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“I couldn't reduce it to the freshman level.   

That means we don't really understand it.” 

 

Richard Feynman, 1918-1988



 

 

 

ABSTRACT 

Positron emission tomography (PET) is a non-invasive molecular imaging technique 

suitable for examination of neurochemical biomarkers in the living brain. Among these 

applications, PET studies are used to facilitate the development of novel psychotropic drugs. 

The general aim of this thesis work was to develop and implement novel PET imaging 

paradigms suitable for research and drug development in psychiatry. The work was carried 

out in nonhuman primates (NHP) with the intention to prepare for future human 

applications. 

The first part of the thesis work was to develop improved PET imaging paradigms 

sensitive to changes in serotonin (5-HT) concentration. In Study I, the binding of 

[
11

C]Cimbi-36, a novel 5-HT2A receptor agonist radioligand, was found to be sensitive to 

fenfluramine-induced 5-HT release. The 5-HT sensitivity of [
11

C]Cimbi-36 was comparable 

to that of [
11

C]AZ10419369, a 5-HT1B receptor radioligand with established 5-HT 

sensitivity. In Study II, [
11

C]AZ10419369 binding was found to be sensitive to pretreatment 

with 5-HT concentration enhancers (amphetamine, MDMA or 5-HTP) at clinically relevant 

doses that may be safely applied in human studies. After validation, these PET 

methodologies were used in Study III to assess the mechanisms of action of vortioxetine, a 

novel antidepressant. At doses with comparable and clinically relevant occupancy of the 5-

HT transporter, vortioxetine induced larger reductions in [
11

C]AZ10419369 binding than 

citalopram, and had no significant effect on [
11

C]Cimbi-36 binding. The results suggest that 

vortioxetine binds to the 5-HT1B receptor when administered at clinically relevant doses. 

The second part of the thesis work extended the application of PET imaging from 

neuroreceptors to intracellularly located enzymes, such as phosphodiesterase 10A 

(PDE10A). In Study IV, we characterized the binding of [
11

C]Lu AE92686 to PDE10A in 

the NHP brain and validated the quantification methods. In Study V, we examined the 

effect of changes in the concentration of 3',5'-cyclic adenosine monophosphate (cAMP) on 

[
11

C]Lu AE92686 binding. Decreasing cAMP concentration by administration of SCH 23390 

alone or in combination with R-apomorphine significantly decreased striatal [
11

C]Lu 

AE92686 binding. The combination of SCH 23390 and R-apomorphine also significantly 

increased binding in substantia nigra. The decrease in striatal [
11

C]Lu AE92686 binding may 

reflect a decrease in PDE10A affinity induced by cAMP depletion. The effect of changes in 

cAMP concentration on PDE10A binding should thus be considered when [
11

C]Lu AE92686 

is used in human studies. 

In conclusion, the current thesis work has advanced the PET imaging paradigms for 

examining changes in 5-HT concentration. The validation of [
11

C]Lu AE92686 as a 

PDE10A PET radioligand and understanding the modulatory role of cAMP on [
11

C]Lu 

AE92686 binding will facilitate the application of this PDE10A radioligand in future 

studies. The developed PET methodologies were applied to evaluate the mechanisms of 

action of psychotropic drugs and can be translated into future human studies. 
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1 INTRODUCTION 

1.1 RATIONALE FOR THE THESIS 

Neuropsychiatric disorders are chronic illnesses with high levels of morbidity and 

mortality (Carpenter and Koenig, 2008; Hayes et al, 2015; Whiteford et al, 2013). According 

to a recent survey conducted by the World Health Organization, these disorders are the 

leading causes of disease burden worldwide (Whiteford et al, 2013). Although several 

psychotropic drugs have been developed for the treatment of these disorders, the therapeutic 

outcomes are still suboptimal (Miyamoto et al, 2012; Papakostas and Ionescu, 2015; Perlis et 

al, 2006; Rush et al, 2006). For mood disorders, only about 60–70% of patients achieve 

remission after several courses of treatment and most of them will undergo relapse of mood 

episodes within 1–2 years (Perlis et al, 2006; Rush et al, 2006). The treatment outcome of 

schizophrenia is also poor, resulting in profound functional impairment in most patients 

(Carpenter and Koenig, 2008; Miyamoto et al, 2012). Accordingly, there is a large unmet 

need for better pharmacological treatment of neuropsychiatric disorders. 

However, the success rate of drug discovery for the central nervous system (CNS) is 

low when compared to other therapeutic domains (DiMasi et al, 2009). Several factors 

contribute to the difficulty in developing novel psychotropic drugs. The etiology and 

pathophysiology of most neuropsychiatric disorders are complex and unknown (Matthews et 

al, 2012; Miyamoto et al, 2012; Papakostas and Ionescu, 2015; Roth et al, 2004; Wong et al, 

2010). Although many new target proteins have been identified, the role of these proteins in 

the pathophysiology and treatment of neuropsychiatric disorders remains unclear (Miyamoto 

et al, 2012; Papakostas and Ionescu, 2015; Roth et al, 2004; Wong et al, 2010). The failure of 

a candidate CNS drug might originate from several causes, including inadequate CNS 

exposure, inability to achieve optimal level of binding to the target, or lack of expected 

biological effects/therapeutic efficacy from the drug (Hargreaves and Rabiner, 2014; Lee and 

Farde, 2006; Morgan et al, 2012). 

Positron emission tomography (PET) is a non-invasive molecular imaging 

technique that enables quantification of neurochemical biomarkers in the living brain. PET 

can facilitate the development of novel CNS drugs using different approaches as shown in 

Table 1 (page 2) (Farde, 1996; Halldin et al, 2001a; Hargreaves and Rabiner, 2014; Lee and 

Farde, 2006; Matthews et al, 2012; Varnäs et al, 2013; Wong et al, 2009). First, the role of 

target proteins in the pathophysiology of neuropsychiatric disorders (neuropathy) can be 

evaluated by cross-sectional (comparing patients and healthy controls) or longitudinal (within 

patients) PET studies (Gunn et al, 2015; Lee and Farde, 2006; Varnäs et al, 2013). The 

established neuropathy biomarker can potentially also be used to monitor treatment effects 

from a candidate drug (Halldin et al, 2001a; Lee and Farde, 2006; Varnäs et al, 2013; Wong 

et al, 2009). Second, the biodistribution and CNS exposure of the candidate drug can be 

assessed by microdosing studies which include PET measurements with the radiolabeled 

candidate drug (Farde, 1996; Halldin et al, 2001a; Lee and Farde, 2006; Matthews et al, 
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2012; Varnäs et al, 2013; Wong et al, 2009). Third, PET occupancy experiments can be used 

to investigate target engagement of the candidate drug in the living brain and can also guide 

drug dose selection for future studies (Farde, 1996; Halldin et al, 2001a; Hargreaves and 

Rabiner, 2014; Lee and Farde, 2006; Matthews et al, 2012; Varnäs et al, 2013; Wong et al, 

2009). Final, the expected biological effects of the candidate drug (proof of mechanism) and 

the interaction between the effect and pathophysiology (proof of principle) could be 

examined by the PET measurements for the targets related to these effects (Hargreaves and 

Rabiner, 2014; Lee and Farde, 2006; Matthews et al, 2012; Wong et al, 2009). Linking the 

results of target engagement and proof of principle to the clinical outcomes could provide 

information for proof of concept (Hargreaves and Rabiner, 2014; Wong et al, 2009). 

Table 1. The roles of PET imaging studies in the development of CNS drugs 

Stages of drug development Description of the stage PET study type 

Target engagement  Distribution/reaching target 

Target occupancy 

Microdosing 

PET occupancy studies 

Proof of mechanism  Target mechanisms = 

pharmacodynamic effects 
PET studies on targets related to 

pharmacodynamic effects or pathophysiology Proof of principle  Target mechanisms influence 

pathophysiology 

Proof of concept Target mechanisms improve 

clinical outcomes 

Relating the results of PET occupancy/ 

pharmacodynamic/ pathophysiology studies 

to clinical outcomes 

For the recent two decades, it has been of particular interest to develop PET imaging 

methodology to detect changes in the concentration of endogenous neurotransmitters 

(Finnema et al, 2015c; Laruelle, 2000; Paterson et al, 2010). For example, several 

radioligands have been validated for the detection of changes in the concentration of 

endogenous dopamine in the living human brain (Finnema et al, 2015c; Laruelle, 2000). 

These imaging paradigms have been applied in the examination of neuropathy and in 

different stages of drug development (van Berckel et al, 2006; Laruelle, 2000; Paterson et al, 

2010; Tokunaga et al, 2009). Importantly, these studies have provided useful information that 

could not be obtained by imaging dopamine receptors themselves (Finnema et al, 2015c; 

Laruelle, 2000). Therefore, PET imaging paradigms for assessing changes in the 

concentration of endogenous neurotransmitters are important tools to facilitate the 

development of CNS drugs. 

Much effort has been made to extend the use of PET imaging to detect changes in the 

concentration of neurochemicals other than dopamine, including serotonin (5-HT) (Finnema 

et al, 2015c; Paterson et al, 2010; Tyacke and Nutt, 2015), noradrenaline (Finnema et al, 

2015b; Lehto et al, 2015), γ-aminobutyric acid (GABA) (Frankle et al, 2009, 2012, 2015; 

Stokes et al, 2014), glutamate (Delorenzo et al, 2015; Miyake et al, 2011), acetylcholine 

(Carson et al, 1998; Cohen et al, 2006; Ding et al, 2000; Gallezot et al, 2014a; Hillmer et al, 

2013, 2016; Nishiyama et al, 2001; Tsukada et al, 2004; Valette et al, 2005) and opioid 

(Colasanti et al, 2012; Guterstam et al, 2013; Mick et al, 2014, 2016). However, so far, the 

applicability of these novel paradigms has not been as well developed as for dopamine 
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(Finnema et al, 2015c; Paterson et al, 2010). Among these potential target molecules, 5-HT is 

one of the most promising and plays an important role in the pathophysiology and treatment 

of neuropsychiatric disorders (Finnema et al, 2015c; Krishnan and Nestler, 2008; Paterson et 

al, 2010; Tyacke and Nutt, 2015). Furthermore, since the targets of PET radioligands have 

been extended from membrane G-protein coupled receptors (GPCR) or transporters to 

intracellular molecular targets (Gunn et al, 2015; Holland et al, 2013), it is of interest to 

evaluate if the binding of these novel PET radioligands is sensitive to changes in the 

concentration of intracellular signaling molecules (Finnema et al, 2015c). 

Considering the similarity in physiology, neuroanatomy, cognition and social behavior 

to humans, studies in nonhuman primates (NHP) have been shown highly valuable for 

translating preclinical knowledge to human beings in several research fields, such as 

neuroscience (Capitanio and Emborg, 2008; Phillips et al, 2014), pharmacology (Gould et al, 

2014; Phillips et al, 2014) and PET imaging (Finnema et al, 2015c; Gould et al, 2014). 

Therefore, the current thesis work used NHP as a working model for the validation of the 

developed methodology before application in human subjects. 

In summary, the current thesis work focused on the development of PET methodology 

to measure changes in the concentration of neurochemical molecules in the NHP brain. Drug 

challenge paradigms were developed with consideration of future application in human 

studies. The first part of the work aimed to advance and apply the methods for assessing 

changes in the concentration of 5-HT, and the second part aimed to evaluate the sensitivity of 

radioligand binding to changes in the concentration of 3',5'-cyclic adenosine monophosphate 

(cAMP) using phosphodiesterase 10A (PDE10A) as the target for PET measurements. 

1.2 PRINCIPLES OF PET 

PET imaging can non-invasively trace the anatomical distribution and regional 

concentration of a radiolabeled molecule (radioligand) in the living brain and thereby allows 

for extracting biologically relevant information of the study target. There are two critical 

components of the radioligand: a molecule that selectively binds to the biological target and a 

short-lived positron (β+) emission radionuclide. The molecule makes it possible to examine 

the biological target and the acquisition of PET signals requires the radionuclide (Halldin et 

al, 2001b; Phelps, 2000). 

After application of the radioligand (typically via intravenous route) into the body of a 

subject, the radioligand distributes throughout the whole body via the blood circulation 

system and then binds to the target protein. Importantly, although the radioligand is a 

biologically active molecule, the dose used for PET imaging (tracer dose) is much lower than 

the dose which typically displays pharmacological effects. Therefore, the applied mass dose 

of the radioligand only occupies a small portion of examined target and minimally influences 

the target function. During this dynamic process, the positron from the decay of radionuclide 

will travel randomly over a short distance (less than one millimeter for low-energy positron 

emitters, such as carbon-11) until it annihilates with an electron in the surrounding tissue at 
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which the emission of a pair of γ-particles (photons) is induced. The photons are able to 

escape from the body due to their high energy (511 keV) and therefore can be detected 

outside the body. Furthermore, the location of the positron-electron annihilation inside the 

body can be estimated based on the known direction of the movement of the pair of photons 

(approximately 180 degree) (Cherry, 2001; Gulyás and Sjöholm, 2007).  

In a typical PET system, multiple γ-ray detectors are equipped. When there are two 

photons hitting two detectors located at opposite direction (180 degree) within a short 

predefined time window, a coincidence event is registered. A line connecting these two 

photons will pass through the position of annihilation. During the period of a PET 

measurement, a large number of coincidence events will be recorded by multiple 

combinations of different detectors. The raw data are then reconstructed into the final three-

dimensional PET images using a sophisticated algorithm which also corrects for γ-ray 

attenuation in the tissue, scatter and random coincidences (Cherry, 2001; Gulyás and 

Sjöholm, 2007; Varrone et al, 2009). 

1.3 QUANTIFICATION OF PET SIGNALS 

1.3.1 Outcome measures of PET measurements 

Under the framework of neuroreceptor PET imaging, determination of the density of 

the examined target is the primary goal of a PET measurement. Furthermore, the current 

thesis work only utilizes radioligands that bind reversibly to the target. Based on the law of 

mass action, the in vitro binding of radioligand to receptor under equilibrium condition can be 

described as the following equation (Ichise et al, 2001; Innis et al, 2007): 

 B = 
 ma   

  +  
, (1) 

where B is the concentration of receptor bound radioligand, Bmax is the total receptor density, 

F is the concentration of free radioligand and KD is the radioligand equilibrium dissociation 

constant. For in vitro saturation studies, different F values are applied and corresponding B 

values are measured. Then, Bmax and KD can be estimated by fitting the model using different 

sets of F and B values.  

Similarly, for in vivo PET studies, at least two PET measurements with high and low 

specific radioactivity (the ratio of radiolabeled to unlabeled molecules) are required to 

calculate Bmax and KD and such might not be easily feasible in routine clinical PET studies 

(Farde et al, 1989; Ichise et al, 2001; Mintun et al, 1984). Alternatively, binding potential 

(BP) has been proposed to be a suitable outcome parameter which describes the capacity of 

radioligand-binding site interaction in a given region (Mintun et al, 1984). BP is defined as 

the ratio of Bmax to KD according to the following equation (affinity of the radioligand to the 

target receptor is the inverse of KD): 

 BP = 
 ma 

   
 = Bmax × 

 

   
 = Bmax × affinity. (2) 
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In a typical PET measurement, a tracer dose of radioligand is injected (KD >> F), and 

equation (1) may be reduced and rearranged to 

 
 

  
 = 

 ma 

   
 = BP. (3) 

Therefore, BP also equals the equilibrium ratio of B over F. In addition, although nearly all 

receptors are available for radioligand binding in the well-controlled in vitro system, several 

factors might limit the availability of receptors for radioligand binding in the in vivo PET 

experiments such as cellular compartmentalization, receptor trafficking, and affinity states.  

For the potential differences between in vitro and in vivo conditions, the total available 

receptor concentration (Bavail), instead of Bmax, was used to formulate BP in the in vivo PET 

experiments (Innis et al, 2007). 

Volume of distribution is another outcome measure frequently used in PET imaging 

studies. The definition of the volume of distribution is the ratio of concentration of 

radioligand in one compartment to that in plasma (CP) when at equilibrium conditions. As the 

radioactivity in tissue originates from the radioligand binding to the target receptor (CS, as B 

in equation (3)), the nonspecifically bound radioligand (CNS) and the free concentration in 

tissue water (CF, as F in equation (3)), the total concentration of radioligand in tissue (CT) can 

be described as  

 CT = CS + CNS + CF. (4) 

The nonspecific compartment (CNS) and the free compartment (CF) can be combined into a 

nondisplaceable concentration (CND). In this same manner, the total volume of distribution 

(VT) can be expressed as 

 VT = VS + VND, (5) 

where VS and VND refer to the distribution volume for corresponding compartments (Innis et 

al, 2007).  

There are three versions of BP derived according to the different types of reference 

concentrations of the radioligand used in the model. First, as the original definition of BP, the 

concentration of free radioligand (CF) was applied as reference concentration in the 

formulation of BPF: 

 BPF = 
 s

   
 = 

 

  
 = 

 avail

   
.  (6) 

Second, BPP is defined when plasma concentration of radioligand (CP, which could be 

described as CF/fP, where fP is the free fraction of radioligand in plasma) is applied as 

reference concentration.  

 BPP = 
 s

 P 
 = 

 s

  
fP

  
  = 

 

 
fP

  
 = fP  

 avail

   
.  (7) 
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Finally, if the concentration of nondisplaceable radioligand in tissue (CND) indicates the 

reference concentration, BPND is specified.  

 BPND = 
 s

    
  = 

 s

  
f  

  
  = 

 

 
f  

  
 = f    

 avail

   
,  (8) 

where fND is the fraction of free radioligand in the nondisplaceable compartment (Innis et al, 

2007). In general, the test-retest variability of BPND is lower than that of BPF or BPP. 

Therefore, BPND is considered to be the choice of outcome measure when examining 

alterations in the concentration of endogenous neurotransmitters (Finnema et al, 2015c; 

Laruelle, 2000; Paterson et al, 2010). 

Based on the definition of BPND, the relationship between BPND and volume of 

distribution can be formulated as follows, 

 BPND = 
  

    
 = 

  

    
 = 

 T -     

    
. (9) 

1.3.2 Kinetic modeling 

In order to obtain outcome parameters of PET measurements as described in the 

previous section, the acquired dynamic PET data are quantified by kinetic modeling. The 

general principle of kinetic modeling is to determine if a mathematical model can adequately 

describe the measured changes in the decay-corrected radioactivity over time. If the model is 

able to describe the dynamic PET data, the outcome measures can be calculated from the 

values of the relevant parameters included in the model (Ichise et al, 2001; Slifstein and 

Laruelle, 2001). 

1.3.2.1 Compartmental modeling 

Compartmental modeling is the foundation of PET data quantification. Other 

quantification methods are mainly simplifications and/or rearrangements of equations used to 

describe compartments based on different assumptions. The strength of compartmental 

modeling is the possibility to obtain detailed information of several physiological processes 

in the system. A compartment is not a physical space but a biochemical volume where the 

concentration of molecules is homogenous and they behave uniformly (Slifstein and Laruelle, 

2001). 

For quantification of dynamic PET data, the 1-tissue compartment model (1TCM) and 

the 2-tissue compartment model (2TCM) are the two most commonly applied models (Figure 

1). Although the model with more compartments might have larger capacity to describe the 

data, it will provide more challenges to derive reliable values of outcome parameters due to 

the increased number of parameters in the model (Ichise et al, 2001; Slifstein and Laruelle, 

2001).  



 

7 

 

 

Figure 1. The two most common compartment models. (a) 1TCM. (b) 2TCM. CND: concentration of 

nondisplaceable radioligand; CP: plasma concentration of radioligand; CS: concentration of specific bound 

radioligand; CT: total tissue concentration of radioligand; K1 (ml·cm
-3

·min
-3

): the rate constant of influx across 

BBB; k2 (min
-3

): the rate constant of efflux across BBB; k3 (min
-3

): the rate constant of transport from CND to CS; 

k4 (min
-3

): the rate constant of transport from CS to CND. 

In each compartment, the changes in radioligand concentration can be described by the 

parameters related to the compartment. At equilibrium, there is no net change in radioligand 

concentration among each compartment and the outcome measures can be formulated by 

model parameters. For example, the following equations describe VT in 1TCM and 2TCM, 

 1TCM: VT = 
  

   
,  (10) 

 2TCM: VT = 
  

   
  ( + 

  

   
),  (11) 

where K1 (ml·cm
-3

·min
-3

) is the rate constant of influx across blood brain barrier (BBB), k2 

(min
-3

) is the rate constant of efflux across BBB, k3 (min
-3

) is the rate constant of transport 

from CND to CS and k4 (min
-3

) is the rate constant of transport from CS to CND. Although it is 

possible to estimate several microparameters (e.g. K1 to k4) or macroparameters (e.g. VND or 

BPND) in the model, not all parameters may be reliably derived. The choice of suitable model 

structure and the availability of reliable parameters needs to be investigated specifically for 

each radioligand (Ichise et al, 2001; Slifstein and Laruelle, 2001). 

1.3.2.2 Graphical modeling 

The basis of graphical modeling is that, using a transformation of variables, there will 

be a linear relationship between transformed dependent and predictor variables after a certain 

time period following the radioligand injection. Linear regression analysis is applied to the 

linear part of the transformed data and the slope of the regression line will approximate the 

outcome measures (Ichise et al, 2001; Logan et al, 1990; Slifstein and Laruelle, 2001). Logan 

plot analysis (Logan et al, 1990) is a graphical method for reversible radioligand binding and 

the equation of the plot is as follows, 
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  T( )d 
t

 

 T(t)
 = (VT+VolP) × 

  P( )d 
t

 

 T(t)
 + intercept, (12) 

where VolP is the plasma volume in the tissue which might be ignored and VT will equal the 

slope. The advantages of the Logan plot analysis are less computational demand than the 

iterative fitting process in compartmental modeling, and no assumptions of model 

configuration are needed as equation (12) can describe both the 1TCM and 2TCM (Logan et 

al, 1990; Slifstein and Laruelle, 2001). However, the contribution of VolP and the values of 

microparameters cannot be determined by the Logan plot analysis. 

1.3.2.3 Reference tissue modeling   

Both compartmental and graphical modeling require arterial input function (CP(t)) 

which can be obtained from arterial blood sampling and related analyses to determine 

radioactivity and metabolite fractions. The need of arterial input function is one major 

limitation for the clinical applicability of quantitative PET imaging. Therefore, it is of great 

interest to develop methods to quantify PET outcome parameters that do not require 

measurement of an arterial input function. In case there exists a brain region devoid of target 

receptors, this region might serve as a reference region for quantification methods and negate 

the need of arterial input function. The model structures of two commonly used reference 

tissue models are displayed in Figure 2.  

 

Figure 2. Model structures of two commonly used reference tissue models. (a) 2TCM for target region and 

1TCM for reference region. (b) 1TCM for both target and reference regions. CND: concentration of 

nondisplaceable radioligand; CP: plasma concentration of radioligand; CR: tissue concentration of radioligand in 

the reference region; CS: concentration of specific bound radioligand; CT: total tissue concentration of 

radioligand; K1 and K1′ (ml·cm
-3

·min
-3

): the rate constant of influx across BBB; k2 and k2′ (min
-3

): the rate 

constant of efflux across BBB; k3 (min
-3

): the rate constant of transport from CND to CS; k4 (min
-3

): the rate 

constant of transport from CS to CND. 

In the model in which the target region and the reference region could be described 

adequately by the 2TCM and 1TCM, respectively (Figure 2a), assuming the concentration in 

reference region (CR) is equal to CND and defining R1 = 
  

    
, BPND can be derived from the 

model by determining 4 fitting parameters (R1, k2, k3 and BPND), which is referred to as the 
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full reference tissue model (FRTM) (Hume et al, 1992; Lammertsma et al, 1996). The FRTM 

can be further simplified into the simplified reference tissue model (SRTM) if both target and 

reference regions can be described properly by the 1TCM (Figure 2b) and the 3 remaining 

fitting parameters (R1, k2 and BPND) in the model (Lammertsma and Hume, 1996). The 

operational equation of the SRTM is as follows, 

       T(t) =     (t) +     -
    

  +     

   (t)   e
 - 

  t

  +     . (13) 

Moreover, the Logan plot analysis can also be adapted to use a reference region instead 

of an arterial input function as input. If equation (12) was applied to the reference region 

(CR), an analytical expression for CP (as a function of CR) can be obtained. Then, the 

expression for CP can be inserted back into equation (12) resulting in the following equation, 

     
  T( )d 
t

 

 T(t)
 = DVR × 

   ( )d  +   (t) 
t

 
     

 T(t)
 + intercept, (14) 

where DVR (distribution volume ratio) = 
 T

    
= BPND +1 and the described method is referred 

to as Logan reference tissue model (Loganref) (Logan et al, 1996). 

1.3.2.4 Validation of reference tissue models   

As described in 1.3.2.3, the reference tissue models are based on several assumptions 

(Hume et al, 1992; Lammertsma et al, 1996; Lammertsma and Hume, 1996). Therefore, for 

each radioligand, it is important to validate the application of reference tissue modeling by 

examination of the fulfillment of related assumptions and the potential bias of BPND values 

calculated by the reference tissue models (Sandiego et al, 2015; Zanderigo et al, 2013).  

1.3.3 The equilibrium method 

One of the main reasons for the need of kinetic modeling in the quantification of 

dynamic PET data is that the outcome measures of PET measurements (e.g. VT or BPND) are 

defined under true equilibrium states that cannot be achieved following the bolus injection of 

radioligand (Slifstein and Laruelle, 2001). Alternatively, a protocol including a bolus and a 

constant infusion for injection of radioligand can be applied to achieve and sustain true 

equilibrium for a period of time (Carson, 2000; Carson et al, 1993; Slifstein and Laruelle, 

2001). Using this method, VT can be calculated directly from the tissue-to-plasma 

concentration ratio and BPND can be derived from the tissue concentration in the target and 

reference regions. However, the optimal bolus to infusion rate ratio of each radioligand 

should be determined on forehand to ensure that the binding reaches equilibrium within the 

time interval of the PET measurements (Carson, 2000; Martinez et al, 2003; Slifstein and 

Laruelle, 2001). 
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1.4 EVALUATING CHANGES IN THE CONCENTRATION OF 
ENDOGENOUS MOLECULES 

1.4.1 The competition model 

The application of PET imaging for the assessment of changes in the concentration of 

endogenous neurotransmitters was initially based on the competition model (Finnema et al, 

2015c; Friedman et al, 1984; Ginovart, 2005; Laruelle, 2000; Paterson et al, 2010). The 

model hypothesized that the changes in neurotransmitter concentration induced by a 

challenge will alter the occupancy of endogenous neurotransmitters to the target receptor. As 

there is competition between neurotransmitter and radioligand for binding to the receptor, 

there will be a change in radioligand binding. As illustrated in Figure 3, according to the 

competition model, an increase in neurotransmitter concentration will decrease the binding of 

radioligand to the receptors and vice versa. 

 

Figure 3. Schematic representation of the competition model and corresponding changes in radioligand binding. 

1.4.2 Changes in BPND under the competition model 

Following the principle of competitive inhibition, adding endogenous neurotransmitter 

into the system of radioligand binding will not affect Bavail but will increase the apparent KD 

by a factor of (1+ FNT/Ki_NT), where FNT is the basal neurotransmitter concentration and Ki_NT 

is the inhibition constant of the neurotransmitter for binding of the radioligand to the receptor 

(Farde et al, 1995; Narendran et al, 2004; Ross and Jackson, 1989). Therefore, the equation 

(8) of BPND (page 6) could be expanded to (Farde et al, 1995; Laruelle, 2000; Narendran et 

al, 2004; Paterson et al, 2010; Ross and Jackson, 1989) 

 BPND_baseline = fND × 
 avail

     (  
  T
 i  T

) 
. (15) 

After a drug challenge, based on the competition model, fND, Bavail, KD, Ki_NT and FNT 

remain the same. The influence of the changes in neurotransmitter concentration (ΔFNT) on 

BPND can be described as the following equation (Farde et al, 1995; Narendran et al, 2004; 

Paterson et al, 2010; Ross and Jackson, 1989) 
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 BPND_challenge = fND ×  
 avail

     (  
  T    T

 i  T
) 
. (16) 

For evaluation of ΔFNT induced by a drug challenge, the relative change in BPND (ΔBPND) is 

a common outcome measure. The definition of ΔBPND and its relationship to ΔFNT can be 

described as (Paterson et al, 2010) 

 ΔBPND = 
     challen e-      aseline

      aseline 
 = 

    T

 i  T+  T+   T
. (17) 

1.4.3 Availability of receptors 

Since BP is a composite outcome measure of Bavail and KD, in addition to the changes in 

apparent KD as predicted by the competition model, potential changes in Bavail should also be 

considered when interpreting results of PET challenge experiments. There are several factors 

that might influence the Bavail for endogenous neurotransmitter or radioligand such as 

functional states of receptors and the cellular location of receptors (Abi-Dargham et al, 2000; 

Ginovart et al, 1997; Laruelle et al, 1997; Paterson et al, 2010). 

1.4.3.1 Functional states of receptors 

Based on the extended ternary complex model, the Bavail of GPCR might be partially 

determined by the functional states of the receptors (Paterson et al, 2010; Skinbjerg et al, 

2010). The model hypothesizes that there are two functional state of the receptors, G protein-

coupled and uncoupled (Finnema et al, 2010a; De Lean et al, 1980). Whereas agonists have 

high affinity to the functional G-protein coupled receptor and low affinity to the G-protein 

uncoupled receptor, antagonists have similar affinity to both states of the receptor. Therefore, 

neurotransmitters (being endogenous agonists) may more markedly compete with radioligand 

for binding to the high-affinity state receptor than to the low-affinity state receptor (Paterson 

et al, 2010; Skinbjerg et al, 2010). Accordingly, the relative low affinity of the endogenous 

agonist to the low-affinity state receptor decreases the sensitivity of the binding of antagonist 

radioligand to ΔFNT (Narendran et al, 2004; Paterson et al, 2010). 

1.4.3.2 Estimation of the ratio of high-affinity state receptors 

Under the assumptions that [1] endogenous neurotransmitter mainly binds to the 

synaptic high-affinity state receptor (RHS), [2] the non-synaptic high-affinity state receptor 

(RHNS) is defined as the high-affinity state receptor that is not accessible by endogenous 

neurotransmitter due to compartmentalization or other factors, [3] agonist radioligand can 

bind to RHS and RHNS and [4] antagonist radioligand can bind to RHS, RHNS and the low-

affinity state receptor (RL) and [5] Bavail = RHS + RHNS + RL, we can expand equation (15) to 

include the functional states of receptor, baseline occupancy of receptor by endogenous 

neurotransmitter and the non-synaptic distribution of receptor following the method proposed 

by Narendran  (Narendran et al, 2004).  
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For an antagonist radioligand, the baseline BPND can be expressed as 

 BPND_anta_baseline = fND × ( 
   

   anta   (  
  T
 i  T

) 
 + 

    +  

   anta

). (18) 

After a drug challenge, the BPND can be expressed as 

 BPND_anta_challenge = fND   ( 
   

   anta   (  
  T    T

 i  T
) 
 + 

    +  

   anta

). (19) 

For an agonist radioligand, the baseline BPND can be expressed as 

 BPND_ago_baseline = fND   ( 
   

   a o   (  
  T
 i  T

) 
 + 

    

   a o

). (20) 

After a drug challenge, the BPND can be expressed as 

 BPND_ago_challenge = fND   ( 
   

   a o   (  
  T    T

 i  T
) 
 + 

    

   a o

). (21) 

Based on equations (18) to (21), the ratio of ΔBPND_anta to ΔBPND_ago can be expressed and 

reorganized as 

 
      anta

      a o

 = 
    + (   

  T
 i  T

)       

    + (   
  T
 i  T

)   (     +   ) 
. (22) 

If FNT << Ki_NT, equation (22) can be simplified to 

 
      anta

      a o

 = 
    +     

    +      +    
 = 

    +     

 avail 
 = the fraction of high affinity state receptors. (23) 

1.4.4 Factors influencing the sensitivity of radioligand binding 

It is worth noting that based on equation (17) (page 11), the ΔBPND can be much 

smaller than the ΔFNT. For example, using the optimal values from preclinical studies (Ki_NT = 

50 nM and FNT = 3.9 nM), a 14-fold increase in 5-HT (ΔFNT = 54.6 nM) will only induce 

around 50% decrease in BPND values of 5-HT1A receptor radioligands (Paterson et al, 2010). 

Considering the relatively low sensitivity of ΔBPND when compared to ΔFNT, it is important 

to choose an adequate radioligand for reliable detection of ΔFNT. 

1.4.4.1 Target related factors 

According to the competition model and equation (17) (page 11), for the same 

neurotransmitter, the target receptor with lower Ki_NT value (higher NT affinity) will provide 

higher sensitivity to ΔFNT. In addition, the target receptor with higher fraction in high-affinity 

state, lower fraction in non-synaptic location and lower fraction in intracellular compartment 

will also provide higher sensitivity to ΔFNT because there will be smaller differences in 

receptor availability between neurotransmitter and radioligand. 
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1.4.4.2 Radioligand related factors 

Under equilibrium conditions, ΔBPND will be independent of radioligand properties as 

based on the competition model and equation (17) (page 11). However, differences in 

dopamine sensitivity among different dopamine D2 receptor (D2R) radioligands did not 

support this hypothesis and a radioligand property explaining the different sensitivities could 

not be identified (Laruelle, 2000; Paterson et al, 2010). The different dopamine sensitivities 

might originate from the non-equilibrium states of PET measurements following drug 

challenges and in which dopamine concentrations change prominently during the PET 

measurement (Finnema et al, 2015c; Laruelle, 2000; Paterson et al, 2010). For example, one 

simulation study has reported that the dopamine sensitivity of radioligand binding will be 

higher if the rate of clearance from the brain (k2) is faster (Endres and Carson, 1998).  

Although some controversy existed, agonist radioligands were expected to be more 

sensitive to ΔFNT than antagonist radioligands for the same target, as described in 1.4.3.1 

(Finnema et al, 2015c; Paterson et al, 2010; Skinbjerg et al, 2010). The differences in 

dopamine sensitivity between agonist and antagonist radioligands for dopamine D2/D3 

receptors have been observed in anesthetized NHPs (Gallezot et al, 2014b; Narendran et al, 

2004; Seneca et al, 2006). On the other hand, one study in conscious NHPs has reported that 

there was similar sensitivity between agonist and antagonist radioligands and the authors 

attributed the observed difference in dopamine sensitivity in other studies to an anesthesia 

effect (Ohba et al, 2009). However, the difference in dopamine sensitivity has also been 

observed in conscious humans (Narendran et al, 2010; Shotbolt et al, 2012) and support a 

minimal effect of anesthesia on the difference in dopamine sensitivity between agonist and 

antagonist radioligands. 

1.4.5 Evaluation of dopamine release by PET 

The PET imaging paradigm enabling detection of ΔFNT has been applied in a number 

of preclinical and clinical studies. Importantly, these studies have prominently improved our 

understanding of the role of the dopamine system in brain functions (Finnema et al, 2015c; 

Laruelle, 2000). For example, compared to healthy controls, blunted dopamine release 

induced by amphetamine has been observed in addiction patients while their baseline 

radioligand binding was similar to that in healthy controls (Volkow et al, 2011). Similarly, 

the effect size of differentiating schizophrenic patients from healthy controls was larger when 

using the dopamine release paradigm than imaging dopamine receptors themselves (Howes et 

al, 2012). Moreover, the level of dopamine release might relate to behavior or clinical 

outcomes and provide new insights on the pathophysiology of neuropsychiatric disorders 

(Nutt et al, 2015). Therefore, it is of great interest to extend the PET imaging paradigm to 

evaluate ΔFNT for targets other than dopamine, and 5-HT is one of the promising targets. 
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1.5 THE SEROTONIN SYSTEM 

1.5.1 Overview of serotonin system 

The 5-HT system has important roles in the regulation of basic physiological 

functions, as well as in higher brain functions such as emotion and cognition (Chou et al, 

2012; Cools et al, 2011; Lesch and Waider, 2012; Selvaraj et al, 2014). Since 5-HT cannot 

pass the BBB, the synthesis of 5-HT occurs via a two-step reaction in serotonergic neurons. 

First, L-tryptophan is hydroxylated into 5-hydroxytryptophan (5-HTP) by tryptophan 

hydroxylase. 5-HTP is then decarboxylated into 5-HT via the enzyme aromatic L-amino-

acid decarboxylase (AADC). Moreover, the enzymes monoamine oxidase and aldehyde 

dehydrogenase degrade 5-HT into an inactive metabolite, 5-hydroxyindoleacetic acid (van 

Donkelaar et al, 2011; Turner et al, 2006). 

The cell bodies of the serotonergic neurons are mainly concentrated in the raphe 

nuclei (RN) and project to almost the entire brain, including cerebral cortex, limbic regions, 

basal ganglia and subcortical structures (Hornung, 2003; Lechin et al, 2006; Steinbusch, 

1981). In the projection regions, 5-HT is released from the presynaptic serotonergic 

neurons and binds to a number of subtypes of presynaptic and/or postsynaptic 5-HT 

receptors that can regulate different brain functions. Therefore, for maintaining normal 

brain functions, it is critical to maintain adequate regional 5-HT concentrations by 

modulation of the release and re-uptake of 5-HT (Best et al, 2010; Piñeyro and Blier, 1999; 

Wong-Lin et al, 2012). Several factors might contribute to the regulation of 5-HT 

concentrations such as neuronal firing in the 5-HT neurons (Gartside et al, 2000), 5-HT 

autoreceptors (Piñeyro and Blier, 1999) and serotonin transporter (5-HTT) (Kristensen et al, 

2011). It is worth noting that there might be different mechanisms and patterns in the 

regulation of 5-HT concentrations between RN and projection regions (Adell et al, 2002; 

Lanzenberger et al, 2012) 

1.5.2 The subtypes of serotonin receptors and serotonin transporter 

Hitherto, fourteen 5-HT receptor subtypes have been identified in human and they have 

been grouped into seven families (5-HT1 to 5-HT7) based on their structural, functional and 

pharmacological features (Barnes and Sharp, 1999). Thirteen 5-HT receptors are G-protein 

coupled and the 5-HT3 receptor is the only ion channel linked 5-HT receptor (Hannon and 

Hoyer, 2008). In addition, the 5-HTT is also distributed both in RN and projection regions 

(Mantere et al, 2002; Varnäs et al, 2004). 

1.5.2.1 The serotonin 1B receptor  

The density of the 5-HT1B receptor has been reported to be highest in the globus 

pallidus, substantia nigra (SN) and occipital cortex; intermediate in the striatum and other 

neocortical regions; low in the amygdala and hippocampus as well as negligible in the 

cerebellar cortex (Varnäs et al, 2004). The 5-HT1B receptor acts as a presynaptic autoreceptor 

on serotonergic axon terminals or as a postsynaptic heteroreceptor on axon terminals of non-
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serotonergic neurons. Therefore, the 5-HT1B receptor has been suggested to play an important 

role in the regulation of the release of 5-HT and several other neurotransmitters such as 

GABA, glutamate and acetylcholine (Ruf and Bhagwagar, 2009; Sari, 2004). Moreover, the 

5-HT1B receptor has been implicated in the pathophysiology of several neuropsychiatric 

disorders, such as depression, anxiety and substance abuse (Ruf and Bhagwagar, 2009; Sari, 

2004; Svenningsson, 2006).  

1.5.2.2 The serotonin 2A receptor  

The 5-HT2A receptor has been reported to mainly distribute in the neocortical regions, 

with low densities in the hippocampus, basal ganglia and thalamus and negligible density in 

the cerebellar cortex (Hall et al, 2000; Varnäs et al, 2004). The 5-HT2A receptor is one of the 

main modulators of excitatory neurotransmission via interactions with the monoaminergic, 

GABAergic and glutamatergic systems (Guiard and DiGiovanni, 2015; Millan et al, 2008). 

Dysfunction of 5-HT2A receptors has been reported in several neuropsychiatric disorders, 

including depression and schizophrenia (Savitz and Drevets, 2013; Selvaraj et al, 2014). 

Table 2. Summary of the 5-HT targets with PET radioligands examined in primates 

Targets Ki (nM)
*
 Distribution High affinity state Extrasynaptic Regulation 

5-HT1A  0.3–166; 

0.2–0.8 

RN (autoreceptors); 

HIPP, cortex 

(heteroreceptors) 
(Lanfumey and Hamon, 2000; 

Riad et al, 2000; Varnäs et al, 

2004) 

4–25%  
(Clawges et al, 1997; 

Watson et al, 2000) 

High  
(Lanfumey and 

Hamon, 2000; 
Riad et al, 2000) 

Internalization 

(autoreceptors) 
(Bouaziz et al, 
2014; Riad et al, 

2001) 

5-HT1B  0.6–38; 

1–40 

Basal ganglia, cortex 

(autoreceptors and 

heteroreceptors)  
(Sari, 2004; Varnäs et al, 

2004) 

31–85%  
(Clawges et al, 1997; 

Grånäs et al, 2001; 

Newman-Tancredi et 
al, 2003) 

High  
(Belenky and 

Pickard, 2001; 

Riad et al, 2000; 
Sari et al, 1997, 

1999)  

Internalization 
(Carrel et al, 2011; 

Chen et al, 2009; 

Liebmann et al, 
2012)  

5-HT2A  8–3171; 

4–1000 

Cortex, HIPP, basal 

ganglia  
(Nichols and Nichols, 2008; 

Varnäs et al, 2004)  

4–79%  
(Fitzgerald et al, 1999; 
López-Giménez et al, 

2001, 2013) 

High  
(Jansson et al, 
2001; Miner et al, 

2003; Nichols and 

Nichols, 2008) 

Internalization 
(Bhattacharyya et 
al, 2002; Raote et 

al, 2013; Schmid 

et al, 2008) 
5-HT4  126–316; 

100–1259 

Basal ganglia, cortex, 

HIPP  
(Bockaert et al, 2008; Nichols 

and Nichols, 2008; Varnäs et 
al, 2003, 2004) 

17%  
(Mikami et al, 2008) 

High  
(Bockaert et al, 

2008; Vilaró et al, 
2005) 

Internalization 
(Mnie-Filali et al, 

2010; Pindon et al, 
2005) 

5-HT6  56–132; 

32–159 

Striatum, AMYG, 

HIPP, cortex  
(Gérard et al, 1997; Roberts et 
al, 2002; Woolley et al, 2004) 

? High  
(Brailov et al, 

2000; Gérard et al, 
1997) 

possible 

internalization 
(Brailov et al, 
2000; Dayer et al, 

2015; Kim et al, 

2014) 
5-HTT 17–552 (rat);  

No data 

RN, striatum, AMYG 
(Kish et al, 2005; Varnäs et al, 

2004) 

Not applicable High  
(Miner et al, 2000; 

Zhou et al, 1998) 

Internalization 
(Chanrion et al, 

2007; Jørgensen et 

al, 2014; Lau et al, 
2008) 

*
The values of Ki (inhibition constant at equilibrium) were extracted from the data for cloned or native human 

receptors in the National Institute of Mental Health's Psychoactive Drug Screening Program, Contract # HHSN-

271–2013-00017-C (NIMH PDSP) (upper row) and from the International Union of Basic and Clinical 

Pharmacology (IUPHAR) GPCR database (lower row). 

AMYG: Amygdala; HIPP: Hippocampus; RN: Raphe nucleus. 
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1.5.3 Current states of the 5-HT radioligands 

Of the fourteen 5-HT receptor subtypes, PET radioligands have been developed and 

evaluated in the primate for five subtypes (5-HT1A, 5-HT1B, 5-HT2A, 5-HT4, and 5-HT6 

receptors) as well as for the 5-HTT (Paterson et al, 2013). The properties of these six targets 

are summarized in Table 2 (page 15). Except for the 5-HT6 receptor, radioligands for the 

other five targets have been examined for 5-HT sensitivity in the primate brain (Finnema et 

al, 2015c; Paterson et al, 2010; Tyacke and Nutt, 2015). 

1.5.4 Increasing 5-HT concentration via different mechanisms  

The available 5-HT concentration enhancers have different mechanisms of action 

(Paterson et al., 2010; Rothman and Baumann, 2002; Turner et al., 2006). Selective serotonin 

re-uptake inhibitors (SSRIs) bind to the 5-HTT and block the re-uptake of 5-HT from the 

synapse. Substrate-type releasers also bind to the 5-HTT and are then transported into the 

presynaptic nerve terminal. Amphetamine is a prototypic substrate of monoamine 

transporters and there are a variety of substituted amphetamines, such as fenfluramine and 

3,4-methylenedioxymethamphetamine (MDMA) that release 5-HT. These 5-HT releasers 

might increase the endogenous 5-HT concentration by competitive inhibition of 5-HT uptake, 

reversing transport of 5-HT, transporter trafficking, or inhibition of monoamine oxidase 

(Fleckenstein et al., 2007; Heal et al., 2013; Rothman and Baumann, 2002). On the other 

hand, the 5-HT precursor 5-HTP increases the endogenous 5-HT concentration by facilitating 

the 5-HT synthesis and thereby has a more limited effect on the concentration of other 

monoamines (Baumann et al, 2011; Turner et al, 2006). 

However, most of these pharmacological challenges are difficult to translate into 

clinical 5-HT release studies (Finnema et al, 2015c; Paterson et al, 2010). For example, 

although fenfluramine has provided the largest reductions in radioligand binding in the 

primate brain (Finnema et al, 2010b, 2012), it has been removed from the market because of 

cardiovascular toxicity (Hutcheson et al, 2011; Montani et al, 2013). Clinically relevant doses 

of SSRI have not provided a method suitable for measurement of acute 5-HT release (Nord et 

al, 2013; Pinborg et al, 2012; Selvaraj et al, 2012). Therefore, a pharmacological challenge 

suitable to examine the changes in the endogenous 5-HT concentration in the human brain is 

still warranted. 

1.5.5 Evaluating changes in 5-HT concentration by PET in primates 

The results of the evaluation of the 5-HT sensitivity of PET radioligands for 5-HT1A 

receptors, 5-HT1B receptors, 5-HT2A receptors, 5-HT4 receptors or 5-HTT in healthy primates 

are summarized in Tables 3–6 (Finnema et al, 2015c; Paterson et al, 2010).  

For the 5-HT1A receptor antagonist radioligands (Table 3), it has been reported that 

SSRIs at high (paroxetine) and clinically relevant doses (fluoxetine) could significantly 

decrease [
18

F]FPWAY and [
18

F]MPPF BPND in dorsal raphe nucleus (DRN) in NHP 

(Giovacchini et al, 2005) and human (Sibon et al, 2008), respectively. Interestingly, the 

cortical [
18

F]FPWAY BPND in the NHP brain also significantly increased after administration 
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of paroxetine (Giovacchini et al, 2005). For [
11

C]CUMI-101, the only 5-HT1A receptor 

agonist radioligand, one study has reported that both fenfluramine and high doses of SSRI 

(citalopram) significantly decreased BPND values both in the DRN and projection regions in 

the NHP brain (Milak et al, 2011). However, another two human studies have reported either 

no changes (Pinborg et al, 2012) or increased BPND values in the projection regions (Selvaraj 

et al, 2012) induced by clinically relevant doses of citalopram. 

Table 3. Summary of studies evaluating 5-HT sensitivity of 5-HT1A receptor radioligands in healthy primates 

Radioligands Challenge Species Outcome Effects 

[
11

C]CUMI-101  
(Milak et al, 2011) 

Citalopram (2 and 

4 mg/kg i.v., 30 min 

prior–?) 

Monkey  

(n = 3 and 3) 

OC plot ↓ 5 % and ↓   % (both 

DRN and projection 

regions)
*
  

[
11

C]CUMI-101  
(Milak et al, 2011) 

Fenfluramine 

(2.5 mg/kg i.v., 30 min 

prior–?) 

Monkey  

(n = 3) 

OC plot ↓   % (both DRN and 

projection regions)
*
  

[
11

C]CUMI-101 
(Pinborg et al, 2012) 

Citalopram (0.15 mg/kg 

i.v., 30 min prior–

30 min post) 

Human  

(n = 6) 

BPND NS 

[
11

C]CUMI-101  
(Selvaraj et al, 2012) 

Citalopram (10 mg i.v., 

45–15 min prior) 

Human  

(n = 13) 

OC plot ↑   % projection regions
#
 

BPND ↑7 % projection regions
 #
 

[
11

C]WAY100635 
(Rabiner et al, 2002) 

Tryptophan depletion/ 

infusion 

Human  

(n = 4/4) 

BPND NS 

[
18

F]FPWAY 
(Giovacchini et al, 2005) 

Paro etine (5 m     

i.v., 9  min post) 

Monkey  

(n = 4) 

BPP / 

BPND 

     ↑ 7–13% cortex
#
 and 

↓ 8–27% DRN
*
 

[
18

F]MPPF  
(Udo De Haes et al, 2002) 

Tryptophan depletion/ 

infusion 

Human  

(n = 6) 

BPND NS 

[
18

F]MPPF  
(Udo de Haes et al, 2006) 

 enfluramine (   m     

i.v., 90–    min post) 

Monkey  

(n = 5, awake) 

BPND NS 

[
18

F]MPPF  
(Sibon et al, 2008) 

 luo etine (   m  p.o., 

5 h prior) 

Human  

(n = 8) 

BPND ↓   %    
*
 

*
Consistent with the competition model; 

#
Opposite to the direction predicted by the competition model. 

DRN: Dorsal raphe nucleus; OC plot: Occupancy plot, the direction of effect was adjusted to be consistent with 

BPND. 

For the 5-HT1B receptor radioligands (Table 4) (page 18), several studies using 

different radioligands, challenge drugs and quantification methods have consistently reported 

that fenfluramine, amphetamine and high doses of SSRIs (citalopram and escitalopram) could 

significantly decrease BPND values (Cosgrove et al, 2011; Finnema et al, 2010b, 2012; Nord 

et al, 2013; Ridler et al, 2011; Yamanaka et al, 2014). Similar to the PET studies using 5-

HT1A receptor radioligands, a clinically relevant dose of escitalopram has been reported to 

significantly increase BPND values in the projection regions in the human brain (Nord et al, 

2013). 

One possible explanation for the unexpected effects of SSRIs at clinically relevant 

doses on radioligand binding is the modulation of 5-HT release by the autoreceptors in DRN. 

The acute increases in 5-HT concentration induced by SSRIs might stimulate the 

autoreceptors in DRN that then inhibit the 5-HT release in the projection regions. 

Consequently, the net effects of SSRIs might be acute decreases in 5-HT concentrations in 

the projection regions (Giovacchini et al, 2005; Milak et al, 2011; Nord et al, 2013). 

Moreover, this inhibitory effect might be overcome by higher levels of 5-HT release induced 
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by high doses of fenfluramine or SSRIs (David et al, 2003; Finnema et al, 2015a, 2015c; 

Invernizzi et al, 1992; Nord et al, 2013). Therefore, these unexpected increases in BPND 

values might still be interpreted under the framework of the competition model. Furthermore, 

these observations also support the assumption that the inhibition of 5-HT release from 

autoreceptors in the DRN is one of the factors contributing to the delayed onset of clinical 

efficacy of SSRIs (Blier and de Montigny, 1994; Sanchez et al, 2015). 

Table 4. Summary of studies evaluating 5-HT sensitivity of 5-HT1B receptor radioligands in healthy primates 

Radioligands Challenge Species Outcome Effects 

[
11

C]AZ10419369 
(Finnema et al, 2010b) 

Fenfluramine (1.0 and 5.0 mg/kg 

i.v., 15–20 min post) 

Monkey 

(n = 3) 

Specific 

biding ratio 

↓  7 and 5 %
*$

 

[
11

C]AZ10419369 
(Finnema et al, 2012) 

Fenfluramine (1.0 and 5.0 mg/kg 

i.v., 80–85 min post) 

Monkey 

(n = 3) 

BPND ↓    and   %
*$

 

[
11

C]AZ10419369 
(Finnema et al, 2012) 

 enfluramine (5.  m     i.v., 

30– 5 min prior) 

Monkey 

(n = 3) 

BPND ↓   %
*$

 

[
11

C]AZ10419369  
(Nord et al, 2013) 

Escitalopram (2.0 mg/kg i.v., 

45–15 min prior) 

Monkey 

(n = 7) 

BPND ↓   –25% 

(DRN)
*
 

[
11

C]AZ10419369 
(Nord et al, 2013) 

Escitalopram (20 mg p.o., 3 h 

prior) 

Human 

(n = 9) 

BPND ↑ 5% cortex
#
 

[
11

C]AZ10419369 
(Yamanaka et al, 2014) 

Fenfluramine (5.0 mg/kg i.v., 

15 min prior–?) 

Monkey 

(n = 4, 

awake) 

BPND ↓  –41%
*
 

[
11

C]AZ10419369 
(Yamanaka et al, 2014) 

Fenfluramine (5.0 mg/kg i.v., 

15 min prior–?) + continuous 

infusion of subanesthetic dose of 

ketamine 

Monkey 

(n = 4, 

awake) 

BPND ↓  –38%
*
 

[
11

C]P943 
(Ridler et al, 2011) 

Amphetamine (1 mg/kg i.v., 

prior? for 5 min) 

Monkey 

(n = 1) 

OC plot ↓ 5%
*$

 

[
11

C]P943 
(Ridler et al, 2011) 

Citalopram (4 mg/kg i.v., prior? 

for 10 min) 

Monkey 

(n = 2) 

OC plot ↓9–24%
*$

 

[
11

C]P943 
(Ridler et al, 2011) 

Fenfluramine (0.8 and 2.5 mg/kg 

i.v., prior ? for 10 min) 

Monkey 

(n = 2) 

OC plot ↓5–20% and  

↓ 9–41%
*$

 

[
11

C]P943 
(Cosgrove et al, 2011) 

Fenfluramine (1 mg/kg i.v., 

5 min prior–?) 

Monkey 

(n = 2) 

OC plot ↓ 5–29%
*$

 

[
11

C]P943 
(Cosgrove et al, 2011) 

Fenfluramine (5 mg/kg i.v., 75–

70 min post) 

Monkey 

(n = 1) 

OC plot ↓  %
*$

 

*
Consistent with the competition model; 

#
Opposite to the direction predicted by the competition model;  

$
No statistical analyses were reported. 

DRN: Dorsal raphe nucleus; OC plot: Occupancy plot, the direction of effect was adjusted to be consistent with 

BPND. 

For the 5-HT2A receptor antagonist radioligands (Table 5), one study has reported that 

fenfluramine significantly decreased [
18

F]altanserin binding in the human brain (Quednow et 

al, 2012). Tryptophan depletion which results in deceases in the 5-HT concentration has been 

reported to decrease [
18

F]setoperone and [
11

C]MDL100907 BPND in two human studies 

(Talbot et al, 2012; Yatham et al, 2001). The mechanism for these paradoxical effects was 

unclear and acute downregulation of the 5-HT2A receptor might be the cause (Gray and Roth, 

2001; Talbot et al, 2012; Yatham et al, 2001). Furthermore, the binding of [
11

C]Cimbi-36, a 

novel 5-HT2A receptor agonist radioligand has been characterized in the primate brain (Ettrup 

et al, 2014, 2016; Finnema et al, 2014). One recent study demonstrated that [
11

C]Cimbi-36 

binding was sensitive to 4- to 11-fold increases in 5-HT concentration in the pig brain 

(Jørgensen et al., 2016). Therefore, [
11

C]Cimbi-36 might be a promising radioligand for the 

detection of increases in 5-HT concentration in the living primate brain. 
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Table 5. Summary of studies evaluating 5-HT sensitivity of 5-HT2A receptor radioligands in healthy primates 

Radioligands Challenge Species Outcome Effects 

[
11

C]MDL100907 
(Talbot et al, 2012) 

Tryptophan depletion Human 

(n = 10) 

BPND ↓ 8–20%
#
 

[
18

F]altanserin  
(Pinborg et al, 2004) 

Citalopram ( . 5 m     

i.v.,   h post for    min) + 

pindolol pretreatment 

Human 

(n = 7) 

BPP NS 

[
18

F]altanserin  
(Matusch et al, 2007) 

Ketamine ( . 5 m     

i.v.,   h post + 

 .  m     h infusion) 

Human 

(n = 3) 

BPP NS 

[
18

F]altanserin 
(Quednow et al, 2012) 

Dexfenfluramine (40 and 

60 mg p.o., 2 h prior)  

Human 

(n = 6 and 7) 

VT ↓  –16%
*
 

BPP ↓~  7%
*
 

[
18

F]deutero-altanserin 
(Staley et al, 2001) 

Fenfluramine (1.0 and 

 .5 m     i.v., 6 h post) 

Monkey 

(n = 2) 

Uptake NS
$
 

[
18

F]setoperone  
(Meyer et al, 1999) 

Paro etine (   m  p.o., 

 .5 h prior) 

Human  

(n = 5) 

BPND NS 

[
18

F]setoperone 
(Yatham et al, 2001) 

Tryptophan depletion Human 

(n = 10) 

BPND ↓ 8%
#
 

*
Consistent with the competition model; 

#
Opposite to the direction predicted by the competition model;

 

$
No statistical analyses were reported. 

For studies evaluating the 5-HT sensitivity of 5-HTT radioligands (Table 6), one study 

has reported decreased BPND values after administration of 5-HTP which increased 5-HT 

concentration in awake monkeys (Yamamoto et al, 2007). Decreased VT values in thalamus 

but no change in BPND values after administration of tranylcypromine which increased 5-HT 

concentration has been reported in another study in anesthetized monkeys (Lundquist et al, 

2007). Decreased radioligand binding after tryptophan depletion has been observed in one 

NHP study (Milak et al, 2005), although no significant changes after tryptophan depletion 

have been observed in two human studies (Praschak-Rieder et al, 2005; Talbot et al, 2005). 

Trafficking (internalization) of 5-HTT after 5-HT depletion has been proposed to explain 

these paradoxical effects (Milak et al, 2005). Moreover, the only study using a 5-HT4 

radioligand reported no effect of a clinically relevant dose of citalopram on BPND values 

(Marner et al, 2010) (Table 6). 

Table 6. Summary of studies evaluating 5-HT sensitivity of 5-HTT and 5-HT4 receptor radioligands ([
11

C]-

DASB and [
11

C]-SB207145, respectively) in healthy primates 

Radioligands Challenge Species Outcome Effects 

[
11

C]DASB  
(Milak et al, 2005) 

Tryptophan depletion Monkey  

(n = 2, 18 scans) 

BPP ↓ 7–33%
#
 

[
11

C]DASB  
(Praschak-Rieder et al, 2005) 

Tryptophan depletion Human  

(n = 14) 

BPND NS 

[
11

C]DASB  
(Talbot et al, 2005) 

Tryptophan depletion Human  

(n = 8) 

VT / BPP / 

BPND 

NS 

[
11

C]DASB  
(Lundquist et al, 2007) 

Tranylcypromine (0.2 

and   m     i.v.,   h 

prior for 3–5 min) 

Monkey  

(n = 3) 

VT    and ↓  % 

thalamus
*
 

BPND NS and NS 

[
11

C]DASB  
(Yamamoto et al, 2007) 

5- TP (   m     i.v., 

   min prior–?) 

Monkey  

(n = 5, awake) 

BPND ↓ 5–45% striatum
*
 

[
11

C]SB207145  
(Marner et al, 2010) 

Citalopram ( . 5 m     

i.v., 30 min prior–

30 min post) + pindolol 

pretreatment  

Human  

(n = 6 and 7) 

BPND NS 

*
Consistent with the competition model; 

#
Opposite to the direction predicted by the competition model. 
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1.5.6 Vortioxetine 

Vortioxetine is a novel multimodal antidepressant which has been approved for the 

treatment of major depressive disorder (MDD) in the US and EU since 2013 (Garnock-Jones, 

2014; Sanchez et al, 2015). In addition to 5-HTT inhibition, vortioxetine is a 5-HT3, 5-HT7 

and 5-HT1D receptor antagonist, 5-HT1B receptor partial agonist and 5-HT1A receptor agonist 

(Bang-Andersen et al, 2011; Mørk et al, 2012; Sanchez et al, 2015). Rodent studies have 

reported that vortioxetine induced larger increases in 5-HT concentration than SSRIs and 

achieved antidepressant effects by direct modulation of several subtypes of 5-HT receptors 

(du Jardin et al, 2014; Pehrson et al, 2013; Sanchez et al, 2015). Thus, in rodents the 

mechanisms of action of vortioxetine differ from SSRIs. It remains to be seen whether similar 

differences in mechanisms of action translate into human. Species differences in the binding 

profile of vortioxetine to some 5-HT receptor subtypes may exist, e.g., higher affinity for 5-

HT1B and 5-HT1D receptors and lower affinity for 5-HT1A and 5-HT7 receptors for the rat than 

for the recombinant human receptors (Sanchez et al, 2015). It is therefore important as a next 

step to evaluate the mechanisms of action of vortioxetine in the primate brain. Moreover, 

although occupancy of vortioxetine on the 5-HT1B receptor has been observed in rats (30–

45% at doses with 70–85% 5-HTT occupancy) (Mørk et al, 2012; Pehrson et al, 2013), 

whether vortioxetine significantly binds to the 5-HT1B receptor at clinically relevant doses in 

the primate brain remained unclear. Considering the important role of 5-HT1B receptor in 

depression (Ruf and Bhagwagar, 2009; Sari, 2004; Svenningsson, 2006), it is warranted to 

examine the engagement of vortioxetine on the 5-HT1B receptor in the primate brain. 

1.6 CYCLIC AMP AND PDE10A  

1.6.1 Overview of cAMP and PDE 

The cAMP is an intracellular second messenger that plays an important role in multiple 

neuronal and physiological functions, e.g. learning, memory, mood and neurodegeneration 

(Beavo and Brunton, 2002; Millar et al, 2005; Pierre et al, 2009). A number of methods have 

been developed for measuring cAMP concentration in living cells, such as genetically-

encoded fluorescence or bioluminescence resonance energy transfer (Paramonov et al, 2015). 

However, it is currently not possible to monitor cAMP concentration in the living human 

brain and a non-invasive imaging approach could be useful for this purpose. 

Although there is no available PET radioligand for imaging cAMP in vivo directly, 

there have been several radioligands targeting the downstream effectors of cAMP, especially 

for phosphodiesterases (PDEs) (Finnema et al, 2015c; Gunn et al, 2015; Holland et al, 2013). 

PDEs modulate the function of cAMP and/or 3',5'-cyclic guanosine monophosphate (cGMP) 

by catabolizing these signaling messengers (Conti and Beavo, 2007; Maurice et al, 2014). 

The close and direct interactions between cAMP and PDEs suggest that PDEs are potential 

PET imaging targets for detection of changes in cAMP concentration. There are 11 families 

of PDEs, and radioligands have been developed and validated in the primate brain for PDE4 
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and PDE10A (Conti and Beavo, 2007; Holland et al, 2013; Maurice et al, 2014; Schröder et 

al, 2016). 

Several studies have demonstrated that the binding of [
11

C]-(R)-rolipram, a PDE4 

radioligand, was sensitive to alterations in cAMP concentration in the primate brain (Harada 

et al, 2002; Tsukada et al, 2001). Notably, the direction of changes in [
11

C]-(R)-rolipram 

binding were inconsistent with the competition model. The cAMP induced alterations in 

PDE4 activity and the affinity of cAMP and [
11

C]-(R)-rolipram to PDE4 have been suggested 

to be the cause of these unexpected effects (Itoh et al, 2010). Currently, [
11

C]-(R)-rolipram 

binding is being used as an index of PDE4 activity (Fujita et al, 2017). 

1.6.2 The PDE10A system 

PDE10A can break down both cAMP and cGMP but its affinity for cAMP is much 

higher than that for cGMP (Fujishige et al, 1999; Jäger et al, 2012; Soderling et al, 1999). 

PDE10A is one of the major PDEs in the striatum (Russwurm et al, 2015). There might be a 

competition between radioligand and cAMP for binding to the catalytic domain of PDE10A. 

Furthermore, striatal PDE10A is almost exclusively located in GABAergic medium spiny 

neurons and projects to the substantia nigra (SN) and globus pallidus via the striatonigral and 

the striatopallidal pathway, respectively (Coskran et al, 2006; Seeger et al, 2003). These 

characteristics suggest that PDE10A is a promising target for detecting in vivo alterations in 

cAMP concentration in striatum and related projection regions. 

It is worth noting that binding of cAMP to the GAF-B domain of PDE10A might 

influence the affinity of cAMP and radioligand to the catalytic domain (Jäger et al, 2012; 

Ooms et al, 2016; Russwurm et al, 2015). One recent PET study in rodents has reported that 

striatal binding of the PDE10A radioligand [
18

F]JNJ42259152 was increased after acute 

elevations in cAMP concentration by PDE4 or PDE2 inhibition, opposite of what would be 

expected based on the competition model (Ooms et al, 2016). These changes might originate 

from increased affinity of [
18

F]JNJ42259152 to PDE10A induced by elevations in cAMP 

concentration. As PDE10A has been proposed to be a novel target for several 

neuropsychiatric disorders and a growing number of PET studies have evaluated PDE10A 

binding in patients (Bodén et al, 2017; Marques et al, 2016), it is important to evaluate if 

similar effect of alterations in cAMP concentration on PDE10A radioligand binding exists in 

the primate brain. 

1.6.3 Interaction between dopamine and PDE10A system 

The postsynaptic dopamine receptors in striatal medium spiny neurons segregated into 

the striatonigral pathway and the striatopallidal pathway where dopamine D1 receptor (D1R) 

and D2R are the dominant receptors, respectively (Calabresi et al, 2014; Nishi et al, 2011). 

The D1R like receptors (dopamine D1 and D5 receptors) are coupled to Gs/olf proteins that 

stimulate adenylyl cyclase and increase cAMP production. The D2R like receptors (dopamine 

D2, D3 and D4 receptors) are coupled to Gi/o proteins that inhibit adenylyl cyclase (Kelly et al, 

2007; Nishi et al, 2011). Therefore, D1R agonism and/or D2R antagonism will increase 



22 

 

cAMP concentrations and D1R antagonism and/or D2R agonism will decrease cAMP 

concentrations. 

1.6.4 Current status of PDE10A radioligands 

Numerous potential PET radioligands for imaging PDE10A have been developed and 

several have been examined in the NHP or human brain (Barret et al, 2014; Celen et al, 2013; 

Hwang et al, 2014, 2015; Kehler et al, 2014; Van Laere et al, 2013; Lin et al, 2015; Liu et al, 

2015; Niccolini et al, 2015; Plisson et al, 2011, 2014; Takano et al, 2015). Most of these 

radioligands provide adequate target-to-background signal for the striatum and globus 

pallidus, but so far, radioligand binding in the SN has been examined only for [
18

F]JNJ-

42259152 and [
11

C]IMA107. Both studies reported BPND values of approximately 0.5 for SN 

in healthy human subjects with corresponding striatal BPND values of 3.5 and 2.2, 

respectively (Van Laere et al, 2013; Niccolini et al, 2015). This low BPND value might limit 

the application of these radioligands for quantitative examinations of PDE10A binding in SN 

(Laruelle et al, 2003). Considering that the SN is a key nucleus in relation to the basal ganglia 

(Perez-Costas et al, 2010), and that regional differences in PDE10A functioning may be a 

part of the pathophysiology of neuropsychiatric disorders (Charych et al, 2010; Giorgi et al, 

2011; Nishi et al, 2011), it is important to develop a PET methodology enabling 

quantification of  PDE10A binding in the SN of the primate brain. 

[
11

C]Lu AE92686 is a recently developed radioligand with high affinity for PDE10A 

and an evaluation of the radioligand in humans has previously been reported (Kehler et al, 

2014). The characteristics of this radioligand were promising, with striatal BPND value around 

7.5 which is higher than those reported for other PDE10A radioligands (typical range: 2–5) 

(Barret et al, 2014; Celen et al, 2013; Hwang et al, 2014, 2015; Kehler et al, 2014; Van Laere 

et al, 2013; Lin et al, 2015; Liu et al, 2015; Niccolini et al, 2015; Plisson et al, 2011, 2014; 

Takano et al, 2015). Preliminary examination of [
11

C]Lu AE92686 in cynomolgus monkeys 

has suggested that [
11

C]Lu AE92686 binding is high in the striatum (BPND around 6.5) 

(Kehler et al, 2014). However, the initial study in monkeys did not include a full kinetic 

evaluation of [
11

C]Lu AE92686 or examination of binding in the SN. Accordingly, further 

characterization of the binding properties of [
11

C]Lu AE92686 and the sensitivity of [
11

C]Lu 

AE92686 binding to changes in cAMP concentration in the primate brain were warranted. 
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2 AIMS 

The general aim of the thesis work was to develop and implement novel PET imaging 

paradigms suitable for research and drug development in psychiatry. The work was carried 

out in nonhuman primates with the intention to prepare for future human applications. 

The specific aims of the thesis work were as below: 

1. The first specific aim was to evaluate the sensitivity of the recently developed 

radioligands [
11

C]Cimbi-36 and [
11

C]AZ10419369 for changes in the endogenous 5-HT 

concentration and subsequently to apply the methodology to examine the mechanisms of 

action of the novel antidepressant vortioxetine. 

 

2. The second specific aim was to evaluate the novel radioligand [11C]Lu AE92686 and its 

binding to the intraneuronal enzyme PDE10A. The sensitivity to changes in cAMP 

concentration was examined by challenges with dopaminergic agonists and antagonists. 
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3 MATERIALS AND METHODS 

The following sections describe the general methods applied in the current thesis work. 

For the specific methods for each study, the reader is referred to each respective paper or 

manuscript. 

3.1 ETHICAL APPROVALS 

All NHP studies were approved by the Animal Research Ethical Committee of the 

Northern Stockholm region and the reference numbers for each study were Dnr N386/09 and 

N452/11 for Study I, Dnr N145/08, N399/08, N362/10, N452/11 and N185/14 for Study II, 

Dnr N185/14 for Study III and Dnr N452/11, N632/12, N633/12 and N185/14 for both Study 

IV and V, respectively. The caring and experimental procedures were performed according to 

the ‘Guidelines for plannin , conductin  and documentin  e perimental research’ ( nr 

4820/06-6  ) of Karolins a Institutet and the ‘Guide for the Care and Use of  a oratory 

Animals: Ei hth Edition’ (Council, 2011). In study V, mice studies were performed in 

accordance with the Guide for the Care and Use of Laboratory Animals as adopted and 

promulgated by the National Institutes of Health (Pub. 85-23, revised 1996) under the 

approval of the Pfizer Cambridge site Institutional Animal Care and Use Committee. 

3.2 STUDY SUBJECTS 

Female rhesus monkeys (Macaca mulatta) and cynomolgus monkeys (Macaca 

fascicularis) were included in the thesis work. 

3.3 STUDY DRUGS 

3.3.1 Drugs used for increasing the 5-HT concentration 

The dose, formulation and administration protocol for each drug are summarized in 

Table 7.  

Table 7. Summary of the drugs for increasing the 5-HT concentration 

Drugs Formulation Start time
*
 Duration Study 

Racemic fenfluramine 5.0 mg/kg Saline 30 min 10 min I 

D-amphetamine 1.0 mg/kg (sulfate salt) PBS 25 min 15 min II 

MDMA 1.0 mg/kg (hydrochloride salt) PBS 25 min 15 min II 

5-HTP 5.0 mg/kg PBS 25 min 15 min II 

Citalopram 0.3 or 2.0 mg/kg PBS 45 min 30 min III 

Vortioxetine 0.1, 0.3, 1.0 or 3.0 mg/kg 10%  HPBCD in PBS 45 min 30 min III 
*
The interval between start of pretreatment infusion and intravenous injection of radioligand. 

HPBCD: hydroxypropyl beta cyclodextrin; PBS: phosphate buffered saline. 

3.3.2 Drugs used for blocking PDE10A binding 

In Study IV, MP-10 (Verhoest et al, 2009), a PDE10A inhibitor was formulated in a 

mixture of PEG 400 (25%, v/v) and 0.9% saline (75%, v/v). Unlabeled Lu AE92686 was 

formulated in a mixture of 10% hydroxypropyl beta cyclodextrin dissolved in phosphate 
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buffered saline (PBS). All drug solutions were infused intravenously (~1 mL/kg) over 15 

min, starting 45 min before the injection of [
11

C]Lu AE92686. 

3.3.3 Drugs used for increasing the cAMP concentration 

In Study V, the cAMP concentration was increased by using D2R antagonist 

haloperidol (0.05 mg/kg) in combination with functional D1R agonism achieved by using D-

amphetamine (1.0 mg/kg). Haloperidol and D-amphetamine were formulated in water and 

PBS, respectively. The administration protocol is described in the next section. 

3.3.4 Drugs used for decreasing the cAMP concentration 

In Study V, the cAMP concentration was decreased by using a combination of D1R 

antagonist SCH 23390 (2.0 mg/kg) and functional D2R agonist R-apomorphine (1.0 mg/kg), 

or by SCH 23390 alone (2.0 mg/kg). SCH 23390 and R-apomorphine were formulated in 

PBS and water with ascorbate, respectively. In all the regimens, the antagonist drug 

(haloperidol or SCH 23390) solution was infused intravenously over 15 min, starting 45 min 

prior to the injection of [
11

C]Lu AE92686. The second drug (D-amphetamine or R-

apomorphine) was infused intravenously over 15 min, starting 30 min prior to the injection of 

[
11

C]Lu AE92686. 

3.4 PET MEASUREMENTS IN NHP 

3.4.1 Radioligands 

[
11

C]Cimbi-36 (Ettrup et al, 2011) in Study I and III, [
11

C]MDL 100907 (Lundkvist et 

al, 1996) in Study I, [
11

C]AZ10419369 (Andersson et al, 2011; Pierson et al, 2008) in Study I, 

II and III, [
11

C]MADAM (Halldin et al, 2005) in Study III as well as [
11

C]Lu AE92686 

(Kehler et al, 2014) in Study IV and V were prepared according to the procedures reported 

previously. 

3.4.2 PET experimental procedures 

Anesthesia was initiated by intramuscular injection of ketamine hydrochloride (~10 

mg/kg) and maintained by a mixture of sevoflurane (2–8%), oxygen and medical air. PET 

measurements were conducted in the High Resolution Research Tomograph. Following a six 

min transmission measurement (using a single 
137

Cs source), the list-mode data was acquired 

for 123 min after intravenous bolus injection of radioligand in all PET measurements except 

for Study II. In Study II, [
11

C]AZ10419369 was administered using a B/I protocol with the 

bolus-to-infusion rate ratio ranging from 80 to 180 min and 123-min PET data was acquired. 

This B/I protocol has been validated in previous NHP studies (Finnema et al, 2012; Nord et 

al, 2013). On each experimental day, a baseline PET measurement was performed in the 

morning followed by a second PET measurement in the afternoon with or without 

pretreatment. The two PET measurements were performed approximately 3 hours apart.  
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Venous blood samples were collected at several time points for determination of the 

plasma drug concentrations (Study I, III and V). In Study IV, arterial blood samples were 

collected for determination of the protein binding of radioligand, blood and plasma 

radioactivity, radiometabolite fractions as well as plasma drug concentrations. 

3.5 MAGNETIC RESONANCE IMAGING 

T1-weighted magnetic resonance imaging (MRI) images were acquired for each NHP 

on a GE 1.5 Tesla Signa MRI scanner (Milwaukee, WI) using a 3D spoiled gradient recalled 

protocol with repetition time 21 ms, flip angle 35°, FOV 12.8, matrix 256 × 256 × 128, 128 × 

1.0 mm
2
 slices. 

3.6 IMAGE DATA ANALYSIS AND QUANTIFICATION 

Unless otherwise specified, analyses of imaging data were performed using PMOD 

(PMOD Technologies, Zurich, Switzerland): version 3.704 for Study I and II, 3.604 for Study 

III and 3.403 for study IV and V. 

3.6.1 Image preprocessing 

The PET images were preprocessed according to previously reported methods (Varrone 

et al, 2009) with the frames of the reconstructed image binned as 9 × 10 s, 2 × 15 s, 3 × 20 s, 

4 × 30 s, 4 × 60 s, 4 × 180 s and 17 × 360 s. The MRI images were manually reoriented to the 

anterior-posterior commissure plane in all studies. Moreover, for Study I to III, non-brain 

tissues were removed manually and the processed brain MRI images were then corrected for 

inhomogeneous intensity by the N4 algorithm (Tustison et al, 2010) using the software 

Advanced Normalization Tools (ANTs) (http://stnava.github.io/ANTs/).  

3.6.2 PET-MRI co-registration 

For each baseline PET measurement, a summed PET image was generated for PET-

MRI co-registration. Time frames for the summed PET image were chosen based on high 

tissue counts and optimal tissue contrast to enable co-registration. The applied time frames 

were 12–63 min for [
11

C]Cimbi-36, 21–75 min for [
11

C]MDL 100907, 5–18 min and 0–57 

min for bolus and B/I administration of [
11

C]AZ10419369, respectively, 15–69 min for 

[
11

C]MADAM as well as 0–9 min for [
11

C]Lu AE92686. For Study I to III, each summed 

image was co-registered to its individual MRI brain image by the Rigid matching algorithm 

using the default settings for primates in the PMOD Fuse It Tool. For Study IV and V, the 

summed image was co-registered manually to its individual MRI image. For all studies, the 

resulting transformation matrices were applied to the two PET measurements obtained for 

each monkey on the same day. 

3.6.3 Volumes of interest 

The volumes of interest (VOIs) were selected based on the regional distribution of each 

target protein. For Study I and III (rhesus monkeys), VOIs were defined based on the 

http://stnava.github.io/ANTs/
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NeuroMaps atlas in the INIA19 rhesus template (Rohlfing et al, 2012). Each mon ey’s  rain 

MRI image was normalized to the INIA19 rhesus template by the Deformable matching 

algorithm with the default settings for primate in the PMOD Fuse It Tool and the resulting 

normalization matrix was used to inversely transform the template VOIs into the individual 

MRI space. Moreover, in Study III, the DRN was manually delineated on each mon ey’s 

coregistrated summed [
11

C]MADAM PET image in a sagittal plane, including 5-6 slices from 

the level of the superior colliculus to the level of the inferior colliculus (Kranz et al, 2012).  

For Study II (cynomolgus monkeys), VOIs were defined on an in-house cynomolgus 

brain template that was generated from MRI images of 36 cynomolgus monkeys using the 

symmetric group-wise normalization procedures (Avants et al, 2010) in ANTs. The 

automated delineation of VOIs was guided by the NeuroMaps atlas in the INIA19 template 

(Rohlfing et al, 2012) and the Paxinos' histology atlas (Paxinos et al, 2008) in the CIVM 

template (Calabrese et al, 2015). Each individual brain MRI image was normalized to the in-

house cynomolgus brain template by the antsRegistration algorithm using the symmetric 

image normalization method (Avants et al, 2008) in ANTs. The resulting normalization 

matrix was used to inversely transform the template VOIs into the individual MRI space. For 

Study IV and V (cynomolgus monkeys), VOIs were manually defined on individual MRI 

images. 

3.6.4 Quantification of PET data  

For each VOI, a decay-corrected time–activity curve (TAC) was generated from the 

coregistrated dynamic PET data. In Study I, III and V, BPND values were calculated using the 

SRTM (Lammertsma and Hume, 1996) with cerebellum as the reference region. This method 

has been validated in previous primate studies for [
11

C]Cimbi-36 (Finnema et al, 2014), 

[
11

C]MDL 100907 (Meyer et al, 2010; Talbot et al, 2012), [
11

C]AZ10419369 (Varnäs et al, 

2011) and [
11

C]MADAM (Lundberg et al, 2005). For [
11

C]Lu AE92686, the validation of the 

use of reference tissue models and the selection of reference region was performed in Study 

IV (see below description). In Study II, BPND values were calculated using the equilibrium 

method (integral interval: 63 to 123 min) with cerebellum as the reference region (Finnema et 

al, 2012; Nord et al, 2013). 

In Study IV, kinetic analysis was performed by applying the 1TCM and the 2TCM. 

Logan plot analysis (Logan et al, 1990) was also used and the starting time of linearization 

(t*) was decided separately for each VOI in each experiment by examination of the VT value 

and identifiability of VT for different t* values ranging from 6 min to a time point with 5 time 

frames remaining until the end of the PET measurement. The effects of PET measurement 

duration on VT values were also examined by varying the time interval from 0–33 min to 0–

117 min with one time frame increments. BPND was derived by 3 different approaches, the 

indirect method using equation (9) and two reference tissue models: SRTM and Loganref 

(Logan et al, 1996) with cerebellum as the reference region. The efflux rate constant k2′ in 

Loganref was derived by using SRTM and couple fitting of all target regions except SN 
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(excluded due to its relatively high noise levels). The t* for Loganref was 27 minutes, based 

on the results of the Logan plot analysis. 

3.6.5 PET related outcome measures  

The ∆BPND induced by administration of pretreatment drug which represents receptor 

occupancy by pretreatment drug and/or endogenous neurochemical was calculated based on 

equation (17) (page 11) and expressed as percentage. In Study I, the fraction of 5-HT2A 

receptors in the high-affinity state was estimated by the ratio of ∆BPND using [
11

C]MDL 

100907 to ∆BPND using [
11

C]Cimbi-36 in the same NHPs, following the method proposed by 

Narendran and colleagues (Narendran et al, 2004) as described in equation (23) (page 12). 

According to the law of mass action, the relationship between radioligand binding and 

the concentration of drug at equilibrium can be described by a one-site binding hyperbola, as 

expressed by the following equation: 

 Decrease in BPND (%) = Ima  
dru  dose (or  P )

 dru  dose (or  P ) + I 5  (or  i   ) 
, (24) 

where Imax is the maximal inhibition (%), CPD is the plasma drug concentration and ID50 or 

Ki_PD corresponds to the drug dose or the plasma drug concentration at which 5-HTT 

occupancy is 50%, respectively (Farde et al, 1988; Finnema et al, 2015a).  

In Study III, based on equation (24), the drug-induced decreases in [
11

C]MADAM 

BPND (%) (equal to the ∆BPND (%) with opposite sign) in putamen and caudate nucleus were 

plotted against the corresponding drug dose or plasma drug concentration (Finnema et al, 

2015a). The mean plasma drug concentration value of 8 blood samples taken during the PET 

measurement period was used to represent the CPD. An unconstrained Imax value was applied 

to the model (Finnema et al, 2015a) and the ID50 or Ki_PD value was calculated using 

GraphPad Prism (version 6.05; GraphPad, San Diego, CA, USA). 

In Study I and III, equation (24) was modified to estimate the receptor occupancy by 

direct binding of pretreatment drugs following a previously proposed method (Tyacke and 

Nutt, 2015). The receptor occupancy can be calculated according to equation (25): 

Receptor occupancy (%) =     
    

    +  i   
,  (25) 

where CBD is the extracellular drug concentration in the brain and Ki_BD is the dru ’s 

inhibition constant to the receptor. For each receptor, Ki_BD was based on the Ki value of 

pretreatment drugs for the receptor and was obtained from the National Institute of Mental 

Health's Psychoactive Drug Screening Program (NIMH PDSP) (Besnard et al, 2012) or 

literature (Bang-Andersen et al, 2011; Rothman et al, 2000).  
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CBD was estimated according to the equation: 

 CBD =  P  fP  P, (26) 

where CPD is the plasma drug concentration, fP is the free fraction of the drug in plasma and 

KP is the brain to plasma partition factor of unbound drug. The values of fP and KP were 

obtained from the literature (Bundgaard et al, 2016; Caccia et al, 1979; Garnock-Jones, 2014; 

Kaddoumi et al, 2003). The parameters used for estimation of direct occupancy by 

pretreatment drugs are summarized in Table 8.  

Table 8. Summary of parameters used for estimation of receptor occupancy by pretreatment drugs 

Parameters Fenfluramine Norfenfluramine Vortioxetine 

5-HT1B Ki_BD
 
(nM)

*
 1837 2444 33 

5-HT2A Ki_BD
 
(nM)

#
 5216 2316 N/A 

5-HT2B Ki_BD
 
(nM)

*
 4134 52 N/A 

5-HT2C Ki_BD
 
(nM)

#
 3183 557 N/A 

fP (%) 3.0 3.0 2.0 

KP 2.6 1.9 3.1 
*
Cloned human receptors; 

#
Cloned rat receptors. 

fP: the free fraction of the drug in plasma; Ki_BD: the dru ’s equili rium dissociation constant to the receptor; KP: 

the brain to plasma partition factor of unbound drug; N/A: not applicable. 

In Study V, for test-retest characterization, the absolute variability was calculated 

according to the equation: 

 Absolute variability (%) = 
      etest       Test 

      etest      Test)
 

 
    . (27) 

3.7 BLOOD SAMPLE ANALYSIS 

3.7.1 Determination of plasma drug concentrations 

In Study I, norfenfluramine, the main metabolite of fenfluramine, is also a potent 5-HT 

releaser (Rothman and Baumann, 2002). Therefore, the plasma concentrations of both 

fenfluramine and norfenfluramine were determined using liquid chromatography–mass 

spectrometry. In Study III to V, the plasma drug concentrations of pretreatment drugs were 

determined using ultra performance liquid chromatography followed by tandem mass 

spectrometry detection according to the procedures reported previously (Finnema et al, 

2015a).  

3.7.2 Determination of plasma protein binding and radiometabolite fractions  

In Study IV, the fp of [
11

C]Lu AE92686 in plasma was estimated by ultrafiltration and 

the percentages of radioactivity for unchanged radioligand and radiometabolites in plasma 

were determined by the reversed-phase high-performance liquid chromatography according 

to the procedures reported previously (Finnema et al, 2014; Takano et al, 2015). 
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3.8 EX VIVO BINDING AND IMMUNOBLOTTING EXPERIMENTS 

In Study V, for binding experiments, CD-1 mice (~30 g; Charles River Laboratories) 

were subcutaneously administered with either vehicle (H2O), R-apomorphine (3 mg/kg; 

Sigma-Aldrich, St Louis, MO) and/or SCH 23390 (2 mg/kg; Sigma-Aldrich, St Louis, MO) 

in a dose volume of 10 mL/kg.  [
3
 ] u AE9 686 (75 μCi   ;  und ec  A  ) (Kehler et al, 

2014) was intravenously administered in a dose volume of 5 mL/kg, 15 min prior to 

euthanasia by rapid decapitation, either 20 min after R-apomorphine administration, or at 5, 

10, 20, 30 or 60 min after SCH 23390 administration. In the immunoblotting studies, mice 

were subcutaneously dosed with 2 mg/kg of SCH 23390 (in saline) or vehicle 60 min before 

decapitation. 

3.9 STATISTICAL ANALYSIS 

In Study I, II, III and V, a paired t-test was used to assess changes in parameters 

between the two NHP PET measurements performed on the same day. The statistical 

analyses were performed in GraphPad Prism (version 6.05; GraphPad Software Inc., La Jolla, 

CA, USA). The threshold of significance was set as P < 0.05 (one-tailed) for fenfluramine 

induced decreases in BPND and P < 0.05 (two-tailed) for changes in other parameters. In 

Study V, ex vivo [
3
H]Lu AE92686 binding studies and ex vivo immunoblotting experiments 

in mice were evaluated using ANOVA analysis and unpaired t-tests, respectively. 
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4 RESULTS AND COMMENTS 

4.1 STUDY I: 5-HT SENSITIVITY OF [11C]CIMBI-36 BINDING 

Eighteen PET measurements, 6 for each radioligand, were performed in 3 rhesus 

monkeys before or after administration of 5.0 mg/kg fenfluramine. Fenfluramine significantly 

decreased [
11

C]Cimbi-36 BPND (26–62%) and [
11

C]AZ10419369 BPND (35–58%) in most 

regions. Fenfluramine-induced decreases in [
11

C]MDL 100907 BPND were 8–30%, and 

statistically significant in three regions including temporal cortex, anterior cingulate cortex 

and thalamus (Table 9 and Figure 4, page 34). Decreases in [
11

C]Cimbi-36 BPND were larger 

than for [
11

C]AZ10419369 in neocortical and limbic regions (~35%), but smaller in striatum 

and thalamus (~40%). Decreases in [
11

C]Cimbi-36 BPND were 0.9–2.8 times larger than for 

[
11

C]MDL 100907. 

Table 9. Effect of fenfluramine on regional BPND values (n = 3) 

Region 

[
11

C]MDL 100907  [
11

C]Cimbi-36  [
11

C]AZ10419369 

BAS FEN ∆BPND  

(%) 

 BAS FEN ∆BPND  

(%) 

 BAS FEN ∆BPND  

(%) 

Put 1.05 0.94 -10.3  0.69 0.61 -11.4  0.78 0.44 -46.5* 

CN 1.15 0.93 -17.4  0.86 0.53 -38.0*  0.65 0.37 -46.1* 

VS 1.16 0.91 -21.4  0.80 0.56 -30.4*  1.36 0.66 -51.9** 

FC 3.53 2.39 -29.9  1.73 0.83 -51.3*   0.78 0.51 -35.2* 

PC 2.95 1.98 -30.0  1.44 0.68 -51.8*  0.67 0.40 -42.6* 

TC 2.95 2.05 -28.9*  1.79 0.80 -54.6*  0.72 0.42 -42.3* 

OC 2.47 1.73 -26.1  1.17 0.45 -62.2**   1.17 0.51 -58.2* 

ACC 3.46 2.41 -29.3*  2.14 1.03 -51.1*  0.91 0.59 -37.0* 

Amyg 1.02 0.76 -25.2  0.86 0.54 -36.6*  1.05 0.55 -47.6* 

HC 1.27 0.85 -29.8  1.03 0.49 -51.5**  0.63 0.37 -41.3* 

Thal 0.78 0.72 -8.2*  0.70 0.52 -25.8**  0.94 0.49 -48.1* 

MB 0.84^ 0.67 -16.3  0.66 0.37 -43.3**  0.92 0.50 -46.3* 

WB 2.03 1.46 -25.8  1.19 0.60 -49.4**  0.69 0.38 -46.3* 

Data presented as mean (n = 3). Modified from (Yang et al, 2017b). 

Abbreviations: ACC, anterior cingulated cortex; Amyg, amygdala; BAS, baseline; CN, caudate nucleus; FEN, 

fenfluramine; FC, frontal cortex; HC, hippocampus; MB, midbrain; OC, occipital cortex; PC, parietal cortex; 

Put, putamen; TC, temporal cortex; Thal, thalamus; VS, ventral striatum; WB, whole brain. 

*P < 0.05, **P < 0.01 (one-tailed) by paired t-test. 

These observations suggested that [
11

C]Cimbi-36 binding was sensitive to 5-HT release 

induced by fenfluramine. Moreover, the agonist radioligand [
11

C]Cimbi-36 was more 

sensitive to 5-HT release than [
11

C]MDL100907, an antagonist radioligand for the same 

target. The results are thus consistent with the view that agonist radioligands are more 

sensitive to the changes in the concentration of neurotransmitter than antagonists. The 

estimated fraction of 5-HT2A receptor in the high-affinity state (54% in the neocortex) in 

Study I was slightly higher than previously reported values from in vitro binding assays (13–

45%) (Fitzgerald et al, 1999; Gray et al, 2003; Hazelwood and Sanders-Bush, 2004; Sleight 

et al, 1996). The present in vivo estimates should be taken with caution since they were based 

on data obtained in only three NHPs but support the view that high- and low-affinity states 

are valid concepts also in vivo. In addition, the 5-HT sensitivity of [
11

C]Cimbi-36 binding 

was comparable to that for [
11

C]AZ10419369 binding. Due to the relative high density of 5-
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HT2A receptors in neocortical and limbic regions (Paterson et al, 2010), [
11

C]Cimbi-36 may 

be advantageous to [
11

C]AZ10419369 for examination of serotonergic neurotransmission in 

these regions. 

 

Figure 4. Magnetic resonance images and corresponding coregistrated PET summation images (average of 

frames from 9 to 123 min) of [
11

C]MDL 100907, [
11

C]Cimbi-36 and [
11

C]AZ10419369 during baseline and 

post-fenfluramine (FEN) conditions in one NHP. (a) Axial view of images at the level of caudate nucleus. (b) 

Axial view of images at the level of amygdala/hippocampus; note the difference in the range of the standardized 

uptake values (SUV) color bars for the different radioligands. SUV values were calculated from the radioactivity 

concentration as [kBq/cm
3
] / (radioactivity injected [MBq] / body weight [kg]). Abbreviations: ACC, anterior 

cingulate cortex; Amyg, amygdala; CN, caudate nucleus; FC, frontal cortex; HC, hippocampus; PC, parietal 

cortex; OC, occipital cortex; TC, temporal cortex. Modified from (Yang et al, 2017b). 

4.2 STUDY II: TRANSLATIONAL 5-HT SENSITIVITY OF 
[11C]AZ10419369 BINDING  

This study applied 5-HT concentration enhancers which can be safely studied in 

humans, and examined their effects on [
11

C]AZ10419369 binding at clinically relevant doses, 

including amphetamine (1 mg/kg), MDMA (1 mg/kg) or 5-HTP (5 mg/kg). Twenty-six PET 

measurements (14 for amphetamine, 6 for MDMA and 6 for 5-HTP) using a B/I protocol 

were performed in four cynomolgus monkeys before or after drug administration. The BPND 
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values were significantly decreased in several brain regions after administration of 

amphetamine (18–31%), MDMA (16–25%) or 5-HTP (13–31%) (Table 10 and Figure 5, 

page 36). The reductions in [
11

C]AZ10419369 binding were greater in striatum than cortical 

regions after administration of 5-HTP, while no prominent regional differences were found 

for amphetamine and MDMA. 

Table 10. Effect of pretreatment drugs on regional BPND values 

Region 

AMPH 1.0 mg/kg (n = 7)  MDMA 1.0 mg/kg (n = 3)  5-HTP 5.0 mg/kg (n = 3) 

BAS PreTx ∆BPND  

(%) 

 BAS PreTx ∆BPND  

(%) 

 BAS PreTx ∆BPND  

(%) 

FC 0.86 0.69  -19**  0.81 0.65  -19*  0.80 0.68  -14* 

OC 1.40 0.98  -30***  1.28  1.03  -20*  1.29  1.17  -10 

HC 0.87 0.69  -21**  0.89  0.71  -22  0.83  0.73  -13* 

CN 0.96 0.72  -24**  0.92  0.78  -16*  0.82  0.57  -31* 

Put 1.09 0.85  -22**  1.10  0.87  -23*  1.08  0.79  -26* 

VS 1.50 1.20  -18*  1.44  1.08  -25*  1.55  1.13  -27* 

GP 1.96 1.43  -27***  1.86  1.44  -24*  1.90  1.63  -14 

Thal 1.07 0.73  -31***  0.99  0.77  -24*  0.98  0.80  -17 

MB 1.32 1.00  -23**  1.17  0.96  -18*  1.15  1.04  -9 

WB 0.83 0.64 -23**  0.78 0.62 -20*  0.79 0.68 -14 

Data presented as mean values. 

Abbreviations: AMPH, amphetamine; BAS, baseline; CN, caudate nucleus; FC, frontal cortex; GP, globus 

pallidus; HC, hippocampus; MB, midbrain; OC, occipital cortex; PreTx, pretreatment; Put, putamen; Thal, 

thalamus; VS, ventral striatum; WB, whole brain. 

*P < 0.05, **P < 0.01, ***P < 0.001 (two-tailed) by paired t-test. 

Amphetamine has been widely applied in human PET studies to evaluate dopamine 

release (Finnema et al, 2015c; Jayaram-Lindström et al, 2017; Laruelle, 2000; Oswald et al, 

2015; Volkow et al, 2015). Interestingly, the amphetamine (1 mg/kg) induced reduction in 

[
11

C]AZ10419369 BPND in Study II was comparable to that for [
11

C]raclopride BPND (23–

44%) in the NHP brain (Narendran et al, 2004; Seneca et al, 2006). Importantly, 

[
11

C]raclopride binding has been demonstrated to be sensitive to lower doses of amphetamine 

(e.g. 0.3 mg/kg intravenous with ~16% reduction) in human studies (Finnema et al, 2015c; 

Laruelle, 2000; Martinez et al, 2003). Altogether, it is expected that in the human brain, the 

current PET imaging paradigm will be sensitive to 5-HT release induced by amphetamine 

with doses that have been applied in previous human PET studies (~0.5 mg/kg oral or ~0.3 

mg/kg intravenous) (Aalto et al, 2009).  

The dose of MDMA (1mg/kg) used in Study II is comparable to those in previous 

human studies (~1.7 mg/kg oral) and is unlikely to give rise to significant adverse events 

(Bowyer et al, 2003; Gamma et al, 2000; Tyacke and Nutt, 2015; Vizeli and Liechti, 2017). 

Considering the similar decreases in [
11

C]AZ10419369 binding between MDMA and 

amphetamine in Study II, MDMA may thus serve as an alternative to the use of amphetamine 

for examination of the 5-HT release in future clinical studies. 

The 5-HTP (5 mg/kg) induced a 30% decrease in striatal [
11

C]AZ10419369 BPND in 

Study II. This marked effect is consistent with a previous report in which 20 mg/kg of 5-HTP 

reduced [
11

C]DASB binding to the 5-HTT in the NHP brain (~43% in striatum) (Yamamoto 

et al, 2007). The current dose of 5-HTP was comparable to the clinical dose range of 200 to 
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300 mg/day, typically administered per os or intravenous (Turner et al, 2006). Furthermore, a 

slow-release formulation of 5-HTP has been shown to provide more stable increases in 5-HT 

concentration and less adverse effects than the immediate release form in rodent studies 

(Jacobsen et al, 2016). Therefore, PET measurement with [
11

C]AZ10419369 and 

pretreatment with oral administration of slow-release formulation of 5-HTP is a promising 

paradigm to investigate 5-HT release in the human brain. 

 

Figure 5. Mean parametric BPND images of [
11

C]AZ10419369 derived by the equilibrium method at baseline 

and following pretreatment with 3 different experimental drugs: Amphetamine 1 mg/kg (n = 7), 3,4-

methylenedioxymethamphetamine (MDMA) 1 mg/kg (n = 3) and 5-hydroxy-L-tryptophan (5-HTP) 5 mg/kg (n 

= 3). The images were normalized to an in-house cynomolgus brain template. (a) Axial view of images at the 

level of superior neocortex. (b) Axial view of images at the level of striatum. Abbreviations: FC, frontal cortex; 

HC, hippocampus; MB, midbrain; OC, occipital cortex; Put, putamen; VS, ventral striatum. 

The observed larger 5-HTP induced reduction in [
11

C]AZ10419369 binding in striatum 

than cortical regions is also consistent with previous results using [
11

C]DASB in the NHP 

brain (Yamamoto et al, 2007). This regional effect is in line with the microdialysis studies in 

NHP demonstrating a larger increase (~27-fold) in the 5-HT concentration in striatum than in 

prefrontal cortex (Yamamoto et al, 2007). Interestingly, 5-HTP has been labeled with carbon-

11 and examined as a PET-marker for the 5-HT synthesis (Visser et al, 2011). The [
11

C]5-

HTP influx rate has been shown to be higher in striatum than in prefrontal cortex in the NHP 

brain (Yamamoto et al, 2007). Together, the observed regional effect is likely attributed to 
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the regional differences in the activity of AADC which converts 5-HTP to 5-HT (Yamamoto 

et al, 2007). In summary, the regional difference in the effect of 5-HTP on [
11

C]AZ10419369 

binding supports the use of this PET imaging paradigm to detect changes in 5-HT 

concentration, primarily in subcortical regions. 

4.3 STUDY III: EFFECTS OF VORTIOXETINE ON SEROTONIN 
SYSTEM 

The affinity of vortioxetine to 5-HTT was evaluated by 8 PET measurements with 

[
11

C]MADAM before and after administration of vortioxetine (0.1–3.0 mg/kg) in 4 monkeys. 

The estimated dose and plasma concentration of vortioxetine for 50% 5-HTT occupancy 

were 0.25±0.09 mg/kg and 39±12 nM, respectively. The doses of the pretreatment drugs were 

selected to achieve 80% (vortioxetine 1.0 mg/kg or citalopram 0.3 mg/kg) or 55% 

(vortioxetine 0.3 mg/kg) 5-HTT occupancy. The effects of pretreatment drugs on radioligand 

binding were evaluated by 18 PET measurements with [
11

C]AZ10419369 in 3 NHPs and 4 

PET measurements with [
11

C]Cimbi-36 in 2 NHPs before and after administration of each 

regimen of pretreatment drug and vortioxetine 1.0 mg/kg, respectively. [
11

C]AZ10419369 

binding was significantly decreased in DRN after citalopram 0.3 mg/kg (5%), in 6 regions 

after vortioxetine 0.3 mg/kg (~25%) and in all 12 examined regions after vortioxetine 1.0 

mg/kg (~48%). There was no effect of vortioxetine 1.0 mg/kg on [
11

C]Cimbi-36 binding 

(Table 11 and Figure 6, page 38).  

Table 11. Effect of citalopram and vortioxetine on regional BPND values 

Region 
[
11
C]AZ    9 69 ∆BPND (%)  [

11
C]Cimbi- 6 ∆BPND (%) 

CIT 0.3
a
 VOR 1.0

a
 VOR 0.3

a
  VOR 1.0

b
 VOR 1.0

c
 

Put 10.0 -34.2** -15.1
#
  -5.7 7.9 

CN 9.1 -40.8*** -22.3*  1.7 -18.1 

VS 5.1 -41.6** -24.5**  -0.4 -23.9 

GP -0.4 -38.1** -20.3*  17.3 34.3 

FC 14.7
#
 -27.2** -9.0  1.0 -4.6 

OC 18.1 -48.3* -22.4*  10.9 22.8 

ACC 12.1 -29.2** -11.5  8.8 -21.2 

Amyg 6.4 -34.9*** -13.6  -37.1 -10.6 

HC 4.5 -20.4* -12.0
#
  -4.3 7.1 

Thal 1.4 -37.2*** -24.3*  -2.9 2.2 

MB 4.8 -43.2* -22.7***  38.2 13.5 

DRN -4.8** -44.0* -19.2
#
  -24.5 -22.0 

Abbreviations: ACC, anterior cingulated cortex; Amyg, amygdala; Bas, baseline; CIT 0.3, citalopram 0.3 mg/kg; 

CN, caudate nucleus; DRN, dorsal raphe nucleus; FC, frontal cortex; GP, globus pallidum; HC, hippocampus; 

MB, midbrain; OC, occipital cortex; Put, putamen; Thal, thalamus; VOR 0.3, vortioxetine 0.3 mg/kg; VOR 1.0, 

vortioxetine 1.0 mg/kg; VS, ventral striatum. 
a
Mean value of 3 monkeys for each experimental condition; 

b
NHP2; 

c
NHP3. 

#
 . 5 ≤ P < 0.1, *P < 0.05, **P < 0.01, ***P < 0.001 (two-tailed) by paired t-test. 

The significantly decreased BPND in the DRN and the numerically increased BPND in 

the projection regions induced by citalopram 0.3 mg/kg are in good agreement with previous 

human studies using clinically relevant doses of SSRIs (Nord et al, 2013; Selvaraj et al, 

2012). It is worth noting that these BPND changes are in contrast to the significant reductions 

in several brain regions induced by high doses of SSRIs in previous NHP PET studies (Milak 
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et al, 2011; Nord et al, 2013; Ridler et al, 2011). Previous microdialysis studies in rats have 

also reported that, although high doses of SSRIs increased the 5-HT concentration both in the 

DRN and projection regions (DRN > projection regions), lower and more clinically relevant 

doses of SSRIs only increased the 5-HT concentration in the DRN (Gartside et al, 1995; 

Hervás and Artigas, 1998; Invernizzi et al, 1992). The current results thus support that the 

different direction of BPND changes induced by SSRIs between previous human and NHP 

studies are related to the applied doses of SSRIs (Finnema et al, 2015a; Nord et al, 2013; 

Selvaraj et al, 2012). 

 

Figure 6. BPND images of [
11

C]AZ10419369 or [
11

C]Cimbi-36 derived by SRTM2 at baseline and after 

pretreatment with citalopram (CIT) or vortioxetine (VOR) (n = 3 for each pretreatment condition measured by 

[
11

C]AZ10419369 and n = 2 for vortioxetine 1.0 mg/kg and [
11

C]Cimbi-36). The images were normalized to the 

INIA19 rhesus template. (a) Axial view of images at the level of superior neocortex. (b) Axial view of images at 

the level of midbrain. Abbreviations: ACC, anterior cingulated cortex; frontal cortex; HC, hippocampus; MB, 

midbrain; OC, occipital cortex; Put, putamen. 

The different effects between vortioxetine and citalopram on [
11

C]AZ10419369 binding 

might originate from their differences in 5-HT1B receptor occupancy and/or changes in 5-HT 

concentration. According to microdialysis data in rodents, the increases in 5-HT 

concentration induced by vortioxetine were about twice those induced by escitalopram 

(Pehrson et al, 2013). Considering the limited sensitivity of PET methodology for measuring 

changes in neurotransmitter concentration (Paterson et al, 2010), the relative large difference 
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in [
11

C]AZ10419369 BPND reduction between vortioxetine 1.0 mg/kg and citalopram 0.3 

mg/kg (~65% in OC) is likely not only explained by the magnitude of difference in 5-HT 

release. This observation was also consistent with the nanomolar range affinity of 

vortioxetine to recombinant human 5-HT1B receptors (Bang-Andersen et al, 2011; Sanchez et 

al, 2015). In summary, there might be direct occupancy of 5-HT1B receptor by the applied 

doses of vortioxetine. 

To differentiate the potential causes of vortioxetine induced decreases in 

[
11

C]AZ10419369 binding, we assessed the effects of vortioxetine 1.0 mg/kg on [
11

C]Cimbi-

36 binding which has previously been demonstrated to have comparable 5-HT sensitivity as 

[
11

C]AZ10419369 binding in Study I. After excluding the estimated occupancy of the 5-HT1B 

receptor by vortioxetine based on in vitro determined binding affinities (7 and 21% for 0.3 

and 1.0 mg/kg, respectively), the anticipated decrease in [
11

C]AZ10419369 binding induced 

by 5-HT release would be 13–18% and 0–27% for vortioxetine 0.3 mg/kg and 1.0 mg/kg, 

respectively. Interestingly, this level of BPND reductions were comparable to those induced by 

high doses of SSRIs (12–30%) in previous NHP studies (Milak et al, 2011; Nord et al, 2013; 

Ridler et al, 2011). Accordingly, it was anticipated that [
11

C]Cimbi-36 binding would also be 

sensitive to this magnitude of 5-HT release. The lack of effect of vortioxetine 1.0 mg/kg on 

[
11

C]Cimbi-36 binding suggested that the actual level of 5-HT1B receptor occupancy by 

vortioxetine was higher than the estimated values based on in vitro measurements. 

The results in Study III suggest that vortioxetine binds to the 5-HT1B receptor at 

clinically relevant doses. The 5-HT1B receptor occupancy by vortioxetine 0.3 mg/kg or 1.0 

mg/kg might range from 7% to 25% or from 21% to 48%, respectively. Although the 5-HT1B 

receptor plays an important role in the pathophysiology of depression (Ruf and Bhagwagar, 

2009; Sari, 2004; Svenningsson, 2006), the required 5-HT1B receptor occupancy by 

vortioxetine in relation to its antidepressant effect remains unclear. Target occupancy by 

partial agonists resulting in functional effects has been reported to range from <10% to >90% 

among different molecular targets (Grimwood and Hartig, 2009). Interestingly, using the 

study design of 5-HT depletion, preclinical studies have demonstrated that some therapeutic 

effects of vortioxetine were mediated by direct modulation of 5-HT receptors, independent of 

the increases in 5-HT concentration (du Jardin et al, 2014, 2016). So far, the mechanistic 

studies for the antidepressant effects of vortioxetine mainly focused on 5-HT1A and 5-HT3 

receptors (Sanchez et al, 2015). Our results suggest that the 5-HT1B receptor is also engaged 

by clinically relevant doses of vortioxetine in the primate brain. 

4.4 STUDY IV: CHARACTERIZATION OF [11C]LU AE92686 BINDING 

A total of 11 PET measurements, 7 baseline and 4 following pretreatment with 

unlabeled Lu AE92686 or the structurally unrelated PDE10A inhibitor MP-10, were 

performed in 5 NHPs. [
11

C]Lu AE92686 was rapidly metabolized and the parent compound 

fraction was 18 ± 4% of the plasma radioactivity at 60 min after injection. Regional TACs 

were best described with the 2TCM. However, the VT values for all regions were quantified 
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by Logan plot analysis, as reliable cerebellar VT values could not be derived by the 2TCM 

(Figure 7).  

 

Figure 7. Representative kinetic modeling evaluation of [
11

C]Lu AE92686 in one NHP. (a) 1TCM fits and 

2TCM fits in the caudate nucleus (as in putamen and globus pallidus), substantia nigra (as in ventral striatum), 

and cerebellum. (b) Corresponding Logan plot analysis described the data adequately for all regions. Modified 

from (Yang et al, 2017a). 

For cerebellum, a proposed reference region, VT values increased by ~30% with 

increasing PET measurement duration from 63 min to 123 min, while VT values in target 

regions remained stable (Figure 8). The continuous increase in the cerebellar VT values might 

originate from the presence of BBB-penetrating radiometabolites (Zoghbi et al, 2006). To 

minimize the possible influence of radiometabolites, we choose 63 min as the preferred PET 

measurement duration. Similar approaches have been proposed for the application of other 

PDE10A radioligand, e.g. [
18

F]JNJ-42259152 in rats, to overcome the confounding effects 

from BBB-penetrating radiometabolites (Celen et al, 2013). 

 

Figure 8. The effect of PET measurement duration on VT values derived by the Logan plot analysis; Relative VT 

values (%) = [(VT values by corresponding duration of PET measurement - VT values by reference duration of 

PET measurement) / VT values by reference duration of PET measurement] x 100. (a) Cerebellar VT values 

(mean ± SD). (b) Relative VT values to 63 min data for target regions (mean – SD) and cerebellum (mean + SD). 

Modified from (Yang et al, 2017a). 

Both pretreatment drugs significantly decreased [
11

C]Lu AE92686 binding in the target 

regions while no significant effect on the cerebellum was observed. For the cerebellum, there 

was no statistical significant difference (4.8 ± 15.4 %, P = 0.55) in VT/fp between baseline 
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(8.6 ± 2.5) and pretreatment (9.0 ± 2.5) conditions. The suitability of the cerebellum as a 

reference region was further supported by the Lassen plots. The linear regression model could 

fit data from all regions well (the goodness of fit, R
2
 > 0.90), suggesting that all examined 

regions, including SN, shared the same occupancy and VND values. 

The BPND values calculated by SRTM in the baseline measurements were 13–17 in 

putamen and 3–5 in SN. These values were lower than those derived indirectly by Logan plot 

analysis (-19.7 ± 18.2%, median: -23.3%) and there was a significant correlation between 

BPND values calculated by Logan plot analysis and SRTM in the baseline measurements 

(Pearson r = 0.95, P < 0.0001). When pooling baseline and pretreatment data, the equation 

for the linear regression analysis was y = 0.601x + 1.295 (R
2 
= 0.95; Figure 9). These results 

suggest that the SRTM may be used to quantify [
11

C]Lu AE92686 binding. 

 

Figure 9. Linear regression analysis for BPND values calculated by SRTM and Loganref for 63 min PET data of 

[
11

C]Lu AE92686. Dotted lines represent the line of identity. Modified from (Yang et al, 2017a). 

4.5 STUDY V: CYCLIC AMP CONCENTRATIONS MODIFY [11C]LU 
AE92686 BINDING 

A total of 32 PET measurements (10 for test-retest and 22 for pretreatment studies) 

were performed in 5 NHPs. Elevations in cAMP concentration by haloperidol (0.05 mg/kg) 

plus D-amphetamine (1.0 mg/kg; n = 3) did not significantly alter [
11

C]Lu AE92686 binding. 

In cAMP depletion paradigms, administration of SCH 23390 alone (2.0 mg/kg; n = 3) or in 

combination with R-apomorphine (1.0 mg/kg; n = 5) significantly decreased striatal [
11

C]Lu 

AE92686 binding (-17±5%). The combination of SCH 23390 and R-apomorphine also 

significantly increased [
11

C]Lu AE92686 binding in the SN (22±14%) (Figure 11, page 42). 

These effects were larger than the observed test-retest variability (6–16%). 

Consistent with the NHP results, striatal ex vivo [3
H]Lu AE92686 specific binding in 

mice after 20, 30 and 60 min post SCH 23390 treatment was significantly lower than in the 

vehicle group, t(24) = 3.32, P < 0.0143 and t(24) = 3.56, P <0.008, and t(24) = 5.0, P < 

0.0002, respectively. Moreover, in both striatum and SN, there was no significant difference 

in PDE10A protein expression between vehicle-treated and SCH 23390-treated groups. 
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The striatal BPND changes observed in Study V were inconsistent with the competition 

model. This observation is in line with the previous PET study using PDE4 or PDE2A 

inhibitors to acutely increase cAMP concentrations in rats (Ooms et al, 2016). These 

combined results might be explained by alterations in radioligand binding affinity, as recently 

demonstrated for [
18

F]JNJ42259152 in a tissue homogenate binding study in rats (Ooms et al, 

2016). This alteration in affinity might be attributed to a conformational change in the 

catalytic domain of PDE10A induced by binding of cAMP to the GAF-B domain. Moreover, 

our studies also revealed that in mice ex vivo striatal [
3
H]Lu AE92686 binding decreased after 

pretreatment with SCH 23390 while striatal PDE10A protein expression did not change. 

These observations suggest that the decreased striatal [
11

C]Lu AE92686 binding was not 

caused by reduced PDE10A expression. Accordingly, the decreased striatal [
11

C]Lu 

AE92686 binding likely reflects a decrease in affinity of [
11

C]Lu AE92686 to PDE10A. 

 

Figure 11. Relative change in regional [
11

C]Lu AE92686 BPND values during 4 different study conditions. (A) 

Putamen. (B) Caudate nucleus. (C) Ventral striatum. (D) Substantia nigra. Abbreviations: HAL+AMPH, 

haloperidol 0.05 mg/kg + D-amphetamine 1.0 mg/kg; SCH, SCH 23390 2.0 mg/kg; SCH+APO, SCH 23390 2.0 

mg/kg + R-apomorphine 1.0 mg/kg. The * indicates P < 0.05 and the ^ indicates P = 0.05-0.10 (two-tailed, 

paired t-test). 

The use of [
11

C]Lu AE92686 in Study V provided an unique opportunity to evaluate 

PDE10A binding both in striatum and SN (Yang et al, 2017a). Surprisingly, there were 

regional differences in the direction of BPND changes between striatum and SN. The reasons 

for these regional differences are not clearly understood and may relate to a different 

direction of the change in affinity and/or cAMP concentration. Since SN localized PDE10A 

is synthesized in the striatum and then transported to the SN (Charych et al, 2010; Seeger et 
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al, 2003), it is unlikely that there are regional differences in drug induced changes in the 

PDE10A affinity.  

Moreover, we could not completely exclude the possibility that pretreatment with SCH 

23390 plus R-apomorphine decreased striatal cAMP concentrations and simultaneously 

increased cAMP concentrations in SN. One previous ex vivo mice study has reported that 

acute pretreatment with D-amphetamine increased cAMP concentrations in striatum but 

decreased cAMP concentrations in cortex. These differences might be caused by preferential 

activation of different dopamine receptor subtypes (Kelly et al, 2007). The relative 

expression of dopamine D3 receptors (D3Rs) vs. D1Rs or D2Rs has been reported to be higher 

in SN than striatum (Sun et al, 2012). R-apomorphine has previously been reported to have 

high affinity for D3Rs (Millan et al, 2002). Interestingly, a high fraction of D3Rs in the SN is 

reported to form D1Rs–D3Rs heteromers and activation of D3Rs within the heteromers could 

potentiate cAMP production, opposite to the effect by activation of individually expressed 

D3Rs (Fiorentini et al, 2015). Therefore, it is possible that the combination of SCH 23390 and 

R-apomorphine increased and decreased cAMP concentrations in striatum and SN, 

respectively. 
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5 METHODOLOGICAL CONSIDERATIONS 

5.1 SMALL SAMPLE SIZE 

A limitation of the thesis work is the small sample size of PET measurements in each 

study (typical 3–5 for each experimental condition). Although this number of sample size is 

common and acceptable for NHP PET studies under the consideration of costs and ethics, this 

sample size is too small to provide adequate power in several experimental conditions and is 

consistent with a general statistical problem in neuroscience studies (Button et al, 2013). 

Consequently, the interpretation of the current results mainly focused on the statistically 

significant findings. It is worth noting that this number of sample size also made non-

parametric statistical methods (e.g. Wilcoxon rank-sum test) unsuitable for data analysis due 

to their extremely low power (Janušonis,    9). The use of a paired t-test is a better choice 

because of its relative high power and acceptable level of Type I error (Janušonis,    9;  e 

Winter, 2013).  

5.2 INFLUENCE OF ANESTHESIA  

Another potential limitation of the performed PET studies is the use of anesthesia. The 

effects of the applied anesthetics (induction by ketamine and maintenance by sevoflurane) on 

the binding of [
11

C]Cimbi-36 or [
11

C]MDL 100907 were unknown, although ketamine and 

isoflurane have previously been shown not to affect binding of [
18

F]altanserin to the 5-HT2A 

receptor in the rodent brain (Elfving et al, 2003). It has been reported that anesthetic doses of 

ketamine increased [
11

C]AZ10419369 binding in the NHP brain. Importantly, in the same 

study, decreases in [
11

C]AZ10419369 binding induced  by fenfluramine were similar between 

awake and anesthetized NHPs (Yamanaka et al, 2014). Therefore, the effect of ketamine on 

5-HT sensitivity of [
11

C]AZ10419369 binding was expected to be minimal. Currently, no 

data were available for the effect of sevoflurane on [
11

C]AZ10419369 binding and for the 

effect of the applied anesthetics on [
11

C]Lu AE92686 binding or cAMP concentrations. As 

the same anesthesia regimen was applied across the experiments, potential anesthesia effects 

were similar between citalopram and vortioxetine in 5-HTT occupancy studies and between 

[
11

C]AZ10419369 and [
11

C]Cimbi-36 in studies using vortioxetine 1.0 mg/kg. Accordingly, 

the potential anesthesia effects were not likely to affect the main observations in Study III. 

In the thesis work, the potential anesthesia effects were minimized by maintaining 

stable levels of sevoflurane between and during PET measurements on the same experimental 

day. Future studies evaluating the current PET imaging paradigms in conscious humans are 

warranted to exclude potential anesthesia effects. For example, ketamine/xylazine and 

isoflurane have been reported to elevate the dopamine sensitivity of dopamine D2/D3 receptor 

agonist radioligands in NHP and rats, respectively (McCormick et al, 2011; Ohba et al, 

2009). However, the higher dopamine sensitivity of dopamine D2/D3 receptor agonist 

radioligands than antagonist radioligands has been confirmed in awake human studies 

(Narendran et al, 2010; Shotbolt et al, 2012). Therefore, it is warranted to compare the 5-HT 

sensitivity of [
11

C]Cimbi-36 and [
11

C]MDL 100907 in awake humans. 
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5.3 QUANTIFICATION OF PET DATA 

The quantification of PET data obtained in this thesis work was mainly performed 

using SRTM, one of the most commonly applied reference tissue models (Study I, III and V). 

The use of SRTM with cerebellum as the reference region has been validated in previous 

studies for [
11

C]Cimbi-36 (Finnema et al, 2014), [
11

C]MDL 100907 (Meyer et al, 2010; 

Talbot et al, 2012), [
11

C]AZ10419369 (Varnäs et al, 2011) and [
11

C]MADAM  (Lundberg et 

al, 2005). In Study II, the [
11

C]AZ10419369 BPND was calculated using the equilibrium 

method with cerebellum as the reference region which has also been validated in previous 

NHP studies (Finnema et al, 2012). For [
11

C]Lu AE92686, the validation of the use of 

reference tissue models was performed in Study IV. In general, although there might be 

violations of the assumptions for quantification using SRTM (e.g. both TACs of target and 

reference regions were better described by the 2TCM than the 1TCM), it is still possible to 

apply SRTM if the bias of BPND values derived by the SRTM remain within an acceptable 

level (Sandiego et al, 2015; Zanderigo et al, 2013).  

Performance criteria for the reference tissue models have recently been proposed by 

Zanderigo and coworkers (Zanderigo et al, 2013). The current results in Study IV could 

fulfill two of these three criteria, there was a high correlation between the BPND values 

derived by SRTM and Logan plot analysis (>0.95, proposed: >0.5) and a small median 

percent difference in the BPND values derived by these two methods (1.5% to 23.3%, 

proposed: <50%). However, the regression slope (0.6) of these BPND values slightly deviated 

from the proposed level (0.7–1.3), suggesting that the maximum relative difference in the 

BPND values derived by these two methods was relative high. As shown in Figure 9 (page 

41), the deviation between the regression line and the line of identity is mainly driven by 

regions with high PDE10A density. Similar observations have previously been reported for 

several other established radioligands, including [
11

C]Cimbi-36, [
11

C]WAY-100635 and 

[
11

C]FLB 457 (Finnema et al, 2014; Gunn et al, 1998; Parsey et al, 2000; Sandiego et al, 

2015). Since the BPND values of [
11

C]Lu AE92686 in target regions are relatively high (>15), 

a relatively large maximum difference in the BPND values derived by SRTM and Logan plot 

analysis can be anticipated. As for the established radioligands, reference tissue models are 

thus suitable for quantification of [
11

C]Lu AE92686 binding in the NHP studies. 

5.4 OTHER CAUSES FOR DECREASED RADIOLIGAND BINDING 

As discussed in Study III, in addition to increases in 5-HT concentration, other factors 

such as occupancy of target receptors by pretreatment drugs or other neurochemicals might 

contribute to the decreases in radioligand binding in Study I and II.  

In Study I, it is worth noting that [
11

C]Cimbi-36 has a relatively poor selectivity for the 

5-HT2 receptor subtype, the Ki is 0.5–0.8 nM for the 5-HT2A receptor, 0.5 nM for the 5-HT2B 

receptor and 1.7 nM for the 5-HT2C receptor (Ettrup et al, 2011). The estimated occupancy 

levels by fenfluramine and norfenfluramine for the 5-HT2A, 5-HT2C and 5-HT1B receptors (5–

13%) were much lower than the observed reductions in cortical binding of [
11

C]Cimbi-36 or 
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[
11

C]AZ10419369 (35–62%). Although the estimated 5-HT2B receptor occupancy was 

relatively high (50%), the low and restricted expression of the 5-HT2B receptor in brain 

(Nichols and Nichols, 2008) suggests that this binding would have negligible effect on 

[
11

C]Cimbi-36 binding. In conclusion, a major proportion of fenfluramine induced decreases 

in radioligand binding can be attributed to 5-HT release and is not likely to represent the drug 

occupancy. 

In Study II, although plasma concentrations of pretreatment drugs were not measured, 

the estimated direct occupancy of MDMA 75 mg or its main active metabolites, 3,4-

methylenedioxyamphetamine (MDA) (both with Ki > 10,000 nM) on the human 5-HT1B 

receptor has been reported to be <10 % or 0.6%, respectively (Tyacke and Nutt, 2015). 

Because the affinity of amphetamine and 5-HTP to the 5-HT1B receptor could not be found in 

the literature, direct occupancy could not be estimated for these two drugs. Moreover, the 

influence of release of other neurotransmitters, such as dopamine or norepinephrine, after 

administration of amphetamine or MDMA on the present results should be considered. Based 

on data from the National Institute of Mental Health's Psychoactive Drug Screening Program 

(NIMH PDSP) (Besnard et al, 2012), the affinity of dopamine and norepinephrine to the  5-

HT1B receptor (both with Ki > 10,000 nM) is much lower than that of 5-HT (Ki: 2 to 24 nM). 

Therefore, the contributions of dopamine and norepinephrine to the reductions in 

[
11

C]AZ10419369 binding can be assumed to be minimal. In conclusion, a major proportion 

of the drug induced decreases in [
11

C]AZ10419369 binding can be attributed to 5-HT release. 

5.5 TRANSLATIONAL CONSIDERATIONS 

The translation of the observations in NHP into future human studies is one of the main 

considerations in this thesis work. In Study I, fenfluramine 5 mg/kg reduced [
11

C]Cimbi-36 

binding by 55% in the NHP brain. In one previous human study, dexfenfluramine (40 or 60 

mg p.o.) was shown to reduce [
18

F]altanserin antagonist binding to the 5-HT2A receptor 

(~20%). Following safety considerations, the proposed maximal dose of dexfenfluramine 

suitable for human use was 1 mg/kg p.o. (Quednow et al, 2012). Based on the level of 

decreases in radioligand binding and the higher 5-HT sensitivity of [
11

C]Cimbi-36 than 

antagonist radioligand, it may be anticipated that [
11

C]Cimbi-36 binding will also be sensitive 

to 5-HT release induced by dexfenfluramine 1 mg/kg in the human brain.  

However, since fenfluramine has been withdrawn from the market because of 

cardiovascular toxicity (Hutcheson et al, 2011; Montani et al, 2013), in Study II, we 

evaluated the sensitivity of [
11

C]AZ10419369 binding to 5-HT concentration enhancers 

which can be safely studied in humans. As discussed in section 4.2, the clinically relevant 

doses of these drugs and the robustness of ∆BPND suggested that the applied PET imaging 

paradigms hold promise to be successfully used in future human studies. 

In Study III, the doses of vortioxetine 1.0 mg/kg and citalopram 0.3 mg/kg were 

selected as they result in around 80% 5-HTT occupancy, which is the proposed occupancy 

level required for therapeutic effects by SSRIs (Meyer et al, 2004). A lower dose of 
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vortioxetine (0.3 mg/kg) was selected to achieve 55% 5-HTT occupancy, and to represent the 

lower end of clinical doses (5–10 mg/day) (Areberg et al, 2012a; Garnock-Jones, 2014; 

Stenkrona et al, 2013). The clinical relevance of these doses was further supported by the 

comparable plasma concentrations of citalopram 0.3 mg/kg (119 nM), vortioxetine 0.3 mg/kg 

(38 nM) and vortioxetine 1.0 mg/kg (114 nM) to the clinical data for citalopram 20–60 

mg/day (130–400 nM) (Bezchlibnyk-Butler et al, 2000) and vortioxetine 5–20 mg/day (30–

110 nM) (Garnock-Jones, 2014). Based on the clinical relevance of the applied doses, it can 

thus be anticipated that the current results can be successfully translated into human studies. 

The determined Ki value of the plasma concentration of vortioxetine for the 5-HTT 

(39±12 nM) in NHP (Study III) was modestly higher than previously measured in human 

(16–20 nM) (Areberg et al, 2012a; Stenkrona et al, 2013). Similar level of discrepancy 

between monkey and human 5-HTT Ki values have been reported for escitalopram (Finnema 

et al, 2015a; Lundberg et al, 2007) and venlafaxine (Meyer et al, 2004; Takano et al, 2013) in 

previous PET studies. Differences in the pharmacokinetic profile or the route of drug 

administration may have contributed to these modest differences (Areberg et al, 2012b; 

Finnema et al, 2015a; Takano et al, 2013). The estimated Ki value in the NHP brain was 

therefore considered to be consistent with previous human results. 

In Study V, from a translational perspective (Finnema et al, 2015c), the pretreatment 

drugs were selected based on their applicability in future human studies. High doses of these 

drugs (Farde, 1992; Farde et al, 1988; Finnema et al, 2009, 2015c) were selected to maximize 

their effect on cAMP concentrations. Several in vitro or ex vivo studies in rodents have 

reported that there were changes in cAMP concentration consistent with the hypothesized 

directions of effects induced by SCH 23390 (Harrison and He, 2011; Skoblenick et al, 2010), 

amphetamine (Kelly et al, 2007; Ren et al, 2009), haloperidol (Skoblenick et al, 2010) or 

D2R agonism (Cohen et al, 1992). However, the effects of these pretreatment drugs on cAMP 

concentrations in the living NHP brain remain unclear. Future studies are thus warranted to 

evaluate if [
11

C]Lu AE92686 binding is sensitive to pretreatment with more specific 

modulators of cAMP concentrations, such as PDE2 or PDE4 inhibitors (Ooms et al, 2016) or 

modulators of adenylyl cyclase (Pavan et al, 2009) although such drugs can currently not be 

applied in human studies. 

For reliable measurement of changes in radioligand binding, the test-retest variability 

for the applied PET imaging paradigm should be within an acceptable range (Finnema et al, 

2015c; Paterson et al, 2010). The test-retest variability of [
11

C]Lu AE92686 binding in Study 

V is comparable to previous human results (6% in striatum) (Kehler et al, 2014). Similarly, 

comparable test-retest variability of [
11

C]AZ10419369 binding between NHP and human 

have also been reported (Finnema et al, 2012; Nord et al, 2014). These observations further 

support the high possibility for the translation of current NHP results into future human 

studies. 
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6 CONCLUSIONS AND FUTURE PERSPECTIVES 

The present thesis work aimed to develop PET imaging paradigms that were sensitive 

to changes in the concentration of 5-HT or cAMP. These paradigms were applied to evaluate 

the mechanisms of action of antidepressant and antipsychotic drugs and are suitable for 

translation into future human studies.  

The results in Study I suggested that [
11

C]Cimbi-36 appears to be one of the most 

sensitive radioligands so far developed for detection of changes in 5-HT concentration in the 

primate brain. It is warranted to assess the sensitivity of [
11

C]Cimbi-36 binding to smaller 

increases in 5-HT concentration such as induced by high doses of SSRIs or the pretreatment 

drugs applied in Study II. Similar evaluations have been performed for [
11

C]AZ10419369 

binding and supported the use of this radioligand in different experimental conditions (Nord 

et al, 2013). In addition, as discussed in section 5.2, it is also warranted to compare the 5-HT 

sensitivity of [
11

C]Cimbi-36 and [
11

C]MDL 100907 in awake humans to exclude potential 

anesthesia effects and to demonstrate the existence of 5-HT2A receptors in different functional 

states in the living human brain. 

In Study II, we evaluated the sensitivity of [
11

C]AZ10419369 binding to 5-HT 

concentration enhancers which can be safely studied in humans. The results suggest that all 

three PET imaging paradigms (amphetamine, MDMA and 5-HTP) have the potential to be 

utilized in future human studies. Moreover, although abnormal [
11

C]5-HTP influx rate has 

been reported in patients with social anxiety disorder (Frick et al, 2015) or depression (Agren 

et al, 1991), the clinical application of [
11

C]5-HTP might be limited by the difficulty in 

quantification due to trapping of [
11

C]5-HTP in the reference region (Hagberg et al, 2002; 

Lundquist et al, 2006). Therefore, the developed PET imaging paradigm using cold 5-HTP as 

a pretreatment drug might be an alternative way to evaluate 5-HT synthesis in the human 

brain. 

The feasibility to use the developed PET imaging paradigms to evaluate the 

mechanisms of action of vortioxetine, a novel antidepressant was demonstrated in Study III. 

The clinical relevance of applied vortioxetine and citalopram was supported by the 5-HTT 

occupancy and plasma drug concentrations. Our results suggested that at comparable 5-HTT 

occupancy, vortioxetine induced larger reductions in [
11

C]AZ10419369 binding than 

citalopram. Based on the results in Study I, the lack of the effect of vortioxetine 1.0 mg/kg on 

[
11

C]Cimbi-36 binding further supported the engagement of 5-HT1B receptor by vortioxetine 

at clinically relevant doses. Future studies are warranted to evaluate the role of 5-HT1B 

receptor in the antidepressant effects of vortioxetine and as a target for future development of 

more selective drugs. 

According to the observations in Study IV, the method proposed for quantification of 

[
11

C]Lu AE92686 binding in NHP is based on 63 min PET data and SRTM using cerebellum 

as the reference region. Moreover, the study supports that [
11

C]Lu AE92686 can be used for 

PET examinations of PDE10A binding both in the striatum and SN. For more detailed 
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evaluation of potential influences from radiometabolites on the quantification, further studies 

are needed to characterize these radiometabolites, such as identification of their structures or 

radiolabelling them to examine their passage across the BBB. 

In Study V, the results suggest that striatal [
11

C]Lu AE92686 binding was sensitive to 

decreases in cAMP concentration and the effect was not consistent with the competition 

model. As in previous rodent studies, the observations might reflect alterations in the affinity 

of [
11

C]Lu AE92686 to PDE10A induced by cAMP depletion. Moreover, we for the first time 

observed that the direction of BPND changes in the SN was opposite to that in the striatum. To 

clarify the underlying mechanism, future studies with Scatchard approaches (Farde et al, 

1989) and/or to assess the changes in cAMP concentration both in the striatum and SN are 

warranted to examine the possible contribution from changes in affinity (Ginovart et al, 

1997) and/or cAMP concentration, respectively. 

It is important to know if the sensitivity of radioligand binding to cAMP concentration 

is specific for [
11

C]Lu AE92686 and [
18

F]JNJ42259152 or is a general characteristic of 

PDE10A radioligands. For example, decreased striatal [
11

C]Lu AE92686 binding in 

schizophrenic patients has been reported (Bodén et al, 2017) while another study found no 

significant changes in [
11

C]IMA107 binding (Marques et al, 2016). In addition to different 

clinical characteristics of the studied patients, the differences in the observations might 

originate from differences in the effect of alterations in cAMP concentration on radioligand 

binding between [
11

C]Lu AE92686 and [
11

C]IMA107. Therefore, the sensitivity of 

radioligand binding to cAMP concentration should be taken into account when interpreting 

changes in the binding of PDE10A radioligands. 

In conclusion, the first part of the thesis work has advanced PET imaging paradigms 

that can detect changes in 5-HT concentration in the NHP brain. The robustness of the BPND 

changes and the application of pretreatment drugs at clinically relevant doses made the 

translation of current results into future human studies promising. Moreover, using the 

developed PET methodology, the engagement of the 5-HT1B receptor by vortioxetine, a novel 

antidepressant was demonstrated. In the second part of the thesis work, the quantification 

method for a novel PDE10A radioligand, [
11

C]Lu AE92686 was validated first which could 

provide reliable BPND values both in the striatum and SN. The following study revealed that 

the striatal [
11

C]Lu AE92686 binding was sensitive to alterations in cAMP concentration that 

inconsistent with the competition model. In summary, the developed PET imaging paradigms 

can be used to evaluate the mechanisms of action of psychotropic drugs and may be safely 

translated into future human studies. 
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