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Abstract 

Data mining consists of extracting interesting knowledge from data. This paper addresses the discovery of 
knowledge in the form of prediction IF-THEN rules, which are a popular form of knowledge representation in 
data mining. In this context, we propose a Genetic Algorithm (GA) designed specifically to discover interesting 
fuzzy prediction rules. The GA searches for prediction rules that are interesting in the sense of being new and 
surprising for the user. This is done adapting a technique little exploited in the literature, which is based on user-
defined general impressions (subjective knowledge). More precisely, a prediction rule is considered interesting 
(or surprising) to the extent that it represents knowledge that not only was previously unknown by the user but 
also contradicts his original believes. In addition, the use of fuzzy logic helps to improve the comprehensibility 
of the rules discovered by the GA. This is due to the use of linguistic terms that are natural for the user. A 
prototype was implemented and applied to a real-world science & technology database, containing data about 
the scientific production of researchers. The GA implemented in this prototype was evaluated by comparing it 
with the J4.8 algorithm, a variant of the well-known C4.5 algorithm. Experiments were carried out to evaluate 
both the predictive accuracy and the degree of interestingness (or surprisingness) of the rules discovered by both 
algorithms. The predictive accuracy obtained by the proposed GA was similar to the one obtained by J4.8, but 
the former, in general, discovered rules with fewer conditions. In addition it works with natural linguistic terms, 
which leads to the discovery of more comprehensible knowledge. The rules discovered by the proposed GA and 
the best rules discovered by J4.8 were shown to a user (a University Director) in an interview who evaluated the 
degree of interestingness (surprisingness) of the rules to him. In general the user considered the rules discovered 
by the GA much more interesting than the rules discovered by J4.8.  
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1 Introduction 
The basic idea of data mining consists of extracting 
knowledge from data [7], [13]. In this paper we address 
one general kind of data mining task, which we will 
refer to as the discovery of prediction rules. By 
prediction rule we mean an IF-THEN rule of the form: 
IF <some_conditions_are_satisfied> 
  THEN <predict_the_value_of_some_goal_attribute>. 
We aim at discovering rules whose consequent (THEN 
part) predict the value of some goal attribute for an 
example (a record of a data set) that satisfies all the 
conditions in the antecedent (IF part) of the rule. We 
assume there is a small set of goal attributes whose 
value is to be predicted. The goal attributes are chosen 
by the user, according to his/her interest and need. 

It can be noted that this task can be regarded as a 
generalization of the well-known classification task of 
data mining. In classification there is a single goal 
attribute to be predicted, whereas we allow more than 
one goal attribute to be defined by the user. Note that, 
although there are several goal attributes to be 
predicted, each rule predicts the value of a single goal 
attribute in its consequent. However, different rules can 
predict different values of different goal attributes. 
Recent research has shown that evolutionary 
algorithms can be successfully used for data mining 
purposes [11], [5], [18], [2]. Based on this, we propose 
a Genetic Algorithm (GA) designed specifically for 
discovering interesting fuzzy prediction rules. The 
main motivation for using a GA in prediction-rule 
discovery is that GAs, due to their ability to perform 
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global search, tend to cope better with attribute 
interaction than most traditional greedy rule induction 
algorithms [11], [5], [27], [10].  
The justification for the “interesting” and “fuzzy” 
characteristics of the rules discovered by our GA is as 
follows. In general, fuzzy logic is a flexible way of 
coping with uncertainties typically found in real-world 
applications. In particular, in the context of data 
mining, fuzzy logic seems a natural way of coping with 
continuous (real-valued) attributes. Using fuzzy 
linguistic terms, such as low or high, one can more 
naturally represent rule conditions involving 
continuous attributes, by comparison with crisp 
discretization of those attributes. For instance, the 
fuzzy condition “Salary = low” seems more natural for 
a user than the crisp condition “Salary < $14,328.53”. 
Although we do use fuzzy logic to improve the 
comprehensibility of the rules discovered by the GA, 
the focus of this paper is not on the use of fuzzy logic, 
but rather on the discovery of “interesting” rules. We 
emphasize that this is a difficult problem, relatively 
little explored in the literature. Most algorithms for 
discovering prediction rules focus on evaluating the 
predictive accuracy of the discovered rules [14], 
without trying to discover rules that are truly 
interesting for the user. A classic example is the 
decision tree algorithm J4.8 [36], whose results are 
compared to the proposed GA. 
It should be noted that a rule could have a high 
predictive accuracy but may not be interesting to the 
user, because it represents some obvious or previously 
known piece of knowledge. A classic example is the 
rule: IF <patient is pregnant> THEN <patient is 
female>.  
Hence, this paper proposes a GA that searches for rules 
that are not only accurate but also interesting, in the 
sense of being surprising (representing novel 
knowledge) for the user. As will be seen later, the core 
of the GA consists of an elaborate fitness function, 
which takes both these aspects of rule quality into 
account. The GA evaluates the rules by performing a 
fuzzy matching between the rules and the records in 
the data set being mined. It also takes into account the 
user’s general impressions about the application 
domain, in order to favor the discovery of rules that are 
more surprising to the user. The basic idea is that, the 
more the rule contradicts the general impressions of the 
user, the more surprising it is. 
We apply the proposed GA (and the above-mentioned 
J4.8 algorithm) to the mining of a real-world science & 
technology data set, containing data about the scientific 
production of researchers (cientometric data).  
The proposed GA was recently proposed by [31]. This 
paper is an extended version of that previous work. In 
[31] we compare the results of the GA with the results 
of a well-known decision tree algorithm, J4.8, with 
respect to predictive accuracy. In this paper we extend 
these results, by comparing the degree of 

interestingness of the rules discovered by the GA with 
the degree of interestingness of the rules discovered by 
J4.8. This required the development of a procedure to 
extract the most interesting rules from J4.8, since J4.8 
usually discovers (in the data sets used in our 
experiments) a very large number of rules, most of 
which are uninteresting. 
The remainder of this paper is organized as follows. 
Section 2 reviews relevant related work. Section 3 
describes in detail the proposed GA for discovering 
interesting (surprising) fuzzy prediction rules. Section 
4 reports the results of computational experiments. 
Finally, section 5 present conclusions and future work. 

2 Related Work 

2.1 Evolutionary Algorithms for Discovering 
Fuzzy Prediction Rules 

There has been very extensive research on evolutionary 
algorithms (EAs) for discovering fuzzy prediction 
rules. Roughly speaking, the algorithms can be divided 
into three broad groups [11]:  
a) EAs for generating fuzzy rules, with fixed 

membership functions – In this approach an EA is 
used to search for good combinations of attribute 
values that will compose fuzzy rules. However, 
the membership functions of the attribute values 
are predefined (either manually or by another 
algorithm), rather than being evolved by the EA 
[17], [34].  

b) EAs for tuning the membership functions 
associated with the attributes being fuzzified, with 
fixed rules – This approach is typically used when 
crisp rules have already been discovered by 
another algorithm, and we just want to use an EA 
to fuzzify the discovered crisp rules [3].  

c)  EAs for both generating fuzzy rules and tuning 
membership functions – In this approach an EA is 
used to optimize both the contents of fuzzy rules 
(i.e., the combination of attribute values occurring 
in the rules) and the membership functions of the 
linguistic values of the attributes being fuzzified. 
[24], [37], [23]. 

We follow the first approach (a) with user-defined 
membership functions, due mainly to the fact that it 
allows us to incorporate the domain knowledge of the 
user into the specification of the membership functions. 
This leads to more comprehensible membership 
functions for the user. This is important in our data 
mining application, where a human decision maker 
directly interpreted the discovered prediction rules. In 
addition, compared to the third approach (c), the first 
one has the advantage of reducing the search space. 
Thus, it is more computationally efficient, since the 
GA has to search only for combinations of attribute 
values to be included in the rules.  



It should be noted that the above-mentioned projects 
focus on the discovery of fuzzy rules with high 
predictive accuracy, without trying to discover 
surprising rules. Our work differs from these projects 
in that the proposed GA searches for fuzzy prediction 
rules that are not only accurate but also surprising for 
the user, representing knowledge that was previously 
unknown by the user, as will be seen later.  

2.2 EAs for Discovering Interesting Prediction 
Rules 

The discovery of accurate knowledge from data has 
long been the goal of traditional methods of data 
analysis, based on statistics and/or machine learning. 
Arguably, the discovery of knowledge that is not only 
accurate but also truly interesting and surprising to the 
user is one of the most important goals in data mining. 
A focus on this goal is probably the characteristic that 
most distinguishes data mining from conventional 
statistics and/or machine learning [11]. 
There are two broad approaches for discovering 
interesting rules in data mining: objective and 
subjective. In general, the objective approach uses a 
rule-discovery method and a rule-quality measure that 
are independent of the user and the application domain 
[15], [25], [26], [8], [22]. 
By contrast, the subjective approach uses a rule-
discovery method and/or a rule-quality measure that 
take into account the background knowledge of the 
user about the application domain [33], [19], [20], [21]. 
Hence, in general the objective approach has more 
generality and autonomy than the subjective approach, 
whereas the subjective approach has the important 
advantage of using the user’s background knowledge 
to guide the search for rules. Therefore, if the 
application domain is well-defined and an expert user 
in this application domain is available, it makes sense 
to use the subjective approach. This is the case of the 
project reported in this paper, which justifies our 
choice of the subjective approach.  
We now discuss some works that are more related to 
our research. The first one is the work of [19], [20]. 
This work also follows the subjective approach. It 
proposes the use of general impressions to guide the 
search for interesting rules. General impressions can be 
thought of as “rules” specified by the user, representing 
his background knowledge and believes about the 
application domain. General impressions will be 
discussed in more detail later. Liu and his colleagues 
propose the use of general impressions as the basis for 
a post-processing method to select the most interesting 
rules, among all discovered rules. That is, first one data 
mining algorithm is run, discovering a potentially large 
number of rules. Then the discovered rules are matched 
against the user-specified general impressions, in order 
to select the most interesting rules. 

Our work also uses the idea of user-specified general 
impressions to discover interesting rules. However, it 
differs from the above work in that we use general 
impressions directly to search rules, rather than as a 
post-processing method. In other words, instead of first 
generating a large number of rules and then selecting 
the most interesting ones, the set of general 
impressions is directly used by the data mining 
algorithm to generate only interesting rules. This 
avoids the unnecessary generation of many rules that 
will be later discarded due to their lack of 
interestingness for the user. In addition, we propose a 
GA for discovering interesting rules, whereas the work 
of Liu and his colleagues does not use any evolutionary 
algorithm. 
The GA for discovering interesting rules proposed by 
[25], [26] is another work related to our research. This 
GA also searches for rules that are both accurate and 
interesting, according to a certain rule-interestingness 
measure. However, our work differs from their work in 
two major points. First our GA discovers fuzzy rules. 
Second, Noda et al. follow an objective approach for 
the discovery of interesting rules, whereas our GA 
follows a subjective approach based on user-specified 
general impressions, as mentioned above.  
Another relevant work involves the use of a GA to 
evolve a measure of rule interestingness, as proposed 
by [35]. In this work an interactive GA maintains 
several independent rule sets (subpopulations of rules). 
Rule sets are evaluated by different measures of rule 
interestingness. From time to time, during population 
evolution, a small subset of rules is chosen from each 
population and shown to the user, for his/her subjective 
evaluation – this kind of subjective evaluation 
characterizes an interactive GA. Apparently, the result 
of this evaluation is used for evolving rule 
interestingness measures. However, no details about 
this process are given in the paper. In addition, in the 
previously-mentioned reference the author did not 
present any computational result evaluating the 
performance of the system. The basic idea of 
interactive evolution has been more recently used by 
[28], but this work is concerned with the discovery of 
association rules, rather than prediction rules. It should 
be noted that association and classification rules are 
very different from each other, as explained in [9]. 

3 A GA for Discovering Interesting 
Fuzzy Prediction Rules 

This section describes a GA that evolves a population 
of individuals, where each individual represents a 
prediction rule. More precisely, each individual 
represents the antecedent (IF part) of a prediction rule. 
The consequent (THEN part) of the rule is not encoded 
in the genome. Rather, it is fixed for a given GA run, 
so that in each run all the individuals represent rules 
with the same consequent (value predicted for a goal 
attribute). Therefore, in order to discover rules 



predicting different goal attribute values, we need to 
run the GA several times, once for each value of each 
goal attribute.  
Furthermore, the prediction rules represented by the 
individuals are fuzzy. We stress that only the rule 
antecedents are fuzzified. Rule consequents are always 
crisp. Concerning the rule antecedent, only conditions 
involving continuous (real-valued) attributes are 
fuzzified. Categorical (nominal) attributes are 
inherently crisp. For instance, there is no need to 
fuzzify a rule condition such as “Sex = female”.  
This section is based on the description recently 
presented in [31]. In any case, the description of the 
GA is also included here, in order to make this paper 
self-contained.  

3.1 Individual Representation 
The genome of an individual represents a conjunction 
of conditions specifying a rule antecedent. Each 
condition is represented by a gene, which consists of an 
attribute-value pair of the form Ai = Vij, where Ai is the 
i-th attribute and Vij is the j-th value belonging to the 
domain of Ai. In order to simplify the encoding of 
conditions in the genome, we use a positional 
encoding, where the i-th condition is encoded in the i-
th gene. Therefore, we need to represent only the value 
Vij of the i-th condition in the genome, since the 
attribute of the i-th condition is implicitly determined 
by the position of the gene. In addition, each gene also 
contains a boolean flag (Bi) that indicates whether or 
not the i-th condition is present in the rule antecedent. 
Hence, although all individuals have the same genome 
length, different individuals represent rules 
(corresponding to the “phenotype”) of different 
lengths. This flexible representation is, of course, 
desirable in prediction rules. As one does not know, a 
priori, how many conditions will be necessary to create 
a good prediction rule, this number has to be 
automatically adjusted by the GA based on the data 
being mined. The structure of the genome of an 
individual is illustrated in Figure 1, where m is the 
number of attributes of the data being mined. 
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Figure 1: Genome of an individual representing a rule 

antecedent 
 
We emphasize that the operator “=“ is used for both 
fuzzy conditions and crisp conditions as follows. As 
usual in data mining and machine learning literature, 
our GA can cope with two kinds of attributes: 
continuous (real-valued) and categorical (nominal). 
Categorical attributes are inherently crisp, so they are 
associated with crisp conditions such as “Sex = 
female”. Continuous attributes are fuzzified, so they 

are associated with fuzzy conditions such as “Age = 
low”, where low is a fuzzy linguistic term.  

3.2 Fuzzifying Continuous Attributes  
Recall that, as discussed earlier, in our GA we use 
user-defined membership functions. Hence, it evolves 
the combinations of attribute values considered 
relevant for predicting a goal attribute, but there is no 
need to evolve the membership functions. 
In our GA the fuzzification of continuous attributes is 
performed as follows. Each continuous attribute is 
associated with either two or three linguistic terms 
(corresponding to the “values” of the fuzzified 
attribute), namely either {low, high} or {low, medium, 
high}. Each of these linguistic terms is defined by a 
user-specified membership function. The number of 
linguistic terms was also specified with the help of the 
user. 
 

 
 
low highmedium 
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Figure 2: Shape of the membership functions used in 

the GA 
 
We have used trapezoidal membership functions, as 
shown in Figure 2. The figure illustrates the case where 
an attribute was fuzzified into three linguistic values. 
Note that the membership functions of all these 
linguistic values are collectively specified by only four 
parameters, denoted p1, p2, p3 and p4 in the figure, 
where p1 < p2 < p3 < p4. Each parameter represents an 
original (continuous) attribute value that is used to 
specify the coordinate of two trapezoid vertices 
belonging to a pair of “adjacent” membership 
functions. This representation enforces several 
desirable constraints in the fuzzy sets. First, any 
element of the universe of discourse (i.e., any original 
value of the attribute being fuzzified) belongs to at 
least one of the fuzzy sets. Second, each fuzzy set is 
unimodal and normal – the normality condition means 
that the largest membership degree obtained by any 
element in the set is 1. Third, it contains a small 
number of linguistic values (just 3). In general these 
constraints help to ensure that the fuzzy sets are 
“semantically sound”, or have a good “linguistic 
interpretability” [16], [6], [32]. 

3.3 Fitness Function 
Recall that each individual is associated with a fuzzy 
prediction rule. In the vast majority of the literature, 
the main criterion used to evaluate the quality of a 
fuzzy prediction rule is predictive accuracy [14]. This 



criterion is also important in our application, but it is 
not the only one. As discussed in the Introduction, a 
prediction rule can be accurate but not interesting for 
the user. This will be the case when the rule represents 
some relationship in the data that was already known 
by the user. To avoid this, our fitness function takes 
into account two criteria: 
(a) the predictive accuracy of the rule (Acc); 
(b) a measure of the degree of interestingness (or 
surprisingness) of the rule (Surp). 
With respect to the latter criterion, our GA favors the 
discovery of rules that are explicitly surprising for the 
user, as will be seen later. 
These two criteria are combined into a single formula 
as follows: 
                         Fitness(i)  =  Acc(i) * Surp(i) 
The measures of Acc(i) and Surp(i) are described in the 
next two subsections, respectively, since they are 
computed by separated elaborate procedures. 

3.3.1 Measuring the Predictive Accuracy of a 
Fuzzy Rule 

The first step to measure the predictive accuracy of a 
fuzzy rule is to compute the degree to which an 
example belongs to a rule antecedent. Recall that the 
rule antecedent consists of a conjunction of conditions. 
We use the standard fuzzy AND operator, where the 
degree of membership of an example to a rule 
antecedent is given by:  

( )i
z

i
µ

1
min

=
 

where µi denotes the degree to which the example 
belongs to the i-th condition of the rule antecedent, z is 
the number of conditions in the rule antecedent, and 
min is the minimum operator. The degree to which the 
example belongs to the i-th condition is directly 
determined by the value of the corresponding 
membership function for the example’s attribute value 
associated with that condition. Of course, crisp 
conditions can have only either 0 or 1 membership 
degree.  
For instance, consider a rule antecedent with the 
following two rule conditions: (Age = low) AND (Sex 
= female), where the first condition is fuzzy and the 
second one is crisp. Suppose that a given example has 
the values 23 and female for the attributes Age and Sex, 
respectively. Suppose also that the membership 
function for the low linguistic term of Age returns the 
value 0.8 for the value 23. Then the degree to which 
this example belongs to this rule antecedent is 
min(0.8,1.0) = 0.8. 
Let A be the antecedent of a given rule. Once the 
degree to which each example belongs to A has been 
computed, the predictive accuracy of the i-th individual 

(fuzzy rule), denoted Acc(i), is computed by the 
formula: 

Acc(i) = (CorrPred - 1/2) / (TotPred) 
In this formula, CorrPred (number of correct 
predictions) is the summation of the degrees of 
membership in A for all examples that have the value 
Vij predicted by the rule. TotPred (total number of 
predictions) is the summation of the degrees of 
membership in A for all examples. It is essentially a 
fuzzy version of a crisp measure of predictive accuracy 
used by some data mining algorithms [29], [25]. The 
rationale for subtracting 1/2 from CorrPred in the 
numerator is to penalize rules that are too specific, 
which are probably overfitted to the data. For instance, 
suppose CorrPred = 1 and TotPred = 1. Without 
subtracting 1/2 from CorrPred the modified formula 
would return a predictive accuracy of 100% for the 
rule, which intuitively is an over-optimistic estimate of 
predictive accuracy in this case. However, subtracting 
1/2 from CorrPred the above formula returns 50%, 
which seems a more plausible estimate of predictive 
accuracy, given that the rule is too specific. Clearly, for 
large values of CorrPred and TotPred the subtraction of 
1/2 will not have a significant influence in the value 
returned by the formula, so that this subtraction 
penalizes only rules that are very specific, covering just 
a few examples.  

 
3.3.2 Measuring the Degree of Surprisingness of 

a Prediction Rule 
We consider a prediction rule interesting to the extent 
that it is surprising for the user, in the sense of 
representing knowledge that not only was previously 
unknown but also contradicts the original believes of 
the user. Clearly, the problem of discovering surprising 
rules is a very difficult one, which has been relatively 
little investigated in the data mining literature. (As 
mentioned above, the vast majority of the literature 
focus on the discovery of rules with a high predictive 
accuracy, without trying to measure how novel or 
surprising the rule is for the user.) 
We follow a subjective approach for discovering 
surprising rules, based on the use of user-specified 
general impressions [19], [20]. We emphasize that, in 
the method proposed by Liu et al., surprising rules are 
extracted from the entire set of discovered rules, in a 
post-processing step. That is, first the system discovers 
a (potentially very large) set of rules, and then a 
relatively small set of surprising rules is extracted from 
that entire set of discovered rules. By contrast, our 
approach is to use a GA to directly search for 
surprising rules during the evolution of rules, avoiding 
the need for a post-processing step. That is, the GA 
directly takes the degree of surprisingness of rules into 
account, so that it will output only rules that are both 
accurate and surprising to the user, as will be seen 
later.  



 In essence, a general impression specifies some 
relationship that the user believes to be true in the data 
being mined. General impressions, like prediction 
rules, are expressed in the form IF <conditions> THEN 
<predicted value>. The main difference is that general 
impressions are manually specified and represent 
believes of the user about relationships in the data, 
whereas prediction rules are automatically discovered 
and represent relationships that seem to hold in the 
data, according to the criteria used by the data mining 
algorithm. Therefore, the specification of general 
impressions assume that the user already has some 
previous knowledge or hypotheses about relationships 
that hold in the application domain - in our case, 
science and technology data. 
Let  {R1,...,Ri,...R|R|} be the set of rules in the current 
population of the GA, where |R| denotes the number of 
rules (individuals); and let {GI1,...,GIj,...GI|GI|} be the 
set of general impressions representing the previous 
knowledge and believes of the user, where |GI| denotes 
the number of general impressions. Note that the set 
{GI1,...,GIj,...GI|GI|} is specified by the user before the 
GA starts to run, and it is kept fixed throughout the GA 
run. In order to compute the degree of surprisingness of 
the rules in current population, each rule is matched 
against every GI, as shown in Figure 3.  
 
 
 
 
 

 

Figure 3: Matching between each rule and every 
general impression 

A rule Ri is considered surprising, in the sense of 
contradicting a general impression GIj of the user, to 
the extent that Ri and GIj have similar antecedents and 
contradictory consequents. In other words, the larger 
the similarity of the antecedents of Ri and GIj and the 
larger the degree of contradiction of the consequents of 
Ri and GIj, the larger the degree of surprisingness of 
rule Ri with respect to general impression GIj. 
For each pair of rule Ri and GIj - where i varies in the 
range 1,...,|R| and j varies in the range 1,...,|GI| - the 
GA computes the degree of surprisingness of Ri with 
respect to GIj in three steps, as follows. 
First step: finding the general impressions whose 
consequents contradicted the consequent of Ri. We say 
that the consequent of Ri contradicts the consequent of 
a general impression GIj if and only if Ri and GIj have 
the same goal attribute but a different goal attribute 
value in their consequent. For instance, this would be 
the case if Ri predicts “production = low” and GIj 

predicts “production = high”. Note that if Ri and GIi 
predict different goal attributes, or if they predict the 
same value for the same goal attribute, there is no 
contradiction between them. In this case the degree of 
surprisingness of Ri with respect to GIi is considered 
zero, and the second and third steps, described below, 
are ignored.  
Second step: computing the similarity between the 
antecedents of Ri and GIj. For each general impression 
GIj found in the previous step (i.e, each general 
impression GIj contradicted by Ri), the system 
computes the similarity between the antecedents of Ri 
and GIj. This similarity, denoted AS(i,j), is computed by 
the formula: 

AS(i,j) = |A(i,j)| / max(|Ri|,|GIj|) , 
where |Ri| is the number of conditions (attribute-value 
pairs) in rule Ri, |GIj| is the number of conditions in 
general impression GIj, max is the maximum operator, 
and |A(i,j)| is the number of conditions that are exactly 
the same (i.e., have the same attribute and the same 
attribute value) in both Ri and GIj. This formula is a 
simplified version of the formulas proposed by [19] to 
measure the similarity between the antecedents of Ri 
and GIj. Those authors proposed separate formulas to 
measure the similarity with respect to attributes and 
with respect to attribute values. We have chosen to 
incorporate both aspects of antecedent similarity into a 
single formula, for the sake of simplicity. 
Third step: computing the degree of surprisingness of 
Ri with respect to GIj. Let Surp(i,j) denote the degree of 
surprisingness of Ri with respect to GIj. Surp(i,j) 
depends on both AS(i,j), computed in the second step, 
and on the difference between the rule consequents of 
Ri and GIj, computed in the first step, as follows. The 
goal attribute values in the consequents of Ri and GIj 
can be either a value in the set {low, high} or {low, 
medium, high}, depending on the goal attribute. (The 
choice between these two attributes domains is made 
by the user for each goal attribute, as will be seen 
later.) If the difference between the consequents of Ri 
and GIj is that one of them is low and the other is high, 
characterizing the greatest possible difference between 
those consequents, then Surp(i,j) is assigned the value 
of AS(i,j), without any modification. If the difference 
between the consequents of Ri and GIj is that one of 
them is medium and the other is either low or high, 
characterizing a smaller difference between those 
consequents, then Surp(i,j) is assigned half the value of 
AS(i,j), i.e. Surp(i,j) = 0.5 x AS(i,j). In the latter case 
Surp(i,j) is assigned a smaller value than in the former 
case to reflect the fact that the degree of contradiction 
is correspondingly smaller.  
Finally, once the above three steps have been 
completed for all general impressions, with respect to a 
given rule Ri, the system has computed all the degrees 
of surprisingness of Ri with respect to every general 
impression GIj, i.e. all Surp(i,j), j=1,...,|GI|, where |GI| 
is the number of general impressions. At this point the 
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degree of surprisingness of rule Ri, denoted Surp(i), is 
simply computed by the formula: 
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j
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where max returns the maximum value among its 
arguments.   

3.4 Selection and Genetic Operators 
The GA uses tournament selection [1], which 
essentially works as follows. First, k individuals are 
randomly picked (k = 2 in our experiments), with 
replacement, from the population. Then the individual 
with the best fitness value, out of the k individuals, is 
selected as the winner of the tournament. This process 
is repeated P times, where P is the population size. 
Next the P selected individuals undergo genetic 
operators described below. 
The GA uses relatively simple crossover and mutation 
operators. It uses uniform crossover [12]. There is a 
probability for applying crossover to a pair of 
individuals and another probability for swapping each 
corresponding pair of gene (attribute)’s value in the 
genome of two individuals. The crossover probabilities 
used were 0.85 for the crossover operator and 0.5 for 
attribute value swapping. Our choice of uniform 
crossover was motivated by the fact that this operator 
has no positional bias. The probability of swapping 
each pair of attribute values is independent of the 
position of that attribute value in the genome. This is 
desirable in our data mining application, where the rule 
antecedent represented by the genome consists of an 
unordered set of conditions. The mutation operator 
randomly transforms the value of an attribute into 
another (different) value belonging to the domain of 
that attribute. 

In addition to crossover and mutation operators, the 
GA also uses operators that insert/remove conditions 
to/from a rule. In essence, the condition-insertion 
operator switches on the flag of some condition in the 
genome, rendering it present in the decoded rule 
antecedent. Conversely, the condition-removal operator 
switches off the flag of some condition in the genome, 
which effectively removes that condition from the 
decoded rule antecedent. The condition-insertion and 
condition-removal operators perform specialization and 
generalization operations in the rule, respectively. 
Hence, they contribute for a broader exploration of the 
search space, facilitating the exploration of some 
regions of the search space that might not be so easily 
accessible to crossover and mutation operators.  
 
3.5 Summary of the Algorithm 
In order to summarize the earlier description of the 
system, the pseudocode of the system is shown, in a 
very high level of abstraction, in Algorithm 1. Each 
iteration of the main loop of the algorithm – the FOR 
EACH loop – discovers the best rule (taking into 
account accuracy and surprisingness) predicting a 
given rule consequent – i.e., a given pair <goal 
attribute, value>. The algorithm returns one rule for 
each rule consequent to be predicted. As can be seen at 
the end of the main loop of the algorithm, the rule 
returned to the user has to satisfy two conditions, 
namely: (a) Surp > 0; and (b) Acc > max(0.5, 
RelativeFreq). The first condition simply requires that 
the degree of surprisingness of the rule be greater than 
zero, so that the rule is considered at least potentially 
surprising to the user. The motivation for the second 
condition can be understood by considering two cases. 
 

Algorithm 1: Pseudocode of the system 
 

Specify the membership functions of the attributes being fuzzified, with the help of the user; 
Obtain the general impressions (GI’s) from the user; 
FOR EACH rule consequent (pair <goal attribute, value>): 
        Compute the Relative Frequency of this goal attribute value in the training set;  
        Generate the initial population at random; 
        Call procedure Compute-Fitness; 
        FOR g = 1 to Number_of_Generations 

Generate a new population, performing the following operations: 
Selection 
Crossover / Mutation / Condition Insertion / Condition Removal 

Call procedure Compute-Fitness;  
        END FOR g 
        Return to the user the rule with largest fitness, subject to the conditions: 
              (Surp > 0) AND (Acc > max(0.5, RelativeFreq))  
END FOR EACH rule consequent 
 
PROCEDURE Compute_Fitness 
        Compute the accuracy (Acc) of each rule (individual), by performing  
                  a fuzzy matching between the rule and the training examples; 
        Compute the surprisingness (Surp) of each rule, by matching the rule with the general impressions; 
        Compute the Fitness of each rule  ;
END PROCEDURE Compute-Fitness. 

 
 
 
 
 
 
 
 
 
 
 
 
 



First, suppose that the relative frequency (on the 
training set) of the goal attribute value predicted by this 
rule is greater than 0.5. It makes sense to require that a 
rule has a classification accuracy greater than that 
relative frequency. After all, the latter can be 
considered a natural baseline accuracy for any rule 
predicting that goal attribute value, in the sense that a 
trivial rule with an empty antecedent (i.e., no 
condition) would have that baseline accuracy. Consider 
now the case where the relative frequency of the goal 
attribute value predicted by the rule is smaller than 0.5. 
It still makes sense to require that Acc > RelativeFreq, 
but now this condition is relatively easy to be satisfied. 
For instance, if RelativeFreq = 0.2, and the rule has 
Acc = 0.3, the condition would be satisfied, but the rule 
is still a bad rule, having a very low Acc. Hence, we 
also require that the rule has an Acc > 0.5 to enforce 
the constraint that a discovered rule have at least a 
reasonable accuracy. The condition Acc > max(0.5, 
RelativeFreq) implements the constraints of both cases 
in a simple, concise formula. 

4 Computational Results 
In this section we report the results of computational 
experiments carried out with our proposed GA 
described in the previous section. The results of our 
GA and J4.8 [36] are compared. J4.8 is a decision tree 
algorithm implemented in a public domain tool called 
Weka: 
http://www.cs.waikato.ac.nz/ml/weka/index.html.  
The experimental set of general impressions was 
specified by the Maringá State University Research 
Director (Brazil) to evaluate the algorithm. The same 
user also evaluated the interestingness of the rules 
discovered by our GA and J4.8, as will be seen later. 
The data set used in our experiments is described in 
section 4.1. 
The rules discovered by the GA and J4.8 were 
evaluated with respect to two criteria, namely: 
(a) Predictive accuracy. As usual in the literature, 
predictive accuracy was measured in an objective way, 
by computing the prediction accuracy rate on a test set 
separate from the training set. The results with respect 
to predictive accuracy are reported in section 4.2. 
(b) Degree of interestingness (surprisingness). This is a 
measure of how surprising (novel) the rule is for the 
user, as explained in the previous section. This was 
measured in a subjective way, by showing the 
discovered rules to the user and asking him to assess 
them according to how interesting they were. The 
results with respect to interestingness are reported in 
section 4.3. 
In the experiments reported in sections 4.2 and 4.3, we 
used the default parameters of J4.8. To make the 
comparison with J4.8 as fair as possible, we also used 
the default parameters of our GA, without any attempt 
to optimize parameters. The parameters of the GA are 
as follows: 

• Crossover probability = 85% 
• Mutation probability = 2% 
• Condition-insertion probability = 2% 
• Condition-removal probability = 1% 
• Tournament size = 2 
• Maximum number of conditions in a decoded 

rule antecedent (i.e., maximum number of 
active conditions in the genome of an 
individual) = 5 

• Population size = 100 individuals 
• Number of generations = 100 

4.1 The Data Set  
The application domain addressed in this paper 
involves a science and technology database obtained 
from CNPq (the Brazilian government’s National 
Council of Scientific and Technological Development). 
We have mined a subset of the database containing 
data about the scientific production of researchers in 
the South region of Brazil. However, it should be noted 
that the design of our GA is generic enough to allow its 
use in virtually any other application domain, as long 
as proper general impressions and membership 
functions as specified by the user. 
The experiments reported in this paper have been 
performed with 24 attributes. The selection and 
preparation of these attributes for data mining purposes 
were time-consuming processes. They took several 
months, as the original data set was not collected for 
data mining purposes. 
The prepared data set contained 5,690 records 
(examples). Each record had attributes describing a 
given researcher and his scientific production in the 
period from 1997 to 1999. Records that had any 
attribute with missing value were removed. Out of the 
24 attributes, 6 were used as goal attributes to be 
predicted, and the other 18 attributes were used as 
predictor attributes. Out of the 18 predictor attributes, 8 
were categorical (nationality, continent of origin, sex, 
state, city, skill in writing English, whether or not 
she/he was the head of a research group, main research 
area) and 10 were continuous (educational level, No. of 
years since last graduation, age, No. of completed 
technical projects, No. of delivered courses, No. of 
supervised Ph.D. thesis, No. of supervised M.Sc. 
dissertations, No. of supervised research essays (at the 
diploma level), No. of supervised final-year 
undergraduate projects, No. of supervised 
undergraduate students with a research scholarship). 
The 10 continuous attributes were fuzzified for rule-
discovery purposes, as previously explained. 
For prediction purposes, each goal attribute was 
discretized into either two values (referring to a low or 
high scientific production) or three values (referring to 
a low, medium or high scientific production), as 
determined by the user. 
The 6 goal attributes, denoted G1,...,G6, have the 
following meaning and values to be predicted: 

http://www.cs.waikato.ac.nz/ml/weka/index.html


G1 = No. of papers published in national journals - 
values: low, medium, high; 
G2 = No. of papers published in internat. journals - 
values: low, medium, high; 
G3 = No. of chapters published in national books - 
values: low, medium, high; 
G4 = No. of chapters published in international books - 
values: low, high; 
G5 = No. of national edited/published books - values: 
low, high; 
G6 = No. of internat. edited/published books - values: 
low, high. 

Therefore, in total there are 15 goal attribute values to 
be predicted.  

4.2 Evaluating the Predictive Accuracy of the 
Discovered Rules 

In order to measure the predictive accuracy of 
discovered rules, we have performed a well-known 10-
fold cross-validation procedure [14], which works as 
follows. First, the data set is divided into 10 mutually 
exclusive and exhaustive partitions. Then the data 
mining algorithm is run 10 times. In the i-th run, 
i=1…10, the i-th partition is used as the test set, and 
the remaining 9 partitions are temporarily grouped and 
used as the training set. In each run the system 
computes the prediction accuracy rate on the test set, 
which is the ratio of the number of correct predictions 
over the total number of predictions. The reported 
result is the average prediction accuracy rate over the 
10 runs. 
We have compared the predictive accuracy of the rules 
discovered by our GA with the accuracy of the rules 
discovered by J4.8. Note that J4.8 is an algorithm 
designed for the classification task of data mining, 
where there is a single goal attribute to be predicted. 
Similarly, each run of our GA discovers a rule 
predicting a different goal attribute value. Hence, both 
J4.8 and our GA have to be run several times in our 
application, since we are interested in discovering rules 
predicting several goal attributes. More precisely, J4.8 
was run 6 times, whereas our GA was run 15 times, 
corresponding to the 15 different goal attribute values 
for all the 6 goal attributes. For both algorithms, each 
run consisted of the 10 iterations of the 10-fold cross-
validation procedure. 
Note also that J4.8 and our GA were designed for 
discovering different kinds of prediction rules. There 
are two main differences. The first, J4.8 just tries to 
discover accurate rules. It does not try to discover 
interesting, surprising rules. In contrast, our GA tries to 
discover rules that are both accurate and surprising for 
the user. Second, J4.8 was designed for discovering 
classification rules covering all examples, which may 
be called “complete prediction”. Given any test 
example, J4.8 must discover a rule that can be used to 
predict its class whereas our GA does not try to 
discover rules covering all examples. It tries to 

discover only a small set of interesting, surprising 
rules, the knowledge “nuggets”. The discovered rules 
can collectively cover only a relatively small subset of 
examples, and yet be considered surprising and high-
quality rules. This approach may be called “partial 
prediction”. These two differences make it difficult to 
compare the two algorithms in a fair way. 
In order to make this comparison fairer, we have 
eliminated the first difference mentioned above. This 
was achieved by modifying the fitness function of the 
GA (only in the experiments reported in this section) 
so that the fitness of an individual (rule) is measured 
only by its predictive accuracy, ignoring its degree of 
surprisingness, i.e., the fitness of the i-th individual is 
given by (see subsection 3.3.1): 

Fitness(i) = Acc(i) = (CorrPred - 1/2) / (TotPred)  
Having done that both J4.8 and the GA search only for 
accurate rules.  
The second difference between the two algorithms, as 
mentioned above, is more difficult to eliminate, and it 
still remains a difference in our experiments. The only 
way to eliminate this difference would be either to 
modify the GA to perform complete prediction or to 
compare the GA with another rule induction algorithm 
that performs partial predictions. These possibilities 
will be considered in future research. 
The predictive accuracy obtained by J4.8 and our GA 
is reported in Table 1.  
 
Table 1: Prediction Accuracy Rate (%) of J4.8 and the 

GA 

Goal 
attrib.

Predicted 
value 

Freq. 
(%) 

J4.8 
(%) 

GA 
(%) 

low 46.9 64.9 58.8 ±14.0 
medium 50.6 63.9 60.4 ±13.3 

G1 

high 2.5 9.1 00.0 ±0.0 (-) 
low 64.2 76.6 90.7 ±5.4 (+) 
medium 29.7 45.3 40.0 ±16.3 

G2 

high 6.1 32.2 25.0 ±13.4 
low 76.9 82.2 95.2 ±3.0 (+) 
medium 21.2 45.3 56.7 ±15.8 

G3 

high 1.9 27.4 25.0 ±13.4 
low  93.2 93.4 98.4 ±0.7 (+) G4 

high 6.8 51.7 14.3 ±10.4 (-) 
low  83.5 86.0 89.5 ±9.9 G5 
high 16.5 54.7 56.9 ±14.0 
low  97.9 97.9 98.9 ±0.5 (+) G6 
high 2.1 0.0 00.0 ±0.0 

 
The first column of this table identifies the goal 
attribute predicted by the rule (see the meaning of 
G1...G6 in the previous section), whereas the second 
column identifies the value predicted for that goal 
attribute. The third column identifies the relative 
frequency (in %) of the corresponding goal attribute 
value in the training set. The fourth and fifth columns 



report the prediction accuracy rate (in %) in the test set 
(10-fold cross-validation) of J4.8 and our GA, 
respectively. In the last column the results after the “±” 
symbol denote standard deviations. (Standard deviation 
values were not available for the results of J4.8.) In 
each row, we show in bold the larger predictive 
accuracy rate, out of the accuracy rates obtained by the 
two algorithms.  

As can be seen in the table, the predictive accuracy rate 
of the GA is larger than the one of J4.8 in seven rows 
(i.e., seven goal attribute values), whereas the converse 
is true in other seven rows. The cases where the 
accuracy of the GA is significantly larger or smaller 
than the accuracy of J4.8 are indicated by the symbol 
“(+)” or “(-)”, respectively, in the last column. By 
significantly larger or smaller we mean that the 
difference between the accuracy of the GA and J4.8 is 
larger than twice the value of the standard deviation 
reported in the last column.  

With the exception of the goal attribute G1, the GA 
outperformed J4.8 in the prediction of goal attribute 
values with a larger relative frequency in the training 
set, whereas J4.8 outperformed the GA in goal attribute 
values with a smaller relative frequency in the training 
set. This might have been due to the following 
difference in the search for rules performed by the two 
algorithms. The GA discovers rules for each class in 
turn. Hence, both classes with a large frequency and 
classes with a small frequency are equally considered 
by the algorithm. Thus, it does not bias the search 
towards any of these kinds of classes. In contrast, J4.8 
discovers rules for all classes (values of a given goal 
attribute) in each run. As it is easier to discover rules 
for classes with larger frequency, J4.8 is biased 
towards discovering rules that predict the most 
common class(es). That is, it tends to assigns less 
importance to rare classes. 
We now turn to the problem of comparing the degree 
of interestingness of the rules discovered by the GA 
and by J4.8, discussed in the next section.   

4.3 Evaluating the Interestingness of the 
Discovered rules  

The rules discovered by the GA and J4.8 were also 
evaluated with respect to their degree of interestingness 
(surprisingness) for the user. The user subjectively 
evaluated this degree of interestingness. The 
comparison of the rules discovered by the two 
algorithms with respect to interestingness was also 
challenging, due mainly to the fact that, for the 
majority of the 6 goal attributes, J4.8 produced a very 
large decision tree, with literally hundreds of nodes. 
One exception was the tree for the goal attribute G6, 
where the opposite happened: J4.8 produced a 
degenerated tree, with a single node, which is 
equivalent to a rule with an empty antecedent (i.e., no 
rule conditions, so that the rule covers all examples) 
and a consequent predicting the majority class. 

Obviously, it was not possible to show all the 
thousands of rules (considering all goal attributes) to 
the user. In any case, the vast majority of the rules 
discovered by J4.8 tend to be uninteresting, since J4.8 
tries to maximize predictive accuracy, rather than 
interestingness, as mentioned in the previous section. 
Hence, in order to make a fair comparison of the rules 
discovered by the GA and J4.8, with respect to their 
degree of interestingness, we have selected a small 
subset of the rules discovered by J4.8, and only the 
rules in that subset were compared with the rules 
discovered by the GA. The procedure to select the 
subset of most interesting rules discovered by J4.8 is 
based on the idea of measuring the interestingness of 
J4.8’s rules in a way which is as similar as possible to 
the way that interestingness is measured in the fitness 
function of the GA. This makes the comparison of the 
results of the two algorithms as fair as possible. This 
procedure selects exactly one rule, considered the most 
interesting rule, for each goal attribute – again, this 
makes the comparison with the GA as fair as possible, 
since the GA also selects exactly one rule for each goal 
attribute value. The procedure for selecting the most 
interesting J4.8 rules is shown, at a high level of 
abstraction, in Algorithm 2. 
As mentioned earlier, the GA found rules for 15 goal 
attribute values, but J4.8 found rules for 13 goal 
attribute values only (since it found no rule for goal 
attribute G6). For each of those 13 goal attribute values, 
we selected one rule discovered by J4.8, by running the 
above procedure. For only 8 of those goal attribute 
values there was a rule having a degree of 
interestingness (Surp) greater than 0. In the case of the 
other 5 goal attribute values, there was no rule with 
Surp greater than 0, so that the corresponding 5 rules 
were selected based on their predictive accuracy only, 
as indicated in the last IF-THEN-ELSE instruction of 
Algorithm 2. This is by itself a significant evidence 
that, as expected, J4.8 tends to discover uninteresting 
rules, since it was not designed to explicitly discover 
interesting rules. 
The user was asked to assess each rule discovered by 
the GA and by J4.8, according to how 
interesting/surprising the rule was for him, and then 
assign each rule to one of the following three degrees 
of interestingness (surprisingness): low interestingness, 
medium interestingness or high interestingness. The 
results of the evaluation performed by the user are 
reported in Table 2.  

The results reported in Table 2 were obtained by using 
the entire data set (i.e., all the 5,690 examples) as input 
data for the GA. This procedure is justified because 
when measuring the degree of interestingness of 
discovered rules there is no need for dividing the data 
into training and test sets, since there is no need for 
measuring predictive accuracy in the test set (which 
was already measured in the experiments reported in 
the previous section).  



Algorithm 2: Selecting interesting rules from the decision tree produced by J4.8 

   Convert the decision tree into a set of rules in the usual way – i.e., each path from the root node to a leaf node corresponds
to a rule; 

   FOR EACH goal attribute value v; 

       Initialize a set of rules, called S, with the empty set; 

Select all the rules discovered by J4.8 that are predicting value v and that have at most 5 conditions (attribute- value
pairs) in their antecedent, and put these rules into S;  /* the limit of 5 conditions is also used in the GA */ 

FOR EACH rule in S; 

Compute its predictive accuracy (Acc) by using the same formula used to compute predictive accuracy in the
fitness function of the GA;   /* see section 3.3.1 */ 

        IF the rule’s Acc satisfies the condition Acc > max(0.5, RelativeFreq)  
     THEN keep the rule in S, 

             ELSE remove the rule from S; 

Compute the degree of interestingness or surprisingness (Surp) of the rule, by matching it with the user-defined
general impressions, and by using the same formula used to compute interestingness in the fitness function of the
GA;    /* see section 3.3.2 */ 

Compute the fitness of the rule, using the same formula used to compute the fitness function in the GA, i.e.,
Fitness = Acc * Surp;       /* see section 3.3 */ 

END FOR EACH rule in S 

       IF there is at least one rule in S with Surp > 0 
     THEN select, out of all rules in S, the rule with the largest fitness, and return this rule to the user, 
     ELSE select, out of all rules in S, the rule with the largest Acc, and return this rule to the user; 

   END FOR EACH goal attribute value v. 

  
The experiment reported in this section, involving 15 
runs of the GA (one for each goal attribute value being 
predicted) took about 6 minutes on a Pentium III PC 
with 866 Mhz. Each run of the GA had a population 
size of 100 individuals, which evolved during 60 
generations. 
In Table 2, the rule consequent in the first column 
consists of an attribute-value pair “Gi= val” identifying 
the goal attribute value predicted by the rule, where Gi 
denotes the i-th attribute, i=1...6 (see section 4.1 for the 
meaning of these goal attributes) and val denotes the 
value predicted for the corresponding goal attribute. 
The second and third columns of this table show the 
degree of interestingness assigned to the rules by the 
user.  

We emphasize that the user who evaluated the 
interestingness of the discovered rules was the same 
user who specified the general impressions, as 
mentioned earlier. In addition, when the user was 
shown a discovered rule, he was also shown his own 
general impression that was contradicted by that rule. 

As can be observed in Table 2, out of the 13 rules 
extracted from the decision tree built by J4.8, the user 
considered only 2 rules as having a medium degree of 
interestingness, and he considered 11 rules as having a 
low degree of interest. No rule was considered as 
having a high degree of interestingness.  

 
Table 2: Interestingness of rules discovered by J4.8 and 

the GA  

Interestingness 
for the user 

 
Rule consequent 

J4.8 GA 
G1 = low low high 
G1 = medium medium medium 
G1 = high low medium 
G2 = low  low high 
G2 = medium low medium 
G2 = high low low 
G3 = low low high 
G3 = medium low low 
G3 = high low low 
G4 = low medium medium 
G4 = high low medium 
G5 = low low high 
G5 = high low low 
G6 = low N/A high 
G6 = high N/A low 

 

A much better result was obtained by the GA. Out of 
the 15 rules discovered by the GA, 5 were assigned a 



high degree of interestingness by the user, 5 were 
assigned a medium degree of interestingness, and the 
remaining 5 were assigned a low degree of 
interestingness. Overall, this seems to be a relatively 
good result, considering how difficult it is to discover 
very interesting, surprising rules.  
We have observed that there is a relationship between a 
rule’s simplicity (in the sense of having a small number 
of conditions) and its degree of interestingness for the 
user. This relationship is due to an interaction between 
the measure of rule surprisingness used in this work 
and the kind of general impressions specified by the 
user, as follows. In our experiments, the user specified 
mainly short general impressions, having a small 
number of conditions. As a result, the measure of rule 
surprisingness favors the discovery of short rules too, 
since these rules can have a larger degree of similarity 
between the rule antecedent and the general impression 
antecedent.  
The relationship between a rule’s simplicity and its 
degree of interestingness for the user helps to explain 
why the rule set discovered by the GA was 
considerably more interesting than the rule set 
discovered by J4.8. To understand this point, we have 
analyzed the difference between the rules discovered 
by the two algorithms with respect to simplicity. This 
result of this analysis is shown in Tables 3 and 4, 
which refer to the rules discovered by J4.8 and the GA, 
respectively. Each of these two tables is to be 
interpreted essentially as a 5x3 matrix. It contains five 
rows, each corresponding to one of the possible 
number of conditions in a rule antecedent, and three 
columns, each corresponding to one of the possible 
degrees of interestingness assigned by the user to a 
rule. Each cell i,j of the matrix contains the number of 
discovered rules having i conditions and having the 
degree of interestingness j. The matrix is extended with 
totals for each row and each column. The bottom-
rightmost cell contains the total number of discovered 
rules. Note that this total is 13 for J4.8 (in Table 3) and 
15 for the GA (in Table 4), since J4.8 did not discover 
any rule for two goal attribute values, as explained 
earlier. 
Comparing the results in Table 3 with the results in 
Table 4, it is clear that in general the GA discovered 
simpler rules. For instance, out of the 13 rules 
discovered by J4.8, only 2 were very short, having only 
1 condition. By contrast, out of the 15 rules discovered 
by the GA, 6 were very short, having only 1 condition. 
As mentioned earlier, in this project short rules tended 
to be more interesting for the user. Indeed, out of the 6 
very short rules found by the GA 4 were considered 
highly interesting by the user. The other highly 
interesting rule discovered by the GA was also quite 
short, having only 2 conditions. Out of the 13 rules 
discovered by J4.8, only 2 had a medium degree of 
interesting (i.e., no rule was highly interesting), one of 
them had just 1 condition and the other one had 3 
conditions. Both in Table 3 (J4.8) and in Table 4 (GA), 

all long rules – with 4 or 5 conditions – had a low 
degree of interestingness to the user.  
These results clearly show that the user has a bias 
favoring simpler rules. Since the GA was designed 
from scratch to discover interesting rules, it managed 
to detect this bias implicit in the user’s specification of 
the general impressions and the definition of the 
measure of surprisingness (subsection 3.3.2). Along 
many generations, the GA had time and enough 
adaptive mechanisms to adapt to the bias of the user, 
and in general it converged to simple rules in most 
runs. Indeed, only 2 out of the 15 rules discovered by 
the GA were long rules (with 4 or 5 conditions), as 
shown in Table 4. By contrast, J4.8 did not have 
opportunity to adapt to that bias of the user, because 
when using J4.8 the general impressions are used for 
selecting the most interesting rules only in a post-
processing phase, after J4.8 has built a decision tree. 
As a result, 9 out of the 13 rules extracted from the 
decision trees built by J4.8 were long rules, which 
seems the major reason for the bad results of J4.8 
reported in Table 2.  
 
 
Table 3: Analysis of simplicity for rules discovered by 

J4.8 

Interestingness for the user Number of
conditions low medium high 

Total

1 1 1 0 2 
2 0 0 0 0 
3 1 1 0 2 
4 6 0 0 6 
5 3 0 0 3 
0 11 2 0 13 

 
 

Table 4: Analysis of simplicity for rules discovered by 
the GA 

Interestingness for the user Number of
conditions low medium high 

Total

1 0 2 4 6 
2 2 1 1 4 
3 1 2 0 3 
4 1 0 0 1 
5 1 0 0 1 

Total 5 5 5 15 
 
 

5 Conclusions and Future Work  
We have proposed a GA for discovering interesting 
fuzzy prediction rules. The proposed GA was evaluated 
with respect to both the predictive accuracy and the 



interestingness of the discovered rules. With respect to 
the former criterion, the performance of the GA was 
compared with J4.8, a well-known decision-tree-
building algorithm. Overall, the proposed GA was 
found to be competitive with J4.8 with respect to this 
criterion. In order to evaluate rule interestingness, the 
rules discovered by the GA and by J4.8 were shown to 
the user (University Director) in an interview. In 
general the user considered the rules discovered by the 
GA much more interesting than the rules discovered by 
J4.8.  
Overall, the GA was able to found several rules that 
were considered very interesting by the user. For 
instance, one of the general impressions specified by 
the user represented his previous knowledge (or belief) 
that biology researchers of a given region had a high 
number of international edited/published books. 
However, the GA was able to find an accurate rule 
contradicting this general impression. The rule had the 
same antecedent as the general impression but made 
the opposite prediction, i.e. it predicted that the 
researchers in question had a low number of 
international edited/published books. As another 
example, the user also believed that researchers in the 
broad area of Engineering had a high number of 
national edited/published books, but another rule 
discovered by the GA revealed that the number in 
question is low. These two rules were considered very 
interesting for the user.  
There are two directions for future research. First, it 
would be interesting to develop a multi-objective 
version of the GA described in this paper. In this case, 
the GA would search for rules that are non-dominated, 
in the Pareto sense [4], with respect to both predictive 
accuracy and rule interestingness. Second, in order to 
further validate the performance of the GA with respect 
to rule interestingness, it would be useful to compare 
the degree of interestingness of the rules discovered by 
our GA with the degree of interestingness of the rules 
discovered by another data mining algorithm that was 
specifically designed for the discovery of interesting 
(surprising) rules.  
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