
Automatic Programming with Ant Colony Optimization

Jennifer Green
University of Kent

jg9@kent.ac.uk

Jacqueline L. Whalley
University of Kent

J.L.Whalley@kent.ac.uk

Colin G. Johnson
University of Kent

C.G.Johnson@kent.ac.uk

Abstract

Automatic programming is the use of
search techniques to find programs that
solve a problem. The most commonly ex-
plored automatic programming technique
is genetic programming, which uses ge-
netic algorithms to carry out the search.
In this paper we introduce a new tech-
nique called Ant Colony Programming
(ACP) which uses an ant colony based
search in place of genetic algorithms. This
algorithm is described and compared with
other approaches in the literature.

1 Introduction

The aim of this paper is to present some prelim-
inary work which applies Ant Colony Optimiza-
tion techniques (Dorigo et al., 1996; Bonabeau
et al., 1999) to the automatic creation of com-
puter programs.

Automatic programming allows the program-
mer to avoid the tedious task of creating a pro-
gram to solve a well-defined problem (Boryczka
and Wiezorek, 2003). Automatic programming
requires the specification of goals that are to be
realized by the program and it is on the basis
of this specification that the program is con-
structed automatically.

Previously, work towards automatically gen-
erated programs largely employed Genetic Pro-
gramming (GP) techniques. GP takes specific
inputs and produces desired outputs to solve
a specified problem using evolutionary inspired
techniques such as genetic algorithms (Koza,
1992; Banzhaf et al., 1998; de Jong, 1999).

Typically a problem is defined as a number of
inputs and the expected output for each input.
A heuristic search technique is then carried out
on a space of graphs where the nodes represent
functions, variables and constants and the graph
overall represents a parse tree for that function.

Functions are usually defined mathematically

in terms of arithmetic operators, operands and
boolean functions. The set of functions defining
a given problem is called a function set and the
collection of variables and constants to be used
are known as the terminal set. Genetic program-
ming represents a program as a tree structure,
the nodes containing a function from the func-
tion set and the leaf nodes holding a member
from the terminal set.

According to Boryczka and Wiezorek (2003),
there are four preparatory steps which much be
accomplished before a searching process for a
program can commence namely, choice of ter-
minal symbols, choice of functions, definition of
the fitness function, and defining the termina-
tion criteria.

The program components are made up of
terminal symbols and functions. The choice of
these components and the definition of the fit-
ness function form the primary means of defining
the problem space that will be searched. Vari-
able parameters such as population size, prob-
abilities of crossover and mutation, maximum
tree size etc. belong to the set of control param-
eters.

Many of the principles used in GP can be
adapted to develop an ant colony algorithm that
may be applied to automatic programming. Ant
colony systems arose from research into systems
inspired by the behavior of real ants (Wilson
and Hölldobler, 1990). Therefore the artificial
ants or agents used in ant colony systems have
some features taken from real ants, for example
the choice of route depends on the amount of
pheromone.

Earlier work using ant colony algorithms
worthy of note include Dorigo et al. (1991, 1996),
who solved the travelling salesman problem us-
ing an ant colony algorithm, and more recently
Roux and Fonlupt (2000) who made the first at-
tempt at utilizing ants for automatic program-
ming. Their approach was used to solve some
simple problems in symbolic regression and a
multiplexer problem.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/92112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: How ants find the shortest path.

2 The Ant Colony Algorithm

“All good work is done the way ants do things:
Little by little.”

— Lafcadio Hearn

Ants are able to find their way efficiently
from their nest to food sources. They do this
by laying trails of pheromone as they explore.
Once many ants have explored a region around
their nest, the routes which lead from the nest to
good food sources get the strongest pheromone
trail. Essentially this works by a process of
positive feedback. If an ant has a choice of
trails to follow, the preferred route is the trail
with the highest deposit of pheromone (Wilson
and Hölldobler, 1990). Initially there will be no
pheromone laid down, so ants which take shorter
routes will lay down the most pheromone on
those routes. This behaviour accounts for why
ants are able to find the optimal or shortest route
without any need for direct communication or
central control.

The algorithm at a very simplified level is as
follows (see figure 1. Two ants (A1 and A2) are
travelling along route P and come to a junction.
A1 takes path A and A2 takes path B. As they
are travelling along the route the ants are de-
positing a pheromone trail both ants continue
along their chosen paths, collect the food and
return to the nest. A1 will reach the nest first
because it has travelled the shortest route. A
third ant (A3) now leaves the nest, travels along
path P and reaches the junction. At this point
A2 has not yet returned through the junction
and is still travelling along path B so there is
twice the amount of pheromone deposited along
path A at the junction as along path B. There-
fore A3 will opt for path A thus increasing the
pheromone level on path A. The reality is not
quite so simple as other factors need to be con-
sidered such as evaporation of the pheromone
trail.

In our Ant Colony Programming technique,
the search space consists of a graph where the

nodes are the functions and terminals, and the
edges are weighted by pheromone. An example
of such a graph is given in figure 2. The ants
move through the network of trails within the
graph thereby creating hierarchical structured
programs. Each node in the graph holds either
a function (fi ∈ F ) or a terminal (ti ∈ T ).

In our system this graph is generated by a
randomised process. For the symbolic regression
problems discussed later, graphs of 80 nodes are
used: 10 each of the functions Add, Subtract,
Multiply and Divide, and 10 each of the termi-
nals X, 1.0, 2.0 and 5.0. Links are generated at
random between each pair of node, with a prob-
ability of 0.6 (this needs to be greater than 0.5
so that a giant component, where a single com-
ponent of the graph contains “most” nodes, is
created (Watts, 1999; Erdős and Rényi, 1960)).

Each edge is given a “pheromone” weight.
This starts out as 1.0 for all edges on initializa-
tion.

2.1 Terminal Symbols and Functions

A terminal can be a constant, for example ti =
1.0, or a variable such as ti = x. As in GP, the
functions are related to the problem and are, for
example, an arithmetic operator (+,−,×,÷1 ),
a boolean operator (or, and, not) or an arith-
metic function (e.g., cos, tan, exp). Every func-
tion utilized in this paper has fixed arity (two
in all examples) however, it should be possible
to extend the function set to include alterna-
tive functions (if-then-else) and iterative opera-
tors for example while.

The terminal symbols and functions were
chosen such that they provided sufficient expres-
sive power to express the solution to a problem
(Koza, 1992; Poli, 1996). This means that the
problem must be able to be solved by a compo-
sition of functions and terminals specified.

2.2 Overall Process

The overall process is as follows. There are a
number of generations. In each generation a
number (100 in the examples below) of ants are
started off from starting points (section 2.3), and
follow a route through the graph in a way which
is biased by the pheromone weights on the edges,
as discussed in section 2.4. This route is then in-
terpreted as a program built from the functions
and terminals visited as the ant moves across
the graph. The fitness of each of these routes

1. protected division to avoid divide-by-zero errors
Koza (1992).



Figure 2: Example of the graph of functions/terminals which is explored by the ants.

is assessed relative to the problem at hand. At
the end of each generation the pheromone is up-
dated; firstly the pheromone on the edges which
were involved in the most successful programs is
increased, then an “evaporation” of pheromone
from all edges is carried out.

2.3 Starting Points

At the beginning of each generation 10 ants start
from each of 10 starting points. These start-
ing points are fixed throughout a run of the al-
gorithm. Future work will explore the idea of
learning the best starting point.

2.4 Ants on the Move

Ants move along the trails or connections be-
tween nodes creating a tour of the graph. An
ant (a) can move from its current node (c) to
any other neighbouring node (n) along an edge
(c, n), its decision on which route to take is de-
termined by the strength of the pheromone.

The process is as follows. Initially a ran-
dom number q0 ∈ [0, 1] is generated, this is used
to determine whether the ant moves according
to the pheromone strength, or whether it trav-
els along a random choice of accessible paths.
The random number is compared with a value
q ∈ [0, 1] known as the learning rate (Bonabeau
et al., 1999). If q0 < q then the ant will follow a
neighbouring edge selected using roulette wheel
selection, where the probability of choosing an
edge is proportional to the amount of pheromone
on that edge compared with all the other edges.
Otherwise an edge is chosen uniformly at ran-

dom from the neighbouring edges. In the exam-
ples below this is set to a high value of q = 0.95.

When an ant reaches a node it determines if
the node is a terminal or a function node. If
the ant is on a terminal node, the end of the
tour has been reached for that ant. However, if
the ant is on a function node it determines how
many parameters, p, the function needs. If the
function requires more than one parameter, the
original ant will reproduce so that the number of
ants starting out from the function node is equal
to the number of parameters. This reproduction
is repeated every time an ant reaches a function
node containing a function with an arity greater
than one.

One problem with this is that the number of
ants touring the graph may become so large that
the algorithm becomes highly inefficient. For
this reason a limit on the number of child ants
being produced was introduced to the algorithm.
This limit may be set according to the size of the
graph being used. In a typical run of the ACP
any number of ants are placed on the graph (the
number of ants is ultimately limited by the scope
of the graph) simultaneously. Each ant travels
along its own independent route following the
algorithm described above. This group of ants
and their collective tours is called a generation.
The procedure is repeated for a set number of
generations. After each generation the tours are
compared using a fitness evaluation (section 2.6)
and the pheromone trail is then updated (sec-
tion 2.7).

There are some constraints on the depth of
the program tree that can be found. The start-
ing points are chosen so that they are always



Figure 3: Ants on the move.

function nodes. If an ant (or its ancestors) has
explored fewer than some minimum number of
edges (in the examples below this is 3), then
the ant will always choose a function node if
one is accessible from the current node. If is
has explored more than some maximum number
(in the examples below this is 8), then the ant
will always choose a terminal node where one is
accessible. This is to ensure (i) that very sim-
ple functions which perform well in early gener-
ations do not dominate the results, thus produc-
ing functions on which the exploratory process
can take hold; and (ii) so that excessively large
functions are not created.

This part of the process is summarized in fig-
ure 3.

2.5 Ants have Memory

Once the graph is initialized and the ants are
moving within the graph. An ant will create a
tour moving from one node to the next. In or-
der to evaluate the route that the ant has taken
a record of the ants tour needs to be created.
Each ant has a working memory that stores data
about a tour or route. The ants’ memory is rep-
resented programmatically by a tree structure.

In this tree, the nodes contain the functions and
the leaves contain the terminals. The depth of
the memory tree is limited according the nature
of the problem. An example of such a tree is
shown in figure 4.

2.6 Calculating Fitness

Each problem put through the ACP has a set
of inputs and outputs. The inputs are the val-
ues for the variables in the terminal set. Each
terminal in a given tour is replaced with the sup-
plied values and then each function in the tour
is evaluated to give a result. The result is then
compared with the expected output and the dif-
ference between the two is analyzed. This pro-
cess is carried out for each of the specified ter-
minal values, summing the difference to provide
a ’raw’ overall fitness value (table 1).

The raw fitness for a given tour provides a
measure of how fit a solution is, a value of zero
indicates an optimal solution. If this is not the
case then a standardized fitness can be calcu-
lated (Koza, 1992). The fittest tour in a gener-
ation therefore is the tour with the lowest raw
fitness value.



Figure 4: The program tree embedded in the graph.

Value of x Output of tour Expected output Abs. value of Difference
0 12 10 2
1 15 20 5
2 21 30 9
3 28 40 12
4 30 50 20
5 31 60 29

Fitness 77

Table 1: Calculating the raw fitness.

2.7 Updating Pheromone Levels

Pheromone levels are updated at the end of each
generation, globally and locally on individual
edges. Global updating has the net result of re-
warding the edges of the fittest tours within the
generation. The ants with the best tours in the
generation deposit pheromone along the edges
of its tour. In the examples below the best four
ants are chosen, and the pheromone increase by
3.0, 2.0, 1.0 and 1.0 respectively for each edge
which is involved in that trail. By making the
strength of the pheromone deposit directly re-
lated to the quality of the solution, the best so-
lutions are favoured and so the next generation
of ants will be more effectively directed by the
pheromone trails.

2.8 Pheromone Evaporation

Following this the pheromone level is reduced on
each edge; this is driven by the need to model
’real world’ pheromone evaporation. Evapora-
tion promotes the exploration of different routes
by the ants thereby avoiding congestion caused
by rapid convergence on local minima. At the
end of each generation the pheromone level on
each edge is reduced by between 0-25% (chosen
uniformly at random) of its current value.

3 Results and Discussion

As a basic test to see whether the method is
effective we have applied this to a number of
basic symbolic regression problems. The setup
of the algorithm for these problems is given in
table 2.

Four such problems were attempted:

1. f(x) = 6x2 + 10x+ 12

2. f(x) = cos(x)

3. f(x) = 20x+ 10

4. f(x) = x4 + x3 + x2 + x

The results (the mean error per generation aver-
aged over 10 runs) are given in figure 5, 6, 7 and
8. These are compared with a randomized con-
trol which is identical except that no pheromone
changes are made, so there is no fitness informa-
tion fed back into the system.

Clearly these are problems which could be
solved readily using standard genetic program-
ming techniques Koza (1992); Banzhaf et al.
(1998); this technique is not competitive with
such methods. Nonetheless for a simple first at-
tempt it does demonstrate that fitness improve-
ment does occur.



Figure 5: Mean error vs. generations for test function 1.

Figure 6: Mean error vs. generations for test function 2.



Figure 7: Mean error vs. generations for test function 3.

Figure 8: Mean error vs. generations for test function 4.



Parameter Value
Problem Minimize the error in a symbolic regression problem
Functions +,−,×,÷
Terminals 1,2,5,x
Fitness Absolute value of error for x = −10,−9,−8, . . . , 8, 9, 10
Ants per generation 100
Maximum generations 1000

Table 2: Parameter settings tableau for the symbolic regression problems.

4 Conclusions and Future Work

In this paper we have given a preliminary study
on the application of ant colony optimization to
automatic programming. It has been demon-
strated to have some basic success on simple
symbolic regression problems. Whilst the sys-
tem is not competitive with other systems such
as genetic programming, little effort has yet gone
into details of how to make the algorithm work
well and what parameter choices to make.

Future work will consist of examining these
parameter choices more carefully, and examining
runs from the program in detail to study what
routes ants are taking. This will be followed by a
study which attempts to ascertain which, if any,
problem-types this search method is particularly
suited to.

References

Banzhaf, W., Nordin, P., Keller, R. E., and
Francone, F. D. (1998). Genetic Program-
ming: An Introduction. Morgan Kaufmann.

Bonabeau, E., Dorigo, M., and Theraulaz, G.
(1999). Swarm Intelligence. Oxford University
Press.

Boryczka, M. and Wiezorek, W. (2003). Solv-
ing approximation problems using and colony
programming. In Proceedings of AI-METH
2003, pages 55–60.

de Jong, K. (1999). Genetic algorithms: A 30
year perspective. http://www.pscs.umich.
edu/jhhfest/abstracts.html.

Dorigo, M., Maniezzo, V., and Colorni, A.
(1991). Positive feedback as a search strat-
egy. Technical Report Politechnico di Milano,
Italy.

Dorigo, M., Maniezzo, V., and Colorni, A.
(1996). The ant system: Optimization by a
colony of cooperating agents. IEEE Transac-
tions on Systems, Man and Cybernetics—Part
B, 26(1), 29–41.

Erdős, P. and Rényi, A. (1960). On the evolution
of random graphs. Publications of the Math-

ematical Institute of the Hungarian Academy
of Sciences, 5, 17–61.

Koza, J. R. (1992). Genetic Programming : On
the Programming of Computers by means of
Natural Selection. Series in Complex Adaptive
Systems. MIT Press.

Poli, R. (1996). Introduction to evolution-
ary computation. The University of Birm-
ingham. http://www.cs.bham.ac.uk/~rmp/
slide_book/slide_book.html.

Roux, O. and Fonlupt, C. (2000). Ant program-
ming: Or, how to use ants for automatic pro-
gramming. In M. Dorigo, editor, Proceedings
of ANTS’2000, pages 121–129.

Watts, D. J. (1999). Small Worlds: The Dy-
namics of Networks between Order and Ran-
domness. Princeton University Press.

Wilson, E. and Hölldobler, B. (1990). The Ants.
Springer-Verlag.


