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ABSTRACT 

Increased release of insulin is usually regarded as a symptom of metabolic syndrome, 

contributing to insulin resistance in peripheral organs thus affecting glucose and insulin 

homeostasis. The existing animal models to address the metabolic syndrome are currently not 

optimal. In neuronal, neuroendocrine and endocrine cells, stimulus-dependent membrane 

fusion occurs via the SNARE complex, formed by the membrane-associated proteins SNAP-

25 and syntaxin and the vesicle-associated protein VAMP-2, and requires intracellular Ca2+ 

elevations. The SNAP-25 protein exists as two splicing variants, SNAP-25a and SNAP-25b, 

differing in only 9 out of 206 amino acids. Both isoforms can mediate membrane fusion but 

their specific functions still remain unknown.   

In this thesis, we have investigated if an apparently small modification in the exocytotic 

machinery could act as triggering factor for development of metabolic syndrome. We used a 

genetically modified mouse expressing normal levels of SNAP-25, but with only the SNAP-

25a isoform available. In Paper I, by monitoring a number of metabolic parameters during 7 

weeks on control or Western (high fat/high sucrose) diet, we found that SNAP-25b-

deficiency leads to metabolic syndrome, characterised by hyperinsulinemia, obesity, 

hyperglycaemia, liver steatosis and adipocyte hypertrophy. These conditions were even more 

pronounced when the mutation was combined with Western diet. The metabolic phenotype 

caused by SNAP-25b-deficiency was accompanied by increased insulin secretion from the 

islets of Langerhans partially involving beta cell hyperplasia in a sex dependent manner. In 

Paper II we addressed these issues closer and focused on islet physiology by monitoring 

intracellular Ca2+ dynamics in beta cells upon glucose stimulation. SNAP-25b-deficiency 

impaired the collective control of Ca2+ oscillations in beta cells with early initiation and 

delayed termination of activity as well as decreased synchronicity. Derangements of 

intracellular Ca2+ oscillatory patterns can be related to the increased insulin secretion found in 

SNAP-25b-deficient mice. In Paper III we observed that the SNAP-25 isoforms mediate 

different interactions with proteins important for the strict control of exocytosis both in 

neurons and beta cells, such as Munc18-1 and the Gβγ subunits of the heterotrimeric G 

proteins. 

In summary, we have shown that even a small modification in the machinery regulating 

membrane fusion, such as replacing SNAP-25b with SNAP-25a, acts as a triggering factor 

for the development of metabolic syndrome in mice. This condition was associated with loss 

of preciseness of Ca2+ oscillations in beta cells and increased insulin secretion. Thus, we 

propose the SNAP-25b-deficient mouse as a new model of metabolic syndrome and 

prediabetes.  
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1 INTRODUCTION 

1.1 METABOLIC SYNDROME 

1.1.1 What is the metabolic syndrome? 

The metabolic syndrome is a cluster of several metabolic abnormalities, such as 

hyperinsulinemia, central obesity, insulin resistance, elevated blood pressure, impaired 

fasting glucose and/or glucose tolerance and dyslipidaemia 1. All these risk factors appear to 

be influenced by both genetic background and environmental influences. Individuals with 

metabolic syndrome have a five-fold increased risk of developing type 2 diabetes (T2D) 2.  

1.1.2 Tissues affected by metabolic syndrome 

During development of the metabolic syndrome, many tissues are affected, mainly the brain, 

liver, pancreas, adipose tissue and muscle.  

An improper metabolic control can originate from impaired brain sensing of energy balance 

and integration of feedback signals from the periphery. Neuronal nuclei involved in the 

sensation of adiposity, satiety and glucose are highly concentrated in the hypothalamus, 

which is currently an important area of investigation 3. Progressing hyperinsulinemia and 

hyperleptinemia result in an impaired sensation or transduction in hypothalamic neurons 

(insulin/leptin resistance), ultimately leading to increased food intake. Alterations in neuronal 

intracellular metabolism, such as mitochondrial dysfunctions and endoplasmic reticulum 

(ER) stress, also contribute to the metabolic disease state 4. 

The altered secretion of adipokines during the metabolic syndrome causes ectopic lipid 

deposition in the liver. This excessive storage causes an intracellular pro-inflammatory state, 

giving rise to a variety of liver pathologies from mild hepatosteatosis (or fatty liver disease) 

to non-alcoholic steatohepatitis. Hepatic insulin resistance affects intracellular signalling 

pathways, leading to increased hepatic glucose production, a hallmark of T2D 5.  

Insulin resistance leads to compensatory increases in insulin release from beta cells within 

the islets of Langerhans. Chronic hyper production of insulin in beta cells causes beta cell 

expansion (or “islet hypertrophy”), resulting in enlarged islets in the pancreas 6. When insulin 

resistance progresses, the effects of insulin in target tissues diminishes and beta cells 

progressively fail to release sufficient amount of insulin. T2D is characterised by a complete 

loss of the first phase of insulin secretion and diminished second phase (described in 1.3.3) 
7,8.  
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In the presence of excessive caloric intake, the adipose tissue expands as a result of 

adipocyte hypertrophy and hyperplasia. The adipocytes challenged by metabolic syndrome 

are characterised by high degree of inflammation and insulin resistance which turns out to 

stimulate lipolysis and increase the storage of lipids in non-adipose tissues. The release of 

adipokines is compromised, with elevated leptin levels and diminished adiponectin levels 9,10. 

Insulin resistance in skeletal muscle is an important factor in the pathogenesis of T2D. It can 

be mostly attributed to defects in insulin signalling and glucose transport which results in 

decreased glycogen synthesis. Possible causes of this phenomenon include ectopic lipid 

accumulation in myocytes, changed release of adipokines associated with inflammation and 

intracellular accumulation of reactive oxygen species (ROS) 11,12. 

1.1.3 Mouse models vs humans 

The metabolic syndrome is dramatically increasing worldwide and the International Diabetes 

Federation (IDF) has estimated that 20-25% of the population is affected by the disease. It is 

therefore crucial to experimentally study causes and progression of metabolic impairments. A 

major issue when studying mouse models is that none can mimic all the aspects of the human 

metabolic syndrome. Most of the models used for the study of obesity arose from 

spontaneous mutations in the leptin or leptin receptor gene (Lepob/ob and LepRdb/db mice) and 

although they develop a metabolic phenotype close to the human syndrome (obesity, insulin 

resistance, glucose intolerance and hepatic steatosis), similar mutations in humans are very 

rare 13.  

So far, the best model to resemble the human metabolic syndrome and for testing potential 

therapeutic interventions is chronic consumption of a high fat/high sucrose diet.  

1.2 REGULATED EXOCYTOSIS  

1.2.1 The process of exocytosis 

Exocytosis is the cellular process by which certain substances packed into vesicles can be 

released outside the cell by fusion with the plasma membrane. It requires the interplay of 

different proteins and mechanisms depending on the cellular type but overall the process is 

highly conserved in eukaryotic cells 14. Exocytosis exists as constitutive and regulated and 

they both require expenditure of energy. Constitutive exocytosis is a continuous, rather slow, 

process performed by all cells for delivering newly synthetised (membrane) proteins to be 

incorporated in the plasma membrane or components released to build the extracellular 

matrix. Regulated exocytosis is modulated by secretagogues and allows a rapid and massive 
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release after physiologically appropriate stimuli and is preceded by influx of extracellular 

Ca2+. It occurs only in specialised secretory cells such as neurons, endocrine and 

neuroendocrine cells 15. In neurons regulated exocytosis is achieved through two types of 

vesicles: small synaptic vesicles (SVs), usually at the nerve terminal containing acetylcholine, 

catecholamine and glutamate and large dense-core vesicles (LDCVs), transporting condensed 

proteins and peptides. In endocrine and neuroendocrine cells, fast exocytosis is achieved by 

synaptic-like microvesicles (SLMVs), larger than SVs, whereas slow exocytosis occurs 

through secretory granules (SGs) (endocrine cells) and LDCVs (neuroendocrine cells) 16,17. 

SVs are smaller (diameter < 30nm) compared to LDCVs (hundreds of nm) and mediate 

exocytosis at least one order of magnitude faster than LDCVs, requiring higher intracellular 

Ca2+ concentrations, [Ca2+]i 
18–20.  

The vesicles can be classified into different pools, depending on their release capability and 

kinetics of fusion 21,22. There are two releasable pools of vesicles: the first one comprises the 

fast burst component and belongs to the ready releasable pool (RRP), the slow burst 

component is built by the fusion of the slowly releasable pool (SRP). The releasable pools are 

refilled from the unprimed pool (UPP) during “priming” (see below) and account for the 

sustained component of exocytosis. At last, the depot pool (DP) represents the largest pool in 

adrenal chromaffin cells where the vesicles are used to refill the UPP upon depletion during 

“docking” step (see below) 22. 

During regulated membrane fusion, the vesicles undergo a number of biochemical steps that 

will eventually lead to fusion with the plasma membrane. These stages are classified into 

docking, priming and fusion (Figure 1). The docking corresponds to the transfer of vesicles 

from the DP to the UPP and their allocation in proximity of the plasma membrane (or active 

zone for SVs). During the priming process, UPP are transferred to a releasable pool (RP) 

stage with the formation of the trimeric SNARE complex 23,24. Finally the fusion process 

occurs when the vesicle either collapses with the plasma membrane (“full collapse” fusion) or 

a small fusion pore opens for releasing part of the vesicle content and then closes (“kiss-and-

run” fusion) 22,25. 

Membrane fusion is achieved with a concomitant entry of Ca2+ via the opening of voltage-

dependent Ca2+ channels (VDCCs). The raise in [Ca2+]i initiates signal transduction with short 

and long term effects on secretion, for example by activating protein kinases or by inducing 

direct interactions between exocytic proteins located in the vesicle membrane and those 

situated in the plasma membrane 26–29.  
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Figure 1. Schematic mechanisms of regulated membrane fusion. During docking the vesicle/granule approaches 
the plasma membrane and during priming the assembly of the SNARE complex occurs. Membrane fusion is 

triggered when Ca2+ enters the cell via VDCCs. 

 

1.2.2 The SNARE complex 

A vesicle fusion event requires many coordinated and regulated steps. Rothman, Schekman 

and Südhof have been pioneers for the discovery of proteins necessary for this process 24,30,31. 

The SNARE complex acts as a conserved core protein machinery for all membrane fusion 

events. Syntaxin, SNAP-25 and VAMP (also called synaptobrevin) were the first SNAREs to 

be discovered 32–34. Syntaxin and VAMP are anchored to membranes by C-terminal 

transmembrane domains, whereas SNAP-25 is attached through post-translational 

palmitoylation of four cysteine residues in its central region 35,36. All SNARE proteins are 

characterised by a ~70 residue “SNARE motif” with heptad repeats that forms coiled-coil 

structures. The SNARE core complex has a four-stranded coiled-coil structure, one coil from 

syntaxin and VAMP and two from SNAP-25. This structure, called “trans-SNARE 

complex”, bridges vesicles and plasma membranes close to each other and catalyses fusion. 

In the course of fusion, the trans-conformation is adjusted to a cis-SNARE conformation with 

all SNAREs located on the same membrane 37. The complex is highly stable and to dissociate 

it requires ATP and two proteins: NSF and its adaptor protein, SNAP-α 14,38. 

1.2.3 SNAP-25 isoforms 

Mice deficient of SNAP-25 exhibit embryonic lethality and evoked synaptic transmission is 

abolished, although they show an early nervous system development and spontaneous 

transmitter release 39. SNAP-25 is expressed as two splicing variants, SNAP-25a and SNAP-

25b, which originate from two divergent versions of exon 5. They differ in only 9 out of 206 

amino acids (Figure 2) corresponding to a central domain of the protein spanning the quartet 
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of cysteine residues that are substrates for palmitoylation and three residues that are part of 

the N-terminal SNARE motif 35,36,40,41.  

 

 

Figure 2. Schematic structure of the Snap25 gene and amino acids sequence encoded by exons 5a and 5b. 

 

Both SNAP-25a and SNAP-25b can participate in the core SNARE complex 42. The 

expression levels of the two isoforms are developmentally and spatially regulated. In rodent 

brain, SNAP-25a is more abundant during early development, but by the second postnatal 

week SNAP-25b becomes the predominant isoform 43,44. SNAP-25a expression remains in 

specific brain regions, such as cortical and hypothalamic structures, and in endocrine and 

most neuroendocrine cells SNAP-25a is the dominant isoform also in adulthood 43,45–47. 

Normal expression levels of total SNAP-25 are essential for controlled synaptic function 48,49 

and downregulation leads to defects in SNARE complex assembly and synaptic plasticity 
48,50. The functional difference between the two splice variants has not been fully clarified. 

What is currently believed is that SNARE complexes containing SNAP-25b are more stable, 

thus increasing the pools of primed vesicles 42,51,52. Recently, a point mutation in SNAP-25b 

carried by a viable mouse mutant, has been associated with impairments in vesicle trafficking 

and regulated membrane fusion, likely dependent on failure to mobilise new vesicles from the 

RP 53. Moreover, SNAP-25 has been found to interact and modulate the activity of Ca2+ 

channels 54–56. The C-terminus of SNAP-25 inhibits L-type Ca2+ currents in beta cell whereas 

the rest of the protein stimulates channel activity 54. Interestingly, it was recently 

demonstrated that the SNAP-25b isoform together with syntaxin 1 was more efficient in 

inhibiting VDCC currents in chromaffin cells than SNAP-25a 56. 
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1.2.4 Regulation of exocytosis by other proteins 

1.2.4.1  Munc18-1 

Munc18-1 belongs to a group of proteins called SM proteins (Sec1/Munc18-like) initially 

identified in genetic screens in yeast 57. It has been linked to membrane fusion since it was 

first isolated bound to syntaxin 1 31. The SM proteins are essential for all types of intracellular 

membrane fusion where also SNAREs are involved and their absence leads to blockage of 

fusion 14 and neurotransmitter release in Munc18-1 knockout mice 58. The general function of 

Munc18-1 is still under debate because it probably performs multiple roles. SM proteins are 

equipped with a conserved  ~600-amino acid sequence that folds into an arch shape and binds 

the closed conformation of syntaxin 1 59,60. This binding with syntaxin 1 disables the 

formation of the SNARE complex. Munc18-1 does not always act as a negative modulator of 

membrane fusion but is also required for all fusion events. More recently, a second 

mechanism of interaction between Munc18-1 and SNAREs was found, explaining how it 

could promote fusion 61,62. Here, the SM protein is anchored to the N-terminal peptide of 

syntaxin, thus leaving its arch-shaped body to fold back on the SNAREpin and clasp across 

the zippering four-helices near the plasma membrane. Thus, SM proteins would act as 

catalysts for SNAREs, which in turn catalyses the membrane fusion event 14.  

1.2.4.2 Heterotrimeric G proteins 

Major modulators of neurotransmitter/hormone action are the G protein coupled receptors 

(GPCRs), which consist of seven transmembrane α-helices 63. Despite the elevated number of 

GPCRs, they are coupled with relatively few heterotrimeric G proteins (α, β and γ subunits). 

The heterotrimers are categorised into four families: Gs, Gi/o, Gq, G12/13, based on the 

functional similarity of the α subunit 64. When the ligand binds, the receptor activates the 

attached G protein which dissociates into one α subunit and a βγ-complex.  Gα can diffuse 

along the membrane surface to activate/inhibit target proteins, often enzymes that generate 

second messengers. The βγ-complex works as a functional monomer also able to affect 

protein activity 63. Gi/o-coupled receptors (5HT1 serotonin receptors, α2A adrenergic receptors, 

D2 dopamine receptors, M4 muscarinic receptors, opioid receptors, etc.) on both pre- and 

postsynaptic sites protect against overstimulation by releasing G protein βγ subunits. These 

subunits act both postsynaptically by activating G-protein-coupled inwardly-rectifying K+ 

(GIRK) channels and presynaptically by inhibiting VDCCs 65,66 or by regulating GIRK 

channels 67. Ultimately they interact with one or more components of the exocytotic 

machinery 63. 
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The first evidence for the latter function of the βγ subunits came from studies on lamprey 

reticulospinal motor neuron synapses where Gβγ inhibition was mediated via the C-terminal 

region of SNAP-25 and the Gβγ subunits directly interacted with the SNARE complex 

proteins in in vitro binding assays 68–71. It was also noted that the syntaxin and SNAP-25 

domains interacting with Gβγ were functionally important for Ca2+-dependent synaptotagmin 

binding 71. Therefore, it was predicted that at low intracellular Ca2+ concentrations, Gβγ 

binding to the SNAREs predominates, but when Ca2+ concentration increases synaptotagmin 

competes with Gβγ, blocking inhibition and allowing exocytosis (Figure 3) 71. 

 

 

Figure 3. Schematic mechanisms of presynaptic inhibition modulated by the Gβγ subunits of the heterotrimeric 
G proteins. Upon ligand interaction with the GPCR, the Gβγ subunit competes with synaptotagmin for binding 

the exocytosis machinery, thus inhibiting fusion. 

 

Inhibition of synaptic transmission via Gβγ is not only important for transient events, but it 

also plays a role in long-term alterations of presynaptic signals connected to long-term 

depression (LTD) 72. Emerging evidence places LTD as fundamental process for modelling 

long-lasting changes in circuit function, learning, memory and behaviour 73. Furthermore, a 

similar mechanism has been proposed for inhibition of insulin secretion in beta cells 74. 

1.3 THE PANCREATIC ISLET 

1.3.1 Cell composition and exocrine pancreas 

The discovery of the islets of Langerhans in the pancreas dates back to 1869, when a German 

medical student, Paul Langerhans, observed cell-clusters disseminated in the rabbit pancreas 
75. They constitute the endocrine part of the pancreas which accounts for 1-2% of the total 

pancreatic volume. Islets are structurally defined cellular aggregates of a few to several 

thousand endocrine cells 76. The islet comprises at least 5 types of polypeptide-hormone-
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secreting endocrine cells and the majority belongs to the population of beta cells (60-80%) 

which secrete insulin, the only blood glucose lowering hormone. Second in number are the 

alpha cells (10-20%), which produce glucagon. Delta cells and PP cells (5%) release 

somatostatin and pancreatic polypeptide, respectively, and finally the epsilon cells (1%) 

which secrete ghrelin 77,78. The intraislet organization of endocrine cells differs among 

species: in rodents, the  islet  core  is  primarily  composed  of  beta cells  while  the  other  

cell  types  are  localised peripherally, in humans all types of cells are intermingled with no 

obvious patterns of organization 79,80,78.  The close arrangement of islet cells facilitates 

intercellular coupling and paracrine interactions 81. 

The islets are embedded in the exocrine pancreas, organised in acini and formed by acinar 

cells which secrete enzymes for food digestion (α-amylase, lipase and proteases). Moreover, 

there exists an extensive cell-cell communication between the endocrine islet and the 

exocrine acinar cells via desmosomes and adherent junctions, which become structurally lost 

during remodelling changes associated with the development of T2D 82. 

1.3.2 Stimulus-secretion coupling in beta cells 

The pancreatic beta cell acts as a metabolic sensor, integrating nutrients, hormones and 

neurotransmitters stimuli to finally secrete insulin. The beta cell is equipped with two distinct 

types of secretory vesicles, the SLMVs containing gamma-aminobutyric acid (GABA) and 

the SGs containing insulin 17.  

Insulin is released following food digestion and glucose acts as the most important nutrient 

secretagogue for beta cells. Blood glucose enters the beta cell via a transporter (GLUT2 is the 

predominant in mice) and starts to be metabolised by phosphorylation, a reaction catalysed by 

the enzyme glucokinase. Once phosphorylated, glucose-6-phosphate, cannot exit the cell and 

undergoes a metabolic process involving the mitochondria and the release of energy in the 

form of ATP 83,84. The increased ATP/ADP ratio promotes the closure of the ATP-sensitive 

K+-channels (KATP-channels) in the plasma membrane. Since these channels maintain a 

resting potential of about -70 mV, their closure leads to a gradual depolarization of the cell. 

With changes in membrane potential, the VDCCs are activated with subsequent increase in 

cytosolic free Ca2+ and finally leading to exocytosis of insulin granules (Figure 4). It has been 

demonstrated that in beta cells L-type Ca2+-channels bind the SNARE core complex via 

syntaxin, SNAP-25 and synaptotagmin with subsequent local increase of [Ca2+]i triggering 

membrane fusion. The site of interaction on the channel is called “synprint” 55. 
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Figure 4. Schematic representation of glucose-stimulated insulin secretion in a beta cell. Glucose enters the cell 
via glucose transporters and is metabolised in the mitochondria with subsequent production of energy (ATP). 
Raise in ATP/ADP ratio closes the KATP-channels, depolarizing the cell membrane which will in turn open the 

VDCCs. Membrane fusion is triggered after Ca2+ enters the cell. 

 

1.3.3 Modes of insulin secretion 

Experiments in isolated pancreatic islets and hyperglycaemic clamps have demonstrated that 

glucose induces insulin secretion in a biphasic pattern: a fast and transient “first phase” 

followed by a sustained and long-lasting “second phase” 7,8,18. Loss of the first phase and 

reduction of the second phase are traits of T2D whereas in obese individual both phases are 

increased 7,8. During the last decades, many different theories have been suggested behind the 

molecular mechanisms of biphasic insulin secretion, yet without a final conclusion. However, 

the most prevailing hypothesis is that the release of the RRP of vesicles (5% of total content), 

docked on the plasma membrane, accounts for the first phase of insulin release and the 

second phase is build up by recruitment of a RP to the plasma membrane 8.  

There are different modes of exocytosis besides the full fusion mode. The “kiss-and-run” 

fusion occurs when the granule-exocytotic machinery complex is not in proximity of VDCCs 

and therefore the fusion pore opens only transiently 85. The “compound” exocytosis has been 

described to correspond to fusion of several granules organised in multivesicular complexes 
85,86. However, the physiological role of the different exocytotic modes and their possible 

involvement in metabolic disease and T2D is still not understood.  

1.3.4 Ca2+ dynamics in beta cells  

Ca2+ impacts nearly every aspect of cellular life. It acts as a secondary messenger controlling 

a number of processes such as secretion, apoptosis and gene expression. As previously 
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mentioned, Ca2+ plays a fundamental role for exocytosis in beta cells as it regulates 

trafficking, docking and initiates fusion of the insulin granules via the SNAREs proteins. Ca2+ 

influx into the cytoplasm has been described to occur rhythmically due to a rhythmic nature 

of the underlying electrical activity 87,88.  Ca2+ sequestration and release from the ER 

contributes to smoothing the oscillations observed in islets and it occurs under the fine 

regulation of the Ca2+ pumps present on the ER, such as the sarcoendoplasmic reticulum (SR) 

Ca2+ transport ATPase, SERCA 89. Yet the exact patter of Ca2+ elevations depends on the 

experimental model employed. Two types of oscillations have been described until now: slow 

oscillations (3-5 min) recorded in single beta cells or cultured islets and fast oscillations (1-2 

min) recorded in freshly isolated islets 90,91. Also, an oscillatory pattern of insulin release, 

driven  by  oscillations  of   [Ca2+]i  has   been   demonstrated,   suggesting   a   refined   

temporal correlation between electrical activity, Ca2+ signalling and insulin secretion  in  

isolated  islets 92,93. Moreover, in vivo experiments have demonstrated similar [Ca2+]i and 

membrane potential oscillations as the ones described in freshly isolated islets 94. A 

considerable degree of synchronicity in electrical activity between different cells in the same 

islet has been shown along with [Ca2+]i oscillations occurring synchronously across the islet 
90,94–96. This extensive communication among beta cells is achieved by means of the gap 

junction protein connexin 36 (Cx36), which allows exchange of small signalling molecules 

such as Ca2+ ions 97. In several mouse models of diabetes 98–100, in Cx36-null mouse models 
101,102 and also in humans with prediabetes 103 the loss of synchronization in [Ca2+]i 

oscillations is accompanied by a disruption of glucose sensitivity and impairment of the 

normal oscillatory pattern of insulin secretion.  
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2 AIMS 

The overall objective of this thesis was to investigate the metabolic consequences of SNAP-

25b-deficiency in order to better understand the role of the two splice variants, SNAP-25a 

and SNAP-25b. The specific aims investigated have been to study: 

 If the replacement of SNAP-25b with SNAP-25a (i.e. a small modification in the 

SNARE complex) could provoke metabolic abnormalities in mice, alone or in 

combination with a high fat/high sucrose diet consumption. 

 

 The effects of SNAP-25b-deficiency on islet physiology and glucose-stimulated 

insulin secretion. 

 

 The binding capabilities of the SNAP-25 isoforms for proteins regulating initiation 

and inhibition of membrane fusion. 
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3 MATERIALS AND METHODS 

All the experiments were carried out in different cohorts of mice and each of them included 

the following groups of 12-week-old mice depending on the paper: SNAP-25b-deficient 

(MT) and wild type (WT) littermates, males and females fed a control (CoD) or high fat/high 

sucrose (Western, WeD) diet. 

3.1 IN VIVO EXPERIMENTS 

3.1.1 Animals 

The SNAP-25b-deficient mice were generated as previously described 52. The animals were 

maintained on a regular dark-light cycle (lights on at 07:00 and off at 19:00) in temperature 

and humidity-controlled rooms with food pellets and tap water ad libitum. MT and WT 

littermates were euthanised by cervical dislocation. Animal studies were done in accordance 

with the guidelines from the local authorities, i.e., the Stockholm Northern Animal 

Experiments Ethics Board, following the approval of the Administration of the Republic of 

Slovenia for Food Safety, Veterinary Sector and Plant Protection (Permit number: 34401-61-

2009/2, 34401-46/2014/4, 34401-12/2015/3) and in accordance with Directive 2010/63/EU of 

the European parliament and of the Council on the Protection of Animals Used for Scientific 

Purposes. 

3.1.2 Diet 

The diet intervention started at the age of 5 weeks, i.e., at adolescence, a critical window for 

the development of metabolic disorders 104. MT and WT mice from each sex were divided 

randomly into two groups with a similar average body weight and were fed either CoD 

(10.5% of kilocalories from fat, 17.7% from proteins; and 71.7% from carbohydrates) or the 

WeD (40.0% of kilocalories from fat; 17.0% from proteins; and 43.0% from carbohydrates) 

for 7 weeks. In Paper I mice were either fed a CoD or WeD, whereas in Paper I and II only a 

CoD. 

3.1.3 Measurement of metabolic parameters  

In Paper I, the mice were housed three per cage, and body weight was monitored for each 

genotype and sex twice a week during the whole time course of the diet intervention. At the 

end of the study, the BMI was calculated. Nonfasting blood glucose was determined once a 

week during the 7 weeks of diet intervention in blood obtained from the tail vein at the start 

of the dark cycle (7:00 PM) with a FreeStyle Glucometer (Abbott Diabetes Care, Witney, 

United Kingdom). Preprandial blood triglycerides and cholesterol levels were determined 
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using a multiparameter diagnostic device for triglycerides and cholesterol (multiCare-in, 

Biochemical Systems International, Florence, Italy) from the tail vein. At the end of the diet-

intervention study, this cohort of animals was subjected to 12 h overnight starvation, and then 

basal blood triglycerides and cholesterol levels were determined.  

3.1.4 Feeding pattern and caloric intake 

In Paper I, mice were placed in individual cages and food intake was determined twice a 

week. Because the calorie intake differed between the two diets, daily calorie consumption 

was calculated as the kilocalories ingested daily by each mouse. Finally, calorie efficiency 

was determined to establish the relationship between body weight gain and calories 

consumed by each animal (Δ body weight/kcal). All these parameters were corrected for the 

body weight of each individual animal in each experimental group. The male MT mice fed a 

CoD became overweight, despite that their average food intake was significantly lower than 

WTs. Thus, we monitored their daily food intake, body weight, and body weight gain at 7:00 

AM (after the active period) and at 7:00 PM (after the inactive period).  

3.1.5 Glucose tolerance tests and serum insulin levels 

In Paper I, mice were starved 12 h overnight and the basal blood glucose (0 time point) was 

measured in blood samples collected from the tail vein. Thereafter, mice received an 

intraperitoneal glucose injection (2 g/kg body weight), and blood glucose was measured after 

15, 30, 60, 90, and 120 min. Blood glucose levels were determined using a FreeStyle 

Glucometer (Abbott Diabetes Care, Witney, United Kingdom). Blood was collected at the 

same time points as in the glucose tolerance test (GTT), centrifuged for 20 min, 10,000 x g at 

4 °C and serum was frozen at -80 °C until use. Serum insulin levels were analysed using an 

ultrasensitive mouse insulin ELISA kit (Crystal Chem Inc., Downers Grove, IL, USA). The 

HOMAIR was calculated using the formula: fasting insulin (mU/L) × fasting blood glucose 

(mmol/L)/22.5. The AUC was calculated using the basal levels of blood glucose and serum 

insulin as baselines.  

In Paper II, a “first phase” GTT was performed on mice starved 12 h overnight. One hour 

before glucose injection, EMLA cream (25 mg lidocaine and 25mg prilocaine, AstraZeneca, 

London, United Kingdom) was applied on the tail (to minimise stress) and after 15 min basal 

blood glucose was measured. After 45 min mice were injected intraperitoneally with glucose 

(2g/kg body weight) and blood glucose levels were determined at 0, 2.5, 5, 7.5, 10, 15 min. 

Serum insulin, HOMAIR and AUC were measured as in Paper I.  
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3.2 EX VIVO EXPERIMENTS 

3.2.1 Total pancreas insulin content 

The whole pancreas was dissected out and homogenised in 1.4 ml of acid ethanol containing 

75% (v/v) ethanol in 0.2 M HCl until no big pieces were observed. The pancreas 

homogenates were sonicated (frequency: 30 Hz; 12 pulses) (Branson Sonifier Cell Disruptor 

B15; Branson Ultrasonic, Danbury, CT, USA) and diluted at 1:5,000, 1:10,000, and 1:20,000 

for insulin measurement with an ultrasensitive mouse insulin ELISA kit (Crystal Chem Inc., 

Downers Grove, IL, USA). Protein levels in each pancreas homogenate were measured by 

the Bradford method, and the total pancreas insulin content (ng/ml) obtained from ELISA 

immunoassay was normalised to the total protein concentration (mg/ml) of each extract.  

3.2.2 Body fat distribution 

Subcutaneous (ScAT) and visceral (mesenteric, MsAT, retroperitoneal, RpAT and 

perigonadal PgAT) white adipose tissues were dissected out quickly and weighted. 

Afterwards, they were frozen in liquid nitrogen and kept at −80 °C until use.  

3.2.3 Leptin and ghrelin in serum 

For leptin and ghrelin measurements, multiplex immunoassays (BioPlex Pro, Bio-Rad 

Laboratories, Hercules, CA, USA) were run with blood samples taken randomly from 

animals belonging to the different cohorts, always after a 12 h period of overnight starvation.  

3.2.4 Triglycerides content in liver 

The left lobe of each liver (100-300 mg) was dissected out, immersed quickly in 350 μl of 

ethanolic KOH [0.1 M potassium hydroxide (Sigma-Aldrich, ST. Louis, MO, USA) in 

absolute ethanol (Merck, Darmstadt, Germany)], and incubated overnight at 55 °C until no oil 

layer was visible. After homogenization, each sample was brought up to 1 ml with a 1:1 

ethanol:water solution, vortexed, and centrifuged at 4 °C (7,000 × g) for 5 min. The 

supernatant was moved to another tube, and again the volume was brought up to 1.2 ml with 

a 50% (v/v) ethanol solution. 200 μl of each sample were neutralised with 215 μl of 1 M 

MgCl2 solution, vortexed, and left on ice for 10 min. After incubation, samples were 

centrifuged under the conditions described above, and the supernatant was moved to a new 

tube. Free liver triglycerides were analysed using Free Glycerol Reagent and Glycerol 

Standards (Sigma-Aldrich, ST. Louis, MO, USA) to construct the standard curve. The 

glycerol concentration in each cuvette (triolein equivalents) was measured by 

spectrophotometry (SAFAS-MONACO spectrophotometer, Monaco, France) at a wavelength 
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of 540 nm and was determined by extrapolation with the standard curve. Total triglycerides 

content expressed in milligrams per gram of liver was calculated.  

3.2.5 Isolation and cultivation of islets of Langerhans 

After sacrifice, abdomen was accessed via laparotomy and collagenase P (1 mg/ml) (Roche, 

Mannheim, German) diluted in HBSS pH 7.4 (Thermo Scientific, Waltham, MA) was 

injected into the proximal common bile duct clamped distally at the major duodenal papilla of 

Vater. After injection, the pancreas was extracted and incubated in HBSS at 37 °C for 30 min 

without shaking. Ice-cold HBSS (without BSA) was added and 1-2 strokes with 18G needle 

was applied to dislodge islets attached to the tissue. After 4 washes (2 with HBSS without 

BSA and 2 with HBSS 0.5% BSA) islets were hand-picked under a stereo microscope 

(KL200 LED, Leica, Wetzlar, Germany). Purified islets were transferred into petri dishes 

containing RPMI-1640 (Thermo Scientific, Waltham, MA, USA) with a final concentration 

of heat inactivated foetal bovine serum (10%), glutamine (2 mM), penicillin (100 U/ml) and 

streptomycin (100 μg/ml) (Thermo Scientific, Waltham, MA, USA) and incubated at CO2 

(5%) and 37 °C overnight. 

3.2.6 Dynamic insulin secretion assay 

After overnight incubation, approximately 80 islets from each pancreas were transferred to a 

chromatograph column (PERI-4.2, BioRep technologies, Miami Lakes, FL, USA) filled with 

Bio-Gel P-4 (Bio-Rad Laboratories, Hercules, CA, USA) to stabilise them during the 

perifusion. Islets were pre-perifused with NaCl (125 mM), KCl (5.9 mM), CaCl2 (1.28 mM), 

MgCl2 (1.2 mM), HEPES (25 mM), BSA (0.1%) and glucose (3 mM), pH 7.4 for 45 min at 

37 °C. The islets were perifused in the buffer above for 12 min, then sequentially exposed to 

11 mM glucose for 35 min followed by 3 mM glucose for 15 min and the protocol finished 

with 25 mM KCl + 3 mM glucose for 15 min to fuse all possible insulin granules. Fractions 

(50 μl) of the perifusates were collected every min during stimulation in a 96-well plate. The 

collected fractions were then measured for insulin concentration by the AlphaLISA detection 

kit (PerkinElmer, Waltham, MA, USA) with a plate reader (EnVision2103, PerkinElmer, 

Waltham, MA, USA).  

3.3 HISTOLOGY AND IMMUNOHYSTOCHEMISTRY  

3.3.1 Adipocyte size quantification 

After dissection, ScAT and PgAT tissues were formalin-fixed by immersion for 2 weeks. 

After fixation, both ScAT and PgAT were placed in 10% (v/v) sucrose-impregnated 

cardboard blocks, frozen in dry ice, and stored at −80 °C until use. Tissues were sectioned at 
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20-μm thickness using a cryostat (Microm HM500M/CryoStar NX70, Thermo Scientific, 

Waltham, MA, USA) and thawed onto SuperFrost Plus microscope slides (VWR 

International, Radnor, PA, USA). Slides were stained with H&E (Histolab, Gothenburg, 

Sweden) and mounted in VectaMount permanent mounting medium (Vector Laboratories, 

Inc., Burlingame, CA, USA). The stained adipocytes were analysed in an optical microscope 

(Leica, Wetzlar, Germany), and images were obtained at 10× and 40× magnification 

objectives. The area of the adipocytes (in square micrometres) was analysed using the ImageJ 

program (National Institutes of Health, Bethesda, MD, USA), and images were obtained with 

the 10× magnification objective.  

3.3.2 Oil red “O” staining in liver 

For lipid visualization, oil red “O” (ORO) staining was conducted on 14-μm-thick liver 

sections. Before sectioning, liver samples from the left lobe of each animal were dissected out 

and formalin-fixed for 24 h. Sections were obtained as in 3.3.1. After 1 h at room temperature 

slides were rinsed in 60% (v/v) isopropyl alcohol, stained in freshly prepared 0.1% ORO 

solution (Sigma-Aldrich, ST. Louis, MO, USA) for 15 min, rinsed in 60% (v/v) isopropyl 

alcohol, washed in distilled water, and mounted with 0.25% DABCO mounting medium 

(Sigma-Aldrich, ST. Louis, MO, USA). Liver sections from all experimental groups were 

analysed, and lipid droplets were identified using a 5× objective (Leica) followed by 

amplification to 10× and 40× magnification.  

3.3.3 Analysis of islets parameters 

For histological and immunohistochemical analysis, the animals were perfused and the 

pancreas treated as described in 3.3.4. Thaw-mounted 16 μm sections were dried at room 

temperature for 30 min and rinsed with PBS for 15 min.  Mounted sections were incubated 

with primary antibodies in a humidified chamber at 4 °C overnight (rabbit anti-glucagon 

antibody, 1:1,000 dilution, BioGenex, Fremont, CA, USA and guinea-pig anti-insulin 

antibody, 1:200 dilution, Bio-Yeda, Rehovot, Israel). After washing in PBS, they were 

incubated with secondary antibodies for 90 min at room temperature (donkey Cy3-conjugated 

anti-rabbit IgG and donkey FITC-conjugated anti-guinea pig IgG, 1:150 and 1:40 dilution 

respectively, Jackson Immunoresearch Europe, Suffolk, United Kingdom). Sections were 

finally incubated with DAPI (1:10,000 dilution, Bio-Rad, Hercules, CA, USA) diluted in PBS 

for 15 min at room temperature and mounted using 2.5% DABCO in glycerol (Sigma-

Aldrich, ST. Louis, MO, USA). For the detection of apoptotic beta cells, sections were 

processed according to the instructions in the commercial kit used (Click-iT Plus TUNEL 

assay, Thermo Scientific, Waltham, MA) and co-labeled with insulin. For histology, another 
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set of sections was used for H&E staining (Histolab, Gothenburg, Sweden) and mounted with 

VectaMount permanent mounting medium (Vector Laboratories Inc., Burlingame, CA, 

USA).  

The pancreatic sections were examined with Nikon Eclipse E600 fluorescence microscope 

with objective lenses 20× (Nikon, Tokyo, Japan) equipped with appropriate filters and 

ORCA-ER, C4742-80 digital camera (Hamamatsu Photonics K.K., Shizuoka, Japan), using 

Hamamatsu Photonics Wasabi 150 software. Images were also acquired by use of upright 

laser scanning confocal microscope based on a Leica TCS-SP5 II (Leica Microsystems, 

Wetzlar, Germany), together with long-distance water-dipping objectives (Leica HXC-APO 

20×/0.5, Wetzlar, Germany), and a Leica LAS software (Leica, Wetzlar, Germany). For 

insulin- and glucagon-expressing cell quantifications, one randomly-chosen pancreatic 

section/animal was used, each insulin/glucagon positive cell with detectable nucleus was 

counted and the number of cells was divided by the islet area. Two randomly-chosen H&E 

stained pancreatic sections/animal were used for islet size measurement and number of islet 

per section. Around 400 islets were counted. All measurements were done with the ImageJ 

program (National Institutes of Health, Bethesda, MD, USA). For the detection of apoptotic 

beta cells, one randomly-chosen pancreatic section/animal was used and all islets within a 

section were analysed. 

3.3.4 Proximity ligation assay 

For histological and immunohistochemical analyses, mice were deeply anesthetised with 

isofluorane and transcardially perfused with 20 ml of warm (37 °C) PBS, pH 7.4, followed by 

20 ml of a warm mixture of 4% paraformaldehyde (37 °C) and 0.4% picric acid in 0.16 M 

phosphate buffer (pH 7.2), and then by 50 ml of the same, but ice-cold fixative. The pancreas 

was dissected out and postfixed in the same fixative for 90 min at 4 °C. Specimens were 

subsequently stored in 10% sucrose in PBS (0.1 M, pH 7.4) containing 0.01% sodium azide 

(Sigma, St. Louis, MO, USA) and 0.02% bacitracin (Sigma) as preservatives at 4 °C for 2 

days. Coronal sections (14 μm thick) were cut as described in 3.3.1. Afterwards, they 

underwent the protocol for proximity ligation assay (PLA) (DuoLink in situ bright-field, 

Sigma-Adrich, MO, USA). Primary antibodies against Gβ1-4 (1:150 dilution, M-14, Santa 

Cruz Biotechnology, Dallas, TX, USA) and SNAP-25 (1:1,000 dilution, SMI-81, Biolegend, 

San Diego, CA, USA) were used. 
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3.4 PROTEIN ANALYSES 

3.4.1 Western blotting in hypothalamus and liver 

In Paper I, hypothalamus and liver samples from all experimental groups were homogenised 

in ice-cold buffer containing 0.42 mM NaCl, 20 mM Hepes (pH 7.9), 1 mM Na4P2O7, 1 mM 

EDTA, 1 mM EGTA, 1 mM DTT, 20% (v/v) glycerol, 1 μg/ml aprotinin, 1 μg/ml leupeptin, 

20 mM sodium fluoride, 1 mM trisodium orthovanadate, and 2 mM phenylmethylsulfonyl 

fluoride. Tubes containing homogenates were exposed to a thermal shock at −80 °C in liquid 

nitrogen and thawed to 37 °C three consecutive times, and centrifuged at 10,000 × g for 20 

min. Then the supernatant was collected. Protein levels in the supernatant of both liver and 

hypothalamus homogenates were measured by the Bradford method, and volumes were 

adjusted in Laemmli buffer [50 mM Tris (pH 6.8), 10% (v/v) SDS, 10% (v/v) glycerol, 5% 

(v/v) mercaptoethanol, and 2 mg/ml bromophenol blue] to 2 μg/μl of protein concentration. 

Proteins (40 μg) were loaded using a Trans-Blot apparatus (Bio-Rad). Each sample was size-

separated in 10% (v/v) SDS/PAGE and transferred to PVDF membranes (GE Healthcare, 

Little Chalfont, United Kingdom). For immunoblotting, membranes were blocked with 5% 

(w/v) nonfat dried milk. Primary antibodies against total and phosphorylated (Thr172) forms 

of AMPK-α1/2 (1:1,000 dilution, Cell Signaling, Danvers, MA, USA), total and 

phosphorylated (Tyr705) STAT3 (1:1,000 dilution, Santa Cruz Biotechnology, Dallas, TX, 

USA), total and phosphorylated (Thr202/Tyr204) ERK1/2 (1:1,000 dilution, Cell Signaling, 

Danvers, MA, USA), or ObR (1:1,000 dilution, Santa Cruz Biotechnology, Dallas, TX, USA) 

were applied overnight. After incubation with IgG–peroxidase complexes, blots were 

incubated in commercial enhanced chemiluminescence reagents (ECL-Prime; GE Healthcare, 

Little Chalfont, United Kingdom), and membranes were exposed to a luminescent image 

analyser (Las-1000 Plus; Fuji, Tokyo, Japan). Obtained images were quantified using ImageJ 

software. Values for all proteins were normalised to β-actin (1:1,000 dilution, Sigma-Aldrich, 

ST. Louis, MO, USA).  

3.4.2 Western blotting and immunoprecipitation in hippocampus 

In Paper III, hippocampi were quickly dissected and homogenised in ice-cold buffer 

containing: 50 mM Tris-HCl (pH 7.4), 180 mM NaCl, 0.25% NP-40, 20% glycerol, 1 mM 

MgCl2, 2 mM EDTA, 0.035% β-Mercaptoethanol, 0.5 mM phenylmethanesulfonylfluoride 

and proteases inhibitor cocktail (1 tablet/10ml; Roche, Basel, Switzerland) by using Kontes 

pellet pestle homogeniser (Sigma-Aldrich, St. Louis, MO, USA). Protein concentration was 

assessed as in 3.4.1 and adjusted with the lysis buffer to a final concentration of 2 µg/µl. One 

ml of precleared protein extracts was incubated overnight at 4 °C under rotation with 50 µl of 
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protein G-sepharose slurry (GE Healthcare, Little Chalfont, United Kingdom) preincubated 

with 1 µg of anti-SNAP-25 antibody (SMI-81, Biolegend, San Diego, CA, USA) diluted in 

50 µl of TBS buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl). After four washes with TBS 

buffer supplemented with 0.05% Triton X-100, 25µl of Laeammli buffer was added to the 

precipitated proteins (0.5 M Tris-HCl pH 6.8, 20% glycerol, 4% SDS, 10% β-

Mercaptoethanol and 0.05% bromophenol blue) and heated at 100 °C for 20 minutes. Protein 

eluates were centrifuged 3 min at 6000 rpm and 15 µl were loaded on 4-12% Bis-Tris 

gradient gels (NuPage, Thermo Fisher Scientific, Waltham, MA, USA) and run for 45 min at 

200 V with 2-(N-morpholino)ethanesulfonic acid (MES) buffer (NuPage, Thermo Fisher 

Scientific, Waltham, MA, USA). For silver staining the gels were processed as described in 

the protocol (SilverQuest™ Silver Staining Kit, Thermo Fisher Scientific, Waltham, MA, 

USA). Proteins were transferred onto nitrocellulose membranes by using the iBlot gel transfer 

technique (Thermo Fisher Scientific, Waltham, MA, USA). For immunoblotting, membranes 

were blocked with 5% nonfat dried milk in 0.1% Tween-PBS (4.3 mM Na2HPO4, 137 mM 

NaCl, 2.7 mM KCl and 1.4 mM KH2PO4, pH 7.4) for 2 h at room temperature. Primary 

antibodies against syntaxin 1 (1:500,000 dilution, Synaptic Systems, Göttingen, Germany), 

VAMP-2 (1:1,000,000 dilution, Synaptic Systems, Göttingen, Germany) Munc18-1 

(1:10,000 dilution, Synaptic Systems, Göttingen, Germany) Gβ1-4 (1:500 dilution, M-14, 

Santa Cruz Biotechnology, Dallas, TX, USA), and SNAP-25 (1:1,000,000 dilution, SMI-81, 

Biolegend, San Diego, CA, USA), were applied overnight at 4 °C under shaking. After 

incubation with anti-mouse or anti-rabbit IgG-peroxidase complexes (GE Healthcare, Little 

Chalfont, United Kingdom), immunoreactive bands were processed as described in 3.4.1. 

Values for Gβ1-4 band densitometry were normalised to SNAP-25 band densitometry. 

For analysing expression levels of hippocampal proteins, 15 µg of protein from lysates were 

loaded and run on gradient gels with the same materials and conditions as for the 

immunoprecipitation described above. Primary antibodies against Munc18-1 (1:10,000), 

syntaxin 1 (1:100,000), VAMP-2 (1:1,000,000), SNAP-25 (1:1,000,000) and Gβ1-4 (1:5,000) 

and α-tubulin (1:1,000 dilution, Santa Cruz Biotechnology, Dallas, TX, USA) were used. 

Values for the proteins band densitometry were normalised to α-tubulin. 

3.4.3 Mass spectrometry 

Samples were analysed at Proteomics Karolinska, PK/KI core facility at Karolinska Institutet, 

Stockholm, Sweden. The silver-stained protein band was cut from the gel and the piece was 

digested using MassPREP robotic protein handling system (Waters, Millford, MA, USA). 

Briefly, washing was carried out in 50 mM ammonium bicarbonate containing 50% 
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acetonitrile. The protein was reduced (DTT) and alkylated (iodoacetamide) followed by in-

gel digestion with 0.3 mg trypsin (Promega, Madison, WI, USA) in 50 mM ammonium 

bicarbonate for 5 h at 40 °C. The tryptic peptides were extracted with 1% formic acid/2% 

acetonitrile, followed by 50% acetonitrile twice. The liquid was evaporated and the peptides 

were injected onto the LC-MS/MS system (EASY-nLC chromatography system and Orbitrap 

Velos Pro API mass spectrometer, Thermo Scientific, MA, USA). The peptides were 

separated on a homemade C18 column, 8 cm (Silica Tip 360 µm OD, 75µm ID, New 

Objective, Woburn, MA, USA) and the effluent electrosprayed into the mass spectrometer 

direct via the column. The spectra were analysed using Mascot (Matrix Science) and searched 

against SwissProt_2014_01, mus musculus.  

3.5 ELECTROPHYSIOLOGY AND CA2+ IMAGING IN BETA CELLS 

3.5.1 Pancreatic tissue slice preparation 

A low-melting point agarose (1.9 %, Lonza Rockland Inc., Rockland, ME, USA) in 

extracellular solution, ECS, consisting of: NaCl (125 mM), NaHCO3 (26 mM), glucose (6 

mM), lactic acid (6 mM), myo-inositol (3 mM), KCl (2.5 mM), Na-pyruvate (2 mM), CaCl2 

(2 mM), NaH2PO4 (1.25 mM), MgCl2 (1 mM), ascorbic acid (0.5 mM) at 40 °C was injected 

into the proximal common bile duct clamped distally at the major duodenal papilla of Vater. 

Immediately thereafter, the pancreas was cooled using ice-cold ECS and extracted. Small 

tissue blocks were plunged into the agarose at 40 °C and cut with a VT 1000 S vibratome 

(Leica, Nussloch, Germany) into 140 μm-thick slices of a surface area of 20-100 mm2. 

Throughout the procedure, tissue was held in an ice-cold ECS continuously bubbled with a 

gas mixture containing O2 (95%) and CO2 (5%) at barometric pressure to ensure oxygenation 

and a pH of 7.4. After cutting the slices were collected in 30 ml of HEPES-buffered saline, 

HBS, consisting of: NaCl (150 mM), HEPES (10 mM), glucose (6 mM), KCl (5 mM), CaCl2 

(2 mM), MgCl2 (1 mM); titrated to pH 7.4. All chemicals were obtained from Sigma-Aldrich 

(St. Louis, MO, USA) unless indicated. 

3.5.2 Electrophysiology 

Patch pipettes were pulled from borosilicate glass capillaries (GC150F-15, Harvard 

Apparatus, Holliston, MA, USA) using a horizontal pipette puller (P-97, Sutter Instruments, 

Novato, CA, USA). The pipette resistance was 2–3 MΩ in Cs+-based solution. Fast pipette 

capacitance (Cfast) was compensated in cell-attached mode, slow membrane capacitance 

(Cslow) and series conductance (Gs) were compensated after establishment of whole-cell 

mode. Only experiments with Gs>50 nS were carried out. Recordings were performed in the 
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standard whole-cell mode via a patch-clamp lock-in amplifier (SWAM IIc, Celica, Slovenia) 

connected to a computer via A/D converter (16 bit, NI USB-6343, X Series Multifunction 

DAQ, National Instruments, Austin, TX, USA) and recorded on the hard disk using 

WinWCP V5.1.6 software (John Dempster, University of Strathclyde, United Kingdom). The 

same software was used for identifying beta cells by their Na+ current inactivation properties 

and for determining membrane capacitance change after slow photo-release of caged Ca2+. A 

continuous sine voltage (1600 Hz, 11 mV RMS amplitude) was applied to measure Cm. 

Resting membrane potential in voltage-clamp mode was -80 mV. The pipette solution used 

for Ca2+-induced capacitance and current measurements was composed of NP-EGTA (5 

mM), CaCl2 (4 mM), mM Fura 6F (0.1) (Invitrogen, Eugene, OR) together with CsCl (125 

mM), HEPES (40 mM), MgCl2 (2 mM), TEA–Cl (20 mM), Na2ATP (2 mM) at pH 7.2 and 

osmolality 300 ± 10 mOsm. Signal processing and curve fitting was done using Matview 

(Wise Technologies, Ljubljana, Slovenia) and Matlab (The MathWorks, Inc., Natick, MA, 

USA). 

3.5.3 Loading of dyes and imaging of [Ca2+]i oscillations in beta cells 

For [Ca2+]i imaging 8-10 slices were incubated in a petri dish filled with HBS (3.333 ml) 

containing Oregon Green 488 BAPTA-1 acetoxymethyl ester calcium fluorescent dye (6 μM, 

OGB-1, Invitrogen, Eugene, OR, USA), Pluronic F-127 (0.03 % w/v) and 

dimethylsulphoxide (DMSO, 0.12% v/v) for 50 min on an orbital shaker (50 turns min-1) at 

room temperature and protected from light. Ca2+ imaging was performed on a Leica TCS SP5 

AOBS Tandem II upright confocal system using a Leica HCX APO L 20× water immersion 

objective (NA = 1.0). OGB-1 was excited by an argon 488 nm laser and the emitted light was 

detected by Leica HyD hybrid detector in the range of 500-700 nm (all from Leica 

Microsystems GmbH, Wetzlar, Germany). The slices were perifused with bubbled ECS at 

35-37 °C containing 6-12-6 mM glucose, sequentially. Only cells lying at least 15 μm below 

the surface were imaged. Images were acquired at a spatial resolution of 512 × 512 pixels and 

a temporal resolution of 1 Hz. The total time of 12 mM glucose stimulation was 15-22 min. 

To determine the frequencies and the durations of Ca2+ oscillations and for the network 

analysis, images were acquired for 5 min at a spatial resolution of 256 × 256 pixels and a 

temporal resolution of 29 Hz. Time traces were analysed off-line from regions of interest with 

Leica Application Suite Advanced Fluorescence software (Leica Microsystems GmbH, 

Wetzlar, Germany), exported and further examined to determine the delays in the onsets and 

delays in deactivation in the [Ca2+]i responses using MATLAB (The MathWorks, Inc., 

Natick, MA, USA). Traces were corrected for photobleaching of the dye employing a 
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combination of linear and single exponential fit 90. Signals were expressed as (F – F0)/F0 

ratios, where F0 is the initial fluorescence intensity and F is the fluorescence signal recorded 

at an individual time point. All recorded time series were digitally band-pass filtered in order 

to remove noise and artefacts, and then additionally smoothed with an adjacency averaging 

procedure. To calculate the frequencies and durations of Ca2+ oscillations, the onsets and the 

endings of individual oscillations were defined as the time in which the signal decreases 

bellow the half of the maximal amplitude in the given oscillation. In this manner, the activity 

profiles of all cells were binarized, whereby the time between the onset and ending of an 

oscillation was denoted as 1, whilst 0 otherwise. The cells with a low signal-to-noise ratio 

were excluded from further analyses. 

3.5.4 Synchronization and functional connectivity of beta cells 

The level of synchronization among beta cells was determined on the basis of binarised Ca2+ 

activity by means of the coactivity matrix, whose ij-th element is defined as follows: 

TiTj

Tij
Cij   

and reflects synchronization between the i-th and the j-th cell. In the equation, Tij stands for 

the total coactivity time in which both cells were simultaneously active and Ti  and Tj  are the 

total individual activity times for both cells. If 0Cij  then no correlation between the i-th 

and j-th cells exists, whilst 1Cij  signifies completely synchronous and aligned dynamics. 

To describe the global level of synchronization in the whole slice, the mean coactivity was 

calculated by averaging over all cell pairs (Figure 5). 

 

Figure 5. Quantification of the Ca2+ traces in beta cells. The grey lines represent the recorded Ca2+ traces of two 
active beta cells upon glucose stimulation. The black lines represent the traces after removal of noise and 

smoothening. Traces were then binarised. The level of synchronization among beta cells was calculated as the 
coactivity coefficient, which measures the overlap of activity (Tij, violet area) of i-th (Ti, green area) and j-th (Tj, 

orange area). Supplementary figure from Paper II. 
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To get a more detailed insight into the intercellular interaction patterns, functional 

connectivity maps were constructed. Two cells were considered to be functionally connected 

if their activity profiles showed a high enough degree of synchronization, i.e. Cij exceeded a 

given threshold value. A variable connectivity threshold was used in order to ensure that all 

examined beta cell networks had the same mean number of connections per cell – 6.  The 

segregation of beta cell networks was assessed by calculating a global metric called 

“modularity”, as proposed by Blondel et.al. 105. A higher modularity indicated a high degree 

of sub-compartmentalization, whereas close-to-zero values indicated an integrated and a 

module-free network. 

3.6 STATISTICAL ANALYSES 

In Paper I, StatView 5.0 software was used for statistical analyses. Cell-line charts were 

analysed by repeated-measures ANOVA. For time point by time point analysis, two-way 

ANOVA was used. Cell bar charts were analysed by two-way ANOVA. Unpaired t-test 

analysis was used to compare one experimental group with its corresponding control group 

during physiological conditions. Statistical significance was verified with nonparametric 

statistics using the Kruskal–Wallis H-test, followed by the post hoc Mann–Whitney, Fisher’s 

protected least significant difference, and Student–Newman–Keuls tests. Bonferroni 

correction was applied in all statistical analyses. The variance between groups was tested 

using Bartlett’s test and was examined in all datasets. Normal distribution was verified by 

using the Kolmogorov–Smirnov normality test. 

In Paper II and III, all statistical analyses were done using GraphPad Prism (GraphPad 

Software, San Diego, CA, USA). Two-way ANOVA followed by Bonferroni multiple 

comparisons test, Mann-Whitney and Student´s t-test were used to verify statistically 

significant differences in all our experiments dependently on non-Gaussian or Gaussian 

distribution of data. The level of significance was set at a P value < 0.05.  

3.7 SCHEMATIC METHODOLOGICAL APPROACH 

The schematic methodological approach for each study is illustrated in Figure 6 (Paper I), 

Figure 7 (Paper II) and Figure 8 (Paper III). 
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Figure 6. Methodological approach in Paper I. 

 

                         

Figure 7. Methodological approach in Paper II. 

 

 

Figure 8. Methodological approach in Paper III. 
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4 RESULTS AND DISCUSSION 

4.1 PAPER I 

Deregulation of hormonal secretion, such as insulin, is regarded as a secondary sign and 

consequence of developing metabolic syndrome 8. In Paper I, we instead explored if a small 

modification in the exocytosis machinery could provoke metabolic syndrome, therefore 

acting as a genetic predisposition. We took advantage of MT mice which express SNARE 

complexes only formed by SNAP-25a in neuronal, neuroendocrine and endocrine cells 52. 

Little is known about the functional difference between SNAP-25a and SNAP-25b, yet 

SNAP-25a was found to have a lower capacity to keep vesicles in a primed state 42. We 

monitored WT and MT mice for 7 weeks from the age of 5 weeks. We started the diet 

intervention during adolescence since it is a critical window for the development of metabolic 

syndrome 104,106. Both male and female mice were either administered a CoD or a WeD. We 

found that SNAP-25b-deficiency provoked a set of symptoms characteristic of the human 

metabolic syndrome, exacerbated when combined with WeD. Interestingly, a number of 

polymorphisms in genes encoding proteins important for insulin exocytosis (including 

SNAP-25) have been linked to the severity of certain metabolic traits in T2D/obese patients 

or susceptibility for T2D 107–111. It is therefore tempting to speculate that in humans such 

mutations, in combination with hypercaloric diets, can contribute to the initial phase of 

development of metabolic syndrome.  

4.1.1 SNAP-25b-deficient mice develop obesity and impaired insulin and 
glucose homeostasis 

At the beginning of the study, at the fifth postnatal week, WT and MT mice showed similar 

body weights and blood glucose/triglycerides/cholesterol levels. During the intervention, we 

noticed that MT mice fed a CoD had significantly higher body weights compared to WTs. 

The body weight gain in WeD-fed WTs was similar to the CoD-fed MTs, whereas WeD-fed 

MT mice dramatically increased their body weights compared to all other experimental 

groups. We monitored insulin and glucose homeostasis by challenging 11-week-old mice 

with a standard GTT and concomitant collection of serum from the tail vein to analyse insulin 

levels. Already at basal conditions, all groups of females demonstrated a significant increase 

in basal blood glucose compared to CoD-fed WTs, whereas in males the effect was 

significant only in WeD-fed MTs. The basal insulin levels were increased in all groups 

compared to CoD-fed WTs but only in males WeD-fed MTs it was statistically significant. 

When challenged with glucose, both male and female MTs on CoD exhibited significantly 

lower blood glucose levels compared to WTs after 15 min which was accompanied by 
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elevated serum insulin levels. This suggested that the presence of SNAP-25a alone can favour 

insulin exocytosis at a lower stimulatory threshold. When the animals were fed a WeD the 

glucose clearance was dramatically impaired. Moreover, we found increased total pancreas 

insulin content in MT mice. By monitoring preprandial blood glucose levels for 7 weeks of 

diet intervention, we found that MT mice developed hyperglycaemia compared to CoD-fed 

WT mice. We could disclose both genetic and diet influences in the development of 

hyperglycaemia in males and females. The inability of maintaining normal blood glucose 

suggested insulin resistance and/or impaired eating habits. Indeed, the HOMAIR revealed 

only a tendency to insulin resistance in males but a robust effect in MT-CoD females 

compared to WT-CoD. 

4.1.2 SNAP-25b-deficient mice display altered eating habits correlated to 
hypothalamic dysfunctions 

To explain the increased body weight in MT-CoD as well as MT-WeD mice, we investigated 

their eating habits. In males, the average food and calorie intake of the CoD-fed MTs was 

significantly lower than that of the CoD-fed WTs whereas in the MT females the result was 

opposite, partially explaining their body weight gain. Monitoring the male CoD-mice every 

day for 7 days, enabled us to find that in WTs, the calorie intake was mainly associated with 

the dark active period whereas in MTs it was equally distributed during both the light and 

dark period, suggesting a disruption of the circadian feeding behaviour.  

We therefore hypothesised that the lack of SNAP-25b could induce alterations in feeding 

circuits in hypothalamic neurons hence influencing the mouse metabolic homeostasis 3,112. A 

hallmark for metabolic dysfunction is the activation/phosphorylation of a master metabolic 

regulator, AMPK, regarded as a key protein in the leptin signalling pathway 113,114. The 

activation status of AMPK-1/2 subunit in the hypothalamus after 7 weeks of diet intervention 

was compromised in a sex-independent manner in all groups when compared to CoD-fed 

WTs. We further investigated the status of the leptin receptor, ObR, since it is well described 

that genetic and diet-induced obesity account for increased leptin levels and consequent leptin 

resistance in a tissue specific manner 115. In hypothalamus, the long isoform of ObR, ObRb, 

was found to be affected by WeD intervention in a similar manner in WTs and MTs in both 

sexes, but with the MTs having the most dramatic ObRb deficiency. We further characterised 

the expression levels of key proteins in the insulin/leptin signalling pathways such as STAT3 

and ERK1/2. The phosphorylated STAT3 was reduced in all groups compared to CoD-fed 

WTs, except for male CoD-fed MT mice. The phosphorylated form of ERK1/2 was increased 

in all experimental groups, a phenomenon described as a low-grade inflammation in the 
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hypothalamus of individuals with obesity and T2D 116. Taken together, our results suggest 

that the effects of SNAP-25b-deficiency in combination with WeD are accompanied by 

disruption of cross-talk between the brain (in particular the hypothalamus) and the periphery. 

These results are in line with work from other groups where diet-induced obesity and insulin 

resistance induce permanent effects both on the periphery and the brain.  

4.1.3 SNAP-25b-deficiency leads to adiposity accumulation and 
dyslipidaemia  

As SNAP-25b-deficiency alone provoked obesity, we dissected visceral and nonvisceral fat 

depots from all experimental groups and weighted them in correlation to the body weight of 

each individual mouse. MT mice had a significant increased weight of all white adipose 

tissues, in both sexes, compared to CoD-fed WT mice and when they were fed a WeD the 

resulting adiposity accumulation was even greater. Obesity and metabolic disorders are 

associated with adipocyte size and turnover 10 and indeed we found adipocyte hypertrophy in 

ScAT and PgAT in CoD-fed MT and WeD-fed mice in both sexes. The increased 

accumulation of lipids suggested that MT mice could have impairments in lipid metabolism, 

hence dyslipidaemia. Hyperlipidaemia is the most common form of dyslipidaemia, 

characterised by elevated levels of triglycerides, cholesterol and lipoproteins in the blood 117. 

In 12-week-old mice, all groups demonstrated a significant increase in basal triglycerides and 

cholesterol compared to CoD-fed WTs, except for WeD-fed female WTs. During CoD the 

hypertriglyceridemia appeared earlier in females than males. An opposite trend was found for 

the development of hypercholesterolemia. Noteworthy, the pattern of dyslipidaemia found in 

WeD-fed WT mice was very similar to the CoD-fed MT until the end of the study. Finally, 

the synergistic effect of combining genotype and diet resulted in the worst hyperlipidaemia 

levels. Similar results have been also described in patients with certain  polymorphisms in the 

Snap25 gene, treated with antipsychotic drugs for schizophrenia, where elevated serum 

triglycerides levels and body weight gain have been described 118,119. We have also analysed 

humoral factors such as leptin and ghrelin since it is known that their abnormal release is 

associated with obesity and metabolic dysfunctions 115. Measurements of basal serum leptin 

levels revealed that in CoD-fed MT females they were significantly higher than WTs. Again, 

the effect of both SNAP-25b-deficiency and diet resulted in the worst phenotype. Ghrelin was 

decreased in all experimental groups compared to CoD-fed WTs, in accordance with 

conditions associated to metabolic impairment 120,121.  
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4.1.4 SNAP-25b-deficiency induces liver dysfunction  

The increased levels of serum leptin led us to study leptin resistance in the liver, as it is a 

target tissue during metabolic disease 115. Independently of sex, the long isoform of the ObR, 

ObRb, was down-regulated compared to CoD-fed WTs in all experimental groups. 

Interestingly, the short isoform of the receptor, ObRa, was detectable only in MT mice, 

maybe as an attempt to compensate for decreased ObRb expression. We have also 

determined lipid accumulation in liver and found that SNAP-25b-deficiency was sufficient to 

turn the liver into a hepatic steatosis status, similarly to WeD-fed WT animals. When the 

mutation was combined with WeD the liver disease turned to severe fatty liver disease. The 

hypothalamus has a major role into hepatic lipid metabolism and storage via the autonomic 

nervous system and it is believed that increased sympathetic activity induces lipid 

accumulation in the liver 122,123. In our SNAP-25b-deficient mice it is plausible that the 

impaired neuroexocytosis from autonomic nerves causes liver steatosis. 

To summarise, in Paper I we have tested if a small genetic modification in the SNARE 

complex (i. e., replacing SNAP-25b with SNAP-25a), likely resulting in altered release of 

hormones, like insulin, could provoke metabolic syndrome in mice. Indeed, already at 12 

weeks of age, mice carrying this mutation developed symptoms of metabolic disease, which 

became full-blown when fed the WeD. It is tempting to hypothesise that also in humans such 

mutations, combined with an unhealthy diet and a sedentary life could be part of the 

triggering factors for the development of metabolic disease.    

4.2 PAPER II 

In Paper I, we have studied the metabolic consequences of the lack of SNAP-25b in vivo and 

found it correlated to an increased insulin secretion during GTT. In Paper II, we funnelled 

down to investigate the effect of SNAP-25b-deficiency on insulin secretion from beta cells 

and islet physiology, hypothesizing that this could contribute to development of the metabolic 

syndrome 8. We expected SNAP-25b-deficiency in beta cells to lead to a facilitated release, 

primarily affecting the dynamics of different pools of insulin granules 42,53. Indeed, we found 

an increased insulin secretion phenotype, however, this was instead associated with poorly 

controlled Ca2+ dynamics among beta cells in SNAP-25b-deficient mice. These results 

indicated additional functions of the SNAP-25 isoforms beyond their classical role in the 

SNARE complex mediating membrane fusion. Coordination of Ca2+ oscillations in beta cells 

is fundamental for a physiological release of insulin and disruptions of this mechanism can 

lead to development of insulin resistance and obesity 124. The experiments were run in 12-

week-old male and female, WT and MT mice on CoD. 
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4.2.1 SNAP-25b-deficiency increases insulin secretion and affects islet 
morphology 

Although SNAP-25b is the least abundant isoform in the endocrine beta cell 46,53, we found 

increased insulin secretion in islets isolated from MT mice compared to WTs when perifused 

with 11 mM glucose and 25 mM KCl. This secretion pattern was also found in vivo when the 

mice were challenged with a 15 min-long GTT. Serum insulin levels in MT mice were higher 

at all time points, although the blood glucose remained unchanged compared to the WTs. 

Interestingly, the WT females were found to have consistently lower serum insulin levels 

compared to WT males and therefore MT females demonstrated hyperinsulinemia and 

hyperglycaemia compared to their corresponding WT littermates. These results were also 

supported by the calculation of HOMAIR, an estimation of insulin resistance which indicated 

that WT females were more sensitive to insulin compared to WT males, probably due to 

different body composition. 

To investigate if the increased insulin secretion was attributed to altered islet morphology and 

cell distribution, we analysed pancreatic sections immunolabelled for insulin and glucagon as 

well as H&E labelled sections. First of all, we noticed the same characteristic spatial 

distribution of alpha and beta cells in SNAP-25b-deficient islets as in the WTs. More detailed 

analyses revealed that MT males had an increased number of insulin-positive cells per islet as 

well as larger islets compared to WT males, which could in part explain the increased insulin 

secretion. The number of alpha cells in islets was identical in WT and MT islets. Remarkably, 

islets from WT females contained more beta cells compared to WT males, although the 

individual beta cells were smaller in size, as determined by membrane capacitance 

measurements. WT females were found to have the highest number of islets among the 

groups. No signs of apoptosis were detected in beta cells in MT mice as compared to WTs. 

Taken together, the differences found between WT males and females is maybe attributed to 

the compensation of energy demands females encounter in case of pregnancy 125.  

4.2.2 SNAP-25b-deficiency does not influence Ca2+-sensitivity or rate of 
exocytosis 

As we hypothesised that the increased insulin secretion in MT islets was dependent on less 

stable SNARE complexes that could facilitate exocytosis, we performed experiments with 

slow photo-release of caged Ca2+ in beta cells with patch clamp. To do so we took advantage 

of the pancreatic tissue slice technique, where it is possible to get access to populations of 

beta cells resident in the islet core and beta cells are surrounded by their natural environment, 

the exocrine pancreas 90. Slow photo-release of caged Ca2+ produces a ramp-like increase in 
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[Ca2+]i
 up to a threshold value (Catr) that triggers exocytosis, measured as a biphasic increase 

in membrane capacitance 126. To our surprise, when [Ca2+]i
 raised no difference was found 

either in Ca2+ sensitivity, amplitude or rate of exocytosis between WT and MT beta cells. 

Therefore, the increased secretion found in vivo and in vitro could not only be dependent on 

the stability of SNARE complexes formed with either isoforms.  

4.2.3 SNAP-25b is necessary for accurate regulation of Ca2+ dynamics in 
beta cells 

We hypothesised that the different SNAP-25 isoforms might act differently on upstream 

targets involved in insulin exocytosis. It is known that SNAP-25, also in combination with 

syntaxin, binds to a number of proteins important for ion trafficking and electrical activity in 

excitable cells, such as VDCCs and K+ channels 54–56,127–129.  

We therefore explored if SNAP-25b-deficiency affected intracellular Ca2+ dynamics in beta 

cells using functional Ca2+ imaging on pancreatic tissue slices. When we stimulated the islets 

with 12 mM glucose, the initiation phase started with its characteristic progressive 

heterogeneous recruitment of beta cells 90 and beta cell activation time spanned from 1 to 6 

min in all experimental groups. Interestingly, in islets from MT mice a subgroup of beta cells 

responded earlier, which reflected an overall less regulated and faster glucose-induced Ca2+ 

response. When we removed high glucose, the beta cells deactivation started after 2-3 min 

and propagated within the islet with a high grade of heterogeneity from islet to islet, 

sometimes lasting even longer than 20 min. A detailed analysis revealed that in males, beta 

cells in MT islets experienced a deactivation process significantly longer than WTs. 

A consistent part of the Ca2+ imaging analysis was dedicated to the “active” stimulatory 

phase in beta cells which was reached after 7-15 min of 12 mM glucose exposure and is 

predominantly characterised by sustained oscillatory Ca2+ activity, superimposed on an 

elevated basal Ca2+ level 90. First of all, we calculated the mean frequency and duration of 

individual Ca2+ oscillations for all experimental groups and found no significant differences 

except for increased mean pulse duration in MT females compared to WTs. However, when 

we calculated the mean coactivity we disclosed a low grade of synchronicity between beta 

cells within MT islets compared to WTs in both males and females, indicating a weaker 

collective control of Ca2+ elevations. These characteristics in MT islets together with the 

morphological changes observed at least in males suggested lesions in the quality of beta cell-

to-cell interaction and hence possibly influencing hormonal secretion. We studied the 

functional connectivity profiles in all subgroups using analytical tools from the theory of the 

complex network 130. Previous studies on beta cell networks indicated that they form 
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heterogeneous, efficient and clustered architecture 131–134. When we calculated the 

modularity, we found that functional networks extracted from MT males were more 

segregated compared to WTs. The modular connectivity could be dependent on beta cell 

hyperplasia found in MT males coupled with looser connections between beta cells as the gap 

junction conductance, measured by patch clamp, tended to be decreased in MT compared to 

WT cells. Also, the spatial distribution of frequencies within the islet indicated a segregation 

of beta cell activity in MTs. During the last years, correct inter-beta-cell-connectivity within 

the islet has been described as fundamental for the generation of coordinated rhythmic insulin 

release and this complex network can be disrupted during the pathogenesis of T2D 99,101–

103,135. In our MT mice, we found increased glucose-induced insulin release associated with 

less synchronised Ca2+ oscillations, which is in line with previous results from other groups 
81,99,100. Although we have not focused our research on pulsatile insulin secretion, a trait 

impaired during the progression of T2D, this might be a possible effect behind the 

deregulated Ca2+ dynamics, leading to progressive insulin resistance. 

Altogether, the results in Paper II indicate that, although SNAP-25b is the minor isoform in 

beta cells, its function cannot be replaced by SNAP-25a. Islets lacking SNAP-25b were found 

to secrete high levels of insulin upon glucose stimulation and this was associated with 

derangement in islet morphology and less well controlled Ca2+ oscillations in beta cells. The 

lost regulation of beta cell activity behind the increased insulin secretion can, in a long term, 

provoke insulin resistance in peripheral tissues, hence contributing to the development of 

metabolic syndrome characterised in Paper I.  

4.3 PAPER III 

In Paper II we have shown that SNAP-25b-deficiency in islets results in a phenotype not 

entirely dependent on mechanisms downstream Ca2+ entry, suggesting other roles of the 

SNAP-25 isoforms “outside” the core SNARE complex. It has previously been demonstrated 

that SNAP-25b confers an increased thermostability to the complex compared to SNAP-25a 
51,52, possibly forming more hydrogen bonds between the proteins. However, during 

physiological conditions, differences in thermostability above 70 °C are not relevant, but the 

additional chemical bonds can change the tertiary structure of the four-alpha-helical bundle of 

the SNARE complex. Therefore, it is plausible that SNAP-25a and SNAP-25b might 

differently mediate interactions with binding partners. To investigate this hypothesis, we run 

immunoprecipitations of SNAP-25-containing complexes in the hippocampus from WT and 

MT mice. The hippocampus is one of the few brain areas where SNAP-25a is almost 

completely replaced by the SNAP-25b isoform in adulthood 43, thus we selected to work with 
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this region. We focused on interactions with the SNARE partners, syntaxin 1 and VAMP-2, 

as well as with proteins important for initiating or inhibiting membrane fusion events, such as 

Munc18-1 and the Gβγ subunits of the heterotrimeric G proteins, respectively 31,68,70,136 . 

First of all, we quantified the total protein expression levels in hippocampi from WT and MT 

mice and found no significant difference in SNAP-25, syntaxin 1, VAMP-2, Munc18-1 and 

Gβ1-4 proteins. We then continued by immunoprecipitating molecular complexes using 

SNAP-25 as bait. We could not detect any changes in the amount of the SNARE complex 

proteins, syntaxin 1 and VAMP-2, bound to either SNAP-25 isoform whereas an effect was 

detected for Munc18-1 and Gβγ. SNAP-25a was able to attract only half of the amount of 

Munc18-1 compared to SNAP-25b, maybe reflecting a decreased capability of SNAP-25a-

containing SNARE complexes to be in a “primed” state. Interestingly, two bands appeared to 

be immunoreactive to the Gβ1-4 antibody in both WT and MT hippocampi (several control 

experiments for testing the specificity of the antibody were carried out). The heavier band 

was more diffuse, suggesting the presence of possible post-transcriptional modifications of 

this protein, the lighter band appeared instead sharper and more defined, thus likely indicating 

a unique population of unmodified protein. It is known that in mouse hippocampus the 

majority of Gβ isoforms consists of the Gβ1, Gβ2 and Gβ4 137. To investigate which isoforms 

interacted with SNAP-25, we analysed the two bands by mass spectrometry and found Gβ2 

and Gβ1 in the heavier and lighter band, respectively. No detectable levels of Gβ4 were 

found to interact with SNAP-25 in hippocampus. Not much is known about the functions of 

the different Gβ isoforms in synaptic inhibition except that in rat superior cervical ganglion 

neurons Gβ1 and Gβ2 account for the majority of voltage-dependent inhibition of N-type 

Ca2+ channels 138. SNAP-25 interaction to the Gβγ is a relatively new and very interesting 

area of research since it appears to be implicated in transient transmitter-mediated presynaptic 

inhibition and induction of presynaptic long-term depression, important for memory and 

learning processes 72. The mechanism of action has been proposed to involve the vesicle-

associated protein synaptotagmin, which can approach the SNARE complex and initiate 

exocytosis upon appropriate Ca2+ concentrations, but when a GPCR is activated, the Gβγ 

subunit competes with synaptotagmin for binding to the SNARE complex, thus inhibiting 

fusion 71 (Figure 3). With our experimental approach, we found that SNAP-25a was able to 

attract a significantly lower amount of Gβ2 compared to SNAP-25b, maybe meaning its 

decreased efficiency in inhibiting exocytosis upon certain stimuli. Moreover, proximity 

ligation assays on hippocampal sections confirmed that the interaction of the SNAP-25 

isoforms and the Gβγ was of a direct nature.  
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To summarise, it is plausible that the SNAP-25 isoforms might provide different regulation of 

membrane fusion events, by modified interaction with other SNARE-binding proteins. This 

could in part explain learning and memory dysfunctions associated to the SNAP-25b-

deficient mice 52 as well as increased hormonal secretion from peripheral tissues (Paper I and 

II). Yet, more functional experiments are needed in order to further investigate these 

mechanisms. 
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5 CONCLUSIONS 

Stimulus-dependent regulated membrane fusion is a complex physiological process that 

enables secretory cells, such as neurons and beta cells, to secrete neurotransmitters/hormones 

upon appropriate stimuli. SNAP-25, together with syntaxin 1 and VAMP-2, forms the core 

SNARE complex, implicated in the last steps of exocytosis fusing the vesicle/granule and cell 

plasma membranes. SNAP-25 exists as two developmentally regulated splicing variants, 

SNAP-25a and SNAP-25b, differing in only 9 out of 206 amino acids. Both SNAP-25 

proteins can form SNARE complexes but their different roles in membrane fusion are not 

much investigated.  

By using a SNAP-25b-deficient mouse model, this thesis has focused on studying the 

functions of the SNAP-25 isoforms in glucose and insulin homeostasis in vivo. Normally both 

isoforms participate in the SNARE complex and thus exocytosis, but when mice expressed 

only SNAP-25a, this resulted in development of metabolic syndrome in adulthood which was 

more exacerbated when combined with a high fat/high sucrose diet. Symptoms characteristic 

of metabolic disease included hyperinsulinemia, insulin resistance, hyperglycaemia, liver 

steatosis and adipocyte hypertrophy. SNAP-25b-deficiency resulted in increased insulin 

secretion, not merely dependent on mechanisms downstream the Ca2+ entry but instead 

associated to desynchronization of Ca2+ dynamics among beta cells. The disrupted beta cell 

networks, together with changes in the islet morphology in MTs contributed to the secretion 

phenotype. Moreover, we found different binding abilities of the SNAP-25 isoforms for 

proteins modulating membrane fusion, a result that needs to be further investigated.  

In conclusion, the correct function of the exocytosis machinery is important for health and 

insults to genes coding for its protein components can provoke metabolic syndrome. The 

SNAP-25 splicing variants play different roles in secretion, and as we experimentally proved 

they cannot be interchangeable, without impairing insulin secretion. In the future it would be 

of interest to characterise SNAP-25 isoforms levels in islets from other models of metabolic 

disease, as well as from T2D donors for clinical implications. Moreover, we propose the 

SNAP-25b-deficient mouse as a useful model for studies on development and progression of 

the metabolic syndrome and for testing therapeutic interventions.   



 

 35 

6 ACKNOWLEDGEMENTS 

This thesis work was performed at the Rolf Luft Center for Diabetes and Endocrinology at 

the Department of Molecular Medicine and Surgery at Karolinska Institutet in Solna. During 

these years, I have met many talented and helpful people who made my PhD journey one of 

the best experiences of my life. In particular, I would like to express my deepest gratitude to: 

Christina Bark, my main supervisor. You have introduced me to a very exciting field of 

research, I have learnt a lot from you, in terms of science and life in general. Thank you for 

always finding the solution to the problem in the most practical way! You have constantly 

supported me by being there when I needed, I will never forget it. THANK YOU! 

Marjan Slak Rupnik, my co-supervisor. You are a driven and positive person, who engaged 

me into islet physiology. Thank you for letting me work in your research unit in Slovenia and 

for sharing your wide knowledge. 

Kerstin Brismar, my co-supervisor. You have a true passion for science and research and 

you are a kind-hearted and helpful person. Thanks for always giving a “clinical” perspective 

to my results. 

Gilberto Fisone, thanks for the fruitful conversations we had during my PhD journey and 

thanks for your advices. 

Essam Refai, the Egyptian disaster, thanks for guiding me during these years and for being a 

real friend, thanks for the numerous times you helped me! Without you this journey would 

have been much more difficult. 

Ismael Valladolid-Acebes, my colleague and friend, thanks for sharing your passion and 

enthusiasm for science, you have been my teacher in the lab, always helpful and kind! Also, 

thanks for being a good party mate and for providing good tortillas and coccinillo. Pauline 

Vercruisse, it was fun and useful working with you and I now know how to dissect the 

soleus from the mouse leg thanks to you! I like your French accent and your perseverance. 

Irfan Jadoon, thanks for sharing your genuine interest in science and helping me with the 

experiments. 

Special thanks go to all my fantastic “big-lab” mates: Sampath Narayanan and Anette 

Landström, it was nice having you as my office-mates, I hope I didn’t bother you too much 

(I know I actually did). Jacob Grünler, thanks for being such a nice person and for all the 

times you helped me using lab equipment. Sorry for annoying you for the liquid nitrogen so 

often. Michael Tekle, “Michele”, always smiling, making jokes and taking care of my plants 

during Christmas/summer, thanks! Ileana Botusan, Ishrath Ansurudeen, Elisabeth Noren-

Krog, Magnus Bentinger, Xiao-Wei Zheng, thanks for your help and nice discussions 

about science and life! Sofie Eliasson and Cheng Xu, it has been my pleasure having you as 

PhD-mates.  



 

36 

Thank you, Sergiu Catrina for sharing your knowledge in science and for your good sense 

of humour. Thank you Gustav Dallner for being an inspiring person and teaching me the 

healthy properties of antioxidants in wine, the glass is always full if you are around. 

My sincere gratitude goes to my colleagues in Maribor, Slovenia: Maša Skelin Klemen, 

Marko Gosak, Lidija Križančić Bombek, Jurij Dolenšek, Andraž Stožer, Rudi Mlakar, 

Viljem Pohorec. Thanks for teaching me the cool techniques developed in your lab and for 

sharing your vast knowledge in beta cell physiology. I appreciated your efforts in making me 

feel at ease during my trips to Maribor. 

 Thanks to the Rolf Luft Italian mates: Marianna Del Sole, Noah Moruzzi, Elisabetta 

Darè, Massimiliano Ria for supporting me and making me feel at home.  

Subu Surendran Rajasekaran, Pim van Krieken, Meike Paschen, Yue Shi, Robin 

Fröbon, Karin Åvall, Saad Al-Qahtani, the PhD students at the Rolf Luft Center, thanks 

for the fruitful discussions during the Journal Clubs and the nice dinners, I very much 

enjoyed your company.   

Concepcion Fernandez Garcia-Prieto, “Conchita”, thanks for being my sincere friend, I 

love your enthusiasm and good mood. Thanks for cheering me up when I needed. Yan 

Xiong, Anya Voznesenskaya, Teresa Pereira, Tomas Alanentalo, Stefan Jacob, Galyna 

Bryzgalova, Tilo Moede, Andrea Dicker, Montse Visa Majoral, Christopher Barker, 

Neil Portwood, Lars Selander, Martin Köhler and Yvonne Strömberg, thank you all for 

helping me during these years and for the nice discussions and parties!  

Thais Soprani Ayala, Fernando Tessaro, Anderson Daniel Ramos, Eduardo Nolasco, 

Karin Tiago Dos Santos, the former Brazilian crew in the lab, thanks for always cheering 

me up with your enthusiasm and joyful attitude, it was nice meeting you all and I wish I will 

meet you again! 

Katarina Breitholtz, Ann-Britt Wikström, Britt-Marie Witasp and colleagues, thanks for 

helping me with forms/documents/certifications, you made my days easier. Thanks to the IT 

personnel, especially Jan-Erik Kaare for saving the life of my computer several times! 

Tomas Hökfelt, Csaba Adori and Ida Nilsson, thanks for your collaborative efforts and for 

sharing your vast knowledge in the field of neuroscience. 

Thanks Per-Olof Berggren for your collaboration and comments on the manuscript. Lisa 

Juntti-Berggren, thanks for all the hilarious discussions we had about “the tough process of 

publishing manuscripts nowadays”. 

AKM animal house staff, thanks for taking good care of my mice during these years with an 

amazing professionality. 

To my “Stockholm” friends: Aileen, Aida, Christine, João, Daniela, Domenico, Silvia, 

Roberta, Ben, Marta, Apo, Roshan, Martin, Lucia, Gianna, Anil, Helene, Daniel, 



 

 37 

Franzi, Dave, Marika, Mathias, Karolina, Erik and Esther, thanks for the good time spent 

together in Sweden and for all the MF pubs.  

To my friends in Italy who have been mostly involved in my “PhD drama” (Daniele, 

Giovanna, Roberta, Simona, Anna, Luca, Nick, Vale, Silvia, Sara), thanks for your 

friendship and for supporting me in the difficult moments and being there when I needed to 

have fun, I love you all! 

Infine vorrei ringraziare la mia straordinaria famiglia: Mamma, Papà, Grazia, Nonna e 

Mino per amarmi e incoraggiarmi in ogni momento della mia vita, soprattutto in quelli 

difficili. Senza il vostro supporto non sarei la persona che sono oggi. Grazie per credere in 

me! Mino, grazie per essere stato (e lo sarai ancora per molto tempo!) il mio 

mentore/consigliere/amico/compagno di vita durante questi anni. 

This research was supported by grants from the Family Erling-Persson Foundation, 

Karolinska Institutet funds, the Magnus Bergvalls Foundation, the Gun and Bertil Stohnes 

Foundation, Längmanska Kulturfonden, the Novo Nordisk Foundation, the Fogelströms 

Foundation, and the Sven Mattssons Foundation, Sigurd and Elsa Goljes Foundation and the 

Slovenian Research Agency (Program P3–0396). Research visits to Slovenia were supported 

by a Rolf Luft Fellowship, Fernströms Foundation and KI travel funds for PhD students. 

 





 

 39 

7 REFERENCES 

1. Alberti, K. G. M. M., Zimmet, P. & Shaw, J. Metabolic syndrome-a new world-wide 
definition. A Consensus Statement from the International Diabetes Federation. Diabet. 
Med. 23, 469–480 (2006). 

2. Aschner, P. Metabolic syndrome as a risk factor for diabetes. Expert Rev. Cardiovasc. 
Ther. 8, 407–412 (2010). 

3. Gao, Q. & Horvath, T. L. Neurobiology of Feeding and Energy Expenditure. Annu. 
Rev. Neurosci. 30, 367–398 (2007). 

4. Bartness, T. J., Keen-Rhinehart, E., Dailey, M. J. & Teubner, B. J. Neural and 
hormonal control of food hoarding. AJP Regul. Integr. Comp. Physiol. 301, R641–
R655 (2011). 

5. Lin, H. V. & Accili, D. Hormonal Regulation of Hepatic Glucose Production in Health 
and Disease. Cell Metab. 14, 9–19 (2011). 

6. Cerf, M. E. Beta Cell Dysfunction and Insulin Resistance. Front. Endocrinol. 4, 37 
(2013). 

7. Cerasi, E. & Luft, R. THE PLASMA INSULIN RESPONSE TO GLUCOSE 
INFUSION IN HEALTHY SUBJECTS AND IN DIABETES MELLITUS. Eur. J. 
Endocrinol. 55, 278–304 (1967). 

8. Seino, S., Shibasaki, T. & Minami, K. Dynamics of insulin secretion and the clinical 
implications for obesity and diabetes. J. Clin. Invest. 121, 2118–2125 (2011). 

9. Sun, K., Kusminski, C. M. & Scherer, P. E. Adipose tissue remodeling and obesity. J. 
Clin. Invest. 121, 2094–2101 (2011). 

10. Arner, P. et al. Dynamics of human adipose lipid turnover in health and metabolic 
disease. Nature 478, 110–113 (2011). 

11. Cline, G. W. et al. Impaired Glucose Transport as a Cause of Decreased Insulin-
Stimulated Muscle Glycogen Synthesis in Type 2 Diabetes. N. Engl. J. Med. 341, 240–
246 (1999). 

12. Muoio, D. M. & Newgard, C. B. Mechanisms of disease: Molecular and metabolic 
mechanisms of insulin resistance and β-cell failure in type 2 diabetes. Nat. Rev. Mol. 
Cell Biol. 9, 193–205 (2008). 

13. Mazen, I., El-Gammal, M., Abdel-Hamid, M. & Amr, K. A novel homozygous 
missense mutation of the leptin gene (N103K) in an obese Egyptian patient. Mol. 
Genet. Metab. 97, 305–308 (2009). 

14. Südhof, T. C. & Rothman, J. E. Membrane fusion: grappling with SNARE and SM 
proteins. Science 323, 474–477 (2009). 

15. Halban, P. A. & Irminger, J. C. Sorting and processing of secretory proteins. Biochem. 
J. 299 ( Pt 1), 1–18 (1994). 

16. De Camilli, P. & Jahn, R. Pathways to Regulated Exocytosis in Neurons. Annu. Rev. 
Physiol. 52, 625–645 (1990). 

17. Thomas-Reetz, A. et al. A gamma-aminobutyric acid transporter driven by a proton 



 

40 

pump is present in synaptic-like microvesicles of pancreatic beta cells. Proc. Natl. 
Acad. Sci. 90, 5317–5321 (1993). 

18. Barg, S. Mechanisms of Exocytosis in Insulin-Secreting B-Cells and Glucagon-
Secreting A-Cells. Pharmacol. Toxicol. 92, 3–13 (2003). 

19. Martin, T. F. J. Tuning exocytosis for speed: fast and slow modes. Biochim. Biophys. 
Acta - Mol. Cell Res. 1641, 157–165 (2003). 

20. Schneggenburger, R. & Rosenmund, C. Molecular mechanisms governing Ca2+ 
regulation of evoked and spontaneous release. Nat. Neurosci. 18, 935–941 (2015). 

21. Bratanova-Tochkova, T. K. et al. Triggering and Augmentation Mechanisms, Granule 
Pools, and Biphasic Insulin Secretion. Diabetes 51, S83–S90 (2002). 

22. Becherer, U. & Rettig, J. Vesicle pools, docking, priming, and release. Cell Tissue Res. 
326, 393–407 (2006). 

23. Söllner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. A 
protein assembly-disassembly pathway in vitro that may correspond to sequential steps 
of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993). 

24. Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 
362, 318–324 (1993). 

25. Rutter, G. A. & Tsuboi, T. Kiss and run exocytosis of dense core secretory vesicles. 
Neuroreport 15, 79–81 (2004). 

26. Jarvis, S. E. & Zamponi, G. W. Masters or slaves? Vesicle release machinery and the 
regulation of presynaptic calcium channels. Cell Calcium 37, 483–488 (2005). 

27. Südhof, T. C. Synaptotagmins: Why So Many? J. Biol. Chem. 277, 7629–7632 (2002). 

28. Turner, K. M., Burgoyne, R. D. & Morgan, A. Protein phosphorylation and the 
regulation of synaptic membrane traffic. Trends Neurosci. 22, 459–464 (1999). 

29. Südhof, T. C. The Molecular Machinery of Neurotransmitter Release (Nobel Lecture). 
Angew. Chemie Int. Ed. 53, 12696–12717 (2014). 

30. Kaiser, C. A. & Schekman, R. Distinct sets of SEC genes govern transport vesicle 
formation and fusion early in the secretory pathway. Cell 61, 723–733 (1990). 

31. Hata, Y., Slaughter, C. A. & Südhof, T. C. Synaptic vesicle fusion complex contains 
unc-18 homologue bound to syntaxin. Nature 366, 347–351 (1993). 

32. Bennett, M., Calakos, N. & Scheller, R. Syntaxin: a synaptic protein implicated in 
docking of synaptic vesicles at presynaptic active zones. Science 257, 255–259 (1992). 

33. Oyler, G. A. et al. The identification of a novel synaptosomal-associated protein, 
SNAP-25, differentially expressed by neuronal subpopulations. J. Cell Biol. 109, 
3039–3052 (1989). 

34. Trimble, W. S., Cowan, D. M. & Scheller, R. H. VAMP-1: a synaptic vesicle-
associated integral membrane protein. Proc. Natl. Acad. Sci. 85, 4538–4542 (1988). 

35. Gonzalo, S., Greentree, W. K. & Linder, M. E. SNAP-25 Is Targeted to the Plasma 
Membrane through a Novel Membrane-binding Domain. J. Biol. Chem. 274, 21313–



 

 41 

21318 (1999). 

36. Lane, S. R. & Liu, Y. Characterization of the palmitoylation domain of SNAP-25. J. 
Neurochem. 69, 1864–1869 (1997). 

37. Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE 
complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347–353 
(1998). 

38. Chen, Y. A. & Scheller, R. H. SNARE-mediated membrane fusion. Nat. Rev. Mol. 
Cell Biol. 2, 98–106 (2001). 

39. Washbourne, P. et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes 
mechanisms of neuroexocytosis. Nat. Neurosci. 5, 19–26 (2002). 

40. Bark, I. C. Structure of the Chicken Gene for SNAP-25 Reveals Duplicated Exons 
Encoding Distinct Isoforms of the Protein. J. Mol. Biol. 233, 67–76 (1993). 

41. Bark, I. C. & Wilson, M. C. Human cDNA clones encoding two different isoforms of 
the nerve terminal protein SNAP-25. Gene 139, 291–292 (1994). 

42. Sørensen, J. B. et al. Differential Control of the Releasable Vesicle Pools by SNAP-25 
Splice Variants and SNAP-23. Cell 114, 75–86 (2003). 

43. Bark, I. C., Hahn, K. M., Ryabinin, A. E. & Wilson, M. C. Differential expression of 
SNAP-25 protein isoforms during divergent vesicle fusion events of neural 
development. Proc. Natl. Acad. Sci. 92, 1510–1514 (1995). 

44. Boschert, U. et al. Developmental and plasticity-related differential expression of two 
SNAP-25 isoforms in the rat brain. J. Comp. Neurol. 367, 177–193 (1996). 

45. Grant, N. J. et al. Differential Expression of SNAP-25 Isoforms and SNAP-23 in the 
Adrenal Gland. J. Neurochem. 72, 363–372 (2002). 

46. Gonelle-Gispert, C. et al. SNAP-25a and -25b isoforms are both expressed in insulin-
secreting cells and can function in insulin secretion. Biochem. J. 339 ( Pt 1), 159–165 
(1999). 

47. Yamamori, S. et al. Differential expression of SNAP-25 family proteins in the mouse 
brain. J. Comp. Neurol. 519, 916–932 (2011). 

48. Bark, C. et al. Developmentally Regulated Switch in Alternatively Spliced SNAP-25 
Isoforms Alters Facilitation of Synaptic Transmission. J. Neurosci. 24, 8796–8805 
(2004). 

49. Sharma, M. et al. CSPα knockout causes neurodegeneration by impairing SNAP-25 
function. EMBO J. 31, 829–841 (2012). 

50. Sharma, M., Burré, J. & Südhof, T. C. CSPα promotes SNARE-complex assembly by 
chaperoning SNAP-25 during synaptic activity. Nat. Cell Biol. 13, 30–39 (2011). 

51. Nagy, G. et al. Alternative splicing of SNAP-25 regulates secretion through 
nonconservative substitutions in the SNARE domain. Mol Biol Cell 16, 5675–5685 
(2005). 

52. Johansson, J. U. et al. An Ancient Duplication of Exon 5 in the Snap25 Gene Is 
Required for Complex Neuronal Development/Function. PLoS Genet. 4, e1000278 



 

42 

(2008). 

53. Jeans, A. F. et al. A dominant mutation in Snap25 causes impaired vesicle trafficking, 
sensorimotor gating, and ataxia in the blind-drunk mouse. Proc. Natl. Acad. Sci. 104, 
2431–2436 (2007). 

54. Ji, J. et al. Modulation of L-Type Ca2+ Channels by Distinct Domains Within SNAP-
25. Diabetes 51, 1425–1436 (2002). 

55. Rettig, J. et al. Isoform-specific interaction of the alpha1A subunits of brain Ca2+ 
channels with the presynaptic proteins syntaxin and SNAP-25. Proc. Natl. Acad. Sci. 
93, 7363–7368 (1996). 

56. Toft-Bertelsen, T. L., Ziomkiewicz, I., Houy, S., Pinheiro, P. S. & Sorensen, J. B. 
Regulation of Ca2+ channels by SNAP-25 via recruitment of syntaxin-1 from plasma 
membrane clusters. Mol. Biol. Cell 27, 3329–3341 (2016). 

57. Novick, P. & Schekman, R. Secretion and cell-surface growth are blocked in a 
temperature-sensitive mutant of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 76, 
1858–1862 (1979). 

58. Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter 
secretion. Science  287, 864–869 (2000). 

59. Dulubova, I. et al. A conformational switch in syntaxin during exocytosis: role of 
munc18. EMBO J. 18, 4372–4382 (1999). 

60. Misura, K. M., Scheller, R. H. & Weis, W. I. Three-dimensional structure of the 
neuronal-Sec1-syntaxin 1a complex. Nature 404, 355–362 (2000). 

61. Yamaguchi, T. et al. Sly1 Binds to Golgi and ER Syntaxins via a Conserved N-
Terminal Peptide Motif. Dev. Cell 2, 295–305 (2002). 

62. Dulubova, I. et al. How Tlg2p/syntaxin 16 ‘snares’ Vps45. EMBO J. 21, 3620–2631 
(2002). 

63. Betke, K. M., Wells, C. A. & Hamm, H. E. GPCR mediated regulation of synaptic 
transmission. Prog. Neurobiol. 96, 304–321 (2012). 

64. Simon, M., Strathmann, M. & Gautam, N. Diversity of G proteins in signal 
transduction. Science  252, 802–808 (1991). 

65. Kajikawa, Y., Saitoh, N. & Takahashi, T. GTP-binding protein subunits mediate 
presynaptic calcium current inhibition by GABAB receptor. Proc. Natl. Acad. Sci. 98, 
8054–8058 (2001). 

66. Takahashi, T., Forsythe, I. D., Tsujimoto, T., Barnes-Davies, M. & Onodera, K. 
Presynaptic Calcium Current Modulation by a Metabotropic Glutamate Receptor. 
Science  274, 594–597 (1996). 

67. Fernández-Alacid, L. et al. Subcellular compartment-specific molecular diversity of 
pre- and post-synaptic GABA B -activated GIRK channels in Purkinje cells. J. 
Neurochem. 110, 1363–1376 (2009). 

68. Blackmer, T. et al. G protein betagamma subunit-mediated presynaptic inhibition: 
regulation of exocytotic fusion downstream of Ca2+ entry. Science  292, 293–297 
(2001). 



 

 43 

69. Blackmer, T. et al. G protein βγ directly regulates SNARE protein fusion machinery 
for secretory granule exocytosis. Nat. Neurosci. 8, 421–425 (2005). 

70. Gerachshenko, T. et al. Gβγ acts at the C terminus of SNAP-25 to mediate presynaptic 
inhibition. Nat. Neurosci. 8, 597–605 (2005). 

71. Yoon, E.-J., Gerachshenko, T., Spiegelberg, B. D., Alford, S. & Hamm, H. E. Gbeta 
Interferes with Ca2+-Dependent Binding of Synaptotagmin to the Soluble N-
Ethylmaleimide-Sensitive Factor Attachment Protein Receptor (SNARE) Complex. 
Mol. Pharmacol. 72, 1210–1219 (2007). 

72. Zhang, X., Upreti, C. & Stanton, P. K. Gβγ and the C Terminus of SNAP-25 Are 
Necessary for Long-Term Depression of Transmitter Release. PLoS One 6, e20500 
(2011). 

73. Atwood, B. K., Lovinger, D. M. & Mathur, B. N. Presynaptic long-term depression 
mediated by Gi/o-coupled receptors. Trends Neurosci. 37, 663–673 (2014). 

74. Zhao, Y., Fang, Q., Straub, S. G., Lindau, M. & Sharp, G. W. G. Noradrenaline 
inhibits exocytosis via the G protein βγ subunit and refilling of the readily releasable 
granule pool via the α i1/2 subunit. J. Physiol. 588, 3485–3498 (2010). 

75. Langerhans, P. Beiträge zur mikroskopischen anatomie der bauchspeicheldrüse. 
Inaugural dissertation. Berlin: Gustav Lange (1869). 

76. Rupnik, M. The physiology of rodent beta-cells in pancreas slices. Acta Physiol. 195, 
123–138 (2009). 

77. Miller, K. et al. Islet Formation during the Neonatal Development in Mice. PLoS One 
4, e7739 (2009). 

78. Dolenšek, J., Rupnik, M. S. & Stožer, A. Structural similarities and differences 
between the human and the mouse pancreas. Islets 7, e1024405 (2015). 

79. Orci, L. & Unger, R. FUNCTIONAL SUBDIVISION OF ISLETS OF 
LANGERHANS AND POSSIBLE ROLE OF D CELLS. Lancet 306, 1243–1244 
(1975). 

80. Grube, D. & Bohn, R. The microanatomy of human islets of Langerhans, with special 
reference to somatostatin D-cells. Arch. histol. Jap. 46, 327–253 (1983). 

81. Ravier, M. A. et al. Loss of Connexin36 Channels Alters -Cell Coupling, Islet 
Synchronization of Glucose-Induced Ca2+ and Insulin Oscillations, and Basal Insulin 
Release. Diabetes 54, 1798–1807 (2005). 

82. Hayden, M. R. et al. Attenuation of Endocrine-Exocrine Pancreatic Communication in 
Type 2 Diabetes: Pancreatic Extracellular Matrix Ultrastructural Abnormalities. J. 
Cardiometab. Syndr. 3, 234–243 (2008). 

83. Rorsman, P. & Braun, M. Regulation of Insulin Secretion in Human Pancreatic Islets. 
Annu. Rev. Physiol. 75, 155–179 (2013). 

84. Lang, J. Molecular mechanisms and regulation of insulin exocytosis as a paradigm of 
endocrine secretion. Eur. J. Biochem. 259, 3–17 (1999). 

85. Eliasson, L. et al. Novel aspects of the molecular mechanisms controlling insulin 
secretion. J. Physiol. 586, 3313–3324 (2008). 



 

44 

86. Bokvist, K., Holmqvist, M., Gromada, J. & Rorsman, P. Compound exocytosis in 
voltage-clamped mouse pancreatic beta-cells revealed by carbon fibre amperometry. 
Pflugers Arch. 439, 634–645 (2000). 

87. Grapengiesser, E., Gylfe, E. & Hellman, B. Glucose-induced oscillations of 
cytoplasmic Ca2+ in the pancreatic beta-cell. Biochem. Biophys. Res. Commun. 151, 
1299–1304 (1988). 

88. Dryselius, S., Grapengiesser, E., Hellman, B. & Gylfe, E. Voltage-dependent entry and 
generation of slow Ca2+ oscillations in glucose-stimulated pancreatic beta-cells. Am. J. 
Physiol. 276, E512–E518 (1999). 

89. Bertram, R., Sherman, A. & Satin, L. S. Electrical Bursting, Calcium Oscillations, and 
Synchronization of Pancreatic Islets. Adv. Exp. Med. Biol. 654, 261–279 (2010). 

90. Stožer, A., Dolenšek, J. & Rupnik, M. S. Glucose-Stimulated Calcium Dynamics in 
Islets of Langerhans in Acute Mouse Pancreas Tissue Slices. PLoS One 8, e54638 
(2013). 

91. Tengholm, A. & Gylfe, E. Oscillatory control of insulin secretion. Mol. Cell. 
Endocrinol. 297, 58–72 (2009). 

92. Gilon, P., Shepherd, R. M. & Henquin, J. C. Oscillations of secretion driven by 
oscillations of cytoplasmic Ca2+ as evidences in single pancreatic islets. J. Biol. Chem. 
268, 22265–22268 (1993). 

93. Bergsten, P. Slow and fast oscillations of cytoplasmic Ca2+ in pancreatic islets 
correspond to pulsatile insulin release. Am. J. Physiol. 268, E282–E287 (1995). 

94. Fernandez, J. & Valdeolmillos, M. Synchronous glucose-dependent [Ca2+]i oscillations 
in mouse pancreatic islets of Langerhans recorded in vivo. FEBS Lett. 477, 33–36 
(2000). 

95. Dolenšek, J., Stožer, A., Skelin Klemen, M., Miller, E. W. & Slak Rupnik, M. The 
Relationship between Membrane Potential and Calcium Dynamics in Glucose-
Stimulated Beta Cell Syncytium in Acute Mouse Pancreas Tissue Slices. PLoS One 8, 
e82374 (2013). 

96. Dolenšek, J. et al. Membrane Potential and Calcium Dynamics in Beta Cells from 
Mouse Pancreas Tissue Slices: Theory, Experimentation, and Analysis. Sensors 15, 
27393–27419 (2015). 

97. Cigliola, V., Chellakudam, V., Arabieter, W. & Meda, P. Connexins and β-cell 
functions. Diabetes Res. Clin. Pract. 99, 250–259 (2013). 

98. Ravier, M. A. et al. Loss of connexin36 channels alters β-cell coupling, islet 
synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin 
release. Diabetes 54, 1798–1807 (2005). 

99. Irles, E. et al. Enhanced glucose-induced intracellular signaling promotes insulin 
hypersecretion: Pancreatic beta-cell functional adaptations in a model of genetic 
obesity and prediabetes. Mol. Cell. Endocrinol. 404, 46–55 (2015). 

100. Notary, A. M., Westacott, M. J., Hraha, T. H., Pozzoli, M. & Benninger, R. K. P. 
Decreases in Gap Junction Coupling Recovers Ca2+ and Insulin Secretion in Neonatal 
Diabetes Mellitus, Dependent on Beta Cell Heterogeneity and Noise. PLOS Comput. 



 

 45 

Biol. 12, e1005116 (2016). 

101. Speier, S., Gjinovci, A., Charollais, A., Meda, P. & Rupnik, M. Cx36-mediated 
coupling reduces β-cell heterogeneity, confines the stimulating glucose concentration 
range, and affects insulin release kinetics. Diabetes 56, 1078–1086 (2007). 

102. Head, W. S. et al. Connexin-36 Gap Junctions Regulate In Vivo First- and Second-
Phase Insulin Secretion Dynamics and Glucose Tolerance in the Conscious Mouse. 
Diabetes 61, 1700–1707 (2012). 

103. Hodson, D. J. et al. Lipotoxicity disrupts incretin-regulated human β cell connectivity. 
J. Clin. Invest. 123, 4182–4194 (2013). 

104. Shield, J. & Summerbell, C. in Obesity, Science and Practise (eds. Williams, G. & 
Frühbeck, G.) 509–542 (2008). 

105. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of 
communities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008 (2008). 

106. Valladolid-Acebes, I. et al. Spatial memory impairment and changes in hippocampal 
morphology are triggered by high-fat diets in adolescent mice. Is there a role of leptin? 
Neurobiol. Learn. Mem. 106, 18–25 (2013). 

107. Chen, Y. L. et al. Associations between genetic variants and the severity of metabolic 
syndrome in subjects with type 2 diabetes. Genet. Mol. Res. 14, 2518–2526 (2015). 

108. Romeo, S. et al. Search for genetic variants of the SYNTAXIN 1A (STX1A) gene: the 
-352 A>T variant in the STX1A promoter associates with impaired glucose 
metabolism in an Italian obese population. Int. J. Obes. 32, 413–420 (2008). 

109. Tsunoda, K., Sanke, T., Nakagawa, T., Furuta, H. & Nanjo, K. Single nucleotide 
polymorphism ( D68D , T to C ) in the syntaxin 1A gene correlates to age at onset and 
insulin requirement in Type II diabetic patients. Diabetologia 44, 2092–2097 (2001). 

110. Reinbothe, T. M. et al. The human L-type calcium channel Cav1.3 regulates insulin 
release and polymorphisms in CACNA1D associate with type 2 diabetes. Diabetologia 
56, 340–349 (2013). 

111. Olson, T. M. & Terzic, A. Human K(ATP) channelopathies: diseases of metabolic 
homeostasis. Pflugers Arch. 460, 295–306 (2010). 

112. Morton, G. J., Meek, T. H. & Schwartz, M. W. Neurobiology of food intake in health 
and disease. Nat. Rev. Neurosci. 15, 367–78 (2014). 

113. Long, Y. C. & Zierath, J. R. Review series AMP-activated protein kinase signaling in 
metabolic regulation. J. Clin. Invest. 116, 1776–1783 (2006). 

114. Grahame Hardie, D. AMP-activated protein kinase: a key regulator of energy balance 
with many roles in human disease. J. Intern. Med. 276, 543–559 (2014). 

115. Friedman, J. 20 YEARS OF LEPTIN: Leptin at 20: an overview. J. Endocrinol. 223, 
T1–T8 (2014). 

116. Tanti, J.-F. & Jager, J. Cellular mechanisms of insulin resistance: role of stress-
regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. 
Curr. Opin. Pharmacol. 9, 753–762 (2009). 



 

46 

117. Chatterjee, C. & Sparks, D. L. Hepatic Lipase, High Density Lipoproteins, and 
Hypertriglyceridemia. Am. J. Pathol. 178, 1429–1433 (2011). 

118. Müller, D. J. et al. The SNAP-25 gene may be associated with clinical response and 
weight gain in antipsychotic treatment of schizophrenia. Neurosci. Lett. 379, 81–89 
(2005). 

119. Musil, R. et al. SNAP-25 gene polymorphisms and weight gain in schizophrenic 
patients. J. Psychiatr. Res. 42, 963–970 (2008). 

120. Perret, J., De Vriese, C. & Delporte, C. Polymorphisms for ghrelin with consequences 
on satiety and metabolic alterations. Curr. Opin. Clin. Nutr. Metab. Care 17, 306–311 
(2014). 

121. Müller, T. D. & Tschöp, M. H. Ghrelin - A Key Pleiotropic Hormone-Regulating 
Systemic Energy Metabolism. Ghrelin Syst. 25, 91–100 (2013). 

122. Bruinstroop, E., Fliers, E. & Kalsbeek, A. Hypothalamic control of hepatic lipid 
metabolism via the autonomic nervous system. Best Pract. Res. Clin. Endocrinol. 
Metab. 28, 673–684 (2014). 

123. Lam, T. K. T. Neuronal regulation of homeostasis by nutrient sensing. Nat. Med. 16, 
392–395 (2010). 

124. Satin, L. S., Butler, P. C., Ha, J. & Sherman, A. S. Pulsatile insulin secretion, impaired 
glucose tolerance and type 2 diabetes. Mol. Aspects Med. 42, 61–77 (2015). 

125. Rieck, S. & Kaestner, K. H. Expansion of beta-cell mass in response to pregnancy. 
Trends Endocrinol. Metab. 21, 151–158 (2010). 

126. Skelin, M. & Rupnik, M. cAMP increases the sensitivity of exocytosis to Ca2+ 
primarily through protein kinase A in mouse pancreatic beta cells. Cell Calcium 49, 
89–99 (2011). 

127. Leung, Y. M. et al. Syntaxin 1A binds to the cytoplasmic C terminus of Kv2.1 to 
regulate channel gating and trafficking. J. Biol. Chem. 278, 17532–17538 (2003). 

128. MacDonald, P. E. et al. Synaptosome-Associated Protein of 25 Kilodaltons Modulates 
Kv2.1 Voltage-Dependent K+ Channels in Neuroendocrine Islet β-Cells through an 
Interaction with the Channel N Terminus. Mol. Endocrinol. 16, 2452–2461 (2002). 

129. Yang, S.-N. et al. Syntaxin 1 interacts with the LD subtype of voltage-gated Ca2+ 
channels in pancreatic beta cells. Proc. Natl. Acad. Sci. 96, 10164–10169 (1999). 

130. Barabási, A.-L. The network takeover. Nat. Phys. 8, 14–16 (2011). 

131. Stožer, A. et al. Functional Connectivity in Islets of Langerhans from Mouse Pancreas 
Tissue Slices. PLoS Comput. Biol. 9, e1002923 (2013). 

132. Markovič, R. et al. Progressive glucose stimulation of islet beta cells reveals a 
transition from segregated to integrated modular functional connectivity patterns. Sci. 
Rep. 5, 7845 (2015). 

133. Gosak, M. et al. The relationship between node degree and dissipation rate in networks 
of diffusively coupled oscillators and its significance for pancreatic beta cells. Chaos 
An Interdiscip. J. Nonlinear Sci. 25, 73115 (2015). 



 

 47 

134. Johnston, N. R. et al. Beta Cell Hubs Dictate Pancreatic Islet Responses to Glucose. 
Cell Metab. 24, 389–401 (2016). 

135. Benninger, R. K. P. & Piston, D. W. Cellular communication and heterogeneity in 
pancreatic islet insulin secretion dynamics. Trends Endocrinol. Metab. 25, 399–406 
(2014). 

136. Dulubova, I. et al. Munc18-1 binds directly to the neuronal SNARE complex. Proc. 
Natl. Acad. Sci. 104, 2697–2702 (2007). 

137. Betke, K. M. et al. Differential localization of G protein βγ subunits. Biochemistry 53, 
2329–2343 (2014). 

138. García, D. E. et al. G-protein β-subunit specificity in the fast membrane-delimited 
inhibition of Ca2+ channels. J Neurosci 18, 9163–9170 (1998). 

 


