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The Model Driven Architecture (MDA) is an approach to IT systems development fostered by the 
Object  Management Group (OMG). It is based on forming a separation between the specification of a 
systems  essential functionality as a platform independent model (PIM) and the realisation of the system 
using  more detailed and specific platform specification (PSM). It is recognised that specifying the 
mappings or transformations from PIM to PSM is a key enabling aspect of the MDA approach. 
Currently the OMG's Request for Proposals (RFP) on techniques and facilities to enable 
transformations is in progress. In this position paper we discus a technique for specifying 
transformations that is based on the mathematical foundation of relations. Using these relation 
specifications we show how the additional definition of some “build” expressions enables the 
generation of a transformation engine that will map model instances from either side of the 
specification to the other. This approach has been proved to work on a number of small case studies, 
using the KMF code generation tools to build transformation engines from specifications. 

1 Specification Principles 
The principle on which this transformation specification technique is based is that of mathematical 

relations. A Relation (R) is a set of elements, where each element is a pairing of two objects (a and b) that 
map to each other. The objects are each drawn from two other sets defined as the domain and range of the 
relation. An additional matching condition can be specified which is a relation specific expression that must 
evaluate to true for all elements in the relation. In mathematics this can be written: 

( ){ }conditionmatchingrangebdomainaBAbaR _, ∧∈∧∈×∈=  
In an Object Oriented modelling context we can express such a relation with a pattern of classes and 

constraints, as shown in . Figure 1
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Given this pattern of classes we can define relations between classes from different models and specify 
the conditions under which the model instances should be mapped (i.e. contained in the relation). It is also 
necessary to define the domain and range sets; this can be ‘allInstaces’ of the domain and range types 
(classes) or we can define a more local ‘scope’ for each relation. One useful way to do this is by nesting 
relations into a hierarchy, using a subRelation relationship on which the domain and range expressions are 
defined for the sub relation. This causes the scope of one relation to be in the context of an element from its 
parent relation, and facilitates reuse and recursive nesting of relations; [2] discusses this in more detail. 

To aid the concise specification of relations, we can use a single graphical icon to represent this pattern 
of classes or a single class can be used with a <<relation>> stereotype. These options are illustrated in 

. Figure 2
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Figure 2 

2 From UML to BPEL 
We illustrate the specification technique with the example mapping between UML and BPEL. The 

Business Process Execution Language for Web Services (BPEL4WS or BPEL) is an XML based standard 
that provides a mechanism for combining Web Services to implement business processes. There is no 
graphical syntax defined for the language, consequently it proves useful to be able to define a process in a 
graphical notation such as UML Activity diagrams, and map these to a BPEL specification. 

The document [4] describes a mapping between UML and BPEL, using this as a source, we show in the 
following figures parts of a transformation specification between the two metamodels. (The UML 
metamodel can be found in [5] and a segment of a metamodel for BPEL is shown in an appendix.) 

Class BusinessProcess 
ClsRelProc (from uml) (from bpel) proc 

Variable Attribute 
AttRelVar (from bpel) (from uml) 

ActivtyGraph Activity GrphRelAct (from bpel) (from uml) 

 
Figure 3 Mappings between UML and BPEL 

re 3
The following OCL expressions define the domain, range and matching conditions for each of the 

relations specified in Figu . 
context ClsRelProc$Element 
  AttRelVar.domain : 
    class.feature->select( f | f.oclIsKindOf(Attribute) ) 

    AttRelVar.range : 
      proc.variable 
  GrphRelAct.domain : 
    class.behaviour->select( b | b.oclIsKindOf(ActivityGraph) ) 

    GrphRelAct.range : 
      proc.activity 
context AttRelVar$Element 
  matchingCondition : 

      attribute.name = variable.name and 
    attribute.type.name = variable.type.name 
context GrphRelAct$Element 
  matchingCondition : 

      true 
The domain and range of both the Attribute<->Variable relation and the ActivityGraph<->Activity 

relation are defined within the scope of an owning relation element that maps a class to a business process. 



The enclosing relation element gives a context in which to define the domain and range of its sub relations. 
This hierarchy of relations provides a tree of relations that map one model onto another, which (if changes 
are made to either side) can be used to update or check a transformation within local areas rather than 
having to check the whole transformation. 

The matching conditions are defined in the context of relation elements, if these conditions do not 
evaluate to true, then the mapping is invalid and should be updated. 

3 Tool Support 
Currently, we use a generic UML class diagramming tool to draw the relations and annotate them with 

OCL expressions for the matching conditions. These models are imported by the KMF tools [3] to generate 
transformers, i.e., code for performing the transformations. These transformers need to know how to build 
objects from one side of the relation given objects from the other side. A constraint solver of some 
description could potentially do this for simple matching conditions. However there are limitations to what 
a constraint solver can do and they are generally pretty inefficient. Our alternative approach is to explicitly 
define expressions for each relation that will build an object of one side given an appropriate object from 
the other. The result of such an expression should give a new object which when paired with the original 
meets the matching condition. 

Each build expression is interpreted in the context of the relation element that maps a domain element 
onto a range element. Depending on the direction of transformation, domain range or range domain, the 
appropriate domain or range build expression is used to build a missing element. After evaluating the build 
expression the matching condition must evaluate to true. 

The following expressions illustrate the definition of a build expression for the Attribute<->Variable 
relation, using an action language built on top of OCL: 

context AttRelVar$Element 
  buildDomainExpression: 
    uml::Attribute{ name = variable.name, 
                    type = Class.allInstances->any( t | 

                               t.name = variable.type.name) } 
  buildRangeExpression: 
    bpel::Variable{ name = attribute.name, 

                      type = Type.allInstances->any(t | 
                               t.name = attribute.type.name) } 

These expressions build an instance of the corresponding class defined in the relation, then set the 
properties of that object so that the matching condition will evaluate to true. In both directions, the name 
property can be simply copied from the opposite objects name, however the type property is more complex. 
In this example we have assumed the existence of the ‘allInstances’ collection on model classes and used 
this to select a corresponding type. An alternative might be to explicitly build an appropriate object for the 
type, or if the transformation specification as a whole carries mappings between the types defined in each 
model we could look up an object in the transformation mappings. 

Depending on the complexity of the relations and matching conditions in a transformation specification, 
the build expressions can be very complicated, however, by localising the scope of the expression to the 
context of a single relation the complexity is manageable. 

4 Conclusion and Future Work 
We are currently trying out this technique on a variety of different example, looking for difficult 

transformation problems and finding the limitations of the relation based approach to specifying 
transformations. 

We find that the ability to localize the scope of a relation (defining the domain and range of sub-relations 
in the context of a parent relation element) is of much use with respect to managing the complexity; and is 
in particular useful with respect to the reuse of relations when we have recursive structures in one or other 
model, for example the UML package within packages structure. 

One transformation problem we have not currently succeeded in specifying as a set of relations is that of 
a parser. Parser grammars for textual languages can be seen as transformations from a sequence of 
characters (or tokens) into an abstract syntax tree; the difficulties arise with respect to syntax that involves 
constructs such as nested parentheses, as often found in expression languages. 



On the other hand we have succeeded in using the technique for specifying parsers for simple graphical 
languages such as Class or State Diagrams [1, 2], and have recently investigated the use of the technique 
for defining viewpoints [6] 
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Appendix – Segment of a Metamodel for the BPEL Language 

BusinessProcess 
(from bpel) 

*

Variable 
(from bpel) 1 name : String 

Activity 
(from bpel) Type 

(from xsd) 

StructuredActivity BasicActivity 
(from bpel) (from bpel) 
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