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Abstract

Statistical applications usually involve several parameters and observations that sometimes are
connected in some way depending on the structure of the problem. Often, these parameters are used
as variables that encode some information related with the observations. Besides, these parameters
are not observed and not directly measurable, but rather are inferred given the particular correlations
between the observed values. Thus, it is natural to model the phenomena with some kind of
hierarchical structure in which the observable measures are conditioned to some parameters, and the
parameters also conditioned to hyperparameters and so on. These types of models are relevant in
the sense that the data prove to be well fitted using that dependence to model the problem. In the
case of regression, non-parametric models such as Gaussian Processes (GP) have also been proposed
in a hierarchical structure, which depends on the problem to be modelled or the phenomena to be
studied.

Different hierarchical approaches have been proposed in the literature. Recently a novel hierarchical
modelling for GPs was introduced in which the model assumes there are several observed signals
that are related by an underlying trend common to these observations which can be predicted given
the data. Thus, the observed signals can be seen as corrupted versions of that underlying trend.
Nevertheless, this kind of modelling has only been developed in a single output framework, then it is
suitable to explore an extension to multiple output data, given the fact this model has proven to be a
simple and powerful tool for analyzing correlations and common trends between several observations
of a phenomenon. Thus, in this work is presented an extension of a GP hierarchical model using
existing covariances in a multiple output framework to interpolate and synthesize human-like motion
data. The model was tested with both artificial and real human motion data. The results show
that the model successfully interpolates and synthesizes human motion in comparison to a simple
multiple output GP used here as a reference model.
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Resumen

Diferentes aplicaciones estadísticas implican el uso de diferentes parámetros y observaciones que
en muchos casos están relacionadas de alguna manera dependiendo de la estructura del problema.
Usualmente, estos parametros son usados como variables que codifican cierta información relacionada
con las observaciones, además, ya estos parametros no son observables ni tampoco pueden ser
medidos directamente, son inferidos de los datos observados gracias a las correlaciones dadas entre
los mismos. De esa manera, se vuelve natural el modelar el fenómeno por medio de una estructura
jerárquica en donde las variables observadas esten condicionadas a los parámetros, y a su vez estos
parámetros condicionados a hiperparámetros, etc. Este tipo de modelos son relevantes en el sentido
de que sirven cómo buenas aproximaciones al comportamiento de los datos. En el caso de regresión,
modelos no paramétricos cómo los procesos Gausianos han sido propuestos también con algún tipo
de estructura jerárquica, la cuál depende del problema a ser estudiado.

Diferentes modelos jerárquicos han sido propuestos. Recientemente un novedoso método jerárquico
para procesos Gausianos fue propuesto, en dicho modelo, se asumen que existen diferentes señales
observadas que están relacionadas por una tendencia común a todas estas observaciones, la cuál
puede ser predecida. Así, las señales observadas pueden ser vistas como versiones corruptas de
esa tendencia común. Sin embargo, este tipo de modelos solo ha sido desarrollado para modelos
de una sola salida, de esa manera se vuelve interesante explorar una extensión de este modelo a
multiples salidas. Por tal motivo, en este trabajo se presenta una extension de un Proceso Gausiano
jerÃąrquico a multiples salidas, usando funciones de covarianza existentes con el objetivo de hacer
interpolación y síntesis de movimiento humano. El modelo fue probado con datos tanto artificiales
cómo reales, los resultados muestran que el modelo es exitoso interpolando y sintetizando movimiento
humano en comparación a un modelo de procesos Gausianos de multiples salidas simple el cuál se
usa en este trabajo como referencia.

Gil López, Juan David 3
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1 Introduction

Hierarchical modelling has played a major role in several statistical applications. Usually this
kind of modelling is related with multiparameter applications, in which there is an assumption
that these parameters are related in some way given the structure of the phenomena. Thus,
common hierarchical modelling involves putting a prior distribution over these parameters, so a
joint probability model will reflect their dependence through the observation of data. However,
hierarchical modelling is not only about putting prior distributions over the parameters that govern
the observable data, it is common also to express the parameters conditionally in terms of further
parameters, known as hyperparameters, and so on [2].

Gaussian Processes (GP) have also been used in a hierarchical way in different kinds of applications.
For example in [3] a hierarchical approach is proposed where a mixture of GPs combined with prior
assumptions over the parameters is implemented in order to handle the heterogeneity among different
realizations of a phenomena, for the case the standing-up movement of paraplegia patients. The
hierarchy is constructed when an unobservable latent indicator variable is introduced to determine
which is the component of the mixture that will describe a standing-up realization. However, the
hierarchical modelling with GPs varies a lot depending on the kind of problem to be solved. Recently
another technique using this kind of modelling was introduced in [1], in which a hierarchical single
output Gaussian Process (HGP) has been proposed for gene expression time series. This leads to
a model with a novel covariance function and suitable for exploiting the relationships between gene
replicates. Thus it is capable of making inferences about the underlying and common tendencies
followed by these replicates, assumed to be generated from a similar origin. The hierarchy is
extendable to several layers, and with some efficient computations it can be extended for clustering of
gene-expression time-series data. Other examples of GPs implemented with a hierarchical structure
can be found in [4, 5].

In particular the method implemented in [1], mentioned above, proved to be a very reliable model
for gene-replicate time-series analysis. However, the model has not been extended to a multiple
output framework to exploit the capabilities of coregionalization models. And specifically in
applications for Human Motion Synthesis, a hierarchical model with these features has not been
explored. The problem of synthesizing realistic human motion is an important issue mainly in the
computer animation and game industry, where the demanding of more realistic and human-like
characters is increasing. Thus, several techniques have been developed in order to tackle this
problem. These techniques can be divided in four categories: manual methods, video-based methods,
physics-based methods and motion-capture data-driven methods [6]. Each one of these methods
differs in complexity, animator involvement, speed and accuracy. With GPs several approaches have
also been developed to tackle this problem also.

In [7] for example, a semiparametric Latent Factor Model is used in order to model the correlations
between the degree of freedom of each one of the joints of the skeleton. This implementation
was made with the objective of modelling motion variation between several subjects, being able to
synthesize different crowd behaviours. Another example using GPs is given in [8] where a hierarchical
Gaussian Process Latent Variable Model is introduced. A probabilistic generalization of the Principal
Component Analysis (PCA) is made hierarchically by putting a GP prior distribution directly over
the latent space. This leads to a model capable of managing several hierarchical extensions for
Human Motion Capture data, from a skeleton-wise hierarchy to expressing the interaction of several
subjects. In [9–14] several implementations of GPs related with human motion synthesis applications
are proposed.

Gil López, Juan David 4
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Thus, given that GPs have proven to be a simple and a powerful tool in a range of areas, the
main motivation of this work is given by the hypothesis in which the hierarchical assumptions
made in [1] related with the common origin associated with a group of gene replicates, can also be
made for motion data: there might be an underlying and common trend between different styles
of the same kind of motion (walking), and that common trend might transform into a generative
model to new motion styles. So, given this single output hierarchical model, it might be possible
to extend this particular model to use multiple-output covariances [15] to further applications on
several vector-valued regression problems, and specifically in the synthesis of realistic human motion
learned from motion-capture data, which is the main purpose of the model proposed in this work.

Gil López, Juan David 5



Master Thesis: Objectives

2 Objectives

2.1 General Objective

To develop a hierarchical multi-output Gaussian process model for interpolation and synthesis of
human-like motion data.

2.2 Specific Objectives

1. To formulate a mathematical model for a hierarchical Gaussian process by using covariance
functions for vector-valued data.

2. To derive a statistical inference procedure for parameter estimation over this proposed
multi-output Gaussian process model.

3. To validate the performance of the multi-output Gaussian process model proposed for
interpolation and synthesis in human-like motion data.

Gil López, Juan David 6
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3 Background

In this section the techniques used as basis to develop the model proposed in this work are presented.
Namely the classic Gaussian Process regression and the hierarchical model developed in [1]. Also,
the theory for learning vector valued functions (Multi-output Learning) and some concepts related
with computer animation and the specific problems tackled in this work is presented.

3.1 Hierarchical Modelling for Gaussian Processes

3.1.1 Single output Gaussian Process Regression

Gaussian Process Regression is a non-parametric method and assumes a Gaussian Distribution over
functions, starting with a distribution for the behaviour we want to identify which can be fully
specified by a mean function m(t) (usually zero) and a covariance function k(t, t′), and has the
following notation:

f(t) ∼ GP(m(t), k(t, t′)). (1)

Thus, the regression process can be summarized as follows: given some observations (noise free) f
of a function f(t) at times t, one might predict the values f∗ at times t∗, then the joint probability
distribution of f and f∗ is given by the next expression:

p

([
f
f∗

])
= N

(
0,

[
Kt,t Kt,t∗

Kt∗,t Kt∗,t∗

])
, (2)

where the element (i, j) of the covariance matrix Kt,t is given by the covariance function k(t, t′)
evaluated in t[i] and t[j]; t and t∗ denotes respectively the time points where the observations are
made and where the prediction is desired. After this, by the conditional property the distribution
of the desired values conditioned to the observed data is given by,

p(f∗ | f) = N (f∗ | Kt∗,tK
−1
t,t f ,Kt∗,t∗ −Kt∗,tK

−1
t,tKt,t∗). (3)

In problems involving real data, usually observations f are corrupted by some noise, these obervations
can be referred as y, in this case and assuming a Gaussian noise the likelihood is given by p(y |
f) = N (y | f , βI), where β refers to the noise variance and I represents an identity matrix. With
this representation the concept of marginal likelihood can be introduced, which is the integral of the
likelihood defined before times the prior defined in equation (1):

p(y | t) =

∫
p(y | f , t)p(f | t)df . (4)

Gil López, Juan David 7
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In this case the marginal likelihood is specified in terms of the noise observed values marginalizing
variable f . With noise observed values one can obtain a similar representation of the full joint
distribution in equation (2) by only adding the noise term βI to Kt,t. After this, the regression
process is similar using the posterior equation (3).

3.1.2 The hierarchical model

Several hierarchical models have been proposed to work with statistical applications and Gaussian
Processes [3,8,16]. Specifically a powerful and simple hierarchical modelling with a novel covariance
function for GPs was introduced by Hensman et al. [1]. The model was motivated first by the
application in gene expression time series analysis, and second by the fact that existing models for
that specific task did not take into account the potential correlations between biological replicates.
These correlations are vital to the structure of the gene expression data.

The key idea about the HGP can be summarized as follows: suppose an unknown parent signal we
wish to identify call it n, this parent signal is assumed to be drawn from a zero mean GP gn(t) with
covariance function kg(t, t′). Then, assume one observes child signals from that parent, where each
version is assumed to be drawn from a GP denoted by fnr(t) with covariance function kf (t, t′) and
is presumed to have as mean gn(t), thus

gn(t) ∼ GP(0, kg(t, t
′)),

fnr(t) ∼ GP(gn(t), kf (t, t′)).
(5)

An example of some samples from this generative model are illustrated in figure 1a. Given a set
of Nn observed child signals Yn = {ynr}Nn

r=1 measured at times Tn = {tnr}Nn

r=1, where n makes
reference to the nth parent and r makes reference to the rth child, the likelihood of all data Yn can
be written as follows:

p(Yn | Tn,φφφ) = N (ŷn | 0,Σn), (6)

where ŷn is a column vector used to represent the concatenation of all the elements of Yn as
ŷn = [y>n,1y

>
n,2 . . .y

>
n,Nn

]> and φφφ represents the parameters of the covariances functions kg and kf .
The interesting part of the hierarchical model is its simplicity, for example, in the big covariance
matrix Σn (see figure 1b) the corresponding block of ynr,ynr′ has the following structure:

Σn[r, r′] =

{
Kg(tnr, tnr′) + Kf (tnr, tnr′) + βI if r = r’
Kg(tnr, tnr′) otherwise.

It can be shown why two points in the same same "child signal" (r = r′) are jointly Gaussian
distributed with zero mean an covariance kg(t, t′) +kf (t, t′) . It is also straightforward to check that
two points placed in differents "child signals" have covariance kg(t, t′) (See Appendix A.1). Thus, if

Gil López, Juan David 8
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inference about functions fnr(t) or gn(t) is also needed, then, the covariance between the data and
the functions is neccesary, which can be defined as:

cov(y(t)
n,r, gn(t′)) = kg(t, t

′) (7)

cov(y(t)
n,r, fnr′(t

′)) =

{
kg(t, t

′) + kf (t, t′) if r = r’
kg(t, t

′) otherwise,

where the superscripted y
(t)
n,r denote the element of yn,r observed at time t. The method used to

make inference is similar to the one used in the single output regression, the optimization of the
hyper-parameters can be made using standard methods such as type II Maximum Likelihood. This
model can be extended also to deeper hierarchies, for example a three layer hierarchy model can be
specified as:

gn(t) ∼ GP(0, kg(t, t
′)),

eni(t) ∼ GP(gn(t), ke(t, t
′))

fnir(t) ∼ GP(eni(t), kf (t, t′)).

(8)

Call gn(t) the underlying trend, eni(t) the ith parent and fnir(t) the rth children from the ith parent.
Similar properties as the two layer hierarchy are fulfilled, for example two observed points on one of
the replicates in the last layer of the hierarchy will be jointly Gaussian distributed with zero mean,
but now with covariance kg(t, t′) + ke(t, t

′) + kf (t, t′). This shows that the model remains simple
while adding more layers to the hierarchy.
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Figure 1: Single Output Hierarchical model illustration. (a) Samples of the generative process in equation 5.
The red signal is the sample from the parent process. (b) Likelihood covariance matrix of the single output
hierarchical model. This is the matrix defined in equation 3.1.2.
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3.2 Linear Model of Corregionalization(LMC)

The LMC or Linear Model of Corregionalization [15] has been widely used in multioutput learning
and vector-valued prediction. The LMC was developed in order to construct valid covariance
functions to generalize the concept of covariance from the single output to the multiple output case.
The LMC assumes that each output is represented as a linear combination of Q latent functions, so
for a set of D outputs {fd(t)}Dd=1 of a vector valued function f(t) where t ∈ Rp, the representation
of each output is given by:

fd(t) =

Q∑
q=1

ad,quq(t), (9)

where ad,q are coefficients and each latent function uq(t) is generated independently, has zero mean
and covariance cov[uq(t), uq′(t)] = kq(t, t

′) only when q = q′. Despite the processes {uq(t)}Qq=1

are independent, they can have the same covariance function kq(t, t′) when q 6= q′. Thus a similar
expression for {fd(x)}Dd=1 can be written grouping the functions uq(t) that share the same covariance
as:

fd(t) =

Q∑
q=1

Rq∑
i=1

aid,qu
i
q(t), (10)

this expression means that there are Q groups of functions uiq(t) and that each one of this functions
that are on the same group share the same covariance, but are independent. The multioutput
modelling also proposes to establish the correlation between the outputs through cov[fd(t), fd′(t

′)] =
(K(t, t′))d,d′ , which is given in terms of the latent functions uiq(t). So given that the functions uiq(t)
are independent one can express that covariance as follows:

(K(t, t′))d,d′ =

Q∑
q=1

Rq∑
i=1

aid,qa
i
d′,qkq(t, t

′), (11)

Then if we group all the coefficients bqd,d′ =
∑Rq

i=1 a
i
d,qa

i
d′,q, the kernel K(t, t′) can now be expressed

as:

K(t, t′) =

Q∑
q=1

Bqkq(t, t
′), (12)

where Bq ∈ RD×D refers to the coregionalization matrix associated with the latent function q
containing the coefficients bqd,d′ . This matrix encodes the covariance between the D outputs. The
rank of each matrix Bq is determined by the coefficient Rq. Another type of modelling that is
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a special case of LMC is the Intrinsic Corregionalization Model (ICM), which assumes that each
output fd is only approximated with one latent function, so Q = 1, and assuming a complete dataset
T the kernel matrix takes the form:

K(T,T) = B⊗ k(T,T), (13)

where ⊗ is the Kronecker product between matrices. The advantage of using this coregionalization
model lies in its simplicity, the inference algorithm for this model is mathematically easier to derive
essentially for the properties of the Kronecker product. The covariance for the input space k(T,T)
can be any valid covariance function to produce positive semidefinite matrices, as the Squared
Exponential kernel. The LMC can be represented in a similar way for a complete data set T like
equation (13) by only adding more coregionalization matrices as:

K(T,T) =

Q∑
q=1

Bq ⊗ k(T,T). (14)

3.2.1 Corregionalization Matrix

It is worth to mention that the coregionalization matrix Bq referenced before is directly estimated
from the observed data. Thus, in order to meet the conditions of positive-semidefiniteness, this
matrix has to be parameterized in a way that ensures this constraint. This parametrization has the
following form:

Bq = WqW
>
q + diag(κκκq), (15)

where Wq is a D ×Rq matrix and κκκq ∈ RD. This representation allows to have a low rank form of
Bq, an also allows to reduce the amount of parameters to be estimated. The vector κκκq is added to
allow each one the outputs to have and independent behaviour.

3.3 Computer-based human animation with motion capture

Computer-based human animation is a major area of research in computer graphics. The main
idea is to develop techniques, algorithms or methodologies capable of generating human motion in
a realistic manner. One specific and widely used methodology is the motion capture technique in
which human motion is given by physical models that describe the motion in a mathematical way,
or with motion-capture special equipment in which a set of sensors is placed on a person who then
performs different kinds of movements in order to get that data in a 3D representation by specialized
software [6].

This technique is widely used by top companies such as Disney, Pixar, Dreamworks or EA, which
develop many graphics applications for the computer game and animation filming industry. Human
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motion capture data can be used in different manners, for example, it is not only used to synthesize
purely human motion but also to create new ways of animating non-human animated characters,
such as animals [17], or to teach a robot how to behave like a human when it is performing a
movement [18].

Diving more into motion-capture, the set of sensors on the performer’s body has very specific
locations, see figure 2. The arrangement of those sensors can be described as a skeleton with a
specific hierarchy. Notice that the sensors are located on several key joints of the body; in this
way the specialists can capture the major activity of the human body while the motion is being
performed. After the data given by the sensors is further processed, it can be stored in several kinds
of formats ready for any kind of processing needed. Visit the CMU Graphics Lab Motion Capture
Database for more details 1.

Figure 2: Example of arrangement of sensors on performers body. Taken from MOCAP official website.

3.4 Human Motion Synthesis and Interpolation

Human Motion Synthesis (HMS) refers to several computer-based techniques used to perceive and
generate motion performed by humans. These kind of techniques are used in computer animation,
simulators, computer and console game technology and robotics. HMS has become an interesting
area of research, with impact not only in academy research but also in industry. There are several
approaches to generate Human Motion in a realistic way: manual methods, video-based methods,
physics-based methods and motion-capture data-driven methods [6].

Manual methods consist in manually setting the joints in skeleton on each frame before generating
the motion sequence using specialized algorithms. Besides, these methods are characterized by an
expert in animation of motion figures that has to be present to help the process of synthesis to
be more accurate. Some examples of this kind of approach can be found in [19, 20]. Video-based
methods usually have more elements to consider given that they use computer vision techniques and
several cameras to track and describe human motion in a video obtaining 3D information of the
scene. For example, in [21] they combine image reconstruction from video techniques, to recreate
3D characters in a virtual environment to further control and synthesize different kinds of motions
from different views of people. Another examples of these methodologies can be found in [22–26].

1The CMU Graphics Lab Motion Capture Database was created with funding from NSF EIA-0196217
and is available at http://mocap.cs.cmu.edu
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Physics-based methods are amongst the most elaborated methods, because they require the
formulation of dynamic models through differential equations to describe motion according to
physical constraints. Usually these differential equations are made to describe the trajectories of
the joints of the body after they are properly solved. For example in [27] an animation system is
constructed based on a set of objective functions to be optimized that eventually lead to linear time
analytical first derivatives. The system is robust because the set of functions properly includes
physical constraints given by the animator such as ground contact, in that way it is capable
of synthesizing several kinds of motions with a high level of dynamics. Similar approaches use
optimization to meet user constraints and synthesize motion. However, there are other physically
inspired techniques that use control theory. For example in [28] the authors proposed a system to
animate athletes in which the principles of control theory were applied in order to give the characters
the ability to maintain balance while moving and to simulate complicated kinds of motions meeting
the specific physical constraints associated with the athletes. Some other examples of physics-based
motion synthesis can be found in [29–32].

Finally, motion-capture data-driven methods refer to the reuse of existing motion data, which can be
generated by one of the methods explained above or generated by special motion-capture equipment
(See Fig. 2). Specially, data-driven methods have been tackled in two major ways, graph-based
techniques and statistical motion synthesis techniques [6]. The graph-based techniques [33–36]
almost always have the same path, first taking as input the motion data generated by the special
equipment, then trying to find similarities between those motions and setting transitions between
similar motions. Next, the construction of the graph takes place given those transitions, and finally
paths from this graph are chosen in order to generate new motions satisfying some predefined
conditions of optimality. On the other hand, statistical motion synthesis techniques are not as easy
to generalize as the graph-based methods, given the fact that several approaches can be taken in
order to sythesize motion data in this way.

Statistical data-driven models for HMS have been widely used because of their generalization
capacity, and because these methods are simpler mathematically than other widely used methods,
like the physics-based. These methods usually differ in the process depending on the probabilistical
model used to learn or explain the motion data.

One common statistical approach is to use state-space models like Markov models. For example,
Brand et al. [37] used a Hidden Markov Model (HMM) in order to develop a model of structure/style
from a motion sequence combined with a multidimensional style variable vvv in order to take a training
set of motions, then learn the parameters of the model, and thus, it was capable of generating new
and stylistic motions. Here, stylistic motions refer to motion samples that follow the same kind of
movement, such as walking, but with different behaviour. Another approach [38] used a Markov
Chain plus an HMM in two levels. In the first level the Markov chain is used to model the transition
between joints and in the second level the HMM is implemented to generate motion segments.
Another example of Markov models was introduced by Wang et al. [39], where a Markov chain was
used to switch between Linear Dynamical Systems to generate new motions.

Latent space models have also been used to reduce the dimensionality and create simpler models
to synthesize human motion. In [8] a generalization of PCA was used to apply it to human motion
data, mixed with Gaussian Process priors over the mapping to the latent space. This resulted in a
hierarchical and non-parametric model, including the possibility to model the interaction between
different motion subjects. Other ways of using Gaussian process and latent variable models have also
been proposed [40,41]. The first tries to estimate a PDF of the latent states to sample different kinds
of sequences. The second one is a state-of-the-art model that uses multivariate GPs combined with
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a semi-parametric Latent Factor model to synthesize motion variation in several subjects. Other
examples of different statistical data-driven approaches can be found in [42–46].

Other more versatile techniques have been developed that involve other kinds of approaches. In [47]
non-linear models of deformation are used to learn the shape and deformation of an object, being
capable of making an extension to motion synthesis through shape and style information gathered
from data. Another way is to use hybrid methods to create more robust approaches gathering the
strengths of two or several methodologies [6]. It is very common to see works in which both the
strengths of the motion capture methods and the physics-based methods are applied. Some examples
of these ideas can be found in [48–53].

The human motion interpolation (HMI) problem is often related with marker-based motion-capture
approaches Sometimes the motion capture software misses the trajectory of the subject in short
intervals of time. It is often usual to let motion editors complete the sequences given the recorded
ones [54]. However several works with motion capture data have focused on developing techniques
to properly reconstruct the missing trajectories. For synthesis the interpolation is also commonly
used. The process of interpolation can be generalized as: several keyframes are selected for each
motion in the database, then these keyframes are used as a base to interpolate the motion between
them, and finally some approaches try to introduce some kind of style mechanism in order to
interpolate/synthesize stylistic motion.

The interpolation methods differ in the techniques used in each one of the stages presented
before. Usually the keyframe selection is made manually. Then, after selecting the keyframes,
the interpolation part can be made using geometric techniques [55,56], linear combination of kernel
functions to fill the motion between keyframes [57,58], signal processing [59,60], physical assumptions
with control theory [61] and introducing some statistical modelling through multidimensional
analysis as in [62,63]. Some of these approaches usually implement some kind of inverse kinematics
in order to properly generate human motion constrained by physical laws.

The style over the interpolated motion can be made in several ways. For example in [63] they propose
to estimate a probability density function (PDF) to describe the motions in the training examples,
being able to add some randomness at the time of generating motions through interpolation. However
the method tends to prefer samples similar to the training samples. In [62] a multidimensional
abstract space is used to encode the information of the subjects, and is called control space. The
parameters in this control space are called the control parameters. Four of these five parameters
control the spatial constraints and the final parameter is used to control the desired style to apply
over the interpolated motion. The style over motion usually is related to probabilistic approaches
to tackle this problem both in synthesis and interpolation.
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4 Materials and Methods

In this section the proposed model is properly explained and derived in the first part, several appendix
sections were referenced to help in the understanding of some of the computations involving all
aspects of the model. Also, the parameter estimation procedure is further explained and finally
some correlation measures are defined in order to quantify the performance of a model to synthesize
new subjects.

4.1 Multiple Output Hierarchical Gaussian Process (MOHGP)

The MOHGP is the model proposed in this work, is an extension of the model specified in 3.1.2
proposed by Hensman et al. (2013). The MOHGP model uses the same structure for the hierarchy,
however gn(t) and fnr(t) for the case of the two layer hierarchy are no longer a single output signal
but instead vector valued functions called gn(t) and fnr(t) respectively. This change influences in
the form of the likelihood function by only introducing a different covariance function for the parent
and child process. In this case the covariance functions have to take into account that the observed
signals have multiple outputs rather than only one, thus the proposed model can be specified as:

gn(t) ∼ GP(0,Kg(t, t′)),

fnr(t) ∼ GP(gn(t),Kf (t, t
′)),

(16)

where,

Kg(t, t′) =

Q∑
q=1

Bgqkgq(t, t
′),

Kf (t, t
′) =

L∑
l=1

Bflkfl(t, t
′).

(17)

The two expressions above correspond to the Linear Model of Corregionalization (LMC) for vector
valued functions, previously explained in section 3.2. The Intrinsic Model of Corregionalization
is the special case when q = 1 and l = 1. Even though q 6= l, the amount of outputs in each
layer must be the same. Here we assume D outputs for the vector valued function gn(t). As well
as the single output hierarchical model, one can demonstrate that two points in the same child
signal (multiple output for this case) are jointly Gaussian distributed with zero mean and covariance
Kg(t, t′) + Kf (t, t

′) (see Appendix A.2). Also, two points in different child signals have covariance
Kg(t, t′).

Given a set of Nn observed child vector valued functions each one denoted as a matrix Ynr composed
of column vectors as Ynr = [y1

nry
2
nr . . .y

D
nr], in which ydnr = ydnr + βI assuming noisy observations,
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where where D is the dimension of the function measured at Nt times tnr, tnr here is the same
for each one of the D outputs for simplicity, where n makes reference to the nth parent and r
makes reference to the rth child. One can arrange all data in the set Yn for an specific parent with
all the measurement times Tn, where Yn = {Ynr}Nn

r=1 and Tn = {tnr}Nn

r=1 which can be different
measurement time points for different replicates, leading to write all the data Yn marginal likelihood
as follows:

p(Yn | Tn,φφφ) = N (ŷn | 0,Σn), (18)

where ŷn is a big column vector used to represent the concatenation of all the elements of Yn and each
output vector of Ynr as ŷn = [ŷ>n,1ŷ

>
n,2 . . . ŷ

>
n,Nn

]>, here each column vector ŷn,r = [y1>
nr y2>

nr . . .y
D>
nr ]>

represents the concatenation of all the column vectors of the matrix Ynr. The vector φφφ represents
all the parameters of the covariance functions Kg(t, t′) and Kf (t, t

′), these parameters include,
the hyperparameters of the input space covariance functions kgq and kfl and the entries of all the
corregionalization matrices for the output space covariances Bgq and Bfl.

By the properties mentioned before and demonstrated in Appendix A.2, the mean of the likelihood
function will be a zero mean vector of size equal to the amount of replicates Nn times the d outputs
of each replicate and times the amount of input points for each output. The covariance matrix Σn

will have the following block structure for the replicates Ynr and Ynr′ :

Σn[r, r′] =

{
Kg(̂tnr, t̂nr′) + Kf (̂tnr, t̂nr′) + Γ if r = r’
Kg(̂tnr, t̂nr′) otherwise,

(19)

where Γ = A ⊗ I is a diagonal matrix where A ∈ RD×D which elements are {βd}Dd=1 the noise
variances for each one of the outputs, I ∈ RNt×Nt and t̂nr = [t1

nr
>

t2
nr
>
. . . tDnr

>
]> the stacked

column vector of the inputs for each one of the D outputs of the rth child, here tdnr = td
′

nr for
simplicity. The block covariance in equation (19) is very similar to the one of the single output
model, however the block [r, r′] are different because of the introduction of the multiple output
covariances. In figure 3 there is a graphical explanation of the proposed model ilustrating the shape
of the covariance matrix of the model likelihood. If inference about functions fnr(t) (some children)
or gn(t) (underlying trend) is needed, then, the covariance between the data and the functions is
necessary which is the same as in the single output case and is defined as:

cov(Y(t)
n,r,gn(t′)) = Kg(t, t′) (20)

cov(Y(t)
n,r, fnr′(t

′)) =

{
Kg(t, t′) + Kf (t, t

′) if r = r’
Kg(t, t′) otherwise,

(21)

where the superscripted Y
(t)
n,r

>
denotes a column vector extracted from Yn,r. This vector represents

the value of each one of the outputs (column vectors) of Yn,r at time t. Inference over the parent
gn(t) given the observed children Yn is similar to the one used in single output regression explained
in section 3.1.1, here can be summarized in equation as follows:
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p(ĝn | ŷn) = N (ĝn | Kt∗,tK
−1
t,t ŷn,Kt∗,t∗ −Kt∗,tK

−1
t,tKt,t∗), (22)

where t∗ makes reference to the inputs in which the vector valued function will be inferred and t is
equal to the set of all the inputs Tn = {tnr}Nn

r=1 of the observed children Yn. The same equation
(22) can be applied to make inference over one of the children in Yn. Thus, given the rules defined
in equation (20) is straightforward to derive that:

K>t∗,t = Kt,t∗ = Kg(t, t∗),

K>t∗,t∗ = Kg(t∗, t∗),

Kt,t = Σn Marginal likelihood matrix.

The optimization of the hyper-parameters can be made using standard methods such as type II
Maximum Likelihood. For this purpose it is neccesary to extract the likelihood gradients with
respect to the model parameters. In the following section this process is further explained.
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Figure 3: Ilustration of a Multiple Output Hierarchical GP based on [1]. Top: The vector valued
funcion gn(t) is the underlying trend(parent) followed by the fnr(t) replicate (children) sample versions
deviating with a small variance and some noise. Bottom left: The marginal likelihood matrix Σn, the diagonal
blocks are related with each children sample. For the case the covariances Kg and Kf come from the Intrinsic
Corregionalization Model (ICM). Standard methods can be used for optimize covariance hyperparameters.
The same equation for classic GP prediction can be used here to determine the underlying trend gn(t) given
the children observations. Also new children prediction can be made in the same way.
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4.2 Parameter Estimation Procedure: MOHGP

For the proposed model the same standard methods used for parameter estimation of Gaussian
Process can also be used. In this case the form of the likelihood function resembles the one a simple
multiple output model in the sense that the diagonal of the matrix Σn is the covariance of each one
of the observed children. Thus, taking as reference the method developed in [15], the process for
estimating the parameters of the proposed model is derived as follows:

Our goal is to estimate the parameters φφφ that maximize the marginal likelihood function, or in other
words, the parameters that best fit our observed values Yn. In that sense the objective function
here is the log marginal likelihood

log p(Yn | Tn,φφφ) = logN (ŷn | 0,Σn),

which is straightforwardly derived as

log p(Yn | Tn,φφφ) = −1

2
ŷ>nΣ−1

n ŷn −
1

2
log | Σn | −

NnNtD

2
log(2π), (23)

where Nn, Nt, and D makes reference respectively, to the amount of observed chilren, the amount of
input points per output and the amount of outputs per child. To maximize this marginal likelihood
function it is neccesary to derive the gradients to implement a numerical optimization strategy. The
derivatives with respect to one of the parameters φi inside the parameter vector φφφ can be computed
as

∂ log p(Yn | Tn,φφφ)

∂φi
= −1

2
ŷ>n

∂Σ−1
n

∂φi
ŷn −

1

2

∂ log | Σn |
∂φi

, (24)

By the properties of the derivatives of matrices respect to scalars the derivative of the marginal
likelihood with respect to one of the hyperparameters is given by

∂ log p(Yn | Tn,φφφ)

∂φi
= −1

2
ŷ>nΣ−1

n

∂Σn

∂φi
Σ−1
n ŷn −

1

2
tr

(
Σ−1
n

∂Σn

∂φi

)
. (25)

After computing de derivative ∂Σn

∂φi
(See appendix A.3) for all the model parameters, the gradient

vector can be used in a gradient based optimization algorithm.

4.3 Synthesis Performance Measures

The synthesis process is the process in which new samples of human motion subjects usually are
generated using some model. Usually this kind of process is evaluated in a visual manner, sometimes
with the help of an expert in computer generated animation. However, for the purpose of making
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a more quantifiable comparison between models for synthesizing motion data, we considered two
correlation measures to determine if an artificially generated subject exhibits a similar behaviour to
a real one.

Synthesis Evaluation To evaluate the ability of a model to generate new samples Ys similar to
real observations Yn it was necessary to use a correlation measure between the samples generated by
the trained models and the real ones, which are different from the training set. Here Ys = {Ysr}Ns

r=1

and Yn = {Ynr}Nn

r=1, where Ysr = [y1
sry

2
sr...y

D
sr] and Ynr = [y1

nry
2
nr...y

D
nr]. In this case the two

correlation measures used were:

1. Discrete Cross Correlation, which is defined as:

(ydnr ? ydsr)(n) =

∞∑
−∞

ydnr[m]ydsr[m+ n],

where ydnr[m] is one of the outputs of a real observation at time index m and ydsr[m + n] is
the generated sample at index time m+ n, here n is the lag between the signals.

2. Pearson Linear Correlation, which is defined as:

ρyd
nr,y

d
sr

=
cov(ydnr,y

d
sr)

σyd
nr
σyd

sr

,

where σ makes reference to the standard deviation of each variable. It is important to remark
here that it is possible that the generated subjects to start at a different position from the
real ones. Thus, the cross correlation will be more robust to this kind of cases.

For evaluating the performance of synthesis, the following metrics are defined, given the correlation
measures defined before:

Mean Cross Correlation (MCC): This metric gives an intuition of the correlation between the
generated vector valued signals Ys and the real ones Yn. The greater the value of this metric is,
the better the model is to generate samples similar to the real ones. To compute this measure the
following procedure is followed:

1. Normalize the data in Yn and in Ys.

2. Take a new sample ysr from Ys.

3. Take a new sample ynr from Yn.

4. Take the output d from ynr and the corresponding one from ysr.

5. Compute the cross correlation between ydnr and ydsr for different values of m and take the
maximum value.
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6. Repeat from step 5 until d = D.

7. Compute the mean cross correlation across all the outputs.

8. Repeat from step 3 until there are no more real observations.

9. Repeat from step 2 until there are no more generated samples.

10. Compute the mean and the standard deviation of the Mean Cross Correlation measures across
all the new samples in Ys.

Mean Linear Correlation (MLC): The linear correlation (Pearson) of a signal with itself is
always going to be +1, so one will expect that the linear correlation of the generated samples and
the real ones to be very close to +1, so to compute this measure of linear correlation the following
process is performed:

1. Normalize the data in Yn and in Ys.

2. Take a new sample ysr from Ys.

3. Take a new sample ynr from Yn.

4. Take the output d from ynr and the corresponding one from ysr.

5. Compute the Pearson linear correlation between ydnr and ydsr.

6. Repeat from step 5 until d = D.

7. Compute the mean linear correlation across all the outputs.

8. Repeat from step 3 until there are no more real observations.

9. Repeat from step 2 until there are no more generated samples.

10. Compute the mean and the standard deviation of the Mean Linear Correlation measures across
all the new samples in Ys.
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5 Experimental Results and Discussion

The proposed model was tested with both artificial and real data. The latter was obtained from
MOCAP data set offered by Carnegie Mellon CMU. For the tests the proposed model (MOHGP)
was compared with a multiple output GP model (Called MOA here) with no hierarchy structure
involved. Two tasks were evaluated, first, interpolation over one of the artificial/MOCAP subjects
given the other observed subjects, and second, generation of new artificial/MOCAP samples.

5.1 Interpolation

5.1.1 Artificial Data

Two layer hierarchy To perform this test the data was generated using the generative model
specified in equation (16). Thus, it was necessary to define two kernels Kg and Kf , the kernels for
the first layer (parent) and the second layer (children), respectively. An LMC was used to represent
the covariance function for the GP’s at each layer. Here the LMC was assumed to be the sum of
several ICM (see eq. (13)), three ICMs were used to define each layer. The parameters of both
covariances were randomly generated, nevertheless it was ensured that the variance of the second
layer GP was less than the first layer variance. White noise was also added to the second layer
covariance function. the white noise was fixed to three different values for several tests, the values
are, 0.001, 0.01 and 0.1.

Next, for generating the parent outputs, a single vector with all the input points is generated, for
the case a vector with fifty values between 0 and 2π. Then, the multiple output covariance matrix
for the parent process is computed over this single vector leading to a covariance such as the one
in figure 4a. Thus, a sample from a parent GP is generated (figure 4b), the GP has zero mean and
covariance Kg as the generative model in equation (16) states.

Once the parent is generated, the children are sampled using the parent signal as the mean. The
covariance matrix is computed using the same input vector for the parent covariance matrix. The
kernel Kf is the one used for this part. Thus, in figure 5b four samples from the children GP are
shown. These are the examples of observations taken as inputs for the proposed hierarchical model
and the model to be compared with, in this case, a simple Multiple Output GP (MOA) with no
hierarchy structure included. The hierarchical model was constructed using an LMC with same
amount of ICM as the generated data for each layer, for the case of the MOA model also an LMC
was used to construct it.

Results After the data is properly organized the interpolation process initiates defining a number
of validation stages. In each validation stage and for each child a random permutation of all the
input points indexes is made in order to choose the missing input points in which both models are
going to predict. Both models are trained in each validation stage. For the case only one of the
children is used as test subject of the reconstruction. Over the test subjects and for all the tests
only five of the fifty input points were assumed to be known. All the other children are assumed to
be observed data.
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Figure 4: Covariance/sample of the parent process

In each validation the Mean Squared Error(MSE), Standarized Mean Squared Error (SMSE) and
the Mean Standarized Log Loss (MSLL) are computed. This is the way to measure the prediction
accuracy of the MOHGP and MOA. In tables 1, 2 and 3 the results are shown in average over all
the validation stages (five for this case). Also, two standard deviation values are computed across
validations for each test. Several tests were made changing the amount of children, outputs and
noise levels. These parameters were chosen to check the performance of each model within different
scenarios. For example, in the presence of noisy signals, when the amount of children was high or if
different amount of outputs were present. The parameters were chosen also thinking in possible real
noise levels and combinations of output children amounts for the models to be trained in reasonable
time. The bold letter shows the average over all tests. The tables show that the Hierarchical model
performs better than MOA for interpolation.

Note: The Mean Standarized Log Loss is a form to measure the performance of a model when
it gives a predictive distribution, which is the case of the GP models. This measure been formally
defined in literature. 2 The model is determined to be better if the value of the MSLL is negative,
and close to zero or even positive for models with less quality. The definition Standarized Log Loss
in this work is given by:

SLL =
1

2

[
log(2πσ∗

2) +
(y∗ − f̄(t∗))

2

σ∗2
− log(2π var(y))− (y∗ − ȳ)

var(y)

]
, (26)

where y∗ is the real value, f̄(t∗) is the mean of the predictive distribution at time t∗, σ∗2 is the
predictive variance and y is the set of observed values.

2C. E. Rasmussen and C. K. I. Williams, Gaussian Process for Machine Learning, p. 23. The MIT press,
2006.
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Figure 5: Covariance/sample from the children process

Table 1: MSE of interpolation by the models under different noise levels plus/minus two standard deviations.
For each test the number of observed points were five out of fifty, chosen randomly for each validation stage.
Noise var: variance of white noise, n out: number of outputs of each child, n. child: number of children.
MOHGP and MOA constructed with LMC as the sum of three ICM. In bold letter are highlighted the best
results for both models and the average across tests.

test noise var n out N. child MSE MOHGP MSE MOA
test 1 0.001 3 5 0.097 ± 0.077 1.154 ± 0.033
test 2 0.001 6 6 0.162 ± 0.248 0.710 ± 0.072
test 3 0.001 3 10 0.066 ± 0.044 0.702 ± 0.041
test 4 0.01 3 5 0.131 ± 0.103 1.181 ± 0.046
test 5 0.01 6 6 0.204 ± 0.233 1.948 ± 0.078
test 6 0.01 3 10 0.107 ± 0.067 0.723 ± 0.074
test 7 0.1 3 5 0.131 ± 0.103 1.195 ± 0.049
test 8 0.1 6 6 0.618 ± 0.147 2.181 ± 0.050
test 9 0.1 3 10 0.599 ± 0.221 1.017 ± 0.055
mean ± std 0.235 ± 0.406 1.201 ± 1.005
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Table 2: SMSE of interpolation by the models under different noise levels plus/minus two standard deviations.
For each test the number of observed points were five out of fifty, chosen randomly for each validation stage.
Noise var: variance of white noise, n out: number of outputs of each child, n. child: number of children.
MOHGP and MOA constructed with LMC as the sum of three ICM. In bold letter are highlighted the best
results for both models and the average across tests.

test noise var n out N. child SMSE MOHGP SMSE MOA
test 1 0.001 3 5 0.067 ± 0.055 0.789 ± 0.042
test 2 0.001 6 6 0.087 ± 0.137 1.024 ± 0.019
test 3 0.001 3 10 0.045 ± 0.032 0.485 ± 0.067
test 4 0.01 3 5 0.091 ± 0.078 0.809 ± 0.078
test 5 0.01 6 6 0.108 ± 0.125 1.023 ± 0.021
test 6 0.01 3 10 0.074 ± 0.052 0.496 ± 0.082
test 7 0.1 3 5 0.091 ± 0.078 0.819 ± 0.081
test 8 0.1 6 6 0.289 ± 0.075 1.020 ± 0.012
test 9 0.1 3 10 0.135 ± 0.051 0.228 ± 0.013
mean ± std 0.109 ± 0.135 0.743 ± 0.532

Table 3: MSLL of interpolation by the models under different noise levels plus/minus two standard deviations.
For each test the number of observed points were five out of fifty, chosen randomly for each validation stage.
Noise var: variance of white noise, n out: number of outputs of each child, n. child: number of children.
MOHGP and MOA constructed with LMC as the sum of three ICM. In bold letter are highlighted the best
results for both models and the average across tests.

test noise var n out N. child MSLL MOHGP MSLL MOA
test 1 0.001 3 5 -1.739 ± 0.350 0.927 ± 1.549
test 2 0.001 6 6 -1.917 ± 0.322 0.285 ± 0.050
test 3 0.001 3 10 -1.783 ± 0.244 -0.504 ± 0.069
test 4 0.01 3 5 -1.444 ± 0.225 0.568 ± 1.206
test 5 0.01 6 6 -1.435 ± 0.251 0.274 ± 0.057
test 6 0.01 3 10 -1.457 ± 0.116 -0.184 ± 1.254
test 7 0.1 3 5 -1.444 ± 0.225 0.400 ± 0.716
test 8 0.1 6 6 -0.706 ± 0.074 0.168 ± 0.023
test 9 0.1 3 10 -1.025 ± 0.245 0.009 ± 1.661
mean ± std -1.438 ± 0.713 0.216 ± 0.784

The tests with artificial data made so far were made using both models, MOHGP and MOA, with
a similar configuration. Thus, the proposed model was constructed using a LMC as the sum of
several ICM, in this case with three ICM for the two layers. The same structure for the kernel
was used for the MOA model kernel. However, an additional experiment was made in order to test
the performance of the hierarchical model in disadvantage against the MOA model. So, in table 4,
5 and 6 the interpolation performance measures are shown in which the MOHGP model kernel is
constructed using only one ICM while the MOA model is left with the sum of three ICM as before.
Only five points are observed for the interpolation. Besides, the training of the MOA model is
restarted 5 times. This is done to find a better combination of the hyper-parameters for the MOA
model only. The artificial data was generated by the same method explained in the first part of this
section.
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Table 4: MSE of interpolation of both models. Noise var: variance of white noise. Miss data: all child:
the missing data is in all children, one child: the missing data is on one of the children. MOHGP model
constructed with ICM while MOA model constructed with LMC and restarting optimization 5 times. In bold
letter are highlighted the best results for both models and the average across tests.

test noise var Miss data MSE MOHGP MSE MOA
test 1 0.001 All child 0.162 ± 0.101 0.983 ± 0.190
test 2 0.01 All child 0.229 ± 0.142 1.061 ± 0.164
test 3 0.1 All child 0.621 ± 0.215 1.290 ± 0.275
test 4 0.001 One child 0.240 ± 0.507 1.184 ± 0.052
test 5 0.01 One child 0.296 ± 0.520 1.216 ± 0.062
test 6 0.1 One child 0.630 ± 0.187 1.511 ± 0.064
mean ± std 0.363 ± 0.379 1.207 ± 0.338

Table 5: SMSE of interpolation of both models. Noise var: variance of white noise. Miss data: all child:
the missing data is in all children, one child: the missing data is on one of the children. MOHGP model
constructed with ICM while MOA model constructed with LMC and restarting optimization 5 times. In bold
letter are highlighted the best results for both models and the average across tests.

test noise var Miss data SMSE MOHGP SMSE MOA
test 1 0.001 all child 0.045 ± 0.028 0.271 ± 0.055
test 2 0.01 all child 0.063 ± 0.038 0.291 ± 0.046
test 3 0.1 all child 0.138 ± 0.048 0.286 ± 0.061
test 4 0.001 One child 0.168 ± 0.358 0.819 ± 0.020
test 5 0.01 One child 0.206 ± 0.367 0.842 ± 0.031
test 6 0.1 One child 0.141 ± 0.045 0.338 ± 0.027
mean ± std 0.126 ± 0.112 0.474 ± 0.505

Table 6: MSLL of interpolation of both models. Noise var: variance of white noise. Miss data: all child:
the missing data is in all children, one child: the missing data is on one of the children. MOHGP model
constructed with ICM while MOA model constructed with LMC and restarting optimization 5 times. In bold
letter are highlighted the best results for both models and the average across tests.

test noise var Miss data MSLL MOHGP MSLL MOA
test 1 0.001 all child -1.961 ± 0.084 -0.427 ± 0.683
test 2 0.01 all child -1.445 ± 0.540 -0.448 ± 0.278
test 3 0.1 all child -0.484 ± 2.266 -0.407 ± 0.336
test 4 0.001 One child -1.596 ± 0.474 1.007 ± 1.588
test 5 0.01 One child -1.319 ± 0.507 -0.324 ± 0.017
test 6 0.1 One child -0.963 ± 0.245 1.152 ± 1.777
mean ± std -1.294 ± 0.939 0.092 ± 1.400

According to tables 4, 5 and 6 the hierarchical model keeps being superior, despite the fact the MOA
model was trained with several advantages. these tests suggest also that the hierarchical model is
better when data is presumed to have a parent children structure. To go beyond with testing the
performance of the MOHGP model, some other experiments were made. If one checks the results of
tables referenced before, it is interesting to see that when the noise is higher the less the difference
between the performance of MOHGP and MOA. Thus, a final test was made using and ICM to
generate the data but using the same process as before. Then, a white noise was added with 0.1
variance. For this case the amount of observed points were increased to ten and twenty. This is
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done to determine whether increasing the amount of observed points improves the accuracy of MOA.
The same advantages given before to MOA model were given also in this test, except that for this
time the optimization process was restarted 10 times for MOA to find a better combination of the
hyper-parameters. In tables 7, 8 and 9 the results for this setting are condensed. Is interesting to
see that in table 9 the MSLL is better for the MOA model, however for the MSE and SMSE the
hierarchical model continues as superior, a further discussion about these results is made in section
7.

Table 7: MSE of interpolation of both models. Noise var: variance of white noise. Miss data: all child:
the missing data is in all children, one child: the missing data is on one of the children. MOHGP model
constructed with ICM while MOA model constructed with LMC and restarting optimization 10 times. In
bold letter are highlighted the best results for both models and the average across tests.

test N obs. Miss data MSE MOHGP MSE MOA
test 1 10 All child 0.095 ± 0.008 0.142 ± 0.008
test 2 10 One child 0.106 ± 0.011 0.168 ± 0.020
test 3 20 All child 0.078 ± 0.005 0.136 ± 0.007
test 4 20 One child 0.100 ± 0.025 0.173 ± 0.036
mean ± std 0.094 ± 0.020 0.154 ± 0.031

Table 8: SMSE of interpolation of both models. Noise var: variance of white noise. Miss data: all child:
the missing data is in all children, one child: the missing data is on one of the children. MOHGP model
constructed with ICM while MOA model constructed with LMC and restarting optimization 10 times. In
bold letter are highlighted the best results for both models and the average across tests.

test N obs. Miss data SMSE MOHGP SMSE MOA
test 1 10 all child 0.115 ± 0.008 0.172 ± 0.012
test 2 10 One child 0.105 ± 0.013 0.168 ± 0.021
test 3 20 All child 0.097 ± 0.009 0.169 ± 0.014
test 4 20 One child 0.093 ± 0.015 0.161 ± 0.032
mean ± std 0.102 ± 0.016 0.167 ± 0.008

Table 9: MSLL of interpolation of both models. Noise var: variance of white noise. Miss data: all child:
the missing data is in all children, one child: the missing data is on one of the children. MOHGP model
constructed with ICM while MOA model constructed with LMC and restarting optimization 10 times. In
bold letter are highlighted the best results for both models and the average across tests.

test N obs. Miss data MSLL MOHGP MSLL MOA
test 1 10 all child -0.342 ± 1.656 -0.911 ± 0.039
test 2 10 One child -0.854 ± 0.178 -0.942 ± 0.092
test 3 20 All child -0.490 ± 2.029 -0.927 ± 0.039
test 4 20 One child -0.771 ± 0.508 -0.971 ± 0.156
mean ± std -0.614 ± 0.414 -0.937 ± 0.044
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5.1.2 MOCAP Data

The data from the CMUMOCAP database3 consists on a set of signals, each one of them representing
a degree of freedom (DoF) of one of the joints from the skeleton of the MOCAP subject. Thus, the
skeleton is formed by sixty two outputs grouped in twenty nine joints. Assuming that for each subject
N frames are taken, the size of the kernel matrix will be proportional to (DoF × N × subjects)2.
Thus, each time we add a subject to the hierarchy this matrix grows to a size which can be heavy
in terms of memory. It was decided then to use only a two layer hierarchy, and for the case of
interpolation only three subjects were processed and several DoF from some joints considered noisy
were removed using the signal to noise ratio (SNR) as criterion. Thus, if the log of SNR was
negative the signal was considered noisy. Other joints were manually rejected for interpolation such
as Clavicle, Fingers, Wrists, Hand center, Thumbs and Toes.

By manually rejecting some joints and removing some of the noisy DoF the amount of outputs was
reduced from 62 to 39. Besides the constant signals were eliminated, given that these signals were
not giving any information. For the interpolation tests one type of motion was selected, for the
case, walking. For this kind of motion, subject 2 and 7 were chosen to use the motions 1,2 and 2
respectively. Subsequently, the pair subject and motion will be referred here by the notation X(Y ),
where X refers to the subject and Y to the particular motion. Also a time for subsampling was set
in order to optimize the memory used. The minimum amount of total subsamples achieved was 90
in order to visualize appropriate motion.4 The data is normalized before the training process using
min max normalization.

Kernel selection Given that the objective of this work is test the performance of the hierarchical
model rather than looking for a good kernel for extracting correlations, a Matern32 kernel was used.
For the case of the hierarchical model this kernel was used both in the first and second layers.
Additionally a white noise was added to the Matern32 kernel used in the second layer. For the MOA
model the sum of the Matern32 and white noise kernel was also used.

Cross Validation A cross validation was made for measuring the prediction accuracy of the
hierarchical model(MOHGP) and the simple multiple output model(MOA). The interpolation was
made over one of the subjects, conditioning to the information given by the other two. Thus, for
all the joints of that subject several input time points were taken as observed and the remaining
ones used to predict. Five different sets of Observed/predict time points were chosen on each
output for that subject. The mean and standard deviation of the prediction for several amounts of
observed/predict points were condensed in tables 10 and 11.

3The CMU Graphics Lab Motion Capture Database was created with funding from NSF EIA-0196217
and is available at http://mocap.cs.cmu.edu

4Frame intervals where chosen for the walking motion. For 2(1), 2(2), 8(7) and 7(2) frames [0, 298]. For
10(5), 10(6) and 11(1) frames [0, 436], [130, 566] and [130, 566] respectively
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Table 10: Walking: Accuracy performance of interpolation over 2(1) MOHGP(Matern 32 + White Noise)
plus/minus 2 standard deviations. N obs: Number of observed time points of subject 2(1). In bold letter is
highlighted the average across tests plus/minus 2 standard deviations.

N obs MSE SMSE MSLL
40 0.004 ± 0.001 0.050 ± 0.015 -2.005 ± 0.156
30 0.006 ± 0.002 0.078 ± 0.032 -1.768 ± 0.177
20 0.013 ± 0.002 0.156 ± 0.029 -1.409 ± 0.212
10 0.032 ± 0.011 0.384 ± 0.135 -0.723 ± 0.196
mean ± std 0.0137 ± 0.022 0.167 ± 0.262 -1.476 ± 0.967

Table 11: Walking: Accuracy performance of interpolation over 2(1) MOA (Walking): (Matern 32 + White
Noise) plus/minus 2 standard deviations. N obs: Number of observed time points of subject 2(1). In bold
letter is highlighted the average across tests plus/minus 2 standard deviations.

N obs MSE SMSE MSLL
40 0.064 ± 0.002 0.771 ± 0.028 0.164 ± 0.033
30 0.070 ± 0.004 0.841 ± 0.034 0.222 ± 0.036
20 0.075 ± 0.006 0.899 ± 0.047 0.269 ± 0.053
10 0.080 ± 0.003 0.967 ± 0.022 0.338 ± 0.027
mean ± std 0.072 ± 0.011 0.869 ± 0.144 0.248 ± 0.127

The results showed that the MOHGP model is better for interpolation of the walking motion given
that outperforms the MOA model in each one of the tests. No additional tests were added given
that all the models trained in the cross validation took several days to train. However, further tests
are suggested to use different kind of motions.

5.2 Synthesis

In this section the results for the new synthesized artificial/MOCAP samples are showed. Initially
is required to make some remarks about the synthesis process given that are several ways to sample
from the proposed model (MOHGP) and from the model to be compared with (MOA). The same
process used in 5.1.1 is used here to generate the observations for training. The performance measures
used here are the ones defined in section 4.3 applied for both artificial and MOCAP data.

Synthesis Process MOHGP The process for synthesizing new samples from a trained
MOHGP model is based in the generative model in equation (16), however for this case the function
gn is not generated from the parent process directly but rather is first inferred from the observed
data and then is used as mean of the children process to generate the samples.

Synthesis Process MOA For multiple output model there is no hierarchical structure as in
the proposed model, however one can see that the covariance matrix computed with this model is
analogous to the covariance matrix of the children process of the proposed model which uses as mean
the underlying trend of the data. Thus, to compute the underlying trend for the case of MOA there
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are two possible ways, one is to average each output across all the observed data, and the other one
is to use the GP to predict all the outputs given the observations. In this case the second approach
was used.

Note: The similarity measures presented in this work in order to establish the quality of the
synthesis were proposed by the authors as a quick way to check if the samples generated by some
random process were similar to the real samples different from the training set but from the same
phenomena. Thus, some clarifications about the results obtained in these sections are made in
the appendix A.4. It is recommended for the reader to review these clarifications before going
forward. The reader should be aware that the main objective of this work is not to establish
effective correlation measures between motions.

5.2.1 Artificial Data

The data for training was properly generated as explained before in section 5.1.1, nevertheless the
coregionalization matrices were slightly modified to add more correlation on the outputs and the
amount of inputs was reduced to thirty points. After this, both models were trained and used
to generate samples using the process explained in the beginning of this section. As well as in
the interpolation section the tests were made varying almost the same parameters, noise variance,
amount of outputs and number of observations. In tables 12 and 13 the performance measures
defined in this section are shown for both models. The control model is made in order to assure that
the correlations measures makes sense, see section A.4.1.

Table 12: MCC of synthesis by the models under different noise levels. noise var: variance of white noise, n
out: number of outputs of the observed children, N. child: number of observed children. In bold letter are
highlighted the best results for both models and the average across tests.

test noise var n out N. child MCC MOHGP MCC MOA Control
test 1 0.001 3 5 10.571 ± 0.875 9.931 ± 0.826 7.119 ± 0.728
test 2 0.001 6 6 9.892 ± 0.797 9.264 ± 0.753 7.522 ± 0.692
test 3 0.001 3 10 10.719 ± 0.898 9.481 ± 0.772 7.119 ± 0.728
test 4 0.01 3 5 10.569 ± 0.882 9.578 ± 0.795 7.144 ± 0.811
test 5 0.01 6 6 9.971 ± 0.821 9.188 ± 0.745 7.494 ± 0.704
test 6 0.01 3 10 10.685 ± 0.932 9.850 ± 0.590 7.183 ± 0.827
test 7 0.1 3 5 9.952 ± 1.003 9.554 ± 0.800 7.136 ± 0.945
test 8 0.1 6 6 9.627 ± 0.782 8.981 ± 0.750 7.494 ± 0.704
test 9 0.1 3 10 9.994 ± 1.015 9.363 ± 0.965 7.246 ± 0.938
mean ± std 10.220 ± 0.775 9.465 ± 0.576 7.273 ± 0.334
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Table 13: MLC of synthesis by the models under different noise levels. noise var: variance of white noise, n
out: number of outputs of the observed children, N. child: number of observed children. In bold letter are
highlighted the best results for both models and the average across tests.

test noise var n out N. child MLC MOHGP MLC MOA control
test 1 0.001 3 5 0.870 ± 0.084 0.736 ± 0.072 -0.117 ± 0.089
test 2 0.001 6 6 0.796 ± 0.117 0.625 ± 0.105 -0.069 ± 0.061
test 3 0.001 3 10 0.886 ± 0.104 0.652 ± 0.070 -0.117 ± 0.089
test 4 0.01 3 5 0.874 ± 0.086 0.687 ± 0.067 -0.114 ± 0.089
test 5 0.01 6 6 0.809 ± 0.090 0.603 ± 0.075 -0.020 ± 0.038
test 6 0.01 3 10 0.890 ± 0.099 0.674 ± 0.067 -0.114 ± 0.088
test 7 0.1 3 5 0.830 ± 0.087 0.652 ± 0.070 -0.111 ± 0.091
test 8 0.1 6 6 0.763 ± 0.074 0.561 ± 0.055 -0.020 ± 0.038
test 9 0.1 3 10 0.842 ± 0.095 0.655 ± 0.069 -0.067 ± 0.062
mean ± std 0.846 ± 0.088 0.649 ± 0.094 -0.083 ± 0.077

The results condensed in tables 12 and 13 show that the proposed model performs better than the
simple multiple output model for generating new samples similar to the artificially generated data.
For example the linear correlation between samples generated from the hierarchical model and the
real ones are almost one, which is a great evidence that the samples are drawn correctly according
to the model used to generate data. However it must be remarked that given the synthesis process
described before, involving the prediction of the underlying tendency first, both models were almost
equally successful in this matter, see figure 6 illustrating the underlying trend prediction by both
models in one of the tests.

5.2.2 MOCAP Data

For real data several MOHGP models and MOA models were properly trained for different kinds of
motions. As well as in the interpolation part the walking motion was chosen here. Besides, other
motions were chosen, such as, walking exaggerated and soccer shooting. The same process for joint
rejection was used. For the Walking exaggerated motion subject 2, 7 and 8 were chosen to use
the motions 1,2 and 7 respectively. The latter walks with an exaggerated stride. For the soccer
shooting motion were chosen subjects 10 and 11, choosing the motions 5, 6 and 1. As well as in
the interpolation 90 subsamples were extracted for each training subject. 5 In a first scenario the
training of the models was made similarly as in the interpolation part, taking three subjects and
sub sampling them to process only ninety out of the total frames. However a preliminary visual test
for walking showed that the sampled motions generated with this scheme were not close to a real
walking motion. This preliminary test was made using three subjects walking for training, and a
kernel using only an ICM.

5For this additional motions the following frames were chosen: For walking exaggerated subjects 2(1), 8(7)
and 7(2) frames [0, 298]. For soccer shooting 10(5), 10(6) and 11(1) frames [0, 436], [130, 566] and [130, 566]
respectively
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(a) MOHGP synthesis test 1, 3 outputs, 10 children
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(b) MOA Synthesis Test 1, 3 outputs, 10 children

Figure 6: Underlying trend prediction by both models, MOHGP and MOA. Blue: Prediction, Red: Real
parent signal

Table 14: Walking: MCC and MLC comparison of synthesis. Two versions of the proposed model. Ver 1:
ICM for the multiple output kernel, ver 2: LMC for the multiple output kernel, in this case a sum of 3 ICM.
In bold letter are highlighted the best results for both models and the average across tests.

Test subject MCC ver 1 MCC ver 2 MLC ver 1 MLC ver 2
subject 12(1) 20.740 ± 1.117 21.131 ± 0.853 0.003 ± 0.104 0.055 ± 0.078
subject 16(15) 21.570 ± 1.150 24.710 ± 0.820 0.007 ± 0.076 0.437 ± 0.048
subject 38(2) 21.182 ± 1.041 18.914 ± 0.774 0.055 ± 0.072 -0.238 ± 0.064
subject 35(1) 22.546 ± 1.257 25.248 ± 0.898 0.025 ± 0.091 0.399 ± 0.051
subject 39(4) 21.787 ± 1.352 24.187 ± 0.743 0.063 ± 0.102 0.392 ± 0.056
mean ± std 21.565 ± 1.213 22.838 ± 4.854 0.031 ± 0.049 0.209 ± 0.526

Table 15: Walking: MCC and MLC comparison of synthesis of both models. In bold letter are highlighted
the best results for both models and the average across tests. In red letter are highlighted the worst results
of MOHGP against MOA.

Test subject MCC MOHGP MCC MOA MLC MOHGP MLC MOA
subject 12(1) 21.131 ± 0.853 20.725 ± 2.227 0.055 ± 0.078 0.027 ± 0.211
subject 16(15) 24.710 ± 0.820 22.373 ± 1.620 0.437 ± 0.048 0.163 ± 0.120
subject 38(2) 18.914 ± 0.774 20.101 ± 1.738 -0.238 ± 0.064 -0.064 ± 0.204
subject 35(1) 25.248 ± 0.898 23.082 ± 1.686 0.399 ± 0.051 0.147 ± 0.156
subject 39(4) 24.187 ± 0.743 22.073 ± 1.561 0.392 ± 0.056 0.143 ± 0.152
mean ± std 22.838 ± 4.854 21.671 ± 2.192 0.209 ± 0.526 0.083 ± 0.176

In Table 14 the synthesis performance measures are made for two hierarchical model versions. The
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first version of the model was trained with subjects 2(1), 2(2) and 7(2) and was made as explained
before, with an ICM. The second version was made with only two subjects, 2(1) and 2(2), for
the training part and a LMC for the output correlation. Here the LMC was constructed as the
sum of several ICM. The results show that increasing the amount of ICM kernels helps to improve
the synthesis process. In figure 8 the motion sequence for a synthesized subject with the model
presented here is shown, for the case the amount of time points remained the same. The outputs
signals rejected before the training are properly assembled for visualization purposes. There are
implementation constraints in terms of memory that made difficult an implementation using more
training subjects. In section 7 this issue is further discussed.

The results in table 14 show that the second version of the model is better in average for all the test
subjects. Also, and more importantly according to the criteria in section A.4.2 in the best case is
much better than the first version. The test subjects were chosen from the same MOCAP database,
for the case of walking they are completely different from the ones used for training.6 However
in subject 38(2) the first version is better, this can be explained because this subject exhibits a
walking behaviour in which the hands remained static, and the subjects generated from the first
model version have usually a motion with and static-like behaviour, an example of this can be seen
in figure 7.

Figure 7: Example of a MOCAP sample from the first hierarchical model version with ICM. the generated
subject exhibits an static-like walking behaviour, even if it moves some of the limbs.

Figure 8: Example of a sample from the proposed model for walking motion.

After realizing that the synthesis process improved using and LMC instead of an ICM, the LMC was
used as the appropriate multiple output correlation modelling for the techniques compared here. In
table 15 the results for synthesize walking motion are compared between the MOHGP model and
the MOA, in this both training subjects are 2(1) and 2(2). The results for walking exaggerated
are condensed in table 16. In this case the same subjects used for walking motion were used, given
that the only subject(motion) walking with an exaggerated stride was the 8(7). Thus, the training
subjects are 2(1) and 8(7). In this case one will expect the generated subjects to be moving between

6All these subjects were used in frames [0, 358] with only 90 samples
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an exaggerated and a normal way. Finally in table 17 the results for soccer shooting are shown7, for
this case the training subjects are 10(5) and 10(6). It was ensured that the motion in both cases
started closely at the same time, the same was ensured for all the other analyzed motions.

Table 16: Walking Exaggerated: MCC and MLC comparison of synthesis for both models. In bold letter are
highlighted the best results for both models and the average across tests. In red letter are highlighted the
worst results of MOHGP against MOA.

Test subject MCC MOHGP MCC MOA MLC MOHGP MLC MOA
subject 12(1) 19.943 ± 1.002 20.381 ± 1.737 0.055 ± 0.078 -0.032 ± 0.159
subject 16(15) 24.330 ± 1.180 22.635 ± 1.080 0.437 ± 0.048 0.187 ± 0.102
subject 38(2) 19.723 ± 1.097 20.400 ± 1.506 -0.238 ± 0.064 -0.048 ± 0.179
subject 35(1) 25.134 ± 1.311 23.414 ± 1.178 0.399 ± 0.051 0.174 ± 0.128
subject 39(4) 24.090 ± 1.186 22.205 ± 1.097 0.392 ± 0.056 0.161 ± 0.118
mean ± std 22.644 ± 4.644 21.807 ± 2.440 0.189 ± 0.519 0.088 ± 0.211

Table 17: Soccer Shooting: MCC and MLC comparison of synthesis for both models. In bold letter are
highlighted the best results for both models and the average across tests. In this case, the best are different
from the training subjects. In red letter are highlighted the worst results of MOHGP against MOA.

Test subject MCC MOHGP MCC MOA MLC MOHGP MLC MOA
subject 10(5) 27.068 ± 0.933 25.541 ± 2.812 0.530 ± 0.064 0.378 ± 0.212
subject 10(3) 23.689 ± 1.021 23.377 ± 2.242 -0.035 ± 0.075 0.001 ± 0.111
subject 10(2) 24.776 ± 0.958 23.806 ± 2.726 0.221 ± 0.075 0.165 ± 0.203
subject 10(6) 25.851 ± 0.875 24.500 ± 2.389 0.428 ± 0.065 0.298 ± 0.171
subject 11(1) 26.085 ± 0.971 24.984 ± 2.941 0.389 ± 0.067 0.297 ± 0.219
mean ± std 25.494 ± 2.321 24.442 ± 1.560 0.307 ± 0.396 0.228 ± 0.265

The overall results shown that the proposed model is much better generating subjects (according to
the criteria defined in A.4.2), in figures 9 and 10 two of the subjects generated by the hierarchical
model for each one of the remaining motions is shown as an image sequence. Some of the results for
the proposed model were highlighted in red. These results corresponds to the low performance test
of the MOHGP model against the MOA model. In section 7 these results are further discussed.

Figure 9: Example of a sample from the proposed model for walking exaggerated motion.

7There was not enough subjects of soccer shooting to compare here. 10(5) taken at frames [0, 232],
10(3), 10(2), 10(6) and 11(1) taken at frames [130, 362]
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Figure 10: Example of a sample from the proposed model for soccer shooting motion.

5.2.3 Parent and children process

Like in figures 6a and 6b the underlying trend was shown for one of the tests, it is also interesting
to see the estimated parent and children process by the hierarchical model extension proposed here.
For the case one experiment was performed in order to ilustrate the performance of the proposed
model in recovering the process used to generate the artificial data. Thus, the artificial data was
generated using the same process as in section 5.1.1. However, the coregionalization matrices were
forced to have only random values between 0 and 1 in order to force a bigger correlation between
outputs. The white noise added to children kernel was left with value of 0.001.

After generating the data, the MOHGP model and the MOA model were properly trained, each
training process was restarted 10 times. in 11a, 11b and 11c the covariance matrices for the children
process are shown. One can see that the proposed model recovers a covariance more similar to the
real that the one recovered by the MOA model.
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Figure 11: (a) Covariance of the children process to generate the artificial data. (b) Covariance of the children
process estimated by the proposed model (MOHGP). (c) Covariance of the children process estimated by the
model used to compare (MOA).

For the parent process, only the covariance estimated by the proposed model is shown. This is due to
fact that the MOA model only has one kernel involved. In this case the covariance is directly related
to the children, given that initially there is no parent/children structure defined in this model. In

Gil López, Juan David 35



Master Thesis: 5.2 Synthesis

0 20 40 60 80

0

20

40

60

80

Parent covariance Real

0

1

2

3

4

5

6

7

8

9

10

(a)

0 20 40 60 80

0

20

40

60

80

Parent cov estimated MOHGP

0

1

2

3

4

5

6

7

8

9

10

(b)

Figure 12: (a) Covariance of the parent process to generate the artificial data. (b) Covariance of the parent
process estimated by the proposed model (MOHGP).

figure 12a and 12b the covariances matrices for the parent process are presented. However, the
estimation of the parent covariance made by the proposed model seems poor in relation to the
children process. In that sense the training of the MOHGP model was repeated and restarted more
times in order to see if better results were obtained. In figure 13a and 13b the real parent covariance
and the estimated one after restarting the training process thirty times to keep the best value are
shown.
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Figure 13: (a) Covariance of the parent process to generate the artificial data. (b) Covariance of the parent
process estimated by the proposed model (MOHGP) after restarting training 30 times to keep the best value.

One can see that there is no much difference between the estimation of the parent process illustrated
in figure 12b and the one in figure 13b. Thus, the experiments made in this section for synthesis
with artificial data were made training the models with ten times of multiple restarts. In the case
of MOCAP data only one cycle of optimization was performed. The reason for this the considerable
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amount of time taken for training a hierarchical model. However, and how it was reported in the
section before, the results were satisfactory with this scheme.

5.2.4 Coregionalization Matrices over MOCAP data

As a matter of illustration and analysis it is important also to show the coregionalization matrices
estimated by the training procedure. These matrices encode the correlations between the outputs
used to train the model. Thus, these matrices can give some insights about the strong, weak or
absence of dependencies between the outputs, in these case the body joints. For the case, the
estimated matrices for the walking process are shown. Given that the multiple output model used
for training that model was the LMC as the sum of three ICMs, the estimated matrices are six for
both parent and child process in the case of the hierarchical model, and three in the case of the
MOA model.

In figure 14 all the six coregionalization matrices estimated for both the parent an children process
are presented. In this image one can see initially that the correlations captured by the children
process are more uniform that in the case of the parent process. One can conclude that all the
correlations captured by the children process are negative instead of those in the main diagonal.
The parent process captures more positive values, exhibing strong positive correlations between
some of the outputs and exhibing more insteresting patterns to analyze.

For example in figure 14b the coregionalization matrix Bg2 is shown. while this matrix show weaker
positive and negative correlations between almost all of the outputs, exhibits big correlations between
the first four outputs which are related with the root joint of the MOCAP skeleton. In this case, the
root is located in the center of the body, so one will expect that a change in one of the DoF of this
joint will affect other ones as well. However is interesting to see that in the other coregionalization
matrices the correlations between those outputs are weaker. This can be explained by the fact that
the LMC assumes that different dependencies between the outputs can be happening. Thus, while
in one of the coregionalization matrices some joints exhibit a weaker correlation in other ones can
be stronger.

Given that a big correlation was observed between the root joints of the body, one will expect
also that several joints attached to the same limb to have big correlations. That is the case of the
coregionalization matrices in figure 15 in which the correlations between the outputs of the left leg
are shown. It is interesting to see that almost all the correlation values imply strong and weak
correlations and almost all negative. In this case the left leg joints are two: the left femur (first tree
rows), the left tibia (fourth row) and the left foot (fifth row). In this case the mixture of negative
correlations and positive correlations can be explained by the fact that when the leg is stretching
to walk, the angle of the femur with respect to the root decreases while the angle of the tibia with
respect to the knee increases, and this relation changes when the leg retracts itself again. Again, the
LMC helps to model different dependencies, that is why probably the synthesis process with ICM
was not succesfull as it was presented in figure 7.

Thus, regarding the body limbs with apparently no direct correlation are expected to have weaker
correlations. That is the case of the coregionalization matrices represented in figure 16. One can
notice that most of the values have low correlations values and in several cases like in figure 16c
values equal to zero. However in figure 16f an strong negative correlation is detected.
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Figure 14: (a)(b)(c) Parent process coregionalization matrices Bg1,Bg2 and Bg3 estimated from the walking
motion data. (d)(e)(f) Child process coregionalization matrices Bf1,Bf2 and Bf3 estimated from the walking
motion data.
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Figure 15: (a)(b)(c) Parent Coregionalization submatrices, the correlations presented are between the outputs
of the left leg. (d)(e)(f) Children Coregionalization submatrices, the correlations presented are between the
outputs of the left leg.

Gil López, Juan David 39



Master Thesis: 5.2 Synthesis

0 1 2 3 4 5

left leg

0

1

2

3

4

5

H
e
a
d

head vs left leg

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
Parent coregion submatrix 1

(a)

0 1 2 3 4 5

left leg

0

1

2

3

4

5

H
e
a
d

head vs left leg

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
Parent coregion submatrix 2

(b)

0 1 2 3 4 5

left leg

0

1

2

3

4

5

H
e
a
d

head vs left leg

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
Parent coregion submatrix 3

(c)

0 1 2 3 4 5

left leg

0

1

2

3

4

5

H
e
a
d

head vs left leg

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
Child coregion submatrix 1

(d)

0 1 2 3 4 5

left leg

0

1

2

3

4

5

H
e
a
d

head vs left leg

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
Child coregion submatrix 2

(e)

0 1 2 3 4 5

left leg

0

1

2

3

4

5

H
e
a
d

head vs left leg

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
Child coregion submatrix 3

(f)

Figure 16: (a)(b)(c) Parent Coregionalization submatrices, the correlations presented are between the outputs
of the head and the left femur. (d)(e)(f) Children Coregionalization submatrices, the correlations presented
are between the outputs of the head and the left femur.

Gil López, Juan David 40



Master Thesis: Experimental Results Summary

6 Experimental Results Summary

In this section the error bar plots from each one of the experiments. The reader can verify that the
presented model (MOHGP) has a clear trend to overcome the multiple output simple model used
here to compare (MOA).

6.0.1 Results over interpolation

The results of the interpolation experiments are shown in this section, each page has three plots.
The MSE, SMSE and MSLL with a 95% confidence interval by test.
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Figure 17: Results of interpolation (from tables 1, 2 and 3): Experiment one on artificial data. (a) MSE of
the prediction over one of the subjects with an interval of 95% confidence. (b) SMSE of the prediction over
one of the subjects with an interval of 95% confidence. (c) MSLL of the prediction over one of the subjects
with an interval of 95% confidence.
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Figure 18: Results of interpolation (from tables 4, 5 and 6): Experiment two on artificial data with MOA
tuned. (a) MSE of the prediction over with an interval of 95% confidence. (b) SMSE of the prediction with
an interval of 95% confidence. (c) MSLL of the prediction with an interval of 95% confidence.
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Figure 19: Results of interpolation (from tables 7, 8 and 9): Experiment three on artificial data with MOA
tuned. (a) MSE of the prediction with an interval of 95% confidence. (b) SMSE of the prediction with an
interval of 95% confidence. (c) MSLL of the prediction with an interval of 95% confidence.
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Figure 20: Results of interpolation (from tables 10 and 11): Walking. Four tests were performed changing
the amount of observed points. (a) MSE of the prediction over one of the walking subjects with an interval
of 95% confidence. (b) SMSE of the prediction over one of the walking subjects with an interval of 95%
confidence. (c) MSLL of the prediction over one of the walking subjects with an interval of 95% confidence.
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6.0.2 Results over Synthesis

The results of the synthesis experiments are shown in this section. The first two plots correspond
to the tests with artificial data, the next six plots correspond to the tests with real data. Here we
measure the MCC and MLC of MOHGP and MOA within an interval of 95% confidence for the best
matched subject against the control model.
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Figure 21: Results of synthesis (from tables 12 and 13): Experiment one with artificial data, varying several
parameters to generate children. (a) MCC of the generated samples against the toy model ones in a 95%
confidence interval. (b) MLC of the generated samples against the toy model ones in a 95% confidence
interval.
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Figure 22: Results of Synthesis (from table 14): Walking. 25 samples were extracted from each model and
compared against the real walking subjects. Only the real subjects with the best correlation measure are
shown in the plot. (a) MCC of the generated samples against the real ones with an interval of 95% confidence.
(b) MLC of the generated samples against the real ones with an interval of 95% confidence.
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Figure 23: Results of Synthesis (from table 15): Walking Exaggerated. 25 samples were extracted from each
model and compared against the real walking subjects. Only the real subjects with the best correlation
measure are shown in the plot. (a) MCC of the generated samples against the real ones with an interval of
95% confidence. (b) MLC of the generated samples against the real ones with an interval of 95% confidence.
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Figure 24: Results of Synthesis (from table 16): Soccer Shooting. 25 samples were extracted from each model
and compared against the real soccer shooting subjects. Only the real subjects with the best correlation
measure are shown in the plot. (a) MCC of the generated samples against the real ones with an interval of
95% confidence. (b) MLC of the generated samples against the real ones with an interval of 95% confidence.
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7 Conclusions and future work

Here a multiple output model was presented as an extension to an existing model for the analysis of
observed data to be pressumed to have a replicate structure underneath. Even though the extension
of the model involves the addition of Linear Coregionalization Models for the output wise correlation
modelling, the extension of the hierarchical model keeps its simplicity, which is demonstrated in
appendix A.2. Also the results condensed in section 5 show that the proposed model when is
applied to the MOCAP data-set successfully reconstructs missing data (interpolation) given the
information of the other subjects used for training, being better than the simple multiple output
model (MOA). This is possible thanks to the structure in which the hierarchical model is defined
and that it seems to be a valid assumption for motion data.

A parameter estimation procedure was also derived for the proposed model, for the case, the
parameters that best fit the model are the ones that maximizes the model likelihood. The derivatives
of the model likelihood with respect to each one of the model parameters were generally derived
algebraically simplifying the expressions. This lead to a simple computation of the gradient for the
model likelihood explained in appendix A.3. Thus, a gradient based optimization algorithm was
used in this case to make the optimization of the likelihood function, several toolboxes have this
kind of implementations, in this work the GPy library 8 for GPs was used.

One of the more interesting and widely studied problems related with computer-based human
animation is the one related with synthesis or generating new motions. First it has to be remarked
that the model presented here is a purely data-driven model, no physically inspired prior assumptions
were made to train nor the proposed model or the MOA model used to compare. Also, to synthesize
new motions, all the models were trained with only two subjects. As showed in the results section
using three subjects limited the amount of ICMs used in the parent and children kernels respectively,
which limited the behaviour of the signals generated by the model, in some cases generating only
static skeletons with no motion involved. Using more ICMs and less subjects was an acceptable way
to generate more subjects moving more similar to a human motion.

Several works related with synthesis validate the performance of their synthesis visually rather than
in a quantifiable way, despite the fact that a visual evaluation is valuable, even more when an expert
is involved, it was valuable also in the setting presented here to count with a quantifiable measure
to give an intuition about how much a model was better than other ones. Thus, the MCC and
MLC were defined in section 4.3. The results shown that the visual validation and the quantifiable
validation here defined are correlated in much of the cases for MOCAP data. in section A.4 some
clarifications were made about those correlation measures. The overall conclusion regarding this
issue is that more research must be done in order to define a proper correlation measure between
the subjects.

The hierarchical model was superior than the MOAmodel for all the performance measures. However
in the interpolation part, two tests were made in which the log loss was better or equal for the MOA
model over artificial data. This is explained by the fact that the hierarchical model assumes that
the children deviate from the parent by some amount, however those tests were made using a high
noise variance for each children and giving advantage to the MOA model in the training part. Also,
the over confidence of prediction of the hierarchical model for those tests was penalized by the log
loss given the high noisy training examples.

8GPy is a Gaussian Process (GP) framework written in python, from the Sheffield machine learning group.
Website: http://sheffieldml.github.io/GPy/
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For synthesis there are still challenges to generate more realistic motions, some of the generated
subjects with the proposed model and specifically in the case of soccer shooting and walking
exaggerated motion have some behaviours that do not correspond to an adequate human motion.
For example, sometimes the knee bends in an opposite manner to the motion constraints, also there
are some generated samples that exhibit a dissonance between the movement of the arms and the
movement of the legs. One example of that can be noticed in figure 9, the left leg stretches in an
exaggerated manner while the right leg does not, this is related maybe to the fact that one of the
training subjects for this generated motion is walking in an exaggerated manner while the other one
is walking in a normal way.

Future Works The issues explained in the last paragraph justify the search of several solutions
to overcome those challenges that can be tackled in future endeavours. The challenges are listed
and explained as follows:

• Memory constraints: As explained before, the memory available for the model training
process is limited, for this case only three subjects were used as maximum for training with an
ICM for the multiple output modelling, also was possible to use only two subjects and increase
the amount of ICM to have an LMC for the multiple output modelling, being capable then
of synthesizing more realistic motions. However this constraint can be overcome developing
a Sparse GP version of the model presented here, which is perfectly possible, and in the
literature there are several methods that perfectly fits in this scheme. Another possibility is
to try a distributed strategy for GPs.

• More realistic and stylistic motions: This issue can be overcome solving the first one
given that the more subjects able to be added to the hierarchical model the more variance can
be captured and the more accurate the optimization will be to fit the parameters of the model.
In addition, this model could be combined with physically inspired prior assumptions through
the covariance functions, in [49] there is an example of how to combine physical assumptions
with Gaussian Process for human motion data.

• Deeper hierarchies: More layers can be added to the model presented here if the first
challenge is overcame. Thus, different kinds of motions, like walking and running can be
processed in the same hierarchy leading to predict a underlying trend between these different
kind of movements and learning a generative model for motion styles combining the features
of walking, running, and so on.

• Other applications: The model presented here can be applied in other kind of applications
also related with computer graphics. For example for human face character generation. One
might think in taking several realizations of human facial expressions from the same kind, like
laughing, then train a hierarchical model for this data and finally try to generate different
kind of laughing expressions given the information learned from the other faces.
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A Appendix

A.1 Single Output Hierarchical GP Likelihood Demonstrations

Two points t and t′ in the same child signal are jointly Gaussian distributed with zero mean and
covariance kg(t, t′) + kf (t, t′), which can be shown in the following way:

According to the generative model in equation (5) one can describe the signal in the time t and in
the time t′ as :

fnr(t) ∼ gn(t) + GP(0, kf (t, t)),

fnr(t
′) ∼ gn(t′) + GP(0, kf (t′, t′)).

(27)

at the same time gn(t) ∼ GP(0, kg(t, t
′)). Thus the joint distribution of fnr(t) and fnr(t′) is given

by:

p(fnr(t), fnr(t
′)) = GP(0,Kg) + GP(0,Kf ), (28)

where Kg and Kf is the covariance matrices between the input points t and t′. It is evident
that the expected value of the joint distribution above is equal to the zero mean vector. Also is
straightforward to see that by the properties of the Gaussian the covariance of the joint distribution
is given by Kg + Kf . Nevertheless one can show this property using the procedure below:

Defining gn ∼ GP(0,Kg) and hnr ∼ GP(0,Kf ), gn(t) as the first entry of gn, gn(t′) as the second
entry of gn, hnr(t) as the first entry of hnr and hnr(t) as the first entry of hnr the covariance of the
joint distribution of fnr(t) and fnr(t′) can be written as:

cov[fnr(t), fnr(t
′)] = cov[gn(t) + hnr(t), gn(t′) + hnr(t

′)]

= cov[gn(t), gn(t′) + hnr(t
′)] + cov[hnr(t), gn(t′) + hnr(t

′)]

= cov[gn(t′), gn(t)] + cov[hnr(t
′), gn(t)] + cov[gn(t′), hnr(t)] + cov[hnr(t

′), hnr(t)]

= cov[gn(t′), gn(t)] + cov[hnr(t
′), hnr(t)]

= kg(t, t
′) + kf (t, t′)

(29)

For the case hnr(t
′) and gn(t) are generated independently as well as hnr(t) and gn(t′) so

cov[hnr(t
′), gn(t)] = cov[gn(t′), hnr(t)] = 0. It is straightforward to see that the mean of the joint

distribution of two points from different replicates is equal to zero only changing the left side of
equation (28) to p(fnr(t), fnr′(t′)), now the points are from different replicates. Furthermore the
covariance can be derived using a similar procedure like the one above:
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cov[fnr(t), fnr′(t
′)] = cov[gn(t) + hnr(t), gn(t′) + hnr′(t

′)]

= cov[gn(t), gn(t′) + hnr′(t
′)] + cov[hnr′(t), gn(t′) + hnr′(t

′)]

= cov[gn(t′), gn(t)] + cov[hnr′(t
′), gn(t)] + cov[gn(t′), hnr′(t)] + cov[hnr′(t

′), hnr(t)]

= cov[gn(t′), gn(t)]

= kg(t, t
′)

(30)

For the case hnr′(t′) and hnr(t) are generated independently, despite of the fact they have the same
mean, thus cov[hnr′(t

′), hnr(t)] = 0.

A.2 Multiple Output Hierarchical GP Likelihood Demonstrations

For the model proposed in this work two points t and t′ in the same child signal Ynr are jointly
Gaussian distributed with zero mean and covariance Kg(t, t

′) + Kf (t, t′), which can be shown in the
following way:

According to the generative model in equation (16) one can describe the signal in the time t and in
the time t′ as:

fnr(t) ∼ gn(t) + GP(0,Kf (t, t′)),

fnr(t
′) ∼ gn(t′) + GP(0,Kf (t, t′)).

(31)

In this case we have a vector valued function fnr at time t and at time t′. Notice that at same time
gn(t) ∼ GP(0,Kg(t, t

′)). Thus the joint distribution of fnr(t) and fnr(t
′) is given by:

p(fnr(t), fnr(t
′)) = GP(0,Kg) + GP(0,Kf ), (32)

where Kg and Kf is the covariance matrix between the input points t and t′ and across all the
outputs. It is evident that the expected value of the joint distribution above is equal to the zero
mean vector. Also is straightforward to see that the covariance of the joint distribution is given by
Kg + Kf . Nevertheless one can show this property using the procedure below:

Defining the column vector ĝn ∼ GP(0,Kg) and the column vector ĥnr ∼ GP(0,Kf ), gn(t) as the
first half of ĝn, gn(t′) as the second half of ĝn, hnr(t) as the first half of ĥnr and hnr(t) as the second
half of ĥnr the covariance of the joint distribution of fnr(t) and fnr(t

′) can be written as:
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cov[fnr(t), fnr(t
′)] = cov[gn(t) + hnr(t),gn(t′) + hnr(t

′)]

= cov[gn(t),gn(t′) + hnr(t
′)] + cov[hnr(t),gn(t′) + hnr(t

′)]

= [cov[gn(t′),gn(t)] + cov[hnr(t
′),gn(t)]]> + [cov[gn(t′),hnr(t)] + cov[hnr(t

′),hnr(t)]]
>

= cov[gn(t′),gn(t)]> + cov[hnr(t
′),hnr(t)]

>

= Kg(t, t
′)> + kf (t, t′)>

For symmetry
= Kg(t, t

′) + Kf (t, t′)
(33)

For the case hnr(t
′) and gn(t) are generated independently as well as hnr(t) and gn(t′) so

cov[hnr(t
′),gn(t)] = cov[gn(t′),hnr(t)] = 0. It is straightforward to see that the mean of the

joint distribution of two points from different replicates is equal to zero only changing the left side
of equation (32) to p(fnr(t), fnr′(t′)), now the points are from different replicates. Furthermore the
covariance can be derived using the same procedure above:

cov[fnr(t), fnr′(t
′)] = cov[gn(t) + hnr(t),gn(t′) + hnr′(t

′)]

= cov[gn(t),gn(t′) + hnr′(t
′)] + cov[hnr′(t),gn(t′) + hnr′(t

′)]

= [cov[gn(t′),gn(t)] + cov[hnr′(t
′),gn(t)]]> + [cov[gn(t′),hnr′(t)] + cov[hnr′(t

′),hnr(t)]]
>

= [cov[gn(t′),gn(t)]]>

= Kg(t, t
′)

(34)

For the case hnr′(t
′) and hnr(t) are generated independently, despite of the fact they have the same

mean, thus cov[hnr′(t
′),hnr(t)] = 0.

A.3 Proposed Model: Gradients for the likelihood function (Two
layer hierarchy)

According to the proposed model likelihood (see equation (18)) the derivative of the log likelihood
w.r.t one of the parameters of the model is equal to

∂ log p(Yn | Tn,φφφ)

∂φi
= −1

2
ŷ>nΣ−1

n

∂Σn

∂φi
Σ−1
n ŷn −

1

2
tr

(
Σ−1
n

∂Σn

∂φi

)
. (35)

Thus the model likelihood derivative is reduced to compute the term ∂Σn

∂φi
which is the derivative

of the likelihood matrix w.r.t to the model parameters. The matrix derivative w.r.t to an scalar is
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equivalent to derive each element of the matrix w.r.t to the parameter φi in this case. However, to
simplify the computations an alternative representation of the matrix Σn is given by equation (36).

Σn = Σng + Σnf + ΣnΓ (36)

Where Σng is a block covariance matrix, with same size as Σn in which all the entries of this matrix
are equal to Kg(t, t

′), Σnf is a block covariance in which the block diagonal r = r′ is equal to Kf (t, t′)
all the other values left are equal to zero and finally ΣnΓ is equal to a diagonal matrix containing
the noise values {βd}Dd=1 for each one of the outputs of the observed child vector valued signals. In
figure 25 there is an explanation of the equivalent representation derived before in equation (36).

Figure 25: Graphical view of the alternative representation for the proposed model likelihood matrix Σn, in
this case the blank spaces are equal to zero, Σn in this diagram can be thought as an simplification of the
likelihood matrix specified in figure 3

.

Assuming there is only one covariance function for the input space, with its respective lenghtscale
and variance hyperparameters one can simplify the model parameters in φφφ as: the noise parameters
{βd}Dd=1, the variance parameters σgq and σfl of kgq and kfl respectively, the lenghtscale parameters
θgq and θfl and each one of the entries of the coregionalization matrices of each layer call them bdd

′

gq

and bdd′fl corresponding to the Bgq and Bfl respectively. The derivative for some of the parameters
will be further derived here assuming the altern representation for the likelihood matrix presented
before. Thus, the derivative of the likelihood matrix w.r.t to one of the hyperparameters of kgq, for
example the variance σgq, is computed as follows:
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∂Σn

∂σgq
=
∂Σng

∂σgq
+
∂Σnf

∂σgq
+
∂ΣnΓ

∂σgq

=
∂Σng

∂σgq
+ 0 + 0,

(37)

The only matrix here that has the interest terms σgq is the matrix Σng that is why the other matrix
derivatives are equal to 0. Thus, each element of the remaining matrix Σng will be of the form
bdd
′

gq kgq(t, t
′), so the derivative each element of ∂Σng

∂σgq
will be of the form

bdd
′

gq

∂kgq(t, t
′)

∂σgq
. (38)

In the same way the derivatives w.r.t to one of the parameters of the corregionalization matrix Bfl,
in this case bdd′fl , will be computed as

∂Σn

∂bdd
′

fl

=
∂Σng

∂bdd
′

fl

+
∂Σnf

∂bdd
′

fl

+
∂ΣnΓ

∂bdd
′

fl

= 0 +
∂Σnf

∂bdd
′

fl

+ 0,

(39)

the only matrix here with the interest terms is the second one. Thus, each element of the remaining
matrix Σnf will be of the form bdd

′

fl kfl(t, t
′) in the block diagonal (see figure 25), so the derivative

each element of ∂Σnf

∂σfl
will be of the form

∂bdd
′

fl kfl(t, t
′)

∂bdd
′

fl

= kfl(t, t
′). (40)

It is quite straightforward to show that ∂Σn

∂βd
is a zero valued matrix except to the elements on the

diagonal containing βd which will be equal to one. This process is repeated for all the parameters of
the model until the gradient vector is completed, then it can be used in a gradient based optimization
algorithm.
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A.4 Discussion on synthesis evaluation measures

A.4.1 Discussion on synthesis measures over artificial data

Here we explain the process in which the reliability of the correlation measures was established
regarding the tests with artificially generated training data. Intuitively, one will expect that the
generated samples from the estimated models to be similar to the ones used to compare and created
from the real process, which are different from the training ones. Thus, a control model was added,
this model should be a different process from the one used to generate the training samples and the
estimated ones (MOA and MOHGP). The samples from this control model should have a different
correlation measure, in the case of the MCC to be lower than both MOA and MOHGP, and in the
case of MLC to have a value closer to zero or even negative.

This control test makes more sense here since one is able to control the parameters of the generator
process and the control test process. The things become different when the real MOCAP data is
used. That will be the topic of the next section.

A.4.2 Discussion on synthesis measures over MOCAP data

The case of real MOCAP data is different from the case of artificial data. This is due to the
fact that with artificial data one can have more control about the way in which the samples are
generated. Thus, when comparing with the control test, the correlation measures seem to work in
an acceptable way. However with the MOCAP data the things become difficult in the sense that the
real MOCAP subjects used to compare the generated ones can be very different between each other.
This difference can become in interpretations that initially can be counterintuitive if the measured
thing here is the similarity.

To better explain this last statement let us take five MOCAP subjects performing a walking motion
and five of them shooting a soccer ball. First, let us compute the correlation measures defined in
this work for each one of the subjects against each other. In table 18 and 19 the results for the MCC
(Mean Cross Correlation) and MLC (Mean Linear Correlation) are shown in the case of the walking
subjects.

Table 18: MCC between walking evaluation subjects
Test subject subj 12(1) subj 16(15) subj 38(2) subj 35(1) subj 39(4)
subj 12(1) 26.429 20.551 18.249 19.771 19.398
subj 16(15) 20.551 28.002 17.827 25.769 23.335
subj 38(2) 18.249 17.827 25.863 19.234 18.821
subj 35(1) 19.771 25.769 19.234 28.961 24.876
subj 39(4) 19.398 23.335 18.821 24.876 27.447

The diagonal in tables 18 and 19 shows the correlation measures of each subject against itself. Thus,
it makes sense to have a linear correlation equal to one in table 19. On the other hand the diagonal
in the table 18 can be interpreted as the desired value if one walking sample "wishes" to be similar
to that particular subject. However, in both tables the values of similarity to subject 12(1), for
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example, are not that close to the desired value. These fact does not mean that the other subjects
don’t walk in a realistic manner (they are the real samples in first place), but rather that these
subjects have different motion features. While subject 16(15) could be going faster, the subject
38(12) is very static, and that different features affects the correlation measures.

Table 19: MLC between walking evaluation subjects
Test subject subj 12(1) subj 16(15) subj 38(2) subj 35(1) subj 39(4)
subj 12(1) 1. -0.004 -0.160 -0.208 -0.087
subj 16(15) -0.004 1. -0.286 0.509 0.382
subj 38(2) -0.160 -0.286 1. -0.203 -0.192
subj 35(1) -0.208 0.509 -0.203 1. 0.466
subj 39(4) -0.087 0.382 -0.192 0.466 1.

For that particular reason the synthesis measures from tables 14, 15 and 16 have to be read but
to take in to account the highest correlation value, given that this measure represents the subject
which the generated motion samples are more similar to. After this observation one can compare
both models (MOA and MOHGP) to see if the best value is better and determine which model was
more accurate generating motion samples similar to the real ones.

However it is interesting also to check the subjects moving with a different kind of motion (soccer)
against walking. This particular control test will show if the correlation measure is completely
effective to evaluate the similarity between motions. In table 20 and 21 the results of comparing
the soccer shooting subjects against the walking subjects are shown. One can conclude from these
results that there are some subjects shooting a soccer ball more similar to some walking subjects
than other walking subjects. For example, look the first row of table 20 all the soccer subjects are
more similar to the walking subject 12(1) just because the correlation is closer to 26.249 which is
the correlation of 12(1) against itself.

Table 20: MCC between Walking and soccer evaluation subjects.
Test subject subj 10(5) subj 10(3) subj 10(2) subj 10(6) subj 11(1)
subj 12(1) 22.171 22.270 22.042 23.116 21.667
subj 16(15) 21.842 22.141 22.369 23.212 21.656
subj 38(2) 20.262 22.403 20.550 23.551 22.173
subj 35(1) 20.949 22.070 20.978 22.704 21.164
subj 39(4) 21.884 21.790 22.168 22.523 21.528

Table 21: MLC between walking and soccer evaluation subjects.
Test subject subj 10(5) subj 10(3) subj 10(2) subj 10(6) subj 11(1)
subj 12(1) 0.039 -0.072 0.094 -0.089 -0.100
subj 16(15) 0.004 -0.087 0.144 -0.072 -0.113
subj 38(2) -0.081 0.099 -0.046 0.144 0.142
subj 35(1) -0.016 0.006 0.048 -0.019 -0.029
subj 39(4) 0.066 -0.057 0.140 -0.103 -0.067

For that particular latter reason, the correlation measures can not be determined as an absolute way
to determine the similarity of the motion samples artificially generated and the real ones. However,
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this issue is partially addressed if the models are compared against the best matches as explained
before. The reason for some soccer shooting subjects being more similar than other walking subjects
could be that there are similarities within the angles of each joints performing certain poses which
leads to the correlations measures to be higher between some walking samples and some soccer
samples. However further study about better methods to measure the similarity between MOCAP
subjects should be done.
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