts, and the other one
does not.

The event hiding operator P \ cs is used to encapsulate the events that are
in the channel set cs . This removes these events from the interface of P , which
become no longer visible to the environment.

As CSP, Circus provides iterated operators that can be used to generalise the
binary operators of sequence, external and internal choice, parallelism, and inter-
leaving. Furthermore, we may instantiate a parametrised process by providing
values for each of its parameters. For instance, we may have either P(v), where
P =̂ (x : N • Proc), or (x : N • Proc)(v). Except from sequence, all the iterated
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operators are commutative and associative. For this reason, there is no concern
about the order of the elements in the type of the indexing variable. However, for
the sequence operator, we require this type to be a sequence. As expected, the pro-
cess o

9 x : T • P(x ) is the sequential composition of processes P(v), with v taken
from T , which must be a sequence, in the order that they appear.

Circus introduces a new operator that can be used to define processes. The
indexed process i : T � P behaves exactly like P , but for each channel c of P , we
have a freshly named channel c i . These channels are implicitly declared by the
indexed operator, and communicate pairs of values: the first element, the index,
is a value i of type T , and the second element is the a value of the original type
of the channel. An indexed process P can be instantiated using the instantiation
operator: Pbec, which behaves just like P , however, the value of the expression e
is used as the first element of the pairs communicated through all the channels.

For instance, we may define a process similar to that previously defined as
FibTwice, in order to have the same interleaved output of two Fibonacci sequences,
but with an identification of which process generated each output. The indexed pro-
cess IndexFib presented below outputs through channel out i and can be restarted
through channel restart i .

IndexFib =̂ i : {1, 2} � Fib

Now, we may instantiate the process IndexFib: the process IndexFibb1c outputs
pairs through channel out i whose first elements are 1 and the second elements
are the values of the Fibonacci sequence. It may be restarted by sending the value
1 through the channel restart i . Similarly, we have the process IndexFibb2c. Fi-
nally, the process FibTwiceId presented below produces an arbitrary merge of two
sequences of pairs: the first element of the pairs identifies the generator and the
second is a Fibonacci number.

FibTwiceId =̂ IndexFibb1c ||| IndexFibb2c

The renaming operator P [oldc := newc] replaces all the communications that
are done through channels oldc by communications through channels newc, which
are implicitly declared. Usually, indexing and renaming are used in conjunction as
in the redefinition of the process FibTwice presented below.

FibTwice =̂ FibTwiceId [out i , restart i := outid , restartid ]

We may also combine instantiations of a indexed process using the iterated
indexed operators of sequence, external and internal choice, parallelism, or inter-
leaving. By way of illustration, we redefine the process FibTwiceId as follows.

FibTwiceId =̂ ||| i : {1, 2} � Fibbic
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The same characteristics and restrictions that apply to the iterated operators, also
apply to the iterated indexed operators. For instance, the process o

9 x : T � Pbxc
is the sequential composition of processes Pbvc, with v taken from T , which must
also be a sequence, in the order that they appear.

2.1.6 Actions

When a process is explicitly defined, besides the definitions of the state and the main
action, we have in its body Z paragraphs, definitions of (parametrised)actions, and
variable sets definitions; they are used to specify the main action of the process.

PPar ::= Par | N =̂ ParAction | nameset N == NSExp

As for channel sets, the empty set {}, variable name enumerations enclosed in
{ and }, and expressions formed by the Z set operators are the elements of the
syntactic category NSExp.

NSExp ::= { } | {N+} | N | NSExp ∪ NSExp | NSExp ∩ NSExp

| NSExp \ NSExp

As processes, an action may be parametrised, in which case we have the decla-
ration of the parameters followed by a •, and then, the body of the action.

ParAction ::= Decl • Action | Action

An action can be a schema, a guarded command, an invocation to a previous
defined action, or a combination of these constructs using CSP operators.

Action ::= Schema-Exp | CSPAction | Command | N

Two of the process Fib’s paragraphs are schemas (see Figure 2.1): InitFibState
initialises both the state components with the value 1. It is a schema that follows
the standard style of Z of defining initialisation schemas. The schema OutFibState
defines the value of the local variable next !, which is the next value to be output
by process Fib. It records in next and y the next output value x + y , and records
in x the value of the previous output value y .

In pure Z, dash and shriek decorations are used to refer to after-state and output
variables, respectively. In Circus, however, they may be used interchangeably. For
instance, we can use either next ′ or next ! to refer to the after-state value of the local
variable next .

Three primitive actions are available in Circus: Skip, Stop, and Chaos . The
action Skip does not communicate any value or changes the state: it terminates
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immediately. The action Stop deadlocks, and the action Chaos diverges. The only
guarantee in both cases is that the state invariant is maintained.

CSPAction ::= Skip | Stop | Chaos | Comm → Action | Pred & Action

| Action; Action | Action 2 Action | Action u Action

| Action |[ NSExp | CSExp | NSExp ]| Action

| Action ||[NSExp | NSExp]|| Action

| Action \ CSExp | µ N • Action | ParAction(Exp+)
| o

9 Decl • Action | 2Decl • Action |uDecl • Action

| ‖Decl |[ NSExp | CSExp | NSExp]| • Action

| |||Decl ||[NSExp | NSExp]||• Action

Comm ::= N CParameter∗

CParameter ::= ? N | ? N : Pred | ! Exp | . Exp

The syntactic category Pred is that of Z predicates defined in [30].
The prefixing operator is standard. However, a guard construction may be

associated to it. For instance, given a Z predicate p, if the condition p is true, the
action p & c?x → A inputs a value through channel c and assigns it to the variable
x , and then behaves like A, which has the variable x in scope. If, however, the
condition p is false, the same action blocks. Such enabling conditions like p may
be associated with any action.

The action InitFib in Figure 2.1 exemplifies the output prefixing operator. It
outputs the value 1 twice, and then, it invokes the operation InitFibState to initialise
the state of the process.

All free variables must be in the scope of an action. All the state components
are in the scope of any action within the process. Input communications introduce
new variables in scope, which may not be used as targets of assignments.

The CSP operators of sequence, external and internal choice, parallelism, inter-
leaving, and hiding may also be used to compose actions. However, differently from
the level of process, at the level actions, communications and recursive definitions
are also available.

In our example, the action FibCycle is recursively defined. It first behaves
like action InitFib, which, as already mentioned, outputs the value 1 twice and
records this by initialising the state components. Then, FibCycle behaves like action
OutFib, which outputs as many numbers of the Fibonacci sequence as required.
Finally, the action FibCycle recurses.

At the level of actions, the parallel and the interleaving operators are slightly
different from that of CSP. In order to avoid conflicts in the access to the variables
in scope, parallelism and interleaving of actions must declare a synchronisation
channel set and two sets that partition all the variables in scope: state components,
and input and local variables. In the parallelism A1 |[ns1 | cs | ns2 ]|A2, for instance,
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the actions A1 and A2 synchronise on the channels in set cs . Besides, both A1 and
A2 have access to the initial values of all variables in ns1 and ns2. However, action
A1 may only modify the values of the variables in ns1, and, similarly, action A2 may
only modify the values of the variables in ns2.

Parametrised actions can be instantiated: for instance, we can have the action
A(x ), if A is a previously defined single-parametrised action; we can also have an
instantiation of the form (x : N • A)(x ).

As for processes, the iterated operators for sequence, external and internal
choice, parallelism, and interleaving can also be used for actions in order to gener-
alise the corresponding operators.

Actions may also be defined using Dijkstra’s guarded commands [7].

Command ::= N+ : [ Pred, Pred ] | N+ := Exp+

| if GActions fi | var Decl • Action

GActions ::= Pred → Action | Pred → Action 2 GActions

An action can be a (multiple) assignment, or a guarded alternation. For instance,
the action InitFib of the process Fib can be written as follows.

InitFib =̂ out !1 → out !1 → x , y := 1, 1

Variable blocks can also be used in an action specification. Finally, in the interest of
supporting a calculational approach to development, an action can also be written
as a specification statement in the style of Morgan’s refinement calculus [20].

The action OutFib in our example is recursively defined. Its body has a new local
variable next in scope. Its value is calculated by the operation OutFibState, and
then, an external choice is given to the environment, which can choose between the
next value of the sequence (out), or the restart of the output sequence (restart). If
the first option is chosen, the action OutFib outputs the next value and recurses; if
the second option is chosen, OutFib skips, leading to a new cycle of the process
Fib (FibCycle).

The complete syntax of Circus is summarised in Appendix A.

2.2 Semantics

The semantic model of Circus was first presented in [33]. Basically, a Circus program
is represented as a Z specification, in which the model of a process is itself a Z
specification, and the model of an action is a schema. The motivation for using Z
for the Circus semantic model is the possibility of using tools as Z-EVES [17] and
ProofPower [3] to analyse the model of Circus.
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2.2.1 The Unifying Theories of Programming

The semantic model of Circus is based on the Hoare & He’s Unifying Theories
of Programming (UTP) [14]. The UTP is a framework in which the theory of
relations is used as a unifying basis for the programming science across many differ-
ent computational paradigms: procedural and declarative, sequential and parallel,
closely-coupled and distributed, and hardware and software. All programs, designs,
and specifications are interpreted as relations between an initial observation and
a single subsequent observation, which may be either an intermediate or a final
observation, of the behaviour of program execution.

Common ideas, such as sequential composition, conditional, nondeterminism,
and parallelism are shared by different theories. For instance, sequential compo-
sition is a relational composition, conditionals are Boolean connectives, nondeter-
minism is disjunction, and parallelism is a restricted form of conjunction. Miracle
is interpreted as an empty relation, abortion is interpreted as the universal rela-
tion, and correctness and refinement are interpreted as inclusions of relations. All
the laws of relational calculus may be used for reasoning about correctness in all
theories and in all languages.

Three aspects are used to differentiate different programming languages and
design calculi: the alphabet, a set of names that characterise a range of external
observations of a program behaviour; the signature, which provides syntax for de-
noting the objects of the theory; and the healthiness conditions, which select the
objects of a sub-theory from those of a more expressive theory in which it is em-
bedded.

The alphabet of a theory collects the names within the theory that identifies
observation variables that are important to describe all relevant aspects of a program
behaviour. The initial observations of each of these variables are undecorated, and
subsequent observations are decorated with a dash. This allows a relation to be
expressed as in Z by its characteristic predicate. Table 2.1 summarises the variables
that are used in the semantics of Circus.

In Circus, some combinations of these variables have interesting semantic mean-
ing. For instance, okay ′ ∧ wait ′ represents a non-divergent process that is waiting
for some interaction with the environment; if, however, we have okay ′ ∧ ¬ wait ′,
the non-divergent process has terminated; finally, ¬ okay ′ represents a divergent
process.

Besides these variables, UTP also presents some other variables that may be
used to represent program control, real time clock, or resource availability. For
each theory, we may select its appropriate relevant variables subset.

The signature of a theory is a set of operators and atomic components of this
theory: it is the syntax of the language. The smaller the signature, the simpler the
proof techniques to be applied for reasoning. Signatures may vary according to its
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okay This Boolean variable indicates if the system has been
properly started in a stable state, in which case its value
is true, or not; okay ′ means subsequent stabilisation in
an observable state.

tr This variable, whose type is a sequence of events, records
all the events in which a program has engaged.

wait This Boolean variable distinguishes the intermediate ob-
servations of waiting states from final observations of
termination. In a stable intermediate state, wait has
true as its value; a false value for wait indicates that
the program has reached a final state.

ref This variable describes the responsiveness properties of
the process; its type is a set of events. All the events
that are refused by a process before the program has
started are elements of ref , and refused events at a later
moment are referred by ref ′.

v All program variables (state components, input and lo-
cal variables, and parameters) are collectively denoted
by v .

Table 2.1: Circus Alphabet

purpose. Specification languages are least restrictive and often includes quantifiers,
and all relational calculus operators. Design languages successively remove non-
implementable operators. The negation is the first one to be removed. Thus, all
operators are monotonic, and recursion can safely be introduced as a fixed-point
operator. Finally, programming languages present only implementable operators
in their signature. They are commonly defined in terms of their observable effects
using the more general specification language.

Healthiness conditions can be used to test a specification or design for feasibility,
and reject it, if it makes implementation impossible in the programming language
that we wish to use as target. Typically, each of the external variables have a
healthiness condition associated to it.

The Circus semantic model satisfies the eight healthiness conditions that are
stated for CSP processes. They are summarised in Table 2.2: three of them charac-
terises reactive processes in general; two of them constrain these reactive processes
to be CSP ones; finally, the last three constrain even more the CSP reactive pro-
cesses.
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Reactive Process R1 The execution of a reactive process never un-
does any event that has already been per-
formed.

R2 The behaviour of a reactive process is obliv-
ious of what has gone before.

R3 Intermediate stable states do not progress.
CSP Process CSP1 No prediction can be made about a process

that has not started.
CSP2 A process may not be required to abort.
CSP3 CSP processes do not depend on the initial

value of the ref variable when wait is false.
If, however, wait is true, it must behave as
R3 requires.

CSP4 The value of the variable ref ′ has no rele-
vance after termination.

CSP5 The refusal set must be subset closed.

Table 2.2: Circus Healthiness Conditions

2.2.2 Circus Semantic Model

In this section we present some of the definitions of the Circus semantic model,
which is described in detail in [33].

Channel Environment

A channel environment is defined in order to store information about all the channels
in scope for a given process. This environment is basically changed by any channel
declaration: for each channel declaration, this environments maps the name of the
channel to its type. If, however, a channel declaration contains no type, in which
case the channel is not used for communication, but only as a synchronising event,
its type is recorded as Sync. Channel set declarations are considered to be expanded
by replacing references to channel sets with the sets of channels it denotes.

Process Environment

A process environment is also used: this allows a process definition to refer to other
processes previously defined. This environment is defined as a sequence of pairs: the
first element is the process name, and the second element is the Z specification that
corresponds to the process model.

The semantic function |[ ]|PD presented below gives the meaning of a process def-
inition as a process environment that records just the single process it declares. Fur-
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thermore, new channels introduced by the semantic are also recorded in a channel
environment, which is also returned by this semantic function. The syntactic cate-
gory ProcessDefinition represents a Circus process definition, and the types ChanEnv
and ProcEnv , are those of the channels and processes environments, respectively.

|[ ]|PD : ProcessDefinition 7→ ChanEnv 7→ ProcEnv 7→ (ChanEnv × ProcEnv)

|[process N =̂ P ]|PD γ ρ =

let Ps == |[P ]|P γ ρ in (first Ps , 〈(N , second Ps)〉)

The semantics Ps of the process P is given by function |[ ]|P , which is defined
later on: it is a pair containing a channel environment and a Z specification. The
semantics of the process P definition is the pair formed by the returned channel
environment and the process environment that associates N to the Z specification
that corresponds to the semantics of P .

Programs

The semantics of a Circus program is given by the following function.

|[ ]|PROG : Program 7→ ZSpecification

For a given well-formed Circus program, it returns a Z specification.
The state of a process is described by the schema ProcessState described below.

The type Bool is a given type that represents boolean values, and the given type
Event includes the possible communications of the program.

ProcessState =̂ [ trace, tr : seqEvent ; ref : P Event ; okay ,wait : Bool ]

Besides the variables of the unifying theory model, we also have a trace variable,
which records the events that occured since last observation.

The schema ProcessStateObs constraints the changes to the process state.

ProcessStateObs =̂ [∆ProcessState | tr prefix tr ′ ∧ trace ′ = tr ′ − tr ]

A process observation is valid only if the trace is increased.

Paragraphs

The semantics of each process paragraph is defined by the following semantic func-
tion.

|[ ]|CPAR : CircusPar 7→ ChanEnv 7→ ProcEnv 7→
(ZSpecification × ChanEnv × ProcEnv)
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The syntactic category CircusPar represents a Circus paragraph. Each paragraph
may affect the final Z specification by introducing new paragraphs, or may extend
the channel environment, or, finally, may extend the process environment.

|[pd ]|CPAR γ ρ =

let pds = |[pd ]|PD γ ρ in
(second ((second pds).1), γ ⊕ first pds , ρ ⊕ second pds)

The translation of pd returns a pair: the first element of this pair is a channel
environment, and the second element is a process environment. The process en-
vironment that it returns (second pds) has just one element (.1). This element is
itself a pair, whose second element is the Z specification corresponding to the pro-
cess. The channel and process environments are overwritten with the corresponding
environments returned by the translation of pd .

Z paragraphs are added to the process specification as they are. They also do
not affect the channel and the process environment. A slight change is applied
in order to type as Sync any untyped state components, which are assumed to
be synchronisation events declarations. Sync is a given set. Channel declarations
give rise to a few paragraphs in Z and enrich the channel environment. Finally, a
process definition determines a Z specification of its model in the UTP. The process
environment and possibly the channel environment are also enriched.

For a list of paragraphs, the Z specification is formed by the paragraphs corre-
sponding to the first Circus paragraph, followed by the paragraphs corresponding
to the rest of the list, whose semantics is taken in enriched channel and process
environments that records the declarations(s) in the first Circus paragraphs.

|[ ]|CPARL : CircusPar∗ 7→ ChanEnv 7→ ProcEnv 7→ ZSpecification

|[cp ]|CPAR γ ρ = first (|[cp ]|CPAR γ ρ)

|[cp cpl ]|CPAR γ ρ =

let cps = |[cp ]|CPAR γ ρ in cps .1 (|[cpl ]|CPAR cps .2 cps .3)

The possible repetition of names across different process definitions is removed
by prefixing each name with the name of the process in which it is declared.

Processes

The semantics of process declarations is given by function |[ ]|P , which, given a
process, a channel environment, and a process environment, returns a pair: the first
element is a new channel environment, and the second element is the Z specification
corresponding to the process.

Processes names do not change the channel environment; as we assume that
well-formed process definitions do not refer to undeclared processes, its semantics
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corresponds to the Z model of the process whose name was given to the semantic
function.

|[ ]|P : Proc 7→ ChanEnv 7→ ProcEnv 7→ (ChanEnv × ZSpecification)

|[N ]|P γ ρ = (γ,modelOf N in ρ)

The expression modelOf N in ρ corresponds to the Z model of process N is the
process environment ρ.

For explicit process declarations begin ppars1 state USt ppars2 • A end, we
have that the semantic function is defined as a Z specification containing a schema
ProcObs describing the observations that may be made of the process, the existing
Z paragraphs as they are, and for each action, a schema constraining the process
observations. Schemas that define operations are not translated as Z paragraphs,
but as actions.

The process State includes the state components defined by the user (USt), and
the components of the schema ProcessState, which represent the variables of the
Unifying Theory.

State(USt) =̂ USt ∧ ProcessState

A process observation corresponds to a state change.

ProcObs(USt) =̂ ∆USt ∧ ProcessStateObs

Actions

For each action N =̂ A declared within a process we have a new schema N =̂ |[A]|Aγ USt .
Given an action, the current channel environment, and the name of the user state,
the semantic function |[ ]|A returns a schema corresponding to the given action.
The schema corresponding to the main action is given a fresh name. An action
may behave in three different ways: it may behave in a normal way, diverge, or not
terminate.

|[ ]|A : Action 7→ ChanEnv 7→ N 7→ Schema − Exp

|[A ]|A γ USt = |[A ]|AN γ USt ∨ Diverge(USt) ∨ Wait(USt)

Divergence is characterised by the fact that okay is false. In this case, the only
guarantee we have is that the trace is extended, which is specified by ProcObs .

Diverge(USt) =̂ [ProcObs(USt) | ¬ okay ]

For Wait(USt), we have that there is no divergence. However, the previous action
has not yet terminated. In this case, the user state cannot change.

Wait(USt) =̂ [ΞState(USt) | okay ∧ wait ]
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Finally, in a normal behaviour, there is no divergence, and the previous action has
terminated.

Normal(USt) =̂ [ProcObs(USt) | okay ∧ ¬ wait ]

Schema expressions may be activated in a state that satisfies its precondition,
or not. If the precondition is satisfied, the trace is not modified, and the operation
terminates; however, if the precondition is not satisfied, the operation diverges.

|[SExp ]|A γ USt = SExp ∧ (OpNormal(USt) ∨ OpDiverge(USt , SExp))

These cases are specified by OpNormal and OpDiverge, respectively.

OpNormal(USt) =̂ [Normal(USt) | trace ′ = 〈〉 ∧ okay ′ ∧ ¬ wait ′]
OpDiverge(USt , SExp) =̂

[Normal(USt); SExp ∨ ¬ SExp | ¬ pre SExp ∧ ¬ okay ′]

Possible input and output variables are put in scope by SExp ∨ ¬ SExp.
The action Skip does not change the trace, does not diverge, and terminates.

|[Skip ]|A γ USt = [Normal(USt) ∧ ΞUSt | trace ′ = 〈〉 ∧ okay ′ ∧ ¬ wait ′]

The action Stop is similar, but does not terminate. This deadlock is characterised
with a true value for wait ′. The action Chaos diverges, which is represented by a
false value for okay ′.

The sequence operator is defined in terms of a function sequence on ProcObs(USt)
as follows.

|[A;B ]|AN γ USt
Normal(USt)

θProcObs(USt) = θ(|[A ]|A γ USt) sequence (|[B ]|A γ USt)

The function sequence returns the process observation that characterises the se-
quential composition of two processes observations.

sequence : ProcObs(USt) × ProcObs(USt) 7→ ProcObs(USt)

∀ a, b, c : ProcObs(USt) |

c = a sequence b ⇔




before c = before a
∧ after a = before b
∧ after b = after c





The well-definement of a sequential composition of two process observations depends
on the equality between the final state of the first with the initial state of the second,
which are projected, respectively, by the functions after and before presented below.
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after : ProcObs(USt) → State(USt)

∀ProcObs(USt) • before θProcObs(USt) = θState(USt)′

before : ProcObs(USt) → State(USt)

∀ProcObs(USt) • before θProcObs(USt) = θState(USt)

In [33], the semantics for communications, external and internal choice, par-
allelism, interleaving, hiding, recursion on actions, and commands are presented.
The formalisation of the healthiness conditions (Table 2.2) can also be found in the
same document.

Process Expressions

Process expressions use CSP operators to combine existing processes. The semantics
of an expression P op Q , where op is any binary CSP operator, except parallelism
and interleaving, can be defined as follows.

P op Q = begin
state State =̂ P .State ∧ Q .State
P .PPar ↑ Q .State
Q .PPar ↑ P .State
• P .Act op Q .Act

end

The state of the processes P and Q are denoted by P .State and Q .State, respec-
tively. In a similar way, the notation P .PPar and Q .PPar is used to refer to the
paragraphs in the definitions of processes P and Q . Their main actions are denoted
as P .Act and Q .Act . The schema expressions within P .PPar and Q .PPar need
to be lifted to work on the extended state State. The operation PPar ↑ St simply
conjoins each schema in PPar with ΞSt : actions on P are not supposed to affect
the state components that are inherited from Q , and vice-versa.

As discussed in Section 2.1.6, the parallel and the interleaving operators for
actions are slightly different from those used for processes: two sets that partition
all the variables in scope must also be declared. In order to give a definition for
parallelism and interleaving, we use a new operator PPar ↑PAR St , which lifts the
paragraphs in PPar to the extended state by conjoining the schemas with ∆St .
The definitions of P |[ cs ]| Q and P ||| Q are similar to that given above for the
other binary operators. However, only the state is defined in the same way: the
other paragraphs are defined using the lifting operator ↑PAR, and the main action
must take into account the partition of the variables in scope. The paragraphs in
P .PPar are allowed to apply any change to the components of Q .State. These
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changes, however, are ignored since the components of Q .State are declared, in the
partition ns2 of action Q .Act ; and similarly for the paragraphs in Q .PPar . For the
parallel operator, we have the following definition.

P |[ cs ]| Q = begin
state State =̂ P .State ∧ Q .State
P .PPar ↑PAR Q .State
Q .PPar ↑PAR P .State
• P .Act |[ ns1 | cs | ns2 ]| Q .Act

end

The definition for interleaving is very similar.
The semantics of the hiding operator is even simpler: the process paragraphs of

P are included as they are; only the main action is modified to include the hiding.

P \ cs = begin
state P .State
P .PPar
• P .Act \ cs

end

The semantics of the other process expressions can be found in [33].
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Chapter 3

Refinement: Notions and Laws

In this chapter we discuss the refinement notions for Circus processes and their
constituent actions. The simulation technique, a refinement strategy for the de-
velopment of centralised specifications into distributed implementations, and some
laws presented in [1] are also discussed. Furthermore, new refinement laws are
presented in this chapter.
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3.1 Refinement Notions and Strategy

The central notion in the unifying theories of programming (UTP) [14] is refinement,
which is expressed as an implication: an implementation P satisfies a specification
S if, and only if, [P ⇒ S ], where the square brackets denote the universal quanti-
fier over the alphabet, as in [8], which must be the same for implementation and
specification. In Circus, the basic notion of refinement is that of actions [6].

Definition 3.1 (Action Refinement) For actions A1 and A2 on the same state
space, the refinement A1 vA A2 holds if, and only if, [A2 ⇒ A1]. 2

For processes, since we have that the state of a process is private, we have a
slightly different definition. Basically, the main action of a process defines its be-
haviour. For this reason, process refinement is defined in terms of actions refinement
of local blocks. In the following, P1.State and P1.Act denote the local state and the
main action of process P1; similarly for process P2.

Definition 3.2 (Process Refinement) P1 vP P2 if, and only if,

(∃P1.State; P1.State ′ • P1.Act ) vA (∃P2.State; P2.State ′ • P2.Act ) 2

The actions P1.Act and P2.Act may act on different states space, and so may not
be comparable. Actually, we compare the actions we obtain by hiding the state
components of processes P1 and P2, as if they were declared in a local variable
block, whose semantics is given by existential quantification. We are left with a
state space containing only the UTP variables okay , wait , tr , and ref .

As discussed above, the state of a process is private. This allows processes
components to be changed during a refinement. This can be achieved in much
the same way as we can data refine variable blocks and modules in imperative
programs [21]. Two well-known techniques of data refinement in those contexts are
forwards and backwards simulation [12].

In [1], the standard simulation techniques used in Z were adopted to handle
processes and actions [34]. A simulation is a relation between the states of two
processes that satisfies a number of properties.

Definition 3.3 (Forwards Simulation) A forwards simulation between actions
A1 and A2 of processes P1 and P2, with local state L, is a relation R between
P1.State, P2.State, and L satisfying

• (Feasibility) ∀P2.State; L • (∃P1.State • R)

• (Correctness) ∀P1.State; P2.State; P2.State ′; L • R ∧ A2 ⇒
(∃P1.State ′; L′ • R′ ∧ A1)
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In this case, we write A1 �P1,P2,R,L A2. A forwards simulation between P1 and P2

is a forwards simulation between their main actions. 2

Notice that, differently from the usual definition of forwards simulation, in Defi-
nition 3.3 no applicability requirement concerning preconditions exists. This follows
from the fact that actions are total. If an action is executed outside its precondi-
tions, it diverges; however, its behaviour is not arbitrary, since the state invariant
is implicitly maintained, and arbitrary new synchronisation and communications
can be observed, but no past observations are affected. Furthermore, no specific
conditions is imposed on the initialisation: any state initialisation must be explicitly
included in the main action.

A theorem presented in [1], and proved in [28], ensures that, if we provide a
forwards simulation between two processes P1 and P2, we can substitute P1 by P2

in a Circus program.

Theorem 3.1 (Forwards simulation is sound) When a forwards simulation ex-
ists between two processes P1 and P2, we also have that P1 vP P2. 2

The definition of backwards simulation is very similar to that of forwards sim-
ulation.

Definition 3.4 (Backwards Simulation) A backwards simulation between ac-
tions A1 and A2 of processes P1 and P2, with local state L, is a relation R between
P1.State, P2.State, and L satisfying

• (Feasibility) ∀P2.State; L • (∃P1.State • R)

• (Correctness) ∀P1.State ′; P2.State; P2.State ′; L′ • R′ ∧ A2 ⇒
(∃P1.State; L • R ∧ A1)

A backwards simulation between P1 and P2 is a backwards simulation between their
main actions. 2

A refinement strategy for Circus has already been presented [1]. This strategy,
although simple, can effectively serve as a tool to guide and transform an abstract
(usually centralised) specification into a concrete (usually distributed) solution of
the system. This strategy is based on laws of simulation, and action and process
refinements, which are present in Appendix C. We, however, present further simu-
lation and refinement laws in Appendix D.

Each iteration within the refinement strategy, which may include many itera-
tions, includes three steps: simulation, action refinement, and process refinement.
Figure 3.1, taken from [1], summarises one of these iterations. The first two steps
are used to reorganise the internal structure of the process: we use simulation to
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introduce the elements of the concrete system state, and then, the actions are re-
fined in order to be partitioned in a way that each partition operates on different
components of the modified state. This changes results in the splitting of the state
space and the accompanying actions into two different partitions, in such a way that
each partition groups some state components and the actions which access these
components. After the second step, we have a structure in which each partition
clearly has a independent state and behaviour. The third step of the strategy up-
grades each of these partitions to individual processes: the resulting processes are
combined in the same way as their main actions were in the previous process.

As discussed before, it may be the case that several refinement iterations are
needed: processes resulting from one decomposition may be further decomposed.
Basically, one iteration of the strategy is necessary for every process that needs
decomposing, just like it is needed when the starting point is a centralised process
specification.

The sequence of steps do not need to be strictly followed an iteration of the
refinement strategy. For instance, many applications of a given step (i.e. data or
action refinement) may be applied, if it is convenient for modularising the develop-
ment; the starting process itself may already be ready for decomposition, in which
case, only a process refinement is needed. Basically, an iteration of the strategy
is characterised by one application of a process decomposition. The number of
applications of simulation and action refinement depends on each particular devel-
opment.

3.2 Laws of Simulation

In order to carry the data refinement in a stepwise way, some laws of simulation
are provided. These laws provide support to prove that a relation R is indeed a
forwards simulation. Besides, they can be used to justify proving simulations for
schema actions, in much the same way as we do in Z. All the simulation laws can
be found in Appendices C and D.

The primitive actions Skip, Stop, and Chaos are not affected by forwards sim-
ulations. Schema action simulations raise the same provisos as in the standard Z
rule. The law C.1 presented below includes an applicability condition, which does
not appear in the definition of forwards simulation, since it is concerned with the
semantics of actions, which are total operations the state that include the UTP
variables. A schema expression, on the other hand, is an operation over the process
state, and it is not total.

Law C.1 (Schema Expressions).

ASExp � CSExp
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Figure 3.1: An iteration of the refinement strategy
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provided

• ∀P1.st ; P2.st ; L • R ∧ pre ASExp ⇒ pre CSExp

• ∀P1.st ; P2.st ; P2.st
′; L • R ∧ pre ASExp ∧ CSExp ⇒

(∃P1.st
′; L′ • R′ ∧ ASExp) 2

Forwards simulation distributes through the other constructs. In the following,
we present some of the distributions laws. The first one is the rule for input prefix.

Law C.2 (Input prefix distribution).

c?x → A1 � c?x → A2

provided A1 � A2.
In the output prefixing, the abstract and the concrete expressions must be equal,
with respect to the retrieve relation.

Law C.3 (Output prefix distribution).

c!ae → A1 � c!ce → A2

provided

• ∀P1.st ; P2.st ; L • R ⇒ ae = ce

• A1 � A2 2

Parallel actions work on disjoint parts of the state: no interference occurs. This fact
is used in the simulation law for parallelism.

Law C.7 (Parallelism distribution).

A1 |[ ns1 | cs | ns2 ]| A2 � B1 |[ ns1 | cs | ns2 ]| B2

provided

• A1 � B1

• A2 � B2 2

Further laws on simulation can be found in Appendices C and D.
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3.3 Process Refinement

The laws for process refinement deal simultaneously with the state and control
behaviour. The first law states that we may introduce a new process, assuming it
is not used. As in the introduction of fresh variables in an imperative language, the
fact that the process is unused is sufficient to guarantee that its introduction has
no effect whatsoever.

Law C.10 (Process declaration introduction).

cp = pd cp

provided the process declared in the process declaration pd is not referenced in
the sequence of paragraphs of the Circus program cp.
This law is apparently innocuous. Its importance, however, becomes evident in the
sequel.

In [1], two families of process partitioning laws are presented. The first family
apply to processes whose state components are partitioned in such a way that each
partition has its own set of paragraphs. By way of illustration, we present the
process P below.

P = begin
state State =̂ Q .State ∧ R.State
Q .PPar ↑ R.State
R.PPar ↑ Q .State
• F (P .Act ,Q .Act)

end

As in Section 2.2.2, the state of the processes P is defined as a conjunction of two
other schemas: Q .State and R.State. Furthermore, the paragraphs in P are also
partitioned in a way that the paragraphs in Q .PPar do not change the components
in R.State, since they are conjoined with ΞR.State; in a similar way, the paragraphs
in R.PPar do not change the components in Q .State. Finally, the main action of
P is defined as an action context F , which must also make sense as a function on
processes, according to the Circus syntax (Appendix A).

The law C.11 presented below transforms such partitioned process into three
processes: each of the first two includes a partition of the state and the corresponding
paragraphs, and, the third process, defined in the terms of the first two, has the
same behaviour as the original one.

Law C.11 (Process splitting). Let qd and rd stand for the declarations of the
processes Q and R, determined by Q .st , Q .pps , and Q .act , and R.st , R.pps , and
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R.act , respectively, and pd stand for the process declaration above. Then

pd = (qd rd process P =̂ F (Q ,R) )

provided Q .pps and R.pps are disjoint with respect to R.st and Q .st .
The second family of laws applies to process defined using the well-known Z

promotion technique. Using this family of laws, we may refine a specification using
a free promotion to an indexed family of processes, each one representing an element
of the local type. In [1], the Z promotion technique is extended to Circus actions.
Firstly, as expected, we have that the promotion of schema expressions is as in Z.

promote(SExp) =̂ ∃∆L.State • SExp ∧ Promotion

L.State stands for the local state, and Promotion for the promotion schema.
The promotion of Skip, Stop, and Chaos does not change them.

promote(A) =̂ A, for A ∈ {Skip, Stop,Chaos}

The promotion of a communication c.e, where e stands for a reference to an
element of the local state, needs to receive an extra value that indicates the position
i of e in the collection. For this reason, a corresponding promoted channel pc, which
communicates a pair formed by the identifier and the value, exists for each channel
c.

promote(c.e → A) =̂ pc?i .promote(e) → promote(A)

The definitions of promotion for the other forms of prefixing are very similar. The
guards of guarded commands need to be promoted. In the promotion of parallelism
and hiding, the channels are replaced with the corresponding promoted channels.

Further laws on promotion of actions and processes can be found in [1].

3.4 Action Refinement

In the second step of the refinement strategy, an algorithmic refinement on actions
is proposed. This action refinement is justified by the following theorem, which is
proved in [28].

Theorem 3.2 (Soundness of action refinement) Suppose we have a process P
with actions A1 and A2. If A1 vA A2, then the identity is a forwards simulation
between A1 and A2. 2

Using this theorem, we can refine a process by refining its actions.
All the refinement laws on actions can be found in Appendices C and D. In the

following, we present some of the new laws required by our case study. They are
samples of some groups of laws: laws on prefixing, laws on schemas, laws on variable
blocks, laws on guards and assumptions, and laws on parallelism.
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3.4.1 Laws on Prefixing

The following law states that a prefixing may be introduced to an action, if it is
hidden from the environment.

Law D.5 (Prefixing Introduction).

A = (c → A) \ {| c |}

provided c /∈ usedC (A).

3.4.2 Laws on Schemas

The following law applies to an initialisation schema, which operates over a state
composed by two disjoint sets of components specified in the schemas S1 and S2.
Furthermore, its precondition can be expressed as the conjunction of conditions
preS1 and preS2 over the different parts of the state. The initialisation of the state
is an expression that is a conjunction of conditions CS1 and CS2 over the final values
of the disjoint parts of the state.

Law D.7 (Schemas/Sequence Introduction 2).

[ S ′
1; S ′

2 | preS1 ∧ preS2 ∧ CS1 ∧ CS2 ]
=
[ S ′

1 | preS1 ∧ CS1 ];[ S ′
2 | preS2 ∧ CS2 ]

provided

• α(S1) ∩ α(S2) = ∅

• FV (preS1) ⊆ α(S1)

• FV (preS2) ⊆ α(S2)

• DFV (CS1) ⊆ α(S ′
1)

• DFV (CS2) ⊆ α(S ′
2)

• UDFV (CS2) ∩ DFV (CS1) = ∅ 2

The application of this law introduces a sequence of two initialisation schemas that
initialise the disjoint parts of the state separately. As the initial values of S1 are
potentially changed by the first action, the final values of the state components of
S2 cannot depend on those.
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For a given schema SExp, α(SExp) gives the set of components of SExp; the
function alpha can also be applied to a declaration. The function FV gives the
set of free-variables of a predicate or expression; in a similar way, DFV determines
the set of dashed free variables of a given predicate, and UDFV gives the set of
undashed free variables of a predicate.

3.4.3 Laws on Variable Blocks

A standard law on variable blocks extension of imperative programming languages
is also valid for Circus.

Law D.8 (Variable Block Extension).

A1;(var x : T • A2);A3 = (var x : T • A1;A2;A3)

provided x /∈ FV (A1) ∪ FV (A3).
This law only requires the variable x not to be a free variable in A1 and A3.

3.4.4 Laws on Guards and Assumptions

Guards may be distributed to a particular side of the parallelism. The only condition
required to make this law sound is that the initial events of the other side of the
parallelism are in the synchronisation set of channels.

Law D.10 (Guard/Parallelism Distribution 1).

2
i
gi & (Ai |[ ns1 | cs | ns2 ]| A) = (2

i
gi & Ai) |[ ns1 | cs | ns2 ]| A

provided initials(A) ⊆ cs .
The proviso guarantees that the action A can start its behaviour only when one of
the guards is true.

3.4.5 Laws on Parallelism

The Skip is the parallelism unit.

Law D.25 (Parallelism Unit).

Skip |[ cs ]| A = A |[ cs ]| Skip = A

provided usedC (A) ∩ cs = ∅.
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As expected, the other action involved in the parallelism is not expected to syn-
chronise in any of its events. Otherwise, it could deadlock at some point of its
behaviour.

This gives us the intuition for the next law presented below. The parallelism of
two actions, whose initial events are in the synchronisation channel set and have no
initial event in common, is deadlocked.

Law D.27 (Parallelism Zero 2).

A1 |[ cs ]| A2 = Stop

provided

• initials(A1) ∪ initials(A2) ⊆ cs

• initials(A1) ∩ initials(A2) = ∅ 2

In our case study (Chapter 5), we use these laws and those presented in Appen-
dices C and D in order to refine an abstract specification.

Most of the refinement laws of Circus are still to be proved. This proof of these
laws are in the context of our thesis.

3.5 Conclusions

This section will conclude this chapter. It will be written after all refinement laws
have been proved.
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Chapter 4

Mechanisation
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Chapter 5

Case Study

In this chapter we present a case study on the Circus refinement calculus. The case
study is a safety-critical fire protection system, that is described in Section 5.1. In
Sections 5.2 and 5.3 we describe the types and channels used within the system,
respectively. Section 5.4 presents and describes some axiomatic definitions that are
used throughout the system definition. In Section 5.5 present an abstract specifica-
tion for the fire control system. This specification is refined to a concrete one using
a refinement strategy presented in Section 5.6. Finally, in Section 5.7 we present
some conclusions on the case study.
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5.1 Description of the System

The fire control system covers two separate areas. Each area is divided in two zones,
and a fire detection can happen in each different zone. If a detection happens, a
gas discharge may occur in the area in which the zone where the detection occurred
belongs. Besides the four existing zones, two other zones are used for detection
only. The system contains a display panel composed by the following lamps:

• System on lamp: indicates that the system is working;

• Fault lamps: indicate that the corresponding fault has been detected by the
system;

• Detection lamps: indicate a fire detection in the corresponding zone;

• Silence alarm lamp: indicates that the alarm has been silenced;

• Circuit fault lamp: indicates the need to replace the actuators of the system;

• Discharge lamps: indicate a gas discharge in the corresponding area.

The system can be in one of three modes at any moment: manual, automatic, or
disabled. In manual mode, an alarm is sounded if a detection happens; besides, the
corresponding detection lamp is lit on the system’s display panel. The alarm can
be silenced, and, when the reset button is pressed, the system returns to normal.
In manual mode, gas discharge needs to be initiated manually.

When the system is running in automatic mode, the detection of fire is also
followed by the alarm being sounded. However, if a fire is detected in the second zone
of the same area, the second stage alarm is sounded, and a countdown to automatic
gas discharge is started. When the countdown finishes, the gas discharge happens
after an exit event. This event represents the latest time people are expected to
leave the building before a gas discharge happens. Following a gas discharge, the
circuit fault lamp is illuminated in the system’s display panel. Besides, if a gas
discharge occurs, the system mode is switched to disabled.

In disabled mode, the system can only have the actuators replaced, identify
relevant faults within the system, and be reset. The system is back to its normal
mode after the actuators are replaced and the reset button is pressed.

Some further requirements should also be satisfied by the system’s specification.

• Start up: the system must be started with a switchOn event, and, following
this event, the system on lamp should be illuminated;

• Mode switching: the system mode can be switched between manual and au-
tomatic mode provided no detection happens. Also, when the system is reset,
and, in case of a gas discharge has occurred, the actuators are replaced, the
system mode is switched to automatic;
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• Detection lamps: following a fire detection, the corresponding lamp must be
lit; when the system is reset, all the fire detection lamps must be switched off;

• Gas discharge: following a gas discharge, no following discharge may happen
before the actuators are replaced.

Of course, the system may not enter a state in which it refuses to participate in any
further events (deadlock-free).

5.2 Basic Types

We start by defining the boolean type Bool , which can assume values true and false.

Bool ::= true | false

The two areas and the six zones are identified by the types AreaId and ZoneId
respectively.

AreaId ::= 0 | 1
ZoneId ::= 0 | 1 | 2 | 3 | 4 | 5

As described in Section 5.1, the system can be in three modes at any time. These
modes are represented by the type Mode. However, the system cannot be manually
switched to a disabled mode. For this reason, we define the type SwitchMode, which
is actually a subset of type Mode.

Mode ::= automatic | manual | disabled
SwitchMode == Mode \ {disabled}

All the lamps and the buzzer of the system’s display panel can be either on or
off. These two states are represented by the type OnOff . Furthermore, the system
alarm can be in one of the three states in type AlarmStage.

OnOff ::= on | off
AlarmStage ::= alarmOff | firstStage | secondStage

The type LampId contains individual identifiers for all the existing lamps in the
system’s display panel.

LampId ::= zoneFaultLamp | earthFaultLamp | sounderLineFaultLamp
| powerFaultLamp | isolateRemoteSignalLamp | actuatorLineFaultLamp
| circuitFaultLamp | alarmSilencedLamp | systemOnLamp
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The faults that can be detected by the system are as follows.

FaultId ::= zoneFault | earthFault | sounderLineFault | powerFault
| isolateRemoteSignal | actuatorLineFault

Finally, the system can be in one of the state of type SystemState described below.

SystemState ::= fireSysStarts | fireSyss | fireSysDs | autos |
countdowns | discharges | resets | manuals

This type is used by the system to indicate its current state.

5.3 Used Channels

In order to start working, the system must be started. This is modelled as the event
switchOn.

channel switchOn

The existence of fire is indicated to the system by a smoke detection, which is
identified by the zone where the detection happens.

channel detection : ZoneId

The system can be manually switched between modes manual and automatic, but
not disabled .

channel modeSwitch : SwitchMode

When the system is in manual mode, and the conditions that lead to a gas discharge
are met, the manual gas discharge can be started in one area only.

channel externalManualDischarge : AreaId

A system fault can be reported to the system.

channel fault : FaultId

In manual mode, an alarm is sounded if a detection happens. This alarm, however,
can be silenced.

channel silenceAlarm
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In order to have the system back to its normal, the system must be reset. Further-
more, if a gas discharged occurred, the actuators must be replaced.

channel reset , actuatorsReplaced

The exit event represents the latest time people are expected to leave the building
before a gas discharge happens.

channel exit

The system determines the alarm stage to which the alarm must be switched
through channel alarm.

channel alarm : AlarmStage

Besides, the system indicates that a lamp must be switched (on or off) using the
generic channel switchLamp. It provides the type of lamp (AreaId ,ZoneId , or
FaultId) and the new lamp mode (OnOff ). The buzzer is also controlled using
a specific channel.

channel [T ]switchLamp : T × OnOff
channel switchBuzzer : OnOff

Finally, in each state change, the system reports its current state.

channel systemState : SystemState

The fire control system may request a clock to execute the countdown using
channel startClock . The clock indicates that the countdown is finished using channel
clockFinished .

channel startClock , clockFinished

In Figure 5.1 we summarise the abstract fire control system interface.

5.4 Axiomatic Definitions

An area is responsible for 2 zones. The function getZones return the zones which
are covered by an area. Two zones cannot be covered by two different areas.

getZones : AreaId � P ZoneId

getZones(0) = {0, 1}
getZones(1) = {2, 3}
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Figure 5.1: Abstract Fire Control

The following axiomatic definition is used to map faults to their respective lamp
in the display.

getLampId : FaultId � LampId

getLampId(zoneFault) = zoneFaultLamp
getLampId(earthFault) = earthFaultLamp
getLampId(sounderLineFault) = sounderLineFaultLamp
getLampId(powerFault) = powerFaultLamp
getLampId(isolateRemoteSignal) = isolateRemoteSignalLamp
getLampId(actuatorLineFault) = actuatorLineFaultLamp

In the case the system is running in automatic mode, a delay gasDelay is given
before the gas is released.

gasDelay : N

gasDelay = 30

5.5 Abstract Fire Control System

In this section, we specify process AbstractFireControl to formalise the require-
ments previous described. Its state is composed of five components: the mode
component indicates the mode in which the fire control is running (automatic,
manual , or disabled); the controlledZones component maps the areas to their con-
trolled zones; the activeZones component maps the areas to the zones in which a
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fire detection has occurred; the discharge component indicates if a gas discharged
has happened (true), or not (false) within each area; finally, the active component
indicates if the each area is active (true), or not (false).

process AbstractFireControl =̂ begin
state

AbstractFireControlState
mode : Mode
controlledZones : AreaId → P ZoneId
activeZones : AreaId → P ZoneId
discharge : AreaId → Bool
active : AreaId → Bool

controlledZones = {area : AreaId • area 7→ getZones(area)}
∀ area : AreaId •

(mode = automatic) ⇒
active(area) = true ⇔

∃ z1, z2 : controlledZones(area) •
z1 6= z2 ∧ {z1, z2} ⊆ activeZones(area)

∧ (mode = manual) ⇒
active(area) = true ⇔

{area : AreaId | ∃ z : controlledZones(area) •
z ∈ activeZones(area)}

∧ activeZones(area) ⊆ controlledZones(area)

The invariant determines that, for each area within the system, its controlled zones
is defined by the axiomatic definition getZones . If running in manual mode, an
area is active if, and only if, any zone controlled by it is active. However, if running
in automatic mode, an area is active if, and only if, there is more than one active
zone controlled by it.

Initially, the system is in automatic mode, there is no active zone, no discharge
occurred in any area. The state invariant guarantees that there is no active area.

InitAbstractFireControl
AbstractFireControlState ′

mode ′ = automatic
activeZones ′ = {area : AreaId • area 7→ ∅}
discharge ′ = {area : AreaId • area 7→ false}

We present three operations that are used to switch the system mode. The first
one receives the new mode as argument.
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SwitchAbstractFireControlMode
∆AbstractFireControlState
newMode? : Mode

mode ′ = newMode?
activeZones ′ = activeZones
discharge ′ = discharge

It changes only the system mode, and leaves the other components unchanged. Two
other schemas are used with the same purpose. They, however, do not receive any
argument. The first one switches the system to automatic mode.

SwitchAbstractFireControl2AutomaticMode
∆AbstractFireControlState

mode ′ = automatic
activeZones ′ = activeZones
discharge ′ = discharge

The second one switches the system to disabled mode.

SwitchAbstractFireControl2DisabledMode
∆AbstractFireControlState

mode ′ = disabled
activeZones ′ = activeZones
discharge ′ = discharge

Both, as the operation SwitchAbstractFireControlMode leave the other state com-
ponents unchanged.

Next, we describe the schema AbstractActivateZone. It receives a zone as input
and changes the activeZones state component by including the received zone in
the set of active zones mapped by the area that controls the given zone. The
active component is also changed as specified by the state invariant. All other state
components are left unchanged.
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AbstractActivateZone
∆AbstractFireControlState
newZone? : ZoneId

mode ′ = mode
discharge ′ = discharge
activeZones ′ = activeZones ⊕

{area : AreaId | newZone? ∈ controlledZones(area) •
area 7→ activeZones(area) ∪ {newZone?}}

The last schema operation activates the discharge in the active areas. Only the
state component discharge is changed.

AbstractActivateDischarge
∆AbstractFireControlState

mode ′ = mode
activeZones ′ = activeZones
discharge ′ = discharge ⊕

{area : AreaId | area ∈ dom active B {true} • area 7→ true}

As all other actions of the fire control system presented below, the action
AbstractFireSysStart starts by communicating the current system state. Then,
it waits for the system to be switched on, switches the corresponding lamp on,
initialises the system state and, finally, behaves like action AbstractFireSys .

AbstractFireSysStart =̂
systemState!fireSysStarts → switchOn →

switchLamp[LampId ].systemOnLamp!on →
InitAbstractFireControl ;AbstractFireSys

The action AbstractFireSys represents the system running before any detec-
tion. After communicating the system state, the mode can be switched between
automatic and manual . Furthermore, if any detection occurs, the zone in which the
detection occurred is active, and then, the system behaves like Auto or Manual ,
depending on the current system mode. If any fault is identified, the corresponding
lamp is lit. Finally, if the system is requested to reset, its state is initialised, and
all the lamps (except the circuit fault and the system on lamps) and the buzzer are
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switched off (action AbstractSwitchLampsOff ).

AbstractFireSys =̂
systemState!fireSyss →

modeSwitch?newMode : SwitchMode →
SwitchAbstractFireControlMode; AbstractFireSys

2 detection?newZone : ZoneId → AbstractActivateZone;
switchLamp[ZoneId ].newZone!on → alarm!firstStage →

(mode = manual) & AbstractManual
2 (mode = automatic) & AbstractAuto

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → AbstractFireSys
2 reset → alarm!alarmOff → InitAbstractFireControl ;

AbstractSwitchLampsOff ;AbstractFireSys

AbstractSwitchLampsOff =̂
(switchBuzzer !off → Skip
||| (||| id : (LampId \ {circuitFaultLamp, systemOnLamp}) •

switchLamp[LampId ].id !off → Skip)
||| (||| zone : ZoneId • switchLamp[ZoneId ].zone!off → Skip)
||| (||| area : AreaId • switchLamp[AreaId ].area!off → Skip)

After a detection, and if running in manual mode, the system behaves like
action AbstractManual . Any detection leads to the activation of the zone in which
the detection happened. If it is requested to silence the alarm, it does so, and
behaves like the AbstractReset action. If any manual discharge is requested, the
action verifies whether the given area is active or not. If it is active, it switches the
corresponding gas discharged lamp, discharges the gas in the given area, switches the
system mode to disabled and waits for the system to be reset (action AbstractReset).
However, if the given area is not active, the discharge request is ignored. Finally,
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any fault identification leads to the corresponding lamp to be lit.

AbstractManual =̂
systemState!manuals →

detection?newZone : ZoneId → AbstractActivateZone;
switchLamp[ZoneId ].newZone!on → AbstractManual

2 silenceAlarm → alarm!alarmOff → AbstractReset
2 externalManualDischarge?area : AreaId →

(area ∈ dom active B {true}) &
switchLamp[AreaId ].area!on → AbstractActivateDischarge;

SwitchAbstractFireControl2DisabledMode;
AbstractReset

2 (area /∈ dom active B {true}) & AbstractManual
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → AbstractManual

After a detection, and if running in automatic mode, the system behaves like
AbstractAuto. After reporting the system state, it verifies whether there is any
active area or not. If there is any active area, the second stage alarm is sounded and
the countdown starts (action AbstractCountdown). However, if no area is active,
the it is possible to reset the system, by switching the alarm, all the lamps (except
the circuit fault and the system on lamps), and the buzzer off, initialising the system
state, and starting to behave as AbstractFireSys . Detections are also possible but
they do not change the behaviour of this action. They only lead to an activation
of the zone in which the detection occurred. Finally, as the AbstractManual action,
any fault identification leads to the corresponding lamp to be lit.

AbstractAuto =̂
systemState!autos →

(active B {true} 6= ∅) &
alarm!secondStage → AbstractCountdown

2 (active B {true} = ∅) &
reset → alarm!alarmOff → AbstractSwitchLampsOff ;

InitAbstractFireControl ; AbstractFireSys
2 detection?newZone : ZoneId → AbstractActivateZone;

switchLamp[ZoneId ].newZone!on → AbstractAuto
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → AbstractAuto

In action Reset , the actuators may be replaced. In this case, the circuit fault
lamp is switched off, and the system mode is switched to automatic. The behaviour
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in the case of any detection or fault is the same as for action AbstractManual .
Finally, if it is requested to reset, it behaves like FireSys or FireSysD , depending
on the current system mode.

AbstractReset =̂
systemState!resets →

actuatorsReplaced → switchLamp[LampId ].circuitFaultLamp!off →
SwitchAbstractFireControl2AutomaticMode; AbstractReset

2 detection?newZone : ZoneId → AbstractActivateZone;
switchLamp[ZoneId ].newZone!on → AbstractReset

2 reset → alarm!alarmOff → AbstractSwitchLampsOff ;
(mode = disabled) & AbstractFireSysD
2 (mode 6= disabled) & InitAbstractFireControl ;AbstractFireSys

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → AbstractReset

The action AbstractCountdown requests the start of a countdown and waits for
the clock to finish the countdown (action AbstractWaitingClock). While waiting for
the clock to be finish (event clockFinished), detections and faults lead to the same
behaviour as for action AbstractReset . When the clock is finished, it discharges the
gas (action AbstractDischarge).

AbstractCountdown =̂
systemState!countdowns → startClock → AbstractWaitingClock

AbstractWaitingClock =̂
clockFinished → AbstractDischarge
2 detection?newZone : ZoneId → AbstractActivateZone;

switchLamp[ZoneId ].newZone!on → AbstractWaitingClock
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → AbstractWaitingClock

The action AbstractFireSysD indicates that the system was reset without the
actuators being replaced, and, for this reason, it is disabled. In this action, only two
events are accepted: first, the actuators can be replaced, in which case, the alarm is
switched off, as are all the lamps (except the circuit fault and the system on lamps)
and the buzzer, and the system returns to the action AbstractFireSys ; second, if
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any fault is identified, the corresponding lamp is lit.

AbstractFireSysD =̂ systemState!fireSysDs →
actuatorsReplaced → alarm!alarmOff →

AbstractSwitchLampsOff ;InitAbstractFireControl ;AbstractFireSys
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → AbstractFireSysD

Finally, the action AbstractDischarge represents an automatic discharge. The
action waits for an indication that there is no one in the area (event exit). When
this indication is received, it switches the gas discharge lamps of all areas in which
a gas discharge should occur (action AbstractSwitchLampsDischarge). If any area is
actually active, the system mode is switched to disabled ; otherwise, it is switched to
automatic. Finally, it activates any discharge that should occur, and then it waits
for the system to be reset (action AbstractReset).

AbstractDischarge =̂ systemState!discharges →
exit →

AbstractSwitchLampsDischarge;
((dom active B {true} 6= ∅) &

SwitchAbstractFireControlSystem2DisabledMode
2 (dom active B {true} = ∅) &

SwitchAbstractFireControlSystem2AutomaticMode);
AbstractActivateDischarge;AbstractReset

AbstractSwitchLampsDischarge =̂
(o
9 area : dom active B {true} • switchLamp[AreaId ].area!on → Skip)

Finally, the main action of process AbstractFireSys is defined below.

• AbstractFireSysStart

end

5.5.1 External Devices

Clock

Before discharging the gas, the fire control system requires a clock to countdown. We
present below the specification of the process Clock . Basically, when requested to
start counting (event startClock), it counts as many tocks as specified by gasDelay .
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Then, it indicates that it is finished (event clockFinished), and waits for the next
request for counting.

channel tock

process Clock =̂ begin

ClockCycle =̂ startClock → ClockCycle(gasDelay);ClockCycle

ClockInstance =̂ (tocks : N •
(tocks = 0) & clockFinished → Skip
2 (tocks 6= 0) & tock → ClockInstance(tocks − 1))

• ClockCycle \ {| tock |}

end

Output

Display The display is composed by the lamps and the buzzer. The lamps can be
of three different types. However, the three types of lamps are instances of the same
generic process GenericLamp. This generic process has just one component (status)
that indicates if the lamp is switched on or switched off.

process [T ]GenericLamp =̂ (id : T • begin
state GenericLampState =̂ [ status : OnOff ]

The schema InitGenericLamp initialises the lamp with an off status .

InitGenericLamp =̂ [GenericLampState ′ | status ′ = off ]

The schema SwitchLampStatus switches the status to the given new status.

SwitchLampStatus =̂
[ ∆GenericLampState; status? : OnOff | status ′ = status? ]

The generic lamp is initialised, and then it can continuously be switched on or off .

• InitGenericLamp;
(µX • switchLamp[T ].id?status → SwitchLampStatus; X )

end)

A generic lamp can be instantiated with LampId for the simple lamps, with ZoneId
for the fire lamps, or with AreaId for the lamps that indicate that gas was released in
the respective area. The process SimpleLamps represents all the simple lamps (fault
lamps, alarm silenced lamp, and system on lamp); the process FireLamps represents
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all the fire detection lamps; and the process GasReleasedLamps represents all the gas
released lamps. Finally, process DisplayLamps represents all the display’s lamps.

process SimpleLamps =̂ ||| id : LampId • GenericLamp[LampId ](id)

process FireLamps =̂ ||| zone : ZoneId • GenericLamp[ZoneId ](zone)

process GasReleasedLamps =̂

||| area : AreaId • GasReleasedLamp[AreaId ](area)

process DisplayLamps =̂ SimpleLamps ||| FireLamps ||| GasReleasedLamps

The display buzzer has a very simple specification. As the generic lamps, it has
a state component status that indicates if the buzzer is switched on or switched
off. This component is also initialised with the value off , and can also be switched
between on and off . All the process offers is the switchBuzzer event that can be
used to switch the buzzer status.

process DisplayBuzzer =̂ begin
state DisplayBuzzerState =̂ [ status : OnOff ]

InitDisplayBuzzer =̂ [DisplayBuzzerState ′ | status ′ = off ]
SwitchDisplayBuzzerStatus =̂

[ ∆DisplayBuzzerState; status? : OnOff | status ′ = status? ]

• InitDisplayBuzzer ;
µX • switchBuzzer?status → SwitchDisplayBuzzerStatus; X

end

Finally, the display can be specified as the interleave of all display lamps and the
display buzzer.

process Display =̂ DisplayLamps ||| DisplayBuzzer

Alarm The alarm has also a very simple specification. It has a state component
stage, which records the current state of the alarm (firstStage, secondStage, or
alarmOff ). This component is initialised with the value alarmOff , and can also be
switched between the different alarm modes. All this process offers is the alarm
event, which can be used to trigger a change to the stage of the alarm.

process Alarm =̂ begin
state AlarmState =̂ [ stage : AlarmStage ]

InitAlarm =̂ [AlarmState ′ | stage ′ = alarmOff ]
SwitchStage =̂

[ ∆AlarmState; newStage? : AlarmStage | stage ′ = newStage? ]

• InitAlarm; µX • alarm?newStage → SwitchStage; X

end
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The processes Display and Alarm can be interleaved to represent all the processes
that receive any output from the abstract fire control system.

process Output =̂ Display ||| Alarm

Input Keyboard

In order to simplify the specification of the input to the abstract timed fire control
system, we consider a single keyboard as the only means of interaction. This key-
board contains one button for each possible input event acceptable by the abstract
fire control system.

Button == DETECTION0 | DETECTION1

| DETECTION2 | DETECTION3

| DETECTION4 | DETECTION5

| ZONE FAULT | EARTH FAULT
| SOUNDER LINE FAULT | POWER FAULT
| ISOLATE REMOTE SIGNAL | ACTUATOR LINE FAULT
| MANUAL DISCHARGE0 | MANUAL DISCHARGE1

| MODE SWITCH MANUAL
| MODE SWITCH AUTOMATIC
| RESET | SWITCH ON | SILENCE ALARM
| ACTUATORS REPLACED | EXIT

Some of these buttons can be grouped in four different categories: detection buttons,
fault identification buttons, manual discharge buttons, and mode switch buttons.

DetectionBts == {DETECTION0,DETECTION1,
DETECTION2,DETECTION3,
DETECTION4,DETECTION5}

FaultBts == {ZONE FAULT ,EARTH FAULT ,
SOUNDER LINE FAULT ,POWER FAULT ,
ISOLATE REMOTE SIGNAL,
ACTUATOR LINE FAULT}

ManDischargeBts == {MANUAL DISCHARGE0,
MANUAL DISCHARGE1}

ModeSwitchBts == {MODE SWITCH MANUAL,
MODE SWITCH AUTOMATIC}

The channel actionPerformed represents the action of pressing a button. Be-
sides, the event btnPressed is used internally by the keyboard.

channel actionPerfomed , btnPressed : Button
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The process keyboard has two state components: the enabled buttons and the
disabled buttons. The set of disabled buttons contains any button that is not
enabled.

process Keyboard =̂ begin
state

KeyboardState
enabledButtons : P Button
disabledButtons : P Button

disabledButtons = {b : Button | b /∈ enabledButttons}

In the keyboard’s initial state all buttons are disabled.

InitKeyboard
enabledButtons ′

disabledButtons ′

enabledButtons ′ = ∅

The operation AvailableButtons receives a system state as argument, and changes
the state component enabledButtons in order to enable the buttons that should be
available, and, therefore, disable the buttons that should not be available for the
given system state.
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AvailableButtons
∆KeyboardState
state? : SystemState

state? = fireSysStart ′s ⇒
enabledButtons ′ = {SWITCH ON }

state? = fireSyss ⇒
enabledButtons ′ = DetectionBts ∪ FaultBts ∪

ModeSwitchBts ∪ {RESET}
state? = FireSysPrime ′

s ⇒
enabledButtons ′ = FaultBts ∪

{ACTUATORS REPLACED}
state? = autos ⇒

enabledButtons ′ = DetectionBts ∪ FaultBts ∪
{RESET}

state? = countdowns ⇒
enabledButtons ′ = DetectionBts ∪ FaultBts

state? = discharges ⇒
enabledButtons ′ = {EXIT}

state? = resets ⇒
enabledButtons ′ = DetectionBts ∪ FaultBts ∪

{ACTUATORS REPLACED ,
RESET}

state? = manuals ⇒
enabledButtons ′ = DetectionBts ∪ FaultBts ∪

ManDischargeBts ∪
{SILENCE ALARM ,RESET}

The action EventHandler receives the indication that a button was pressed and
send this to the action KeyboardCycle (event btnPressed).

EventHandler =̂
actionPerfomed?button : enabledButtons →

btnPressed !button → EventHandler

For a given system state, the action KeyboardCycle uses the operation AvailableButtons
to make available only those buttons that should be available to the user. Then,
either a button can be pressed, or the system can change the state. If a button is
pressed, the action synchronises in the event corresponding to the button that was
pressed. This attempt can be interrupted by a change on the system state. At any
time, if the system changes the state, the action KeyboardCycle starts again with

52



the new state.

KeyboardCycle =̂ (state? : SystemState •
AvailableButtons;btnPressed?bt : Button →



(bt = DETECTION0) & detection!0 → Skip
2 (bt = DETECTION1) & detection!1 → Skip
2 (bt = DETECTION2) & detection!2 → Skip
2 (bt = DETECTION3) & detection!3 → Skip
2 (bt = DETECTION4) & detection!4 → Skip
2 (bt = DETECTION5) & detection!5 → Skip
2 (bt = ZONE FAULT ) & fault !zoneFault → Skip
2 (bt = EARTH FAULT ) & fault !earthFault → Skip
2 (bt = SOUNDER LINE FAULT ) &

fault !sounderLineFault → Skip
2 (bt = POWER FAULT ) & fault !powerFault → Skip
2 (bt = ISOLATE REMOTE SIGNAL) &

fault !isolateRemoteSignal → Skip
2 (bt = ACTUATOR LINE FAULT ) &

fault !actuatorLineFault → Skip
2 (bt = MANUAL DISCHARGE0) &

externalManualDischarge!0 → Skip
2 (bt = MANUAL DISCHARGE1) &

externalManualDischarge!1 → Skip
2 (bt = MODE SWITCH MANUAL) &

modeSwitch!manual → Skip
2 (bt = MODE SWITCH AUTOMATIC ) &

modeSwitch!automatic → Skip
2 (bt = RESET ) & reset → Skip
2 (bt = SWITCH ON ) & switchOn → Skip
2 (bt = SILENCE ALARM ) & silenceAlarm → Skip
2 (bt = ACTUATORS REPLACED) &

actuatorsReplaced → Skip
2 (bt = EXIT ) & exit → Skip





;

KeyboardCycle(state?)
2 systemState?newState : SystemState → KeyboardCycle(newState))

The RunKeyboard action receives the current system state and starts the keyboard
cycle.

RunKeyboard =̂ systemState?state : SystemState → KeyboardCycle(state)

Finally, we have the keyboard’s main action: after initialising the keyboard, it runs
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in a parallel the RunKeyboard and the EventHandler actions.

• InitKeyboard ;


RunKeyboard
|[α(KeyboardState) ∪ α(KeyboardState ′){| btnPressed |} | ∅]|
EventHandler





\ {| btnPressed |}

end

The external devices are represented by the interleaving between the Output
and the Keyboard processes.

process ExternalDevices =̂ Output ||| Keyboard

We may encapsulate all the input and output events in two different set of
channels. First, we define the set of all switch events.

chanset InputEvents == {| switchLamp[LampId ], switchLamp[ZoneId ],
switchLamp[AreaId ], switchBuzzer ,
detection, switchOn, reset ,
externalManualDischarge,modeSwitch,
silenceAlarm, actuatorsReplaced , exit , fault |}

chanset OutputEvents == SwitchEvents ∪ {| alarm |}

Finally, we specify the set of all external events as follows.

chanset ExternalSignals == InputSignals ∪ OutputEvents

The Abstract Main Process

First, we combine the AbstractFireControl and the clock processes in order to have
the timed system AbstractTimedFireControl . They synchronise in the events used
by the clock process, which we group in the set of channels ClockSignals .

chanset ClockSignals == {| startClock , clockFinished |}

process AbstractTimedFireControl =̂
(AbstractFireControl |[ClockSignals ]| Clock) \ ClockSignals

Now, we are ready to specify the abstract main system process, which is a
parallel composition between the abstract timed fire control system and the external
devices.

process AbstractMain =̂




AbstractTimedFireControl
|[ExternalSignals]|
ExternalDevices



 \ ExternalSignals

In the next section, we refine the abstract fire control.
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5.6 A Refinement Strategy for the Fire Control

System

In this section, we aim to refine the main component of the AbstractMain pro-
cess: the process AbstractFireControl . Section 5.6.1 presents the target of our
refinement, the concrete fire control system. Then, in the following sections, we
present the refinement steps summarised graphically in Figure 5.2. Our strategy is
based on that proposed in [1] for Circus.

The refinement strategy presented for Circus is based on laws of simulation,
and action and process refinement. It includes (possibly several) iterations of three
steps: use of simulation to introduce elements of the concrete system state, action
refinement for partitioning the process state and actions, and a process refinement
to decompose the original process in two or more processes.

The motivation for the fire control system refinement is the distribution of the
areas. This leads to a need of distributed processing in order to get a more efficient
system.

First, in Section 5.6.2, we present a data refinement to introduce a new state
component (modeA) to the system. The second refinement step, presented in Sec-
tion 5.6.3, consists in an action refinement that allows the partitioning of the state
space and the accompanying actions, in such a way that each partition groups some
state elements and the actions which access (read or update) these elements. The
idea is to separate the management of the areas from the fire control system. Follow-
ing this action refinement, in Section 5.6.4 we actually make a process refinement
in order to upgrade each partition into separated processes (InternalSystem and
Areas). Next, in Sections 5.6.5 and 5.6.7, we refine the Areas process in order to
get separated processes to model each existing area within the system; and finally,
in Sections 5.6.7 and 5.6.8, we refine the InternalSystem, in the same way we do
with process FireControl1 , in order to get two processes: the fire control system
itself (process FireControl), and a display controller (process DisplayController).

First, however, in Section 5.6.1 below, we present the final concrete system we
want to obtain. Further refinement of this system to code only requires refinement
of actions.

5.6.1 Concrete Fire Control System

The concrete fire control system is composed of three components: the fire control
system, the display controller, and the detection system. In the following sections
we present each process separately, and then, we compose them to get the final
concrete fire control system. Before proceeding, however, we introduce the internal
channels used by the fire control system.
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Figure 5.2: Refinement Strategy for the Fire Control System
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Figure 5.3: Concrete Fire Control

The fire control system may request to the display controller to restart using
channel start . Besides, the fire control system indicates discharges to the display
controller using channel discharge.

channel start
channel discharge : AreaId

The fire control system request a gas discharge to the detection process through
channels manualDischarge and automaticDischarge.

channel manualDischarge, automaticDischarge : AreaId

The detection process may reply to these requests indicating if the gas has been
discharged or not.

channel gasDischarged , gasNotDischarged : AreaId

When an area is active in automatic mode, it may request a countdown using the
channel below.

channel countdown

The fire control system then replies indicating if the countdown has started (true)
or not (false) through channel countdownStarted .

channel countdownStarted : Bool

In Figure 5.3 we summarise the internal communication of the concrete fire
control system.
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Fire Control

The process FireControl is similar to the its abstract specification (AbstractFireControl).
However, all the state components and events related to the detection areas and
to the display controller are removed from the fire control. They now compose the
state of the process presented later.

process FireControl =̂ begin

state

The state of the concrete fire control is composed by only one component, mode,
which indicates the mode in which the fire control is running (automatic, manual ,
or disabled).

FireControlState
mode : Mode

As in the abstract specification, the system is initialised in automatic mode.

InitFireControl
FireControlState ′

mode ′ = automatic

Three operations can be used to switch the system mode. The first one receives the
new mode as argument.

SwitchFireControlMode
∆FireControlState
newMode? : Mode

mode ′ = newMode?

The second and third operations, that switch the system mode do not receive any
argument. They simply switch the system mode to automatic and disabled , respec-
tively.

SwitchFireControl2AutomaticMode
∆FireControlState

mode ′ = automatic
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SwitchFireControl2DisabledMode
∆FireControlState

mode ′ = disabled

The fire control system is responsible for communicating the current system
state. For this reason, almost all actions start with this communication. After
being switched on, the fire control only initialises its state and behaves like action
FireSys . All the events related to the display lamps are no longer controlled by the
fire control, but by the display controller that we shall specify later in this section.

FireSysStart =̂
systemState!fireSysStarts → switchOn → InitFireControl ; FireSys

The action FireSys is slightly different from its abstract version. As explained
before, it does not make any reference to the display lamps. For this reason, the
concrete fire control does not engage in the fault events. These are now part of
the display controller. After communicating the system state, the mode can be
switched between automatic and manual . Furthermore, if any detection occurs,
the system behaves like Auto or Manual , depending on the current system mode.
Since the areas are the processes which have the area-zone information, following
a detection communication, the zone activation is no longer part of the fire control
behaviour. Finally, if the system is requested to reset, its state is initialised.

FireSys =̂
systemState!fireSyss →

modeSwitch?newMode : SwitchMode → SwitchFireControlMode;
FireSys

2 detection?newZone : ZoneId → alarm!firstStage →
(mode = manual) & Manual
2 (mode = automatic) & Auto

2 reset → alarm!alarmOff → InitFireControl ; FireSys

After a detection, and if running in manual mode, the system behaves like
action Manual . For the reasons explained above, fault detection events (fault) are
no longer part of its specification. As the information of the active zones and areas
are not within the fire control anymore, in other to decide what to do next, it
actually has to communicate (manualDischarge) with the process that corresponds
to the area in which a gas discharge was manually requested. It then receives an
answer from this area: if the discharge actually has taken place (gasDischarged),
the fire control is set to disabled mode, and waits to be reset; otherwise, if the gas
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was not discharged (gasNotDischarged), it recurses.

Manual =̂
systemState!manuals →

detection?newZone : ZoneId → Manual
2 silenceAlarm → alarm!alarmOff → Reset
2 externalManualDischarge?area : AreaId →

manualDischarge.area →
gasDischarged .area → discharge!area →

SwitchFireControl2DisabledMode; Reset
2 gasNotDischarged .area → Manual

After a detection, and if running in automatic mode, the concrete system behaves
like Auto. However, it no longer verifies if any area is active in order to start a
countdown, or not. If there is any active area, this area requests the start of a
countdown (countdown). The fire control confirms the countdown start with the
event countdownStarted !true. Then, as the abstract system, the second stage alarm
is sounded and the countdown starts (action Countdown). However, if no area is
active, the event countdown does not happen. In this case, the system may still be
reset, in which case the alarm is switched off and the system is initialised. Detections
are also allowed, but do not change the behaviour of this action.

Auto =̂
systemState!autos →

countdown → countdownStarted !true → alarm!secondStage →
Countdown

2 reset → alarm!alarmOff → InitFireControl ; FireSys
2 detection?newZone : ZoneId → Auto

As in the abstract fire control system, the actuators may be replaced when the
system is waiting to be reset (action Reset). However, the only action that follows
such a communication is the switching of the system mode to automatic. The
behaviour in the case of any detection is the same as for action Manual . Finally, if
the system is reset, it behaves like FireSys or FireSysD , depending on the current
system mode. Any request to start a countdown (countdown) originated from any
area is not confirmed (countdownStarted !false) since no countdown has actually
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started.

Reset =̂
systemState!resets →

actuatorsReplaced → SwitchFireControl2AutomaticMode; Reset
2 detection?newZone : ZoneId → Reset
2 reset → alarm!alarmOff →

(mode = disabled) & FireSysD
2 (mode 6= disabled) & InitFireControl ; FireSys

2 countDown → countdownStarted !false → Reset

The action Countdown has almost the same definition as the abstract action
AbstractCountdown. The only difference is that, after indicating the current system
state and requesting the start of a countdown, it behaves as the concrete action
WaitingClock . While waiting for the clock to finish (event clockFinished), detections
lead to the same behaviour as for action Reset . Any request to start a countdown
is confirmed, since this action is already waiting a countdown. When the clock is
finished, the fire control discharges the gas (action Discharge).

Countdown =̂ systemState!countdowns → startClock → WaitingClock

WaitingClock =̂
clockFinished → Discharge
2 detection?newZone : ZoneId → WaitingClock
2 countDown → countdownStarted !true → WaitingClock

In action FireSysD , if the actuators are replaced (actuatorsReplaced) the alarm
is switched off, and the display controller (start) and the fire control system are
restarted. Again, any request to start a countdown is rejected.

FireSysD =̂
systemState!fireSysDs →

actuatorsReplaced → alarm!alarmOff → start →
InitFireControl ; FireSys

2 countdown → countdownStarted !false → FireSysD

Finally, the action Discharge represents an automatic discharge. It waits for
an indication that there is no one in the area (event exit). However, when this
indication is received, it sequentially requests an gas discharge to each area pro-
cess (automaticDischarge) and receives an answer: if the gas has been discharged in
the area (gasDischarged), it indicates the discharge to the display controller (discharge),
and increments a local variable log by one; otherwise, nothing is done. After com-
municating with all areas, it verifies if the local variable log is greater than 0, in
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which case, a discharge has happened in, at least, one area. In this case, the system
mode is switched to disabled . Nevertheless, if log is equals to 0, no gas has been
discharged, and the system mode is switched to automatic. Finally, the system
waits to be reset (Reset).

Discharge =̂
systemState!discharges → exit →

(var log : N •
log := 0;
(o
9 area : AreaId •

automaticDischarge.area →
gasDischarged .area → discharge!area → log := log + 1
2 gasNotDischarged .area → Skip);

((log = 0) & SwitchFireControlSystem2AutomaticMode
2 (log > 0) & SwitchFireControlSystem2DisabledMode);
Reset

Display Controller

The display controller is responsible for, given an event, make the request to the
corresponding lamp to switch on or off.

process DisplayController =̂ begin

It has no state: only actions are defined within it. The first action, InitDisplay ,
waits for the system to be switched on, and then, it switches on the system on
lamp.

InitDisplay =̂
switchOn → switchLamp[LampId ].systemOnLamp!on → Skip

The next action, SwitchLampsOff , is invoked if the system is reset or if the fire
control requests the display controller to restart. It switches off the display buzzer
and all the lamps (except the circuit fault and the system on lamps).

SwitchLampsOff =̂
switchBuzzer !off → Skip
||| (||| id : (LampId \ {circuitFaultLamp, systemOnLamp}) •

switchLamp[LampId ].id !off → Skip)
||| (||| zone : ZoneId • switchLamp[ZoneId ].zone!off → Skip)
||| (||| area : AreaId • switchLamp[AreaId ].area!off → Skip)

Finally, the DisplayCycle consists of receiving an event and switching on the cor-
responding lamp in the display. Besides, if the fire control requests the display
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controller to restart (start), or if the system is reset (reset), the display controller
behaves like action SwitchLampsOff .

DisplayCycle =̂
detection?zone : ZoneId →

switchLamp[ZoneId ].zone!on → DisplayCycle
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → DisplayCycle

2 silenceAlarm →
switchLamp[LampId ].alarmSilencedLamp!on → DisplayCycle

2 discharge?area : AreaId → switchLamp[AreaId ].area!on →
switchLamp[LampId ].circuitFaultLamp!on → DisplayCycle

2 reset → SwitchLampsOff ;DisplayCycle
2 actuatorsReplaced →

switchLamp[LampId ].circuitFaultLamp!off → DisplayCycle
2 start → SwitchLampsOff ;DisplayCycle

The main action of the display controller waits the system to be switched on. Then,
it switches on the system on lamp, and starts the display cycle.

• InitDisplay; DisplayCycle

end

Areas

An area’s state is composed of the controlled zones of the area, the active zones in
which a fire detection has been made, a boolean discharge that records whether a
gas discharge has been made in this area, a boolean active that records whether
a gas discharge may occur in this area, and finally, the mode in which the area is
running (manual , automatic, disabled).

process Area =̂ (id : AreaId • begin
state
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AreaState
mode : Mode
controlledZones : P ZoneId
activeZones : P ZoneId
discharge : Bool
active : Bool

controlledZones = getZones(id)
mode = automatic ⇒

active = true ⇔
∃ z1, z2 : controlledZones •

z1 6= z2 ∧ {z1, z2} ⊆ activeZones
mode = manual ⇒

active = true ⇔
∃ z : controlledZones • z ∈ activeZones

activeZones ⊆ controlledZones

The invariant establishes that, the component activeZones is a subset of the con-
trolled zones of this area, which is defined by getZones . Besides, if running in
manual mode, an area is active if, and only if, any zone controlled by it is active.
On the other hand, if running in automatic mode, an area is active if, and only if,
there is more than one zone that is controlled by it and is active.

Each area is initialised as follows: there is no active zone; no discharge oc-
curred; and it is in automatic mode. The state variant guarantees that it is not
active.

InitArea
AreaState ′

activeZones ′ = ∅
discharge ′ = false
mode ′ = automatic

A zone can be active using the operation ActivateZone. If the given zone is a
controlled zone of this area, it is included in the activeZones state component.
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ActivateZone
∆AreaState
newZone? : ZoneId

newZone? ∈ controlledZones
activeZones ′ = activeZones ∪ {newZone?}
discharge ′ = discharge
mode ′ = mode

In order to activate the discharge within an area, we must use the operation
ActivateDischarge that is defined below.

ActivateDischarge
∆AreaState

activeZones ′ = activeZones
discharge ′ = true
mode ′ = mode

Finally, the last schema allows the area mode to be switched.

SwitchAreaMode
∆AreaState
newMode? : Mode

activeZones ′ = activeZones
discharge ′ = discharge
mode ′ = newMode?

In order to start, an area must synchronise in the switchOn event. Its state is
then initialised, and the area actually starts working.

StartArea =̂ switchOn → InitArea; AreaCycle

In its initial stage, if the reset event occurs, the state is initialised; if the system
mode is switched, so is the area mode; if an automatic gas discharge is requested,
it refuses the discharge (gasNotDischarge); and finally, any detection leads to an
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analysis of this detection.

AreaCycle =̂



reset → InitArea
2 modeSwitch?newMode : SwitchMode → SwitchAreaMode
2 automaticDischarge.id → gasNotDischarged .id → Skip
2 manualDischarge.id → gasNotDischarged .id → Skip
2 detection?newZone : ZoneId →

AnalyseDetection(newZone);NextAction(newZone)





;

AreaCycle

AnalyseDetection =̂ (newZone : ZoneId •
(newZone ∈ controlledZones) & ActivateZone
2 (newZone /∈ controlledZones) & Skip)

NextAction =̂ (newZone : ZoneId •
(newZone ∈ controlledZones) & ActiveArea
2 (newZone /∈ controlledZones) & Skip)

If the zone in which the detection occurred is controlled by this area, it activates the
detected zone and takes the area to the active stage; otherwise, no further action is
taken. After the analysis of the detection, if any zone was active, the area becomes
active. Otherwise, it recurses in the AreasCycle.

The behaviour of an active area depends on the mode in which the area is run-
ning. If it is running in automatic mode, it checks whether the area is active or not.
If the area is active, it requests to the fire control system to start a countdown. If the
fire control system starts the countdown, the area waits the order to discharge the
gas; otherwise, it goes to a disabled stage. If the area is running in automatic mode,
but it is not active, it may be reset. Furthermore, any detection is analysed as in the
AreaCycle action, and any request to discharge gas is refused (gasNotDischarged).

If the area is running in a manual mode, the reset and detection events are
treated in the same way as if the area were not active and running in automatic
mode. However, if a gas discharge is manually requested, it checks whether the
area is active or not. If it is active, then it accepts the discharge (gasDischarged),
activates the discharge, and goes to a disabled stage; otherwise, it refuses the dis-
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charge (gasNotDischarged), and remains in the active stage.

ActiveArea =̂
(mode = automatic) &

(active = true) &
countdown → countdownStarted?answer : Bool →

(answer = true) & WaitingDischarge
2 (answer = false) & DisabledArea

2 (active = false) &
reset → InitArea
2 detection?newZone : ZoneId →

AnalyseDetection(newZone);ActiveArea
2 automaticDischarge.id → gasNotDischarged .id → ActiveArea

2 (mode = manual) &
reset → InitArea
2 detection?newZone : ZoneId →

AnalyseDetection(newZone);ActiveArea
2 manualDischarge.id →

(active = true) &
gasDischarged .id → ActivateDischarge; DisabledArea

2 (active = false) &
gasNotDischarged .id → ActiveArea

When waiting for discharge, any new detection in a controlled zone leads to its
activation. When the gas discharge request is sent by the fire system, a gasDischarged
answer is sent back to the fire system, the gas is discharged, and the area becomes
disabled.

WaitingDischarge =̂
detection?newZone : ZoneId →

AnalyseDetection(newZone);WaitingDischarge
2 automaticDischarge.id → gasDischarged .id →

ActivateDischarge; DisabledArea

In the disabled stage, detections in any zone controlled by the area leads to its
activation, and a reset event initialises the area state. Furthermore, any request to
a gas discharge is refused (gasNotDischarged).

DisabledArea =̂
reset → InitArea
2 detection?newZone : ZoneId →

AnalyseDetection(newZone);DisabledArea
2 automaticDischarge.id → gasNotDischarged .id → DisabledArea
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The main action of the process Area is the action StartArea.

• StartArea

end)

The process Areas represents all the areas within the system. Basically, it
is a parallel composition of all areas. They synchronise in the start up of the
system (switchOn), and in the reset , modeSwitch and detection events.

process Areas =̂

‖ id : AreaId |[ {| switchOn, reset , switchMode, detection |}]| • Area(id)

The Concrete Main Process

First, we define the internal system, which is defined as the parallel composition
of the fire control and the display panel. All the communication between the fire
control and the display controller (chanset DisplayComm) is hidden.

chanset DisplayComm == {| discharge, start |}
chanset Intervention == {| silenceAlarm, actuatorsReplaced |}
chanset Σ1 == {| switchOn, reset , detection |} ∪

DisplayComm ∪ Detection ∪ Intervention

process InternalSystem =̂
FireControl |[ Σ1 ]| DisplayController \ DisplayComm

Next, we define the concrete fire control as the combination of the internal sys-
tem and the areas. All the gas discharge synchronisation signals (GasDischargeSync)
are hidden, since they are communications between the internal system and the ar-
eas only.

chanset GasDischargeSync ==
{| manualDischarge, automaticDischarge, countdown,

countdownStarted , gasDischarged , gasNotDischarged |}
chanset Σ2 ==

{| switchOn, reset , detection, switchMode |} ∪ GasDischargeSync

process ConcreteFireControl =̂
(InternalSystem |[ Σ2 ]| Areas) \ GasDischargeSync

The concrete timed fire control system is defined as the abstract one, but re-
placing the abstract fire control by the concrete fire control defined above.

process ConcreteTimedFireControl =̂
(ConcreteFireControl |[ClockSignals ]| Clock) \ ClockSignals

68



Now, we are ready to specify the concrete main system process, which is a
parallel composition between the timed fire control system and the external devices.

process ConcreteMain =̂




ConcreteTimedFireControl
|[ExternalSignals]|
ExternalDevices



 \ ExternalSignals

Since the refinement calculus is compositional, in order to prove that the ConcreteMain
process is a refinement of the AbstractMain process, it is enough to prove that pro-
cess ConcreteFireControl is a refinement of process AbstractFireControl . In the
following sections, we aim to prove this refinement.

5.6.2 Data refinement: including a new state component

In this step we make a data refinement in order to introduce a state component
that is used by the fire control. The new modeA component indicates the mode in
which the areas are running. The process AbstractFireControl is refined by process
FireControl1 presented below.

process FireControl1 =̂ begin

state
FireControlState1

mode1 : Mode
controlledZones1 : AreaId → P ZoneId
activeZones1 : AreaId → P ZoneId
discharge1 : AreaId → Bool
active1 : AreaId → Bool
modeA : Mode

controlledZones1 = {area : AreaId • area 7→ getZones(area)}
∀ area : AreaId •

(mode1 = automatic) ⇒
active1(area) = true ⇔

∃ z1, z2 : controlledZones1(area) •
z1 6= z2 ∧ {z1, z2} ⊆ activeZones1(area)

∧ (mode1 = manual) ⇒
active1(area) = true ⇔

{area : AreaId | ∃ z : controlledZones1(area) •
z ∈ activeZones1(area)}

∧ activeZones1(area) ⊆ controlledZones1(area)

The state FireControlState1 is the same as that of AbstractFireControl , except that
it includes the extra component modeA; the state invariant is the same. In order
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to prove that the FireControl1 is a refinement of the AbstractFireControl we have
to prove that there exists a forwards simulation between the FireControl1 main
action and the AbstractFireControl main action. The retrieve relation is very sim-
ple: it relates each component in the AbstractFireControlState to a corresponding
component in the FireControlState1. It is defined as follows.

RetrFireControl
AbstractFireControlState
FireControlState1

mode1 = mode
controlledZones1 = controlledZones
activeZones1 = activeZones
discharge1 = discharge
active1 = active

Now, we refine each schema, using the schema expressions simulation law (C.1), in
order to deal with the new state. The first schema to be refined is the initialisation
schema. In the concrete initialisation, the new state component modeA is initialised
in automatic mode.

InitFireControl1
FireControlState ′

1

mode ′
1 = automatic

activeZones ′1 = {area : AreaId • area 7→ ∅}
discharge ′

1 = {area : AreaId • area 7→ false}
mode ′

A = automatic

We state the simulations as lemmas.

Lemma 5.1 InitAbstractFireControl � InitFireControl1
Proof.

As already mentioned, this result can be established with an application of Law C.1.
It raises two proof obligations. The first one concerns the preconditions of both
schemas.

∀AbstractFireControlState; FireControlState1 •
RetrFireControl ∧ pre InitAbstractFireControl ⇒ pre InitFireControl1
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This proof obligation is easily proved, since the precondition of both schemas are
true. The second proof obligation concerns the finalisation of both schemas.

∀AbstractFireControlState; FireControlState1; FireControlState ′
1 •

RetrFireControl ∧ pre InitAbstractFireControl ∧ InitFireControl1 ⇒
∃AbstractFireControlState ′ •

RetrFireControl ′ ∧ InitAbstractFireControl

This proof obligation can be also easily discarded using the one-point rule. When
this rule is applied, we may remove the universal quantifier, and then, we are
left with a predicate in which the consequent of the implication is present in its
antecedent. The proof of this lemma, and all the simulation lemmas that follow,
are very similar and simple. They can be found in Appendix B.

The next schema to be refined is the SwitchAbstractFireControlMode. In the
concrete operation, besides the update of component mode1, we have also the update
of the component modeA.

SwitchFireControlMode1

∆FireControlState1

newMode? : Mode

mode ′
1 = newMode?

activeZones ′1 = activeZones1

discharge ′
1 = discharge1

mode ′
A = newMode?

Lemma 5.2 SwitchAbstractFireControlMode � SwitchFireControlMode1

The refinement of schema SwitchAbstractFireControl2AutomaticMode is very
similar. However, the new state component is not changed by this schema operation.

SwitchFireControl2AutomaticMode1

∆FireControlState1

mode ′
1 = automatic

activeZones ′1 = activeZones1

discharge ′
1 = discharge1

mode ′
A = modeA

Lemma 5.3

SwitchAbstractFireControl2AutomaticMode �
SwitchFireControl2AutomaticMode1
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The refinement of schema SwitchAbstractFireControl2DisabledMode, as that of
the previous schema, is very simple. It also does not change the new state compo-
nent modeA.

SwitchFireControl2DisabledMode1

∆FireControlState1

mode ′
1 = disabled

activeZones ′1 = activeZones1

discharge ′
1 = discharge1

mode ′
A = modeA

Lemma 5.4

SwitchAbstractFireControl2DisabledMode �
SwitchFireControl2DisabledMode1

Next, we have the refinement of the schema AbstractActivateZone.

ActivateZone1

∆FireControlState1

newZone? : ZoneId

mode ′
1 = mode1

activeZones ′1 = activeZones1 ⊕
{area : AreaId | newZone? ∈ controlledZones1(area) •

area 7→ activeZones1(area) ∪ {newZone?}}
discharge ′

1 = discharge1

mode ′
A = modeA

Lemma 5.5 AbstractActivateZone � ActivateZone1

The last schema to be refined is the schema AbstractActivateDischarge. It also
leaves the new state component modeA unchanged.

ActivateDischarge1

∆FireControlState1

mode ′
1 = mode1

activeZones ′1 = activeZones1

discharge ′
1 = discharge1 ⊕

{area : AreaId | area ∈ dom active1 B {true} • area 7→ true}
mode ′

A = modeA
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Lemma 5.6 AbstractActivateDischarge � ActivateDischarge1

Now, we refine the actions of the AbstractFireControl . In this part of the re-
finement, we rely on the fact that forwards simulation distributes through action
constructors (laws of simulation in Appendix C and Appendix D). The new actions
have the same structure as the original ones, but use new schema actions (based
on Lemmas 5.1 to 5.6). The complete definition of the process FireControl1 can be
found in Appendix G. By way of illustration, we present the action FireSysStart1,
which simulates of the abstract action AbstractFireSysStart .

FireSysStart1 =̂
systemState!fireSysStarts → switchOn →

switchLamp[LampId ].systemOnLamp!on →
InitFireControl1; FireSys1

In this data refinement step, all the output and input values are not changed. For
this reason, only the second proviso (action simulation) of the application of Law C.3
must be proved. This law states that, in order to simulate an output prefix, the
output of the abstract action must be related to the output of the concrete action
using the retrieve relation. Furthermore, the subsequent action in the abstract
action must be simulated by the subsequent action in the concrete action. Also, as
the guards are not changed, the provisos raised in the application of Law C.4 are
only those related to action simulations.

Finally, the main action of the new fire control system, FireControlSystem1, is
the simulation of the original action.

• FireSysStart1

end

This concludes this data refinement step.

5.6.3 Action Refinement: decomposing the FireControl1 in
two partitions

In this refinement step we change the FireControl1 so that its state is composed of
two partitions: one that models the internal system and another one that models
the areas. We also change the actions so that the state partitions are handled
separately. The final aim, as already discussed, is to split the fire control system
into concurrent processes.

process FireControl2 =̂ begin
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The System State

The internal system state is composed only by the mode in which the internal
system is running.

InternalSystemState
mode1 : Mode

The remaining components are declared as components of the areas partition of
the state.

AreasState
modeA : Mode
controlledZones1 : AreaId → P ZoneId
activeZones1 : AreaId → P ZoneId
discharge1 : AreaId → Bool
active1 : AreaId → Bool

controlledZones1 = {area : AreaId • area 7→ getZones(area)}
∀ area : AreaId •

(modeA = automatic) ⇒
active1(area) = true ⇔

∃ z1, z2 : controlledZones1(area) •
z1 6= z2 ∧ {z1, z2} ⊆ activeZones1(area)

∧ (modeA = manual) ⇒
active1(area) = true ⇔

{area : AreaId | ∃ z : controlledZones1(area) •
z ∈ activeZones1(area)}

∧ activeZones1(area) ⊆ controlledZones1(area)

The state of the FireControlState1 is declared as the conjunction of the two previous
defined state schemas.

state FireControlState1 =̂ InternalSystemState ∧ AreasState

Internal System Paragraphs

Now, we may declare the first group of paragraphs that access only the internal
system components. First, the internal system is initialised in automatic mode.

InitInternalSystem
InternalSystemState ′

AreasState ′

mode ′
1 = automatic
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In order to switch the internal system mode, we may use the schema operation
SwitchInternalSystemMode that receives the new mode as argument.

SwitchInternalSystemMode
∆InternalSystemState
ΞAreasState
newMode? : Mode

mode ′
1 = newMode?

The following schema operations switch the internal system mode to automatic and
to disabled , respectively.

SwitchInternalSystem2AutomaticMode
∆InternalSystemState
ΞAreasState

mode ′
1 = automatic

SwitchInternalSystem2DisabledMode
∆InternalSystemState
ΞAreasState

mode ′
1 = disabled

The behaviour of this intermediate fire control is very similar to that of the
abstract one. However, after being switched on, it only initialises the fire control
state components and behaves like action FireSys2. All the operations related to
the areas components are no longer controlled by the fire control action, but by the
areas actions that we specify later in this section.

FireSysStart2 =̂
systemState!fireSysStarts → switchOn →

switchLamp[LampId ].systemOnLamp!on →
InitInternalSystem; FireSys2

The action FireSys2 is slightly different from action FireSys1. When a synchro-
nisation on the event modeSwitch happens, this action only switches the internal
system mode. Furthermore, since the information about the areas are no longer
part of this partition, following a detection communication, this action does not
activate the area in which the detection occurred. If the system is reset, this action
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only initialises the internal system.

FireSys2 =̂
systemState!fireSyss →
modeSwitch?newMode : SwitchMode →

SwitchInternalSystemMode; FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → alarm!firstStage →

(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → FireSys2

2 reset → alarm!alarmOff →
InitInternalSystem; SwitchLampsOff2;FireSys2

The action SwitchLampsOff2 is the same the action SwitchLampsOff1. We have
changed its name just for a standardisation of action names.

SwitchLampsOff2 =̂
(switchBuzzer !off → Skip
||| id : (LampId \ {circuitFaultLamp, systemOnLamp}) •

switchLamp[LampId ].id !off → Skip
||| zone : ZoneId • switchLamp[ZoneId ].zone!off → Skip
||| area : AreaId • switchLamp[AreaId ].area!off → Skip)

In the detection of fire, the action Manual2 also differs from action Manual1: the
former does not activate the zone in which the fire is detected. However, its be-
haviour in case the alarm is silenced or a fault is detected, is almost the same as
action Manual1. The main difference is in a manual request for gas discharge: differ-
ently from action Manual1, which has the areas information, the action Manual2 re-
quests the gas discharge using a communication through channel manualDischarge.
If a gas discharge has actually occurred, Manual2 switches on the corresponding
lamp, switches the internal system mode to disabled , and waits to be reset. If a gas
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discharged has not occurred, it recurses.

Manual2 =̂
systemState!manuals →

detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Manual2

2 silenceAlarm → alarm!alarmOff → Reset2
2 externalManualDischarge?area : AreaId →

manualDischarge.area →
gasDischarged .area → switchLamp[AreaId ].area!on →

SwitchInternalSystem2DisabledMode; Reset2
2 gasNotDischarged .area → Manual2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → Manual2

As the areas information is not available in the internal system state, the action
Auto2 does not verify if any area is active in order to start a countdown. If there is
any active area, it requests the start of a countdown (countdown) itself, in which case
the fire control confirms the countdown has started. Then, as in action Auto1, the
second stage alarm is sounded, and the countdown starts (action Countdown2). The
system may still be reset, in which case the alarm is switched off, and the internal
system is initialised. Detections and faults are only followed by the corresponding
lamp being lit and the buzzer (for faults) being sounded.

Auto2 =̂
systemState!autos →

countdown → countdownStarted !true →
alarm!secondStage → Countdown2

2 reset → alarm!alarmOff → SwitchLampsOff2;
InitInternalSystem; FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Auto2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → Auto2

When the system is waiting to be reset (action Reset2), the actuators may be re-
placed. In this case, the ’circuit fault’ is switched off and the internal system mode is
switched to automatic. In the case of any detection or fault, the corresponding lamp
is switched on. Finally, if the system is reset, it behaves like FireSys2 or FireSysD2,
depending on the current system mode. At any time, the areas may request a count-
down to be started. Such requests are not confirmed (countdownStarted !false), since
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no countdown may start here.

Reset2 =̂
systemState!resets →

actuatorsReplaced → switchLamp[LampId ].circuitFaultLamp!off →
SwitchInternalSystem2AutomaticMode; Reset2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Reset2

2 reset → alarm!alarmOff → SwitchLampsOff2;
(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) & InitInternalSystem; FireSys2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → Reset2
2 countdown → countdownStarted !false → Reset2

As Countdown1, the action Countdown2 indicates the current system state,
requests the start of a countdown, and waits for the countdown to be finished.
Throughout this waiting time, detections and faults lead to the same behaviour as
for action Reset2. Any request to start a countdown is confirmed, since this action
is waiting a countdown. When the clock is finished, the fire control discharges the
gas.

Countdown2 =̂ systemState!countdowns → startClock → WaitingClock2

WaitingClock2 =̂
clockFinished → Discharge2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → WaitingClock2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → WaitingClock2

2 countdown → countdownStarted !true → WaitingClock2

In action FireSysD2, if the actuators are replaced, the alarm and the display
lamps are switched off, and the internal system state is initialised. Any fault
switches the corresponding lamp on, and, finally, any request to start a countdown
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is rejected.

FireSysD2 =̂
systemState!fireSysDs →

actuatorsReplaced → alarm!alarmOff →
SwitchLampsOff2;InitInternalSystem; FireSys2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → FireSysD2

2 countdown → countdownStarted !false → FireSysD2

The last paragraph of the internal system partition is the action Discharge. It
waits for an indication that there is no one in the areas (event exit), after which, it
sequentially requests a gas discharge to each area process, and waits for an answer.
A local variable log is used to register how many areas have actually discharged
gas. After all communications with the areas, if log is greater than 0, a discharge
has happened. In this case, the system mode is switched to disabled . Nevertheless,
if log is equals to 0, no gas has been discharged, and the system mode is switched
to automatic. Finally, the system waits to be reset (Reset).

Discharge2 =̂
systemState!discharges →
exit →

(var log : N •
log := 0;
(o
9 area : AreaId •

automaticDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on → log := log + 1
2 gasNotDischarged .area → Skip);

((log = 0) & SwitchInternalSystem2AutomaticMode
2 (log > 0) & SwitchInternalSystem2DisabledMode));

Reset2

This concludes the paragraphs of the internal system partition.

The Areas Paragraphs

Now, we present the paragraphs related to the areas. First, the areas are initialised
in automatic mode. Initially, there are no active zones, no discharge has occurred,
and no area is active.
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InitAreas
AreasState ′

InternalSystemState ′

mode ′
A = automatic

activeZones ′1 = {area : AreaId • area 7→ ∅}
discharge ′

1 = {area : AreaId • area 7→ false}

The areas mode modeA can be switched with the schema operation SwitchAreasMode
defined below.

SwitchAreasMode
∆AreasState
ΞInternalSystemState
newMode? : Mode

mode ′
A = newMode?

activeZones ′1 = activeZones1

discharge ′
1 = discharge1

In order to activate any zone, we may use the schema operation ActivateZoneAS
defined below. It includes the given zone in the set of zones mapped by the area
that controls the given zone in the activeZones1 state component.

ActivateZoneAS
∆AreasState
ΞInternalSystemState
newZone? : ZoneId

mode ′
A = modeA

activeZones ′1 = activeZones1 ⊕
{area : AreaId | newZone? ∈ controlledZones1(area) •

area 7→ activeZones1(area) ∪ {newZone?}}
discharge ′

1 = discharge1

The following schema operation can be use to activate the gas discharge within the
areas. It overrides the discharge1 component by mapping each area in the active1

component that is active (true) to true.
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ActivateDischargeAS
∆AreasState
ΞInternalSystemState

mode ′
A = modeA

activeZones ′1 = activeZones1

discharge ′
1 = discharge1 ⊕

{area : AreaId | area ∈ dom active1 B {true} • area 7→ true}

In order to start, the areas synchronise in the switchOn event and then, the
state is initialised and the areas actually start working.

StartAreas =̂ switchOn → InitAreas;AreasCycle

Initially, the areas can be reset, in which case the state is initialised; if the system
mode is switched, so is the areas mode; any detection leads to the activation of the
zone in which fire was detected, if it is controlled by any area, and takes the area
of the zone to the active stage; finally, if an automatic or manual gas discharge is
requested, it refuses the discharge (gasNotDischarge).

AreasCycle =̂
(reset → InitAreas
2 modeSwitch?newMode : SwitchMode → SwitchAreasMode
2 detection?newZone : ZoneId → ActivateZoneAS ;ActiveAreas
2 2 area : AreaId • automaticDischarge.area →

gasNotDischarged .area → Skip
2 2 area : AreaId • manualDischarge.area →

gasNotDischarged .area → Skip);
AreasCycle

In action ActiveAreas , if the areas are running in automatic mode, it checks
whether there is any active area. The existence of any active area leads to a request
to the fire control system to start a countdown. If the request is granted, the
area waits the order to discharge the gas; otherwise, the system goes to a disabled
stage. If the area is running in automatic mode, but is not active, it may be reset.
Furthermore, any detection is analysed as in the AreasCycle action, and any request
to discharge gas is refused (gasNotDischarged).

In manual mode, the reset and detection events are treated in the same way as
if the areas were not active and running in automatic mode. For any gas discharge
manual request, it checked whether the area in which the gas discharge was re-
quested is active or not. If it is active, the area accepts the discharge (gasDischarged),
activates the discharge, and goes to a disabled stage; otherwise, the area refuses the
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discharge (gasNotDischarged), and remains in the active stage.

ActiveAreas =̂
(modeA = automatic) &

(active1 B {true} 6= ∅) &
countdown → countdownStarted?answer : Bool →

(answer = true) & WaitingDischarge
2 (answer = false) & DisabledAreas

2 (active1 B {true} = ∅) &
reset → InitAreas
2 detection?newZone : ZoneId → ActivateZoneAS ;ActiveAreas
2 2 area : AreaId • automaticDischarge.area →

gasNotDischarged .area → ActiveAreas
2 (modeA = manual) &

reset → InitAreas
2 detection?newZone : ZoneId → ActivateZoneAS ;ActiveAreas
2 2 area : AreaId •

manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area →
activateDischargeAS ; DisabledAreas

2 (area /∈ dom active1 B {true}) &
gasNotDischarged .area → ActiveAreas

When waiting for discharge, any new detection in a controlled zone leads to its
activation. If any automatic gas discharge is requested by the internal system, the
action checks if the area is active or not. If it is active, the discharge is accepted.
However, if the area is not active, the discharge is not active. After, receiving
and answering all the discharge requests, discharge is active and then the system
behaves like DisabledAreas .

WaitingDischarge =̂
detection?newZone : ZoneId → ActivateZoneAS ;WaitingDischarge
2 ReplyDischarge;DisabledAreas

ReplyDischarge =̂
(||| area : AreaId •

(automaticDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area → Skip
2 (area /∈ dom active1 B {true}) &

gasNotDischarged .area → Skip));
ActivateDischargeAS

82



The DisabledAreas action activates any area in which a detection happens, and
initialises the areas state if the system is reset. Furthermore, any request to a gas
discharge is refused (gasNotDischarged).

DisabledAreas =̂
reset → InitAreas
2 detection?newZone : ZoneId → ActivateZoneAS ;DisabledAreas
2 2 area : AreaId • automaticDischarge.area →

gasNotDischarged .area → DisabledAreas

Finally, the main action of the process FireControl2 is the parallel composition of the
actions FireSysStart2 and StartAreas. These actions actually represent the initial
actions of each partition within the process. They synchronise on the channels in
set Σ2, which contains all the events switchOn, reset , detection, switchMode, and
all the channels used only for communication between both partitions; these are
the events manualDischarge, automaticDischarge, countdown, countdownStarted ,
gasDischarged , and gasNotDischarged . They are hidden in the main action as
defined below.

•




FireSysStart2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
StartAreas



 \ GasDischargeSync

end

Despite the fact that this is a significant refinement step, it involves no change
of data representation. In order to prove that this is a valid refinement we must
prove that the main action of process FireControl2 refines the main action of process
FireControl1.

Mutual Recursion.

Before proving this refinement, it very is important to notice that throughout this
chapter we actually use a syntactic sugaring for mutual recursive actions.

In order to improve the presentation of the refinements and of the processes
themselves, we have used a syntactic sugaring for mutual recursive actions. By way
of illustration consider the following mutual recursive processes definitions S , S ′,
and S ′′.

{
S = µX ,Y • F (X ,Y )
F (X ,Y ) = [a → SExp1;X 2 b → Y , c → SExp2;Y 2 d → X ]

{
S ′ = µX ,Y • F ′(X ,Y )
F ′(X ,Y ) = [a → X 2 b → Y , c → Y 2 d → X ]

{
S ′′ = µX ,Y • F ′′(X ,Y )
F ′′(X ,Y ) = [a → SExp1;X 2 b → Y , c → SExp2;Y 2 d → X ]
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Now, suppose we want to prove that

S vV [S ′.1 ‖ S ′′.1, S ′.2 ‖ S ′′.2]

where vV represents the vectorial refinement defined as follows.

Definition 5.1 (Vectorial Refinement) For two vector of actions

V1 = [a11
, . . . , a1n

]
V2 = [a21

, . . . , a2n
]

we have that V1 vV V2 provided a1i
vA a2i

for all i in 1 . . n.

The proof of the vectorial refinement presented above can be presented as fol-
lows. First, we apply the definition of S , S ′ and S ′′.

S vV [S ′.1 ‖ S ′′.1, S ′.2 ‖ S ′′.2]
=̂ [Definitions of S , S ′, and S ′′]

µX ,Y • F (X ,Y ) vV

[
(µX ,Y • F ′(X ,Y )).1 ‖ (µX ,Y • F ′′(X ,Y )).1,
(µX ,Y • F ′(X ,Y )).2 ‖ (µX ,Y • F ′′(X ,Y )).2

]

Next, we may use a vectorial version of the recursion-least fixed point law.

⇐ [Vectorial version of law C .56 (Recursion − Least Fixed Point)]

F

(
(µX ,Y • F ′(X ,Y )).1 ‖ (µX ,Y • F ′′(X ,Y )).1,
(µX ,Y • F ′(X ,Y )).2 ‖ (µX ,Y • F ′′(X ,Y )).2

)

vV[
(µX ,Y • F ′(X ,Y )).1 ‖ (µX ,Y • F ′′(X ,Y )).1,
(µX ,Y • F ′(X ,Y )).2 ‖ (µX ,Y • F ′′(X ,Y )).2

]

We start the proof of this refinement by applying the definition of F .

F

(
(µX ,Y • F ′(X ,Y )).1 ‖ (µX ,Y • F ′′(X ,Y )).1,
(µX ,Y • F ′(X ,Y )).2 ‖ (µX ,Y • F ′′(X ,Y )).2

)

=̂ [Definition of F ]



(
a → SExp1;((µX ,Y • F ′(X ,Y )).1 ‖ (µX ,Y • F ′′(X ,Y )).1)
2 b → ((µX ,Y • F ′(X ,Y )).2 ‖ (µX ,Y • F ′′(X ,Y )).2)

)

,
(

c → SExp2;((µX ,Y • F ′(X ,Y )).2 ‖ (µX ,Y • F ′′(X ,Y )).2)
2 d → ((µX ,Y • F ′(X ,Y )).1 ‖ (µX ,Y • F ′′(X ,Y )).1)

)





Next, we distribute the schema over the parallelism as follows.

= [D .29,D .28]
{
⋃

i wrtV (SExpi) ⊆ ns1 ∪ ns ′1}
{
⋃

i wrtV (SExpi) ∩ usedV (A2) = ∅}



(
a → ((µX ,Y • F ′(X ,Y )).1 ‖ (SExp1;(µX ,Y • F ′′(X ,Y )).1))
2 b → ((µX ,Y • F ′(X ,Y )).2 ‖ (µX ,Y • F ′′(X ,Y )).2)

)

,
(

c → ((µX ,Y • F ′(X ,Y )).2 ‖ (SExp2;(µX ,Y • F ′′(X ,Y )).2))
2 d → ((µX ,Y • F ′(X ,Y )).1 ‖ (µX ,Y • F ′′(X ,Y )).1)

)
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Then, as the channels a, b, c, and d are in the synchronisation channel set, we may
apply the distribution of prefix over parallelism law.

= [C .51]
{{a, b, c, d} ⊆ cs}



(
(a → (µX ,Y • F ′(X ,Y )).1) ‖ (a → SExp1;(µX ,Y • F ′′(X ,Y )).1)
2 (b → (µX ,Y • F ′(X ,Y )).2) ‖ (b → (µX ,Y • F ′′(X ,Y )).2)

)

,
(

(c → (µX ,Y • F ′(X ,Y )).2) ‖ (c → SExp2;(µX ,Y • F ′′(X ,Y )).2)
2 (d → (µX ,Y • F ′(X ,Y )).1) ‖ (d → (µX ,Y • F ′′(X ,Y )).1)

)





Next, we apply the exchange of parallelism and external choice law. This application
is valid since the initials of all actions are in the synchronisation channel set.

= [C .45]
{{a, b, c, d} ⊆ cs}








(
a → (µX ,Y • F ′(X ,Y )).1
2 b → (µX ,Y • F ′(X ,Y )).2

)

‖(
a → SExp1;(µX ,Y • F ′′(X ,Y )).1
2 b → (µX ,Y • F ′′(X ,Y )).2

)




,





(
c → (µX ,Y • F ′(X ,Y )).2
2 d → (µX ,Y • F ′(X ,Y )).1)

)

‖(
c → SExp2;(µX ,Y • F ′′(X ,Y )).2
2 d → (µX ,Y • F ′′(X ,Y )).1

)
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The definition of array allows us to extend the action above as follows.

=̂ [A = [A,B ].1,B = [A,B ].2]












(
a → (µX ,Y • F ′(X ,Y )).1
2 b → (µX ,Y • F ′(X ,Y )).2

)

,
(

c → (µX ,Y • F ′(X ,Y )).2
2 d → (µX ,Y • F ′(X ,Y )).1

)




.1

‖



(
a → SExp1;(µX ,Y • F ′′(X ,Y )).1
2 b → (µX ,Y • F ′′(X ,Y )).2

)

,
(

c → SExp2;(µX ,Y • F ′′(X ,Y )).2
2 d → (µX ,Y • F ′′(X ,Y )).1

)




.1





,









(
a → (µX ,Y • F ′(X ,Y )).1
2 b → (µX ,Y • F ′(X ,Y )).2

)

,
(

c → (µX ,Y • F ′(X ,Y )).2
2 d → (µX ,Y • F ′(X ,Y )).1

)




.2

‖



(
a → SExp1;(µX ,Y • F ′′(X ,Y )).1
2 b → (µX ,Y • F ′′(X ,Y )).2,

)

,
(

c → SExp2;(µX ,Y • F ′′(X ,Y )).2
2 d → (µX ,Y • F ′′(X ,Y )).1

)




.2









Finally, using a vectorial version of the recursion unfolding law, we conclude our
proof.

= [Vectorial version of law C .55 (Recursion Unfolding)][
(µX ,Y • F ′(X ,Y )).1 ‖ (µX ,Y • F ′′(X ,Y )).1,
(µX ,Y • F ′(X ,Y )).2 ‖ (µX ,Y • F ′′(X ,Y )).2

]

2

Proving Refinement on Mutual Recursive Systems. The system and re-
finement proved above are quite simple to be presented and understood. However,
it may be the case that the system is quite complicated to be presented in the
notation presented above. Our case study is a good example of such a system.
For this reason, we aim at the presentation of all mutual recursive systems and of
refinements on these systems in a more concise way.

First, let us generalise the syntactic sugaring for the definitions of mutual re-
cursive systems: every mutual recursive system of the form

{
S =̂ µX0, . . . ,Xn • F (X0, . . . ,Xn)
F (X0, . . . ,Xn) =̂ [F0(X0, . . . ,Xn), . . . ,Fn(X0, . . . ,Xn)]
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can be presented using the following syntactic sugar of S .

SS =̂ [N0, . . . ,Nn ]

For each index i in 0 . .n, the action Ni is defined as Ni =̂ Gi , where Gi is defined as
its corresponding Fi(X0, . . . ,Xn), but replacing all the occurrences of the variables
X0, . . . ,Xn by the corresponding syntactic sugaring N0, . . . ,Nn . Furthermore, the
new names Ni are fresh names.

Gi = Fi [X0, . . . ,Xn \ N0, . . . ,Nn ]

Now, we may present the syntactic sugaring for proving refinements on these sys-
tems. We want to prove a refinement of the following form, where Y0, . . . ,Yn are
actions.

S vV [Y0, . . . ,Yn ]

Actually, what happens is that, when trying to prove this property, we apply the
vectorial version of the recursion-least fixed point Law (C .56) as follows.

⇐ [Vectorial version of law C .56 (Recursion − Least Fixed Point)]
F (Y0, . . . ,Yn) vV [Y0, . . . ,Yn ]

Applying the definition of F we get the following proof obligation.

= [Definition of F ]
[F0(Y0, . . . ,Yn), . . . ,Fn(Y0, . . . ,Yn)] vV [Y0, . . . ,Yn ]

From the term rewriting theory, we have the following property that we shall
use later in this proof.

Property 5.1 Given a arbitrary term A, we have that:
A[X0, . . . ,Xn \ Y0, . . . ,Yn ][Y0, . . . ,Yn \ Z0, . . . ,Zn ] ≡ A[X0, . . . ,Xn \ Z0, . . . ,Zn ]
provided Y0, . . . ,Yn ∩ FV (A) = ∅.

The previous proof obligation can then be transformed as follows.

Fi(Y0, . . . ,Yn) vA Yi

≡ [Function Invocation]
Fi [X0, . . . ,Xn \ Y0, . . . ,Yn ] vA Yi

≡ [Property 5.1]{Ni are fresh names}
Fi [X0, . . . ,Xn \ N0, . . . ,Nn ][N0, . . . ,Nn \ Y0, . . . ,Yn ] vA Yi

= [Definition of Gi ]
Gi [N0, . . . ,Nn \ Y0, . . . ,Yn ] vA Yi
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We have then the following proof obligation.

[G0[N0, . . . ,Nn \ Y0, . . . ,Yn ], . . . ,Gn [N0, . . . ,Nn \ Y0, . . . ,Yn ]]
vV

[Y0, . . . ,Yn ]

Finally, by the definition of vectorial refinement (Definition 5.1), this refinement
is valid if the refinement holds for each corresponding element in both vectors.
This concludes our syntactic sugaring for proving refinements on mutual recursive
systems.

Definition 5.2 (Refinement on Mutual Recursive Actions) For a given vec-
tor of actions SS defined in the form SS =̂ [N0, . . . ,Nn ], we have that:

SS vA [Y0, . . . ,Yn ]
⇐
G0[N0, . . . ,Nn \ Y0, . . . ,Yn ] vA Y0, . . . ,Gn [N0, . . . ,Nn \ Y0, . . . ,Yn ] vA Yn

We are then left with separated proofs that can be presented in a much better way
than the original vectorial one.

Example in a Friendly Notation. In our example, we may apply the strategy
of syntactic sugaring presented above to get the following syntactic sugaring SS of
the process S .

SS =̂ [N0,N1]

N0 =̂ G0 where G0 = a → SExp1;N0 2 b → N1

N1 =̂ G1 where G1 = c → SExp2;N1 2 d → N0

We may also apply the strategy to get the syntactic sugaring S ′
S of the processes

S ′.

S ′
S =̂ [N ′

0,N
′
1]

N ′
0 =̂ G ′

0 where G ′
0 = a → N ′

0 2 b → N ′
1

N ′
1 =̂ G ′

1 where G ′
1 = c → N ′

1 2 d → N ′
0

In a similar way, we also apply the strategy to get the syntactic sugaring S ′′
S of the

processes S ′′.

S ′′
S =̂ [N ′′

0 ,N ′′
1 ]

N ′′
0 =̂ G ′′

0 where G ′′
0 = a → SExp1;N ′′

0 2 b → N ′′
1

N ′′
1 =̂ G ′′

1 where G ′′
1 = c → SExp2;N ′′

1 2 d → N ′′
0
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What we want to prove is that

SS vV [S ′
S .1 ‖ S ′′

S .1, S ′
S .2 ‖ S ′′

S .2]
= [Definition of S ′

S andS ′′
S ]

SS vV [N ′
0 ‖ N ′′

0 ,N ′
1 ‖ N ′′

1 ]

Our refinement strategy, however, gives us the following proving obligations for this
refinement.

⇐ [Definition 5.2]
[1]G0[N0,N1 \ N ′

0 ‖ N ′′
0 ,N ′

1 ‖ N ′′
1 ] vA N ′

0 ‖ N ′′
0

and
[2]G1[N0,N1 \ N ′

0 ‖ N ′′
0 ,N ′

1 ‖ N ′′
1 ] vA N ′

1 ‖ N ′′
1

These can be easily proved as follows.

[1]G0[N0,N1 \ N ′
0 ‖ N ′′

0 ,N ′
1 ‖ N ′′

1 ] vA N ′
0 ‖ N ′′

0

= [Definition of G0]
(a → SExp1;N0 2 b → N1)[N0,N1 \ N ′

0 ‖ N ′′
0 ,N ′

1 ‖ N ′′
1 ]

= [Substitution]
a → SExp1;(N ′

0 ‖ N ′′
0 ) 2 b → (N ′

1 ‖ N ′′
1 )

= [D .28 (Schemas/Parallelism Distribution)]
{wrtV (SExp1) ⊆ ns2 ∪ ns ′2}
{wrtV (SExp1) ∩ usedV (N ′

0) = ∅}
a → (N ′

0 ‖ (SExp1;N ′′
0 )) 2 b → (N ′

1 ‖ N ′′
1 )

= [C .51 (Prefix/Parallelism Distribution)]
{{a, b} ⊆ cs}
((a → N ′

0) ‖ (a → SExp1;N ′′
0 )) 2 ((b → N ′

1) ‖ (b → N ′′
1 ))

= [C .45 (Parallelism/ExternalChoice Exchange)]
(a → N ′

0 2 b → N ′
1) ‖ (a → SExp1;N ′′

0 2 b → N ′′
1 )

= [Definition of N ′
0 and N ′′

0 ]
N ′

0 ‖ N ′′
0
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[2]G1[N0,N1 \ N ′
0 ‖ N ′′

0 ,N ′
1 ‖ N ′′

1 ]
=̂ [Definition of G1]
(c → SExp2;N1 2 d → N0)[N0,N1 \ N ′

0 ‖ N ′′
0 ,N ′

1 ‖ N ′′
1 ]

= [Substitution]
c → SExp2;(N ′

1 ‖ N ′′
1 ) 2 d → (N ′

0 ‖ N ′′
0 )

= [D .28 (Schemas/Parallelism Distribution)]
{wrtV (SExp2) ⊆ ns2 ∪ ns ′2}
{wrtV (SExp2) ∩ usedV (N ′

1) = ∅}
c → (N ′

1 ‖ (SExp2;N ′′
1 )) 2 d → (N ′

0 ‖ N ′′
0 )

= [C .51 (Prefix/Parallelism Distribution)]
{{a, b} ⊆ cs}
((c → N ′

1) ‖ (c → SExp2;N ′′
1 )) 2 ((d → N ′

0) ‖ (d → N ′′
0 ))

= [C .45 (Parallelism/ExternalChoice Exchange)]
(c → N ′

1 2 d → N ′
0) ‖ (c → SExp2;N ′′

1 2 d → N ′′
0 )

= [Definition of N ′
1 and N ′′

1 ]
N ′

1 ‖ N ′′
1

2

Proving the Refinement

In view of the fact that FireSysStart1, FireSysStart2, and StartAreas are defined us-
ing mutual recursion, we have to use the definition of vectorial refinement presented
above. We prove the following vectorial refinement, in order to establish that the
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main action of FireControl1 is refined by that of FireControl2.





FireSysStart1[Act1 \ Act2],
FireSys1[Act1 \ Act2],
Manual1[Act1 \ Act2],
Auto1[Act1 \ Act2],
Reset1[Act1 \ Act2],
Countdown1[Act1 \ Act2],
WaitingClock1[Act1 \ Act2],
FireSysD1[Act1 \ Act2],
Discharge1[Act1 \ Act2],
Disabled1[Act1 \ Act2]





(i)

vV



(FireSysStart2 ‖ StartAreas) \ GasDischargeSync,
(FireSys2 ‖ AreasCycle) \ GasDischargeSync,
(Manual2 ‖ (ActiveAreas;AreasCycle)) \ GasDischargeSync,
(Auto2 ‖ (ActiveAreas;AreasCycle)) \ GasDischargeSync,



Reset2
‖



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









\ GasDischargeSync,
(Countdown2 ‖ (WaitingDischarge;AreasCycle))

\ GasDischargeSync,
(WaitingClock2 ‖ (WaitingDischarge;AreasCycle))

\ GasDischargeSync,
(FireSysD2 ‖ (InitAreas;AreasCycle)) \ GasDischargeSync,
(Discharge2 ‖ (WaitingDischarge;AreasCycle)) \ GasDischargeSync,
(Disabled2 ‖ (DisabledAreas;AreasCycle)) \ GasDischargeSync





(ii)

Here, two abbreviations are used: the parallelism ‖ is actually the alphabetised
parallelism |[α(InternalSystemState) | Σ2 | α(AreasState)]|; and the actions lists
Act1 and Act2 are defined as follows.

Act1 = FireSysStart1,FireSys1,Manual1,Auto1,Reset1,
Countdown1,WaitingClock1,FireSysD1,Discharge1,Disabled1
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Act2 = (FireSysStart2 ‖ StartAreas) \ GasDischargeSync,
(FireSys2 ‖ AreasCycle) \ GasDischargeSync,
(Manual2 ‖ (ActiveAreas;AreasCycle)) \ GasDischargeSync,
(Auto2 ‖ (ActiveAreas;AreasCycle)) \ GasDischargeSync,



Reset2
‖



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









\ GasDischargeSync,
(Countdown2 ‖ (WaitingDischarge;AreasCycle))

\ GasDischargeSync,
(WaitingClock2 ‖ (WaitingDischarge;AreasCycle))

\ GasDischargeSync,
(FireSysD2 ‖ (InitAreas;AreasCycle)) \ GasDischargeSync,
(Discharge2 ‖ (WaitingDischarge;AreasCycle)) \ GasDischargeSync,
(Disabled2 ‖ (DisabledAreas;AreasCycle)) \ GasDischargeSync

The left-hand side of the refinement (i) can be refined using Law D.18 to in-
troduce some assumptions that are required in the proof of the refinement of some
elements of this array.

LHS (i)
vV [D .18]




FireSysStart1[Act1 \ Act2],
FireSys1[Act1 \ Act2],
{modeA = manual ∧ mode1 = manual};Manual1[Act1 \ Act2],
{modeA = automatic ∧ mode1 = automatic};Auto1[Act1 \ Act2],
{(modeA = manual ∨ mode1 = manual) ∨ mode1 6= manual};

Reset1[Act1 \ Act2],
Countdown1[Act1 \ Act2],
WaitingClock1[Act1 \ Act2],
{mode1 = Disabled};FireSysD1[Act1 \ Act2],
Discharge1[Act1 \ Act2],
{mode1 = Disabled};Disabled1[Act1 \ Act2]





(iii)

The proof obligations raised by this application can be easily proved. Law D.18
states that, in order to introduce an assumption {g} before an action A within the
vector of actions, we have to prove, that for each action B within the vector, if
AB is the behaviour of action B before the invocation of A, the following condition
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holds.

{g};AB vA AB ;{g}

For instance, action Manual1 is invoked by action FireSys1 and recursively by it-
self. For this reason, in order to introduce the assumption above before the action
Manual1 in the vector of actions, we have to prove two conditions. The first one
is related to action FireSys1. In the following proof and throughout this document
we use the following notation for the refinement steps.

A1 vA [law1, . . . , lawn ]{op1} . . . {opn}A2

This denotes that, in order to refine the action A1 to A2, we have applied laws
law1, . . . , lawn . These law applications have raised the proof obligations op1, . . . , opn .

We follow with the refinement proof as follows.

{modeA = manual ∧ mode1 = manual};(FireSys1 before Manual1)
= [Definition of before]
{modeA = manual ∧ mode1 = manual};
systemState!fireSyss → detection?newZone : ZoneId →

ActivateZone1;switchLamp[ZoneId ].newZone!on →
alarm!firstStage → (mode1 = manual) & Skip

= [D .19,D .20,D .21]
{newZone /∈ {modeA,mode1}}
{modeA = manual ∧ mode1 = manual ∧ mode ′

A = modeA ∧ mode ′
1 = mode1 ⇒

mode ′
A = manual ∧ mode ′

1 = manual}
systemState!fireSyss → detection?newZone : ZoneId →

ActivateZone1 → switchLamp[ZoneId ].newZone!on →
alarm!firstStage →
{modeA = manual ∧ mode1 = manual};(mode1 = manual) & Skip

vA [D .16,C .36,C .57]
{modeA = manual ∧ mode1 = manual ∧ mode1 = manual ⇒

modeA = manual ∧ mode1 = manual}
systemState!fireSyss → detection?newZone : ZoneId →

ActivateZone1 → switchLamp[ZoneId ].newZone!on →
alarm!firstStage →
(mode1 = manual) & Skip;{modeA = manual ∧ mode1 = manual}

= [Definition of before]
(FireSys1 before Manual1);{modeA = manual ∧ mode1 = manual}

In the same way, as action Manual1 does not change the values of the variables
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mode1 and modeA, we can easily prove the second condition described below.

{modeA = manual ∧ mode1 = manual};(Manual1 before Manual1)
vA

(Manual1 before Manual1);{modeA = manual ∧ mode1 = manual}

This concludes the proof of the conditions that must hold in order to introduce
the assumption before the action Manual1 in the vector of actions. The remaining
assumption introductions can be proved in a very similar way.

Finally, as discussed above, the refinement from vector (iii) to vector (ii) is valid
if we can prove that the refinement is valid for each corresponding element of each
vector. In this section, we prove some of these refinements. The remaining proofs
can be found in Appendix B.

First, we have the lemma for the refinement of the action FireSysStart1.

Lemma 5.7

FireSysStart1[Act1 \ Act2]
vA


FireSysStart2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
StartAreas



 \ GasDischargeSync

Proof. We start this refinement by applying the definition of action FireSysStart1
and by applying the substitution [Act1 \ Act2].

FireSysStart1[Act1 \ Act2]
= [Definition of FireSysStart1, Substitution]
systemState!fireSysStarts → switchOn →

switchLamp[LampId ].systemOnLamp!on →
InitFireControl1;


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





\ GasDischargeSync
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The schema operation InitFireControl1 can be written as the sequential composition
of two other schema operation as follows.

= [D .7]
{α(InternalSystemState) ∩ α(AreasState) = ∅}
{FV (true) ⊆ α(InternalSystemState)}
{FV (true) ⊆ α(AreasState)}
{{mode ′

1, dischargedOcurred ′
1} ⊆ α(InternalSystemState ′)}

{{mode ′
A, controlledZones ′1, activeZones ′1, discharge

′
1, active

′
1} ⊆

α(AreasState ′)}
systemState!fireSysStarts → switchOn →

switchLamp[LampId ].systemOnLamp!on →
InitInternalSystem;InitAreas;


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





\ GasDischargeSync

Each one of the new inserted schema operations writes in different partitions of the
parallelism that follows them. For this reason, we may distribute them over the
parallelism.

= [D .28,D .29]
{wrtV (InitAreas) ⊆ α(AreasState) ∪ α(AreasState ′)}
{wrtV (InitAreas) ∩ usedV (FireSys2) = ∅}
{wrtV (InitInternalSystem) ⊆

α(InternalSystemState) ∪ α(InternalSystemState ′)}
{wrtV (InitInternalSystem) ∩ usedV (AreasCycle) = ∅}
systemState!fireSysStarts → switchOn →

switchLamp[LampId ].systemOnLamp!on →


(InitInternalSystem;FireSys2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)





\ GasDischargeSync
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Next, we move the switchLamp event to the internal system side of the parallelism.

= [C .44]
{initials(AreasCycle) ⊆ Σ2}
{switchLamp /∈ Σ2}
{wrtV (switchLamp[LampId ].systemOnLamp!on → Skip)∩

usedV (InitAreas;AreasCycle) = ∅}
systemState!fireSysStarts → switchOn →





(
switchLamp[LampId ].systemOnLamp!on →

InitInternalSystem;FireSys2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)





\ GasDischargeSync

Now, we distribute the prefixing switchOn over the parallelism. Furthermore, we
expand the hiding to the whole action body.

= [C .54,C .51]
{{switchOn, systemState} ∩ GasDischargeSync = ∅}
{switchOn ∈ Σ2}



systemState!fireSysStarts →



(
switchOn → switchLamp[LampId ].systemOnLamp!on →

InitInternalSystem;FireSys2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(switchOn → InitAreas;AreasCycle)









\ GasDischargeSync

As we did with the switchLamp, we move the systemState event to the internal
system side of the parallelism.

= [D .4,C .44]
{switchOn ∈ Σ2}
{systemState /∈ Σ2}
{wrtV (systemState!fireSysStarts → Skip)∩

usedV (switchOn → InitAreas;AreasCycle) = ∅}






systemState!fireSysStarts → switchOn →

switchLamp[LampId ].systemOnLamp!on →
InitInternalSystem;FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(switchOn → InitAreas;AreasCycle)





\ GasDischargeSync
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Finally, by applying the definitions of the actions FireSysStart2 and StartAreas,
we conclude the proof of this lemma.

= [Definition of FireSysStart2 and StartAreas]


FireSysStart2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
StartAreas



 \ GasDischargeSync

2

The next lemma we present is the refinement of the action FireSys1.

Lemma 5.8

FireSys1[Act1 \ Act2]
vA


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle



 \ GasDischargeSync
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Proof. As for the previous lemma, we start the proof of this refinement by ap-
plying the definition of FireSys1 and the substitution.

FireSys1[Act1 \ Act2]
= [Definition of FireSys1, Substitution]
systemState!fireSyss →

modeSwitch?newMode : SwitchMode →
SwitchFireControlMode1;


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





\ GasDischargeSync
2 detection?newZone : ZoneId → ActivateZone1;

switchLamp[ZoneId ].newZone!on → alarm!firstStage →
(mode1 = manual) &


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





\ GasDischargeSync
2 (mode1 = automatic) &


Auto2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





\ GasDischargeSync
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on → switchBuzzer !on →


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





\ GasDischargeSync
2 reset → alarm!alarmOff → InitFireControl1;SwitchLampsOff1;


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





\ GasDischargeSync
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Next, we expand the hiding to the whole action.

= [C .54]
{GasDischargeSync ∩

{systemState,modeSwitch, detection, switchLamp,
alarm, fault , switchBuzzer , reset} = ∅}





systemState!fireSyss →
modeSwitch?newMode : SwitchMode →

SwitchFireControlMode1;


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





2 detection?newZone : ZoneId → ActivateZone1;
switchLamp[ZoneId ].newZone!on → alarm!firstStage →

(mode1 = manual) &


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 (mode1 = automatic) &


Auto2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on →


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





2 reset → alarm!alarmOff → InitFireControl1;SwitchLampsOff1;


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle









\ GasDischargeSync

Now, we use the schema calculus to replace all the occurrences of the schema
expression ActivateZone1 by the schema expression ActivateZoneAS . The two ver-
sions of the schema/sequence introduction laws (C.28 and D.7) are used to replace
the schema operations SwitchFireControlMode1 and InitFireControl1 by a sequen-
tial composition of two schema operations. Finally, by definition, we may replace
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the action SwitchLampsOff1 by SwitchLampsOff2.

= [Schema Calculus ,Definition of SwitchLampsOff2,C .28,D .7]
{α(InternalSystemState) ∩ α(AreasState) = ∅}
{{mode ′

1, dischargedOcurred ′
1} ⊆ α(InternalSystemState ′)}

{{controlledZones1, activeZones1, discharged1, active1}∩
{mode ′

1, dischargedOcurred ′
1} = ∅}



systemState!fireSyss →
modeSwitch?newMode : SwitchMode →

SwitchInternalSystemMode; SwitchAreasMode;


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





2 detection?newZone : ZoneId → ActivateZoneAS ;
switchLamp[ZoneId ].newZone!on → alarm!firstStage →

(mode1 = manual) &


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 (mode1 = automatic) &


Auto2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on →


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





2 reset → alarm!alarmOff →
InitInternalSystem;InitAreas;SwitchLampsOff2;


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle









\ GasDischargeSync

We use an auxiliary lemma in order to transform the second choice branch into a
parallelism. Also, we want the guards mode1 = manual and mode1 = automatic to
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be placed only in the internal system side of this parallelism.

= [B .1]
{initials(ActiveAreas) ⊆ Σ2}
{{detection, switchLamp, alarm} ∩ GasDischargeSync = ∅}
{{switchLamp, alarm} ∩ Σ2 = ∅}
{detection ∈ Σ2}
{wrtV (ActivateZoneAS ) ⊆ α(AreasState) ∪ α(AreasState ′)}
{wrtV (ActivateZoneAS ) ∩ (usedV (Auto2) ∪ usedV (Manual2)) = ∅}



systemState!fireSyss →
modeSwitch?newMode : SwitchMode →

SwitchInternalSystemMode; SwitchAreasMode;


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





2









detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on →

alarm!firstStage →
(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|(
detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle

)





2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on →


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





2 reset → alarm!alarmOff →
InitInternalSystem;InitAreas;SwitchLampsOff2;


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle









\ GasDischargeSync

We refine the third and forth alternative branches in order to move the non-
synchronising events to one of the parallel actions; in our case, the internal system
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action.

= [C .44]
{initials(AreasCycle) ⊆ Σ2}
{{switchLamp, fault , switchBuzzer} ∩ Σ2 = ∅}
{{faultId} ∩ usedV (AreasCycle) = ∅}



systemState!fireSyss →
modeSwitch?newMode : SwitchMode →

SwitchInternalSystemMode; SwitchAreasMode;


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





2









detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on →

alarm!firstStage →
(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|(
detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle

)





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





2 reset → alarm!alarmOff →
InitInternalSystem;InitAreas;


(SwitchLampsOff2;FireSys2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle









\ GasDischargeSync
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The next step consists in distributing the schema operations over the respective
parallelism.

= [D .29,D .28]
{wrtV (SwitchAreasMode) ⊆ α(AreasState) ∪ α(AreasState ′)}
{wrtV (SwitchAreasMode) ∩ usedV (FireSys2) = ∅}
{wrtV (SwitchInternalSystemMode) ⊆

α(InternalSystemState) ∪ α(InternalSystemState ′)}
{wrtV (SwitchInternalSystemMode) ∩ usedV (AreasCycle) = ∅}
{wrtV (InitAreas) ⊆ α(AreasState) ∪ α(AreasState ′)}
{wrtV (InitAreas) ∩ usedV (FireSys2) = ∅}
{wrtV (InitInternalSystem) ⊆

α(InternalSystemState) ∪ α(InternalSystemState ′)}
{wrtV (InitInternalSystem) ∩ usedV (AreasCycle) = ∅}



systemState!fireSyss →
modeSwitch?newMode : SwitchMode →


(SwitchInternalSystemMode; FireSys2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(SwitchAreasMode;AreasCycle)





2









detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on →

alarm!firstStage →
(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|(
detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle

)





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





2 reset → alarm!alarmOff →


(InitInternalSystem;SwitchLampsOff2;FireSys2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)









\ GasDischargeSync
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Now, we move the alarm event, in the forth choice branch, to the internal system
action.

= [D .4,C .44]
{initials(InitAreas;AreasCycle) ⊆ Σ2}
{alarm /∈ Σ2}
{wrtV (alarm!alarmOff → Skip) ∩ usedV (InitAreas;AreasCycle) = ∅}



systemState!fireSyss →
modeSwitch?newMode : SwitchMode →


(SwitchInternalSystemMode; FireSys2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(SwitchAreasMode;AreasCycle)





2









detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on →

alarm!firstStage →
(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|(
detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle

)





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





2 reset →




(
alarm!alarmOff →

InitInternalSystem;SwitchLampsOff2;FireSys2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)









\ GasDischargeSync

The first and the forth branches of the alternative can be refined by a distribution of
the prefixing over the parallelism as shown below. The associativity of the external

104



choice is also used to move the reset branch of the alternative.

= [D .6,C .51,D .22]
{modeSwitch ∈ Σ2}
{reset ∈ Σ2}



systemState!fireSyss →



(
modeSwitch?newMode : SwitchMode →

SwitchInternalSystemMode; FireSys2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|(
modeSwitch?newMode : SwitchMode →

SwitchAreasMode;AreasCycle

)





2





(
reset → alarm!alarmOff →

InitInternalSystem;SwitchLampsOff2;FireSys2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(reset → InitAreas;AreasCycle)





2









detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on →

alarm!firstStage →
(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|(
detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle

)





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle









\ GasDischargeSync

In the next refinement step, we use the parallelism/external choice exchange law (C.45)
in order to transform a external choice of parallelism in a parallelism of external
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choices.

= [D .22,C .45]
{{modeSwitch, detection, reset} ⊆ Σ2}



systemState!fireSyss →







modeSwitch?newMode : SwitchMode →
SwitchInternalSystemMode; FireSys2

2 reset → alarm!alarmOff →
InitInternalSystem;SwitchLampsOff2;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on →

alarm!firstStage →
(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



modeSwitch?newMode : SwitchMode →
SwitchAreasMode;AreasCycle

2 reset → InitAreas;AreasCycle
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle









2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle









\ GasDischargeSync
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We may introduce a Stop branch to any external choice, since the Stop is the
external choice unit.

= [C .58]



systemState!fireSyss →







modeSwitch?newMode : SwitchMode →
SwitchInternalSystemMode; FireSys2

2 reset → alarm!alarmOff →
InitInternalSystem;SwitchLampsOff2;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on →

alarm!firstStage →
(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



modeSwitch?newMode : SwitchMode →
SwitchAreasMode;AreasCycle

2 reset → InitAreas;AreasCycle
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle









2 Stop

2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle









\ GasDischargeSync
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However, using the second parallelism zero law, we may transform the Stop to a
parallelism as follows.

= [D .27]
{{modeSwitch, reset , detection, automaticDischarge,manualDischarge} ⊆ Σ2}
{{modeSwitch, reset , detection} ∩ {automaticDischarge,manualDischarge} = ∅}




systemState!fireSyss →







modeSwitch?newMode : SwitchMode →
SwitchInternalSystemMode; FireSys2

2 reset → alarm!alarmOff →
InitInternalSystem;SwitchLampsOff2;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on →

alarm!firstStage →
(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



modeSwitch?newMode : SwitchMode →
SwitchAreasMode;AreasCycle

2 reset → InitAreas;AreasCycle
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle









2









modeSwitch?newMode : SwitchMode →
SwitchInternalSystemMode; FireSys2

2 reset → alarm!alarmOff →
InitInternalSystem;SwitchLampsOff2;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on →

alarm!firstStage →
(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



2 area : AreaId • automaticDischarge.area →
gasNotDischarged .area → AreasCycle

2 2 area : AreaId • manualDischarge.area →
gasNotDischarged .area → AreasCycle









2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle









\ GasDischargeSync
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Since we have a deterministic system, and the first and the second branches of the
alternative have the left-hand side of the parallelism in common, the distribution
of parallelism over external choice law can be applied, as we present below.

= [C .46]
{{modeSwitch, reset , detection} ⊆ Σ2}



systemState!fireSyss →







modeSwitch?newMode : SwitchMode →
SwitchInternalSystemMode; FireSys2

2 reset → alarm!alarmOff →
InitInternalSystem;SwitchLampsOff2;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on →

alarm!firstStage →
(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|




modeSwitch?newMode : SwitchMode →
SwitchAreasMode;AreasCycle

2 reset → InitAreas;AreasCycle
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle
2 2 area : AreaId • automaticDischarge.area →

gasNotDischarged .area → AreasCycle
2 2 area : AreaId • manualDischarge.area →

gasNotDischarged .area → AreasCycle









2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle









\ GasDischargeSync

Still refining the first branch of the external choice, we may notice that all the
choices of the right-hand side of the parallelism finishes with AreasCycle. In this
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case, we may use the distribution of sequence over external choice as follows.

= [C .24,D .24,D .22]



systemState!fireSyss →







modeSwitch?newMode : SwitchMode →
SwitchInternalSystemMode; FireSys2

2 reset → alarm!alarmOff →
InitInternalSystem;SwitchLampsOff2;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on →

alarm!firstStage →
(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|







modeSwitch?newMode : SwitchMode →
SwitchAreasMode

2 reset → InitAreas
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas
2 2 area : AreaId • automaticDischarge.area →

gasNotDischarged .area → Skip
2 2 area : AreaId • manualDischarge.area →

gasNotDischarged .area → Skip





;

AreasCycle









2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle









\ GasDischargeSync

Now, we have actually that the right-hand side of the parallelism in the first branch
of the external choice, given the associativity of the external choice, is the action
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AreasCycle.

= [D .22,Definition of AreasCycle]



systemState!fireSyss →







modeSwitch?newMode : SwitchMode →
SwitchInternalSystemMode; FireSys2

2 reset → alarm!alarmOff →
InitInternalSystem;SwitchLampsOff2;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on →

alarm!firstStage →
(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle









\ GasDischargeSync

One more time, as we have the same action in the right-hand side of the parallelism,
we may apply the distribution of the parallelism over external choice law (C.46).

= [C .46]
{initials(AreasCycle) ⊆ Σ2}



systemState!fireSyss →



modeSwitch?newMode : SwitchMode →
SwitchInternalSystemMode; FireSys2

2 reset → alarm!alarmOff →
InitInternalSystem;SwitchLampsOff2;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on →

alarm!firstStage →
(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





\ GasDischargeSync
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Finally, we may move the communication of the system state to the internal system
side of the parallelism as presented below.

= [D .4,C .44]
{initials(AreasCycle) ⊆ Σ2}
{Σ2 ∩ {systemState} = ∅}
{wrtV (systemState!fireSyss → Skip) ∩ usedV (AreasCycle) = ∅}







systemState!fireSyss →
modeSwitch?newMode : SwitchMode →

SwitchInternalSystemMode; FireSys2

2 reset → alarm!alarmOff →
InitInternalSystem;SwitchLampsOff2;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on →

alarm!firstStage →
(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





\ GasDischargeSync

This finishes our proof since, by the associativity of external choice, we have that
the right-hand side of the parallelism is the definition of the action FireSys2.

= [D .22,Definition of FireSys2]


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle



 \ GasDischargeSync

2

For conciseness, the proof of the remaining lemmas are not presented here. They
can be found in Appendix B.

In the following section we make a process refinement in order to upgrade each
partition into a separate process (InternalSystem and Areas).
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5.6.4 Process Refinement: upgrading the partitions into sep-
arated processes (InternalSystem and Areas)

In the previous section, we partitioned the state of the process FireControl1 into
InternalSystemState and AreasState. Each partition has its own set of process
paragraphs. These sets are disjoint, since, no command nor action expression in
one set refers to state components in the other partition state or paragraph names.
Furthermore, we define the main action of the refined process in terms of these two
partitions. Therefore, we may apply Law C.11 in order to split process FireControl2
into two independent processes: InternalSystem and Areas , which are described in
Appendix G.

The process FireControl2 becomes the parallel composition of the InternalSystem
and the Areas as defined below.

process FireControl2 =̂


InternalSystem
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
Areas



 \ GasDischargeSync

In the next section, we refine the process Areas in order to describe the areas
as an interleaving of individual processes that model each of the areas.

5.6.5 Data Refinement: the Areas process as a promotion of
individual areas

5.6.6 Process Refinement: split the Areas into separated
Area processes

5.6.7 Action Refinement: decomposing the InternalSystem in
two partitions

5.6.8 Process Refinement: split the InternalSystem into a FireControl
and a DisplayController

5.7 Conclusions

113



Chapter 6

Implementation Using JCSP

In this chapter we present a strategy for implementing Circus programs in JCSP [25,
24]. The strategy is based on a number of translation laws, which, if applied ex-
haustively, transforms a Circus program into a Java program that uses the JCSP
library. We assume that, before applying the translation strategy presented in this
chapter, the specification of the system we want to implement has been already
refined, using the Circus refinement strategy (Chapter 3), to meet the translation
strategy’s requirements discussed in Section 6.2.

First, Section 6.1 presents JCSP and some examples. Section 6.2 presents the
strategy to implement Circus programs using JCSP. In Section 6.3 we extend the
types of communication considered in our strategy, and in Section 6.4 we present
the translation strategy for the Circus indexed operator. In Section 6.5 we present
an example. Finally, in Section 6.6 we conclude with some considerations about the
strategy.
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6.1 JCSP

JCSP [25, 24] is a Java library that provides tools for implementing communicating
processes based on the CSP model of communicating systems.

In JCSP, a CSP process is an instance of a class that implements the interface
CSProcess defined below.

public interface CSProcess { public void run(); }

The method run defines the process behaviour. By way of illustration, let us con-
sider the following process that outputs (in the standard output) the Fibonacci
sequence.

public class Fibonacci implements CSProcess {

private int x = 1, y = 1;

public void run(){

System.out.println(x);

System.out.println(y);

while(true) {

int next = x+y;

System.out.println(next);

x = y;

y = next;

}

}

}

This process has two integer components: x and y. The later stores the last value
output by the process, and the former stores the value output before that. First,
the process Fibonacci outputs the number 1 twice. These values are stored in the
variables x and y. Then, it iterates: in each iteration, the next output corresponds
to the sum of the last two outputs x and y, which are updated after the output.
However, in this example, no interaction happens with any other process.

All the interaction with a process is made via CSP synchronising channels. In
JCSP, the simplest form of such channels is the point-to-point channel, which is im-
plemented by class One2OneChannel; multiple readers and writers are not allowed.
On the other hand, Any2AnyChannel allows multiple reader and writers. How-
ever, for any type of channel in JCSP, when a communication happens, it happens
between one writer and one reader (point-to-point).

Channels in JCSP communicate instances of a java.lang.Object. However, for
each channel type in JCSP, there is a corresponding channel type that communicates
values of the basic type int, which are used in our example.

The Fibonacci process described above can be rewritten as follows.
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public class Fibonacci implements CSProcess {

private int first = 1, second = 1;

private One2OneChannelInt out;

public Fibonacci(One2OneChannelInt out){ this.out = out; }

public void run(){

out.write(first); out.write(second);

while(true) {

int next = first+second;

out.write(next);

first = second;

second = next;

}

}

}

Instead of printing the fibonacci sequence, the process Fibonacci communicates
the sequence through the channel out, which is received as an argument in the
constructor of the class. In order to write an object to a channel, a process must
invoke the public method write; the public method read is used to read an ob-
ject from a channel. The invocation of write is blocked until the communication
happens (some other process reads the written value). In a similar way, read is
blocked until a value is written to the channel. In our example, as we are using
One2OneChannelInt channels, we may write ints to the channel.

The choice is a very important operator in CSP. In JCSP, this operator is pro-
vided by an object of class Alternative, which waits the possibility to synchronise
in some of its events, and then, chooses one of those. The choice can be arbitrary,
which is a random choice; user-prioritised, in which the user set priority for each of
the channels involved in the choice; and fair, in which available channels are fairly
chosen.

Our example can be extended in order to give the environment the choice be-
tween a new value of the sequence or a new start of the sequence, after the first two
elements of the sequence have been output. This choice is represented by two new
input channels, which are also declared as private attributes of the process, and are
taken as arguments in the constructor.

public class Fibonacci implements CSProcess {

private int first = 1, second = 1;

private One2OneChannelInt out;

private One2OneChannel nextValue, restart;

public Fibonacci(One2OneChannelInt out,

One2OneChannel nextValue,

One2OneChannel restart){
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this.out = out;

this.nextValue = nextValue;

this.restart = restart;

}

}

The method run is changed in order to introduce the choice, after the output of the
first two elements of the sequence. An array guard of all channels that are involved
in the choice, and integer constants corresponding to the indexes of these channels
in the array are declared.

public void run(){

nextValue.read(); out.write(first);

nextValue.read(); out.write(second);

final Guard[] guard = { nextValue, restart };

final int NEXT_VALUE = 0;

final int RESTART = 1;

This array of channels is given as argument to the constructor of the Alternative.
In our example, we make a fair choice using the method fairSelect, which re-
turns the index of the chosen channel in the array of channel of the Alternative.
A switch block is used to verify the value returned by the invocation of method
fairSelect: if the channel nextValue is chosen, the sequence is restarted; other-
wise, the process outputs the next value.

final Alternative alt = new Alternative (guard);

while(true){

switch (alt.fairSelect()) {

case NEXT_VALUE:

int next = first+second;

nextValue.read(); out.write(next);

first = second; second = next;

break;

case RESTART:

restart.read();

first = second = 1;

nextValue.read(); out.write(first);

nextValue.read(); out.write(second);

break;

}

}

}

}
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CSP parallel processes are written using the class Parallel. Its constructor
takes an array of CSProcesses and returns a CSProcess that is the parallel com-
position of its process arguments. A run of a Parallel process terminates when,
and only when, all its component processes terminate.

By way of illustration, suppose we have a class Reader which defines a reader
that communicates with the process Fibonacci. All the channels used in the com-
munication, as in the class Fibonacci, are declared attributes of the class and are
given as arguments to its constructor.

public class Reader implements CSProcess {

private One2OneChannelInt out;

private One2OneChannel nextValue, restart;

public Reader(One2OneChannelInt out,

One2OneChannelInt nextValue,

One2OneChannelInt restart){

this.out = out;

this.nextValue = nextValue;

this.restart = restart;

}

However, the method run is quite different. We suppose our Reader restarts the
fibonacci sequence each time it reads ten values of the sequence.

public void run(){

int count = 1;

while(true){

if(count<=10){

nextValue.write(null);

System.out.println(out.read()); count++;

} else {

restart.write(null); count = 1;

}

}

}

}

No values are communicated through the channels nextValue and restart; they
are only synchronising events. For this reason, we write the null value to these
channels.

Finally, we can declare the class FibonacciReader below, which brings both
the Fibonacci and the Reader processes in parallel. It instantiates the channels
that are used by both processes, and uses these channels to create an instance of
each process.
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public class FibonacciReader implements CSProcess {

private One2OneChannelInt out = new One2OneChannelInt();

private One2OneChannel nextValue = new One2OneChannel();

private One2OneChannel restart = new One2OneChannel();

private Fibonacci fibonacci =

new Fibonacci(out,nextValue,restart);

private Reader reader = new Reader(out,nextValue,restart);

Its execution consists of an instantiation of a Parallel of both process, and its
execution.

public void run() {

CSProcess[] processes =

new CSProcess[]{fibonacci,reader};

Parallel parallel = new Parallel(processes);

parallel.run();

}

}

This executes both the Fibonacci and the Reader in parallel.
The CSP constructors Skip and Stop can be written using the corresponding

classes Skip and Stop. Finally, JCSP provides some additional features as Barrier,
which enables barrier synchronisation between a set of processes, and Delta, which
has an infinite loop that waits for objects to be sent to it, and then sends the
reference to the object in parallel to an array of processes. These facilities are not
used in our work; details can de found in [25, 24].

6.2 From Circus to JCSP

Our strategy for implementing Circus programs considers each single paragraph
individually, and in sequence. Circus paragraphs include Z paragraphs, channel
declarations, and process declarations.

We assume that, in the Circus program to be implemented, these three types of
paragraphs grouped in this order. Our strategy considers that neither free types nor
abbreviations are defined within processes definitions. Our strategy also assumes
that the Z paragraphs in a Circus program are axiomatic definitions of the form
v : T | v = e1, free types, or abbreviations. The types used in the Circus program
should all be already implemented in Java. Moreover, we also consider that, at this
stage, all operation schemas and specification constructs have already been refined.

Z paragraphs used to group channel declarations, as well as channel sets must
be expanded before the translation strategy is applied. We consider only communi-
cations of the following types: non-typed inputs, outputs, or synchronisation events.
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This means that channels can be declared to be only of a single type or to have no
type. In summary, the acceptable communications are all of the following form.

Comm ::= N?N |N!Expression |N

Communications of the form c?N : T and c?N : Predicate are not directly im-
plementable in JCSP. Their semantics in Circus is that the communication does
not happen if the transmitted value is not in the set T or does not satisfy the
Predicate. In JCSP, a communication happens when some process writes in a
channel, and some other process reads from this channel. JCSP does not allow to
backtrack this communication if the read value does not satisfy a constraint. Our
strategy, however, considers that such kind of communication has been refined to
some protocol that removes them. Furthermore, since in JCSP, we may write/read
an object to/from a channel, communications may have only one input or one out-
put value: multiple inputs/outputs must be encapsulated in Java objects.

Multi-synchronisation channels are also not implementable in JCSP. Our strat-
egy considers that multi-synchronisation has been refined to some protocol, as the
one presented in [32]. Besides, guarded output channel must have been removed
using the strategy presented in ??1.

The output of our translation strategy is Java code that contains some classes
definitions. These definitions can be split into different Java files and allocated in
their respective packages. For a given project name proj, the translation strategy
generates six packages: the package proj contains the main system class; the pack-
age proj.axiomaticDefinitions contains the class that encapsulates all the ax-
iomatic definitions within the translated Circus program; all the processes in the Cir-

cus program are declared in the package proj.processes; the package proj.typing
contains all the typing classes of the system; and the package proj.util contains
all the utilities classes used in the system.

Parallelism of actions and processes must take into account the set of synchro-
nisation channels and the partitions of the variables in scope. JCSP, however, does
not allow the user to determine the synchronisation channel set. For this reason,
when using JCSP, the intersection of the alphabets determines the synchronisation
channels set. If it is not empty, we have a parallelism in the intersection channels;
otherwise, we have actually an interleaving. Therefore, all parallelism in the Circus

program have to be in the form A1 |[ns1 | cs | ns2 ]|A2 for actions, or P1 |[cs ]|P2 for
processes, where cs is the intersection of the sets of channels used by A1 and A2,
or P1 and P2, respectively.

The translation strategy uses a channel environment ChanTypeEnv : ChanEnv ,
where ChanEnv is an extension of the channel environment presented in Section 2.2.
It associates a channel name to a pair of sequences: the first is a sequence of possible

1This work was done by Jim Woodcock, but has not yet been published anywhere
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generic expressions used to define a family of channels; and the second is a sequence
of types of the channel.

ChanEnv == ChanName 7 7→ (seq Expression × seq Expression)

We consider that this environment is available during the translation. Its definitions
is as in Section 2.2 with a small extension for considering generic channels: the
definition of function |[ ]|C is extended as follows to consider the generic channels
declaration as follows.

|[ ]|C : CDeclaration → ChanEnv

|[n]|C = {n 7→ ([ ], [Sync])}

|[n : T1 × . . . × Tm]|C = {n 7→ ([ ], [T1, . . . ,Tm ])}

|[[G1, . . . ,Gn ]n : T1 × . . . × Tm]|C = {n 7→ ([G1, . . . ,Gn ], [T1, . . . ,Tm ])}

For generic channels, we have that the used generic types are also stored in the
channel environment.

Besides the environment ChanTypeEnv , we consider that, for each process, two
additional environments are available throughout its translation. These environ-
ments store information about how each channel is used within each process: the
environment VisChanEnv : ChanUseEnv stores the information of the visible chan-
nels of the process, and the environment HidChanEnv : ChanUseEnv stores the
information of the hidden channels of the process. The type ChanUseEnv maps
channel names to its use.

ChanUseEnv == N 7→ ChanUse

The type ChanUse indicates how the channel is used within the process: I for input
channels, O for output channels, or A for input channels that take part in external
choices.

ChanUse ::= I | O | A

An type environment is also considered available in the translation: the envi-
ronment TypesEnv : seq Expression lists all the types that are used in the Circus

program which is being translated. This list includes all the basic types, free types,
abbreviations, and possible types created for encapsulating multiple inputs and
outputs.

Some auxiliary functions are considered throughout the translation: the function
JType defines the Java type corresponding to each of the Circus types used in the
program; the function JExp translates a given expression into Java code; and, finally,
the function CType returns the Circus type of the given variable.
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Our strategy considers that all values transported through channels are Java
objects. Despite the existence of int channels in JCSP, we consider only Object
channels. Java primitive integer values are transmitted through the channels using
the class java.lang.Integer.

In Section 6.2.1 we present the translation for processes declarations and in
Section 6.2.2 we present the translation for basic processes. Sections 6.2.3 and 6.2.4
present the translation of processes paragraphs and CSP actions, respectively. In
Section 6.2.5 we present how to translate processes that are defined in terms of other
processes. The translation of existent Z paragraphs is presented in Section 6.2.6, and
the declaration of utilities classes is presented in Section 6.2.7. Finally, Sections 6.2.8
and 6.2.9 present the translation and the execution of Circus programs.

6.2.1 Processes Declarations

For each process declaration, we create a new Java class that implements this
process. All Java classes representing processes implement the JCSP interface
jcsp.lang.CSProcess.

First, if the translations reaches the end of the processes declaration it returns
the empty Java code.

|[ ]|ProcDecls : Program 7→ N 7→ JCode

|[ε ]|ProcDecls proj = ε

The type JCode represents a Java code. Throughout this chapter, we use the symbol
ε to represent empty entities: Circus programs, Java code, or others.

Otherwise, for a given process P and project name proj , we declare a new Java
class P in the package proj.processes. This class imports the java utilities package,
the JCSP package that contains its most important classes, and all the packages
within the project. The body of the class is determined by the translation of the
paragraphs of P .

|[process P =̂ ParProc ProcDecls ]|ProcDecls proj =
package proj.processes;
import java.util.*;

import jcsp.lang.*;

import proj.axiomaticDefinitions.*;
import proj.typing.*;
import proj.util.*;
public class P implements CSProcess {

|[ParProc]|ParProc

}

|[ProcDecls ]|ProcDecls proj
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If the process is parameterised, this is reflected in the attributes and in the
constructor of the corresponding process Java class. Furthermore, hidden channels
are declared as attributes of the class, and initialised in the class constructor, as
the parameters and the visible channels of the process.

The translation the body of parametrised processes is captured by the following
function.

|[ ]|ParProc : ParProc 7→ JCode

|[Decl • Proc]|ParProc =
ParamsDecl Decl
VisibleCDecl VisChanEnv
HiddenCDecl HidChanEnv
public P(ParamsArgs Decl,VisibleCArgs VisChanEnv){

MultiAssign (ParamsDecl Decl) (ParamsArgs Decl)
MultiAssign (VisibleCDecl VisChanEnv)

(VisibleCArgs VisChanEnv)
HiddenCCreation HidChanEnv

}

public void run(){ |[Proc ]|Proc
}

The parameters, visible and hidden channels are declared as class attributes. They
are initialised within the class constructor: the parameters and the visible channels
are initialised with the value given as argument to the constructor, and the hidden
channels are instantiated. Finally, the body of the method run, which represents
the process running, is the translation of the process body Proc. The following
sections describe these steps of the translation.

Class Attributes

Each of the parameters of the process is declared as an attribute of the Java class
that represents the process. The function ParamsDecl transforms a declaration of
parameters of a Circus process into a ;-separated list of Java attribute declarations.

ParamsDecl : Decl 7→ JCode

ParamsDecl x1 : T1; . . . ; xn : Tn =
private (JTypeT1) x_1; . . . ; private (JTypeTn) x_n;

The visible channels within a Circus process need also to be declared. The
function VisibleCDecl receives these channels along with their respective usage,
and declares a ;-separated list of Java attribute declarations.

VisibleCDecl : ChanUseEnv 7→ JCode

VisibleCDecl ∅ = ε
VisibleCDecl {c 7→ t} ∪ υ = private (TypeChan t) c; VisibleCDecl υ
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It uses an auxiliary function TypeChan that returns a type of channel given a type
of use.

TypeChan : {I ,O ,A} 7→ JCode

TypeChan(I ) = ChannelInput

TypeChan(O) = ChannelOutput

TypeChan(A) = AltingChannelInput

The hidden channels used within a Circus process need also to be declared as class
attributes. The function HiddenCDecl receives these channels and their respective
usage, and declares a ;-separated list of Java attribute declarations.

HiddenCDecl : ChanUseEnv 7→ JCode

HiddenCDecl ∅ = ε
HiddenCDecl {c 7→ t} ∪ υ = private Any2OneChannel c; HiddenCDecl υ

The hidden channels are instantiated within this process. For this reason, we declare
then as Any2OneChannel, which can be instantiated. In contrast, the visible chan-
nels are declared using function TypeChan since they are not instantiated within
this class.

Class Constructor

Basically, the constructor has to initialise all the visible channels and the parameters
of the process with the respective constructor arguments, and to instantiate each of
the hidden channels used within the paragraphs and the main action of the process.

The function ParamsArgs is similar to ParamsDecl , but prefixes each parameter
name of the process with new and returns a ,-separated list of method parameters
declarations.

ParamsArgs : Decl 7→ JCode

ParamsArgs x1 : T1; . . . ; xn : Tn =
(JTypeT1) newx_1, . . . , (JTypeTn) newx_n

The next arguments of the constructor are the channels used within the process
which are not hidden. The function VisibleCArgs is very similar to the function
VisibleCDecl , but prefixes each channel name with new and returns a ,-separated
list of Java method arguments declarations. Its definition is as follows.

VisibleCArgs : ChanUseEnv 7→ JCode

VisibleCArgs ∅ = ε
VisibleCArgs {c 7→ t} ∪ υ =

if (v 6= ∅) then (TypeChan t) newc, (VisibleCArgs υ)
else (TypeChan t) newc
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The initialisation is done using the function MultiAssign. This function receives
two arguments: a ;-separated list of Java attribute declarations, and a ,-separated
list or Java methods arguments. It can be defined as shown below.

MultiAssign : JCode 7→ JCode 7→ JCode

MultiAssign (private type_1 v_1 ; . . . ; private type_n v_n;)
(type_1 newv_1 ; . . . , type_n newv_n;) =

this.v_1 = newv_1; . . . ; this.v_n = newv_n;

The instantiation of the hidden channels uses the function HiddenCCreation.

HiddenCCreation : ChanUseEnv 7→ JCode

HiddenCCreation ∅ = ε
HiddenCCreation {c 7→ t} ∪ υ =

this.c = new Any2OneChannel(); HiddenCCreation υ

For a non-parametrised process Proc, we have that |[Proc]|ParProc is similar. The
only difference is that attributes corresponding to parameters (and their initialisa-
tion) are not needed.

At this stage, we have declared the class that represents a given process, its
attributes, and its constructor. We are now left, with the definition of the method
run’s body. This is determined by the process definition, which we consider next.

6.2.2 Transformation of Basic Processes

Each process is translated to an execution of an inner class that implements the
class jcsp.lang.CSProcess. The first kind of process that we translate is

begin PPars1 state PSt PPars2 • Main.

The inner class definition starts by declaring all the state components of the process
as attributes of the process class. In the translation of the process paragraphs, each
schema expression and CSP action gives rise to a private method. Finally, the body
of the method run is the result of the translation of the main action. We present
below the definition of the function |[ ]|Proc.

|[ ]|Proc : Proc 7→ JCode

|[begin PPars1 state PSt PPars2 • Main ]|Proc =
(new CSProcess(){

(StateDecl PSt)

(|[PPars1 PPars2]|
PPars)

public void run() { |[Main ]|Action
}

}).run();
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The state declaration is defined as a schema expression. We use the function
StateDecl to transform this schema expression into a ;-separated list of Java at-
tribute declarations.

StateDecl : SchemaExp 7→ JCode

StateDecl [ x1 : T1; . . . ; xn : Tn | inv ] =
private (JType T1) x_1; . . . ; private (JType Tn) x_n;

Our strategy ignores the invariant since it has already been considered in the refine-
ment of the process. Once all the actions are refined to code, in the presence of the
invariant, it can be eliminated. It is kept in a Circus program just for documentation
purposes.

6.2.3 Process Paragraphs.

The function |[ ]|PPars translates the paragraphs within a Circus process. These
paragraphs can either be axiomatic definitions, or (parametrised) actions.

Axiomatic definitions within processes are defined as private methods of the
class that defines this process.

|[ ]|PPars : PPar∗ 7→ JCode

|[ε]|PPars = ε

|[v : T | v = e1 PPars]|PPars =
private (JType T ) v() { return (JExp e1); }

|[PPars]|PPars

Both parametrised actions and non-parametrised actions are translated into
private methods. However, the former requires that the parameters are declared as
arguments of the new method.

|[N =̂ (Decl • Action) PPars]|PPars =

private void N(ParamsArgs Decl){ |[Action ]|Action
}

|[PPars]|PPars

|[N =̂ Action PPars]|PPar =

private void N(){ |[Action ]|Action
}

|[PPars]|PPars

The function |[ ]|Action translates the body of a given action. These actions can
be schema expressions, CSP actions, or commands. As already mentioned, that
schema expressions have already been refined. We are then left with CSP actions
and commands.
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6.2.4 CSP Actions.

In the translation of each action, we consider that a new environment is available.
The local variables environment LocalVarEnv : VarEnv is used to declare copies of
the local variables in scope in the translation of parallel and recursive actions.

VarEnv == seq(N × Expression)

For each local variable in scope, the environment LocalVarEnv has a corresponding
pair: its first element is the local variable name and the second element is its type.
The translation function receives an action as argument and returns a Java code
that implements this action.

|[ ]|Action : Action 7→ JCode

Besides, as for processes, we consider that, for each action, the channel envi-
ronments VisChanEnv and HidChanEnv are available throughout its translation.
However, these environments store information about how each channel is used
within each action.

In the next sections, we present the translation of different Circus actions types.

Skip, Stop, and Chaos

The translations of Skip and Stop use basic JCSP classes; Chaos is translated to
an infinite loop.

|[Skip]|Action = (new Skip()).run();

|[Stop]|Action = (new Stop()).run();

|[Chaos]|Action = while(true){};

Communications

For non-typed input communications, we use the channels environment in order to
identify the type of the input variable. Besides, the local variables environment is
also used in order to verify if the input variable is already declared or not. We
assign to the input variable the value read from the channel. We must also use
Java casting, since the type of the objects transmitted through the channels are
java.lang.Object.

|[c?x → Action]|Action =
let commType = last (snd (ChanTypeEnv c)) in

if (x /∈ (SetFirst LocalVarEnv)) then
{ (JType commType) x = (JType commType)c.read();

|[Action ]|Action
}

else x = (JType commType)c.read(); |[Action]|Action
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The function last returns the last element of a given list. The function SetFirst
receives a sequence of pairs and returns a set containing all the first elements of
this sequence.

SetFirst : seq(N × Expression) 7→ P N

SetFirst [ ] = ∅
SetFirst (x ,T ) : xs = {x} ∪ (SetFirst xs)

The output communication just writes in the channel the expression to be writ-
ten.

|[c!e → Action]|Action = c.write(JExp e); |[Action]|Action

For synchronisation channels, we need to know wether this channel is declared an
input or output channel, in order to read from the channel or to write to the channel,
respectively. This information is retrieved either from the VisChanEnv , or from the
HidChanEnv environments.

|[c → Action]|Action =
if (c ∈ domVisChanEnv) then

if (VisChanEnv c = I ∨ VisChanEnv c = A) then

c.read(); |[Action]|Action

else c.write(null); |[Action]|Action

else if (c ∈ domHidChanEnv) then
if (HidChanEnv c = I ∨ HidChanEnv c = A) then

c.read(); |[Action]|Action

else c.write(null); |[Action]|Action

In JCSP, the method write receives the object that must be written as argument.
As we do not have any value to communicate, we communicate the null value.

Sequential composition

Sequential compositions can be simply translated to a Java sequential composition.

|[Action1;Action2]|
Action = |[Action1 ]|Action

; . . . ; |[Actionn]|
Action

External Choice

The translation of an external choice uses the jcsp.lang.Alternative class. The
idea is to create an alternative in which all the initial channels of all actions, that
are not hidden, take part. Furthermore, in this case, we consider that all nested
guarded actions in the form 2

i
gi & 2

j
gij & Aij have already been refined to
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guarded actions in the form 2
i ,j

gi ∧ gij & Aij . Besides, unguarded actions have

already been refined to true guarded actions. For instance, the action A1 2 A2 has
been refined to true & A1 2 true & A2. These are very simple refinements and they
help in the definition of the auxiliary function Guard below. The external choice
translation is defined as follows.

|[Action1 2 . . . 2 Actionn]|
Action =

Guard[] guards =

new Guard[]{InitCAttr Action1, . . . ,InitCAttr Actionn};

final Alternative alt = new Alternative(guards);

DeclConstants (ExtractInitChannels Action1) 0
. . .
DeclConstants

(ExtractInitChannels Actionn) (#(ExtractInitChannels Actionn−1))
boolean[] g =

new boolean[]{Guard Action1, . . . ,Guard Actionn};

switch(alt.fairSelect(g)) {

Cases (ExtractInitChannels Action1) Action1

. . .
Cases (ExtractInitChannels Actionn) Actionn

}

First, it defines the events competing for selection by a declared Alternative pro-
cess alt. One integer constant is declared for each one of these events. The guards
gi of each action are also declared within a boolean array. Finally, the alternative
is made, and the corresponding action is executed.

The function InitCAttr returns a ,-separated list of all the visible initials chan-
nels of a given action.

InitCAttr : Action 7→ JCode

InitCAttr Action = DecAttrChannels (ExtractInitChannels Action)

The function ExtractInitChannels : Action 7→ seq(N × Predicate) returns a list of
pairs. For each initial visible channels of the given action, it includes a new pair in
this list: the first element is the channel name, and the second element is a predicate
that represents its guard (the condition that must hold in order to the channel to
become available).

The function DecAttrChannels can be defined as

DecAttrChannels : seq(N × Predicate) 7→ JCode

DecAttrChannels [ ] = ε
DecAttrChannels (c, p) : [ ] = c

DecAttrChannels (c, p) : cs = c, DecAttrChannels cs
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The function DeclConstants returns a ;-separated list of int constant declarations,
one for each channel in the given channel list. The first constant is initialised
with n; each subsequent constant is initialised with the previous constant value
incremented by one. These constants are used in the switch block to identify each
possible choice made by the fairSelect method.

DeclConstants : seq(N × Predicate) 7→ N 7→ JCode

DeclConstants [ ] n = ε
DeclConstants (c, p) : cs n =

final int CONST_(Capitals c) = n; DeclConstants cs (n + 1)

The function Capitals returns the given argument in capitals.
The function Guard returns the guard of the given action.

Guard : Action 7→ JCode

Guard (g & A) = (JExp g)

Finally, the function Cases returns a sequence of Java case blocks, one for each
channel in the given list.

Cases : seq(N × Predicate) 7→ Action 7→ JCode

Cases [ ] a = ε
Cases ((c, p) : cs) a =

case CONST_(Capitals c):

{ |[ a ]|Action
}

break;

Cases cs a

As an example of the translation of an external choice we consider the action
below.

((x > 0) & a1 → Skip 2 (x ≤ 0) & a2 → Skip)
2 ((x > 0) & b1 → Stop 2 (x ≤ 0) & b2 → Stop)

The first part of the translation declares an array containing all the visible channels
within the action, and an Alternative on this array.

Guard[] guards = new Guard[]{a1,a2,b1,b2};

final Alternative alt = new Alternative(guards);

Then, it declares all the constants that are used in the switch block to identify
each possible choice made by the fairSelect method.
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final int CONST_A_1 = 0;

final int CONST_A_2 = 1;

final int CONST_B_1 = 2;

final int CONST_B_2 = 3;

Next, it declares the array containing the guards for each branch of the action.

boolean[] g = new boolean[]{x>0,x<=0,x>0,x<=0};

Finally, we have the switch block. For each possible return value from the in-
vocation of the method fairSelect in the previously declared Alternative, we
declare a new case: its body consists of reading from the corresponding channel
and followed by the translation of the corresponding action.

switch(alt.fairSelect(g)) {

case CONST_A_1: { a_1.read(); (new Skip()).run(); break; }

case CONST_A_2: { a_2.read(); (new Skip()).run(); break; }

case CONST_B_1: { b_1.read(); (new Stop()).run(); break; }

case CONST_B_2: { b_2.read(); (new Stop()).run(); break; }

}

For a special form of external choice, in which the guards are mutually exclusive,
we may adopt a different strategy to obtain an if-then-else block as shown below.

|[g1 & Action1 2 . . . 2 gn & Actionn]|
Action =

if((JExp g1)){

|[Action1]|
Action

} else if

. . .
} else if((JExp gn)){

|[Actionn]|
Action

} else {

(new Stop()).run();

}

provided ∀ i , j • i 6= j ⇒ (gi ⇒ ¬ gj )

This simplifies the generated Java code, and does not require the guarded actions
to be explored in the translation of the external choice.

Internal Choice

The internal choice translation randomly chooses an action, and then, starts to be-
have as such. It uses the static method int generateNumber(int min, int max)
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of class proj.util.RandomGenerator (See Section 6.2.7) to make this random
choice.

|[Action1 u . . . u Actionn]|
Action =

int choosen = RandomGenerator.generateNumber(0,n);

switch(choosen) {

case 0: { |[Action1 ]|Action
} break;

. . .

case n: { |[Actionn ]|Action
} break;

}

Differently from the external choice, the choice is made by the program.

Parallelism

In the translation of a parallelism, we have to deal with the partition of the vari-
ables in scope. For this reason, we use auxiliary variables to make copies of each
state component that takes part in one of the partitions. They are declared and
initialised using the function InitAuxVars . The body of each branch is translated
and each reference to a state component is replaced with the corresponding copy.
After running the parallelism, we have to merge the values of the variables in each
partition respecting the partitions declaration in the parallelism.

Local variables in scope present the same problem as state components. How-
ever, since they are not class attributes as the state components, but local variables,
they cannot be directly accessed in the inner classes created for each parallel action.
For this reason, their copies are not initialised when declared, as the copies of the
state components. They are initialised in the constructor of each parallel action
class with the value given to the constructor. Nevertheless, these local variables are
included in the merge of the variables after the execution of the parallelism.

In the following, the expression let x1 = exp1, . . . , xn = expn in exp is used to
denote the result of substituting each expi for the corresponding xi in exp. For a
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fresh index value index , the translation of parallelism can be defined as follows.

|[Action1 |[NSExp1 | CSExp | NSExp2 ]| Action2]|
Action =

let LName = ParallelLeftBranch_index ,
RName = ParallelRightBranch_index in

class LName implements CSProcess {

InitAuxVars (NSExp1 \ (setFirst LocalVarEnv)) index L
DeclLocalVars LocalVarEnv index L
public LName((LocalVarsArg LocalVarEnv)) {

InitLocalVars LocalVarEnv index L
}

public void run () {

RenameVars |[Action1]|
Action

(NSExp1 ∪ (SetFirst LocalVarEnv))
index L

}

}

CSProcess left_index =

new LName(JList (ListFirst LocalVarEnv));
class RName implements CSProcess {

InitAuxVars (NSExp2 \ (setFirst LocalVarEnv)) index R
DeclLocalVars LocalVarEnv index R
public RName((LocalVarsArg LocalVarEnv)) {

InitLocalVars LocalVarEnv index R
}

public void run () {

RenameVars |[Action2]|
Action

(NSExp2 ∪ (SetFirst LocalVarEnv))
index R

}

}

CSProcess right_index =

new RName(JList (ListFirst LocalVarEnv));
CSProcess[] processes_index =

new CSProcess[]{left_index,right_index};
(new Parallel(processes_index)).run ();

MergeVars LName NSExp1 index L
MergeVars RName NSExp2 index R

The fresh index value is used to avoid possible clashes in the name of the inner classes
and auxiliary variables needed in this translation. For instance, let us consider the
action (A1 ‖ A2);(A3 ‖ A4). The translation os this action is equivalent to the
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translation of A1 ‖ A2 in sequence with the translation of A3 ‖ A4. If we did
not have a new index for each translation, this would lead to the creation of inner
classes and auxiliary variables with same names (i.e. ParallelLeftBranch and
left). Instead, we use a fresh index when translating both actions. Considering
that the indexes are natural numbers, this leads to the declaration of different inner
classes names ParallelLeftBranch_0 and ParallelLeftBranch_1, and different
auxiliary variables left_0 and left_1.

The translation of the parallelism declares one inner class, and instantiates an
object of this class, for each branch of the parallelism. Each branch creates its
own copy of the variables in scope. After the execution of the parallelism, a merge
is made in order to retrieve the final values of the variables in scope from the
corresponding copy.

The following type is used to indicate if the auxiliary variable is on the left (L)
or the right (R) side partition of the parallelism.

LeftRight == L | R

The declaration of the auxiliary variables is very simple. For each variable used
in a parallelism partition, we declare two new variables; one for each action of the
parallelism. The function InitVarsAux , declared below, declares and initialises all
the existent variables in the partition given as argument, considering the partition
side given as argument.

InitAuxVars : P N 7→ N 7→ LeftRight 7→ JCode

InitAuxVars ∅ index S = ε
InitAuxVars ({x} ∪ xs) index L =

public (JType (CType x )) aux_left_x_index = x;

InitAuxVars xs index L
InitAuxVars ({x} ∪ xs) index R =

public (JType (CType x )) aux_right_x_index = x;

InitAuxVars xs index R

The function DeclLocalVars is very similar to the function InitAuxVars ; it, how-
ever, does not initialise the variable, since its initial value is received in the con-
structor of the inner class.

DeclLocalVars : seq(N × Expression) 7→ N 7→ LeftRight 7→ JCode

DeclLocalVars [ ] index x = ε
DeclLocalVars ((x ,T ) : xs) index L =

public (JType T ) aux_left_x_index; DeclLocalVars xs index L
DeclLocalVars ((x ,T ) : xs) index R =

public (JType T ) aux_right_x_index; DeclLocalVars xs index R
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The constructor of each branch receives the values of each local variable in context,
and initialises their local copies. The function LocalVarsArg declares the arguments
of the constructor.

LocalVarsArg : seq(N × Expression) 7→ JCode

LocalVarsArg [ ] = ε
LocalVarsArg (x ,T ) : [ ] = (JType T ) x

LocalVarsArg (x ,T ) : xs = (JType T ) x, LocalVarsArg xs

The function InitLocalVars initialises the copies of each local variable in scope
within a branch.

InitLocalVars : seq(N × Expression) 7→ N 7→ LeftRight 7→ JCode

InitLocalVars [ ] index x = ε
InitLocalVars ((x ,T ) : xs) index L =

this.aux_left_x_index = x; DeclLocalVars xs index L
InitLocalVars ((x ,T ) : xs) index R =

this.aux_right_x_index = x; DeclLocalVars xs index R

The function RenameVars replaces, in the Java code given as arguments, all the
occurrences of the variables in the set given as argument by its corresponding copy.
We use the notation C[X \ Y ] to represent the substitution of all variables in Y
for the corresponding variable in X in the Java code C.

RenameVars : JCode 7→ P N 7→ N 7→ LeftRight 7→ JCode

RenameVars jcode ∅ index x = ε
RenameVars jcode ({x} ∪ xs) index L =

RenameVars (jcode[x \ aux_left_x_index ]) xs index L
RenameVars(jcode, {x} ∪ xs , index ,R) =

RenameVars (jcode[x \ aux_right_x_index ]) xs index R

The function MergeVars defines the value of the auxiliary variables in terms of
that of the auxiliary one. If the variable is in the first partition (L), it uses the
aux_left_ value; otherwise (R) it uses the aux_right_ value.

MergeVars : N 7→ P N 7→ N 7→ {L,R} 7→ JCode

MergeVars name ∅ index x = ε
MergeVars LName ({x} ∪ xs) index L =

x = ((LName)processes_index[0]).aux_left_x_index;
MergeVars LName xs index L

MergeVars RName ({x} ∪ xs) index R =
x = ((RName)processes_index[1]).aux_right_x_index;
MergeVars RName xs index R
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By way of illustration, let us consider the translation of a process that has only
one state component x : N, with one local variable local : N in scope. Given these
conditions, consider the translation of the following action, given an index 0 as
argument.

x := 0 ||[{x} | {local}]|| local := 1

The obtained Java program starts by declaring the class that represents the left
hand-side branch of the parallelism.

class ParallelLeftBranch_0 implements CSProcess {

The left hand-side partition contains the variable x . Its copy is declared as an at-
tribute of the inner class that represents the left hand-side branch of the parallelism.
Its initial value is the value of the original variable.

public Integer aux_left_x_0 = x;

The local variable is also declared as an inner class attribute. However, it is ini-
tialised only in the constructor of the inner class, that receives this initial value as
argument.

public Integer aux_left_local_0;

public ParallelLeftBranch_0(Integer local) {

this.aux_left_local_0 = local;

}

The run method contains the execution of the action in the left hand side of the
parallelism. However, we replace the references to all state components and lo-
cal variables in scope with references to their respective copies. This finishes the
declaration of the left action class.

public void run () {

aux_left_x_0 = new Integer(0);

}

}

Next, we instantiate an object of this new class using the local variables in scope
as arguments of the constructor.

CSProcess left_0 = new ParallelLeftBranch_0(local);

In a similar way, we declare and instantiate the class that represents the right hand-
side of the parallelism. This, however, does not include the state component x , since
it is not declared in the right hand-side partition.
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class ParallelRightBranch_0 implements CSProcess {

public Integer aux_right_local_0;

public ParallelRightBranch_0(Integer local) {

this.aux_right_local_0 = local;

}

public void run () {

aux_right_local_0 = new Integer(1);

}

}

CSProcess right_0 = new ParallelRightBranch_0(local);

After declaring both branches of the parallelism, we instantiate and run a JCSP
Parallel object as follows.

CSProcess[] processes_0 = new CSProcess[]{left_0,right_0};

(new Parallel(processes_0)).run ();

Finally, after the execution of the parallelism, we merge the values of the state
components and local variables in scope.

x = ((ParallelLeftBranch_0)processes_0[0]).aux_left_x_0;

local =

((ParallelRightBranch_0)processes_0[1]).aux_right_local_0;

This finishes the Java code corresponding to the previous declared parallel action.

Recursion

The recursion operator is also translated using an inner class to declare the body of
the recursion as a process. As for parallelism, the use of an inner class requires that
copies of the local variables in scope are declared as attributes of this new inner
class, and initialised in the constructor with the values given as arguments. The
run method of this new inner class executes the body of the recursion and then,
where the recursion occurs, it instantiates a new object of this class, and executes
it. Again, the references to the local variables are replaced by references to their
copies. After the declaration of the recursion class, we instantiate and run it. After
its execution, as for parallel actions, a merge happens to restore the values of the
local variables in scope. For a fresh index value index , the translation of a recursion
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can be defined as follows.

|[µX • Action(X )]|Action =
class I_index implements CSProcess {

DeclLocalVars LocalVarEnv index L
public I_index(LocalVarsArg LocalVarEnv) {

InitLocalVars LocalVarEnv index L
}

public void run() {

RenameVars

|[Action((RunRecursion index ))]|Action

(SetFirst LocalVarEnv) index L
}

};

RunRecursion index

For the same reason as for the traduction of parallelism, we use a fresh index in the
name of the inner class created for the recursion.

The function RunRecursion instantiates a recursion process, invokes its run

method, and finally collects the values of the auxiliary variables.

RunRecursion : N 7→ JCode

RunRecursion index =
I_index i_index_newIndex =

new I_index(JList (ListFirst LocalVarEnv)));
i_index_newIndex.run();
MergeLocalVars LocalVarEnv index newIndex L

where newIndex is, again, a fresh index. It is used in order to avoid possible
clashes between the names of the new auxiliary variables (i.e. in case we have two
instantiations in sequence).

The function ListFirst receives a sequence of pairs and returns a list containing
all the first elements of this sequence.

ListFirst : seq(N × Expression) 7→ seq N

ListFirst [ ] = [ ]
ListFirst (x ,T ) : xs = x : (ListFirst xs)

The function JList transforms a list in a ,-separated list of Java arguments.

JList : seq N 7→ JCode

JList [ ] = ε
JList x : [ ] = x_1

JList x : xs = x_1, (JList xs)
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The function MergeLocalVars is very similar to the previously defined MergeVars.
It assigns the values of the auxiliary variables to the original ones. If the variable
is in the first partition (L), it uses the aux_left_ value; otherwise (R) it uses the
aux_right_ value. However, as no parallelism was declared in this case, only a new
class, it directly accesses the recently created object corresponding to the recursion
to get the current values of the local variables copies.

MergeLocalVars : P N 7→ N 7→ N 7→ {L,R} 7→ JCode

MergeLocalVars ∅ index newIndex x = ε
MergeLocalVars ({x} ∪ xs) index newIndex L =

x = i_index_newIndex.aux_left_x_index;
MergeLocalVars xs index newIndex L

MergeLocalVars ({x} ∪ xs) index newIndex R =
x = i_index_newIndex.aux_right_x_index;
MergeLocalVars xs index newIndex R

For instance, let us consider we are translating a process that has no state
component, and that we have one local variable local : N in scope. Given these
conditions, consider the translation of the following action.

µX • x := x + 1;X

In the resulting program, a class that corresponds to the recursion body is declared.
The only attribute of this new class is the a copy of the local variable local . This
copy is initialised in the constructor of the class with the value given as argument.
As for parallel actions, we replace the references to local variables in scope by
references to their respective copies. Furthermore, we replace the recursion point
X by an instantiation and execution of an object of this class.

class I_0 implements CSProcess {

public Integer aux_left_local_0;

public I_0(Integer local) {

this.aux_left_local_0 = local;

}

public void run () {

aux_left_local_0 =

new Integer(aux_left_local_0.intValue()+1);

I_0 i_0_1 = new I_0(aux_left_local_0);

i_0_1.run();

aux_left_local_0 = i_0_1.aux_left_local_0;

}

}
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After declaring the class corresponding to the recursion, we instantiate and run an
object of this class. Finally, we restore the values of the local variables in scope.

I_0 i_0_2 = new I_0(local);

i_0_2.run();

local = i_0_2.aux_left_local_0;

This finishes the translation of the recursive action.

Action Invocation

If we have a Circus action invocation, all we have to do is to translate it to a method
invocation. If no parameter is given, the method invocation has no parameters.

|[ActName]|Action = ActName();

However, if any parameter is given, we use a Java expression corresponding to each
parameter in the method invocation.

|[ActName(e1, . . . , en)]|Action = ActName((JExp e1), . . . ,(JExp en));

For invocation of a (parametrised) action, the translation is a new inner class.
The name of this class also uses a fresh index in order to avoid name clashes.

|[(Decl • Action) (e1, . . . , en)]|Action =
DeclareActionClass Decl Action index
I_index i_index_index =

new I_index((JExp e1), . . . ,(JExp en),
(JList (ListFirst LocalVarEnv)));

i_index_index.run();
MergeLocalVars index index L

First, it declares the an inner class that corresponds to the parameterised action.
Then, it instantiates an object of this class with the given arguments, and invokes
its run method. Finally, it restores the values of the local variables in scope.

The function DeclareActionClass declares a class representing the parametrised
action. As for parallel and recursive actions, each of the local variables in scope has
a corresponding copy as an attribute of the new class. The action parameters are
also declared as attributes of the new class. Both the local variable copies attributes
and the parameters attributes are initialised within the class constructor with the
corresponding values given as arguments. The run method of the new class executes
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the parametrised action. However, the references to the local variables are replaced
by references to their copies.

DeclareActionClass : Decl 7→ Action 7→ N 7→ JCode

DeclareActionClass Decl Action index
let sep = if LocalVarEnv = [ ] then ε else , in

class I_index implements CSProcess {

ParamsDecl Decl
DeclLocalVars LocalVarEnv index L
public I_index((ParamsArgs Decl) sep

(LocalVarsArg LocalVarEnv)){
MultiAssign (ParamsDecl Decl) (ParamsArgs Decl)
InitLocalVars index L

}

public void run (){

RenameVars (|[Action]|Action)
(SetFirst LocalVarEnv) index L

}

}

Iterated Operators

The iterated operators are translated using for loops. Our strategy considers
that only finite sets are used to index the operators. Free types, abbreviations,
and subsets of N and Z are the acceptable sets for typing indexing variables in
our strategy. In the case of subsets of N and Z, the elements must be equally
spaced. For a given variable x : T , the function Inc returns a Java expres-
sion that increments the variable x of type T to the next value of T . For in-
stance, we have that Inc x : {0, 1, 2} =x=new Integer(x.intValue()+1) and
Inc y : {1, 11, 21} =y=new Integer(y.intValue()+10). For free types and ab-
breviations F we have that Inc x : F =x=new F(x.getValue()+1). We also
consider that the declarations are in the form x1 : T1; x2 : T2; . . . ; xn : Tn .

The first iterated operator on actions is the iterated sequential composition,
o
9 . In this case we use the auxiliary function InstActions to create a vector of actions.
Then, we execute each action within this vector.

|[ o
9 x1 : T1; . . . ; xn : Tn • Action]|Action =

InstActions procVec_index (x1 : T1; . . . ; xn : Tn) Action index
for(int i = 0; i < procVec_index.size(); i++) {

((CSProcess)procVec_index.elementAt(i)).run();
}
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The function InstActions instantiates a vector containing each of the actions ob-
tained by considering each of the possible values of the indexing variables. First, we
declare an inner class representing a parametrised action using function InstActions .
The parameters of this action are the indexing variables. Then, it declares a nested
loop. In each iteration of the loop, it instantiates a process, using the declared class
constructor, and stores it a Vector variable, which name is given as argument to
the function. The current values of the indexing variables are given as arguments
to the constructor.

For a fresh index , the function InstActions can be defined as follows.

InstActions : N 7→ Decl 7→ Action 7→ N 7→ JCode

InstActions procVecName (x1 : T1; . . . ; xn : Tn) Action index =
Vector procVecName = new Vector();

DeclareActionClass (x1 : T1; . . . ; xn : Tn) Action index
for ((JType T1) x_1 = (Min T1);

x_1.compareTo((Max T1))<=0; (Inc x1 : T1)){
. . .
for ((JType Tn) x_n = (Min Tn);

x_n.compareTo((Max Tn))<=0; (Inc xn : Tn)){
procVecName.addElement(new I_index(x_1, . . . ,x_n));

}

. . .
}

The functions Min and Max return the minimum and the maximum values that a
variable of the type given as argument may assume, respectively. In the case of free
types and abbreviations, these are stored in static constants in the classes created
when translating the given free type or abbreviation (See Section 6.2.6). For a type
F , we have that the constants F.MIN_F and F.MAX_F represent the minimum and
the maximum values of F , respectively.

The indexed external choice, however, cannot be directly translated since we
need to know which processes take part in the external choice to translate it. For
this reason, they must be expanded before being translated.

The indexed internal choice chooses a value for each indexing variable, and
then runs the action with the randomly chosen values for the indexing variables in
scope. It also uses the class proj.util.RandomGenerator to make these random
choices. For a fresh index , its translation is defined as follows.

|[u x1 : T1; . . . ; xn : Tn • Action]|Action =
ChooseIndexVars (x1 : T1; . . . ; xn : Tn)
DeclareActionClass (x1 : T1; . . . ; xn : Tn) Action index
(new I_index(x_1, . . . ,x_n)).run();
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The function ChooseIndexVars randomly chooses a value for each indexing variable.
Then, it instantiates the variable with a chosen value.

ChooseIndexVars : Decl 7→ JCode

ChooseIndexVars ε = ε
ChooseIndexVars (x : T ; Decs) =

(JType T ) x =

new (JType T )(RandomGenerator.generateNumber(
(Min T ),(Max T ))));

ChooseIndexVars Decs

As the external choice, the indexed parallelism and interleaving of actions
in the form described below must also be extended before being translated.

‖ i : (Min T )..(Max T )} |[ αi | cs |
⋃

j :(Inc i :T )..(Max T )} αj ]| • A(i)

For instance, consider the following indexed parallelism.

‖ i : {0..2} |[ αi | cs |
⋃

j :{i+1..2} αj ]| • A(i)

In our strategy, before its translation, we must expand as defined below.

A(0) |[ α0 | cs | α1 ∪ α2 ]| (A(1) |[ α1 | cs | α2 ]| A(2))

Commands

Assignments are directly translated to Java assignments. However, in the case
of multiple assignments, if the right-hand side of the assignment depends on any
variable present in the left-hand side of the assignment, we must store all the values
of the variables involved in the multiple assignment before it actually happens, and
then use the new auxiliary variable in the right-hand side of the Java assignment.

|[x := e]|Action = x=(JExp e);

|[x1, . . . , xn := e1, . . . , en]|
Action =

if ({x1, . . . , xn} ∩ (FV (e1) ∪ . . . ∪ FV (en)) = ∅) then
x_1=(JExp e1); . . . ; x_n=(JExp en);

else
(JType (CType x1)) aux_x_1 = (JExp e1);
. . . ;
(JType (CType xn)) aux_x_n = (JExp en);
x_1=(JExp e1)[x_1, . . . , x_n \ aux_x_1, . . . , aux_x_n];
. . . ;
x_n=(JExp en)[x_1, . . . , x_n \ aux_x_1, . . . , aux_x_n];
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Alternations(if fi) are translated to if-then-else blocks. The possible non-
determinism is removed by choosing the first guard that is true. If none of the
guards is true, the action behaves like Chaos .

|[ if g1 → A1 2 . . . 2 gn → An fi ]|Action =
if((JExp g1)){

|[A1]|
Action

} else if ( . . .
} else if((JExp gn)){

|[An]|
Action

} else { while(true){} }

Variable declarations only introduce the declared variables in scope. Implic-
itly, this is also reflected in the local variables environment.

|[var x1 : T1; . . . ;xn : Tn • Action]|Action =
(JType T1) x_1; . . . ; (JType Tn) x_n;

|[Action]|Action

6.2.5 Transformation of Compound Processes

We now concentrate in the translation of the processes that are defined in terms of
other processes. In the first case, we have a single process name N . In order to
run the process N , we must instantiate it, and then, invoke its run method. The
visible channels of the process are given as arguments to the process constructor.

|[N ]|Proc =
(new CSProcess(){

public void run() {

(new N(ExtractChans VisChanEnv)).run();
}

}).run();

If, however, we use parameters in the process invocation, besides the visible chan-
nels, we must also use the corresponding Java expressions to each given parameter
in the instantiation of the object that represents this process.

|[N (e1, . . . , en) ]|Proc =
(new CSProcess(){

public void run() {

(new PName((JExp e1), . . . ,(JExp en),
(ExtractChans VisChanEnv))).run();

}

}).run();
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The function ExtractChans returns a list of the channel names in the domain of a
given ChanUseEnv as defined below.

ExtractChans : ChanUseEnv 7→ JCode

ExtractChans ∅ = ε
ExtractChans {c 7→ t} = c

ExtractChans {c 7→ t} ∪ υ = c,(ExtractChans υ), υ 6= ∅

As for actions, the invocation of (parametrised) processes is translated to
a new inner class. It runs the parametrised process instantiated with the given
arguments. The name of the new inner class is also indexed by a fresh index to
avoid name clashes, as presented below.

|[(Decl • Proc)(e1, . . . , en)]|Proc =
DeclareProcessClass Decl Proc index
I_index i_index_index =

new I_index((JExp e1), . . . ,(JExp en),
(JList (ListFirst LocalVarEnv)));

i_index_index.run();

The function DeclareProcessClass declares a class representing the parametrised
process. The only attributes of this new class are the process parameters, which
are given as a declaration list to the function. These attributes are initialised in the
class constructor with the values given as arguments to the constructor. The body
of method run is the Java code obtained with the translation of the process given
as argument to the function.

DeclareProcessClass : Decl 7→ Proc 7→ N 7→ JCode

DeclareProcessClass Decl Proc index =
class I_index implements CSProcess {

ParamsDecl Decl
public I_index(ParamsArgs Decl){

MultiAssign (ParamsDecl Decl) (ParamsArgs Decl)
}

public void run (){

|[Proc]|Proc

}

}

The sequential composition is also easily translated to the execution of the
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second process after the execution of the first one finishes.

|[Proc1; . . . ;Procn ]|Proc =
(new CSProcess(){

public void run() { |[Proc1 ]|Proc
}

}).run();

. . .
(new CSProcess(){

public void run() { |[Procn ]|Proc
}

}).run();

External choice has a similar solution to that presented for actions. The idea
is to create an alternative in which all the initial channels of both processes, that
are not hidden, take part. However, all auxiliary functions used in the previous
definitions take actions into account. All we have to do is create similar functions
that take processes into account.

As the internal choice for actions, the internal choice for processes randomly
chooses a process, and then, starts to behave as such.

|[Proc1 u . . . u Procn]|
Proc =

int choosen = RandomGenerator.generateNumber(0,n);

switch(choosen) {

case 0:

{ |[Proc1 ]|Proc
}

break;

. . .
case n:

{ |[Procn ]|Proc
}

break;

}

The renaming operation is translated by a simple substitution in the translated
Java code.

|[Proc[x1, . . . , xn := y1, . . . , yn ]]|Proc =

|[Proc ]|Proc [x_1, . . . , x_n \ y_1, . . . , y_n]

As for actions, the iterated operators are translated using for loops. The
same restrictions apply for processes. The first iterated operator on processes is the
sequential composition o

9 . As for actions, we use an auxiliary function. However,
as we are translating processes, this auxiliary function creates a vector of processes.
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Then, we execute each process within this vector. For a fresh index , the translation
can be defined as follows.

|[ o
9 x1 : T1; . . . ; xn : Tn • Proc]|Proc =

(new CSProcess(){

public void run() {

InstProcesses procVec_index (x1 : T1; . . . ; xn : Tn) Proc index
for (int i = 0; i<procVec_index.size(); i++){

((CSProcess)procVec_index.get(i)).run();
}

}

}).run();

Similar to the auxiliary function used for action, the function InstProcesses instan-
tiates a vector containing each of the processes obtained by considering each of the
possible values of the indexing variables. First, we declare an inner class represent-
ing a parametrised process using function InstProcesses . The parameters of this
process are the indexing variables. Then, it declares a nested loop. In each itera-
tion of the loop, it instantiates a process, using the declared class constructor, and
stores it a Vector variable, which name is given as argument to the function. The
current values of the indexing variables are given as arguments to the constructor.

InstProcesses : N 7→ Decl 7→ ProcN 7→ JCode

InstProcesses procVecName (x1 : T1; . . . ; xn : Tn) Proc index =
Vector procVecName = new Vector();

DeclareProcessClass (x1 : T1; . . . ; xn : Tn) Proc index
for ((JType T1) x_1 = (Min T1);

x_1.compareTo((Max T1))<=0; (Inc x1 : T1)){
. . .
for ((JType Tn) x_n = (Min Tn);

x_n.compareTo((Max Tn))<=0; (Inc xn : Tn)){
procVecName.add(new I_index(x_1, . . . ,x_n);

}

. . .
}

As for actions, the iterated external choice must be expanded before being
translated. The iterated internal choice chooses a value for each indexing vari-
able, and then, runs the process with the randomly chosen values for the indexing
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variables in scope.

|[u x1 : T1; . . . ; xn : Tn • Proc]|Proc =
(new CSProcess(){

public void run() {

ChooseIndexVars (x1 : T1; . . . ; xn : Tn)
DeclareProcessClass (x1 : T1; . . . ; xn : Tn) Proc index
(new I_index(x_1, . . . ,x_n)).run();

}

}).run();

Again, we consider index as fresh index.
The iterated parallelism of processes are simpler than the iterated paral-

lelism of actions. The fact that, for processes, we do not need to deal with parti-
tions of variables in scope is the reason for that. Its translation uses the function
InstProcesses to instantiate the vector containing each of the processes obtained by
considering each of the possible values of the indexing variables. Then, it transforms
this Vector of processes in an array of processes, which is given to the constructor
of a Parallel process. Finally, we run the Parallel process.

|[ ‖ x1 : T1; . . . ; xn : Tn |[CSExp]| • Proc]|Proc =
(new CSProcess(){

public void run() {

InstProcesses procVec_index (x1 : T1; . . . ; xn : Tn) Proc index
CSProcess[] processes_index =

new CSProcess[procVec_index.size()];
for (int i = 0; i < procVec_index.size(); i++){

processes_index[i] =

(CSProcess)procVec_index.get(i);
}

(new Parallel(processes_index)).run();
}

}).run();

The indexed operator translation needs the concept of array of channels,
which is introduced in Section 6.3. For this reason, its presentation is left to Sec-
tion 6.4.

6.2.6 Z Paragraphs

Free Types and Abbreviations.

Our strategy takes into account only free types or abbreviations defined in terms
of, at most, one other type. Furthermore, two different types should not extend the
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same type, since, in our strategy, this would lead to multiple inheritance, which is
not allowed in Java.

One new class is created for each declared type. They extend the class defined
by function DeclareTypeClass presented below.

DeclareTypeClass : Program 7→ N 7→ JCode

DeclareTypeClass prog proj =
package proj.typing;
public abstract class Type {

private int value;

DeclTypeConstants TypesEnv 0
public int getValue() { return this.value; }

protected void setValue(int value) {

this.value = value;

}

public boolean equals(Type other) {

boolean equals = false;

if (other != null) {

boolean sameClass =

this.getClass().equals(other.getClass());

boolean sameValue =

(this.getValue()==other.getValue());

equals = (sameClass && sameValue);

}

return equals;

}

public int compareTo(Type other) {

int compare = -1;

if (other != null) {

if (this.getValue() == other.getValue()) {

compare = 0;

} else if (this.getValue() > other.getValue()) {

compare = 1;

}

}

return compare;

}

}

Each type object contains one int value. This value is declared private, but
it can be accessed using the getValue method. For each type T used within
the system, the class declares a constant identifier for this type. The function
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DeclTypeConstants declares these constants and two special static constants used
to declare the range of the types identifiers. The motivation for the existence of
these constants is related to the use of generic channels (See Section 6.3).

DeclareTypeConstants : seq N 7→ N 7→ JCode

DeclareTypeConstants [ ] n =
public static final int MIN_TYPE_ID = 0;

public static final int MAX_TYPE_ID = n;
DeclareTypeConstants (T : TS ) n =

public static final int (Capitals (JType T )) = n;
DeclareTypeConstants TS (n + 1)

The method equals from class java.lang.Object is overwritten within the
Type class: two type objects are equal only if they are of the same class and have
the same value within them. The method compareTo is used in the nested loops
created by the translation of iterated operators. It returns the value 0, if the
argument Type is equal to this Type; a value less than 0, if this Type is numerically
less than the Type argument; and a value greater than 0, if this Type is numerically
greater than the Type argument (signed comparison).

To translate a free type or an abbreviation, we have to check if it was extended
by a previously defined type or not. If this is not the case, we have that, for each
possible value of the given free type, we declare a static constant that can be used
throughout the classes in the project.

When the free type is extended by a previous defined type, it is declared an
specialisation (extends) of the extension type; otherwise, it extends the class Type.
For instance, consider the following types.

TA == TB ∪ {3, 4}
TB ::= 0 | 1 | 2

The translation of these two types creates two classes: the class T_A, which repre-
sents the type TA, extends the class Type; and the class T_B, which represents the
type TB , extends the class T_A.

We consider that a type inheritance environment tInheritance : N 7→ N is
available throughout the translation. It maps type classes names to their super
classes. In our example above, TB 7→ TA would be an element of this environment.

The translation of a free type declaration verifies if a declared type FTName is
mapped to any type in the type environment. If it is not mapped to any declared
type, this class is declared as an extension of class Type. Besides, a constant is
declared for each possible value of this type, and the range values of these constants
are also declared. However, if FTName is mapped to any other declared type, its
corresponding class is declared as an extension of the class corresponding to the
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type it is mapped to. Besides, as the constants of typing subclasses are already
declared in their super classes, we need only to declare its range constants.

|[ ]|Types : Program 7→ N 7→ JCode

|[ε ]|Types proj = ε

|[FTName ::= V0 | . . . | Vn Types ]|Types proj =
let superClass =

if (FTName /∈ (dom tInheritance))
then Type

else tInheritance(FTName),
constants =

if (FTName /∈ (dom tInheritance))
then (DeclFTConstants ([V0, . . . ,Vn ]) 0 FTName)
else (DeclFTRange 0 n FTName) in

package proj.typing;
public class FTName extends superClass {

constants
protected FTName(){}

public FTName(int value) { this.setValue(value); }

}

|[Types ]|Types proj

The constructors of possible existing subclasses of FTName, by default, invoke the
FTName empty constructor. This constructor would be implicitly declared if no
other constructor were declared. This, however, is not the case. For this reason, the
empty constructor must be declared. We declare it as protected to limit the access
to such constructor, since we intend it to be used only by subclasses constructors.

The function DeclFTConstants declares a static constant for each possible value
within the given type.

DeclFTConstants : seq N 7→ N 7→ N 7→ JCode

DeclFTConstants (V : []) n name =
public static final int V = n;

DeclFTRange 0 n name
DeclFTConstants (V : VS ) n name =

public static final int V = n;

DeclFTConstants VS (n + 1) name

Finally, it declares two static constants to represent the range of the values of this
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type.

DeclFTRange : N 7→ N 7→ JCode

DeclFTRange min max name =
public static final int MIN_name = min;

public static final int MAX_name = max;

In the case of abbreviations N == Expression, we have two cases: either it
extends a declared type (i.e. TA == TB ∪ S ) or it restricts a declared type(i.e.
TA == TB \ S ). In both cases, the type that expands is declared as a superclass
of the class representing the expanded type. We consider two possible cases: the
first case is that of a type TNameexp being declared as an expansion of a type
TName. We consider that the expansion of the declaration of the type TName
is V0 | . . . | Vn . As in the translation of a free type declaration, the new class
inheritance and constants declared within it depend on whether this type is mapped
to any other type in the typing environment or not. However, its constructor checks
if the given value is one of the values in the sequence V0, . . . ,Vm .

|[TNameexp == TName ∪ {Vn+1, . . . ,Vm} Types ]|Types proj =
let superClass =

if (TNameext /∈ (dom tInheritance))
then Type

else tInheritance(TNameext)
constants =

if (TNameext /∈ (dom tInheritance))
then (DeclFTConstants ([V0, . . . ,Vn ]) 0 TNameext)
else (DeclFTRange 0 n TNameext) in

package proj.typing;
public class TName_exp extends superClass {

constants
public TName_exp(){}

public TName_exp(int value) { this.setValue(value); }

}

|[Types ]|Types proj

The second case considers a type TName being declared as a restriction of a type
TNameexp . Our strategy considers that if a type T2 restricts a type T1, the values
of the type T1 that are removed in the type T2 are declared in the end of T1

declaration. For instance, suppose we want to define a type T2 ::= T1 \ {C ,D}.
In our strategy, T1 must be declared before T2 as T1 ::= A | B | C | D . In
the definition below, we consider that the expansion of the declaration of the type
TNameexp is V0 | . . . | Vn | Vn+1 | . . . | Vn .
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The created class is declared as an extension of the class TName_exp. As all
the attributes of class TName_exp are visible from class TName, we do not declare a
new constant for each value of TName. However, since type TName has a different
range of values, the range constants are redeclared.

|[TName == TNameexp \ {Vn+1, . . . ,Vm} Types ]|Types proj =
package proj.typing;
public class TName extends TName_exp {

DeclFTRange 0 n TName
public TName(){}

public TName(int value) { this.setValue(value); }

}

|[Types ]|Types proj

Axiomatic Definitions.

The class proj.axiomaticDefinitions.AxiomaticDefinitions encapsulates all
axiomatic definitions as static methods within it. The function DeclareAxDefClass
declares this class and is defined below.

DeclareAxDefClass : Program 7→ N 7→ JCode

DeclareAxDefClass AxDefs proj =
package proj.axiomaticDefinitions;
import proj.typing.*;

public class AxiomaticDefinitions { |[AxDefs ]|AxDefs
}

For each axiomatic definition, a different static method is created within the class
AxiomaticDefinitions. We present below the definition of the function |[ ]|AxDefs .

|[ ]|AxDefs : Program 7→ JCode

|[ε]|AxDefs = ε

|[v : T | v = e1 AxDefs]|AxDefs =
public static (JType T ) v() { return (JExp e1); }

|[AxDefs]|AxDefs

The return expression of the new method is a Java expression that implements the
expression e1.

6.2.7 Utilities Classes

A package proj.util for utilities classes is also generated in our translation strat-
egy. When created, it contains only one class RandomGenerator used to generate
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random numbers. The Java API contains some random utilities. However, we need
a method that, given two integers, it returns a random number between these two
numbers. Such a method is not yet provided, and for this reason, we declare this
utility class.

DeclareRandomGenerator : N 7→ JCode

DeclareRandomGenerator proj =
package proj.util;
public class RandomGenerator {

public static int generateNumber(int min, int max){

int randomNumber = min;

Long randomLong =

new Long(Math.round(Math.random()*100));

int randomInt = randomLong.intValue();

int numberOfIntervals = max - min + 1;

int interval = 100 / numberOfIntervals;

boolean ready = false;

for (int i=1; i<=numberOfIntervals && !ready ; i++){

if (randomInt <= i*interval) {

randomNumber = min+i-1;

ready=true;

}

}

return randomNumber;

}

}

6.2.8 Circus Programs

Our translation strategy is summarised by a translation function |[ ]|Program . Besides
the Circus program, this function also receives a project name, which is used to
declare the package for each new class.

As discussed in Section 6.2, our strategy assumes that the paragraphs within a
Circus program are grouped in three types and declared in this order: Z paragraphs,
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channel declarations, and process declarations.

|[ ]|Program : Program 7→ N 7→ JCode

|[Types AxDefs ChanDecls ProcDecls ]|Program proj =
DeclareTypeClass (Types AxDefs ChanDecls ProcDecls) proj
DeclareRandomGenerator proj

|[Types ]|Types proj
DeclareAxDefClass proj AxDefs

|[ProcDecls ]|ProcDecls proj

The function |[ ]|Program declares the class RandomGenerator. In the sequel, it de-
clares the Java classes representing each free type and abbreviation declared in the
program, and the Java class that encapsulates all the axiomatic definitions. Finally,
it translates all the declared processes.

6.2.9 Running the program.

The code generated by |[ ]|Program is a sequence of class definitions, that implement
all the processes of the Circus program. The function |[ ]|Run can be used to generate
a class with a main method, which can be used to execute a given process. This
function is applied to a Circus process, and a project name. It creates a Java class
named Main, which is created in the package proj . After the package declaration,
the class imports the package java.util, that contains some Java utilities; and
the package jcsp.lang, that contains all JCSP basic classes. Then, it imports all
the existing packages within the project. The main method, which is invoked when
running the class Main, has the translation of the given process as its body.

|[ ]|Run : Proc 7→ N 7→ JCode

|[Proc ]|Run proj =
package proj;
import java.util.*;

import jcsp.lang.*;

import proj.axiomaticDefinitions.*;
import proj.processes.*;
import proj.typing.*;
import proj.util.*;
public class Main {

public static void main(String args[]) { |[Proc ]|Proc
}

}
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6.3 Other types of communications

In this section, we extend the types of communications considered in our strat-
egy; we deal with generic channels (N[N]) and communication events of the form
N.Expression. We consider that the uses of such channels first declare possible syn-
chronisation values, and finally the input/output value. By way of illustration,
consider the following channel declaration.

channel[T ] c : N × T

This declaration declares family of channels c, which, given a type T synchronises
in a natural number and communicates a value of type T . As in Section 6.2, our
strategy still constrains the channels to have only one input/output value. Multiple
inputs/outputs must be encapsulated in Java objects.

Two other important constraints are: firstly, channels may synchronise only val-
ues of finite types; further, all the types used within the system must be finite. These
constraints arise from the fact that our strategy uses possible multi-dimensional ar-
rays of channels for representing such generic channels and synchronisation events;
infinite types would lead to infinite arrays.

For the purpose of characterising the kind of communication contemplated by
our strategy, our definition of Comm can be extended as follows.

Comm ::= Chann?N |Chann!Expression |Chann

Chann ::= N Typing∗ Sync∗

Typing ::= [Expression]

Sync ::= .Expression

A very important change in this extension is the use of a new channel environ-
ment SyncCommEnv : ChanSyncEnv . It maps each channel used within the system
to a value of type SC , which indicates if the channel is a communication channel
(C ), or a synchronisation channel (S ).

SC ::= S | C

ChanSyncEnv == N → SC

The previous defined function |[ ]|Program(pg. 155) can then be substituted by its
extended version defined below.

|[ ]|Programext : Program 7→ N 7→ JCode

|[Types AxDefs ChanDecls ProcDecls ]|Program proj =
DeclareTypeClass (Types AxDefs ChanDecls ProcDecls) proj
DeclareRandomGenerator proj

|[Types ]|Types proj
DeclareAxDefClass proj AxDefs

|[ProcDecls ]|ProcDeclsext proj
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The function |[ ]|ProcDeclsext is an extended version of function |[ ]|ProcDecls (pg. 122).
Its definition is similar to its original version, but it uses the extended version of
function |[ ]|ParProc (pg. 123) defined below.

|[ ]|ParProcext : ParProc 7→ JCode

|[Decl • Proc]|ParProcext =
ParamsDecl Decl
VisibleCDeclext VisChanEnv ChanTypeEnv SyncCommEnv
HiddenCDeclext HidChanEnv ChanTypeEnv SyncCommEnv
public P(ParamsArgs Decl,

(VisibleCArgsext VisChanEnv ChanTypeEnv
SyncCommEnv)){

MultiAssign (ParamsDecl Decl) (ParamsArgs Decl)
MultiAssign (VisibleCDeclext VisChanEnv ChanTypeEnv

SyncCommEnv)
(VisibleCArgsext VisChanEnv ChanTypeEnv

SyncCommEnv)
HiddenCCreationext HidChanEnv ChanTypeEnv

SyncCommEnv TypesEnv
}

public void run(){ |[Proc ]|Procext }

The following sections describe the steps of the translation that are extended.

6.3.1 Declaration of visible channels.

The function VisibleCDeclext extends the function VisibleCDecl . Its basic difference
to the original definition is the possibility of channel array declaration.

VisibleCDeclext : ChanUseEnv 7→ ChanEnv 7→ ChanSyncEnv 7→ JCode

VisibleCDeclext ∅ δ ζ = ε
VisibleCDeclext ({c 7→ t} ∪ υ) δ ζ =

private (TypeChan t)
(ArrayDimension (fst (δ c)) (snd (δ c)) (ζ c) 0) c;

VisibleCDeclext υ δ ζ

The visible channels may be declared as an array of channels. The auxiliary function
ArrayDimension defines this dimension of possible array of channels.

If the channel declaration just gives a channel name, but not type, the channel
types environment maps this channel name to a pair which has the empty list as
its first element (gen) and the list [Sync] as its the second element (types). In this
case, the channel is only a synchronising event, and it is not declared as an array
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of channels. Otherwise, it may be an array of channels (Dimension = 0). We
store in genExp the number of types used within the channel declaration (types)
that are declared as generic (gen). For each such channel, two dimensions are
added to the final dimension of this array. Any further type ((#types) − genExp)
adds one dimension to the array. However, if the channel is a communication
channel (sc = C ), one dimension is removed from the final array dimension since
the last type is a communication and not a synchronisation. Furthermore, an extra
argument gap can be used to decrease the final array dimension.

In the following definition, we use the notation (code)n to represent n repetitions
of code; if n ≤ 0, (code)n is the empty string ε.

ArrayDimension : seq Expression 7→ seq Expression 7→ SC 7→ N 7→ JCode

ArrayDimension gen types sc gap =
let genExp = (Count types gen) in

let Dimension =
if (types = [Sync]) then 0
else if (sc = C ) then

(genExp ∗ 2) + ((#types) − genExp) − 1
else (genExp ∗ 2) + ((#types) − genExp) in

([])Dimension−gap

The expression genExp represents the number of types used in the channel decla-
ration that are declared as generic. It is defined using the function Count , which
returns the number of expressions in the first list that are present in the second list,
and can be recursively defined as follows.

Count : seq Expression 7→ seq Expression 7→ N

Count ts [ ] = Count [ ] ns = 0
Count [t ](n : ns) = if (t = n) then 1 else (Count [t ] ns)
Count (t : ts) ns = (Count [t ] ns) + (Count ts ns)

6.3.2 Declaration of Hidden Channels.

As for the used channels, the function HiddenCDeclext extends the function HiddenCDecl .
The definition of the dimension of possible arrays of channels is the same as for the
visible channels. However, we declare the channels as Any2OneChannel channels,
since they are instantiated within this process.

HiddenCDeclext : ChanUseEnv 7→ ChanEnv 7→ ChanSyncEnv 7→ JCode

HiddenCDeclext ∅ δ ζ = ε
HiddenCDeclext ({c 7→ t} ∪ υ) δ ζ =

private Any2OneChannel

(ArrayDimension (fst (δ c)) (snd (δ c)) (ζ c) 0) c;

HiddenCDeclext υ δ ζ
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6.3.3 Channel arguments in the constructor.

The function VisibleCArgs is also extended. Its extension is very similar to the
original one. However, it also takes into account the existence of possible channel
arrays, using the auxiliary function ArrayDimension.

VisibleCArgsext : ChanUseEnv 7→ ChanEnv 7→ ChanSyncEnv 7→ JCode

VisibleCArgsext ∅ δ ζ = ε
VisibleCArgsext ({c 7→ t} ∪ υ) δ ζ =

(TypeChan t)(ArrayDimension (fst (δ c)) (snd (δ c)) (ζ c) 0) newc,

VisibleCArgsext υ δ ζ

6.3.4 Instantiation of hidden channels.

If the hidden channel is not declared as an array, the function ArrayDimension re-
turns the empty string ε. In this case, the channel is instantiated as a Any2OneChannel
channel. However, if the function ArrayDimension does not return the empty string,
we use the auxiliary function InstArray to instantiate the channel as an array of
channels.

HiddenCCreationext : ChanUseEnv 7→ ChanEnv 7→ ChanSyncEnv 7→
seq Expression 7→ JCode

HiddenCCreationext ∅ δ ζ types = ε
HiddenCCreationext ({c 7→ t} ∪ υ) δ ζ types =

let brackets = (ArrayDimension (fst (δ c)) (snd (δ c)) (ζ c) 0) in
if (brackets = ε) then this.c = new Any2OneChannel();

else this.c = (InstArray (fst (δ c)) (snd (δ c)) (ζ c) types);

HiddenCCreationext υ δ ζ types

The function InstArray instantiates an array of channels. It uses the auxiliary
function ArrayDimension to determine the dimension of the array that is being
instantiated. If the first type of the channel declaration (head types) is a generic
type, we have that it is in the sequence of generic types gen used in the channel
declaration. For this reason, we know that Count [head types ] gen > 0. In this
case, we instantiate an array of channel with a dimension determined by function
ArrayDimension. This instantiation uses an auxiliary function GenericInst , which
declare as many arrays as the number of types used within the system. However,
if we do not have a generic type, and it is the last (or maybe the only) type in
the channel declaration, we use the function BaseCase to declare either a channel
instantiation, or an array of channels creation. Finally, if neither of the previous
conditions hold, we instantiate an array of channels with dimension defined by the
function ArrayDimension. In this case, the function InstArray recurses in order to
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consider the remaining types used in the channel declaration.

InstArray : N 7→ seq Expression 7→ seq Expression 7→
SC 7→ seq Expression 7→ JCode

InstArray gen types sc typesEnv =
let brackets = (ArrayDimension gen types sc 0) in

if (Count [head types ] gen > 0) then
new Any2OneChannel brackets{

GenericInst gen types sc typesEnv typesEnv
}

else if (#types = 1) then
BaseCase (head types) sc

else new Any2OneChannel brackets{
InstArray gen (tail types) sc typesEnv

}

The base case instantiates a single channel, if the channel is a communication
channel, and an array of channels, if the channel is a synchronisation channel.

BaseCase : Expression 7→ SC 7→ JCode

BaseCase T C = new Any2OneChannel()

BaseCase T S = One2OneChannel.create((Max T )-(Min T )+1)

The instantiation of a generic channel declares an element for each type used within
the system. For each one of these types, it invokes the function InstArrayType to
instantiate the corresponding array for that type.

GenericInst : seq Expression 7→ seq Expression 7→ SC 7→
seq Expression 7→ seq Expression 7→ JCode

GenericInst gen types sc typesEnv [T ] =
InstArrayType gen types sc typesEnv

GenericInst gen types sc typesEnv (T : TS ) =
InstArrayType gen types sc typesEnv,
GenericInst gen types sc typesEnv TS

The function InstArrayType verifies if this is the last type in the declaration of the
channel. In this case, it invokes the BaseCase function to instantiate the channels
for the given type. However, if there are further types in the channel declaration,
it declares an array with one dimension less then the current array dimension, and
then invokes the function TypeInst to make a instantiation for each element of the
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given type.

InstArrayType : seq Expression 7→ seq Expression 7→ SC 7→
seq Expression 7→ JCode

InstArrayType gen ([T ]) sc typesEnv = BaseCase T sc
InstArrayType gen types sc typesEnv =

new One2OneChannel(ArrayDimension gen types sc 1){
TypeInst gen types sc typesEnv

((Max (head types)) − (Min (head types)) + 1)
}

The function TypeInst invokes the function InstArray for the other types of the
channel declaration for each element in the current type.

TypeInst : seq Expression 7→ seq Expression 7→ SC 7→
seq Expression 7→ N 7→ JCode

TypeInst gen types sc types 1 = InstArray gen (tail types) sc typesEnv
TypeInst gen types sc types n =

InstArray gen (tail types) sc typesEnv,
TypeInst gen types sc typesEnv (n − 1)

6.3.5 Using the channels.

The extended version of function |[ ]|Proc uses the extended versions of functions
|[ ]|PPars and |[ ]|Action . The function |[ ]|PParsext differs from the original function be-
cause it also uses the extended version of function |[ ]|Action . The function |[ ]|Actionext

is equal to the original one, except for two Circus constructions: communication
and external choice.

For communications, the extended version uses an extension of the auxiliary
function |[ ]|Comm . I

|[ ]|Actionext : Action 7→ JCode

|[Comm → Action]|Actionext =

|[Comm]|Commext

|[Action]|Actionext

Our strategy still restricts the communication to have only one input or one out-
put value. The definition of function |[ ]|Commext is very similar to that of function
|[ ]|Comm . However, it also takes into account synchronisation channels using the
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auxiliary function SyncC as follows.

|[ ]|Commext : Comm 7→ JCode

|[c [T0] . . . [Tn ].e0 . . . .em?x]|Commext =
let commType = last (snd (ChanTypeEnv c)) in

let syncC = SyncC ([T0] . . . [Tn ].e0 . . . .em)
(fst (ChanTypeEnv c))
(snd (ChanTypeEnv c)) in

(JType commType) x = (JType commType)csyncC.read();

|[c [T0] . . . [Tn ].e0 . . . .em !x]|Commext =
let syncC = SyncC ([T0] . . . [Tn ].e0 . . . .em)

(fst (ChanTypeEnv c)) (snd (ChanTypeEnv c)) in
csyncC.write((JExp x ));

|[c [T0] . . . [Tn ].e0 . . . .em]|Commext =
let syncC = SyncC ([T0] . . . [Tn ].e0 . . . .em)

(fst (ChanTypeEnv c)) (snd (ChanTypeEnv c)) in
if (c ∈ domVisChanEnv) then

if (VisChanEnv c = I ∨ VisChanEnv c = A) then
csyncC.read();

else csyncC.write(null);

else if (c ∈ domHidChanEnv) then
if (HidChanEnv c = I ∨ HidChanEnv c = A) then

csyncC.read();

else csyncC.write(null);

The new auxiliary function SyncC identifies which channel, in an (multi-dimensional)
array, must be used in the communication. The base case is the empty string.

SyncC : Typing∗Sync∗ 7→ seq Expression 7→ seq Expression 7→ JCode

SyncC ε gen types = ε

If the only synchronisation is a generic type, we have that we must access the
element corresponding to the type identifier.

SyncC [T ] gen types = [Type.(Capitals T )]

However, if any other synchronisation value is declared, we ignore the instantiation
of the generic type.

SyncC ([T ] sync) gen types = SyncC sync gen types

Finally, if we have a synchronisation expression, we verify if the type corresponding
tho this value is an instantiation of a generic type: if it is, we must take into
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account the indexes corresponding to type and to the value; otherwise, we take
into account only the index corresponding to the value. Then, we translate the
remaining synchronisation values, considering the tail of the types sequence.

SyncC (.e sync) gen types =
if (Count (head types) gen > 0) then

[Type.(Capitals (JType (head types)))][(JExp e)]
else [(JExp e)]
SyncC sync gen (tail types)

The extended translation of the external choice uses extended versions of the
auxiliary functions to take into account the existence of arrays of channels.

|[Action1 2 . . . 2 Action2]|
Actionext =

Guard[] guards =

new Guard[]{InitCAttrext Action1,InitCAttrext Action2};

final Alternative alt = new Alternative(guards);

DeclConstantsext (ExtractInitChannelsext Action1) 0
. . .
DeclConstantsext (ExtractInitChannelsext Actionn)

(#(ExtractInitChannelsext Actionn−1))
boolean[] g =

new boolean[]{Guard Action1, . . . ,Guard Actionn};

switch(alt.fairSelect(g)) {

Casesext (ExtractInitChannelsext Action1) Action1

. . .
Casesext (ExtractInitChannelsext Action2) Actionn

}

As its original version, the function InitCAttr returns a ,-separated list of all the
visible initials channels of a given action. However, it takes into account possible
synchronisation values in the channels.

InitCAttrext : Action 7→ JCode

InitCAttrext Action = DecAttrChannelsext (ExtractInitChannelsext Action)

The function ExtractInitChannelsext returns a list of pairs. For each initial visible
channel of the given action, it includes a new pair in this list: the first element is
the channel (possibly with its synchronisation values) and the second element is a
predicate that represents its guard.
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The extended function DecAttrChannelsext can be defined as

DecAttrChannelsext : seq(Chann × Predicate) 7→ JCode

DecAttrChannelsext [ ] = ε
DecAttrChannelsext (c[T0] . . . [Tn ].x0 . . . .xm , p) : [ ] =

c[Type.T_0] . . . [Type.T_n][(JExp x0)] . . . [(JExp xm)]
DecAttrChannelsext (c[T0] . . . [Tn ].x0 . . . .xm , p) : cs =

c[Type.T_0] . . . [Type.T_n][(JExp x0)] . . . [(JExp xm)],
DecAttrChannelsext cs

As the original one, the function DeclConstantsext returns a ;-separated list of int
constant declarations, one for each channel in the given channel list. The first one
is initialised with the given natural number; each subsequent declaration initialises
the current constant with the previous constant value incremented by one. Its
definition, however, takes into account the possible existent arrays of channels.

DeclConstantsext : seq(Chann × Predicate) 7→ N 7→ JCode

DeclConstantsext [ ] n = ε
DeclConstantsext ((c[T0] . . . [Tn ].x0 . . . .xm , p) : cs) n =

final int CONST_(Capitals c)_T_0 . . . T_N_X_0_ . . . X_m = n;

DeclConstantsext cs (n + 1)

Finally, the extended function Casesext returns a sequence of Java case blocks,
one for each initial channel in given channel list.

Casesext : seq(Chann × Predicate) 7→ seq Action 7→ JCode

Casesext [ ] as = ε
Casesext ((c[T0] . . . [Tn ].x0 . . . .xm , p) : cs) (a : as) =

case CONST_(Capitals c)_T_0 . . . T_N_X_0_ . . . X_m = n:

|[a]|Actionext

break;

Casesext cs as

As an example of the extended translation of an external choice, we have the
external choice below. Again, for simplicity, we consider all channel as input chan-
nels. We consider the type T1 == {0..1} as the only existing type within the
Circus program, and that the channels a and b are generic channels declared as
channel[T ] a, b : T .

(a[T1].0 → Skip 2 a[T1].1 → Skip) 2 (b[T1].0 → Stop 2 b[T1].1 → Stop) =
((x > 0) & a[T1].0 → Skip 2 (x > 0) & a[T1].1 → Skip)
2 ((x ≤ 0) & b[T1].2 → Stop 2 (x ≤ 0) & b[T1].1 → Stop)

First, we declare the array that contains all the visible channels within the action,
and an Alternative on this array. Notice that each element of the channel arrays
are considered as different visible channels.
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Guard[] guards =

new Guard[]{a[Type.T_1][0],a[Type.T_1][1],

b[Type.T_1][0],b[Type.T_1][1]};

final Alternative alt = new Alternative(guards);

Then, all the constants that are used in the switch block are declared. They
identify each possible choice that can be made by the fairSelect method.

final int CONST_A_T_1_0 = 0; final int CONST_A_T_1_1 = 0;

final int CONST_B_T_1_0 = 0; final int CONST_B_T_1_1 = 0;

Next, we declare the array containing the guards for each branch of the action.

boolean[] g = new boolean[]{x>0,x>0,x<=0,x<=0};

Finally, we have a switch block. For each value that can be returned by the method
fairSelect invocation, we have a case, which reads from the corresponding chan-
nel, and then behaves like the translation of the corresponding action.

switch(alt.fairSelect(g)) {

case CONST_A_T_1_0:

a[Type.T_1][0].read(); (new Skip()).run(); break;

case CONST_A_T_1_1:

a[Type.T_1][1].read(); (new Skip()).run(); break;

case CONST_B_T_1_0:

b[Type.T_1][0].read(); (new Stop()).run(); break;

case CONST_B_T_1_1:

b[Type.T_1][1].read(); (new Stop()).run(); break;

}

6.4 Indexing Operator

An indexed process can be seen as a kind of parametrised process. The difference,
however, is that, before its translation, a syntactic substitution on the channels,
as defined in [33], is made. It is very important to notice that the creation of the
channels environment already takes into account the indexed processes. So, at this
point, the channels implicitly created by the indexed operator are already within the
channels environment. A renaming in the channels within a given indexed process
Decl • Proc is reflected in the way the channels are instantiated, referenced, and
used.

|[ ]|ParProcext : ParProc 7→ JCode

|[x1 : T1; . . . ; xn : Tn � Proc ]|ParProcext =

|[ (x1 : T1; . . . ; xn : Tn • Proc)[c : used(Proc) • c x 1 . . . x n] ]|ParProcext
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where, the process P [c : used(Proc) • c x 1 . . . x n] is that obtained from P by
changing, in the process, all the references to a used channel c by a reference to the
channel c x 1 . . . x n.

We may also have an instantiation of a indexed process. It is translated as an
invocation of a parameterised process. However, the same syntactic substitution is
made before the translation.

|[ ]|Procext : Proc 7→ JCode

|[ (x1 : T1; . . . ; xn : Tn � Proc)bv1, . . . , vnc ]|Procext =
|[ ((x1 : T1; . . . ; xn : Tn • Proc)[c : used(Proc) • c x 1 . . . x n])

(v1, . . . , vn) ]|Procext

If the instantiation uses the process name, we may translate it as follows.

|[N bv1, . . . , vnc ]|Procext = |[N (v1, . . . , vn) ]|Procext

The iterated sequential composition over the indexed operator can be simply
translated as an iterated sequential composition. However, the process has all the
references to the channels within it changed before the translation. The first iterated
indexed operator is the iterated indexed sequential composition. For a fresh
index , its translation can be defined as follows.

|[ (o
9 x1 : T1; . . . x2 : T2 � Proc) ]|Procext =

|[ (o
9 x1 : T1; . . . x2 : T2 • (Proc[c : used(Proc) • c x 1 . . . x n])) ]|Procext

The indexed external choice must be expanded before being translated. For
instance, consider the following process.

process Reader =̂ 2 i : {0, 1} � read?x → Skip

Our strategy considers that, before being translated, the process above is extended
as presented below.

process Reader =̂
begin state •

out i .0?x → Skip
2 out i .1?x → Skip

end

As the iterated indexed sequential composition, the iterated indexed internal
choice can be simply translated as an iterated internal choice with the process
having all the references to the channels within it changed before the translation.

|[u x1 : T1; . . . ; xn : Tn � Proc]|Procext =

|[u x1 : T1; . . . ; xn : Tn • (Proc[c : used(Proc) • c x 1 . . . x n])]|Procext
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Finally, the same applies to the translation of the iterated indexed paral-
lelism.

|[ ‖ x1 : T1; . . . ; xn : Tn |[CSExp ]| �Proc]|Procext =
|[ ‖ x1 : T1; . . . ; xn : Tn |[CSExp]| •

(Proc[c : used(Proc) • c x 1 . . . x n])]|Procext

6.5 Example

This section will present some parts of the translation of our case study.

6.6 Conclusions

The translation strategy presented in this Chapter has already been used not only
to implement some simple Circus programs, but also, some quite complex Circus

programs, as our case study presented in Section 5.
Throughout the translation we assume that the specification has been refined

into a specification that meets the translation strategy’s requirements. For instance,
all operation schemas and specification constructs have already been refined.

One of these requirements is the order of the paragraphs: we assume that, in
the Circus program to be implemented, we have first Z paragraphs, then, channel
declarations, and finally, process declarations. This, however, can be achieved with
a simple reordering of the paragraphs.

The Z paragraphs are considered to be only axiomatic definitions of the form
v : T | v = e1, free types, or abbreviations. The considerations of other types of
paragraphs is left as future work.

The next requirement concerns the Z paragraphs used to group channel decla-
rations, and channel sets. Our strategy requires they have already been expanded.
This can also be achieved with a simple refinement.

An important restriction is that over communication. In Section 6.2 we consider
a very restrict subset of possible communications which is expanded in Section 6.3.
The availability of strategies for refine out communications of the form c?N : T ,
multi-synchronisation, and guarded outputs, which are not contemplated by our
strategy, would be very useful and is left as future work. As a matter of fact,
in [32], Woodcock presents a refinement strategy for a special case of multi-way
synchronisation, in which, it is not part of an external choice.

JCSP itself restricts our strategy, for instance, in the translation of parallelism.
As discussed in this Chapter, JCSP does not allow the user to determine the syn-
chronisation channel set. Actually, when using JCSP, the intersection of the alpha-
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bets determines the synchronisation channels set. A refinement strategy to deal
with this problem is also left as future work.

The types of all indexing variables of all iterated operators are considered to be
finite. We believe a different approach in the translation could make it possible to
remove this restriction in some cases. Lazy evaluation in the generated code would
be possibly the way the translation could be changed. Further investigations and
research on this topic are also left as future work.

The translation of the iterated parallelism and interleaving of actions is defined
as the translation of the its expansion. This, however, could be defined in a similar
way as for processes. However, the partitions of the variables in scope must also be
taken in scope.

Finally, two very interesting topics for research are left as future work. The
first one is the implementation of a tool that supports the translation strategy
presented here. In order to prove the soundness of such a tool, the proof of the
transformation rules presented here would be completely necessary. This, however,
is a very complex task, as it involves the Java and the Circus semantics.
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Chapter 7

Conclusion

In this chapter we present an overview of the contributions of our work. Further-
more, related works are also brought into the context of Circus. A comparison of
Circus and these works is provided. Finally, topics for future work are presented in
two contexts: within the scope of the thesis, and beyond it.
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7.1 Contributions

Circus has been suggested as a link between two different schools of formal methods
for software engineering: the state-based school and the process algebraic. The
former is strongly represented by VDM [15] and Z [34], and the latter is strongly
represented by CCS [19] and CSP [13, 26]. Besides providing a link between these
two schools, Circus also presents a refinement strategy in a calculational style as
in [20].

Basically, Circus programs are characterised by processes, which group para-
graphs that describe data and control behaviour. Mainly, we use the Z notation [30]
to define data, and actions, which are defined using Z, CSP, and guarded commands
constructs, to characterise behaviour.

The Circus semantics is based on the Unifying Theory of Programming [14]: the
semantics of a Circus program is represented as a Z specification, in which the model
of a process is itself a Z specification, and the model of an action is a schema.
Since Z is the notation for a Circus program’s semantics, tools as Z-EVES [17] and
ProofPower [3] can be used to analyse its behaviour.

As in the Unifying Theory of Programming, the central notion in Circus is re-
finement. A refinement strategy for Circus, based on laws of simulation, and action
and process refinements (Appendices C and D), has been proposed in [1] and is
also presented in this thesis. Each iteration within this strategy includes three
steps: simulation, action refinement, and process refinement.

Our thesis aim at the development of a refinement calculus for Circus. At the
end of this work, we intend to provide a significant set of refinement laws that,
together, can be used in formal developments of Circus programs. The proof of the
soundness of these laws are also in the scope of this work. In order to point the
expressiveness of Circus and the significance of its refinement calculus, a case study
is presented. Finally, a translation strategy for Circus programs into Java is also in
our plans.

In this mini-thesis we have already proposed a significant set of new laws (see
Appendix D), extending the set of laws presented in [1] (see Appendix C). Further-
more, the translation strategy from Circus programs to Java is also finished. It will
be used in our case study, which is about to be finished.

Our case study on Circus, a safety-critical fire protection system, is described
in Chapter 5. As far as we know, this is the largest case study on the refinement
of Circus programs. We have used this case study to verify the usefulness and
soundness of the refinement laws discussed in the previous chapter. Throughout
this refinement, we have found a few mistakes on the laws presented in [1]. Using
our set of laws, we were able to refine the abstract and centralised specification
of the system into a concrete and distributed specification. Furthermore, the case
study was also used to analyse the expressiveness of the language. Throughout the
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development of the case study, some different ways on how some features could be
differently expressed were identified.

In Chapter 6, a translation strategy, which makes possible the Java implemen-
tation of Circus programs, was presented. In spite of the restrictions on the Circus

programs discussed in that chapter, this translation strategy is already an important
tool in the implementation of Circus programs, and has been used to implement our
case study. Further, it can be used as guideline for a mechanisation of a translation
tool.

Some limitations of JCSP have been raised in Chapter 6. Some of them,
however, have a related refinement strategy for solving them. Removing multi-
synchronisation is one of these refinement strategy. In [32], a refinement strategy
for a special case of multi-way synchronisation is presented: multi-synchronisation
events are not part of an external choice. However, in our case study, we have
such case, and further, we have multiple multi-synchronisation as part of external
choices.

7.2 Related Works

Some other works have already presented the integration of Z or one of its ex-
tensions with a process algebra. The main objective of Circus is not to be another
language like those, but to provide support for the formal development of concurrent
programs in a calculational style.

Fischer [10] presents a survey of several integrations of Z with process algebras.
Combinations of Z with CCS [11, 31], Z with CSP [27], and Object-Z with CSP [9]
are considered in this survey, which also discusses issues involved in the integration
of Z with a process algebra. All the approaches above are analysed with respect to
these issues.

Two different approaches for the combination of Z and a process algebra are
pointed by Fischer: syntactic, in which the combination has a single syntax, with
semantic definitions lifted from the two languages; and semantic, in which a Z
specification is identified with a process.

Differently from all other combinations mentioned above, Circus adopts the first
approach: as previously discussed, the unifying theory of programming [14] is used
as the model for Circus. The syntactic approach adopted by Circus, provides a
deeper integration of the notations. However, with this approach, the semantics of
both the Z and CSP operators must be redefined. Fortunately, this is not a major
problem for us because we are using an existing semantic model: UTP. Furthermore,
as we express this model using Z, it is possible to analyse Circus specifications using
Z tools.

Refinement has been studied for combinations of Object-Z and CSP [29]. How-
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ever, as far as we know, nothing has been proposed in a calculational style like
ours.

The work with action systems is the most closely related to Circus. In an action
system, systems are described as a state and a set of guarded commands. Its
behaviour is given by a simple interpreter for the program that repeatedly selects an
enabled action and executes it. Parallelism is modelled as the sequential interleaving
of atomic steps. Concurrency with shared variables is modelled by partitioning the
variables amongst different processes; a model for distributed systems is obtained
by partitioning the variables amongst the processes.

The combination of the refinement calculus and action system in the derivation
of parallel and distributed algorithms is described in [4]: from a purely sequential
algorithm, a stepwise refinement is accomplished until an efficient parallel program
is derived. Most steps involves sequential refinements; the parallelism is introduced
only through the decomposition of atomic actions.

The very basic nature of action systems formalism in comparison with process
algebra is the main difference between action systems and Circus. Action system
have a very flat structure, where auxiliary variables simulating program counters
are needed to guarantee the proper sequencing of actions. This is due to the simple
control flow of action systems: select an enable guard, execute it, repeat. In Circus

a much more rich control flow is provided using CSP operators.
In [22], stepwise development of correct programs is supported by a design cal-

culus for occam-like [16] communicating programs. Specifications are given in terms
of assertions. Both program and specifications semantics are uniformly presented in
a predicative style similar to that adopted in the unifying theories of programming.
Actually, both works are based in the Esprit ProCos project. Another source of
inspiration for further refinement laws for Circus actions is the design rules in [22].

7.3 Future Work

This mini-thesis presents just part of the work we aim at presenting as a PhD thesis.
Some more adventurous and exciting work is still to be done. However, as expected,
some new interesting topics of research have been raised throughout the last year.
For this reason, we have divided all the future work topics into two groups: those
we intend to investigate in the time left for the conclusion of this thesis, and those
left to be investigated in later research projects.

Within the Scope of our Thesis

As discussed before, the semantics of Circus has been defined using the Unifying
Theory of Programming. However, a shallow embedding of the semantics of Circus

programs is Z is currently provided. This makes it harder to prove any property of
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the language. As we intend to use this semantics to proof all the laws of refinement
proposed for Circus, a deep embedding semantics must be provided. The definition
of this extended semantics for Circus and its mechanisation in ProofPower [3] is the
next step of our work. This mechanisation will allow us to prove all the existing
refinement law of Circus refinement calculus. Furthermore, the mechanisation will
make it possible to reason about properties of the language, and about the semantics
itself; it can also be used as a basis for a theorem prover. The extension of Circus

semantics and its mechanisation are intended to be the final reference of Circus

semantics.
Chapter 4 is yet to be done. We intend to implement a prototype of a tool

that supports the Circus refinement calculus presented in this thesis. Together, the
refinement strategy and this tool seem to be a very powerful for formal development
of concurrent reactive systems.

Our case study has not already been completed: two more iterations of the
refinement strategy are still needed. The first one intends to split the process Areas
into separated processes, one for each individual area. Finally, the InternalSystem
has to be decomposed into two separated processes: one for the control itself, and
another that represents a display controller (see Figure 5.2). The notation for the
presentation of the refinement must also be changed in order to make it simpler
to be understood. We intend to use a notation for refinement similar to the one
adopted in [20].

The translation strategy presented in Chapter 6 some points must yet be ad-
dressed. The first one concerns the translation of iterated parallelism and inter-
leaving of actions. In the work presented here we demand the previous extension
of such operators before the translation strategy be applied. In order to remove
this requirement, we intend to find a way to generalise the solution provided for
the simple parallelism of actions. Furthermore, throughout the translation strategy,
some considerations were made concerning the Circus programs. Some of these re-
quirements could be satisfied simply by applying some refinement strategies to the
Circus programs. Some of these refinement strategies are: a refinement strategy to
deal with the restriction on the synchronisation set of channels for parallelism and
interleaving described in Chapter 6; a refinement strategy for removing guarded
outputs; and finally, a refinement strategy for removing multi-synchronisation in a
more generic way than that presented in [32], in which, multi-synchronisation is not
part of an external choice.

As discussed above, in our case study, multiple multi-synchronisation take part
on external choices. An implementation of a protocol based on that presented
in [32] has already been done. However, proving the refinement that leads to this
implementations is a task still to be done.

173



Beyond the Scope of our Thesis

The refinement strategy and its laws presented in Chapter 3 do not take into account
timed Circus, object-oriented Circus, and mobile Circus processes. Some work has
already been done in these areas. Nevertheless, a lot of interesting work is still to be
done: the suggestion and proof of new refinement laws that covers these variations
of Circus is the one that seems most interesting for us.

Furthermore, the mechanisation of the translation strategy presented in Chap-
ter 6 would be very useful in the process of development of Circus programs.

Finally, a very interesting topic of research is the support of tactics of Circus

refinement in a similar way to that presented in [23]. This provides an optimisation
in time and effort spent throughout a development of a Circus program.
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Appendix A

Syntax of Circus.

Program ::= CircusPar∗

CircusPar ::= Par | channel CDecl | chanset N == CSExp

| ProcessDefinition

CDecl ::= SimpleCDecl | SimpleCDecl; CDecl

SimpleCDecl ::= N+ | N+ : Exp | [N+]N+ : Exp | Schema-Exp

CSExp ::= {| |} | {| N+ |} | N | CSExp ∪ CSExp | CSExp ∩ CSExp

| CSExp \ CSExp

ProcessDefinition ::= process N =̂ ParProc | process N =̂ IndexProc

ParProc ::= Decl • Proc | Proc

IndexProc ::= Decl � Proc

Proc ::= begin PPar∗ state Schema-Exp PPar∗ • Action end | N

| Proc; Proc | Proc 2 Proc | Proc u Proc

| Proc |[ CSExp ]| Proc | Proc ||| Proc | Proc \ CSExp

| IndexProcbExp+c | Proc[N+ := N+]
| o

9 Decl � Proc | 2Decl � Proc | uDecl � Proc

| ‖Decl |[ CSExp ]| �Proc | |||Decl � Proc

| ParProc(Exp+)
| o

9 Decl • Proc | 2Decl • Proc | uDecl • Proc

| ‖Decl |[ CSExp]| • Proc | |||Decl • Proc

NSExp ::= { } | {N+} | N | NSExp ∪ NSExp | NSExp ∩ NSExp

| NSExp \ NSExp

PPar ::= Par | N =̂ ParAction | nameset N == NSExp

ParAction ::= Decl • action | Action

Action ::= Schema-Exp | CSPAction | Command | N
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CSPAction ::= Skip | Stop | Chaos | Comm → Action | Pred & Action

| Action; Action | Action 2 Action | Action u Action

| Action |[ NSExp | CSExp | NSExp ]| Action

| Action ||[NSExp | NSExp]|| Action

| Action \ CSExp | µ N • Action | ParAction(Exp+)
| o

9 Decl • Action | 2Decl • Action |uDecl • Action

| ‖Decl |[ NSExp | CSExp | NSExp]| • Action

| |||Decl ||[NSExp | NSExp]||• Action

Comm ::= N CParameter∗

CParameter ::= ? N | ? N : Predicate | ! Expression | . Expression

Command ::= N+ : [ Pred, Pred ] | N+ := Exp+

| if GActions fi | var Decl • Action

GActions ::= Pred → Action | Pred → Action 2 GActions
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Appendix B

Proof of Lemmas.

Throughout this chapter we use the following notation for the refinement steps.

A1 vA [law1, . . . , lawn ]{op1} . . . {opn}A2

This denotes that, in order to refine the action A1 to A2, we have applied laws
law1, . . . , lawn . These law applications have raised the proof obligations op1, . . . , opn .

General Lemmas

Lemma B.1

c1?x → SExp1;c2 →

(
g1 & (A1 |[ ns1 | cs1 | ns2 ]| A)
2 g2 & (A2 |[ ns1 | cs1 | ns2 ]| A)

)

=(

c1?x → c2 →

(
g1 & A1

2 g2 & A2

) )

|[ ns1 | cs1 | ns2 ]| (c1?x → SExp1;A)

provided

• initials(A) ⊆ cs1

• c2 /∈ cs1

• c1 /∈ usedC (A1) ∪ usedC (A2) or c1 ∈ cs1

• wrtV (Sexp1) ⊆ ns2 ∪ ns ′2

• wrtV (SExp1) ∩ (usedV (A1) ∪ usedV (A2)) = ∅
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Proof.

c1?x → SExp1;c2 →

(
g1 & (A1 |[ ns1 | cs1 | ns2 ]| A)
2 g2 & (A2 |[ ns1 | cs1 | ns2 ]| A)

)

= [D .10]
{initials(A) ⊆ cs}

c1?x → SExp1;c2 →

( (
g1 & A1

2 g2 & A2

)

|[ ns1 | cs1 | ns2 ]| A

)

= [D .4,C .44]
{initials(A) ⊆ cs1, c2 /∈ cs1}

c1?x → SExp1;
( (

c2 →

(
g1 & A1

2 g2 & A2

) )

|[ ns1 | cs1 | ns2 ]| A

)

= [D .29]

c1?x → SExp1;
(

A |[ ns2 | cs1 | ns1 ]|

(

c2 →

(
g1 & A1

2 g2 & A2

) ) )

= [D .4,D .28]
{wrtV (SExp1) ⊆ ns2 ∪ ns ′2}
{wrtV (SExp1) ∩ (usedV (A1) ∪ usedV (A2)) = ∅}

c1?x →

(

(SExp1;A) |[ ns2 | cs1 | ns1 ]|

(

c2 →

(
g1 & A1

2 g2 & A2

) ) )

= [D .6]
{c1 /∈ usedC (A1) ∪ usedC (A2) or c1 ∈ cs1}

(c1?x → SExp1;A) |[ ns2 | cs1 | ns1 ]|

(

c1?x → c2 →

(
g1 & A1

2 g2 & A2

) )

= [D .29](

c1?x → c2 →

(
g1 & A1

2 g2 & A2

) )

|[ ns1 | cs1 | ns2 ]| (c1?x → SExp1;A)

2
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Lemma B.2 For any variable x : T in scope.

(g1(x ) & (A11
(x ) |[ ns1 | cs | ns2 ]| A12

(x ))
2 g2(x ) & (A21

(x ) |[ ns1 | cs | ns2 ]| A22
(x )))

=



(

comm.x →

(
c1.x → A11

(x )
2 c2.x → A21

(x )

) )

|[ns1 | cs ∪ {comm, c1, c2} | ns2]|(

comm.x →

(
g1(x ) & c1.x → A12

(x )
2 g2(x ) & c2.x → A22

(x )

) )




\ {comm, c1, c2}

provided

• {c1, c2, comm} ∩ (usedC (A11
) ∪ usedC (A12

) ∪ usedC (A21
) ∪ usedC (A22

)) = ∅

Proof.

g1(x ) & (A11
(x ) |[ ns1 | cs | ns2 ]| A12

(x ))
2 g2(x ) & (A21

(x ) |[ ns1 | cs | ns2 ]| A22
(x ))

vA [D .5]
{c1 /∈ usedC (A11

(x )) ∪ usedC (A12
(x ))}

{c2 /∈ usedC (A21
(x )) ∪ usedC (A22

(x ))}
g1(x ) & (c1.x → (A11

(x ) |[ ns1 | cs | ns2 ]| A12
(x ))) \ {| c1 |}

2 g2(x ) & (c2.x → (A21
(x ) |[ ns1 | cs | ns2 ]| A22

(x ))) \ {| c2 |}
vA [C .51]
{c1 /∈ usedC (A11

(x )) ∪ usedC (A12
(x ))}

{c2 /∈ usedC (A21
(x )) ∪ usedC (A22

(x ))}
g1(x ) & ((c1.x → A11

(x )) |[ ns1 | cs ∪ {c1} | ns2 ]| (c1.x → A12
(x ))) \ {| c1 |}

2 g2(x ) & ((c2.x → A21
(x )) |[ ns1 | cs ∪ {c2} | ns2 ]| (c2.x → A22

(x ))) \ {| c2 |}
vA [C .54,C .41]
{c1 /∈ usedC (A21

(x )) ∪ usedC (A22
(x ))}

{c2 /∈ usedC (A11
(x )) ∪ usedC (A12

(x ))}



g1(x ) &


(c1.x → A11

(x ))
|[ns1 | cs ∪ {c1, c2} | ns2]|
(c1.x → A12

(x ))





2 g2(x ) &


(c2.x → A21

(x ))
|[ns1 | cs ∪ {c1, c2} | ns2]|
(c2.x → A22

(x ))









\ {| c1, c2 |}
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= [D .11]
{{c1, c2} ⊆ cs ∪ {c1, c2} ≡ true}
{{c1} ∪ usedC (A12

(x )) ∩ {c2} = ∅ ≡ c2 /∈ usedC (A12
(x ))}

{{c2} ∪ usedC (A22
(x )) ∩ {c1} = ∅ ≡ c1 /∈ usedC (A22

(x ))}



(
c1.x → A11

(x )
2 c2.x → A21

(x )

)

|[ns1 | cs ∪ {c1, c2} | ns2]|(
g1(x ) & c1.x → A12

(x )
2 g2(x ) & c2.x → A22

(x )

)




\ {| c1, c2 |}

= [C .41,C .54,D .37]
{comm /∈ {c1, c2} ∪ usedC (A11

(x )) ∪ usedC (A12
(x ))∪

usedC (A21
(x )) ∪ usedC (A22

(x ))}
{comm ∈ cs ∪ {comm, c1, c2} ≡ true}



(

comm.x →

(
c1.x → A11

(x )
2 c2.x → A21

(x )

) )

|[ns1 | cs ∪ {comm, c1, c2} | ns2]|(

comm.x →

(
g1(x ) & c1.x → A12

(x )
2 g2(x ) & c2.x → A22

(x )

) )




\ {comm, c1, c2}

2
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Lemma B.3

(o
9 x : S2 • ((x ∈ S1) & A1(x )) 2 ((x /∈ S1) & A2(x )));

(S1 = ∅) & A3 2 (S1 6= ∅) & A4

vA



var log : N •
log := 0;
(o
9 x : S2 • ((x ∈ S1);A1(x );log := log + 1) 2 ((x /∈ S1) & A2(x )));

((log = 0) & A3 2 (log > 0) & A4)





provided log is a fresh variable name.
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Lemma B.4

A1 |[ ns1 | cs | ns2 ]| (g1 & B1 2 g2 & B2)
=
A1 |[ ns1 | cs | ns2 ]| (g1 & B1 2 g2 & (B2 2 B3))

provided

• initials(A1) ∪ initials(A2) ⊆ cs

• initials(A1) ∩ initials(B3) = ∅

Proof.

A1 |[ ns1 | cs | ns2 ]| (g1 & B1 2 g2 & B2)
= [C .58](A1 |[ ns1 | cs | ns2 ]| (g1 & B1 2 g2 & B2)) 2 Stop
= [D .27]
{initials(A1) ∪ initials(A2) ⊆ cs}
{initials(A1) ∩ initials(B3) = ∅}
(A1 |[ ns1 | cs | ns2 ]| (g1 & B1 2 g2 & B2)) 2 (A1 |[ ns1 | cs | ns2 ]| g2 & B3)
= [C .46]
{initials(A1) ⊆ cs}
(A1 |[ ns1 | cs | ns2 ]| (g1 & B1 2 g2 & B2 2 g2 & B3)
= [C .18]
A1 |[ ns1 | cs | ns2 ]| (g1 & B1 2 g2 & (B2 2 B3))

2
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Lemmas of Section 5.6.2

Lemma 5.1.

∀AbstractFireControlState; FireControlState1 •
RetrFireControl ∧ pre InitAbstractFireControl ⇒ pre InitFireControl1

Since the precondition of the initialisation is true, this implication is directly true
as well.

∀AbstractFireControlState; FireControlState1; FireControlState ′
1 •

RetrFireControl ∧ pre InitAbstractFireControl ∧ InitFireControl1 ⇒
∃AbstractFireControlState ′ •

RetrFireControl ′ ∧ InitAbstractFireControl
≡ [Definition]
∀AbstractFireControlState; FireControlState1; FireControlState ′

1 •
mode1 = mode ∧
controlledZones1 = controlledZones ∧ activeZones1 = activeZones
∧ discharge1 = discharge ∧ active1 = active
∧ true
∧ mode ′

1 = automatic
∧ activeZones ′1 = {area : AreaId • area 7→ ∅}
∧ discharge ′

1 = {area : AreaId • area 7→ false}
∧ mode ′

A = automatic ⇒
∃AbstractFireControlState ′ •

mode ′
1 = mode ′

∧ controlledZones ′1 = controlledZones ′

∧ activeZones ′1 = activeZones ′

∧ discharge ′
1 = discharge ′ ∧ active ′

1 = active ′

∧ mode ′ = automatic
∧ activeZones ′ = {area : AreaId • area 7→ ∅}
∧ discharge ′ = {area : AreaId • area 7→ false}
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≡ [E .1,E .2]
mode1 = mode ∧
controlledZones1 = controlledZones ∧ activeZones1 = activeZones
∧ discharge1 = discharge ∧ active1 = active
∧ true
∧ mode ′

1 = automatic
∧ activeZones ′1 = {area : AreaId • area 7→ ∅}
∧ discharge ′

1 = {area : AreaId • area 7→ false}
∧ mode ′

A = automatic ⇒
mode ′

1 = automatic
∧ activeZones ′1 = {area : AreaId • area 7→ ∅}
∧ discharge ′

1 = {area : AreaId • area 7→ false}
≡ [E .3]
true

2
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Lemma 5.2.

∀AbstractFireControlState; FireControlState1 •
RetrFireControl ∧ pre SwitchAbstractFireControlMode ⇒

pre SwitchFireControlMode1

Since the precondition of the schemas are true, this implication is directly true as
well.

∀AbstractFireControlState; FireControlState1; FireControlState ′
1 •

RetrFireControl ∧ pre SwitchAbstractFireControlMode ∧
SwitchFireControlMode1 ⇒

∃AbstractFireControlState ′ •
RetrFireControl ′ ∧ SwitchAbstractFireControlMode

≡ [Definition]
∀AbstractFireControlState; FireControlState1; FireControlState ′

1 •
mode1 = mode ∧
controlledZones1 = controlledZones ∧ activeZones1 = activeZones
∧ discharge1 = discharge ∧ active1 = active
∧ true
∧ mode ′

1 = newMode?
∧ activeZones ′1 = activeZones1

∧ discharge ′
1 = discharge1

∧ mode ′
A = newMode? ⇒

∃AbstractFireControlState ′ •
mode ′

1 = mode ′

∧ controlledZones ′1 = controlledZones ′

∧ activeZones ′1 = activeZones ′

∧ discharge ′
1 = discharge ′ ∧ active ′

1 = active ′

∧ mode ′ = newMode?
∧ activeZones ′ = activeZones
∧ discharge ′ = discharge
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≡ [E .1,E .2]
mode1 = mode ∧
controlledZones1 = controlledZones ∧ activeZones1 = activeZones
∧ discharge1 = discharge ∧ active1 = active
∧ true
∧ mode ′

1 = newMode?
∧ activeZones ′1 = activeZones1

∧ discharge ′
1 = discharge1

∧ mode ′
A = newMode? ⇒

mode ′
1 = newMode?

∧ activeZones ′1 = activeZones
∧ discharge ′

1 = discharge
≡ [E .4,E .3]
true

2
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Lemma 5.3.

∀AbstractFireControlState; FireControlState1 •
RetrFireControl ∧ pre SwitchAbstractFireControl2AutomaticMode ⇒

pre SwitchFireControl2AutomaticMode1

Since the precondition of the schemas are true, this implication is directly true as
well.

∀AbstractFireControlState; FireControlState1; FireControlState ′
1 •

RetrFireControl ∧ pre SwitchAbstractFireControl2AutomaticMode ∧
SwitchFireControl2AutomaticMode1 ⇒

∃AbstractFireControlState ′ •
RetrFireControl ′

∧ SwitchAbstractFireControl2AutomaticMode
≡ [Definition]
∀AbstractFireControlState; FireControlState1; FireControlState ′

1 •
mode1 = mode ∧
controlledZones1 = controlledZones ∧ activeZones1 = activeZones
∧ discharge1 = discharge ∧ active1 = active
∧ true
∧ mode ′

1 = automatic
∧ activeZones ′1 = activeZones1

∧ discharge ′
1 = discharge1

∧ mode ′
A = modeA ⇒

∃AbstractFireControlState ′ •
mode ′

1 = mode ′

∧ controlledZones ′1 = controlledZones ′

∧ activeZones ′1 = activeZones ′

∧ discharge ′
1 = discharge ′ ∧ active ′

1 = active ′

∧ mode ′ = automatic
∧ activeZones ′ = activeZones
∧ discharge ′ = discharge
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≡ [E .1,E .2]
mode1 = mode ∧
controlledZones1 = controlledZones ∧ activeZones1 = activeZones
∧ discharge1 = discharge ∧ active1 = active
∧ true
∧ mode ′

1 = automatic
∧ activeZones ′1 = activeZones1

∧ discharge ′
1 = discharge1

∧ mode ′
A = modeA ⇒

mode ′
1 = automatic

∧ activeZones ′1 = activeZones
∧ discharge ′

1 = discharge
≡ [E .4,E .3]
true

2
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Lemma 5.4.

∀AbstractFireControlState; FireControlState1 •
RetrFireControl ∧ pre SwitchAbstractFireControl2DisabledMode ⇒

pre SwitchFireControl2DisabledMode1

Since the precondition of the schemas are true, this implication is directly true as
well.

∀AbstractFireControlState; FireControlState1; FireControlState ′
1 •

RetrFireControl ∧ pre SwitchAbstractFireControl2DisabledMode ∧
SwitchFireControl2DisabledMode1 ⇒

∃AbstractFireControlState ′ •
RetrFireControl ′

∧ SwitchAbstractFireControl2DisabledMode
≡ [Definition]
∀AbstractFireControlState; FireControlState1; FireControlState ′

1 •
mode1 = mode ∧
controlledZones1 = controlledZones ∧ activeZones1 = activeZones
∧ discharge1 = discharge ∧ active1 = active
∧ true
∧ mode ′

1 = Disabled
∧ activeZones ′1 = activeZones1

∧ discharge ′
1 = discharge1

∧ mode ′
A = modeA ⇒

∃AbstractFireControlState ′ •
mode ′

1 = mode ′

∧ controlledZones ′1 = controlledZones ′

∧ activeZones ′1 = activeZones ′

∧ discharge ′
1 = discharge ′ ∧ active ′

1 = active ′

∧ mode ′ = Disabled
∧ activeZones ′ = activeZones
∧ discharge ′ = discharge
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≡ [E .1,E .2]
mode1 = mode ∧
controlledZones1 = controlledZones ∧ activeZones1 = activeZones
∧ discharge1 = discharge ∧ active1 = active
∧ true
∧ mode ′

1 = Disabled
∧ activeZones ′1 = activeZones1

∧ discharge ′
1 = discharge1

∧ mode ′
A = modeA ⇒

mode ′
1 = Disabled

∧ activeZones ′1 = activeZones
∧ discharge ′

1 = discharge
≡ [E .4,E .3]
true

2
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Lemma 5.5.

∀AbstractFireControlState; FireControlState1 •
RetrFireControl ∧ pre AbstractActivateZone ⇒

pre ActivateZone1

Since the precondition of the schemas are true, this implication is directly true as
well.

∀AbstractFireControlState; FireControlState1; FireControlState ′
1 •

RetrFireControl ∧ pre AbstractActivateZone ∧
ActivateZone1 ⇒

∃AbstractFireControlState ′ •
RetrFireControl ′ ∧ AbstractActivateZone

≡ [Definition]
∀AbstractFireControlState; FireControlState1; FireControlState ′

1 •
mode1 = mode ∧
controlledZones1 = controlledZones
∧ activeZones1 = activeZones
∧ discharge1 = discharge ∧ active1 = active
∧ true
∧ mode ′

1 = mode1

∧ activeZones ′1 = activeZones1 ⊕
{area : AreaId | newZone? ∈ controlledZones1(area) •

area 7→ activeZones1(area) ∪ {newZone?}}
∧ discharge ′

1 = discharge1

∧ mode ′
A = modeA ⇒

∃AbstractFireControlState ′ •
mode ′

1 = mode ′

∧ controlledZones ′1 = controlledZones ′

∧ activeZones ′1 = activeZones ′

∧ discharge ′
1 = discharge ′ ∧ active ′

1 = active ′

∧ mode ′ = mode
∧ activeZones ′ = activeZones ⊕

{area : AreaId | newZone? ∈ controlledZones(area) •
area 7→ activeZones(area) ∪ {newZone?}}

∧ discharge ′ = discharge
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≡ [E .1,E .2]
mode1 = mode ∧
controlledZones1 = controlledZones ∧ activeZones1 = activeZones
∧ discharge1 = discharge ∧ active1 = active
∧ true
∧ mode ′

1 = mode1

∧ activeZones ′1 = activeZones1 ⊕
{area : AreaId | newZone? ∈ controlledZones1(area) •

area 7→ activeZones1(area) ∪ {newZone?}}
∧ discharge ′

1 = discharge1

∧ mode ′
A = modeA ⇒

mode ′
1 = mode

∧ activeZones ′1 = activeZones ⊕
{area : AreaId | newZone? ∈ controlledZones(area) •

area 7→ activeZones(area) ∪ {newZone?}}
∧ discharge ′

1 = discharge
≡ [E .4,E .3]
true

2

192



Lemma 5.6.

∀AbstractFireControlState; FireControlState1 •
RetrFireControl ∧ pre AbstractActivateDischarge ⇒

pre ActivateDischarge1

Since the precondition of the schemas are true, this implication is directly true as
well.

∀AbstractFireControlState; FireControlState1; FireControlState ′
1 •

RetrFireControl ∧ pre AbstractActivateDischarge ∧
ActivateDischarge1 ⇒

∃AbstractFireControlState ′ •
RetrFireControl ′ ∧ AbstractActivateDischarge

≡ [Definition]
∀AbstractFireControlState; FireControlState1; FireControlState ′

1 •
mode1 = mode ∧
controlledZones1 = controlledZones
∧ activeZones1 = activeZones
∧ discharge1 = discharge ∧ active1 = active
∧ true
∧ mode ′

1 = mode1

∧ activeZones ′1 = activeZones1

∧ discharge ′
1 = discharge1 ⊕

{area : AreaId | area ∈ dom active1 B {true} • area 7→ true}
∧ mode ′

A = modeA

⇒ ∃AbstractFireControlState ′ •
mode ′

1 = mode ′

∧ controlledZones ′1 = controlledZones ′

∧ activeZones ′1 = activeZones ′

∧ discharge ′
1 = discharge ′ ∧ active ′

1 = active ′

∧ mode ′ = mode
∧ activeZones ′ = activeZones
∧ discharge ′ = discharge ⊕

{area : AreaId | area ∈ dom active B {true}
• area 7→ true}

193



≡ [E .1,E .2]
mode1 = mode ∧
controlledZones1 = controlledZones ∧ activeZones1 = activeZones
∧ discharge1 = discharge ∧ active1 = active
∧ true
∧ mode ′

1 = mode1

∧ controlledZones ′1 = controlledZones1

∧ activeZones ′1 = activeZones1

∧ discharge ′
1 = discharge1 ⊕

{area : AreaId | area ∈ dom active1 B {true} • area 7→ true}
∧ active ′

1 = active1

∧ mode ′
A = modeA

⇒ mode ′
1 = mode

∧ activeZones ′1 = activeZones
∧ discharge ′

1 = discharge ⊕
{area : AreaId | area ∈ dom active B {true} • area 7→ true}

≡ [E .4,E .3]
true

2
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Lemmas of Section 5.6.3

Lemma B.5

{modeA = manual ∧ mode1 = manual};Manual1[Act1 \ Act2]
vA


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





\ GasDischargeSync
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Proof.

{modeA = manual ∧ mode1 = manual};Manual1[Act1 \ Act2]
= [Definition of Manual1, Substitution]
{modeA = manual ∧ mode1 = manual};
systemState!manuals →

detection?newZone : ZoneId → ActivateZone1;
switchLamp[ZoneId ].newZone!on →


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





\ GasDischargeSync
2 silenceAlarm → alarm!alarmOff →



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









\ GasDischargeSync
2 externalManualDischarge?area : AreaId →

(area ∈ dom active1 B {true}) &
switchLamp[AreaId ].area!on → ActivateDischarge1;

SwitchFireControl2DisabledMode1;



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









\ GasDischargeSync
2 (area /∈ dom active1 B {true}) &


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





\ GasDischargeSync
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on →


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





\ GasDischargeSync
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= [C .54, Schema Calculus ]



{modeA = manual ∧ mode1 = manual};
systemState!manuals →

detection?newZone : ZoneId → ActivateZoneAS ;
switchLamp[ZoneId ].newZone!on →


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 silenceAlarm → alarm!alarmOff →



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2 externalManualDischarge?area : AreaId →
(area ∈ dom active1 B {true}) &

switchLamp[AreaId ].area!on → ActivateDischargeAS ;
SwitchInternalSystem2DisabledMode;



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2 (area /∈ dom active1 B {true}) &


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on →


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)









\ GasDischargeSync
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vA [D .13,D .19,C .30,C .36,C .57,C .33,C .35]
{modeA = manual ∧ mode1 = manual ⇒ modeA = manual ∧ mode1 = manual}



{modeA = manual ∧ mode1 = manual};
systemState!manuals →

detection?newZone : ZoneId → ActivateZoneAS ;
switchLamp[ZoneId ].newZone!on →


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 silenceAlarm → alarm!alarmOff →



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



{modeA = manual ∧ mode1 = manual};
(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) &

DisabledAreas;AreasCycle









2 externalManualDischarge?area : AreaId →
(area ∈ dom active1 B {true}) &

switchLamp[AreaId ].area!on → ActivateDischargeAS ;
SwitchInternalSystem2DisabledMode;



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



{mode1 = disabled};
(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) &

DisabledAreas;AreasCycle









2 (area /∈ dom active1 B {true}) &


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on →


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)









\ GasDischargeSync
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vA [D .17,C .36,C .57]
{modeA = manual ∧ mode1 = manual ⇒ modeA = manual ∧ mode1 = manual}
{modeA = manual ∧ mode1 = manual ⇒ ¬ (mode1 6= manual)}
{mode1 = disabled ⇒ mode1 = disabled}
{mode1 = disabled ⇒ ¬ (modeA = manual ∧ mode1 = manual)}



{modeA = manual ∧ mode1 = manual};
systemState!manuals →

detection?newZone : ZoneId → ActivateZoneAS ;
switchLamp[ZoneId ].newZone!on →


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 silenceAlarm → alarm!alarmOff →


Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 externalManualDischarge?area : AreaId →
(area ∈ dom active1 B {true}) &

switchLamp[AreaId ].area!on → ActivateDischargeAS ;
SwitchInternalSystem2DisabledMode;


Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(DisabledAreas;AreasCycle)





2 (area /∈ dom active1 B {true}) &


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on →


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)









\ GasDischargeSync
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vA [D .14]
{modeA = manual ∧ mode1 = manual ⇒ modeA = manual}



{modeA = manual};
systemState!manuals →

detection?newZone : ZoneId → ActivateZoneAS ;
switchLamp[ZoneId ].newZone!on →


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 silenceAlarm → alarm!alarmOff →


Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 externalManualDischarge?area : AreaId →
(area ∈ dom active1 B {true}) &

switchLamp[AreaId ].area!on → ActivateDischargeAS ;
SwitchInternalSystem2DisabledMode;


Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(DisabledAreas;AreasCycle)





2 (area /∈ dom active1 B {true}) &


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on →


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)









\ GasDischargeSync
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= [D .28,D .29]
{wrtV (SwitchInternalSystem2DisabledMode) ⊆

α(InternalSystemState) ∪ α(InternalSystemState ′)}
{wrtV (SwitchInternalSystem2DisabledMode)∩

usedV (DisabledAreas;AreasCycle) = ∅}
{wrtV (ActivateDischargeAS ) ⊆

α(AreasState) ∪ α(AreasState ′)}
{wrtV (ActivateDischargeAS ) ∩ usedV (Reset2) = ∅}



{modeA = manual};
systemState!manuals →

detection?newZone : ZoneId → ActivateZoneAS ;
switchLamp[ZoneId ].newZone!on →


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 silenceAlarm → alarm!alarmOff →


Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 externalManualDischarge?area : AreaId →
(area ∈ dom active1 B {true}) &

switchLamp[AreaId ].area!on →


(SwitchInternalSystem2DisabledMode;Reset2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActivateDischargeAS ;DisabledAreas;AreasCycle)





2 (area /∈ dom active1 B {true}) &


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on →


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)









\ GasDischargeSync
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= [D .4,C .44]
{initials(DisabledAreas) ⊆ Σ2}
{switchLamp /∈ Σ2}
{initials(ActiveAreas) ⊆ Σ2}
{{silenceAlarm, alarm} ∩ Σ2 = ∅}



{modeA = manual};
systemState!manuals →

detection?newZone : ZoneId → ActivateZoneAS ;
switchLamp[ZoneId ].newZone!on →


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2




(silenceAlarm → alarm!alarmOff → Reset2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 externalManualDischarge?area : AreaId →
(area ∈ dom active1 B {true}) &





(
switchLamp[AreaId ].area!on →

SwitchInternalSystem2DisabledMode;Reset2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActivateDischargeAS ;DisabledAreas;AreasCycle)





2 (area /∈ dom active1 B {true}) &


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on →


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)









\ GasDischargeSync
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= [D .4,C .44,D .29,D .28]
{initials(ActiveAreas;AreasCycle) ⊆ Σ2}
{{fault , switchLamp, switchBuzzer} ∩ Σ2 = ∅}
{{faultId} ∩ usedV (ActiveAreas;AreasCycle) = ∅}
{wrtV (ActivateZoneAS ) ⊆ α(AreasState) ∪ α(AreasState ′)}
{wrtV (ActivateZoneAS ) ∩ usedV (X ) = ∅}



{modeA = manual};
systemState!manuals →

detection?newZone : ZoneId →


(switchLamp[ZoneId ].newZone!on → Manual2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActivateZoneAS ;ActiveAreas;AreasCycle)





2




(silenceAlarm → alarm!alarmOff → Reset2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 externalManualDischarge?area : AreaId →
(area ∈ dom active1 B {true}) &





(
switchLamp[AreaId ].area!on →

SwitchInternalSystem2DisabledMode;Reset2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActivateDischargeAS ;DisabledAreas;AreasCycle)





2 (area /∈ dom active1 B {true}) &


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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= [D .6]
{detection ∈ Σ2}



{modeA = manual};
systemState!manuals →



(
detection?newZone : ZoneId →

switchLamp[ZoneId ].newZone!on → Manual2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|(
detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle

)





2




(silenceAlarm → alarm!alarmOff → Reset2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 externalManualDischarge?area : AreaId →
(area ∈ dom active1 B {true}) &





(
switchLamp[AreaId ].area!on →

SwitchInternalSystem2DisabledMode;Reset2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActivateDischargeAS ;DisabledAreas;AreasCycle)





2 (area /∈ dom active1 B {true}) &


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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= [B .2,C .54,C .53]
{{gasDischarged , gasNotDischarged ,manualDischarge}∩

({switchLamp} ∪ usedC (Reset2) ∪ usedC (DisabledAreas;AreasCycle)
∪usedC (Manual2) ∪ usedC (ActiveAreas;AreasCycle)) = ∅}



{modeA = manual};
systemState!manuals →



(
detection?newZone : ZoneId →

switchLamp[ZoneId ].newZone!on → Manual2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|(
detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle

)





2




(silenceAlarm → alarm!alarmOff → Reset2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 externalManualDischarge?area : AreaId →



manualDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on →
SwitchInternalSystem2DisabledMode;Reset2

2 gasNotDischarged .area → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area → ActivateDischargeAS ;
DisabledAreas;AreasCycle

2 (area /∈ dom active1 B {true}) &
gasNotDischarged .area →

ActiveAreas;AreasCycle





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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205



= [D .32]
{manualDischarge ∈ Σ2}



{modeA = manual};
systemState!manuals →



(
detection?newZone : ZoneId →

switchLamp[ZoneId ].newZone!on → Manual2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|(
detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle

)





2




(silenceAlarm → alarm!alarmOff → Reset2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 externalManualDischarge?area : AreaId →



manualDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on →
SwitchInternalSystem2DisabledMode;Reset2

2 gasNotDischarged .area → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



2 area : AreaId •
manualDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → ActivateDischargeAS ;

DisabledAreas;AreasCycle
2 (area /∈ dom active1 B {true}) &

gasNotDischarged .area →
ActiveAreas;AreasCycle





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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= [D .22,C .46]
{initials(ActiveAreas) ⊆ Σ2}



{modeA = manual};
systemState!manuals →



(
detection?newZone : ZoneId →

switchLamp[ZoneId ].newZone!on → Manual2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|(
detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle

)





2 externalManualDischarge?area : AreaId →



manualDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on →
SwitchInternalSystem2DisabledMode;Reset2

2 gasNotDischarged .area → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



2 area : AreaId •
manualDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → ActivateDischargeAS ;

DisabledAreas;AreasCycle
2 (area /∈ dom active1 B {true}) &

gasNotDischarged .area →
ActiveAreas;AreasCycle





2









silenceAlarm → alarm!alarmOff → Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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= [C .58,D .27,C .46]
{{detection, reset ,manualDischarge} ⊆ Σ2}
{{detection} ∩ {reset ,manualDischarge} = ∅}
{{detection} ⊆ Σ2}



{modeA = manual};
systemState!manuals →



(
detection?newZone : ZoneId →

switchLamp[ZoneId ].newZone!on → Manual2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|



detection?newZone : ZoneId →
ActivateZoneAS ;ActiveAreas;AreasCycle

2 reset → InitAreas;AreasCycle
2 2 area : AreaId •

manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area → ActivateDischargeAS ;
DisabledAreas;AreasCycle

2 (area /∈ dom active1 B {true}) &
gasNotDischarged .area →

ActiveAreas;AreasCycle









2 externalManualDischarge?area : AreaId →



manualDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on →
SwitchInternalSystem2DisabledMode;Reset2

2 gasNotDischarged .area → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



2 area : AreaId •
manualDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → ActivateDischargeAS ;

DisabledAreas;AreasCycle
2 (area /∈ dom active1 B {true}) &

gasNotDischarged .area →
ActiveAreas;AreasCycle





2









silenceAlarm → alarm!alarmOff → Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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= [C .24,D .24]



{modeA = manual};
systemState!manuals →



(
detection?newZone : ZoneId →

switchLamp[ZoneId ].newZone!on → Manual2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|







detection?newZone : ZoneId →
ActivateZoneAS ;ActiveAreas

2 reset → InitAreas
2 2 area : AreaId • manualDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → ActivateDischargeAS ;

DisabledAreas
2 (area /∈ dom active1 B {true}) &

gasNotDischarged .area →
ActiveAreas





;

AreasCycle









2 externalManualDischarge?area : AreaId →



manualDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on →
SwitchInternalSystem2DisabledMode;Reset2

2 gasNotDischarged .area → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



2 area : AreaId •
manualDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → ActivateDischargeAS ;

DisabledAreas;AreasCycle
2 (area /∈ dom active1 B {true}) &

gasNotDischarged .area →
ActiveAreas;AreasCycle





2









silenceAlarm → alarm!alarmOff → Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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vA [D .13,D .19,C .30,C .36,C .57]
{modeA = manual ⇒ modeA = manual}



{modeA = manual};
systemState!manuals →



(
detection?newZone : ZoneId →

switchLamp[ZoneId ].newZone!on → Manual2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|



{modeA = manual};



detection?newZone : ZoneId →
ActivateZoneAS ;ActiveAreas

2 reset → InitAreas
2 2 area : AreaId • manualDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → ActivateDischargeAS ;

DisabledAreas
2 (area /∈ dom active1 B {true}) &

gasNotDischarged .area →
ActiveAreas





;

AreasCycle









2 externalManualDischarge?area : AreaId →



manualDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on →
SwitchInternalSystem2DisabledMode;Reset2

2 gasNotDischarged .area → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



2 area : AreaId •
manualDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → ActivateDischargeAS ;

DisabledAreas;AreasCycle
2 (area /∈ dom active1 B {true}) &

gasNotDischarged .area →
ActiveAreas;AreasCycle





2









silenceAlarm → alarm!alarmOff → Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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vA [D .17,C .36,C .57,D .22,Definition of ActiveAreas ]
{modeA = manual ⇒ modeA = manual}
{modeA = manual ⇒ ¬ modeA = automatic}



{modeA = manual};
systemState!manuals →



(
detection?newZone : ZoneId →

switchLamp[ZoneId ].newZone!on → Manual2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 externalManualDischarge?area : AreaId →



manualDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on →
SwitchInternalSystem2DisabledMode;Reset2

2 gasNotDischarged .area → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



2 area : AreaId •
manualDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → ActivateDischargeAS ;

DisabledAreas;AreasCycle
2 (area /∈ dom active1 B {true}) &

gasNotDischarged .area →
ActiveAreas;AreasCycle





2









silenceAlarm → alarm!alarmOff → Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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= [D .22,C .46]
{initials(ActiveAreas;AreasCycle) ⊆ Σ2}



{modeA = manual};
systemState!manuals →







detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Manual2

2 silenceAlarm → alarm!alarmOff → Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 externalManualDischarge?area : AreaId →



manualDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on →
SwitchInternalSystem2DisabledMode;Reset2

2 gasNotDischarged .area → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



2 area : AreaId •
manualDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → ActivateDischargeAS ;

DisabledAreas;AreasCycle
2 (area /∈ dom active1 B {true}) &

gasNotDischarged .area →
ActiveAreas;AreasCycle
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= [C .58,D .27,C .46]
{{manualDischarge, reset , detection} ⊆ Σ2}
{{manualDischarge} ∩ {reset , detection} = ∅}
{{manualDischarge} ⊆ Σ2}



{modeA = manual};
systemState!manuals →







detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Manual2

2 silenceAlarm → alarm!alarmOff → Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 externalManualDischarge?area : AreaId →



manualDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on →
SwitchInternalSystem2DisabledMode;Reset2

2 gasNotDischarged .area → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



2 area : AreaId •
manualDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → ActivateDischargeAS ;

DisabledAreas;AreasCycle
2 (area /∈ dom active1 B {true}) &

gasNotDischarged .area →
ActiveAreas;AreasCycle

2 reset → InitAreas;AreasCycle
2 detection?newZone : ZoneId → ActivateZoneAS ;

ActiveAreas;AreasCycle
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= [D .4,C .44]
{{manualDischarge, reset , detection} ⊆ Σ2}
{{externalManualDischarge} ∩ Σ2 = ∅}
{{area} ∩ usedV () = ∅}



{modeA = manual};
systemState!manuals →







detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Manual2

2 silenceAlarm → alarm!alarmOff → Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2









externalManualDischarge?area : AreaId →
manualDischarge.area →

gasDischarged .area →
switchLamp[AreaId ].area!on →

SwitchInternalSystem2DisabledMode;Reset2
2 gasNotDischarged .area → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



2 area : AreaId •
manualDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → ActivateDischargeAS ;

DisabledAreas;AreasCycle
2 (area /∈ dom active1 B {true}) &

gasNotDischarged .area →
ActiveAreas;AreasCycle

2 reset → InitAreas;AreasCycle
2 detection?newZone : ZoneId → ActivateZoneAS ;

ActiveAreas;AreasCycle
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= [D .19,C .30,C .33,C .36,C .57]




systemState!manuals →







detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Manual2

2 silenceAlarm → alarm!alarmOff → Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2









externalManualDischarge?area : AreaId →
manualDischarge.area →

gasDischarged .area →
switchLamp[AreaId ].area!on →

SwitchInternalSystem2DisabledMode;Reset2
2 gasNotDischarged .area → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



{modeA = manual};



2 area : AreaId •
manualDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → ActivateDischargeAS ;

DisabledAreas;AreasCycle
2 (area /∈ dom active1 B {true}) &

gasNotDischarged .area →
ActiveAreas;AreasCycle

2 reset → InitAreas;AreasCycle
2 detection?newZone : ZoneId → ActivateZoneAS ;

ActiveAreas;AreasCycle
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= [C .24,D .24]



systemState!manuals →







detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Manual2

2 silenceAlarm → alarm!alarmOff → Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2









externalManualDischarge?area : AreaId →
manualDischarge.area →

gasDischarged .area →
switchLamp[AreaId ].area!on →

SwitchInternalSystem2DisabledMode;Reset2
2 gasNotDischarged .area → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



{modeA = manual};



2 area : AreaId •
manualDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → ActivateDischargeAS ;

DisabledAreas
2 (area /∈ dom active1 B {true}) &

gasNotDischarged .area →
ActiveAreas

2 reset → InitAreas
2 detection?newZone : ZoneId → ActivateZoneAS ;

ActiveAreas





;

AreasCycle
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vA [D .17,C .36,C .57,D .22,Definition of ActiveAreas ]
{modeA = manual ⇒ modeA = manual}
{modeA = manual ⇒ ¬ modeA = automatic}



systemState!manuals →







detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Manual2

2 silenceAlarm → alarm!alarmOff → Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2









externalManualDischarge?area : AreaId →
manualDischarge.area →

gasDischarged .area →
switchLamp[AreaId ].area!on →

SwitchInternalSystem2DisabledMode;Reset2
2 gasNotDischarged .area → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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vA [C .46]
{initials(ActiveAreas;AreasCycle) ⊆ Σ2}



systemState!manuals →







detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Manual2

2 silenceAlarm → alarm!alarmOff → Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Manual2

2 externalManualDischarge?area : AreaId →
manualDischarge.area →

gasDischarged .area →
switchLamp[AreaId ].area!on →

SwitchInternalSystem2DisabledMode;Reset2
2 gasNotDischarged .area → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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= [D .4,C .44]
{initials(ActiveAreas;AreasCycle) ⊆ Σ2}
{systemState /∈ Σ2}
{wrtV (systemState!manuals → Skip) ∩ usedV (ActiveAreas;AreasCycle) = ∅}







systemState!manuals →
detection?newZone : ZoneId →

switchLamp[ZoneId ].newZone!on → Manual2
2 silenceAlarm → alarm!alarmOff → Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Manual2

2 externalManualDischarge?area : AreaId →
manualDischarge.area →

gasDischarged .area →
switchLamp[AreaId ].area!on →

SwitchInternalSystem2DisabledMode;Reset2
2 gasNotDischarged .area → Manual2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





\ GasDischargeSync
= [D .22,Definition of Manual2]


Manual2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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Lemma B.6

{modeA = automatic ∧ mode1 = automatic};Auto1[Act1 \ Act2]
vA


Auto2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)



 \ GasDischargeSync

Proof.

{modeA = automatic ∧ mode1 = automatic};Auto1[Act1 \ Act2]
= [D .14]
{modeA = automatic ∧ mode1 = automatic ⇒ modeA = automatic}
{modeA = automatic};Auto1[Act1 \ Act2]
= [Definition of Auto1, Substitution]
{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &
alarm!secondStage →


Countdown2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





\ GasDischargeSync
2 (active B {true} = ∅) &

reset → alarm!alarmOff → SwitchLampsOff1;InitFireControl1;


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





\ GasDischargeSync
2 detection?newZone : ZoneId → ActivateZone1;

switchLamp[ZoneId ].newZone!on →


Auto2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





\ GasDischargeSync
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on →


Auto2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





\ GasDischargeSync
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vA [D .7,D .29,D .28]
{wrtV (InitAreas) ⊆ α(AreasState) ∪ α(AreasState ′)}
{wrtV (InitAreas) ∩ usedV (FireSys2) = ∅}
{wrtV (InitInternalSystem) ⊆ α(InternalSystemState) ∪ α(InternalSystemState ′)}
{wrtV (InitInternalSystem) ∩ usedV (WaitingDischarge;AreasCycle) = ∅}
{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &
alarm!secondStage →


Countdown2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





\ GasDischargeSync
2 (active B {true} = ∅) &

reset → alarm!alarmOff → SwitchLampsOff1;


(InitInternalSystem;FireSys2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)





\ GasDischargeSync
2 detection?newZone : ZoneId → ActivateZone1;

switchLamp[ZoneId ].newZone!on →


Auto2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





\ GasDischargeSync
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on →


Auto2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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= [Schema Calculus ,Definition of SwitchLampsOff2]
{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &
alarm!secondStage →


Countdown2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





\ GasDischargeSync
2 (active B {true} = ∅) &

reset → alarm!alarmOff → SwitchLampsOff2;


(InitInternalSystem;FireSys2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)





\ GasDischargeSync
2 detection?newZone : ZoneId → ActivateZoneAS ;

switchLamp[ZoneId ].newZone!on →


Auto2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





\ GasDischargeSync
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on →


Auto2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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= [C .54,C .44]
{initials(AreasCycle) ⊆ Σ2}
{Σ2 ∩ {alarm, switchLamp, switchBuzzer} = ∅}
{wrtV (SwitchLampsOff2) ∩ usedV (InitAreas;AreasCycle) = ∅}



{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &
alarm!secondStage →


Countdown2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2 (active B {true} = ∅) &
reset →





(
alarm!alarmOff → SwitchLampsOff2;

InitInternalSystem;FireSys2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)





2 detection?newZone : ZoneId → ActivateZoneAS ;
switchLamp[ZoneId ].newZone!on →


Auto2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on →


Auto2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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= [C .51]
{reset ∈ Σ2}



{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &
alarm!secondStage →


Countdown2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2 (active B {true} = ∅) &




(
reset → alarm!alarmOff → SwitchLampsOff2;

InitInternalSystem;FireSys2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(reset → InitAreas;AreasCycle)





2 detection?newZone : ZoneId → ActivateZoneAS ;
switchLamp[ZoneId ].newZone!on →


Auto2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on →


Auto2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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= [D .4,C .44]
{initials(WaitingDischarge) ⊆ Σ2}
{{alarm, switchLamp, switchBuzzer , fault} ∩ Σ2 = ∅}
{wrtV (alarm!secondStage → Skip)∩

usedV (WaitingDischarge;AreasCycle) = ∅}
{initials(ActiveAreas;AreasCycle) ⊆ Σ2}
{wrtV (switchLamp[ZoneId ].newZone!on → Skip)∩

usedV (ActiveAreas;AreasCycle) = ∅}
{{faultId} ∩ usedV (ActiveAreas;AreasCycle) = ∅}



{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &


(alarm!secondStage → Countdown2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2 (active B {true} = ∅) &




(
reset → alarm!alarmOff → SwitchLampsOff2;

InitInternalSystem;FireSys2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(reset → InitAreas;AreasCycle)





2 detection?newZone : ZoneId → ActivateZoneAS ;


(switchLamp[ZoneId ].newZone!on → Auto2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)









\ GasDischargeSync

224



vA [D .28]
{wrtV (ActivateZoneAS ) ⊆ α(AreasState) ∪ α(AreasState ′)}
{wrtV (ActivateZoneAS )∩

usedV (switchLamp[ZoneId ].newZone!on → Auto2) = ∅}



{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &


(alarm!secondStage → Countdown2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2 (active B {true} = ∅) &




(
reset → alarm!alarmOff → SwitchLampsOff2;

InitInternalSystem;FireSys2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(reset → InitAreas;AreasCycle)





2 detection?newZone : ZoneId →


(switchLamp[ZoneId ].newZone!on → Auto2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActivateZoneAS ;ActiveAreas;AreasCycle)





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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= [D .6]
{detection ∈ Σ2}



{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &


(alarm!secondStage → Countdown2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2 (active B {true} = ∅) &




(
reset → alarm!alarmOff → SwitchLampsOff2;

InitInternalSystem;FireSys2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(reset → InitAreas;AreasCycle)





2





(
detection?newZone : ZoneId →

switchLamp[ZoneId ].newZone!on → Auto2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|(
detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle

)





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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= [C .45]
{{detection, reset} ⊆ Σ2}



{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &


(alarm!secondStage → Countdown2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2 (active B {true} = ∅) &







reset → alarm!alarmOff → SwitchLampsOff2;
InitInternalSystem;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|


reset → InitAreas;AreasCycle
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle









2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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vA [D .13,D .19,C .30,C .36,C .57]
{modeA = automatic ⇒ modeA = automatic}



{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &


(alarm!secondStage → Countdown2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2 {modeA = automatic};
(active B {true} = ∅) &







reset → alarm!alarmOff → SwitchLampsOff2;
InitInternalSystem;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|


reset → InitAreas;AreasCycle
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle









2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)









\ GasDischargeSync
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vA [D .16,C .36,C .57]
{modeA = automatic ∧ active B {true} = ∅ ⇔

modeA = automatic ∧ active B {true} = ∅}



{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &


(alarm!secondStage → Countdown2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2 (active B {true} = ∅) &
{modeA = automatic ∧ active B {true} = ∅};







reset → alarm!alarmOff → SwitchLampsOff2;
InitInternalSystem;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|


reset → InitAreas;AreasCycle
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle









2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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vA [C .30,C .33,C .36,C .57]



{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &


(alarm!secondStage → Countdown2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2 (active B {true} = ∅) &







reset → alarm!alarmOff → SwitchLampsOff2;
InitInternalSystem;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|


reset → InitAreas;AreasCycle
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle









2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|


{modeA = automatic ∧ active B {true} = ∅};
ActiveAreas;
AreasCycle













\ GasDischargeSync
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vA [Definition of ActiveAreas ,D .17,C .36,C .57]
{(modeA = automatic ∧ active B {true} = ∅) ⇒ (modeA = automatic)}
{(modeA = automatic ∧ active B {true} = ∅) ⇒ ¬ (modeA = manual)}



{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &


(alarm!secondStage → Countdown2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2 (active B {true} = ∅) &







reset → alarm!alarmOff → SwitchLampsOff2;
InitInternalSystem;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|


reset → InitAreas;AreasCycle
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle









2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



{modeA = automatic ∧ active B {true} = ∅};



(modeA = automatic) &
(active1 B {true} 6= ∅) &

countdown →
countdownStarted?answer : Bool →

(answer = true) &
WaitingDischarge

2 (answer = false) &
DisabledAreas

2 (active1 B {true} = ∅) &
reset → InitAreas
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas
2 2 area : AreaId •

automaticDischarge.area →
gasNotDischarged .area →

ActiveAreas





;

AreasCycle
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= [C .32,C .16,C .24]
{(modeA = automatic ∧ active B {true} = ∅) ⇒ modeA = automatic)}



{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &


(alarm!secondStage → Countdown2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2 (active B {true} = ∅) &







reset → alarm!alarmOff → SwitchLampsOff2;
InitInternalSystem;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|


reset → InitAreas;AreasCycle
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle









2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



{modeA = automatic ∧ active B {true} = ∅};



(active1 B {true} 6= ∅) &
countdown →

countdownStarted?answer : Bool →
(answer = true) &

WaitingDischarge
2 (answer = false) &

DisabledAreas
2 (active1 B {true} = ∅) &

reset → InitAreas
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas
2 2 area : AreaId •

automaticDischarge.area →
gasNotDischarged .area →

ActiveAreas





;

AreasCycle
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vA [D .17,C .36,C .57]
{(modeA = automatic ∧ active B {true} = ∅) ⇒ active1 B {true} = ∅}
{(modeA = automatic ∧ active B {true} = ∅) ⇒ ¬ (active1 B {true} 6= ∅)}




{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &


(alarm!secondStage → Countdown2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2 (active B {true} = ∅) &







reset → alarm!alarmOff → SwitchLampsOff2;
InitInternalSystem;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|


reset → InitAreas;AreasCycle
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle









2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|







reset → InitAreas
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas
2 2 area : AreaId •

automaticDischarge.area →
gasNotDischarged .area →

ActiveAreas





;

AreasCycle
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vA [C .58,D .27]
{{reset , detection, automaticDischarge} ⊆ csΣ2}
{{reset , detection} ∩ {automaticDischarge} = ∅}



{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &


(alarm!secondStage → Countdown2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2 (active B {true} = ∅) &







reset → alarm!alarmOff → SwitchLampsOff2;
InitInternalSystem;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|


reset → InitAreas;AreasCycle
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle









2









reset → alarm!alarmOff → SwitchLampsOff2;
InitInternalSystem;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|


2 area : AreaId • automaticDischarge.area →

gasNotDischarged .area → ActiveAreas;
AreasCycle









2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|







reset → InitAreas
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas
2 2 area : AreaId •

automaticDischarge.area →
gasNotDischarged .area →

ActiveAreas





;

AreasCycle
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vA [C .46]
{{reset , detection} ⊆ Σ2}



{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &


(alarm!secondStage → Countdown2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2 (active B {true} = ∅) &







reset → alarm!alarmOff → SwitchLampsOff2;
InitInternalSystem;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



reset → InitAreas;AreasCycle
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas;AreasCycle
2 2 area : AreaId • automaticDischarge.area →

gasNotDischarged .area → ActiveAreas;
AreasCycle









2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|







reset → InitAreas
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas
2 2 area : AreaId •

automaticDischarge.area →
gasNotDischarged .area →

ActiveAreas





;

AreasCycle
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= [C .24,D .24]



{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &


(alarm!secondStage → Countdown2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2 (active B {true} = ∅) &







reset → alarm!alarmOff → SwitchLampsOff2;
InitInternalSystem;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|







reset → InitAreas
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas
2 2 area : AreaId •

automaticDischarge.area →
gasNotDischarged .area →

ActiveAreas





;

AreasCycle









2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|







reset → InitAreas
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas
2 2 area : AreaId •

automaticDischarge.area →
gasNotDischarged .area →

ActiveAreas





;

AreasCycle
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= [C .46]
{{reset , detection, automaticDischarge} ⊆ Σ2}



{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &


(alarm!secondStage → Countdown2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2 (active B {true} = ∅) &








reset → alarm!alarmOff → SwitchLampsOff2;
InitInternalSystem;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Auto2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|







reset → InitAreas
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas
2 2 area : AreaId •

automaticDischarge.area →
gasNotDischarged .area →

ActiveAreas





;

AreasCycle
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= [D .35, answer 6= true ⇒ answer = false,C .54]
{countdownStarted ∈ Σ2}
{countdownStarted ∈ GasDischargeSync}
{answer /∈ FV (WaitingDischarge;AreasCycle)}



{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &



(
countdownStarted !true → alarm!secondStage →

Countdown2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|


countdownStarted?answer : Bool →

(answer = true) & WaitingDischarge;AreasCycle
2 (answer = false) & DisabledAreas;AreasCycle









2 (active B {true} = ∅) &








reset → alarm!alarmOff → SwitchLampsOff2;
InitInternalSystem;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Auto2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|







reset → InitAreas
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas
2 2 area : AreaId •

automaticDischarge.area →
gasNotDischarged .area →

ActiveAreas





;

AreasCycle
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= [D .37]
{countdown ∈ Σ2}
{countdown ∈ GasDischargeSync}



{modeA = automatic};
systemState!autos →

(active B {true} 6= ∅) &



(
countdown → countdownStarted !true →

alarm!secondStage → Countdown2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|


countdown → countdownStarted?answer : Bool →

(answer = true) & WaitingDischarge;AreasCycle
2 (answer = false) & DisabledAreas;AreasCycle









2 (active B {true} = ∅) &








reset → alarm!alarmOff → SwitchLampsOff2;
InitInternalSystem;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Auto2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|







reset → InitAreas
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas
2 2 area : AreaId •

automaticDischarge.area →
gasNotDischarged .area →

ActiveAreas





;

AreasCycle
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= [D .11]
{({reset , switchLamp, switchBuzzer , detection, fault} ∪ usedC (FireSys2)∪

usedC (Auto2)) ∩ {countdown} = ∅}
{({reset , detection} ∪ usedC (ActiveAreas)) ∩ {countdown} = ∅}



{modeA = automatic};
systemState!autos →



countdown → countdownStarted !true →
alarm!secondStage → Countdown2

2 reset → alarm!alarmOff → SwitchLampsOff2;
InitInternalSystem;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Auto2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(active B {true} 6= ∅) &
countdown → countdownStarted?answer : Bool →

(answer = true) & WaitingDischarge;AreasCycle
2 (answer = false) & DisabledAreas;AreasCycle

2 (active B {true} = ∅) &



reset → InitAreas
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas
2 2 area : AreaId •

automaticDischarge.area →
gasNotDischarged .area →

ActiveAreas





;

AreasCycle
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= [D .4,C .44]
{{countdown, reset , detection} ⊆ Σ2}
{Σ2 ∩ {systemState} = ∅}
{wrtV (systemState!autos → Skip) ∩ A3 = ∅}



{modeA = automatic};



systemState!autos →
countdown → countdownStarted !true →

alarm!secondStage → Countdown2

2 reset → alarm!alarmOff → SwitchLampsOff2;
InitInternalSystem;FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Auto2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → Auto2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(active B {true} 6= ∅) &
countdown → countdownStarted?answer : Bool →

(answer = true) & WaitingDischarge;AreasCycle
2 (answer = false) & DisabledAreas;AreasCycle

2 (active B {true} = ∅) &



reset → InitAreas
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas
2 2 area : AreaId •

automaticDischarge.area →
gasNotDischarged .area →

ActiveAreas





;

AreasCycle
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vA [Definition of Auto2,C .33,C .36,C .57]




Auto2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|



{modeA = automatic};
(active B {true} 6= ∅) &

countdown → countdownStarted?answer : Bool →
(answer = true) & WaitingDischarge;AreasCycle
2 (answer = false) & DisabledAreas;AreasCycle

2 (active B {true} = ∅) &



reset → InitAreas
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas
2 2 area : AreaId •

automaticDischarge.area →
gasNotDischarged .area →

ActiveAreas





;

AreasCycle
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= [D .24]




Auto2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|



{modeA = automatic};



(active B {true} 6= ∅) &
countdown → countdownStarted?answer : Bool →

(answer = true) & WaitingDischarge
2 (answer = false) & DisabledAreas

2 (active B {true} = ∅) &
reset → InitAreas
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas
2 2 area : AreaId •

automaticDischarge.area →
gasNotDischarged .area →

ActiveAreas





;

AreasCycle
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vA [D .17,C .36,C .57]
{modeA = automatic ⇒ modeA = automatic}
{modeA = automatic ⇒ ¬ modeA = manual}



Auto2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|







(modeA = automatic) &
(active B {true} 6= ∅) &

countdown → countdownStarted?answer : Bool →
(answer = true) & WaitingDischarge
2 (answer = false) & DisabledAreas

2 (active B {true} = ∅) &
reset → InitAreas
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas
2 2 area : AreaId •

automaticDischarge.area →
gasNotDischarged .area →

ActiveAreas
2 (modeA = manual) &

reset → InitAreas
2 detection?newZone : ZoneId →

ActivateZoneAS ;ActiveAreas
2 2 area : AreaId •

manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area →
ActivateDischargeAS ; DisabledAreas

2 (area /∈ dom active1 B {true}) &
gasNotDischarged .area → ActiveAreas





;

AreasCycle
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=̂ [Definition of ActiveAreas ]


Auto2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActiveAreas;AreasCycle)
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Lemma B.7

{(modeA = manual ∧ mode1 = manual) ∨ (mode1 6= manual)};
Reset1[Act1 \ Act2]

vA



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle
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Proof.

{(modeA = manual ∧ mode1 = manual) ∨ (mode1 6= manual)};Reset1[Act1 \ Act2]
= [Definition of Reset1, Substitution]
{(modeA = manual ∧ mode1 = manual) ∨ (mode1 6= manual)};
systemState!resets →

actuatorsReplaced → switchLamp[LampId ].circuitFaultLamp!off →
SwitchFireControl2AutomaticMode1;



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









\ GasDischargeSync
2 detection?newZone : ZoneId → ActivateZone1;

switchLamp[ZoneId ].newZone!on →



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









\ GasDischargeSync
2 reset → alarm!alarmOff → SwitchLampsOff1;

(mode1 = disabled) &




FireSysD2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)





\ GasDischargeSync
2 (mode1 6= disabled) &

InitFireControl1;




FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





\ GasDischargeSync
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on → switchBuzzer !on →



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle
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= [Schema Calculus ,Definition of SwitchLampsOff2,D .15]
{(modeA = manual ∧ mode1 = manual) ∨ (mode1 6= manual)};
systemState!resets →

actuatorsReplaced → switchLamp[LampId ].circuitFaultLamp!off →
SwitchInternalSystem2AutomaticMode;



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









\ GasDischargeSync
2 detection?newZone : ZoneId → ActivateZoneAS ;

switchLamp[ZoneId ].newZone!on →



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









\ GasDischargeSync
2 reset → alarm!alarmOff → SwitchLampsOff2;

(mode1 = disabled) &




FireSysD2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)
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2 (mode1 6= disabled) &

InitFireControl1;




FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





\ GasDischargeSync
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on → switchBuzzer !on →



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle
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= [C .54]



{(modeA = manual ∧ mode1 = manual) ∨ (mode1 6= manual)};
systemState!resets →

actuatorsReplaced → switchLamp[LampId ].circuitFaultLamp!off →
SwitchInternalSystem2AutomaticMode;



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2 detection?newZone : ZoneId → ActivateZoneAS ;
switchLamp[ZoneId ].newZone!on →



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2 reset → alarm!alarmOff → SwitchLampsOff2;
(mode1 = disabled) &


FireSysD2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)





2 (mode1 6= disabled) & InitFireControl1;


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on → switchBuzzer !on →



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle













\ GasDischargeSync

247



= [D .7]
{α(InternalSystemState) ∩ α(AreasState) = ∅}
{FV (true) ⊆ α(InternalSystemState)}
{FV (true) ⊆ α(AreasState)}
{{mode ′

1, dischargedOcurred ′
1} ⊆ α(InternalSystemState ′)}

{{mode ′
A, controlledZones ′1, activeZones ′1, discharge

′
1, active

′
1} ⊆

α(AreasState ′)}



{(modeA = manual ∧ mode1 = manual) ∨ (mode1 6= manual)};
systemState!resets →

actuatorsReplaced → switchLamp[LampId ].circuitFaultLamp!off →
SwitchInternalSystem2AutomaticMode;



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2 detection?newZone : ZoneId → ActivateZoneAS ;
switchLamp[ZoneId ].newZone!on →



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2 reset → alarm!alarmOff → SwitchLampsOff2;
(mode1 = disabled) &


FireSysD2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)





2 (mode1 6= disabled) & InitInternalSystem;InitAreas;


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
AreasCycle





2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on → switchBuzzer !on →



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle
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= [D .28,D .29]
{wrtV (InitAreas) ⊆ α(AreasState) ∪ α(AreasState ′)}
{wrtV (InitAreas) ∩ usedV (FireSys2) = ∅}
{wrtV (InitInternalSystem) ⊆ α(InternalSystemState) ∪ α(InternalSystemState ′)}
{wrtV (InitInternalSystem) ∩ usedV (AreasCycle) = ∅}



{(modeA = manual ∧ mode1 = manual) ∨ (mode1 6= manual)};
systemState!resets →

actuatorsReplaced → switchLamp[LampId ].circuitFaultLamp!off →
SwitchInternalSystem2AutomaticMode;



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2 detection?newZone : ZoneId → ActivateZoneAS ;
switchLamp[ZoneId ].newZone!on →



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2 reset → alarm!alarmOff → SwitchLampsOff2;
(mode1 = disabled) &


FireSysD2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)





2 (mode1 6= disabled) &


(InitInternalSystem;FireSys2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)





2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on → switchBuzzer !on →



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle
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= [D .10]
{initials(AreasCycles) ⊆ Σ2}



{(modeA = manual ∧ mode1 = manual) ∨ (mode1 6= manual)};
systemState!resets →

actuatorsReplaced → switchLamp[LampId ].circuitFaultLamp!off →
SwitchInternalSystem2AutomaticMode;



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2 detection?newZone : ZoneId → ActivateZoneAS ;
switchLamp[ZoneId ].newZone!on →



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2 reset → alarm!alarmOff → SwitchLampsOff2;(
(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) & InitInternalSystem;FireSys2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on →



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle
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= [C .44,C .51]
{initials(AreasCycles) ⊆ Σ2}
{{alarm, switchLamp, switchBuzzer} ∩ Σ2 = ∅}
{wrtV (alarm!alarmOff → SwitchLampsOff2)∩

usedV (InitAreas;AreasCycle) = ∅}
{reset ∈ Σ2}



{(modeA = manual ∧ mode1 = manual) ∨ (mode1 6= manual)};
systemState!resets →

actuatorsReplaced → switchLamp[LampId ].circuitFaultLamp!off →
SwitchInternalSystem2AutomaticMode;



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2 detection?newZone : ZoneId → ActivateZoneAS ;
switchLamp[ZoneId ].newZone!on →



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2








reset → alarm!alarmOff → SwitchLampsOff2;

(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) & InitInternalSystem;FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(reset → InitAreas;AreasCycle)





2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on →



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle
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= [D .4,C .44]
{initials(ActiveAreas;AreasCycle)∪

initials(DisabledAreas;AreasCycle) ⊆ Σ2}
{{fault , switchLamp, switchBuzzer} ∩ Σ2 = ∅}
{{faultId} ∩ (usedV (ActiveAreas;AreasCycle)∪

usedV (DisabledAreas;AreasCycle)) = ∅}



{(modeA = manual ∧ mode1 = manual) ∨ (mode1 6= manual)};
systemState!resets →

actuatorsReplaced → switchLamp[LampId ].circuitFaultLamp!off →
SwitchInternalSystem2AutomaticMode;



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2 detection?newZone : ZoneId → ActivateZoneAS ;



(switchLamp[ZoneId ].newZone!on → Reset2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2








reset → alarm!alarmOff → SwitchLampsOff2;

(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) & InitInternalSystem;FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(reset → InitAreas;AreasCycle)





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle
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= [D .28]
{wrtV (SwitchInternalSystem2AutomaticMode) ⊆

α(InternalSystemState) ∪ α(InternalSystemState ′)}
{wrtV (SwitchInternalSystem2AutomaticMode)∩

(usedV (ActiveAreas;AreasCycle)∪
usedV (DisabledAreas;AreasCycle)) = ∅}

{wrtV (ActivateZoneAS ) ⊆
α(AreasState) ∪ α(AreasState ′)}

{wrtV (ActivateZoneAS )∩
usedV (switchLamp[ZoneId ].newZone!on → Reset2) = ∅}



{(modeA = manual ∧ mode1 = manual) ∨ (mode1 6= manual)};
systemState!resets →

actuatorsReplaced → switchLamp[LampId ].circuitFaultLamp!off →



(SwitchInternalSystem2AutomaticMode; Reset2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2 detection?newZone : ZoneId →



(switchLamp[ZoneId ].newZone!on → Reset2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



ActivateZoneAS ;
(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) &

DisabledAreas;AreasCycle









2








reset → alarm!alarmOff → SwitchLampsOff2;

(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) & InitInternalSystem;FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(reset → InitAreas;AreasCycle)





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle
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= [D .4,C .44]
{initials(ActiveAreas;AreasCycle)∪

initials(DisabledAreas;AreasCycle) ⊆ Σ2}
{{switchLamp, actuatorsReplaced} ∩ Σ2 = ∅}
{{actuatorsReplaced → switchLamp[LampId ].circuitFaultLamp!off → Skip}∩

(usedV (ActiveAreas;AreasCycle)∪
usedV (DisabledAreas;AreasCycle)) = ∅}



{(modeA = manual ∧ mode1 = manual) ∨ (mode1 6= manual)};
systemState!resets →






actuatorsReplaced →

switchLamp[LampId ].circuitFaultLamp!off →
SwitchInternalSystem2AutomaticMode; Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2 detection?newZone : ZoneId →



(switchLamp[ZoneId ].newZone!on → Reset2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



ActivateZoneAS ;
(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) &

DisabledAreas;AreasCycle









2








reset → alarm!alarmOff → SwitchLampsOff2;

(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) & InitInternalSystem;FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(reset → InitAreas;AreasCycle)





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle
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= [D .6]
{detection ∈ Σ2 = ∅}



{(modeA = manual ∧ mode1 = manual) ∨ (mode1 6= manual)};
systemState!resets →






actuatorsReplaced →

switchLamp[LampId ].circuitFaultLamp!off →
SwitchInternalSystem2AutomaticMode; Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2





(
detection?newZone : ZoneId →

switchLamp[ZoneId ].newZone!on → Reset2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|



detection?newZone : ZoneId → ActivateZoneAS ;
(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) &

DisabledAreas;AreasCycle









2








reset → alarm!alarmOff → SwitchLampsOff2;

(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) & InitInternalSystem;FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(reset → InitAreas;AreasCycle)





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle
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= [D .22,C .45,C .58]
{{detection, reset} ⊆ Σ2}



{(modeA = manual ∧ mode1 = manual) ∨ (mode1 6= manual)};
systemState!resets →






actuatorsReplaced →

switchLamp[LampId ].circuitFaultLamp!off →
SwitchInternalSystem2AutomaticMode; Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2









detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Reset2

2 reset → alarm!alarmOff → SwitchLampsOff2;
(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) & InitInternalSystem;FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



detection?newZone : ZoneId → ActivateZoneAS ;
(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) &

DisabledAreas;AreasCycle
2 reset → InitAreas;AreasCycle









2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle
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= [C .58,D .26,C .45]
{{manualDischarge} ⊆ Σ2}
{{detection, reset} ⊆ Σ2}



{(modeA = manual ∧ mode1 = manual) ∨ (mode1 6= manual)};
systemState!resets →






actuatorsReplaced →

switchLamp[LampId ].circuitFaultLamp!off →
SwitchInternalSystem2AutomaticMode; Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2









detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Reset2

2 reset → alarm!alarmOff → SwitchLampsOff2;
(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) & InitInternalSystem;FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



detection?newZone : ZoneId → ActivateZoneAS ;
(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) &

DisabledAreas;AreasCycle
2 reset → InitAreas;AreasCycle

2









(modeA = manual ∧ mode1 = manual) &

2 area : AreaId • manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area →
ActivateDischargeAS ; DisabledAreas

2 (area /∈ dom active1 B {true}) &
gasNotDischarged .area → ActiveAreas





;

AreasCycle













2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|(
(modeA = manual ∧ mode1 = manual) & ActiveAreas;AreasCycle
2 (mode1 6= manual) & DisabledAreas;AreasCycle

)
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= [D .22,C .46]
{initials(ActiveAreas;AreasCycle)∪

initials(DisabledAreas;AreasCycle) ⊆ Σ2}



{(modeA = manual ∧ mode1 = manual) ∨ (mode1 6= manual)};
systemState!resets →







actuatorsReplaced →
switchLamp[LampId ].circuitFaultLamp!off →

SwitchInternalSystem2AutomaticMode; Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2









detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Reset2

2 reset → alarm!alarmOff → SwitchLampsOff2;
(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) &
InitInternalSystem;FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



detection?newZone : ZoneId → ActivateZoneAS ;
(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) &

DisabledAreas;AreasCycle
2 reset → InitAreas;AreasCycle

2









(modeA = manual ∧ mode1 = manual) &

2 area : AreaId • manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area →
ActivateDischargeAS ;
DisabledAreas

2 (area /∈ dom active1 B {true}) &
gasNotDischarged .area →

ActiveAreas





;

AreasCycle
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vA [D .19,C .30,C .33,C .36,C .57]



systemState!resets →







actuatorsReplaced →
switchLamp[LampId ].circuitFaultLamp!off →

SwitchInternalSystem2AutomaticMode; Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2









detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Reset2

2 reset → alarm!alarmOff → SwitchLampsOff2;
(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) &
InitInternalSystem;FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



{(modeA = manual ∧ mode1 = manual) ∨ (mode1 6= manual)};
detection?newZone : ZoneId → ActivateZoneAS ;

(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle

2 reset → InitAreas;AreasCycle

2









(modeA = manual ∧ mode1 = manual) &

2 area : AreaId • manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area →
ActivateDischargeAS ;
DisabledAreas

2 (area /∈ dom active1 B {true}) &
gasNotDischarged .area →

ActiveAreas





;

AreasCycle
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vA [C .13,C .36,C .57]



systemState!resets →







actuatorsReplaced →
switchLamp[LampId ].circuitFaultLamp!off →

SwitchInternalSystem2AutomaticMode; Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2









detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Reset2

2 reset → alarm!alarmOff → SwitchLampsOff2;
(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) &
InitInternalSystem;FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



((modeA = manual ∧ mode1 = manual) ∨ (mode1 6= manual)) &
detection?newZone : ZoneId → ActivateZoneAS ;

(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle

2 reset → InitAreas;AreasCycle

2









(modeA = manual ∧ mode1 = manual) &

2 area : AreaId • manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area →
ActivateDischargeAS ;
DisabledAreas

2 (area /∈ dom active1 B {true}) &
gasNotDischarged .area →

ActiveAreas





;

AreasCycle
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We refine the right-hand side action in the parallelism of the second alternative
branch. In the following, we present only the refinement of this action.

vA [D .12]
(modeA = manual ∧ mode1 = manual) &

detection?newZone : ZoneId → ActivateZoneAS ;
(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) &

DisabledAreas;AreasCycle
2 reset → InitAreas;AreasCycle

2









(modeA = manual ∧ mode1 = manual) &

2 area : AreaId • manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area →
ActivateDischargeAS ;
DisabledAreas

2 (area /∈ dom active1 B {true}) &
gasNotDischarged .area →

ActiveAreas





;

AreasCycle





2 (mode1 6= manual) &
detection?newZone : ZoneId → ActivateZoneAS ;

(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle

2 reset → InitAreas;AreasCycle

2









(modeA = manual ∧ mode1 = manual) &

2 area : AreaId • manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area →
ActivateDischargeAS ;
DisabledAreas

2 (area /∈ dom active1 B {true}) &
gasNotDischarged .area →

ActiveAreas





;

AreasCycle
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= [D .15]
(modeA = manual ∧ mode1 = manual) & {modeA = manual ∧ mode1 = manual}

detection?newZone : ZoneId → ActivateZoneAS ;
(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) &

DisabledAreas;AreasCycle
2 reset → InitAreas;AreasCycle

2









(modeA = manual ∧ mode1 = manual) &

2 area : AreaId • manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area →
ActivateDischargeAS ;
DisabledAreas

2 (area /∈ dom active1 B {true}) &
gasNotDischarged .area →

ActiveAreas





;

AreasCycle





2 (mode1 6= manual) & {mode1 6= manual}
detection?newZone : ZoneId → ActivateZoneAS ;

(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle

2 reset → InitAreas;AreasCycle

2









(modeA = manual ∧ mode1 = manual) &

2 area : AreaId • manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area →
ActivateDischargeAS ;
DisabledAreas

2 (area /∈ dom active1 B {true}) &
gasNotDischarged .area →

ActiveAreas





;

AreasCycle
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vA [C .30,C .36,C .57,D .20,D .21]
{newZone /∈ {modeA,mode1}}
{modeA = manual ∧ mode1 = manual ∧ mode ′

1 = mode1 ∧ mode ′
A = modeA ⇒

mode ′
A = manual ∧ mode ′

1 = manual}
{mode1 6= manual ∧ mode ′

1 = mode1 ⇒ mode ′
1 6= manual}

(modeA = manual ∧ mode1 = manual) &
detection?newZone : ZoneId → ActivateZoneAS ;

(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle

2 reset → InitAreas;AreasCycle

2









{modeA = manual ∧ mode1 = manual};
(modeA = manual ∧ mode1 = manual) &

2 area : AreaId • manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area →
ActivateDischargeAS ;
DisabledAreas

2 (area /∈ dom active1 B {true}) &
gasNotDischarged .area →

ActiveAreas





;

AreasCycle





2 (mode1 6= manual) &
detection?newZone : ZoneId → ActivateZoneAS ;

(modeA = manual ∧ mode1 = manual) & ActiveAreas;AreasCycle
2 (mode1 6= manual) & DisabledAreas;AreasCycle

2 reset → InitAreas;AreasCycle

2









{mode1 6= manual};
(modeA = manual ∧ mode1 = manual) &

2 area : AreaId • manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area →
ActivateDischargeAS ; DisabledAreas

2 (area /∈ dom active1 B {true}) &
gasNotDischarged .area → ActiveAreas





;

AreasCycle
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vA [D .17,C .36,C .57,C .32,C .31,C .58]
{modeA = manual ∧ mode1 = manual ⇒ modeA = manual ∧ mode1 = manual}
{modeA = manual ∧ mode1 = manual ⇒ ¬ mode1 6= manual}
{mode1 6= manual ⇒ mode1 6= manual}
{mode1 6= manual ⇒ ¬ (modeA = manual ∧ mode1 = manual)}
(modeA = manual ∧ mode1 = manual) &

detection?newZone : ZoneId → ActivateZoneAS ;
(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) &

DisabledAreas;AreasCycle
2 reset → InitAreas;AreasCycle

2





2 area : AreaId • manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area →
ActivateDischargeAS ;
DisabledAreas

2 (area /∈ dom active1 B {true}) &
gasNotDischarged .area →

ActiveAreas





;

AreasCycle
2 (mode1 6= manual) &

detection?newZone : ZoneId → ActivateZoneAS ;
(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) &

DisabledAreas;AreasCycle
2 reset → InitAreas;AreasCycle
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Now, we return to the refinement of the whole action.

vA [C .13,C .36,C .57]



systemState!resets →







actuatorsReplaced →
switchLamp[LampId ].circuitFaultLamp!off →

SwitchInternalSystem2AutomaticMode; Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2









detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Reset2

2 reset → alarm!alarmOff → SwitchLampsOff2;
(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) &
InitInternalSystem;FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|




(modeA = manual ∧ mode1 = manual) &
detection?newZone : ZoneId → ActivateZoneAS ;

(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle

2 reset → InitAreas;AreasCycle

2





2 area : AreaId • manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area →
ActivateDischargeAS ; DisabledAreas

2 (area /∈ dom active1 B {true}) &
gasNotDischarged .area → ActiveAreas





;

AreasCycle
2 (mode1 6= manual) &

detection?newZone : ZoneId → ActivateZoneAS ;
(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) &

DisabledAreas;AreasCycle
2 reset → InitAreas;AreasCycle
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= [B .4]
{{detection, reset} ⊆ cs
{{detection, reset} ∩ {automaticDischarge} = ∅



systemState!resets →







actuatorsReplaced →
switchLamp[LampId ].circuitFaultLamp!off →

SwitchInternalSystem2AutomaticMode; Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|


(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) & DisabledAreas;AreasCycle









2









detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Reset2

2 reset → alarm!alarmOff → SwitchLampsOff2;
(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) & InitInternalSystem;FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
detection?newZone : ZoneId → ActivateZoneAS ;

(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle

2 reset → InitAreas;AreasCycle

2





2 area : AreaId • manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area →
ActivateDischargeAS ; DisabledAreas

2 (area /∈ dom active1 B {true}) &
gasNotDischarged .area → ActiveAreas





;

AreasCycle
2 (mode1 6= manual) &

detection?newZone : ZoneId → ActivateZoneAS ;
(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) & DisabledAreas;AreasCycle

2 reset → InitAreas;AreasCycle
2 2 area : AreaId • automaticDischarge.area →

gasNotDischarged .area → ActiveAreas;AreasCycle
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= [C .24,D .24,Definition of DisabledAreas ]



systemState!resets →







actuatorsReplaced →
switchLamp[LampId ].circuitFaultLamp!off →

SwitchInternalSystem2AutomaticMode; Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|


(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) & DisabledAreas;AreasCycle









2









detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Reset2

2 reset → alarm!alarmOff → SwitchLampsOff2;
(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) &
InitInternalSystem;FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
detection?newZone : ZoneId → ActivateZoneAS ;

(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle

2 reset → InitAreas;AreasCycle

2





2 area : AreaId • manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area →
ActivateDischargeAS ;

DisabledAreas
2 (area /∈ dom active1 B {true}) &

gasNotDischarged .area →
ActiveAreas





;

AreasCycle
2 (mode1 6= manual) & DisabledAreas;AreasCycle
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= [D .15]



systemState!resets →







actuatorsReplaced →
switchLamp[LampId ].circuitFaultLamp!off →

SwitchInternalSystem2AutomaticMode; Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|


(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) & DisabledAreas;AreasCycle









2









detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Reset2

2 reset → alarm!alarmOff → SwitchLampsOff2;
(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) &
InitInternalSystem;FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
{modeA = manual ∧ mode1 = manual};

detection?newZone : ZoneId → ActivateZoneAS ;
(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) &

DisabledAreas;AreasCycle
2 reset → InitAreas;AreasCycle

2





2 area : AreaId • manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area →
ActivateDischargeAS ;

DisabledAreas
2 (area /∈ dom active1 B {true}) &

gasNotDischarged .area →
ActiveAreas





;

AreasCycle
2 (mode1 6= manual) & DisabledAreas;AreasCycle













\ GasDischargeSync

268



vA [D .13,C .30,C .36,C .57]
{modeA = manual ∧ mode1 = manual ⇒ modeA = manual ∧ mode1 = manual}



systemState!resets →







actuatorsReplaced →
switchLamp[LampId ].circuitFaultLamp!off →

SwitchInternalSystem2AutomaticMode; Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|


(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) & DisabledAreas;AreasCycle









2









detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Reset2

2 reset → alarm!alarmOff → SwitchLampsOff2;
(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) &
InitInternalSystem;FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
{modeA = manual ∧ mode1 = manual};

detection?newZone : ZoneId → ActivateZoneAS ;
{modeA = manual ∧ mode1 = manual};
(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) &

DisabledAreas;AreasCycle
2 reset → InitAreas;AreasCycle

2





2 area : AreaId • manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area →
ActivateDischargeAS ;

DisabledAreas
2 (area /∈ dom active1 B {true}) &

gasNotDischarged .area →
ActiveAreas





;

AreasCycle
2 (mode1 6= manual) & DisabledAreas;AreasCycle
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vA [D .17]
{modeA = manual ∧ mode1 = manual ⇒ modeA = manual ∧ mode1 = manual}
{modeA = manual ∧ mode1 = manual ⇒ ¬ (mode1 6= manual)}




systemState!resets →







actuatorsReplaced →
switchLamp[LampId ].circuitFaultLamp!off →

SwitchInternalSystem2AutomaticMode; Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|


(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) & DisabledAreas;AreasCycle









2









detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Reset2

2 reset → alarm!alarmOff → SwitchLampsOff2;
(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) &
InitInternalSystem;FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
{modeA = manual ∧ mode1 = manual};

detection?newZone : ZoneId → ActivateZoneAS ;
ActiveAreas;AreasCycle

2 reset → InitAreas;AreasCycle

2





2 area : AreaId • manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area →
ActivateDischargeAS ;

DisabledAreas
2 (area /∈ dom active1 B {true}) &

gasNotDischarged .area →
ActiveAreas





;

AreasCycle
2 (mode1 6= manual) & DisabledAreas;AreasCycle
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vA [D .17,C .36,C .57,D .24,Definition of ActiveAreas ]
{modeA = manual ∧ mode1 = manual ⇒ modeA = manual}
{modeA = manual ∧ mode1 = manual ⇒ ¬ modeA = automatic}



systemState!resets →







actuatorsReplaced →
switchLamp[LampId ].circuitFaultLamp!off →

SwitchInternalSystem2AutomaticMode; Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|


(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) & DisabledAreas;AreasCycle









2









detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Reset2

2 reset → alarm!alarmOff → SwitchLampsOff2;
(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) &
InitInternalSystem;FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle
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= [C .58,D .27]
{{countdown} ∪ initials(ActiveAreas;AreasCycles)

∪ initials(DisabledAreas;AreasCycles) ⊆ Σ2}
{{countdown} ∩ (initials(ActiveAreas;AreasCycles)

∪ initials(DisabledAreas;AreasCycles)) = ∅}



systemState!resets →







actuatorsReplaced →
switchLamp[LampId ].circuitFaultLamp!off →

SwitchInternalSystem2AutomaticMode; Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|


(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) & DisabledAreas;AreasCycle









2









detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Reset2

2 reset → alarm!alarmOff → SwitchLampsOff2;
(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) &
InitInternalSystem;FireSys2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









2





(countdown → countdownStarted !false → Reset2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle
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= [C .46]
{initials(ActiveAreas;AreasCycle)∪

initials(DisabledAreas;AreasCycle) ⊆ Σ2}



systemState!resets →







actuatorsReplaced →
switchLamp[LampId ].circuitFaultLamp!off →

SwitchInternalSystem2AutomaticMode; Reset2
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Reset2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Reset2

2 reset → alarm!alarmOff → SwitchLampsOff2;
(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) &
InitInternalSystem;FireSys2

2 countdown → countdownStarted !false → Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|


(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) & DisabledAreas;AreasCycle













\ GasDischargeSync
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= [D .4,C .44,D .22]
{initials(ActiveAreas;AreasCycle)∪

initials(ActiveAreas;AreasCycle) ⊆ Σ2}
{Σ2 ∩ systemState = ∅}
{wrtV (systemState!resets → Skip) ∩ (usedV (ActiveAreas;AreasCycle)∪

usedV (DisabledAreas;AreasCycle)) = ∅}











systemState!resets →
actuatorsReplaced →

switchLamp[LampId ].circuitFaultLamp!off →
SwitchInternalSystem2AutomaticMode; Reset2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Reset2

2 reset → alarm!alarmOff → SwitchLampsOff2;
(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) &
InitInternalSystem;FireSys2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → Reset2
2 countdown → countdownStarted !false → Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|


(modeA = manual ∧ mode1 = manual) &

ActiveAreas;AreasCycle
2 (mode1 6= manual) & DisabledAreas;AreasCycle













\ GasDischargeSync
= [Definition of Reset2]



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









\ GasDischargeSync
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Lemma B.8

Countdown1[Act1 \ Act2]
vA


Countdown2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)



 \ GasDischargeSync

Proof.

Countdown1

= [Definition of Countdown1, Substitution]
systemState!countdowns → startClock →


WaitingClock2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)



 \ GasDischargeSync

= [D .4,C .54,C .44]
{{detection, automaticDischarge} ⊆ Σ2}
{Σ2 ∩ {systemState, startClock} = ∅}
{∅ ∩ usedV (WaitingDischarge;AreasCycle) = ∅}



(systemState!countdowns → startClock →
WaitingClock2)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)



 \ GasDischargeSync

= [Definition of Countdown2]


Countdown2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)



 \ GasDischargeSync
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Lemma B.9

WaitingClock1[Act1 \ Act2]
vA


WaitingClock2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)



 \ GasDischargeSync

Proof.

WaitingClock1[Act1 \ Act2]
= [Definition of WaitingClock1, Substitution]
clockFinished →


Discharge2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





\ GasDischargeSync
2 detection?newZone : ZoneId → ActivateZone1;

switchLamp[ZoneId ].newZone!on →


WaitingClock2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





\ GasDischargeSync
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on →


WaitingClock2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





\ GasDischargeSync
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= [Schema Calculus ,C .54]
{{clockFinished , detection, switchLamp, fault , switchBuzzer}∩

GasDischargeSync = ∅}



clockFinished →


Discharge2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2 detection?newZone : ZoneId → ActivateZoneAS ;
switchLamp[ZoneId ].newZone!on →


WaitingClock2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on →


WaitingClock2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)









\ GasDischargeSync
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= [D .4,C .44]
{{automaticDischarge} ⊆ Σ2}
{Σ2 ∩ {clockFinished} = ∅}
{wrtV (clockFinished → Skip)∩

usedV (WaitingDischarge;AreasCycle) = ∅}
{usedC (WaitingDischarge;AreasCycle) ⊆ Σ2}
{Σ2 ∩ {switchLamp} = ∅}
{wrtV (switchLamp[ZoneId ].newZone!on → Skip)∩

usedV (WaitingDischarge;AreasCycle) = ∅}
{Σ2 ∩ {fault , switchLamp, switchBuzzer} = ∅}
{{faultId} ∩ usedV (WaitingDischarge;AreasCycle) = ∅}






(clockFinished → Discharge2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2 detection?newZone : ZoneId → ActivateZoneAS ;


(switchLamp[ZoneId ].newZone!on → WaitingClock2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → WaitingClock2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)









\ GasDischargeSync
vA [D .28]
{wrtV (ActivateZoneAS ) ⊆ (α(AreasState) ∪ α(AreasState ′))}
{wrtV (ActivateZoneAS )∩

usedV (switchLamp[ZoneId ].newZone!on → WaitingClock2) = ∅}






(clockFinished → Discharge2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2 detection?newZone : ZoneId →


(switchLamp[ZoneId ].newZone!on → WaitingClock2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActivateZoneAS ;WaitingDischarge;AreasCycle)





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → WaitingClock2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)









\ GasDischargeSync
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= [D .6]
{detection ∈ Σ2}






(clockFinished → Discharge2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2





(
detection?newZone : ZoneId →

switchLamp[ZoneId ].newZone!on → WaitingClock2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|(
detection?newZone : ZoneId →

ActivateZoneAS ;WaitingDischarge;AreasCycle

)





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → WaitingClock2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)









\ GasDischargeSync
= [C .58,D .27]
{{detection, automaticDischarge} ⊆ Σ2}
{{detection} ∩ {automaticDischarge} = ∅}






(clockFinished → Discharge2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2





(
detection?newZone : ZoneId →

switchLamp[ZoneId ].newZone!on → WaitingClock2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|(
detection?newZone : ZoneId →

ActivateZoneAS ;WaitingDischarge;AreasCycle

)





2





(
detection?newZone : ZoneId →

switchLamp[ZoneId ].newZone!on → WaitingClock2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ReplyDischarge;DisabledAreas;AreasCycle)





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → WaitingClock2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)









\ GasDischargeSync
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= [C .46]
{{detection} ⊆ Σ2}






(clockFinished → Discharge2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2





(
detection?newZone : ZoneId →

switchLamp[ZoneId ].newZone!on → WaitingClock2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|


detection?newZone : ZoneId →

ActivateZoneAS ;WaitingDischarge;AreasCycle
2 ReplyDischarge;DisabledAreas;AreasCycle









2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → WaitingClock2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)









\ GasDischargeSync
= [C .24,D .24]






(clockFinished → Discharge2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2





(
detection?newZone : ZoneId →

switchLamp[ZoneId ].newZone!on → WaitingClock2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|






detection?newZone : ZoneId →

ActivateZoneAS ;WaitingDischarge
2 ReplyDischarge;DisabledAreas



 ;

AreasCycle









2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → WaitingClock2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)









\ GasDischargeSync
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= [Definition of WaitingDischarge]






(clockFinished → Discharge2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2





(
detection?newZone : ZoneId →

switchLamp[ZoneId ].newZone!on → WaitingClock2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → WaitingClock2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)









\ GasDischargeSync
= [C .58,D .27]
{{countdown} ∪ initials(WaitingDischarge;AreasCycles) ⊆ Σ2}
{{countdown} ∩ initials(WaitingDischarge;AreasCycles) = ∅}






(clockFinished → Discharge2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2





(
detection?newZone : ZoneId →

switchLamp[ZoneId ].newZone!on → WaitingClock2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2








fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → WaitingClock2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





2




(countdown → countdownStarted !true → WaitingClock2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)









\ GasDischargeSync
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= [C .46]
{initials(WaitingDischarge;AreasCycle) ⊆ Σ2}







clockFinished → Discharge2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → WaitingClock2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → WaitingClock2

2 countdown → countdownStarted !true → WaitingClock2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)





\ GasDischargeSync
vA [Definition of WaitingClock2]


WaitingClock2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)



 \ GasDischargeSync
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Lemma B.10

FireSysD1[Act1 \ Act2]
vA


FireSysD2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)



 \ GasDischargeSync

Proof.

FireSysD1[Act1 \ Act2]
= [Definition of FireSysD1, Substitutions ]
systemState!fireSysDs →

actuatorsReplaced → alarm!alarmOff → SwitchLampsOff1;
InitFireControl1;


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(AreasCycle)





\ GasDischargeSync
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on →


FireSysD2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)





\ GasDischargeSync
= [Definition of SwitchLampsOff2]
systemState!fireSysDs →

actuatorsReplaced → alarm!alarmOff → SwitchLampsOff2;
InitFireControl1;


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(AreasCycle)





\ GasDischargeSync
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on →


FireSysD2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)





\ GasDischargeSync

283



= [D .7]
{α(InternalSystemState) ∩ α(AreasState) = ∅}
{FV (true) ⊆ α(InternalSystemState)}
{FV (true) ⊆ α(AreasState)}
{{mode ′

1, dischargedOcurred ′
1} ⊆ α(InternalSystemState ′)}

{{mode ′
A, controlledZones ′1, activeZones ′1, discharge

′
1, active

′
1} ⊆

α(AreasState ′)}
systemState!fireSysDs →

actuatorsReplaced → alarm!alarmOff → SwitchLampsOff2;
InitInternalSystem;InitAreas;


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(AreasCycle)





\ GasDischargeSync
2 fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on →


FireSysD2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)





\ GasDischargeSync
= [C .54]
{{systemState, detection, switchLamp, alarm,

actuatorsReplaced , fault , switchBuzzer} ∩ gasDischargeSync = ∅}



systemState!fireSysDs →
actuatorsReplaced → alarm!alarmOff → SwitchLampsOff2;

InitInternalSystem;InitAreas;


FireSys2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(AreasCycle)





2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on →


FireSysD2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)









\ GasDischargeSync
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vA [D .28,D .29]
{wrtV (InitAreas) ⊆ α(AreasState) ∪ α(AreasState ′)}
{wrtV (InitAreas) ∩ usedV (FireSys2) = ∅}
{wrtV (InitInternalSystem) ⊆

α(InternalSystemState) ∪ α(InternalSystemState ′)}
{wrtV (InitInternalSystem) ∩ usedV (AreasCycle) = ∅}



systemState!fireSysDs →
actuatorsReplaced → alarm!alarmOff → SwitchLampsOff2;


(InitInternalSystem;FireSys2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)





2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on →


FireSysD2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)









\ GasDischargeSync = [D .4,C .44]
{initials(InitAreas;AreasCycle) ⊆ Σ2}
{{actuatorsReplaced , switchLamp, switchBuzzer , alarm} ∩ Σ2 = ∅}
{wrtV (actuatorsReplaced → alarm!alarmOff → SwitchLampsOff2)∩

usedV (InitAreas;AreasCycle) = ∅}
{{fault , switchLamp, switchBuzzer} ∩ Σ2 = ∅}
{wrtV (fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → Skip) ∩ usedV (InitAreas;AreasCycle) = ∅}





systemState!fireSysDs →



(
actuatorsReplaced → alarm!alarmOff →

SwitchLampsOff2;InitInternalSystem;FireSys2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)





2






fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → FireSysD2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)









\ GasDischargeSync
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= [C .58,D .27]
{{countdown} ∪ initials(AreasCycle) ⊆ Σ2}
{{countdown} ∩ initials(AreasCycle) = ∅}



systemState!fireSysDs →



(
actuatorsReplaced → alarm!alarmOff →

SwitchLampsOff2;InitInternalSystem;FireSys2

)

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)





2






fault?faultId : FaultId →

switchLamp[LampId ].getLampId(faultId)!on →
switchBuzzer !on → FireSysD2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)





2


(countdown → countdownStarted !false → FireSysD2)
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)









\ GasDischargeSync
= [C .46]
{initials(InitAreas;AreasCycle) ⊆ Σ2}



systemState!fireSysDs →







actuatorsReplaced → alarm!alarmOff →
SwitchLampsOff2;InitInternalSystem;FireSys2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → FireSysD2

2 countdown →
countdownStarted !false → FireSysD2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)









\ GasDischargeSync
= [Definition of FireSysD2]


FireSysD2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(InitAreas;AreasCycle)



 \ GasDischargeSync
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Lemma B.11

Discharge1[Act1 \ Act2]
vA


Discharge2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)



 \ GasDischargeSync

Proof.

Discharge1[Act1 \ Act2]
= [Definition of Discharge1, Substitution]
systemState!discharges →

exit →(
o
9 area : dom active1 B {true} •

switchLamp[AreaId ].area!on → Skip

)

;




(dom active1 B {true} 6= ∅) &
SwitchFireControlSystem2DisabledMode1

2 (dom active1 B {true} = ∅) &
SwitchFireControlSystem2AutomaticMode1



 ;

ActivateDischarge1;



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle









\ GasDischargeSync
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= [Schema Calculus ,C .54]
{{systemState, exit , switchLamp} ∩ GasDischargeSync = ∅}



systemState!discharges →
exit →(

o
9 area : dom active1 B {true} •

switchLamp[AreaId ].area!on → Skip

)

;




(dom active1 B {true} 6= ∅) &
SwitchInternalSystem2DisabledMode

2 (dom active1 B {true} = ∅) &
SwitchInternalSystem2AutomaticMode



 ;

ActivateDischargeAS ;



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle













\ GasDischargeSync
= [C .35]



systemState!discharges →
exit →(

o
9 area : dom active1 B {true} •

switchLamp[AreaId ].area!on → Skip

)

;




(dom active1 B {true} 6= ∅) &
SwitchInternalSystem2DisabledMode;
{mode1 = disabled}

2 (dom active1 B {true} = ∅) &
SwitchInternalSystem2AutomaticMode;
{mode1 = automatic}





;

ActivateDischargeAS ;



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle













\ GasDischargeSync
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vA [D .14]
{mode1 = disabled ⇒ mode1 6= manual}
{mode1 = automatic ⇒ mode1 6= manual}



systemState!discharges →
exit →(

o
9 area : dom active1 B {true} •

switchLamp[AreaId ].area!on → Skip

)

;




(dom active1 B {true} 6= ∅) &
SwitchInternalSystem2DisabledMode;
{mode1 6= manual}

2 (dom active1 B {true} = ∅) &
SwitchInternalSystem2AutomaticMode;
{mode1 6= manual}





;

ActivateDischargeAS ;



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle













\ GasDischargeSync
= [D .24]




systemState!discharges →
exit →(

o
9 area : dom active1 B {true} •

switchLamp[AreaId ].area!on → Skip

)

;




(dom active1 B {true} 6= ∅) &
SwitchInternalSystem2DisabledMode

2 (dom active1 B {true} = ∅) &
SwitchInternalSystem2AutomaticMode



 ;

{mode1 6= manual};
ActivateDischargeAS ;



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle













\ GasDischargeSync
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= [D .21]
{mode1 6= manual ∧ mode ′

1 = mode1 ⇒ mode ′
1 6= manual}





systemState!discharges →
exit →(

o
9 area : dom active1 B {true} •

switchLamp[AreaId ].area!on → Skip

)

;




(dom active1 B {true} 6= ∅) &
SwitchInternalSystem2DisabledMode

2 (dom active1 B {true} = ∅) &
SwitchInternalSystem2AutomaticMode



 ;

ActivateDischargeAS ;
{mode1 6= manual};



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle













\ GasDischargeSync
vA [C .33,C .36,C .57]



systemState!discharges →
exit →(

o
9 area : dom active1 B {true} •

switchLamp[AreaId ].area!on → Skip

)

;




(dom active1 B {true} 6= ∅) &
SwitchInternalSystem2DisabledMode

2 (dom active1 B {true} = ∅) &
SwitchInternalSystem2AutomaticMode



 ;

ActivateDischargeAS ;



Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|



{mode1 6= manual};



(modeA = manual ∧ mode1 = manual) &
ActiveAreas;AreasCycle

2 (mode1 6= manual) &
DisabledAreas;AreasCycle

















\ GasDischargeSync
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vA [D .17,C .36,C .57]
{mode1 6= manual ⇒ mode1 6= manual}
{mode1 6= manual ⇒ ¬ (modeA = manual ∧ mode1 = manual)}



systemState!discharges →
exit →(

o
9 area : dom active1 B {true} •

switchLamp[AreaId ].area!on → Skip

)

;




(dom active1 B {true} 6= ∅) &
SwitchInternalSystem2DisabledMode

2 (dom active1 B {true} = ∅) &
SwitchInternalSystem2AutomaticMode



 ;

ActivateDischargeAS ;


Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(DisabledAreas;AreasCycle)









\ GasDischargeSync
vA [D .28]
{wrtV (ActivateDischargeAS ) ⊆ α(AreasState) ∪ α(AreasState ′)}
{wrtV (ActivateDischargeAS ) ∩ usedV (Reset2) = ∅}




systemState!discharges →
exit →(

o
9 area : dom active1 B {true} •

switchLamp[AreaId ].area!on → Skip

)

;




(dom active1 B {true} 6= ∅) &
SwitchInternalSystem2DisabledMode

2 (dom active1 B {true} = ∅) &
SwitchInternalSystem2AutomaticMode



 ;




Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActivateDischargeAS ;DisabledAreas;AreasCycle)









\ GasDischargeSync
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= [D .38]
{dom active1 B {true} ⊆ AreaId}



systemState!discharges →
exit →



o
9 area : AreaId •

(area ∈ dom active1 B {true}) &
switchLamp[AreaId ].area!on → Skip

2 (area /∈ dom active1 B {true}) &
Skip




;





(dom active1 B {true} 6= ∅) &
SwitchInternalSystem2DisabledMode

2 (dom active1 B {true} = ∅) &
SwitchInternalSystem2AutomaticMode



 ;




Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActivateDischargeAS ;DisabledAreas;AreasCycle)









\ GasDischargeSync
= [B .3,D .4]
{log is fresh variable name}



systemState!discharges →
exit →



var log : N •
log := 0;



o
9 area : AreaId •

(area ∈ dom active1 B {true}) &
switchLamp[AreaId ].area!on →

log := log + 1
2 (area /∈ dom active1 B {true}) &

Skip





;





(log = 0) &
SwitchInternalSystem2DisabledMode

2 (log > 0) &
SwitchInternalSystem2AutomaticMode









;




Reset2
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(ActivateDischargeAS ;DisabledAreas;AreasCycle)









\ GasDischargeSync
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= [D .25,D .34]
{{switchLamp} ∩ Σ2 = ∅}
{log /∈ FV (Reset2) ∪ FV (ActivateDischargeAS ;DisabledAreas;AreasCycle)}



systemState!discharges →
exit →



var log : N •
log := 0;



o
9 area : AreaId •

(area ∈ dom active1 B {true}) &(
switchLamp[AreaId ].area!on →

log := log + 1

)

|[α(InternalSystemState) ∪ {log}
| Σ2 |
α(AreasState)]|

Skip
2 (area /∈ dom active1 B {true}) &

Skip
|[α(InternalSystemState) ∪ {log}
| Σ2 |
α(AreasState)]|

Skip





;





(log = 0) &
SwitchInternalSystem2DisabledMode

2 (log > 0) &
SwitchInternalSystem2AutomaticMode









;




Reset2
|[α(InternalSystemState) ∪ {log} | Σ2 | α(AreasState)]|
(ActivateDischargeAS ;DisabledAreas;AreasCycle)









\ GasDischargeSync
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= [B .2]
{{gasDischarged , gasNotDischarged , automaticDischarge} ∩ {switchLamp} = ∅}



systemState!discharges → exit →



var log : N •
log := 0;



o
9 area : AreaId •



automaticDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on →
log := log + 1

2 gasNotDischarged .area → Skip





|[α(InternalSystemState) ∪ {log}
| Σ2 |
α(AreasState)]|



automaticDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area → Skip
(area /∈ dom active1 B {true}) &

gasNotDischarged .area → Skip









;





(log = 0) &
SwitchInternalSystem2DisabledMode

2 (log > 0) &
SwitchInternalSystem2AutomaticMode









;




Reset2
|[α(InternalSystemState) ∪ {log} | Σ2 | α(AreasState)]|
(ActivateDischargeAS ;DisabledAreas;AreasCycle)









\ GasDischargeSync
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= [D .39]
{automaticDischarge /∈ {gasDischarged , gasNotDischarged , switchLamp}}



systemState!discharges → exit →




var log : N •
log := 0;







o
9 area : AreaId •

automaticDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on →
log := log + 1

2 gasNotDischarged .area → Skip





|[α(InternalSystemState) ∪ {log}
| Σ2 |
α(AreasState)]|



||| area : AreaId •
automaticDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → Skip

(area /∈ dom active1 B {true}) &
gasNotDischarged .area → Skip









;





(log = 0) &
SwitchInternalSystem2DisabledMode

2 (log > 0) &
SwitchInternalSystem2AutomaticMode









;




Reset2
|[α(InternalSystemState) ∪ {log} | Σ2 | α(AreasState)]|
(ActivateDischargeAS ;DisabledAreas;AreasCycle)









\ GasDischargeSync

295



= [D .8]
{log /∈ FV (Reset2) ∪ FV (ActivateDischargeAS ;DisabledAreas;AreasCycle)}



systemState!discharges → exit →



var log : N •
log := 0;







o
9 area : AreaId •

automaticDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on →
log := log + 1

2 gasNotDischarged .area → Skip





|[α(InternalSystemState) ∪ {log}
| Σ2 |
α(AreasState)]|



||| area : AreaId •
automaticDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → Skip

(area /∈ dom active1 B {true}) &
gasNotDischarged .area → Skip









;





(log = 0) &
SwitchInternalSystem2DisabledMode

2 (log > 0) &
SwitchInternalSystem2AutomaticMode



 ;




Reset2
|[α(InternalSystemState) ∪ {log} | Σ2 | α(AreasState)]|
(ActivateDischargeAS ;DisabledAreas;AreasCycle)













\ GasDischargeSync
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vA [D .28]
{wrtV (SwitchInternalSystem2AutomaticMode)∪

wrtV (SwitchInternalSystem2DisabledMode) ⊆
α(InternalSystemState) ∪ α(InternalSystemState ′)}

{wrtV (SwitchInternalSystem2AutomaticMode)∪
wrtV (SwitchInternalSystem2DisabledMode)∩

usedV (ActivateDischargeAS ;DisabledAreas;AreasCycle) = ∅}



systemState!discharges → exit →



var log : N •
log := 0;







o
9 area : AreaId •

automaticDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on →
log := log + 1

2 gasNotDischarged .area → Skip





|[α(InternalSystemState) ∪ {log}
| Σ2 |
α(AreasState)]|



||| area : AreaId •
automaticDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → Skip

(area /∈ dom active1 B {true}) &
gasNotDischarged .area → Skip









;













(log = 0) &
SwitchInternalSystem2DisabledMode

2 (log > 0) &
SwitchInternalSystem2AutomaticMode



 ;

Reset2





|[α(InternalSystemState) ∪ {log} | Σ2 | α(AreasState)]|
(ActivateDischargeAS ;DisabledAreas;AreasCycle)













\ GasDischargeSync
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= [D .33,C .54]
{∅ ∪ usedC (DisabledAreas;AreasCycle) ⊆ cs}
{{automaticDischarge, gasDischarged , gasNotDischarged , switchLamp}∩

usedC (DisabledAreas;AreasCycle) = ∅}
{{automaticDischarge, gasDischarged , gasNotDischarged} ∩ ∅ = ∅}



systemState!discharges → exit →



var log : N •
log := 0;











o
9 area : AreaId •

automaticDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on →
log := log + 1

2 gasNotDischarged .area → Skip





;





(log = 0) &
SwitchInternalSystem2DisabledMode

2 (log > 0) &
SwitchInternalSystem2AutomaticMode



 ;

Reset2





|[α(InternalSystemState) ∪ {log} | Σ2 | α(AreasState)]|







||| area : AreaId •
automaticDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → Skip

(area /∈ dom active1 B {true}) &
gasNotDischarged .area → Skip





;

ActivateDischargeAS ;DisabledAreas;AreasCycle

















\ GasDischargeSync
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= [C .58,D .27]
{{automaticDischarge} ∪ {detection} ⊆ Σ2}
{{automaticDischarge} ∩ {detection} = ∅}



systemState!discharges → exit →



var log : N •
log := 0;















o
9 area : AreaId •

automaticDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on →
log := log + 1

2 gasNotDischarged .area → Skip





;





(log = 0) &
SwitchInternalSystem2DisabledMode

2 (log > 0) &
SwitchInternalSystem2AutomaticMode



 ;

Reset2





|[α(InternalSystemState) ∪ {log} | Σ2 | α(AreasState)]|







||| area : AreaId •
automaticDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → Skip

(area /∈ dom active1 B {true}) &
gasNotDischarged .area → Skip





;

ActivateDischargeAS ;DisabledAreas;AreasCycle









2













o
9 area : AreaId •

automaticDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on →
log := log + 1

2 gasNotDischarged .area → Skip





;





(log = 0) &
SwitchInternalSystem2DisabledMode

2 (log > 0) &
SwitchInternalSystem2AutomaticMode



 ;

Reset2





|[α(InternalSystemState) ∪ {log} | Σ2 | α(AreasState)]|(
detection?newZone : ZoneId → ActivateZoneAS ;

WaitingDischarge;AreasCycle

)

















\ GasDischargeSync
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= [C .46]
{{automaticDischarge} ⊆ Σ2}



systemState!discharges → exit →




var log : N •
log := 0;











o
9 area : AreaId •

automaticDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on →
log := log + 1

2 gasNotDischarged .area → Skip





;





(log = 0) &
SwitchInternalSystem2DisabledMode

2 (log > 0) &
SwitchInternalSystem2AutomaticMode



 ;

Reset2





|[α(InternalSystemState) ∪ {log} | Σ2 | α(AreasState)]|












||| area : AreaId •
automaticDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → Skip

(area /∈ dom active1 B {true}) &
gasNotDischarged .area → Skip





;

ActivateDischargeAS ;DisabledAreas;AreasCycle





2 detection?newZone : ZoneId → ActivateZoneAS ;
WaitingDischarge;AreasCycle

















\ GasDischargeSync
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= [D .9,D .4,C .44]
{log /∈ {area} ∪ usedV (ActivateDischargeAS ;DisabledAreas;AreasCycle)}
{{automaticDischarge, detection} ⊆ Σ2}
{Σ2 ∩ {systemState, exit} = ∅}
{wrtV (systemState!discharges → exit → Skip) ∩ usedV (A3)}







systemState!discharges → exit →



var log : N •
log := 0;



o
9 area : AreaId •

automaticDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on →
log := log + 1

2 gasNotDischarged .area → Skip





;





(log = 0) &
SwitchInternalSystem2DisabledMode

2 (log > 0) &
SwitchInternalSystem2AutomaticMode



 ;

Reset2









|[α(InternalSystemState) | Σ2 | α(AreasState)]|












||| area : AreaId •
automaticDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → Skip

(area /∈ dom active1 B {true}) &
gasNotDischarged .area → Skip





;

ActivateDischargeAS ;DisabledAreas;AreasCycle





2 detection?newZone : ZoneId → ActivateZoneAS ;
WaitingDischarge;AreasCycle









\ GasDischargeSync
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= [D .8]
{log /∈ usedV (Reset2)}







systemState!discharges → exit →



var log : N •
log := 0;



o
9 area : AreaId •

automaticDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on →
log := log + 1

2 gasNotDischarged .area → Skip





;





(log = 0) &
SwitchInternalSystem2DisabledMode

2 (log > 0) &
SwitchInternalSystem2AutomaticMode









;

Reset2





|[α(InternalSystemState) | Σ2 | α(AreasState)]|












||| area : AreaId •
automaticDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → Skip

(area /∈ dom active1 B {true}) &
gasNotDischarged .area → Skip





;

ActivateDischargeAS ;DisabledAreas;AreasCycle





2 detection?newZone : ZoneId → ActivateZoneAS ;
WaitingDischarge;AreasCycle









\ GasDischargeSync
= [Definition of Discharge2]



Discharge2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|












||| area : AreaId •
automaticDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → Skip

(area /∈ dom active1 B {true}) &
gasNotDischarged .area → Skip





;

ActivateDischargeAS ;DisabledAreas;AreasCycle





2 detection?newZone : ZoneId → ActivateZoneAS ;
WaitingDischarge;AreasCycle









\ GasDischargeSync

302



= [C .24,D .24]



Discharge2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|















||| area : AreaId •
automaticDischarge.area →

(area ∈ dom active1 B {true}) &
gasDischarged .area → Skip

(area /∈ dom active1 B {true}) &
gasNotDischarged .area → Skip





;

ActivateDischargeAS ;DisabledAreas





2 detection?newZone : ZoneId → ActivateZoneAS ;
WaitingDischarge





;

AreasCycle









\ GasDischargeSync = [Definition of ReplyDischarge]



Discharge2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|






ReplyDischarge;DisabledAreas
2 detection?newZone : ZoneId → ActivateZoneAS ;

WaitingDischarge



 ;

AreasCycle









\ GasDischargeSync
= [D .22,Definition of WaitingDischarge]


Discharge2

|[α(InternalSystemState) | Σ2 | α(AreasState)]|
(WaitingDischarge;AreasCycle)



 \ GasDischargeSync
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Appendix C

Existing Refinement Laws

Laws of simulation

Law C.1 (Schema Expressions)

ASExp � CSExp

provided

• ∀P1.st ; P2.st ; L • R ∧ pre ASExp ⇒ pre CSExp

• ∀P1.st ; P2.st ; P2.st
′; L • R ∧ pre ASExp ∧ CSExp ⇒

(∃P1.st
′; L′ • R′ ∧ ASExp) 2

Law C.2 (Input prefix distribution)

c?x → A1 � c?x → A2

provided A1 � A2 2

Law C.3 (Output prefix distribution)

c!ae → A1 � c!ce → A2

provided

• ∀P1.st ; P2.st ; L • R ⇒ ae = ce

• A1 � A2 2

Law C.4 (Guard distribution)
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ag & A1 � cg & A2

provided

• ∀P1.st ; P2.st ; L • R ⇒ (ag ⇔ cg)

• A1 � A2 2

Law C.5 (Sequence distribution)

A1; A2 � B1; B2

provided

• A1 � B1

• A2 � B2 2

Law C.6 (External choice distribution)

A1 2 A2 � B1 2 B2

provided

• A1 � B1

• A2 � B2 2

Law C.7 (Parallelism distribution)

A1 |[ ns1 | cs | ns2 ]| A2 � B1 |[ ns1 | cs | ns2 ]| B2

provided

• A1 � B1

• A2 � B2 2

Law C.8 (Recursion distribution)

µX • F (A) � µX • F ′(A)

provided F � F ′
2

Law C.9 (Schema Expressions)
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ASExp � CSExp

provided

• ∀P2.st ; L • (∀P1.st • R ⇒ pre ASExp) ⇒ pre CSExp

• ∀P2.st ; L • (∀P1.st • R ⇒ pre ASExp) ⇒
(∀P1.st

′; P2.st
′; L′ • CSExp ∧ R′ ⇒ (∃P1.st • R ∧ ASExp)) 2

Process Refinement

Law C.10 (Process declaration introduction)

cp = pd cp

provided the process declared in the process declaration pd is not referenced

in the sequence of paragraphs of the Circus program cp. 2

Law C.11 (Process splitting)
Let qd and rd stand for the declarations of the processes Q and R, determined

by Q .st , Q .pps , and Q .act , and R.st , R.pps , and R.act , respectively, and pd
stand for the process declaration above. Then

pd = (qd rd process P =̂ F (Q ,R) )

provided Q .pps and R.pps are disjoint with respect to R.st and Q .st . 2

Law C.12 (Process indexing)
Let gd and ild be the process declarations above, and let ld be the declaration

of the process L. Then,

gd = ld ild process G =̂ ||| i : Range � ILbic

provided L.pps and G .pps are disjoint with respect to L.st and G .st . 2

Action Refinement

Guards

Law C.13 (Guard Introduction—Assumption)

{ g }; A = { g }; g & A
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Law C.14 (Assumption/Guard—Elimination 1)

{ g1 }; (g2 & A) vA { g1 }; A

provided g1 ⇒ g2 2

Law C.15 (Guard Introduction—Schema Expression)

SExp vA 2 i • gi & SExp ∧ [State | gi ]

provided pre SExp ⇒
∨

i • gi 2

Law C.16 (Guard combination)

g1 & (g2 & A) = (g1 ∧ g2) & A

Law C.17 (Guard/Sequence—Association)

(g & A1); A2 = g & (A1; A2)

Law C.18 (Guard/External choice—Distribution)

g & (A1 2 A2) = (g & A1) 2 (g & A2)

Law C.19 (Guard/Internal choice—Distribution)

g & (A1 u A2) = (g & A1) u (g & A2)

Law C.20 (Guard/Parallelism—Distribution 1)

g & (A1 |[ ns1 | cs | ns2 ]| A2) = (g & A1) |[ ns1 | cs | ns2 ]| (g & A2)

Law C.21 (Guard/Parallelism—Distribution 2)

(g1 & A1) |[ ns1 | cs | ns2 ]| (g2 & A2)
=
(g1 ∨ g2) & ((g1 & A1) |[ ns1 | cs | ns2 ]| (g2 & A2))

Law C.22 (Guard/Interleaving—Distribution 1)

g & (A1 ||[ns1 | ns2]|| A2) = (g & A1) ||[ns1 | ns2]|| (g & A2)
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Law C.23 (Guard/Interleaving—Distribution 2)

(g1 & A1) ||[ns1 | ns2]|| (g2 & A2)
=
(g1 ∨ g2) & ((g1 & A1) ||[ns1 | ns2]|| (g2 & A2))

Law C.24 (True Guard)

true & A = A

Law C.25 (False Guard)

false & A = Stop

Law C.26 (Guarded Stop)

g & Stop = Stop

Schema Expressions

Law C.27 (Schema Disjunction Elimination)

pre SExp1 & (SExp1 ∨ SExp2) vA pre SExp1 & SExp1

Law C.28 (Sequence Introduction—Schema Expression)

[∆S1; ∆S2; i? : T | preS1 ∧ preS2 ∧ CS1 ∧ CS2]
=

[∆S1; ΞS2; i? : T | preS1 ∧ CS1]; [ΞS1; ∆S2; i? : T | preS2 ∧ CS2]

syntactic restrictions

• α(S1) ∩ α(S2) = ∅;

• FV (preS1) ⊆ α(S1) ∪ {i?};

• FV (preS2) ⊆ α(S2) ∪ {i?};

• DFV (CS1) ⊆ α(S ′
1);

• DFV (CS2) ⊆ α(S ′
2);

• UDFV (CS2) ∩ DFV (CS1) = ∅. 2
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Law C.29 (Parallelism Introduction—Schema Expression)

[∆S1; ∆S2; i? : T | CS1(i?, s2) ∧ CS2]
=

(c?j ?s → [∆S1; ∆S2; j ? : T ; s? : U | CS1(j ?, s?)]
|[α(S1) | {|c|} | α(S2)]|

c!i !s2 → [∆S1; ∆S2 | CS2]) \ {|c|}

syntactic restrictions

• α(S1) ∩ α(S2) = ∅;

• i is an input variable in scope;

• s2 ∈ α(S2) and s2 has type U ;

• FV (CS1) ⊆ α(∆S1) ∪ {i?, s2};

• FV (CS2) ⊆ α(∆S2);

• c is a valid channel of type T × U . 2

Assumptions

Law C.30 (Assumption/External Choice—Distribution)

{p}; (A1 2 A2) = ({p}; A1) 2 ({p}; A2)

Law C.31 (Assumption/Guard—Elimination 2)

{ g1 }; (g2 & A) = { g1 }; Stop

provided g1 ⇒ ¬ g2 2

Law C.32 (Assumption/Guard—Replacement)

{ g1 }; (g2 & A) = { g1 }; (g3 & A)

provided g1 ⇒ (g2 ⇔ g3) 2

Law C.33 (Assumption/Parallelism—Distribution)

{p}; (A1 |[ ns1 | cs | ns2 ]| A2) = ({p}; A1) |[ cs ]| ({p}; A2)

Law C.34 (Assumption/Interleaving—Distribution)

{p}; (A1 ||[ns1 | ns2]|| A2) = ({p}; A1) ||[ns1 | ns2]|| ({p}; A2)
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In the following law we refer to a predicate assump ′. In general, for any predicate
p, the predicate p ′ is formed by dashing all its free undecorated variables.

Law C.35 (Assumption Introduction—Schema Expression)

[∆State; i? : Ti ; o! : To | p ∧ assump ′]
=
[∆State; i? : Ti ; o! : To | p ∧ assump ′]; {assump}

The schema in this law is an arbitrary schema that specifies an action in Circus: it
acts on a state schema State and, optionally, has input variables i? of type Ti , and
output variables o! of type To .

Law C.36 (Assumption Elimination)

{p} vA Skip

Parallelism

Law C.37 (Parallelism Introduction—Sequence 1)

A1; A2(e)
vA

((A1; c!e → Skip) |[wrtV (A2) | {|c|} | wrtV (A2) ]| c?y → A2(y)) \ {|c|}

syntactic restrictions

• c is a valid channel of type T ;

• c /∈ usedC (A1) ∪ usedC (A2);

• y /∈ FV (A2).

provided

• wrtV (A1) ∩ usedV (A2) = ∅;

• FV (e) ∩ wrtV (A2 before e) = ∅. 2

Law C.38 (Parallelism Introduction—Sequence 2)
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A1(x ); A2(x )
=

(c!x → A1(x ) |[wrtV (A2) | {|c|} | wrtV (A2) ]| c?y → A2(y)) \ {|c|}

syntactic restrictions

• wrtV (A1) ∩ usedV (A2) = ∅;

• c is a valid channel of type T ;

• c /∈ usedC (A1) ∪ usedC (A2);

• y /∈ FV (A2). 2

Law C.39 (Parallelism Introduction—Sequence 3)

A1(x ); A2(x )
vA

((A1(x ); c!x → Skip) |[wrtV (A2) | {|c|} | wrtV (A2) ]| (c?y → A2(y))) \ {|c|}

syntactic restrictions

• c is a valid channel of type T ;

• c /∈ usedC (A1) ∪ usedC (A2);

• y /∈ FV (A2).

provided wrtV (A1) ∩ usedV (A2) = {x} 2

Law C.40 (Channel Combination)




A1[c1.com1 → c2.com2 → B1]
|[ns1 | {|c1, c2|} | ns2]|
A2[c1.com3 → c2.com4 → B2]



 \ {|c1, c2|}

=


A1[c3.com1.com2 → B1]
|[ns1 | {|c3|} | ns2]|
A2[c3.com3.com4 → B2]



 \ {|c3|}

syntactic restrictions

• all occurrences of c1 and c2 in A1 and A2 are as explicitly stated;

• c3 is a valid channel of the appropriate type. 2

Law C.41 (Channel Extension 1)
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A1 |[ ns1 | cs | ns2 ]| A2 = A1 |[ ns1 | cs ∪ {|c|} | ns2 ]| A2

provided c /∈ usedC (A1) ∪ usedC (A2) 2

Law C.42 (Channel Extension 2)

A1 |[ ns1 | cs | ns2 ]| A2(e)
=
(c!e → A1 |[ ns1 | cs ∪ {|c|} | ns2 ]| c?x → A2(x )) \ {|c|}

syntactic restrictions

• c is a valid channel of the appropriate type;

• c /∈ usedC (A1) ∪ usedC (A2);

• x /∈ FV (A2).

provided FV (e) ∩ wrtV (A2 before e) = ∅ 2

Law C.43 (Synchronisation Elimination)

(2 i • gi & ci .ccomi → di .acomi → Ai)
|[ns1 | cs ∪ {|i • ci |} | ns2]|

(2 i • gi & ci .ccomi → di .bcomi → Bi)
=

(2 i • di .acomi → Ai)
|[ns1 | cs | ns2]|

(2 i • gi & ci .ccomi → di .bcomi → Bi)

provided {i • ci} ∩ usedC (Ai) ∪ usedC (Bi) = ∅ 2

Law C.44 (Parallelism/Sequence—Step)

(A1; A2) |[ ns1 | cs | ns2 ]| A3 = A1; (A2 |[ ns1 | cs | ns2 ]| A3)

provided

• initials(A3) ⊆ cs ;

• cs ∩ usedC (A1) = ∅;

• wrtV (A1) ∩ usedV (A3) = ∅ 2

Law C.45 (Parallelism/External Choice—Exchange)
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(A1 |[ cs ]| A2) 2 (B1 |[ cs ]| B2) = (A1 2 B1) |[ cs ]| (A2 2 B2)

provided A1 |[ cs ]| B2 = A2 |[ cs ]| B1 = Stop 2

Law C.46 (Parallelism/External Choice - Distribution)

A1 |[ cs ]| (A2 2 A3) = (A1 |[ cs ]| A2) 2 (A1 |[ cs ]| A3)

provided

• initials(A1) ⊆ cs ;

• A1 is deterministic.

2

Law C.47 (Parallelism Deadlock)

g1 & c1 → A1 |[ ns1 | cs ∪ {|c1, c2|} | ns2 ]| g2 & c2 → A2 = Stop

provided c1 6= c2 2

Prefixing

Law C.48 (Prefix/Sequential Composition—Association)

c → (A1; A2) = (c → A1); A2

syntactic restriction FV (A2) ∩ α(c) = ∅ 2

The following are laws for distribution.

Law C.49 (Prefix/External choice—Distribution)

c → 2 i • gi & Ai = 2 i • gi & c → Ai

provided ∨ i • gi

syntactic restriction FV (gi) ∩ α(c) = ∅, for all i 2

The proviso is needed to ensure that at least one guard is valid, so that in the
right-hand side action the communication does take place.

Law C.50 (Prefix/Internal choice—Distribution)

c → (A1 u A2) = (c → A1) u (c → A2)
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Law C.51 (Prefix/Parallelism—Distribution)

c → (A1 |[ cs ]| A2) = (c → A1) |[ ns1 | cs ∪ {|c|} | ns2 ]| (c → A2)

syntactic restriction c /∈ usedC (A1) ∪ usedC (A2) or c ∈ cs 2

External choice

Law C.52 (External choice/Sequence—Distribution)

(2 i • gi & ci → Ai); B = 2 i • gi & ci → Ai ; B

Hiding

Law C.53 (Hide combination)

(A \ cs1) \ cs2 = A \ (cs1 ∪ cs2)

Law C.54 (Hide expansion)

F (A \ cs) = F (A) \ cs

provided cs ∩ usedC (F ( )) = ∅ 2

Recursion

Law C.55 (Recursion Unfold)

µX • F (X ) = F (µX • F (X ))

Law C.56 (Recursion—Least Fixed Point)

F (Y ) vA Y ⇒ µX • F (X ) vA Y

Unit and Zero Laws

Law C.57 (Sequence—Unit)

Skip; A = A = A; Skip
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Law C.58 (External Choice—Unit)

Stop 2 A = A

Law C.59 (Sequence—Zero)

Stop; A = Stop
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Appendix D

New Refinement Laws

Laws of Simulation.

Law D.1 (Prefixing/Simulation)

c → A1 � c → A2

provided A1 � A2 2

Law D.2 (Interleave/Simulation)

A1 ||| A2 � B1 ||| B2

provided

• A1 � A2

• B1 � B2

2

Law D.3 (Internal Choice/Simulation)

A1 u A2 � B1 u B2

provided

• A1 � A2

• B1 � B2

2
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Laws on Prefixing.

Law D.4 (Prefixing/Skip)

c → A = (c → Skip);A

2

Law D.5 (Prefixing Introduction)

A = (c → A) \ {| c |}

provided c /∈ usedC (A) 2

Law D.6 (Prefixing/Parallelism 2)

c?x → (A1(x ) |[ cs ]| A2(x )) = (c?x → A1(x )) |[ cs ]| (c?x → A2(x ))

provided c /∈ usedC (A1) ∪ usedC (A2) or c ∈ cs 2

Laws on Schemas.

Law D.7 (Schemas/Sequence Introduction 2)

[ S ′
1; S ′

2 | preS1 ∧ preS2 ∧ CS1 ∧ CS2 ]
=
[ S ′

1 | preS1 ∧ CS1 ];[ S ′
2 | preS2 ∧ CS2 ]

provided

• α(S1) ∩ α(S2) = ∅

• FV (preS1) ⊆ α(S1)

• FV (preS2) ⊆ α(S2)

• DFV (CS1) ⊆ α(S ′
1)

• DFV (CS2) ⊆ α(S ′
2)

• UDFV (CS2) ∩ DFV (CS1) = ∅

2
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Laws on Variable Blocks.

Law D.8 (Variable Block Extension)

A1;(var x : T • A2);A3 = (var x : T • A1;A2;A3)

provided x /∈ FV (A1) ∪ FV (A3) 2

Law D.9 (Variable Block Extension 2)

(var x : T • A1) |[ ns1 | cs | ns2 ]| A2

=
(var x : T • A1 |[ ns1 ∪ {x} | cs | ns2 ]| A2)

provided x /∈ FV (A2) 2

Laws on Guards and Assumptions.

Law D.10 (Guard/Parallelism Distribution 1)

2
i
gi & (Ai |[ ns1 | cs | ns2 ]| A) = (2

i
gi & Ai) |[ ns1 | cs | ns2 ]| A

provided

• initials(A) ⊆ cs

2

Law D.11 (Guards/Communication Substitution)

g1 & (A1 |[ ns1 | cs | ns2 ]| B1)
2 g2 & (A2 |[ ns1 | cs | ns2 ]| B2)
=
(A1 2 A2) |[ ns1 | cs | ns2 ]| (g1 & B1 2 g2 & B2)

provided

• initials(A1) ∪ initials(A2) ⊆ cs

• usedC (B1) ∩ initials(A2) = ∅

• usedC (B2) ∩ initials(A1) = ∅

2
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Law D.12 (Guards Expansion)

(g1 ∨ g2) & A = g1 & A 2 g2 & A

2

Law D.13 (Assumption Introduction 2)

{g} = {g};{g1}

provided g ⇒ g1 2

Law D.14 (Assumption Substitution 1)

{g1} vA {g2}

provided g1 ⇒ g2 2

Law D.15 (Guard/Assumption Introduction 1)

g1 & A1 = g1 & {g1};A1

2

Law D.16 (Guard/Assumption Introduction 2)

{g1};2i
gi & Ai = {g1};2i

gi & {g2i
};Ai

provided For all i , g1 ∧ gi ≡ g2i

Proof. See F. 2

Law D.17 (Guard/Assumption Introduction 3)

{g};A1 = {g};(g1 & A1 2 g2 & A2)

provided

• g ⇒ g1

• g1 ⇒ ¬ g2

Proof. See F. 2

Law D.18 (Assumption/Recursion Distribution – Mutual Recursion)
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In this law we use the following definitions.

(Parameters). P = X1, . . . ,Xn

(Vector of functions). V (P) = F1(X1, . . . ,Xn), . . . ,Fn(X1, . . . ,Xn)

(Substitution of elements). V (P)[Fi(P) \ exp] express the substitution of

the i -th element of the vector V (P) by the expression exp.

µP • V (P) vA µP • V (P)[Fi(P) \ {g};Fi(P)]

provided {g};(F (P) before Xi) vA (F (P) before Xi);{g} for all F (P) in V (P)
2

Law D.19 (Assumption/Prefixing 1)

{g};c!x → A = c!x → {g};A

2

Law D.20 (Assumption/Prefixing 2)

{g};c?x → A = c?x → {g};A

provided x /∈ FV (g) 2

Law D.21 (Assumption/Schema)

{g};[d | p] = [d | p];{g}

provided g ∧ p ⇒ g ′
2

Laws on External Choice.

Law D.22 (Associativity of External Choice)

A1 2 A2 = A2 2 A1

2

Law D.23 (External Choice Elimination)
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A 2 A vA A

2

Law D.24 (External Choice/Sequence - Distribution.)

2
i
(gi & Ai ;A) = (2 gi & Ai);A

2

Laws on Parallelism.

Law D.25 (Parallelism Unit)

Skip |[ cs ]| A = A |[ cs ]| Skip = A

provided usedC (A) ∩ cs = ∅ 2

Law D.26 (Parallelism Zero 1)

A |[ cs ]| Stop = Stop |[ cs ]| A = Stop

provided initials(A) ⊆ cs 2

Law D.27 (Parallelism Zero 2)

A1 |[ cs ]| A2 = Stop

provided

• initials(A1) ∪ initials(A2) ⊆ cs

• initials(A1) ∩ initials(A2) = ∅

2

Law D.28 (Schemas/Parallelism - Distribution.)
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(2
i
gi & SExpi);(A1 |[ ns1 | cs | ns2 ]| A2)

vA

((2
i
gi & SExpi);A1) |[ ns1 | cs | ns2 ]| A2

provided

•
⋃

i wrtV (SExpi) ⊆ ns1 ∪ ns ′1

•
⋃

i wrtV (SExpi) ∩ usedV (A2) = ∅

2

Law D.29 (Parallelism Commutativity)

A1 |[ ns1 | cs | ns2 ]| A2 = A2 |[ ns2 | cs | ns1 ]| A1

2

Law D.30 (Parallelism Introduction 1)

c → A = (c → A |[ ns1 | {| c |} | ns2 ]| c → Skip)

provided wrtV (A) ⊆ ns1 ∪ ns ′1 2

Law D.31 (Parallelism Introduction 2)

c?x → A1(x );A2(x ) = c?x → A1(x ) |[ ns1 | {| c |} | ns2 ]| c?x → A2(x )

provided

• wrtV (A1) ∩ usedV (A2) = ∅

• wrtV (A1) ⊆ ns1 ∪ ns ′1

• wrtV (A2) ⊆ ns2 ∪ ns ′2

• c /∈ usedC (A1) ∪ usedC (A2)

Proof. See F. 2

Law D.32 (Parallelism/External Choice Introduction)
For any variable x : T in scope,

(c.x → A1(x )) |[ ns1 | cs | ns2 ]| (c.x → A2(x ))
=
(c.x → A1(x )) |[ ns1 | cs | ns2 ]| (2 x : T • c.x → A2(x ))

provided c ∈ cs 2
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Law D.33 (Parallelism/Sequence Distribution)

(A1 |[ ns1 | cs | ns2 ]| A2);(B1 |[ ns1 | cs | ns2 ]| B2)
vA

(A1;B1) |[ ns1 | cs | ns2 ]| (A2;B2)

provided

• usedC (B1) ∪ usedC (B2) ⊆ cs

• usedC (A1) ∩ usedC (B2) = ∅

• usedC (A2) ∩ usedC (B1) = ∅

2

Law D.34 (Parallelism Partition Extension)

(A1 |[ ns1 | cs | ns2 ]| A2) = (A1 |[ ns1 ∪ {x} | cs | ns2 ]| A2)

provided

• x /∈ FV (A1) ∪ FV (A2)

2

Laws on Communications.

Law D.35 (Communication Introduction)

(A1 |[ ns1 | cs1 | ns2 ]| A2) \ cs2

=
((c?x → ((x = e) & A1 2 (x 6= e) & A)) |[ ns1 | cs1 | ns2 ]| (c!e → A2)) \ cs2

provided

• c ∈ cs1

• c ∈ cs2

• x /∈ FV (A2)

Proof. See F. 2

Law D.36 (Channel Extension 3.)
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(A1 |[ ns1 | cs1 | ns2 ]| A2(e)) \ cs2

=
((c!e → A1) |[ ns1 | cs1 | ns2 ]| (c?x → A2(x ))) \ cs2

provided

• c ∈ cs1

• c ∈ cs2

• x /∈ FV (A2)

2

Law D.37 (Channel Extension 4.)

(A1 |[ ns1 | cs1 | ns2 ]| A2(e)) \ cs2

=
((c → A1) |[ ns1 | cs1 | ns2 ]| (c → A2)) \ cs2

provided

• c ∈ cs1

• c ∈ cs2

2

Laws on Indexed Sequential Composition.

Law D.38 (Indexed Sequential Composition/Guards Introduction)

o
9 x : S1 • A1(x ) = o

9 x : S2 • ((x ∈ S1) & A1(x )) 2 ((x /∈ S1) & Skip)

provided S1 ⊆ S2 2

Law D.39 (Indexed Sequential Composition 1)
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o
9 x : T • ((c.x → A1(x )) |[ ns1 | cs | ns2 ]| (c.x → A2(x )))
=
(o
9 x : T • c.x → A1(x )) |[ ns1 | cs | ns2 ]| (||| x : T • c.x → A2(x ))

provided

• c /∈ usedC (A1(x )) ∪ usedC (A2(x ))

2
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Appendix E

Laws of Logical Calculi

Law E.1 (One Point Rule)

∀ x • x = t ⇒ A ≡ A[x \ t ] ≡ ∃ x • x = t ∧ A

Law E.2 (Universal Quantifier Elimination)

∀ x : T • P ≡ P

Law E.3 (Implication Elimination)

A ⇒ A ≡ true

Law E.4 (Transitivity of Equality)

A = B ∧ B = C ≡ A = C
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Appendix F

Proof of Some Derived Laws

Guard/Assumption Introduction 2 (D.16).

{g1};2i
gi & Ai

= [C .30]

2
i
{g1};gi & Ai

= [C .13,C .16]

2
i
{g1};(g1 ∧ gi) & Ai

= [D .15]

2
i
{g1};(g1 ∧ gi) & {g1 ∧ gi};Ai

= [C .16,C .13]

2
i
{g1};gi & {g1 ∧ gi};Ai

= [∀ i • g1 ∧ gi ≡ g21
]

{g1};2i
gi & {g2i

};Ai

327



Guard/Assumption Introduction 3 (D.17).

{g};A1

= [D .13]
{g ⇒ g1}
{g};{g1};A1

= [C .13]
{g};{g1};g1 & A1

= [C .58]
{g};{g1};((g1 & A1) 2 Stop)
= [C .30]
{g};({g1};g1 & A1) 2 ({g1};Stop)
= [C .31]
{g1 ⇒ ¬ g2}
{g};({g1};g1 & A1) 2 ({g1};g2;A2)
= [C .30]
{g};{g1};(g1 & A1 2 g2;A2)
= [D .13]
{g ⇒ g1}
{g};(g1 & A1 2 g2;A2)

Parallelism Introduction 2 (D.31).

c?x → A1(x );A2(x )
= [C .38]
{c1 /∈ usedC (A1) ∪ usedC (A2)}
{wrtV (A1) ∩ usedV (A2) = ∅}
{wrtV (A1) ⊆ ns1 ∪ ns ′1}
{wrtV (A2) ⊆ ns2 ∪ ns ′2}
c?x → ((c1!x → A1(x )) |[ {| c1 |} ]| (c1?y → A2(y))) \ {| c1 |}
= [C .42]
{c1 /∈ usedC (A1) ∪ usedC (A2)}
c?x → (A1 |[ {| ∅ |} ]| A2)
= [D .6]
{c /∈ usedC (A1) ∪ usedC (A2)}
= (c?x → A1) |[ ns1 | {| c |} | ns2 ]| (c?x → A2)
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Communication Introduction (D.35).

(A1 |[ ns1 | cs1 | ns2 ]| A2) \ cs2

= [C .25,C .58]
(((true & A1) 2 (false & A)) |[ ns1 | cs1 | ns2 ]| A2) \ cs2

= [Logical Calculus ]
(((e = e & A1) 2 (e 6= e & A)) |[ ns1 | cs1 | ns2 ]| A2) \ cs2

= [D .36]
{c ∈ cs1}
{c ∈ cs2}
{x /∈ FV (A2)}
((c?x → (x = e & A1) 2 (x 6= e & A)) |[ ns1 | cs1 | ns2 ]| (c!e → A2)) \ cs2
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Appendix G

Case Study - Some Refinement
Steps

Data refinement: including a new state component

process FireControl1 =̂ begin

state
FireControlState1

mode1 : Mode
controlledZones1 : AreaId → P ZoneId
activeZones1 : AreaId → P ZoneId
discharge1 : AreaId → Bool
active1 : AreaId → Bool
log : N

modeA : Mode

controlledZones1 = {area : AreaId • area 7→ getZones(area)}
∀ area : AreaId •

(mode1 = automatic) ⇒
active1(area) = true ⇔

∃ z1, z2 : controlledZones1(area) •
z1 6= z2 ∧ {z1, z2} ⊆ activeZones1(area)

(mode1 = manual) ⇒
active1(area) = true ⇔

{area : AreaId | ∃ z : controlledZones1(area) •
z ∈ activeZones1(area)}

activeZones1(area) ⊆ controlledZones1(area)
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RetrFireControl
AbstractFireControlState
FireControlState1

mode1 = mode
controlledZones1 = controlledZones
activeZones1 = activeZones
discharge1 = discharge
active1 = active

InitFireControl1
FireControlState ′

1

mode ′
1 = automatic

controlledZones ′1 = {area : AreaId • area 7→ getZones(area)}
activeZones ′1 = {area : AreaId • area 7→ ∅}
discharge ′

1 = {area : AreaId • area 7→ false}
active ′

1 = {area : AreaId • area 7→ false}
log = 0
mode ′

A = automatic

SwitchFireControlMode1

∆FireControlState1

newMode? : Mode

mode ′
1 = newMode?

controlledZones ′1 = controlledZones1

activeZones ′1 = activeZones1

discharge ′
1 = discharge1

active ′
1 = active1

log ′ = log
mode ′

A = newMode?
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SwitchFireControl2AutomaticMode1

∆FireControlState1

mode ′
1 = automatic

controlledZones ′1 = controlledZones1

activeZones ′1 = activeZones1

discharge ′
1 = discharge1

active ′
1 = active1

log ′ = log
mode ′

A = modeA

SwitchFireControl2DisabledMode1

∆FireControlState1

mode ′
1 = disabled

controlledZones ′1 = controlledZones1

activeZones ′1 = activeZones1

discharge ′
1 = discharge1

active ′
1 = active1

log ′ = log
mode ′

A = modeA

ActivateZone1

∆FireControlState1

newZone? : ZoneId

mode ′
1 = mode1

controlledZones ′1 = controlledZones1

activeZones ′1 = activeZones1 ⊕
{area : AreaId | newZone? ∈ controlledZones1(area) •

area 7→ activeZones1(area) ∪ {newZone?}}
discharge ′

1 = discharge1

log ′ = log
mode ′

A = modeA
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ActivateDischarge1

∆FireControlState1

mode ′
1 = mode1

controlledZones ′1 = controlledZones1

activeZones ′1 = activeZones1

discharge ′
1 = discharge1 ⊕

{area : AreaId | area ∈ dom active1 B {true} • area 7→ true}
active ′

1 = active1

mode ′
A = modeA

FireSysStart1 =̂
systemState!fireSysStarts → switchOn →

switchLamp[LampId ].systemOnLamp!on →
InitFireControl1; FireSys1

SwitchLampsOff1 =̂
(switchBuzzer !off → Skip
||| id : (LampId \ {circuitFaultLamp, systemOnLamp}) •

switchLamp[LampId ].id !off → Skip
||| zone : ZoneId • switchLamp[ZoneId ].zone!off → Skip
||| area : AreaId • switchLamp[AreaId ].area!off → Skip)

SwitchLampsDischarge1 =̂
(o
9 area : dom active1 B {true} • switchLamp[AreaId ].area!on → Skip)

FireSys1 =̂
systemState!fireSyss →

modeSwitch?newMode : SwitchMode →
SwitchFireControlMode1; FireSys1

2 detection?newZone : ZoneId → ActivateZone1;
switchLamp[ZoneId ].newZone!on → alarm!firstStage →

(mode1 = manual) & Manual1
2 (mode1 = automatic) & Auto1

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → FireSys1

2 reset → alarm!alarmOff →
InitFireControl1; SwitchLampsOff1;FireSys1
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Manual1 =̂
systemState!manuals →

detection?newZone : ZoneId → ActivateZone1;
switchLamp[ZoneId ].newZone!on → Manual1

2 silenceAlarm → alarm!alarmOff → Reset1
2 externalManualDischarge?area : AreaId →

(area ∈ dom active1 B {true}) &
switchLamp[AreaId ].area!on → ActivateDischarge1;

SwitchFireControl2DisabledMode1; Reset1
2 (area /∈ dom active1 B {true}) & Manual1

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → Manual1

Auto1 =̂
systemState!autos →

(active B {true} 6= ∅) &
alarm!secondStage → Countdown1

2 (active B {true} = ∅) &
reset → alarm!alarmOff → SwitchLampsOff1;

InitFireControl1; FireSys1

2 detection?newZone : ZoneId → ActivateZone1;
switchLamp[ZoneId ].newZone!on → Auto1

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → Auto1

Reset1 =̂
systemState!resets →

actuatorsReplaced → switchLamp[LampId ].circuitFaultLamp!off →
SwitchFireControl2AutomaticMode1; Reset1

2 detection?newZone : ZoneId → ActivateZone1;
switchLamp[ZoneId ].newZone!on → Reset1

2 reset → alarm!alarmOff → SwitchLampsOff1;
(mode1 = disabled) & FireSysD1

2 (mode1 6= disabled) & InitFireControl1; FireSys1

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → Reset1

Countdown1 =̂ systemState!countdowns → startClock → WaitingClock1
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WaitingClock1 =̂
clockFinished → Discharge1

2 detection?newZone : ZoneId → ActivateZone1;
switchLamp[ZoneId ].newZone!on → WaitingClock1

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → WaitingClock1

FireSysD1 =̂
systemState!fireSysDs →

actuatorsReplaced → alarm!alarmOff →
SwitchLampsOff1;InitFireControl1; FireSys1

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → FireSysD1

Discharge1 =̂
systemState!discharges →

exit →
SwitchLampsDischarge1;
((dom active B {true} 6= ∅) &

SwitchFireControlSystem2DisabledMode1

2 (dom active B {true} = ∅) &
SwitchFireControlSystem2AutomaticMode1);

ActivateDischarge1;Reset1

• FireSysStart1

end

Process refinement: upgrading the partitions into

separated processes (InternalSystem and Areas)

Process InternalSystem

process InternalSystem =̂ begin
state

InternalSystemState
mode1 : Mode
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InitInternalSystem
InternalSystemState ′

mode ′
1 = automatic

SwitchInternalSystemMode
∆InternalSystemState
newMode? : Mode

mode ′
1 = newMode?

SwitchInternalSystem2AutomaticMode
∆InternalSystemState

mode ′
1 = automatic

SwitchInternalSystem2DisabledMode
∆InternalSystemState

mode ′
1 = disabled

FireSysStart2 =̂
systemState!fireSysStarts → switchOn →

switchLamp[LampId ].systemOnLamp!on →
InitInternalSystem; FireSys2

FireSys2 =̂
systemState!fireSyss →
modeSwitch?newMode : SwitchMode →

SwitchInternalSystemMode; FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → alarm!firstStage →

(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → FireSys2

2 reset → alarm!alarmOff →
InitInternalSystem; SwitchLampsOff2;FireSys2

336



SwitchLampsOff2 =̂
(switchBuzzer !off → Skip
||| id : (LampId \ {circuitFaultLamp, systemOnLamp}) •

switchLamp[LampId ].id !off → Skip
||| zone : ZoneId • switchLamp[ZoneId ].zone!off → Skip
||| area : AreaId • switchLamp[AreaId ].area!off → Skip)

Manual2 =̂
systemState!manuals →

detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Manual2

2 silenceAlarm → alarm!alarmOff → Reset2
2 externalManualDischarge?area : AreaId →

manualDischarge.area →
gasDischarged .area → switchLamp[AreaId ].area!on →

SwitchInternalSystem2DisabledMode; Reset2
2 gasNotDischarged .area → Manual2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → Manual2

Auto2 =̂
systemState!autos →

countdown → countdownStarted !true →
alarm!secondStage → Countdown2

2 reset → alarm!alarmOff → SwitchLampsOff2;
InitInternalSystem; FireSys2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Auto2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → Auto2
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Reset2 =̂
systemState!resets →

actuatorsReplaced → switchLamp[LampId ].circuitFaultLamp!off →
SwitchInternalSystem2AutomaticMode; Reset2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → Reset2

2 reset → alarm!alarmOff → SwitchLampsOff2;
(mode1 = disabled) & FireSysD2

2 (mode1 6= disabled) & InitInternalSystem; FireSys2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → Reset2
2 countdown → countdownStarted !false → Reset2

Countdown2 =̂ systemState!countdowns → startClock → WaitingClock2

WaitingClock2 =̂
clockFinished → Discharge2

2 detection?newZone : ZoneId →
switchLamp[ZoneId ].newZone!on → WaitingClock2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → WaitingClock2

2 countdown → countdownStarted !true → WaitingClock2

FireSysD2 =̂
systemState!fireSysDs →

actuatorsReplaced → alarm!alarmOff →
SwitchLampsOff2;InitInternalSystem; FireSys2

2 fault?faultId : FaultId →
switchLamp[LampId ].getLampId(faultId)!on →

switchBuzzer !on → FireSysD2

2 countdown → countdownStarted !false → FireSysD2
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Discharge2 =̂
systemState!discharges →
exit →

(var log : N •
log := 0;
(o
9 area : AreaId •

automaticDischarge.area →
gasDischarged .area →

switchLamp[AreaId ].area!on → log := log + 1
2 gasNotDischarged .area → Skip);

((log = 0) & SwitchInternalSystem2AutomaticMode
2 (log > 0) & SwitchInternalSystem2DisabledMode));

Reset2

• FireSysStart2

end

Process Areas

process Areas =̂ begin
state

AreasState
modeA : Mode
controlledZones1 : AreaId → P ZoneId
activeZones1 : AreaId → P ZoneId
discharge1 : AreaId → Bool
active1 : AreaId → Bool

controlledZones1 = {area : AreaId • area 7→ getZones(area)}
∀ area : AreaId •

(modeA = automatic) ⇒
active1(area) = true ⇔

∃ z1, z2 : controlledZones1(area) •
z1 6= z2 ∧ {z1, z2} ⊆ activeZones1(area)

∧ (modeA = manual) ⇒
active1(area) = true ⇔

{area : AreaId | ∃ z : controlledZones1(area) •
z ∈ activeZones1(area)}

∧ activeZones1(area) ⊆ controlledZones1(area)
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InitAreas
AreasState ′

mode ′
A = automatic

activeZones ′1 = {area : AreaId • area 7→ ∅}
discharge ′

1 = {area : AreaId • area 7→ false}

SwitchAreasMode
∆AreasState
newMode? : Mode

mode ′
A = newMode?

activeZones ′1 = activeZones1

discharge ′
1 = discharge1

ActivateZoneAS
∆AreasState
newZone? : ZoneId

mode ′
A = modeA

activeZones ′1 = activeZones1 ⊕
{area : AreaId | newZone? ∈ controlledZones1(area) •

area 7→ activeZones1(area) ∪ {newZone?}}
discharge ′

1 = discharge1

ActivateDischargeAS
∆AreasState

mode ′
A = modeA

activeZones ′1 = activeZones1

discharge ′
1 = discharge1 ⊕

{area : AreaId | area ∈ dom active1 B {true} • area 7→ true}

StartAreas =̂ switchOn → InitAreas;AreasCycle
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AreasCycle =̂
(reset → InitAreas
2 modeSwitch?newMode : SwitchMode → SwitchAreasMode
2 detection?newZone : ZoneId → ActivateZoneAS ;ActiveAreas
2 2 area : AreaId • automaticDischarge.area →

gasNotDischarged .area → Skip
2 2 area : AreaId • manualDischarge.area →

gasNotDischarged .area → Skip);
AreasCycle

ActiveAreas =̂
(modeA = automatic) &

(active1 B {true} 6= ∅) &
countdown → countdownStarted?answer : Bool →

(answer = true) & WaitingDischarge
2 (answer = false) & DisabledAreas

2 (active1 B {true} = ∅) &
reset → InitAreas
2 detection?newZone : ZoneId → ActivateZoneAS ;ActiveAreas
2 2 area : AreaId • automaticDischarge.area →

gasNotDischarged .area → ActiveAreas
2 (modeA = manual) &

reset → InitAreas
2 detection?newZone : ZoneId → ActivateZoneAS ;ActiveAreas
2 2 area : AreaId •

manualDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area →
ActivateDischargeAS ; DisabledAreas

2 (area /∈ dom active1 B {true}) &
gasNotDischarged .area → ActiveAreas

WaitingDischarge =̂
detection?newZone : ZoneId → ActivateZoneAS ;WaitingDischarge
2 ReplyDischarge;DisabledAreas
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ReplyDischarge =̂
(||| area : AreaId •

(automaticDischarge.area →
(area ∈ dom active1 B {true}) &

gasDischarged .area → Skip
2 (area /∈ dom active1 B {true}) &

gasNotDischarged .area → Skip));
ActivateDischargeAS

DisabledAreas =̂
reset → InitAreas
2 detection?newZone : ZoneId → ActivateZoneAS ;DisabledAreas
2 2 area : AreaId • automaticDischarge.area →

gasNotDischarged .area → DisabledAreas

• StartAreas

end

Redefinition of Process FireControl2

process FireControl2 =̂


InternalSystem
|[α(InternalSystemState) | Σ2 | α(AreasState)]|
Areas



 \ GasDischargeSync
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