
Definition and Composition of Motor Primitives using Latent Force
Models and Hidden Markov Models.

Student: Diego Alejandro Agudelo España

Supervisor: Mauricio Alexánder Álvarez López

Universidad Tecnológica de Pereira
Master of Science in Electrical Engineering
Grupo de Investigación en Automática

Pereira, Risaralda
2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositorio academico de la Universidad Tecnológica de Pereira

https://core.ac.uk/display/92123560?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Content

Content

Acknowledgements 3

Abstract 4

1 Problem statement 5

2 Justification 7

3 Objectives 8

3.1 General objective . 8

3.2 Specific objectives . 8

4 Background 9

4.1 Dynamic Motor Primitives (DMPs) . 9

4.2 Latent Force Models (LFMs) . 10

4.2.1 Gaussian Processes . 11

4.2.2 Latent Forcing Gaussian Processes 12

4.3 Hidden Markov Models (HMMs) . 14

5 The Model 16

5.1 Hidden Markov Models and Latent Force Models 16

6 Algorithms 19

6.1 Observation Likelihood Computation . 21

6.2 Most Probable Hidden State Sequence . 22

6.3 Parameter Estimation . 23

1

Content

7 Experiments 29

7.1 Synthetic data . 29

7.2 Real data . 32

7.2.1 CMU-MOCAP . 32

7.2.2 Robot Data - Table Tennis Striking Movements 36

8 Conclusions 41

8.1 Research Outcomes . 42

8.2 Future Work . 42

2

Acknowledgements

Acknowledgements

I would like to thank Mauricio A. Álvarez for introducing me into this exciting area of
research, for the insightful meetings and the continued motivation. I also appreciate the
help provided by Cristian Guarnizo and Sebastián Gómez with source code and data sets
respectively. And I am deeply grateful with my family and friends for their support and
encouragement to pursue my goals.

I would like also to thank Universidad Tecnológica de Pereira for its support through the
Jorge Roa Martínez scholarship for pursuing a master’s degree.

This work has been supported by the project Human-motion Synthesis through
Physically-inspired Machine Learning Models funded by Universidad Tecnológica de Pereira,
with code 6-15-3. I am also thankful with Maestría en Ingeniería Eléctrica and the research
group in Automática, from Universidad Tecnológica de Pereira, for additional funding.

3

Abstract

Abstract

The movement representation problem is at the core of areas such as robot imitation learning
and motion synthesis. In these fields, approaches oriented to the definition of motor primitives
as basic building blocks of more complex movements have been extensively used because
they cope with the high dimensionality and complexity by using a limited set of adjustable
primitives. There is also biological evidence supporting the existence of such primitives in
vertebrate and invertebrate motor systems.

Traditional methods for representing motor primitives have been purely data-driven or
strongly mechanistic. In the former approach new movements are generated using existing
movements and these methods are usually very flexible but their extrapolation capacity is
limited by the available training data. On the other hand, strongly mechanistic models have
a better generalization ability by relying on a physical description of the modeled system,
however, it may be hard to fully describe a real system and the resulting differential equations
are usually expensive to solve numerically. Therefore, the motor primitive parameterization
used in this work is based on a hybrid model which jointly incorporates the flexibility of the
data-driven paradigm and the extrapolation capacity of strongly mechanistic models, namely
the latent force model framework.

Moreover, the sequential composition of different motor primitives is also addressed using
Hidden Markov Models (HMMs) which allows to process movement realizations efficiently.
The resulting joint model is an HMM with latent force models (LFMs) as emission process
which is an unexplored combined probabilistic model to the best of our knowledge.

4

Problem statement

1 Problem statement

Biological evidence suggests that movements performed by living beings and, in particular,
human motion can be represented as a combination of a limited number of motor primitives
[1–3] which are the basic building blocks of more complex movements similarly as human
speech is made up of different phonemes. The combination of these motor primitives can
arise at different levels and can happen either simultaneously or sequentially [4].

At the behavioral level motor primitives can be seen as mental templates to achieve motor
tasks, these mental templates are composed of sub-movements which can not be further
decomposed [5]. Similarly, at the muscle level co-activation among several muscles produces
synergies which are necessary to produce the required forces and torques to perform a
particular movement. At a neural level motor primitives can be represented by assemblies
of neurons which activate specific movement patterns [6]. Alternatively, from the point of
view of physics the motor primitives can be kinematic [7] when they encode information
about movement direction and velocity or they can be dynamic when information about the
necessary forces and torques to perform a movement is encoded.

The main concerns about motor primitives are logically how to define them and how to
combine them for building complex movements. Having such a variety of levels motor
primitives can emerge from, it is difficult to propose a general representation valid for all
levels and scenarios [4]. Therefore, different representations and mechanisms for composition
have been proposed for particular tasks.

Particularly, in the context of motor learning in robotics motor primitives have been defined
relying on the theory of dynamical systems. The dynamical motor primitives (DMPs)
make use of the basic nonlinear dynamical systems behaviors represented by second order
differential equations to encode a particular movement [8]. The point attractors are used
to represent discrete movements and the limit cycles for representing rhythmic movements.
DMPs have some interesting properties such as invariance to translation and scaling, they
can be easily extended to multiple degrees of freedom and their superposition flexibility
can be used to represent more complex behaviors [9]. In Vecchio et al. [5] an alternative
formulation of motion primitives was given using the dynamical systems framework and the
term moveme was used to denote a motor primitive. DMPs have been used extensively in
the context of imitation learning [5,8,10]. However, a relevant limitation of these approaches
is that the trajectory represented by DMPs is fixed and non-reactive to variations over the
environment they were learnt from [11]. Also, the way DMPs are represented does not allow
to take advantage of the potential correlation between the different modeled entities (e.g.
robot joints).

On the other hand, data-driven approaches are commonly found in the field of artificial
motion generation for defining movement primitives [12]. These methods form new motions

5

Problem statement

based on existing movements and are inherently different from DMPs since they do not
assume physical knowledge of the underlying modeled system. Non-parametric regression
techniques have been used under the data-driven paradigm [13] usually exploiting correlations
between different parts of the moving entity [14]. Similarly, different dimensionality reduction
methods such as PCA, Kernel PCA and Isomap have been applied for deriving movement
primitives, for a review see Jenkins et al [15]. Motion interpolation approaches also belong
to this category and they have relied on concepts like radial basis functions and splines to
fit movement primitives [16]. Since data-driven models relies more heavily on data than in
prior assumptions there is a limitation when it is required to perform prediction over regions
of unseen data, this means that its extrapolation capacity is limited by the available data.

Although the data-driven paradigm does not assume physical knowledge over the modeled
system, it usually incorporates some weak prior assumptions through regularization such as
smoothness. Therefore, this approach is sometimes called weakly mechanistic [17] and its
counterpart, the strongly mechanistic paradigm, includes physical knowledge in the model
as DMPs where second order differential equations were used to model dynamics. Having
said that, in this work a novel parameterization of motor primitives is proposed relying on a
hybrid model which takes advantage of the flexibility associated to the weakly mechanistic
approach jointly with the extrapolation capacity of strongly mechanistic models, namely the
latent force model (LFM) framework [18].

The proposed solution represents a contribution along the same line of the switched latent
force model (SDLFM) proposed in Álvarez et al. [19]. However, the main difference lies in
the composition mechanism for different LFMs (i.e. primitives) because in the SDLFM these
primitives are articulated via switching points which become hyper-parameters of a Gaussian
process covariance matrix. This covariance matrix grows quadratically on the length of the
movement time series and as a consequence, the method is unscalable for long realizations of
movement. In the current work Hidden Markov Models (HMM) are explored for composing
different LFMs which allows to have a fixed length covariance matrix for each primitive and a
simpler representation of the sequential dynamics of motor primitives. HMMs have been used
extensively in the context of motor primitives [20–22] to combine them either sequentially or
simultaneously [23].

6

Justification

2 Justification

The development of a novel motor primitive parameterization can potentially have an impact
in areas such as motor skill learning and artificial motor generation. This is supported by
the idea that the use of a limited set of modifiable templates seems to be the only way
to cope with the high dimensionality nature of movement representation and robot control
problems [24] and the use of these primitives tremendously reduces the number of parameters
which need to be estimated for a specific movement.

Moreover, by relying in the LFM framework a novel practical solution to the motor primitive
representation problem is proposed. In this way, physical knowledge which arises naturally
in movement-related problems, is incorporated in a probabilistic data-driven model via
second-order differential equations [18]. This parameterization has the following remarkable
properties:

• It encodes a distribution over trajectories (i.e. movements).

• The uncertainty over the learnt movements is quantified.

• Correlations between different outputs (i.e. joints) may be exploited [25].

• Many of the desired properties of a motor primitive representation such as co-activation,
modulation, coupling and learnability naturally arise as a consequence of the
probabilistic formulation [26] .

The proposed model is also pertinent from the computational efficiency perspective since the
jointly use of LFMs and HMMs allows to achieve linear time complexity over the observed
movement sequences by segmenting the observations in fixed-length sections.

Finally, the proposed model might have potential applications in other fields such as
computational biology where physically-inspired methods are useful. For instance, the
modeling of the transcription processes in the cell [27, 28] relies on ordinary differential
equations (ODE) and it is a biological application which can get benefit and insights from
the proposed solution properties.

7

Objectives

3 Objectives

3.1 General objective

To develop a probabilistic model for motor primitive representation and composition using
Latent Force Models and Hidden Markov Models.

3.2 Specific objectives

1. To provide a formal definition of the probabilistic generative model using latent force
models to parameterize the motor primitives and hidden Markov models for describing
the sequential combination of such primitives.

2. To develop an estimation algorithm to infer the probabilistic model from data. This
implies to estimate the Latent Force Model hyper-parameters and the Hidden Markov
Model parameters from movement observations.

3. To validate the performance of the proposed framework as a motor primitive
representation over synthetic and real data.

8

Background

4 Background

In this section we describe the foundations required to introduce the proposed probabilistic
model as well as one of the previous motor primitive definitions which motivated this work.
Firstly, we present the dynamical movement primitives (DMPs) which can be regarded as a
strategy for movement representation widely used in robotics based on dynamical systems.
Our motor primitive parameterization can be seen as a particular extension of DMPs as
described in the subsection 4.2. Thereafter, we introduce the latent force model framework
(LFM) which is used to define a motor primitive based on Gaussian Processes (GPs), we start
with a brief review of GPs and their key results. Finally, we end this section introducing
the hidden Markov models (HMMs) which will be used to model the sequential composition
between movement primitives in section 5.

4.1 Dynamic Motor Primitives (DMPs)

A common formalization used to represent behaviors of motor primitives relying on nonlinear
dynamical systems was introduced by Stefan Schaal [29] in 2002. This formulation is based
on the following second order dynamical system.

ÿ = αy(βy(g − y)− ẏ), (1)

where y represents the system’s state, αy and βy are constants and g is a known goal state.
Given that the dynamical system in (1) is linear, convergence to the unique point attractor g
can be guaranteed with proper values for αy and βy. However, the convergence behavior of (1)
is known to have exponential shape and the ability of supporting more complex trajectories
for reaching the goal state is required in the context of movement representation. This is
achieved through adding a particular forcing term f in (1) as follows.

ÿ = αy(βy(g − y)− ẏ) + f. (2)

The remaining question of which form assume for the term f is not trivial and arbitrary
complex behavior might arise from this election. Therefore, in order to keep things simple
and tractable f is defined in terms of a second dynamical system with state variable x
and with the same goal state g. This dynamical system is called the canonical dynamical
system [9] and its definition is presented in (3).

v̇ = αv(βv(g − x)− v), v = ẋ. (3)

Note that the dynamical system in (3) is not modulated by any forcing term, which guarantees
its convergence to the goal state g if αv and βv are set properly. Having defined the canonical

9

4.2 Latent Force Models (LFMs)

dynamical system, the forcing term in (2) is parameterized as

f(x, v, g) =

∑N
i=1 ψiwiv∑N
i=1 ψi

, with ψi = exp

{
−hi

(
x

g
− ci

)2
}
, (4)

note that {ψi} denotes a set of N Gaussian basis functions centered at ci and with a
bandwidth equals to hi. The weights {wi} regulate the overall contribution of the basis
functions to the forcing term f and v is referred in the literature as a diminishing term since
it vanishes the effect of the forcing term at the end of the movement.

In summary, under the DMP approach the so-called forcing function f is manipulated to
reproduce the desired movement following the observed variable y. This forcing term is in turn
governed by the set of weights {wi}. Therefore, when a movement needs to be reproduced by
a DMP, as it is the case in imitation learning [24], the forcing function parameters wi need
to be estimated from data in order to fit the desired trajectory. Having a demonstration
ydemo(t), ẏdemo(t) and ÿdemo(t) (recall that ẏdemo(t) and ÿdemo(t) can be obtained from ydemo(t)
by differentiation) a well-posed supervised learning problem can be formulated for the forcing
term f [9]. Namely, we would like to adjust the weights wi in such a way that f is as close
as possible to ftarget,

ftarget = ÿdemo − αy(βy(g − ydemo)− ẏdemo), (5)

where αy, βy were introduced in equation 1 and g is equal to the last observed trajectory
value g = ydemo(T) for an observation sequence of length T .

Given that the parameterization of f in terms of the basis functions is linear, the
aforementioned learning problem can be solved with standard approaches. However, a
non-parametric regression technique based on locally weighted learning (RFWR) [30] has
been usually used to solve this problem since it allows to automatically determine the number
of basis functions N , their centers ci and bandwidths hi [29].

4.2 Latent Force Models (LFMs)

We start the LFMs description by highlighting the similarities with DMPs. LFMs are also
formulated using dynamical systems and, as we will see in subsection 4.2.2, the dynamical
system assumed under the LFM approach is equivalent to the one assumed in DMPs — see
equations (2) and (13). However, the parameterization of the forcing term f is now given
in terms of a set of latent stochastic processes, instead of the Gaussian basis functions used
in equation (4). Those stochastic processes are specifically Gaussian processes (GPs), so we
first give an introduction to what GPs are, how to train them and how they are used to
make predictions. In the subsection (4.2.2), we look into the LFM assumptions and main
results with more detail and we show the kind of prior induced over functions under different
settings of the LFM hyperparameters.

10

4.2 Latent Force Models (LFMs)

4.2.1 Gaussian Processes

A Gaussian process (GP) is defined as a collection of random variables, any finite number
of which follows a joint Gaussian distribution [31]. GPs allow to conveniently define a
probability distribution directly over functions and perform inference in function space. To
denote that the function f is governed by a Gaussian process, we write

f(x) ∼ GP(m(x), k(x,x′)), (6)

where m(x) and k(x,x′) are respectively the mean function and the covariance function
which completely specify the GP. Interestingly, any finite set of random variables
{f(xi), f(xj), . . . , f(xk)} over f is distributed according to

f(xi)
f(xj)

...
f(xk)

 ∼ N



m(xi)
m(xj)

...
m(xk)

 ,


k(xi,xi) k(xi,xj) . . . k(xi,xk)
k(xj,xi) k(xj,xj) . . . k(xj,xk)

...
...

k(xk,xi) k(xk,xj) . . . k(xk,xk)


 , (7)

as a consequence of the marginal of a GP being a Gaussian distribution.

Having defined a GP prior for f we are now able to sample realizations from it. However, we
might be more interested in performing some kind of inference as in the case of computing
the posterior over a set of unseen random variables f(X∗) given a set of observed values
f(X) = y (i.e. a regression problem). Having X , {x1,x2, . . . ,xN}, X∗ , {x∗1,x∗2, . . . ,x∗M}
and assuming a zero-mean GP for f , the joint distribution for f(X∗) and f(X) is(

f(X)
f(X∗)

)
∼ N

(
0,

(
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

))
, (8)

where K(X,X∗) denotes the N × M matrix computed using the covariance function
introduced in (6), for all the pairs of observed and unobserved locations. A similar
interpretation stands for the other appearances of K(., .) with its respective inputs. In order
to get the sought posterior we need to include the knowledge about the training data, namely
the observed values y , {y1, y2, . . . , yN}, this is done through the conditioning of the Gaussian
distribution on (8) which implies that the posterior for f(X∗) is also Gaussian

f(X∗)|X,X∗,y ∼ N (K(X∗,X)K(X,X)−1y,

K(X∗,X∗)−K(X∗,X)K(X,X)−1K(X,X∗)).
(9)

We have omitted the parameterization of the covariance function so far. Usually a covariance
function depends on a set of hyperparameters θ, for instance the squared exponential (SE)
covariance function depends on θ = {σ, l} as follows

kSE(x,x′) = σ2 exp

(
(x− x′)2

2l2

)
. (10)

11

4.2 Latent Force Models (LFMs)

These hyperparameters are estimated by optimizing the marginal log-likelihood [31] depicted
in equation (11).

log p(y|X,θ) = −1

2
y>K(X,X)−1y − 1

2
log|K(X,X)|−N

2
log 2π, (11)

where N denotes the dimension of x and y. Note that the dependence on θ is introduced
through the covariance matrix K(X,X). This form of estimation is known as type II
maximum likelihood or Empirical Bayes.

4.2.2 Latent Forcing Gaussian Processes

The latent force model framework was introduced in Álvarez et al. [18] motivated by the
idea that for some phenomena a weak mechanistic assumption underlies a data-driven
model. Therefore, it represents a hybrid model with elements of both, weakly and strongly
mechanistic models [17]. The mechanistic assumptions are incorporated using dynamical
systems governed by differential equations. Particularly, consider the following second order
dynamical system similar to the one presented in (1) but using Leibniz’s notation this time.

d2yd(t)

dt
+ Cd

dyd(t)

dt
+Bdyd(t) = 0. (12)

Cd and Bd are known as the damper and spring coefficients respectively and yd(t) is the
model’s output of interest. Following the same DMP philosophy, the behavior encoded by
(12) given values for constants Cd and Bd is well-known and rather limited. The key is to
keep the model flexible enough even under circumstances where the mechanistic assumptions
are not rigorous fulfilled [17] to fit arbitrary trajectories. Again, this flexibility is achieved
by adding a forcing term but, unlike the DMP forcing term in (2), this is governed by a set
of latent functions uq(t) as follows.

d2yd(t)

dt
+ Cd

dyd(t)

dt
+Bdyd(t) =

Q∑
q=1

Sd,quq(t). (13)

The constants Sd,q are known as the sensitivities and they regulate the contribution of the
latent forces uq(t) to the dynamics. Note that the fact of having multiple outputs governed
by the same set of latent functions induces correlations between those outputs which can be
of great benefit when motor primitives are used to model the movement of a set of robot
joints. Also, the possibility of having a larger number of outputs than latent forces allows to
use the LFM approach as a dimensionality reduction mechanism [19].

The main difference of the LFM approach in contrast with the classical DMP is that it
assumes Gaussian process priors with SE covariance function, which was introduced in

12

4.2 Latent Force Models (LFMs)

equation (10), over the latent forcing functions, or formally uq(t) ∼ GP(0, kSE(t, t′)). As a
consequence of this assumption, it turns out that outputs are jointly governed by a Gaussian
Process and its covariance function can be derived analytically. In fact, the cross-covariance
between outputs yd(t) and yd′(t) under the dynamical model of equation (13) can be expressed
as

kyd,yd′ (t, t
′) =

Q∑
q=1

lq
√
π
Sd,qSd′,q
8ωdωd′

k(q)yd,yd′ (t, t
′), (14)

where ωd =
√

4Bd − C2
d/2 and k

(q)
yd,yd′ (t, t

′) represents the covariance between outputs yd(t)
and yd′(t) under the effect of the latent force uq(t) and its exact form is given by [18]

k(q)yd,yd′ (t, t
′) = hq(γ̂d′ , γd, t, t

′) + hq(γd, γ̂d′ , t
′, t) + hq(γd′ , γ̂d, t, t

′) + hq(γ̂d, γd′ , t
′, t)

−hq(γ̂d′ , γ̂d, t, t′)− hq(γ̂d, γ̂d′ , t′, t)− hq(γd′ , γd, t, t′)− hq(γd, γd′ , t′, t),
(15)

where γd = Cd/2 + jωd and γ̂d = Cd/2− jωd and

hq(γd′ , γd, t, t
′) =

Υq(γd′ , t
′, t)− exp(−γdt)Υq(γd′ , t

′, 0)

γd + γd′
, (16)

with

Υq(γd′ , t, t
′) =2 exp

(
l2qγ

2
d′

4

)
exp(−γd′(t− t′))− exp

(
−(t− t′)2

l2q

)
w(jzd′,q(t, t

′))

− exp

(
−(t′)2

l2q

)
exp(−γd′t)w(−jzd′,q(0, t′)),

(17)

and

zd′,q(t, t
′) =

(t− t′)
lq

− lqγd′

2
. (18)

In the above expression lq denotes the length-scale associated with the q-th latent force
and w(jz) denotes the Faddeeva’s function defined as w(jz) = exp(z2)erfc(z) where erfc
denotes the complex version of the complementary error function. Notice that, in general,
zd′,q(t, t

′) ∈ C.

Under the LFM approach, the inference of the model from data is performed by a two-stage
mechanism following the standard techniques in Gaussian process regression. Firstly, the
differential equation parameters, which are now hyperparameters of the second order LFM
covariance function introduced in equation (14), are estimated by optimizing the logarithm
of the marginal likelihood in (11). Then, the training data is included in the model through
the conditioning of the observed random variables which leave us with the GP predictive

13

4.3 Hidden Markov Models (HMMs)

0 2 4 6 8 10
−1.0

−0.5

0.0

0.5

1.0

(a)

0 2 4 6 8 10

0

2

4

6

8

10

0.02

0.04

0.06

0.08

(b)

0 2 4 6 8 10
−1.0

−0.5

0.0

0.5

1.0

(c)

0 2 4 6 8 10

0

2

4

6

8

10

0.1

0.2

0.3

0.4

0.5

(d)

Figure 1: Sampled realizations and resulting covariances for 2 different LFMs. (a)
Trajectories drawn from an LFM governed by underdamped dynamics, in (b) the resulting
covariance matrix for the sampled points is shown. Similarly, (c) and (d) depict the LFM
behavior for an overdamped system instead.

distribution presented in (9). Remarkably, the inference for LFMs in the multiple-output
setting is not fundamentally different if the observed and unobserved outputs are stacked as
in (8) and the covariance matrices are computed taking into account the cross covariance
between outputs.

A LFM is fundamentally a Gaussian process with a particular covariance function which has
a physical inspiration associated to dynamical systems. Therefore, sampling from an LFM
is equivalent to sampling from a GP with the covariance function introduced in (14). Figure
1 shows realizations sampled for 2 LFMs with different dynamical properties.

Recall that the convergence behavior for a second order system as the one shown in equation
(12) is determined by the damping ratio η = 1

2
Cd/
√
Bd . A system with η < 1 is referred to

as an underdamped system and it converges to the point attractor with a decaying oscillatory
behavior. In figure 1a some underdamped trajectories were generated setting {Cd = 1, Bd =
5} in equation (13). On the other hand, an overdamped system has η > 1 and its convergence
behavior is not oscillatory. A set of overdamped realizations is shown in figure 1c using {Cd =
5, Bd = 1} in the second order system. In both cases (i.e. overdamped and underdamped) the
realizations were sampled assuming a single latent force with lengthscale l = 2 and sensitivity
S1,1 = 1. Note how different the covariance patterns are for different hyperparameter values.

4.3 Hidden Markov Models (HMMs)

The Hidden Markov Models are a family of probabilistic models useful for describing
sequential data. When modeling this kind of data one aims to find patterns and insights
about the sequential dynamics of the process of interest which is impossible when the observed
sequential data is assumed to be a realization of an independent and identically distributed
(i.i.d.) process.

14

4.3 Hidden Markov Models (HMMs)

zn

yny2 y4y3

z4 . . .

y1

z1 z2 z3

Figure 2: Probabilistic graphical model for HMMs. The unshaded nodes denote hidden
random variables whereas the shaded nodes represent observable random vectors.

An HMM is governed by two different processes, a measurement process—also known as
emission process—associating an observation yn with its corresponding latent variable zn
and a Markovian process for describing the state variable dynamics, this is, the dynamics
between the hidden state variables (z1, z2, . . . , zn). Usually a first-order Markov process is
assumed over the state variables. The graphical model for HMMs is depicted in figure 2.

Formally, an HMM models a sequence of observations Y = (y1,y2, . . . ,yn) by assuming that
the observation at index i (i.e. yi) was produced by a k-valued discrete hidden state zi and
that the sequence of hidden states Z = (z1, z2, . . . , zn) was produced by a first-order Markov
process. Therefore, the complete-data likelihood for a sequence of length n can be written
as:

p(Y,Z) = p(z1)p(y1|z1)
n∏
i=2

p(zi|zi−1)p(yi|zi). (19)

Consequently, the marginal likelihood over the observations Y can be expressed as

p(Y) =
∑
Z

p(Y,Z). (20)

Remarkably, an evidence of the flexibility of HMMs is that the Markovian property does not
hold for the observed variables (y1,y2, . . . ,yn) at any order [32].

A common parameterization of an HMM is given by (21)

ζ = {A,π,Θ} with Θ = {θ1, θ2, . . . , θK}. (21)

Where A = {aj,j′} denotes the hidden state transition matrix, π = {πj} is the initial hidden
state probability mass function and Θ represents the set of emission parameters for each
hidden state. The meaning for aj,j′ and πj is

p(zi = j′|zi−1 = j) = aj,j′ .

p(z1 = j) = πj.

15

The Model

Making explicit this parameterization in the expression for the complete-data likelihood (19)
we have

p(Y,Z|ζ) = p(z1|π)p(y1|z1, θz1)
n∏
i=2

p(zi|zi−1,A)p(yi|zi, θzi). (22)

This completes the probabilistic definition of HMMs. We can now formulate a variety of
problems about (22) such as how to estimate the model parameters ζ from the observations
Y. A comprehensive review of these problems for standard emission processes and their
corresponding solutions can be found in [33]. However, the use of novel probabilistic models as
observation process broadens the horizon of potential applications and brings new challenges
from the perspective of inference. The HMM inference algorithms adapted to the proposed
emission process will be covered in section 6.

5 The Model

HMMs have been previously used to model the combination of motor primitives. In Chiappa
et al [21] a probabilistic model was proposed to represent movement as a concatenation
of noisy transformations of a set of hidden trajectories (motor primitives), these hidden
trajectories were in turn modeled with linear Markovian dynamics. This model offers the
advantage of estimating autonomously the transition points between hidden trajectories.

HMMs have also been used to model motor primitives under a completely different
perspective. Usually motor primitives have been associated with non-overlapping segments
of movement trajectories but a different approach was presented by Williams et al [22] where
the movement performed to write a handwritten character is modeled as a superposition of
concurrent motor primitives using the factorial Hidden Markov model (fHHM) [23] to model
each motor primitive as a factor.

In this work HMMs are used differently by introducing LFMs as emission process to represent
the motor primitives, which is an unexplored extension to the best of our knowledge. We
also introduce the autoregressive HMM in order to guarantee the continuity of the movement
representation and for this reason, the autoregressive version of the model is the one used in
the experiments described in section 7.

5.1 Hidden Markov Models and Latent Force Models

The proposed model is based on the idea that movement time-series can be represented
by a sequence of non-overlapping latent force models. This is motivated by the fact

16

5.1 Hidden Markov Models and Latent Force Models

that movement realizations have some discrete and non-smooth changes on the forces and
dynamics which govern the movements. These changes can not be modeled by a single LFM
because it is essentially a GP, and as such it generates smooth trajectories, and similarly its
hyperparameters—which account for the dynamics as explained in 4.2.2—are fixed.

Moreover, the use of HMM and LFM emissions enables us to capture the existing diversity
and redundancy in the dynamics over a movement trajectory. Under this approach the
whole trajectory is explained by a limited set of hidden primitives which account for different
dynamic regimes. In contrast, the switched dynamical latent force model (SDLFM) [19]
assumes a single dynamic regime for a given observation and just models non-smooth changes
over the latent forces.

From the scalability point of view, the proposed model offers the advantage of keeping the
size of the covariance matrices belonging to different hidden states (LFMs) fixed regardless
of the observed trajectory length—which is a drawback for the SDLFM since it uses a single
covariance matrix which grows quadratically with the observation sequence length. This is
achieved at the expense of constraining the switching points where changes over the latent
forces and dynamic regimes occur.

Formally, the overall system is modeled as an HMM where the emission distribution for each
hidden state is represented by an LFM. Therefore the complete-data likelihood still fulfills
the equation in (22) but the emission process is performed as follows

p(yi|zi, θzi ,χ) = N (fi(χ), Iσ2
zi

), (23)

fi(x) ∼ GP(0, kLFM(x, x′; θzi)), (24)

where kLFM represents the second order LFM kernel already defined in equation (14) and σ2
zi

is the variance of the i.i.d. output Gaussian noise. Notice that the HMM framework allows
the observable variables to have a different dimensionality with respect to the latent variables,
in this case yi = (yi,1, yi,2, . . . , yi,s) is a continuous multivariate vector whereas zi is univariate
and discrete. It should also be noticed that there is an additional variable χ conditioning
the emission process, this variable denotes the set of sample locations χ = {χ1, χ2, . . . , χs}
where the LFMs are sampled at. Note that this set is independent of the hidden variable
values. In consequence, a particular movement sequence represented by the HMM with LFM
emission is segmented into equal-length chunks of size |χ|= s, each of which is modeled by a
particular LFM.

For the sake of illustration, let’s assume that σ2
zi

= 0, which lead us to yi =
(fi(χ1), fi(χ2), . . . , fi(χs)). Using the product rule over the elements of yi the emission
distribution in (23) can also be written as

p(yi|zi, θzi ,χ) =
s∏
j=1

p(fi(χj)|fi(χ1), . . . , fi(χj−1)). (25)

17

5.1 Hidden Markov Models and Latent Force Models

zn. . .

. f n(�2)f 2(�s) f n(�1)f 1(�s)

. . .

f 1(�2) . . . f n(�s)f 1(�1) f 2(�2)

z1 z2

f 2(�1)

Figure 3: Probabilistic graphical model for the HMM with LFM emission. The sequence of
functions (f1, f2, . . . , fn) is drawn from the LFMs associated to the hidden-state sequence
(z1, z2, . . . , zn). The set χ = {χ1, χ2, . . . , χn} denotes the sample locations.

In this way the dependence between hidden variables and the observed variables at different
sample locations is explicit and can be better visualized in the probabilistic graphical model
depicted in figure 3.

Note that the resulting graph resembles the structure of a Hidden semi-Markov Model
(HSMM), which is like an HMM except that each hidden state is allowed to emit a sequence
of observations [34]. However, since the sequence’s length of emitted observations is fixed for
each hidden state, we can still rely on the classical HMM formulation by assuming that
each hidden state emits a single multivariate observation. By using an HSMM we can
handle variable-length observation sequences at the expense of increasing the computational
complexity of the algorithms used to perform inference described in section 6.

Notice that, as a result of the model’s formulation on equations (22), (23) and (24), the
trajectories that can be generated by the model are not necessarily continuous realizations.
This occurs because the observations are assumed to be conditionally independent given
the hidden states and therefore, there is not explicit time correlation between successive
emissions (i.e. observed segments). Taking into account that movement time series are
inherently continuous, this behavior represents a limitation which needs to be addressed in
order to build a more accurate model.

We can overcome the aforementioned issue by using an Autoregressive Hidden Markov Model
(AHMM) instead. In an AHMM, dependence relations between successive observations can
be handled explicitly. In figure 4 a typical graphical model for an AHMM is depicted.
Notice that, there are arcs between every pair of successive observations, but this is not
a requirement, and higher order dependencies between observed random variables can be
added. The extension only affects the computation of the local evidence and the algorithms
for estimating the model’s parameters remain largely unchanged as we will see in section 6.3.

In order to support the AHMM, the emission process defined in equation (23) needs to
be extended to be dependent not only on the corresponding hidden state but on the last

18

Algorithms

zn

yn. . .y2 y4y3

z4 . . .

y1

z1 z2 z3

Figure 4: Probabilistic graphical model for an Autoregressive HMM.

observation as well, as it is shown in equations (26) and (27). Particularly, there are two
major changes made over the emission process. Firstly, the mean governing the sampled
function fi(.) is not longer zero, now it is equal to yi−1,s, which is the last value of the
last observation yi−1. Furthermore, in (27), the first value of each observation fi(χ0) is
conditioned to be equal to the last value of the last observation yi−1,s. Both extensions
support the generation of continuous trajectories. The reason why the conditioning by itself
is not enough to guarantee continuity and the shift in the mean is also necessary is related
with the implicit assumption that the initial conditions for the system in equation (13) are
zero, in other words, conditioning the first value of each observation in a value different to
its mean is problematic from a numerical point of view given the assumption over the initial
conditions. A sampled realization from the extended model can be seen at the bottom of
figure 5.

p(yi|zi,yi−1, θzi ,χ) = N (fi(χ), Iσ2
zi

), (26)

fi(x) ∼ GP(yi−1,s, kLFM(x, x′; θzi)), fi(χ0) = yi−1,s. (27)

In figure 5 there is also a pictorial representation of the proposed HMM model with LFM
emission. Notice that each movement segment is governed by a particular LFM which is
represented as a spring-damper system, at the same time there is a sequential hidden evolution
of the active spring-damper system at a particular segment. This figure is essentially the same
graphical model depicted in figure 2 for state-space models augmented with the particular
choice of emission process.

6 Algorithms

Having defined precisely what an HMM is from a probabilistic point of view in section (4.3),
it is important to consider some relevant problems which need to be addressed in order to

19

Algorithms

Bd Cd

yd(t)uq(t)

sd,q

Bd Cd

yd(t)uq(t)

sd,q

Bd Cd

yd(t)uq(t)

sd,q

Bd Cd

yd(t)uq(t)

sd,q

o
b
s
e
rv

a
ti

o
n
s

h
id

d
e
n
 s

ta
te

s

Figure 5: HMMwith LFM emissions. Top: sequential evolution of different LFMs represented
as spring-damper systems. Bottom: Movement observation sequence as a concatenation of
LFM realizations.

use an HMM in a real setting as in the motor primitives case. These problems can be also be
considered as inference problems since unobserved quantities are inferred from the observed
ones. Formally, Given an observation sequence Y = (y1,y2, . . . ,yn) and a particular model
ζ = {A,π,Θ}, the main challenges are [33]:

1. How to efficiently compute the observation likelihood given the model, p(Y|ζ)?

2. How do we choose a sequence of hidden states which maximizes p(Z|Y, ζ)?

3. How are the model parameters estimated in such a way that p(Y|ζ) is maximized?

The described problems are well known and their solutions for particular choices of emission
process and for some variations of the classical HMM architecture depicted on figure 2 have
been proposed [33]. Specifically, the Forward-Backward algorithm was proposed as a solution
for the first problem, the Viterbi algorithm for the second one and the Baum-Welch algorithm
for the third problem. In this chapter we will see that the standard algorithms for solving the
aforementioned problems remain largely unchanged by setting LFMs as observation model.
Therefore, we give a brief description of the algorithms for the first and second problem,
and a more detailed analysis of the third challenge is presented since it is where the major
changes occur due to the novel observation model.

20

6.1 Observation Likelihood Computation

6.1 Observation Likelihood Computation

Algorithm 1: Forward algorithm
Input : Model parameters ζ = {A,π,Θ}.

Observation sequence Y = (y1,y2, . . . ,yN).
Output: A matrix α where α[t][i] denotes the joint probability p(y1,y2, . . . ,yt, zt = i).

1 for i = 1, . . . , K do
2 α[1][i] = p(y1|z1 = i) ∗ π(i)

3 for t = 2, . . . , N do
4 for j = 1, . . . , K do
5 α[t][j] = 0
6 for i = 1, . . . , K do
7 α[t][j] = α[t][j] + α[t− 1][i] ∗A(i, j)

8 α[t][j] = α[t][j] ∗ p(yt|yt−1, zt = j)

Let Y = (y1,y2, . . . ,yn) be an observation sequence and ζ = {A,π,Θ} a particular model
under consideration. In order to compute the observation likelihood p(Y|ζ) efficiently, we
will use the forward-backward [33] algorithm with some minor modifications to support the
autoregressive extension. To achieve this we define the functions α(zn) and β(zn) as follows.
Note that throughout section 6 we will omit the explicit parametrization on ζ to keep the
notation uncluttered.

α(zn) ≡ p(y1,y2, . . . ,yn, zn). (28)
β(zn) ≡ p(yn+1,yn+2, . . . ,yN |zn,yn). (29)

Using the product rule and the conditionally independence assumptions made in an AHMM
the following recurrence relations for α(zn) and β(zn) can be derived [32] with their respective
base cases.

α(zn) = p(yn|yn−1, zn)
∑
zn−1

α(zn−1)p(zn|zn−1) with α(z1) = p(y1|z1)π(z1), (30)

β(zn) =
∑
zn+1

β(zn+1)p(yn+1|yn, zn+1)p(zn+1|zn) with β(zN) = 1. (31)

We are now able to formulate the observation likelihood computation in terms of either, α(.)
or β(.), as follows,

p(Y) =
∑
zN

α(zN) =
∑
z1

β(z1)p(y1|z1)π(z1). (32)

21

6.2 Most Probable Hidden State Sequence

Remarkably, the introduced recursions allow us to compute the observation likelihood in
linear time complexity with respect to the observation’s sequence length. This is achieved
using a dynamic-programming strategy for computing iteratively the α recursion known as
the forward algorithm — See algorithm No. 1 — and a similar one for the β recursion
known as the backward algorithm. The forward-backward procedure is also useful in the
task of computing the posterior distributions of the hidden variables given the observations,
p(zn|Y), as we will see in section 6.3. It is important to point out that, in order to actually
implement the forward-backward algorithm, it is necessary to use scaled versions of α(zn)
and β(zn) because of floating point underflow issues [32].

6.2 Most Probable Hidden State Sequence

Algorithm 2: Viterbi algorithm
Input : Model parameters ζ = {A,π,Θ}.

Observation sequence Y = (y1,y2, . . . ,yN).
Output: A sequence of hidden states Z = (z1, z2, . . . , zN) which maximizes p(Z|Y, ζ).

1 for i = 1, . . . , K do
2 δ[1][i] = p(y1|z1 = i) ∗ π(i) . Meaning of δ in equation (34)

3 for t = 2, . . . , N do
4 for j = 1, . . . , K do
5 δ[t][j] = 0
6 for i = 1, . . . , K do
7 if δ[t][j] < δ[t− 1][j] ∗A(i, j) then
8 δ[t][j] = δ[t− 1][j] ∗A(i, j)
9 ψ[t][j] = i

10 δ[t][j] = δ[t][j] ∗ p(yt|yt−1, zt = j)

11 /* Path backtracking */
12 zN = arg maxi δ[N][i]
13 for t = N − 1, . . . , 1 do
14 zt = ψ[t+ 1][zt+1]

Consider the problem of finding the sequence of motor primitives which governs a given
movement realization. Taking into account the model formulation presented in section 5.1,
this problem can be rephrased as finding the sequence of hidden states Z = (z1, z2, . . . , zN)
from which the sequence of observations Y = (y1,y2, . . . ,yN) was emitted. Keep in mind
that, as a consequence of the probabilistic formulation, a distribution is induced over such
sequence. Then, a possible way to answer the stated question is to find the sequence of states

22

6.3 Parameter Estimation

associated with the largest probability mass — a MAP estimate of p(Z|Y, ζ).

arg max
Z

p(Z|Y, ζ) = arg max
Z

p(Z,Y|ζ)

p(Y|ζ)
= arg max

Z
p(Z,Y|ζ). (33)

In order to maximize (33) we can do better than an exhaustive search over Z by following
a similar idea from the α recursion computation in section 6.1. Defining δn(i) to be the
probability associated with the most probable hidden-state sequence which explains the first
n observations and whose last hidden state is i,

δn(i) = max
z1,z2,...,zn−1

p(z1, z2, . . . , zn = i,y1,y2, . . . ,yn), (34)

the recurrence relation in (35) can be derived [33] for δn(i), and it can be implemented
efficiently using dynamic programming to get an O(K2N) algorithm known as the Viterbi
algorithm — See algorithm No. 2. Note that the Viterbi algorithm resembles the forward
algorithm (algorithm No. 1) but the summation over the last hidden variable is turned into
a maximization operation. A new variable ψ is also introduced to keep track of the sequence
of states which maximizes the expression in (35) at every step n. Thus, the final answer is
reconstructed via a backward traversal over ψ.

δn(i) =

{
max
j

δn−1(j)p(zn = i|zn−1 = j)

}
p(yn|yn−1, zn = i). (35)

Recall that the sequence given by the Viterbi algorithm is optimal in a global sense, at the
sequence level, rather than at the single state level. Therefore, the group of states which
individually are the most probable based on the observations does not necessarily correspond
with the most probable sequence of hidden states [33].

6.3 Parameter Estimation

The problem of estimating the model parameters ζ = {A,π,Θ} given a sequence of
observations Y = (y1,y2, . . . ,yN) is addressed in this section. A commonly used approach
for training an HMM consists in choosing the parameters ζ in such a way that p(Y|ζ) is
maximized. This is known as a maximum-likelihood estimate for ζ.

It turns out that the form of p(Y|ζ) (equation (32)) can not be directly maximized in a
closed-form way. We then rely on the Expectation-Maximization (EM) algorithm [35] to
estimate ζ, which is an iterative procedure used for parameter estimation of probabilistic
models with latent variables. The EM algorithm alternates between two steps after which
the estimate is updated. In the E step, the posterior distribution for the latent variable
p(Z|Y, ζold) is computed using the current estimate of parameters ζold. In the M step, the

23

6.3 Parameter Estimation

expectation of the log-likelihood of the complete data p(Z,Y|ζnew) is computed with respect
to the posterior p(Z|Y, ζold), next this expected value is maximized with respect to ζnew

to obtain a new estimate for ζ. The two-step algorithm is repeated until some suitable
convergence criteria is reached.

To start with the EM derivation for our model we need to introduce the 1-of-K encoding for
the hidden random variables {zi} to ease the math. Under this notation, each variable zi is
represented as a binary vector having a single one in the position denoted by its value. Thus,
zi = j means that zi,j = 1 when it is 1-of-K encoded. Rewriting the probabilities involving
the hidden variables in terms of the introduced encoding we get,

p(z1|π) =
K∏
k=1

π
z1,k
k , (36)

p(yi|yi−1, zi) =
K∏
k=1

p(yi|yi−1, θk)zi,k , (37)

p(zi|zi−1,A) =
K∏
k=1

K∏
j=1

a
zi,kzi−1,j

j,k . (38)

E step

In this stage of the EM algorithm we focus on how to compute the posterior of hidden variables
given the observations and a particular model, or more formally p(Z|Y, ζold). With regard
to HMMs, this step reduces to compute the expectations 〈zi,k〉 and 〈zi,kzi−1,j〉 since these are
the only expectations required to perform the M step. To illustrate how to compute them,
recall that using the binary random variables properties we can rewrite such expectations as,

〈zn,k〉 = p(zn = k|Y, ζold). (39)
〈zn−1,izn,j〉 = p(zn = j, zn−1 = i|Y, ζold). (40)

It proves to be the case that these posteriors can be computed from the α and β recursions
introduced in (30) and (31). This means that the E step can be executed in linear time with
respect to the number of observations with a single run of the forward-backward algorithm
described in section 6.1. Using the Bayes theorem jointly with the conditional independence
properties for HMMs, 〈zn,k〉 and 〈zn−1,izn,j〉 can be written in terms of α(zn) and β(zn)
—which were defined in (28) and (29)— as it is shown in (41) and (42) [32]. Notice that the
conditioning on ζold is implicit for the sake of readability.

〈zn,k〉 =
α(zn = k)β(zn = k)∑K

l=1 α(zN = l)
. (41)

24

6.3 Parameter Estimation

〈zn−1,izn,j〉 =
α(zn−1 = i) ai,j p(yn|yn−1, zn)β(zn = j)∑K

l=1 α(zN = l)
. (42)

M step

Let Q(ζ, ζold) denote the expectation of the log-likelihood of the complete data. Using (36),
(37) and (38) in the expression for the complete-data likelihood for HMMs (equation (22)),
and applying the linearity of expectation we have,

Q(ζ, ζold) =
∑
Z

ln p(Y,Z|ζ)p(Z|Y, ζold)

= 〈ln p(Y,Z|ζ)〉

=

〈
K∑
k=1

z1,k lnπk +
N∑
i=2

K∑
k=1

K∑
j=1

zi,kzi−1,j ln aj,k +
N∑
i=1

K∑
k=1

zi,k ln p(yi|yi−1, θk)

〉

=
K∑
k=1

〈z1,k〉 lnπk +
N∑
i=2

K∑
k=1

K∑
j=1

〈zi,kzi−1,j〉 ln aj,k +
N∑
i=1

K∑
k=1

〈zi,k〉 ln p(yi|yi−1, θk),

(43)

where the 〈.〉 operator denotes expectation with respect to the distribution p(Z|Y, ζold).
Observe that the expectations involving hidden variables are only 〈zi,k〉 and 〈zi,kzi−1,j〉. The
way those expectations are computed is described in the E step, but in the M step they are
assumed as constants.

The M step is complete when we find values for ζ = {A,π,Θ} that maximize the function
Q(ζ, ζold). A useful fact is that the parametersA, π and Θ are not coupled in the optimization
task, and we can therefore optimize them independently by picking the proper term for each
parameter in (43). Remarkably, the terms to optimize for the set of parameters {A,π} are
independent of the particular form of the emission process p(yi|yi−1, zi). As a result, the
M-step update equations for the parameters associated to the hidden dynamics {A,π} are
unchanged by the use of LFMs as emission process.

It can be shown that Q(ζ, ζold) is maximized with respect to the parameters accounting for
the hidden dynamics {A,π} when we update them as follows [33],

πk =
〈z1,k〉∑K
j=1〈z1,j〉

= 〈z1,k〉 (44)

aj,k =

∑N
i=2〈zi−1,jzi,k〉∑K

l=1

∑N
i=2〈zi−1,jzi,l〉

=

∑N
i=2〈zi−1,jzi,k〉∑N
i=2〈zi−1,j〉

(45)

In order to update the emission process parameters Θ = {θ1, θ2, . . . , θK}, only the last term

25

6.3 Parameter Estimation

of equation (43) must be taken into account, namely

Q(ζ, ζold)emission term =
K∑
k=1

N∑
i=1

〈zi,k〉 ln p(yi|yi−1, θk). (46)

This term is basically a weighted sum of Gaussian log-likelihood functions, each of which

Algorithm 3: Objective function for estimating the emission parameters
Input : Emission parameters Θ = {θ1, θ2, . . . , θK}.

Observation sequence Y = (y1,y2, . . . ,yN).
A matrix γ where γ[t][i] denotes denotes 〈zt,i〉

Output: A real number ν equals to the emission term in (46).
1 for k = 1, . . . , K do
2 for n = 1, . . . , N do
3 ν = ν + γ[n][k] ∗ ln p(yn|yn−1, θk) . See equation (47)

has the form already shown in section 4.2.1 — equation (11). Re-writing that result for the
proposed emission process we have

ln p(yi|yi−1, θk) = −1

2
(yi − µ)TK−1θk (yi − µ)− 1

2
ln|Kθk |−

S

2
ln 2π, (47)

whereKθk = K(χ,χ; θk)+Iσ2
k denotes the kernel matrix computed using the LFM covariance

function over the sample locations χ added with the diagonal matrix accounting for the
output noise variance. µ represents the process mean which is set to be constant and equal
to the last value of the last observation µ = yi−1,s1 (where 1 denotes the all-one vector).
Recall that S stands for the dimensionality of χ and yi.

The estimation of the LFM emission parameters Θ (also known as hyperparameters in the
GPs literature) is performed through the optimization of the stated emission term and
gradient-based methods can be used for this. It can be shown that the derivatives of (46)
with respect to the kernel hyperparameters in Θ can be computed according to (48) and
(49) [31]

∂Q(ζ, ζold)

∂θj
=

N∑
i=1

〈zi,j〉
∂ ln p(yi|yi−1, θj)

∂θj
. (48)

∂ ln p(yi|yi−1, θj)
∂θj

=
1

2
Tr

(
(ααT −K−1θj)

∂Kθj

∂θj

)
with α = K−1θj (yi − µ). (49)

26

6.3 Parameter Estimation

Note that the above result holds for any kind of covariance function (kernel) we choose. The
use of the LFM covariance function introduced in equation (14) affects the factor ∂Kθj/∂θj
depending on the particular hyperparameter for which we are computing the gradient. To
be specific, for the LFM kernel we need to take derivatives with respect to the following
hyperparameters: The damper constants {Cd}, the spring constants {Bd}, the sensitivities
{Sq,d}, the latent forces lengthscales {lq} and the output noise variance σ2. Recall that we
have a set of these hyperparameters for each hidden state in our model — See section 4.2.2
for details about the meaning of these hyperparameters.

As it can be seen from (15), the expression for the LFM covariance function is rather involved
and so its gradients, which are not derived in this document. In the experiments reported
in section 7 the numerical approximation to the gradient was used as an alternative to the
symbolic derivation and it proved to work well for learning the emission parameters. The
objective function for estimating these emission parameters is sketched in the algorithm No.
3.

After the E step and the M step are executed together, it is guaranteed that the likelihood
with respect to the parameters does not decrease. Therefore, we will eventually stop at a
local maximum ζ∗. This form of estimation applied to HMMs is known as the Baum-Welch
algorithm [33], and an implementation of this procedure for an autoregressive HMM with
LFM emission is outlined in the algorithm No. 4.

27

6.3 Parameter Estimation

Algorithm 4: Baum-Welch algorithm for an AHMM with LFM emission
Input : Observation sequence Y = (y1,y2, . . . ,yN).
Output: Estimated model parameters ζ∗ = {A∗,π∗,Θ∗}

1 Initialize the model parameters ζ∗ = {A∗,π∗,Θ∗}
2 ρold = 0
3 while True do
4 α = ForwardAlgorithm(Y, ζ∗) . See Algorithm 1
5 β = BackwardAlgorithm(Y, ζ∗)
6 ρ = 0 . Let ρ be p(Y|ζ∗)
7 for i = 1, . . . , K do
8 ρ = ρ+ α[N][i]

9 if |ρ− ρold| < ε then
10 return ζ∗ = {A∗,π∗,Θ∗} . ε is set to be a sensible threshold value

11 ρold = ρ
12 /* E step */
13 for t = 1, . . . , N do
14 for i = 1, . . . , K do
15 γ[t][i] = (α[t][i] ∗ β[t][i])/ρ . Let γ[t][i] denotes 〈zt,i〉

16 for t = 1, . . . , N − 1 do
17 for i = 1, . . . , K do
18 for j = 1, . . . , K do
19 ξ[t][i][j] = A(i, j) ∗ p(yt+1|yt, zt+1 = j) . ξ[t][i][j] represents 〈zt,izt+1,j〉
20 ξ[t][i][j] = (ξ[t][i][j] ∗ α[t][i] ∗ β[t+ 1][j])/ρ

21 /* M step */
22 for i = 1, . . . , K do
23 π∗(i) = γ[1][i]

24 for i = 1, . . . , K do
25 for j = 1, . . . , K do
26 n, d = 0
27 for t = 1, . . . , N − 1 do
28 n = ξ[t][i][j] + n
29 d = γ[t][i] + d

30 A∗(i, j) = n/d

31 Θ∗ = GradientBasedOptimizer(EmissionObjective,Θ∗, γ,Y) . See algorithm 3

28

Experiments

7 Experiments

In this section the capability of the proposed model for learning motor primitives and
identifying them over unseen trajectories is evaluated. In the first part this validation is done
using synthetic trajectories, which were produced using the joint model as a probabilistic
generative model. On section 7.2, the model is evaluated over two real data sets, namely the
CMU-MOCAP database and a robot data set recorded from multiple striking movements in a
table tennis game. We also report a preliminary experiment using the model in a classification
task to demonstrate its potential in this area.

7.1 Synthetic data

A particular instance of the model was used for sampling 20 trajectories with 20 segments
each. This data-set was divided in two parts. One half was used for inferring the model (i.e.
learning the motor primitives) and the rest was used for validation (i.e. motor primitive
identification). Recall that, in order to produce continuous trajectories, the synthetic
trajectories were generated in such a way that the constant mean of each segment is equal to
the last value of the last segment — See equation (27). To generate the synthetic trajectories,
we consider an HMM with three hidden states with transition matrix A and initial state
probability mass function π. The same parameters inferred from training data are shown
alongside (i.e. A∗ and π∗).

A =

0.8 0.1 0.1
0.6 0.3 0.1
0.3 0.2 0.5

 ,π =

0.1
0.3
0.6

 , A∗ =

0.83 0.08 0.09
0.63 0.27 0.1
0.27 0.25 0.48

 ,π∗ =

0.0
0.4
0.6

 .
Regarding the emission process, a LFM with 4 outputs (D = 4), a single latent force (Q = 1)
and sample locations set χ = {0.1, . . . , 5.1} with |χ|= 20 was chosen. The sensitivities
were fixed to one and they were not estimated. The actual emission parameters and the
corresponding inferred values are depicted in table 1, where the spring and damper constants
are indexed by the output index.

The inference of the model from the training synthetic data set was carried out using the
algorithm described in section 6.3. Notably, the validation of the inferred model can not be
done by merely looking to the estimated parameters and comparing them to the actual values
since they are not, in general, identifiable parameters. For instance, the hidden states might
be arbitrarily permuted after the inference process. However, the estimated parameters are
shown here in such a way that there is a one-to-one correspondence between hidden states
before and after the inference to ease comparison.

29

7.1 Synthetic data

Hidden State 1 Hidden State 2 Hidden State 3
Spring const. {3., 1, 2.5, 10.} {1., 3.5, 9.0, 5.0} {5., 8., 4.5, 1.}
Spring const.∗ {3.21, 1.05, 2.67, 11.09} {0.67, 1.72, 3.39, 2.26} {6.92, 10.66, 6.32, 2.3}
Damper const. {1., 3., 7.5, 10.} {3., 10., 0.5, 0.1} {6., 5., 4., 9.}
Damper const.∗ {1.2, 3.36, 8.39, 9.61} {0.5, 2.62, 1.07, 0.27} {6.09, 5.54, 4.47, 9.76}
Lengthscale 10 2 5
Lengthscale∗ 85.77 180.48 159.96

Table 1: LFM emission parameters.

(a)

(b)

Figure 6: Actual and inferred toy experiment covariance matrices for the 3 hidden states. Top
row (a): LFM covariance matrices used for generating the synthetic trajectories. Bottom
row(b): Estimated LFM covariance matrices.

It can be argued that there is a similar pattern with respect to the original emission values,
particularly for hidden states 1 and 3. The hidden state 2 exhibits a more diverse pattern in
comparison to its original parameters. Nevertheless, when the inferred LFM covariances are
plotted (see figure 6) for each hidden state, it is easy to see that the underlying correlations
between outputs were successfully captured by the inferred emission process. The poor
lengthscale estimation in table 1 can be explained by the fact that the range covered by the
sample locations set χ (i.e. from 0.1 to 5.1) is reduced for this property to be noticeable and
inferable.

A sample synthetic trajectory can be seen in figure 7. This is a trajectory used to validate
the model’s capability to detect motor primitives (i.e. hidden states) given the inferred
model parameters, which is achieved using the Viterbi algorithm [33] — See algorithm No.

30

7.1 Synthetic data

50 0 50 100 150 200 2500.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

z0 = 3 z1 = 1 z2 = 2 z3 = 3 z4 = 3 z5 = 1 z6 = 1 z7 = 2 z8 = 1 z9 = 3

predictive mean output 1
predictive mean output 2
predictive mean output 3
predictive mean output 4

Figure 7: Primitives identification over a synthetic trajectory. In the top, the most probable
hidden state sequence [z0, z1, . . . , z9] given by the inferred model is shown. The predictive
mean after conditioning over the hidden state sequence and observations is also depicted
with error bars accounting for two standard deviations. The x-axis denotes the number of
samples.

2. The resulting hidden state sequence is shown on the top of figure 7, and it turned out
to be exactly the same sequence used for generation, which was assumed to be unknown.
Moreover, the predictive mean of p(xi|zi,xi−1, θzi ,χ) (equation 26) after conditioning over
the most probable hidden state sequence and the observed multiple-output trajectory is also
shown with the corresponding error bars.

The Viterbi algorithm was executed for each validation trajectory and the resulting hidden
state sequences were compared against the actual values used during the data-set generation.
The correct hidden state was recovered with a success rate of 95% failing only in 10 out of
200 validation segments.

31

7.2 Real data

Figure 8: Chosen MOCAP joints for real data experiment

7.2 Real data

7.2.1 CMU-MOCAP

The real-data experiment consists in inferring a set of motor primitives from a group of
realizations of the same particular behavior and assessing whether or not, a similar pattern
is recovered over the inferred activated motor primitives for unseen realizations of the same
behavior. To achieve this, the CMU motion capture database (CMU-MOCAP) is used. The
chosen behavior is the walking action because it exhibits a rich redundancy over dynamics
as a consequence of the cyclic nature of gait. Specifically, the subject No. 7 was used with
trials {01, 02, 03, 06, 07, 08, 09} for training and trials {10, 11} for validation. In order to take
advantage of the multiple-output nature of LFMs a subset of four joints was selected for the
validation. The chosen joints are both elbows and both knees since they are relevant for
the walking behavior and their potential correlations might be exploited by the model. In
figure 8 the selected joints, whose angle variations over time are used in this experiment, are
highlighted with red markers.

The model formulation given in section 5 implies fixing some model parameters a priori such
as the number of hidden primitives, the number of latent forces and the sample locations
set χ used in the emission process in equation 26. Using a number of hidden states equals
to three was enough for capturing the dynamics of the chosen behavior. Experiments with
a higher number of hidden states were carried out with equally good results but the local
variations associated to each observation started to be captured by the model thanks to
the higher number of available hidden states. Similarly, the use of a high number of latent
forces makes the model more flexible from the point of view of regression at the expense of
favoring overfitting. By using three latent forces a good trade-off is obtained between the
regression capability and the intended behavior generalization at the motor primitive level.
Finally, the sample locations set χ was defined to cover the interval [0.1, 5.1] with 20 sample
locations equally spaced (i.e. |χ|= 20). This choice was motivated by the functional division
of a gait cycle into eight phases [36]: initial contact, loading response, mid stance, terminal

32

7.2 Real data

50 0 50 100 150 200 2500.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

z0 = 1 z1 = 1 z2 = 1 z3 = 2 z4 = 2 z5 = 2 z6 = 1 z7 = 1 z8 = 1 z9 = 2 z10 = 2

left tibia
right tibia
left radius
right radius

Figure 9: Primitives identification over a real walking trajectory. In the top the most probable
hidden state sequence [z0, z1, . . . , z10] given by the inferred model is shown. The predictive
mean with error bars is depicted for the four joints. The x-axis denotes the number of samples
(frame rate = 120).

stance, pre-swing, initial swing, mid swing, and terminal swing. Having |χ|= 20 a complete
gait cycle over the selected observations is made up of roughly seven segments which is in
accordance with the functional subdivision given that the initial contact can be considered
an instantaneous event.

The resulting Viterbi sequences over training and validation observations are shown in table
2. From this table a cyclic sequential pattern over the identified motor primitives can be
observed with a period of seven segments as expected. The first three segments of a gait
cycle correspond to activations of the hidden state one, and the remaining gait cycle segments
are generally explained by the hidden state two, although the last cycle segment exhibits high
variability. Remarkably, the discussed pattern was also obtained over the unseen trajectories
(i.e. No. 10, 11) which suggests that the sequential dynamics of the motor primitives
associated to the walking behavior of subject seven were learned by the proposed model.

To illustrate how the time series corresponding to the chosen joints look like, in figure 9
the identified motor primitives over the realization No. 10 are shown along the resulting fit
after conditioning over the most probable hidden state sequence (Viterbi sequence). An
additional experiment was carried out with the aim of assessing the extrapolation capacity of
the proposed approach. This capability is inherent to the LFMs given that they are hybrid
models incorporating elements from the strongly-mechanistic approach to modeling [18]. In
this experiment we also intended to test the model’s ability to perform transfer learning over

33

7.2 Real data

Trial Number Motor primitives identified
01 1, 1, 1, 2, 2, 2, 1 1, 1, 1, 2, 2, 2, 1 1, 1
02 1, 1, 1, 2, 2, 2, 1 1, 1, 1, 2, 2, 2, 1 1, 1
03 1, 1, 1, 2, 2, 2, 2 1, 1, 1, 2, 2, 2, 2 2, 1, 1, 1, 2, 2, 2
06 1, 1, 1, 2, 2, 2, 2 1, 1, 1, 2, 2, 2, 2 1, 1
07 1, 1, 1, 2, 2, 2, 2 1, 1, 1, 2, 2, 2, 2 2, 1, 1, 1, 2
08 1, 1, 1, 2, 2, 2, 2 2, 1, 1, 1, 1, 2
09 1, 1, 1, 2, 1, 2, 1 1, 1, 2, 2
10∗ 1, 1, 1, 2, 2, 2, 1 1, 1, 2, 2
11∗ 1, 1, 1, 2, 2, 2, 2 1, 1, 1, 2, 2, 2, 2 2, 1, 1, 1, 2

Table 2: Motor primitives identified over walking realizations.

0 50 100 150 200 2500.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

left tibia

0 50 100 150 200 2501.0
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6

predictive mean

(a) left tibia.

0 50 100 150 200 2500.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

right tibia

0 50 100 150 200 2501.2
1.0
0.8
0.6
0.4
0.2
0.0
0.2
0.4

predictive mean

(b) right tibia.

0 50 100 150 200 2500.0

0.1

0.2

0.3

0.4

0.5

left radius

0 50 100 150 200 2500.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.1

predictive mean

(c) left radius.

0 50 100 150 200 2500.1

0.2

0.3

0.4

0.5

right radius

0 50 100 150 200 250

0.2

0.0

0.2

0.4

0.6

predictive mean

(d) right radius.

Figure 10: Missing output experiment for each of the chosen joints. For each joint the plot
on top shows the actual observations. The predicted output based on the other observed
outputs (i.e. the predicted output is assumed entirely unobserved) is shown on the bottom
for each joint. The shaded area for predictions denotes ±2 standard deviations. The x-axis
for all plots denotes the number of samples (frame rate = 120).

34

7.2 Real data

different outputs.

Regarding the experiment setting, we used the validation human-walking realization depicted
in figure 9 corresponding to the time evolution of both elbow joints and both knee joints from
the CMU-MOCAP subject No. 7. After learning the model from the training realizations of
the last experiment, we assumed one of the outputs of the validation realization as missing
and we tried to predict it only using the other three observed outputs as input of the trained
model. The model structure (i.e. the number of latent forces, the number of hidden states
and the sample locations set) was set in exactly the same way used in the first real-data
experiment described in the second paragraph of section 7.2.

The resulting prediction assuming each output as unobserved is shown in figure 10.
Remarkably, the increasing and decreasing tendencies for each joint were learned by the model
which is worthy of attention taking into account that the modeled output was not measured
at any sample location. However, looking carefully to the magnitude of the predictions it
is clear that the scales of the original outputs were not correctly recovered, and this makes
any error-based measure prohibitively large. One of the reasons for this may be related with
the autoregressive condition in equation (27) which makes the GP mean of every segment
dependent on the last segment, as a result the prediction errors in each segment propagate
to all upcoming segments if there is not observed data to alleviate this effect. Additionally,
under the current formulation of the model, the GP mean of the first segment is not being
learned and therefore it’s always assumed to be zero which is an inaccurate assumption.

Classification of MOCAP behaviors: LFMs have been used successfully to recognize
different human actions [37] in a setting where the learned LFM hyperparameters are feed into
a discriminative classifier. With this experiment we pretend to extend the previous work by
taking into account the sequential evolution of the LFM hyperparameters in the classification
setting, this information is available thanks to the joint HMM-LFM formulation.

The model definition given in section 5 for the motor primitives provides a way of defining a
probability distribution over movement realizations. Interestingly, this fact allows us to take
our model to the classification domain and validate it as a probabilistic generative model
assessing how well it can represent different behaviors for their discrimination. Recall that,
in the generative approach to classification, we estimate the posterior probabilities p(Ck|Y)
via the class-conditional densities p(Y|Ck) using Bayes theorem, where Y represents the
observed instance we want to classify and Ck denotes the different categories in the task. The
assigned category is then computed using decision theory based on the posterior probabilities
p(Ck|Y).

In this experiment we aim at distinguishing between two classes, namely the walking behavior
(C1) and the running behavior (C2). As input Y = {y1,y2, . . . ,yn} we have a realization

35

7.2 Real data

Outcome
C1 C2 Total

Actual value C1 11 1 12
C2 0 5 5
Total 11 6 17

Table 3: Confusion matrix for the classification experiment between the walking and the
running behavior.

of either behavior. As we did in section 7.2.1, the behaviors are characterized by the time
series corresponding to both elbows and both knees. In contrast with section 7.2.1, we take
the MOCAP realizations of subject 35 because it has multiple realizations of both behaviors.
Trials {2, 3, 4, 5, 6} are used for training an instance of the proposed model for C1, trials
{17, 18, 19, 20, 21} represent the training set for the model instance of behavior C2. The rest
of the walking and running realizations are used for validation (12 realizations for C1 and
5 for C2). The model structure is set similarly as we did in section 7.2.1 (number of latent
forces = number of hidden states = 3, |χ| = 20). The distance between consecutive sample
locations was fixed to the inverse of the MOCAP frame rate.

A particular movement trajectoryY was assigned to the behavior Ck with the largest p(Y|Ck)
since the prior p(Ck) was assumed to be uniform. The resulting confusion matrix after
training both models and classifying the validation movements is shown in the table No. 3.
We got an accuracy of 0.94 and only one validation instance of the walking behavior was
misclassified.

The obtained results unveils the potential application of the proposed model in a different
problem such as classification. We therefore suggest the possibility of exploring this domain
as an alternative to extend this work—See section 8.

7.2.2 Robot Data - Table Tennis Striking Movements

In this experiment we analyze the set of inferred motor primitives for multiple striking
movements performed by a robot in a table tennis game. The data was recorded with a
haptic input device (Barrett WAM arm) while a human teacher was demonstrating how to
perform movements for hitting a table tennis ball by taking the robot arm with his own
hands—Figure 11 shows the setting used to record the data set. Remarkably, this kind of
experiments can benefit fields such as robot imitation learning and human movement analysis
by bringing new insights.

One instance of our model was trained from 7 recorded outputs corresponding to the different
degrees of freedom of the robot arm (shoulder yaw, shoulder pitch, shoulder roll, elbow joint,

36

7.2 Real data

Figure 11: Robot setting for capturing striking movements in a table tennis game1.

wrist yaw, wrist pitch, wrist roll). The size of the sample location set χ was set to 20 samples
as we did in the MOCAP experiment in section 7.2.1, and we chose the distance between
consecutive samples to be equal to the inverse of the robot recording frequency (0.2 seconds
due to the subsampling). The number of available hidden states was 5 which proved to be
enough since only 4 hidden states were actually used by the Viterbi algorithm. Regarding
the number of latent forces, we carried out this experiment with 3 of them due mainly to
computational reasons because for each new latent force O(D × K) new hyperparameters
must be added making the training time prohibitively long for a large number of latent forces.
The resulting most likely hidden state sequence (Viterbi sequence) inferred by the model

for the striking movements realization is the following

[2,4,4,4,4,2,2,4,0,4,4,4,1,4,4,4,0,4,4,4,4,4,4,4,

4,2,4,4,0,2,4,2,4,2,4,2,2,2,4,4,4,4,4,4,4,4,4].
(50)

In figure (13) the recorded outputs are shown colored according to the Viterbi sequence shown
above, which means that every hidden state is associated with a different color. Moreover, In
figure 12 the joint covariance pattern for the 7 outputs can be observed for each of the hidden
states except for the hidden state number 3 which was excluded of the Viterbi sequence in
(50).

We are now able to analyze which covariance pattern governed each of the segments in the
striking realizations in order to gain insights about the nature of this particular movement.
One remarkable fact is that the hidden state number 4 (the blue one) was the most common
in the movement, governing about 2/3 of the entire movement. Looking into this covariance
pattern in figure 12d we see that the strongest correlations were captured relative to the first
output (shoulder yaw), in other words, the covariances across the first output row and first

1Source: https://ei.is.tuebingen.mpg.de/research_groups/robot-learning

37

https://ei.is.tuebingen.mpg.de/research_groups/robot-learning

7.2 Real data

2.4

1.6

0.8

0.0

0.8

1.6

2.4

3.2

(a)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c)

0.08

0.00

0.08

0.16

0.24

0.32

0.40

0.48

(d)

Figure 12: Inferred multiple-output covariances associated with the different hidden states
for the striking movements. (a) joint covariance of hidden state 0, (b) joint covariance of
hidden state 1, (c) joint covariance of hidden state 2, (d) joint covariance of hidden state 4.
The hidden state 3 is omitted since it does not appear in the obtained Viterbi sequence (50).

output column. This is consistent with the fact that the shoulder yaw is the main degree of
freedom for lateral displacements of the arm, which is in turn crucial for striking the ball.
Marginally, the shoulder yaw has the highest variance in the hidden state 4 which is again
explainable from the large lateral displacements. Another interesting observation from this
covariance pattern, which can also be derived by inspection of figure 13, is that outputs 1 and
3 are highly proportional whereas outputs 1 and 4 have, in general, inverse proportionality.
Take into account that a striking movement while the robot arm is turned to the right (or
left), in waiting position, implies a reduction in the shoulder yaw angle (output 1) and an
extension of the elbow joint (output 4), which might explain the inverse proportionality
between these outputs. The second most common hidden state is the number 2 whose joint
covariance matrix can be observed in figure 12c. The main property of this covariance pattern
is that it encodes a direct proportionality between all the outputs involved in the movement.
This is particularly true for the outputs 2,3 and 5 (shoulder pitch, shoulder roll and wrist
yaw). According to the visualization of the striking movements this covariance pattern occurs
when the ball is hit close to the plane passing through the center of the table and there is
a short lateral displacement, this is why the shoulder yaw (output number 1) has a small
marginal variance in this state.

Regarding the hidden state number 1 (See figure 12b) it exhibits a particular behavior because
the covariance structure is diagonal, which means that the outputs are being represented as
if they were independent of each other. It turns out that this hidden state explains a single
segment of the Viterbi sequence where an anomalous event occurred: the robot arm stopped
moving and stayed in resting position for a while—See the cyan segment in figure 13. All
the outputs therefore remained constant and the variances in the diagonal of the covariance
matrix in 12b account for the changes due to independent output noise processes. This
highlights the possibility of using the proposed model as an anomalous behavior detector.

38

7.2 Real data

Finally, the hidden state number 0 is scarce in the Viterbi sequence with only three
occurrences in the whole observation. It is worth of attention the inverse relationship between
outputs 1 and 2 derived from the corresponding upper-left submatrix in figure 12a. Even
though this is a property which clearly differentiates this hidden state from the others, it
proved to be difficult to notice this property in the visualization of its reduced number of
occurrences in the strikings movement. According to the observed occurrences, this hidden
state seems to correspond with the behavior which brings the arm back to its resting position
after hitting the ball, but this only happened for a subset of the strikes.

39

7.2 Real data

Figure 13: Robot arm outputs over time while performing striking movements. From top to
bottom the outputs correspond to: shoulder yaw, shoulder pitch, shoulder roll, elbow joint,
wrist yaw, wrist pitch and wrist roll. The outputs are colored according the Viterbi sequence
in (50) (magenta: hidden state 0, cyan: hidden state 1, red: hidden state 2, blue: hidden
state 4). The vertical dashed lines denote the chosen segmentation.

40

Conclusions

8 Conclusions

In this work a novel probabilistic parameterization of motor primitives and their sequential
composition is proposed relying on LFMs and HMMs. The resulting joint model is an HMM
with an LFM as observation model (i.e. emission process), which embodies the following
properties:

• Discrete changes modeling over dynamics and forces: Movement realizations
have some discrete and non-smooth changes on the forces and dynamical systems which
govern them. Under the proposed approach, these changes can be captured at certain
time locations depending on the particular choice of the sample locations set (equation
(23)).

• Redundancy learning over dynamics: Having a set of primitives (hidden states)
means that the diversity of the dynamic regimes present in a movement realization can
be captured. Moreover, given that this set is finite, the existing redundancy in the
dynamics can also be inferred by the model.

• Scalability: The size of the covariance matrices belonging to different hidden states
(LFMs) is kept fixed regardless of the observed trajectory length. Therefore, movement
realizations can be processed in linear time with respect to the realization length. In
contrast with the switched dynamical LFM (SDLFM) [19] where the covariance matrix
grows quadratically with the observation length.

• Correlations between outputs: The assumption of having the same set of latent
forces governing the modeled outputs (See section 4.2.2) in the emission process allows
us to do transfer learning between outputs. This means that, for a given output, the
information at other outputs can help to improve prediction.

We also showed how to estimate the model’s parameters from data using the EM algorithm
(section 6.3). Remarkably, the HMM inference algorithms remain largely unchanged by
the LFM observation model and, likewise, the training algorithm except for estimating the
emission parameters.

Through synthetic and real data experiments, the model’s capability to identify the
occurrence of motor primitives after a training stage was successfully validated. In particular,
we demonstrated how the model can successfully derive a set of motor primitives for the
human walking behavior and detect the same pattern of primitives over unseen realizations
(See section 7.2.1). In section 7.2.2 we also showed how the set of inferred motor primitives
for a particular behavior—table tennis striking movements—can be analyzed for extracting
knowledge and insights about the movement.

41

8.1 Research Outcomes

8.1 Research Outcomes

In terms of scientific production we achieved:

• D. Agudelo-España, M. A. Álvarez, and Á. A. Orozco, Definition and Composition
of Motor Primitives Using Latent Force Models and Hidden Markov Models.
Cham: Springer International Publishing, 2017, pp. 249–256. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-52277-7_31.

This paper was presented orally at the 21st Iberoamerican Congress on Pattern
Recognition (CIARP 2016) in Lima, Peru.

• The software package used to implement the proposed model and to execute all
the experiments reported in this document is written in Python and can be freely
downloaded from https://github.com/DiegoAE/HMMLFM.

8.2 Future Work

We consider the following possible ways of extending this work:

• Alternative formulations which support variable-length segments are suggested to
increase the model’s flexibility. In particular, Hidden Semi-Markov Models (HSMMs)
represent a particular way to achieve this.

• Automatic strategies to set the model structure (e.g. number of latent forces, number
of hidden states) based on data should be devised.

• A further step in the validation might involve using the model as a probabilistic
generative model in a classification task as in the case of identifying pathological walking
or distinguishing between different walking styles. A preliminary successful experiment
in this direction was carried out in section 7.2.1.

• In order to perform human motion synthesis we require learning further from the
training data, in addition to the movement realizations dynamics. A possible extension
is also learn a parametric form for the LFMs mean function.

42

http://dx.doi.org/10.1007/978-3-319-52277-7_31
https://github.com/DiegoAE/HMMLFM

Bibliography

Bibliography

[1] E. Bizzi, A. d’Avella, P. Saltiel, and M. Tresch, “Book review: Modular organization of
spinal motor systems,” The Neuroscientist, vol. 8, no. 5, pp. 437–442, 2002.

[2] A. d’Avella, P. Saltiel, and E. Bizzi, “Combinations of muscle synergies in the
construction of a natural motor behavior,” Nature neuroscience, vol. 6, no. 3, pp.
300–308, 2003.

[3] A. d’Avella and E. Bizzi, “Shared and specific muscle synergies in natural motor
behaviors,” Proceedings of the National Academy of Sciences of the United States of
America, vol. 102, no. 8, pp. 3076–3081, 2005.

[4] T. Flash and B. Hochner, “Motor primitives in vertebrates and invertebrates,” Current
opinion in neurobiology, vol. 15, no. 6, pp. 660–666, 2005.

[5] F. Meier, E. Theodorou, and S. Schaal, “Movement segmentation and recognition for
imitation learning,” in International Conference on Artificial Intelligence and Statistics,
2012, pp. 761–769.

[6] A. P. Georgopoulos, A. B. Schwartz, and R. E. Kettner, “Neuronal population coding of
movement direction,” Science, vol. 233, no. 4771, pp. 1416–1419, 1986.

[7] I. V. Grinyagin, E. V. Biryukova, and M. A. Maier, “Kinematic and dynamic synergies
of human precision-grip movements,” Journal of neurophysiology, vol. 94, no. 4, pp.
2284–2294, 2005.

[8] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes for learning
motor primitives,” Tech. Rep., 2002.

[9] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning movement primitives,” in
Robotics Research. The Eleventh International Symposium. Springer, 2005, pp. 561–572.

[10] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical
movement primitives: learning attractor models for motor behaviors,” Neural
computation, vol. 25, no. 2, pp. 328–373, 2013.

[11] E. A. Rückert, G. Neumann, M. Toussaint, and W. Maass, “Learned graphical models
for probabilistic planning provide a new class of movement primitives,” 2013.

[12] O. C. Jenkins and M. J. Matarić, “Deriving action and behavior primitives from
human motion data,” in Intelligent Robots and Systems, 2002. IEEE/RSJ International
Conference on, vol. 3. IEEE, 2002, pp. 2551–2556.

43

Bibliography

[13] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process dynamical models for
human motion,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 30, no. 2, pp. 283–298, 2008.

[14] K. Pullen and C. Bregler, “Motion capture assisted animation: Texturing and synthesis,”
in ACM Transactions on Graphics (TOG), vol. 21, no. 3. ACM, 2002, pp. 501–508.

[15] O. C. Jenkins and M. J. Mataric, “Automated derivation of behavior vocabularies
for autonomous humanoid motion,” in Proceedings of the second international joint
conference on Autonomous agents and multiagent systems. ACM, 2003, pp. 225–232.

[16] R. Urtasun, P. Glardon, R. Boulic, D. Thalmann, and P. Fua, “Style-based motion
synthesis,” in Computer Graphics Forum, vol. 23, no. 4. Wiley Online Library, 2004,
pp. 799–812.

[17] M. A. Álvarez, D. Luengo, and N. D. Lawrence, “Linear latent force models using
gaussian processes,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 35, no. 11, pp. 2693–2705, 2013.

[18] M. A. Alvarez, D. Luengo, and N. D. Lawrence, “Latent force models,” in International
Conference on Artificial Intelligence and Statistics, 2009, pp. 9–16.

[19] M. Alvarez, J. R. Peters, N. D. Lawrence, and B. Schölkopf, “Switched latent force models
for movement segmentation,” in Advances in neural information processing systems,
2010, pp. 55–63.

[20] M. Brand and A. Hertzmann, “Style machines,” in Proceedings of the 27th
annual conference on Computer graphics and interactive techniques. ACM
Press/Addison-Wesley Publishing Co., 2000, pp. 183–192.

[21] S. Chiappa and J. R. Peters, “Movement extraction by detecting dynamics switches and
repetitions,” in Advances in neural information processing systems, 2010, pp. 388–396.

[22] B. Williams, M. Toussaint, and A. J. Storkey, “Modelling motion primitives and
their timing in biologically executed movements,” in Advances in neural information
processing systems, 2008, pp. 1609–1616.

[23] Z. Ghahramani and M. I. Jordan, “Factorial hidden markov models,” Machine learning,
vol. 29, no. 2-3, pp. 245–273, 1997.

[24] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends in cognitive
sciences, vol. 3, no. 6, pp. 233–242, 1999.

[25] M. A. Alvarez, L. Rosasco, and N. D. Lawrence, “Kernels for vector-valued functions: A
review,” arXiv preprint arXiv:1106.6251, 2011.

44

Bibliography

[26] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, “Probabilistic movement
primitives,” in Advances in neural information processing systems, 2013, pp. 2616–2624.

[27] N. D. Lawrence, G. Sanguinetti, and M. Rattray, “Modelling transcriptional regulation
using gaussian processes,” in Advances in Neural Information Processing Systems, 2006,
pp. 785–792.

[28] G. Sanguinetti, A. Ruttor, M. Opper, and C. Archambeau, “Switching regulatory models
of cellular stress response,” Bioinformatics, vol. 25, no. 10, pp. 1280–1286, 2009.

[29] S. Schaal, “Dynamic movement primitives-a framework for motor control in humans and
humanoid robotics,” in Adaptive Motion of Animals and Machines. Springer, 2006, pp.
261–280.

[30] S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Scalable techniques from nonparametric
statistics for real time robot learning,” Applied Intelligence, vol. 17, no. 1, pp. 49–60,
2002.

[31] C. E. Rasmussen, “Gaussian processes for machine learning,” 2006.

[32] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[33] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech
recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[34] K. P. Murphy, “Hidden semi-markov models (hsmms),” 2002.

[35] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from
incomplete data via the em algorithm,” Journal of the royal statistical society. Series B
(methodological), pp. 1–38, 1977.

[36] J. Perry, J. R. Davids et al., “Gait analysis: Normal and pathological function.” Journal
of Pediatric Orthopaedics, vol. 12, no. 6, p. 815, 1992.

[37] Z. C. Li, R. Chellali, and Y. Yang, Latent Force Models for Human Action Recognition.
Cham: Springer International Publishing, 2016, pp. 237–246.

45

	Acknowledgements
	Abstract
	1 Problem statement
	2 Justification
	3 Objectives
	3.1 General objective
	3.2 Specific objectives

	4 Background
	4.1 Dynamic Motor Primitives (DMPs)
	4.2 Latent Force Models (LFMs)
	4.2.1 Gaussian Processes
	4.2.2 Latent Forcing Gaussian Processes

	4.3 Hidden Markov Models (HMMs)

	5 The Model
	5.1 Hidden Markov Models and Latent Force Models

	6 Algorithms
	6.1 Observation Likelihood Computation
	6.2 Most Probable Hidden State Sequence
	6.3 Parameter Estimation

	7 Experiments
	7.1 Synthetic data
	7.2 Real data
	7.2.1 CMU-MOCAP
	7.2.2 Robot Data - Table Tennis Striking Movements

	8 Conclusions
	8.1 Research Outcomes
	8.2 Future Work

