
Transformations based on Relations
D.H.Akehurst

University of Kent
D.H.Akehurst@kent.ac.uk

The Model Driven Architecture (MDA) is an approach to IT systems development fostered by the
Object Management Group (OMG). It is based on forming a separation between the specification of a
systems essential functionality as a platform independent model (PIM) and the realisation of the system
using more detailed and specific platform specification (PSM). It is recognised that specifying the
mappings or transformations from PIM to PSM is a key enabling aspect of the MDA approach.
Currently the OMG's Request for Proposals (RFP) on techniques and facilities to enable
transformations is in progress. In this position paper we discus a technique for specifying
transformations that is based on the mathematical foundation of relations. Using these relation
specifications we show how the additional definition of some “build” expressions enables the
generation of a transformation engine that will map model instances from either side of the
specification to the other. This approach has been proved to work on a number of small case studies,
using the KMF code generation tools to build transformation engines from specifications.

1 Specification Principles
The principle on which this transformation specification technique is based is that of mathematical

relations. A Relation (R) is a set of elements, where each element is a pairing of two objects (a and b) that
map to each other. The objects are each drawn from two other sets defined as the domain and range of the
relation. An additional matching condition can be specified which is a relation specific expression that must
evaluate to true for all elements in the relation. In mathematics this can be written:

(){ }conditionmatchingrangebdomainaBAbaR _, ∧∈∧∈×∈=
In an Object Oriented modelling context we can express such a relation with a pattern of classes and

constraints, as shown in . Figure 1

Figure 1

context R
inv: self.elements->forAll(e |
 matching_condition)

R

* domain * range * elements

A R$Element B

Given this pattern of classes we can define relations between classes from different models and specify
the conditions under which the model instances should be mapped (i.e. contained in the relation). It is also
necessary to define the domain and range sets; this can be ‘allInstaces’ of the domain and range types
(classes) or we can define a more local ‘scope’ for each relation. One useful way to do this is by nesting
relations into a hierarchy, using a subRelation relationship on which the domain and range expressions are
defined for the sub relation. This causes the scope of one relation to be in the context of an element from its
parent relation, and facilitates reuse and recursive nesting of relations; [2] discusses this in more detail.

To aid the concise specification of relations, we can use a single graphical icon to represent this pattern
of classes or a single class can be used with a <<relation>> stereotype. These options are illustrated in

. Figure 2

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/92153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:D.H.Akehurst@kent.ac.uk

A B R

<<relation> A B
R

Figure 2

2 From UML to BPEL
We illustrate the specification technique with the example mapping between UML and BPEL. The

Business Process Execution Language for Web Services (BPEL4WS or BPEL) is an XML based standard
that provides a mechanism for combining Web Services to implement business processes. There is no
graphical syntax defined for the language, consequently it proves useful to be able to define a process in a
graphical notation such as UML Activity diagrams, and map these to a BPEL specification.

The document [4] describes a mapping between UML and BPEL, using this as a source, we show in the
following figures parts of a transformation specification between the two metamodels. (The UML
metamodel can be found in [5] and a segment of a metamodel for BPEL is shown in an appendix.)

Class BusinessProcess
ClsRelProc (from uml) (from bpel) proc

Variable Attribute
AttRelVar (from bpel) (from uml)

ActivtyGraph Activity GrphRelAct (from bpel) (from uml)

Figure 3 Mappings between UML and BPEL

re 3
The following OCL expressions define the domain, range and matching conditions for each of the

relations specified in Figu .
context ClsRelProc$Element
 AttRelVar.domain :
 class.feature->select(f | f.oclIsKindOf(Attribute))

 AttRelVar.range :
 proc.variable
 GrphRelAct.domain :
 class.behaviour->select(b | b.oclIsKindOf(ActivityGraph))

 GrphRelAct.range :
 proc.activity
context AttRelVar$Element
 matchingCondition :

 attribute.name = variable.name and
 attribute.type.name = variable.type.name
context GrphRelAct$Element
 matchingCondition :

 true
The domain and range of both the Attribute<->Variable relation and the ActivityGraph<->Activity

relation are defined within the scope of an owning relation element that maps a class to a business process.

The enclosing relation element gives a context in which to define the domain and range of its sub relations.
This hierarchy of relations provides a tree of relations that map one model onto another, which (if changes
are made to either side) can be used to update or check a transformation within local areas rather than
having to check the whole transformation.

The matching conditions are defined in the context of relation elements, if these conditions do not
evaluate to true, then the mapping is invalid and should be updated.

3 Tool Support
Currently, we use a generic UML class diagramming tool to draw the relations and annotate them with

OCL expressions for the matching conditions. These models are imported by the KMF tools [3] to generate
transformers, i.e., code for performing the transformations. These transformers need to know how to build
objects from one side of the relation given objects from the other side. A constraint solver of some
description could potentially do this for simple matching conditions. However there are limitations to what
a constraint solver can do and they are generally pretty inefficient. Our alternative approach is to explicitly
define expressions for each relation that will build an object of one side given an appropriate object from
the other. The result of such an expression should give a new object which when paired with the original
meets the matching condition.

Each build expression is interpreted in the context of the relation element that maps a domain element
onto a range element. Depending on the direction of transformation, domain range or range domain, the
appropriate domain or range build expression is used to build a missing element. After evaluating the build
expression the matching condition must evaluate to true.

The following expressions illustrate the definition of a build expression for the Attribute<->Variable
relation, using an action language built on top of OCL:

context AttRelVar$Element
 buildDomainExpression:
 uml::Attribute{ name = variable.name,
 type = Class.allInstances->any(t |

 t.name = variable.type.name) }
 buildRangeExpression:
 bpel::Variable{ name = attribute.name,

 type = Type.allInstances->any(t |
 t.name = attribute.type.name) }

These expressions build an instance of the corresponding class defined in the relation, then set the
properties of that object so that the matching condition will evaluate to true. In both directions, the name
property can be simply copied from the opposite objects name, however the type property is more complex.
In this example we have assumed the existence of the ‘allInstances’ collection on model classes and used
this to select a corresponding type. An alternative might be to explicitly build an appropriate object for the
type, or if the transformation specification as a whole carries mappings between the types defined in each
model we could look up an object in the transformation mappings.

Depending on the complexity of the relations and matching conditions in a transformation specification,
the build expressions can be very complicated, however, by localising the scope of the expression to the
context of a single relation the complexity is manageable.

4 Conclusion and Future Work
We are currently trying out this technique on a variety of different example, looking for difficult

transformation problems and finding the limitations of the relation based approach to specifying
transformations.

We find that the ability to localize the scope of a relation (defining the domain and range of sub-relations
in the context of a parent relation element) is of much use with respect to managing the complexity; and is
in particular useful with respect to the reuse of relations when we have recursive structures in one or other
model, for example the UML package within packages structure.

One transformation problem we have not currently succeeded in specifying as a set of relations is that of
a parser. Parser grammars for textual languages can be seen as transformations from a sequence of
characters (or tokens) into an abstract syntax tree; the difficulties arise with respect to syntax that involves
constructs such as nested parentheses, as often found in expression languages.

On the other hand we have succeeded in using the technique for specifying parsers for simple graphical
languages such as Class or State Diagrams [1, 2], and have recently investigated the use of the technique
for defining viewpoints [6]

Bibliography
[1] Akehurst D. H., "An OO Visual Language Definition Approach Supporting Multiple Views," in

proceedings VL2000, IEEE Symposium on Visual Languages, September 2000.

[2] Akehurst D. H., Kent S., and Patrascoiu O., "A relational approach to defining and implementing
transformations between metamodels," Journal on Software and Systems Modeling, vol. 2, pp.
215, November 2003.

[3] KMF-team, "Kent Modelling Framework (KMF)," 2002, www.cs.kent.ac.uk/projects/kmf

[4] Mantell K., "From UML to BPEL," 2003, http://www-
106.ibm.com/developerworks/webservices/library/ws-uml2bpel/

[5] OMG, "The Unified Modeling Language Version 1.5," Object Management Group, formal/03-03-
01, March 2003.

[6] Steen M. W. A., Doest H. L. t., Lankhorst M. M., and Akehurst D. H., "Supporting Viewpoint-
Oriented Enterprise Architecture," in proceedings EDOC 2004, submitted.

Appendix – Segment of a Metamodel for the BPEL Language

BusinessProcess
(from bpel)

*

Variable
(from bpel) 1 name : String

Activity
(from bpel) Type

(from xsd)

StructuredActivity BasicActivity
(from bpel) (from bpel)

http://www.cs.kent.ac.uk/projects/kmf
http://www-106.ibm.com/developerworks/webservices/library/ws-uml2bpel/
http://www-106.ibm.com/developerworks/webservices/library/ws-uml2bpel/

	Specification Principles
	From UML to BPEL
	Tool Support
	Conclusion and Future Work
	Bibliography
	Appendix – Segment of a Metamodel for the BPEL La

