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“Sometimes I remember that I’ve forgotten. That’s the worst kind of forgetting.” 

 

- And Every Morning the Way Home Gets Longer and Longer: A Novella. By Fredrik Backman. 
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ABSTRACT 

Dementia is a multifactorial disorder of late life, characterized by memory deficits, 
personality changes, and impaired reasoning abilities. There is considerable co-morbidity 
between dementia, cardiovascular disease (CVD), and late-life depression, but the nature of 
the associations remains elusive.  We therefore seek to investigate how genetic and 
epigenetic factors act, independently and in concert, to contribute to dementia as well as to 
its association with CVD and depression. 

The first two studies focused on what role specific genes play in the association between 
dementia, depression, and CVD.  

In study I, we investigated how apolipoprotein E (APOE) genotype affects the association 
between depression and dementia, and whether the timing of depression onset is of 
importance. Utilizing a nested case-control design with 804 dementia cases and 1,600 
matched controls, we found that depression within ten years of dementia onset was 
associated with disease regardless of APOE genotype, while depression more distal to 
dementia was a risk factor only in carriers of the ε4 risk allele. 

Study II focused on the shared genetic architecture between dementia and CVD, and 
entailed two parts. In the first part we used data from 13,231 Swedish twins, and found that 
genetically predisposed CVD was a stronger risk factor for dementia compared to CVD with 
a lower genetic risk. In the second part of the study we utilized summary statistics from 
previously published genome-wide association studies to investigate the genetic overlap 
between Alzheimer´s disease (AD), the most common form of dementia, and coronary 
artery disease. We found no evidence of genetic overlap between the disorders, but that 
both diseases have a significant number of genes in common with lipid levels. 

The last two studies focused on epigenetic factors and investigated how gene specific 
methylation is associated with dementia. 

Study III focused on the APOE gene, and how methylation levels in leukocytes relate to the 
risk of dementia, AD, and CVD. Using data from 447 Swedish twins, we demonstrated that 
hypermethylation in the promoter region of the gene was associated with dementia and AD, 
but not with CVD. Results were similar within discordant twin pairs, and did not differ as a 
function of APOE genotype.  

In study IV, we focused on five other AD related genes that are differentially methylated in 
post-mortem brain samples from AD patients compared to controls. The aim was to 
investigate whether these differences could also be detected in blood samples collected 
pre-mortem. There was a significant difference in methylation of SORL1 in leukocytes from 
dementia patients and of BIN1 in leukocytes from AD patients. Findings were stronger in 
discordant twin pairs, indicating that the association cannot be attributed to genetic factors. 

In conclusion, the studies included in this thesis highlight the complexity of late-life 
comorbidities, and the importance of taking both genetic factors and the timing of disease 
into account when studying these associations. Furthermore, methylation of genes related 
to AD is of importance for dementia, and has the potential to serve both as a biomarker and 
identify mechanisms of disease development. 
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1 INTRODUCTION 

 

While the global life-expectancy is steadily increasing, there are substantial differences in 

how we age. While some stay healthy throughout their lives others suffer from late-life 

disease and comorbidities from a relatively early age1. The determinants for these 

differences are largely unknown, and most age-related diseases are complex phenotypes 

with both genetic and environmental factors playing a role.  

Dementia, which is the main focus of this thesis, is a debilitating late-life disorder with 

unclear mechanism and to date no effective treatment2. The incidence increases steeply 

with age, and as a result, prevalence is estimated increase exponentially due to the 

increasing life-expectancy3. If the trend continues, the number of individuals suffering 

from the disease is estimated to increase from around 47 million today to around 130 

million in 20504. Dementia is hence a major public health concern, and extensive work is 

needed to better understand disease mechanisms and develop a cure or disease-

modifying therapy.  

As the incidence of other late-life diseases also increases with age, co-morbidities are 

common in dementia. Diseases such as depression and cardiovascular disease (CVD) have 

been implicated as risk factors for dementia5,6, but whether they are causal factors or 

simply associated due to shared risk factors remains to be elucidated.                                                  

Dementia is a complex multifactorial disorder, with both genetic and environmental 

factors influencing the risk of disease. Genetic factors explain 80 % of the variance in 

Alzheimer´s disease (AD)7, the most common form of dementia, and several genes 

associated with the disease have been identified8. In recent years, epigenetic factors have 

also been studied extensively, and have been shown to be of importance for AD9. 

This thesis focuses on how genetic factors influence the association between dementia, 

depression, and CVD, and what role methylation of genes associated with AD play in 

disease development. The background will provide a short introduction to the field, and 

the methods used along with the main findings from each study will then be presented 

and discussed. 
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2 BACKGROUND 

 

2.1 A short introduction to genetic epidemiology 

2.1.1 Epidemiology and the problem of confounding 

The field of epidemiology deals with the distribution of diseases and traits on the population 

level10. By studying the distribution of two traits in a population, usually an exposure and an 

outcome, we can learn something about their association. The basic idea is simple – if the 

exposed group more often experiences the outcome those exposed have an increased risk 

of the outcome compared to those unexposed.  

However, reality is of course more complicated. The fact that two traits are associated at 

first glance does not mean there is a causal association. They could be associated through 

other factors connecting them – a concept known as confounding. One such example is 

retirement and dementia. At the adult population level it is certainly more common that 

dementia patients are retired than non-demented individuals, which of course does not 

mean that retiring causes dementia; rather, the association is heavily confounded by age, 

with those over a certain age being more likely to be retired as well as to have a higher risk 

of dementia. In addition, there is a wide range of systematic errors that can bias the 

apparent relationship between the exposure and outcome.  Two common examples are 

selection bias, arising from studying a non-representative population, and information bias, 

arising from misclassification of the exposure and outcome. A special class of the latter is 

recall bias, where cases and controls may differ in how they report past exposures.  

Even if all known confounders are adjusted for and other systematic errors dealt with, the 

nature of the observed association is still difficult to determine. First of all, an association 

does not imply causation. It may well be a result of residual confounding, factors you cannot 

control for or simply do not know about. It may also be a result of reverse causation, i.e. the 

outcome causes the exposure rather than the other way around. In studies of multifactorial 

phenotypes with unclear disease mechanisms, especially those with long progression 

periods, this is often a difficult problem to disentangle. 
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Classical epidemiological designs 

Two commonly used designs in epidemiology are cohort studies and case-control studies.  

In a cohort study, a group of individuals are followed over a certain time period, under 

which information about the outcome of interest is collected. The number of individuals 

who developed the outcome can then be compared between the exposed and unexposed 

participants. Collecting information in this prospective manner reduces the risk of recall bias 

and reverse causality as information about the exposure is collected prior to the outcome. 

The drawback is that cohort studies are often expensive and require a long follow-up time. 

Furthermore, if the outcome of interest is rare, very large sample sizes are required. 

Case-control studies are, in contrast to cohort studies, retrospective in nature and normally 

based on a selection of cases combined with a representative selection of controls. The 

design is rather intuitive and easy to interpret; the distribution of the exposure among the 

cases is compared to that among the controls.  

2.1.2 Genetic epidemiology 

Genetic epidemiology is the study of genetic factors in health and disease, within families 

and across populations. It also deals with the interplay between genes and the environment 

and how it affects complex diseases and traits11.  

The extent of genetic and environmental influence on disease varies from Mendelian 

disorders caused by a single gene (such as Huntington’s disease), to purely environmental 

factors (e.g. suffering a concussion after a head injury). Most diseases and traits fall in-

between the two extremes, as complex multifactorial disorders are caused by a 

combination of many genetic and environmental factors acting in concert.  

Twin studies 

Twin studies have played a major role in determining the importance of genetic and 

environmental influences for a wide variety of traits. Twin studies build on the fact that 

monozygotic twins (MZ) are genetically identical while dizygotic (DZ) twins share on average 

50% of their segregating genes. However, both types of twin pairs presumably share their 

environment to the same extent. Thus, the difference in correlation of traits within MZ 

versus DZ twin pairs can be used to estimate how much of the variance of a trait can be 

attributed to genetic and environmental factors11. 

The co-twin control design is another commonly used method in epidemiology, where the 

distribution of the exposure is compared within twin pairs discordant for the outcome of 

interest. They are a valuable contribution to the field, since some of the genetic and shared 

environmental factors are automatically adjusted for. Furthermore, the association between 
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exposure and outcome can be compared in DZ and MZ pairs to further elucidate the extent 

of genetic confounding. 

GWAS and polygenic methods 

Most identified genetic variants arise from mutations at a single site in the genome – a 

single nucleotide polymorphism (SNP). Over the past decade association studies have 

moved from focusing on candidate genes to hypothesis free genome-wide association 

studies (GWASs), analyzing SNPs throughout the entire genome. Thousands of SNPs 

associated with various phenotypes have been identified, and in many cases such findings 

have led to the discovery of new biological pathways involved in complex diseases12. 

Formation of GWAS consortia has led to substantial increases in the number of study 

participants, going from thousands up to hundreds of thousands. Despite the resulting 

increase in power, the genetic variants identified in most cases explain only a small 

proportion of the variance in a trait13.  

Several polygenic methods have been developed to utilize findings from GWASs to estimate 

heritability and investigate genetic architecture shared between phenotypes13,14. In addition 

to classical twin studies of heritability, it is now possible to estimate the variance in a trait 

explained by all the SNPs included on a genotyping array, using a sample of unrelated 

individuals. In most cases, the SNP based heritability is much lower than the heritability 

estimated from twin studies. The remaining part is called missing heritability, and may be 

explained by rare variants with large effect sizes, common variants with small effect sizes, 

variants not tagged by the arrays, non-additive genetic effects, and gene-environment 

interactions13. The effect of multiple SNPs on a trait can be summed up into a genetic risk 

score (GRS), which can be used as a measure of genetic susceptibility. The GRS can then be 

used to test how well the genetic susceptibility predicts the trait in different subgroups, or 

whether it predicts the risk of a different trait. 

2.1.3 Epigenetics 

Although all cells throughout the body carry the same genetic information, the genes 

expressed in different cell-types, and hence the cell functions, differ considerably. For 

example, the cells in the brain differ substantially in form and function from the cells in the 

skin, despite carrying the exact same DNA sequence.  These differences are largely due to 

epigenetic factors, defined as mechanisms regulating gene expression through reversible 

mechanisms that do not alter the DNA sequence and are heritable through cell divisions15. 

These can hence modify the phenotype of a cell without modifying its genotype. 

Furthermore, epigenetic mechanisms have been proposed as a mechanism through which 

gene-environment interactions act16. 
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Epigenetic mechanisms 

Of the epigenetic mechanisms visualized in Figure 1, DNA methylation is the most 

extensively studied. It refers to a covalent modification where a methyl group is added to a 

cytosine located next to a guanine in the DNA, a so called CpG site16. Regions of DNA with 

unusually high CG content are referred to as CpG islands, and are often found in promoter 

regions of genes. Methylation in the promoter region inhibits the binding of transcription 

factors, and hence down regulates gene expression. 

Two other epigenetic mechanisms are histone modification and noncoding RNA-mediated 

modulation of gene expression. In the chromosomes, DNA is carefully wrapped around 

nucleosomes with the help of histones17. By dynamic regulation of the histones, the density 

of the packed DNA can be modified. This determines the accessibility to transcription factors 

binding sites, and can thereby regulate transcription15. Non-coding RNAs are short RNA 

molecules that are not translated to proteins. The most well studied non-coding RNA are 

micro-RNA, which regulate gene expression at the transcriptional and post-transcriptional 

level by binding to mRNA16. 

 

 

 

Figure 1: Epigenetic mechanisms. The figure depicts the most well studied epigenetic mechanisms: 

DNA methylation, histone modification, and noncoding RNA-mediated modulation of gene 

expression (Reprinted from Zaidi et al. 201015 with permission from Elsevier). 
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Epigenome wide association studies and interactions with genetic variants 

Epigenome-wide association studies (EWASs) are based on the same hypothesis-free 

framework as GWASs, and investigate associations between a trait and methylation at 

specific CpG sites across the epigenome. At each CpG site, the proportion of methylated 

cells is analyzed for affected and unaffected individuals, which may indicate that either 

hypermethylation (higher levels of methylation) or hypomethylation (lower levels of 

methylation) is associated with the outcome of interest. Further investigations of the gene 

harboring the site, and whether it is located in the promoter region, may give further clues 

to the nature of the association. 

However, associations between genetic variants and methylation complicate matters. 

Almost 20% of the variance in DNA methylation in blood is explained by genetic factors, and 

these genetic effects on methylation are stable throughout life18. Methylation quantitative 

trait loci (meQTLs) are genetic variants that influence methylation levels. While some 

meQTLs act in the surrounding region, the majority influence methylation elsewhere in the 

genome and identification of meQTLs affecting methylation levels at specific CpG sites can 

thus be challenging. 

 

2.2 Dementia 

Dementia is a multifactorial disorder with a long preclinical phase and poor understanding 

of underlying mechanisms. It is a geriatric disorder with the prevalence increasing steeply 

with age from around 1% in individuals aged 60-69 to approximately 30% in individuals aged 

90 and older19.  

AD is the most common form of dementia, accounting for 60-80% of the cases, followed by 

vascular dementia (VaD), accounting for about 10% of cases2. However, evidence indicates 

that only a minority of dementia cases present either ‘pure AD’ or ‘pure VaD’ pathology, 

while most have a mixed pathology with elements of both AD and VaD2,20. 

2.2.1 Etiology 

Alzheimer´s disease 

AD exists in two forms, familial and sporadic AD. Familial AD has its onset before the age of 

65, and is an autosomal dominant disease usually caused by mutations in the amyloid 

precursor protein (APP) or presenilin 1 or 221. Sporadic AD on the other hand is a 

multifactorial complex disorder influenced by many genetic and environmental factors. The 

sporadic form accounts for more than 99% of cases2 and is the focus of this thesis.  
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AD is a neurodegenerative disease characterized by accumulation of amyloid plaques and 

neurofibrillary tangles in the brain5. These changes begin as much as 20 years or more prior 

to symptom onset2. The main constituent of the amyloid plaques is amyloid-β (Aβ), which 

are formed from the cleavage products of the transmembrane protein APP. During cell 

metabolism, the extracellular tail of APP is cleaved either with α- or β-secretase. Cleavage by 

the latter enzyme results in Aβ, which is normally degraded or cleared from the brain. The 

amyloid cascade hypothesis is the most predominant hypothesis for the mechanism of AD 

development5. The hypothesis is based on an imbalance between the production and 

clearance of Aβ leading to aggregation and formation of neurotoxic amyloid plaques, 

thereby initiating AD pathology. APP and presenilin are key players in the amyloid pathway, 

and the fact that they are causative of the familial form of AD strongly supports the 

hypothesis. 

Another hypothesis has the other pathological hallmark of AD, the neurofibrillary tangles, as 

central in disease development5. The neurofibrillary tangles are formed from 

hyperphosphorylated tau, a microtubule binding protein. Hyperphosphorylation of tau leads 

to dysfunction in microtubule assembly, causing impaired axonal transport and thus 

synaptic dysfunction. Hyperphosphorylated tau is also prone to aggregate into 

neurofibrillary tangles, further compromising neuronal function. It is still unclear whether 

this process is a cause or a consequence of AD5. 

Other hypotheses are based on the deficiency of acetylcholine, glutamate excitotoxicity, and 

neuroinflammation seen in AD22. In addition, dysfunction in blood vessels, oxidative stress, 

and mitochondrial dysfunction appear involved in the disease development, and it may well 

be that all these mechanisms are involved in the process to some extent5.  

Vascular dementia 

VaD is a group of disorders characterized by vascular lesions disrupting the blood supply to 

the brain, thereby contributing to dementia development. Although there are familial cases, 

the sporadic form is most common23. The underlying mechanism is vessel disorders such as 

atherosclerosis of cerebral arteries or cerebral small vessel disease, leading to infarcts, white 

matter lesions, hemorrhages, or other types of vascular lesions24. These vascular lesions 

ultimately lead to disruption of the blood supply to affected areas of the brain and may 

hence cause impairment in brain function. Pure VaD without any elements of AD pathology 

is rare, and most often caused by infarcts24. It may arise either from several small infarcts in 

the cortical and subcortical regions of the brain (referred to as multi infarct dementia), or 

from single infarcts in regions important for cognition (strategic infarct dementia). 
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2.2.2 Diagnosis and treatment 

Dementia criteria include significant cognitive impairment in one or more cognitive 

domains, severe enough to interfere with everyday living25.  The diagnosis is based on 

medical and family history, neuropsychological tests, neurological examination, laboratory 

tests, and brain imaging. Dementia can then be further differentiated into subtypes, but 

autopsy studies are still considered the gold standard for a definitive subtype diagnosis25,26. 

To date, there is no treatment to slow down or stop the neurodegeneration, but there are 

approved pharmacological treatments for AD that can improve the symptoms temporarily25. 

These belong to two groups: cholinesterase inhibitors and memantine. Most therapeutic 

approaches target the acetylcholine deficiency (including the cholinesterase inhibitors), 

glutamate excitotoxicity (including memantine), clearance of Aβ, tau deposits, and 

neuroinflammation22. Despite large efforts and many new candidates developed, very few 

are successful. Between 2002 and 2014, 244 new drugs for AD were tested in clinical trials, 

out of which only one was successful2. Although many new compounds show promising 

results in Phase II clinical trials, adverse side effects or lack of therapeutic efficacy often 

leads to failure in Phase III22. Nevertheless, efforts are continuing and several drugs are 

currently undergoing Phase III trials. 

2.2.3 Risk factors 

Environmental risk factors 

As mentioned previously, the most important risk factor for dementia is age, which has a 

great impact on disease risk. The disease is more common in women than in men, although 

the reason for the gender difference is not clear2. Low education is another well-established 

environmental risk factor for dementia, and a recent meta-analysis indicates that low 

educational attainment accounts for around 20% of the population-attributable risk6. 

Although the mechanism is not exactly clear it is presumed that education, as well as mental 

stimulation throughout life, maintains a cognitive reserve protecting against dementia27. 

Other risk factors associated with dementia are head injury, hypertension, high cholesterol, 

smoking, and obesity5. 

Co-morbidities  

Co-morbidities are common in late life, and dementia is often seen together with other 

diseases such as vascular conditions, diabetes, cancer, and depression5,6,28. Cardiovascular 

disease is associated with dementia, but it is not clear whether CVD per se is a causal factor, 

or if common risk factors increase the risk of both diseases5. Physical inactivity, smoking, 

type 2 diabetes (T2D), and midlife hypertension and obesity are all vascular risk factors also 

associated with AD6. Several studies have shown that depression is associated with 
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dementia, but it is a complicated association where the age at depression onset appears to 

be of importance. A narrative review concluded that there is strong evidence that 

depression during midlife is a risk factor, while depression during late life is rather a 

prodromal stage of dementia29. In addition, the two diseases share several risk factors, and 

there is also an association between vascular disease and depression30. As evident, the 

associations between these late-life disorders are highly complicated, and the effects 

difficult to disentangle. Nevertheless, a better understanding of these associations opens up 

the possibility for implementing preventive strategies and treatment regimens that reduce 

the burden of more than one disease. 

Genetic risk factors 

Twin studies have estimated the heritability of AD at almost 80%7, and a recent study 

estimated the SNP based heritability to be 53%31. The most important genetic risk factor is 

the apolipoprotein E (APOE) ε4 allele, which was identified in 199332,33 and has since been 

confirmed across a range of populations21. Heterozygote carriers have a threefold increased 

risk of AD, while the risk is as much as eight to twelve times higher in homozygote carriers 

compared to non-carriers2. The APOE ε2 allele decreases the risk of AD, but the effect is 

smaller than that of the ε4 allele. In addition to APOE, 19 loci associated with AD were 

identified in the most recent GWAS8. The genes implicated are involved in diverse 

mechanisms, such as APP and tau pathology, inflammatory processes and lipid transport. It 

should be noted that the effect sizes of these loci are not comparable to that of APOE. While 

APOE alone explains 13% of the total variance in AD, the other 19 known loci together 

explain 3%.31. 

Far less is known about the genetics of VaD. The only twin study performed to date showed 

the variation was due to environmental factors only, as no difference could be detected in 

concordance rates between MZ and DZ twins34. While candidate gene studies have 

identified genetic variants involved in lipid metabolism, inflammation, and angiotensin as 

associated with VaD35, findings from GWASs have been limited36,37.  

Epigenetic risk factors 

Some epigenetic studies have investigated the association between methylation, either 

gene-specific or epigenome-wide, and AD. A recent systematic review identified several 

studies that reported associations between methylation and AD using both blood and post-

mortem brain samples9. Among the 38 studies included, the most consistent findings were 

in BDNF, SORBS3, and APP. The largest EWAS to date included 708 brain samples, and 

identified 11 differentially methylated sites38, among others in ABCA7 and BIN1, which also 

harbor genetic variants associated with AD8. Another of the identified sites resides in ANK1, 

which was also identified in a smaller EWAS study of AD published simultaneously39.  
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Twin studies of methylation in dementia are rare. One study of AD discordant twins was 

based on a well-characterized monozygotic twin pair40. Both twins had the same education, 

but the affected twin was exposed to pesticides in his workplace while the other was not. 

The affected twin developed AD already at the age of 60, while the unaffected twin died 

from cancer at the age of 79. Using post-mortem brain samples, the authors identified 

significantly lower levels of global methylation in the affected AD twin than in the co-twin. A 

recent case study of another AD discordant twin pair examined methylation in the promoter 

region of selected genes using blood samples from the twins41. They found a general 

hypomethylation in both twins across all the promoters, but no difference between the 

affected and unaffected twin. 
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3 AIMS 

 

The overarching aim of this thesis is to contribute to a better understanding of dementia 

etiology and the association with other late-life disorders, by studying the influence of 

genetic and epigenetic factors. The specific aims can be divided as follows: 

 

Aim 1: Test how specific genes, individually and in combination, contribute to dementia and 

the association with depression and CVD (study I and II). 

 

- Study I: Study how APOE genotype affects the association between depression and 

dementia, and whether the timing of depression onset is of importance. 

 

- Study II: Investigate if genetic risk of CVD also increases the risk of dementia, and if it 

modifies the association between the two diseases; explore the shared genetic 

architecture between CVD, dementia, and their common risk factors. 

 

 

Aim 2: Explore how DNA methylation in genes related to AD influence the risk of dementia 

(study III and IV). 

 

- Study III: Evaluate whether DNA methylation of the APOE gene in leukocytes 

influences the risk of dementia and cardiovascular disease. 

 

- Study IV: Test if differences in DNA methylation of AD related genes found in post-

mortem brain samples can be replicated in leukocytes collected pre-mortem. 
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4 STUDY OVERVIEW 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Overview of the four studies included in this thesis.  

Dementia 

Depression CVD 

AD associated 
genes 

 

APOE 
Genetic CVD 
susceptibility 

 

Genetic 
susceptibility to 
cardiovascular 

disease and risk 
of dementia 

 

Apolipoprotein E 
ε4 genotype and 

the temporal 
relationship 

between 
depression and 

dementia 
 

Apolipoprotein E 
DNA 

methylation and 
late-life disease 

DNA 
methylation in 

Alzheimer´s 
disease 

associated 
genes 

Dementia and its comorbidities: 

Genetic and epigenetic influences 

The influence of specific genes on 
dementia etiology and the 

association with depression and 
CVD 

The influence of gene specific 
DNA methylation in dementia  



 

 23 

 

 

5 DATA 

 

5.1 Data sources 

5.1.1 The Swedish Twin Registry and sub-studies of aging 

The Swedish Twin Registry (STR) was established in the 1950s, and is one of the largest twin 

resources in the world42. Information about all twin births was obtained from parish records 

or more recently, the National Board of Health and Welfare, and the registry currently 

includes 194,842 twins born between 1886 and 2008. Twins born prior to 1926 were 

included only if both members of the pair were still alive and had responded to a 

questionnaire, while all twins born from 1926 onwards were included, regardless of 

whether the twin partner was alive and had responded19. For 75,602 twin pairs, zygosity has 

been determined by an algorithm based on intra-pair similarity, DNA, or being of opposite 

sex. The accuracy of the intra-pair similarity algorithm has been shown to be 98%42. Within 

the STR, there are several sub-studies of aging. Figure 3 shows an overview of the five sub-

studies included in this thesis. 

SATSA 

In the early STR questionnaires it was noted that a proportion of the twins had been 

separated during childhood. This was the basis of the longitudinal Swedish Adoption/Twin 

Study of Aging (SATSA)43. The study population includes all same-sex twin pairs from the STR 

who reported having been separated before the age of 11 and reared apart, matched to a 

sample of twins reared together based on sex, date and county of birth. 

SATSA consists of both mailed questionnaires and in-person testing phases (IPTs). The first 

questionnaire (Q1) was sent out in 1984 to 2,845 individuals, out of whom 2,018 responded 

(71%)43. Questionnaires were then sent out every three years, except for a break between 

1993 and 2004, to all individuals in the base-population, regardless of previous participation. 

The last questionnaire was sent out in 2010, and thus a total of 7 questionnaires were sent 

out as a part of the SATSA study.  

The IPTs consisted of a health examination, cognitive tests, an interview, and collection of 

blood samples 43. The first IPT was conducted between 1985 and 1988, and all twins over 

the age of 50, where both members of the pair answered Q1, were invited. In total, 645 



 

24 

individuals participated in IPT1. All twins who participated in the first IPT, together with 

those who answered Q1 and had turned 50 since IPT1, were invited to IPT2, and the same 

procedure was continued for IPT3. IPT4 was replaced with a telephone interview due to 

funding issues. From IPT5, the previous procedure was continued on a three-year rolling 

schedule through IPT8, and then on a two-year rolling schedule through IPT10, which was 

conducted 2012-2014 and marked the final phase of SATSA.  

A total of 859 individuals from 449 same-sex twin pairs participated in at least one IPT, and 

are included in the study population used for this thesis. The mean age at first IPT 

participation was 63.6 years (standard deviation (SD) 8.8). 

OCTO-Twin 

Origins of Variance in the Old-Old: Octogenarian Twins (OCTO-Twin) is a longitudinal study 

of twins above the age of 8044. The study consists of IPTs on a two year rolling schedule, 

where the first wave was conducted between 1991 and 1994. Blood samples were mainly 

collected during the second wave. Same-sex twin pairs within the STR where both twins 

were still alive, at least 80 years of age during the first wave, and not already included in 

SATSA were eligible for the study. Out of the 549 pairs invited to the study, 351 participated 

in the first wave of testing (pairwise response rate 64%, corresponding individual response 

rate 80%)45. The mean age at the first wave was 83.6 years (SD 3.2). 

GENDER 

The Aging in Women and Men (GENDER) study is a longitudinal study of opposite-sex twin 

pairs born between 1906 and 192546. The study includes three IPTs on a four year rolling 

schedule, similar in content to the IPTs in SATSA. Blood samples were collected as part of 

the first IPT. All opposite-sex twin pairs where both members were still alive were identified 

in the STR and sent a questionnaire (n=1,699 pairs). In total, 1,843 individuals (54%) replied, 

leading to 602 complete pairs (pairwise response rate 35%). All pairs aged 70 to 79 between 

1995 and 1997 were invited to the first IPT, in which 249 pairs participated. Mean age at 

baseline was 74.6 years (SD 2.6). 

HARMONY 

The Study of Dementia in Swedish Twins (HARMONY) study is a cross-sectional study of both 

same-sex and opposite-sex twin pairs19. It is based on the Screening Across the Lifespan 

Twin (SALT) study, a telephone interview aimed at all twins born 1958 or earlier conducted 

between 1998 and 200347,48. For all twins aged 65 or older, a tool aimed to identify 

dementia cases was added to the SALT interview (n=20,269). This sub-sample is known as 

the HARMONY sample. A total of 14,435 (71%) individuals participated (in 712 cases, an 

informant was interviewed), out of which both members of 4,537 pairs were included19.
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Figure 3: Overview of the five sub-studies of aging within the Swedish Twin Registry. The name of each sub-study together with the number of participants are given 

in the first box. The colored boxes indicate the different testing phases. IPT=in-person testing phase.  Modified from Eriksson 201049.
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Mean age was 73.5 years (SD 6.6). All individuals who were suspected of having dementia 

were referred for a clinical workup that included physical and neurological examination, an 

extensive interview, and collection of blood samples. If the preliminary assessment 

indicated the twin was demented, their twin partner, regardless of screening status, was 

also referred for workup. In addition, a control sample of 35 twin pairs where both 

members screened negative were also referred for the clinical workup. Out of 2,139 

individuals invited to the workup, 1,557 participated (overall participation rate 73%). In 

addition, for 156 individuals who were deceased co-twins of HARMONY participants, 

dementia diagnoses based on medical records were included19. Twins who participated in 

the clinical workup are included in this thesis. 

A subsample of twins diagnosed as questionable dementia, and non-demented partners of 

demented twins with disease onset within five years prior to assessment were invited to a 

longitudinal follow-up phase. 

TwinGene 

TwinGene is a study of twins born between 1911 and 1958 where both members were still 

alive and had participated in the SALT study42. TwinGene was conducted between 2004 and 

2008. It entailed a questionnaire with questions about common diseases and a health 

checkup where blood samples were collected. In total, 22,390 twins were invited to 

participate in the study. Out of those, 12,614 individuals, including 5,014 complete pairs, 

gave their consent and left a blood sample. Hence, the individual response rate was 56% 

and the pairwise response rate 45%. The mean age was 64.9 years (SD 8.1). 

5.1.2 Genetic and epigenetic data 

Genetic information 

Genotype information was available for 13,258 individuals. Among the TwinGene 

participants, 10,714 were successfully genotyped using Illumina Human OmniExpress, and 

imputed against 1000 Genomes Project phase 1 version 3 data50. Among the participants in 

SATSA, OCTO-Twin, GENDER, and HARMONY, 2,702 were genotyped using 

CardioMetabochip51. This is a customized chip where loci of importance to cardiovascular 

and metabolic traits are prioritized. For 158 twins, genotype information was available from 

both sources. In most cases, only one member of MZ twin pairs was genotyped, and the co-

twin’s genotype imputed.  

The APOE ε2 and ε4 SNPs were not available on the CardioMetabochip, and were therefore 

directly genotyped in 2,999 twins from SATSA, OCTO-Twin, GENDER, and HARMONY. For 

TwinGene participants, APOE ε2 genotype was included on the chip, and ε4 imputed based 

on the 1000 genomes panel according to a protocol with high accuracy52. 
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Epigenetic information 

Methylation information from blood samples was available for 62 twins from HARMONY 

and 385 twins from SATSA. In the latter, up to five measurements per individual were 

available (blood samples collected during IPT3, IPT5, IPT6, IPT8, and IPT9), and a total of 

1094 samples were available from 447 individuals. 

In addition, methylation information from post-mortem brain samples was available from 

39 individuals from SATSA and HARMONY, from cells in both the pre-frontal cortex (PFC) 

and cerebellum (CER). Out of those, 29 are included among the 447 individuals with 

methylation information from blood samples. 

Methylation levels in leukocytes were analyzed with the Infinium Human Methylation 450K 

BeadChip (Illumina Inc., San Diego, CA, USA), and in neuronal cells with the Infinium 

MethylationEPIC BeadChip (Illumina Inc., San Diego, CA, USA). DNA was first extracted and 

bisulfite converted using the EZ-96 DNA MagPrep methylation kit for leukocytes and the EZ 

DNA Methylation Gold Kit for neuronal cells (both from Zymo Research Corp., Orange, CA, 

USA), and then hybridized to the bead chips. The obtained methylation data were pre-

processed using a rigorous multi-step quality control pipeline. Samples were removed if 

they showed poor correlation to genotype controls or had the wrong sex predicted. Probes 

were removed if they had detection p-value above 0.05, overlapped with a SNP site, or 

resided on sex chromosomes.  Processing was performed in R with background correction 

done using methylumi.noob53, and normalization using wateRmelon.dasen54. For the 

leukocyte samples, the Houseman method55 was used to adjust for cell counts, and 

sva::Combat56 to adjust for batch effects. Due to the low number of neuronal samples, it 

was not possible to adjust for batch effects, and slide ID was therefore added as a covariate 

in all analyses of neuronal cell methylation. 

The obtained beta-values are the ratio of methylated to total (methylated plus 

unmethylated) probe intensity for each CpG site, which in essence can be interpreted as the 

percentage of methylated cells57. Although easy to interpret, the beta-value has poor 

statistical properties, with heteroscedasticity in the lower and higher range, violating the 

assumption of many statistical models. Therefore, the beta-values were logit2-transformed 

into M-values. Although the M-values do not have a direct biological interpretation, they 

have far better statistical properties57 and were therefore used throughout this thesis.  

5.1.3 National healthcare registers 

Since 1947, all Swedish residents are assigned a personal identification number, consisting 

of a six digit birthdate plus a four digit identification number58. The personal identification 

number is used for all public administration, including healthcare, and can thus be used for 

linkage across registers. The STR is linked to several population-based registers, of which the 
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National Patient Register (NPR), the Causes of Death Register (CDR), and the Prescribed 

Drug Register (PDR) are used here. Register information is obtained for all twins who have 

actively participated in the STR, meaning that they must have participated in one of the sub-

studies or replied to at least one questionnaire. The registers are administered by the 

National Board of Health and Welfare (Socialstyrelsen in Swedish). All Swedish residents are 

covered by universal health insurance covering most of the cost for healthcare and 

medications, with only a small fee paid by the patients.  

National Patient Register 

The aim of the NPR is to follow the general health of the population, facilitate prevention 

and treatment of disease, and contribute to healthcare development59,60. The register was 

initiated in the 1960s, then covering 6 of the 26 counties in Sweden at the time. The register 

expanded, and by 1983 covered 85% of all hospitalizations. In 1984, it was decided that 

participation should be mandatory for all counties, and the NPR reached nationwide 

coverage of all overnight hospitalizations in 1987. Since 2001, the register also includes all 

outpatient specialist care, from both public and private caregivers. Primary care is currently 

not covered by the NPR. 

Each record corresponds to one hospitalization or special care visit, with the primary 

diagnosis and additional diagnosis classified according to the International Classification of 

Diseases (ICD) codes. In total, 99% of the inpatient records and 80% of the outpatient 

records have information about the diagnosis. The NPR is updated yearly, and the most 

recent linkage to the STR includes information through 2014. 

Causes of Death Register 

Through the CDR, the causes of death and subgroup specific mortality in Sweden can be 

followed and evaluated61,62. The register was established with nationwide coverage in 1961, 

and contains information about the underlying as well as contributing causes of death 

reported in ICD codes. Up to 2011, the CDR includes information about the death of all 

individuals who in the year of their death were registered as residents in Sweden, regardless 

of whether the death occurred in Sweden or abroad. From 2012, it includes information 

about all deaths occurring in Sweden, regardless of residency, as well as about the deaths of 

Swedish residents occurring abroad. Like the NPR, the CDR is updated yearly, and the 

linkage to the STR contains information on causes of death through 2014. 

Prescribed Drug Register 

The PDR was initiated 2005, with the aim of increasing patient safety regarding 

medications63,64. It includes information about all dispensed medications, reported 

according to Anatomical Therapeutic Chemical (ATC) codes. It does not include information 
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about over-the-counter medications, medications used in hospitals or care facilities, or 

medications prescribed but not dispensed. In addition to information on the type of 

medication, the register also includes information about the prescribed dose, date of 

prescription, and date of dispense. The register is updated monthly, and the latest linkage to 

STR includes information through 2015. 

 

5.2 Disease ascertainment 

5.2.1 Dementia ascertainment 

We used two sources to obtain information about dementia, AD, and VaD. Dementia was 

clinically evaluated as part of the SATSA, OCTO-Twin, GENDER, and HARMONY studies. In 

addition, dementia information was available from the nation-wide health registers 

previously mentioned. 

Clinical ascertainment 

In SATSA, OCTO-Twin, and GENDER, the Swedish version of the Mini-Mental State 

Examination (MMSE) 65 was used as a screening tool for dementia. The face-to-face 

interview requires only 5-10 minutes to administer, and includes 11 questions focused on 

the cognitive aspects of mental function. The MMSE is extensively used to screen for 

dementia, both in a clinical setting and in research. The score correlates with age and 

education, and cut-offs can be adjusted to fit the study population66. The maximum score is 

30, and scores of 24 or higher were considered normal, while lower scores indicated mild 

(19 to 23), moderate (13 to 18), or severe (12 or less) cognitive dysfunction.  

In HARMONY, the TELE67, a telephone assessment for screening of dementia, was used. The 

TELE is based on the 10-item Mental Status Questionnaire (MSQ), supplemented with other 

cognitive items and questions about health and daily functioning. For those who performed 

poorly, an informant was interviewed using the Blessed Dementia Rating Scale (BDRS)68 

developed to assess the ability to deal with practical tasks of everyday life. The TELE and 

BDRS scores were then combined and transformed into an ordinal scale ranging from zero 

to three, with zero being cognitively intact and three indicating cognitive dysfunction. 

In HARMONY and up to the third IPT of SATSA, all twins who screened suspect for dementia 

and their co-twins were referred to a clinical evaluation. In large, the workup followed the 

Consortium to Establish a Registry for Alzheimer´s Disease (CERAD) protocol69, including 

physical and neurological examinations, informant interviews, review of medical records, 

neuroimaging, and laboratory tests. In OCTO-Twin and GENDER, and from the fifth IPT of 
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SATSA, dementia diagnoses were based on the cognitive tests included in the IPTs, review of 

medical records, and the research nurses evaluation of the twins.  

For all four sub-studies, final dementia diagnoses were set at multidisciplinary consensus 

conferences, following Diagnostic and statistical manual of mental disorders (DSM)-III-R70 or 

DSM-IV71 criteria. Differential diagnosis of AD followed NINCDS/ADRDA criteria72, and that 

of VaD followed the NINDS/AIREN criteria73 .  

Dementia from registers 

Information about dementia diagnoses was extracted from the NPR, using both the primary 

and additional diagnoses. The date of admittance (for inpatients) or diagnosis (outpatients) 

was used as dementia onset. Dementia as the primary or contributing cause of death was 

extracted from the CDR for deceased individuals. For cases identified only through the CDR, 

we estimated age at onset by subtracting the mean number of years between the first 

dementia diagnosis in NPR and a record of dementia in CDR for individuals who had both. 

ICD codes used to identify dementia cases are shown in Table 1. 

In addition, information on dispensed dementia medication was retrieved from the PDR and 

used as a proxy to identify cases. All dementia medication currently prescribed in Sweden is 

specific to AD, and all cases identified through the PDR were categorized as such. All 

medications in the ATC group N06D were included (namely N06DA02-04 and N06DX01). Age 

at first record of prescription was used as age of disease onset.  

5.2.2 Depression ascertainment 

Depression information was available from four sources, namely the NPR, review of medical 

records, antidepressant use, and the Center for Epidemiologic Studies Depression (CES-D) 

scale.  

Information about depression from the NPR was available for all participants, and the ICD 

codes used are presented in Table 1. Medical records were reviewed as part of the SATSA, 

OCTO-Twin, GENDER, and HARMONY studies, and information about depression diagnosis 

as well as use of antidepressant medication was collected. In addition, self-reported use of 

antidepressant medication was available from the questionnaires in SATSA, OCTO-Twin, and 

GENDER. The CES-D scale was administered during every IPT in the SATSA, OCTO-Twin, and 

GENDER studies. The CES-D scale is a 20-item scale of current depressive symptoms, 

developed for epidemiological studies74. A score of 16 is normally used as a cut-off to 

identify depression cases, but in the this sample we used 20 as the cut-off, as this has been 

shown to better identify depression cases among elderly individuals75. Information from all 

four sources was combined, and the first record of depression was used as age at onset. 
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Table 1: ICD codes used to identify dementia and CVD cases 

  ICD-7 ICD-8 ICD-9 ICD-10 Surgical code 

Dementia 
    

 

Alzheimer´s disease 304-305 290 290A/B F00  

  
  

331A G30  

  
    

 

Vascular dementia  
 

293.0-1 290E F01  

  
    

 

 Other dementia 306 
 

290X/W F02-03  

  
  

294B G311  

  
  

331B/C/X G318A  

  
  

 F051  

      

Depression      

 
314.99 296.00 296C/D/W F32-33  

   298.00 298A F34.1  

   300.40-41 300E F41.2  

   790.20 309A/B   

    311X   

  
    

 

CVD 
    

 

Non-stroke CVD 420 410-414 410-414 I20-25 984 

  450 440 440 I79 3068 

  453.33 443.90 443X I73.9 3080 

  
 

   3127 

  
 

   3141 

  
 

   3158 

  
 

 
 

 FNC/FND/FNE 

  
   

 FNG00/02/05 

      

CAD   410-411 410 I20.0 3080 

 
 

 
411B I21-22 3127 

 
 

   
3158 

 
 

   
FNC/FND/FNE 

 
 

   
FNG02/05 

      

Stroke 330 430-431 430431 I60-61  

  331.00-01 433-434 434 I63-64  

  331.09/99 436 436   

  332.00-19  
 

  

  332.29  
  

 

  334.00-98 
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5.2.3 Cardiovascular disease ascertainment 

Information about CVD was available from the NPR and the CDR. The ICD codes used are 

presented in Table 1, and are separated into stroke and non-stroke CVD. Stroke includes 

both ischemic and hemorrhagic stroke. Non-stroke CVD includes atherosclerosis, 

claudication, unstable angina, myocardial infarction and the surgical procedures coronary 

artery bypass grafting and percutaneous transluminal coronary angioplasty. The date of 

admittance (for inpatient), diagnosis (outpatient), or death (CDR) was used to determine 

age at onset. A more strict definition of coronary artery disease (CAD) was also used where 

only primary diagnoses of myocardial infarction or unstable angina were included.  
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6 STUDY DESIGNS 

 

6.1 Study I: APOE ε4 genotype and the temporal relationship between 

depression and dementia 

In study I we investigated how APOE genotype influences the association between 

depression and dementia, while also taking the timing of depression into account.  

The study is based on the SATSA, OCTO-Twin, GENDER, and HARMONY studies, using 

dementia information from the clinical ascertainment (available for 2,884 individuals). It 

utilized a nested case-control design, which is a variant of the classical case-control design, 

but also has some of the advantages of the cohort design. For each dementia case we 

randomly selected two controls matched on sub-study, sex, and year of birth within two 

years. The controls had to be cognitively intact and still participating in the study at the age 

of dementia onset in the case. Controls may, however, develop the disease themselves later 

on. Hence, a case may be included more than once, both as a case and as a control for 

another case. Similarly, the same control may be randomly selected for more than one case.  

This is referred to as incidence density sampling76, and allows for a representative sample of 

the exposure status and person-time at risk to be obtained. To avoid matching cases to their 

co-twins or to two controls from the same twin pair, only one member of a pair was allowed 

in each matching stratum. The selection resulted in 804 dementia cases and 1,600 matched 

controls, and included 1,519 unique individuals. 

If late-life depression is indeed a prodromal stage of dementia, it is plausible that time from 

depression onset to dementia diagnosis better captures this than the age at depression 

onset. Hence, to better understand the importance of the timing of depression, it was 

categorized in two ways. First in relation to time to dementia diagnosis, with one category 

having a first record of depression onset within ten years of dementia, and one having their 

first depression onset more than ten years prior to dementia diagnosis. Secondly, we 

categorized depression according to age at onset, with late-life depression having a first 

record of onset at the age of 60 or later and midlife depression if the first record was before 

the age of 60.  
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APOE genotype was categorized into carriers (genotype ε3/ ε4 and ε4/ ε4) and non-carriers 

(all other genotypes) of the ε4 allele. Individuals with the ε2/ ε4 genotype were considered 

non-carriers due to the protective effect of the ε2 allele.  

We performed conditional logistic regression using SAS 9.3. Covariates included, in addition 

to the matching variables age, sex, and sub-study, were education (dichotomized into seven 

years or less, versus more than seven years), stroke prior to dementia onset in the case, and 

source of depression information. We first modeled the effect of depression (using both 

types of categorization) on dementia and AD. Secondly, we introduced an interaction term 

between depression and APOE, and modeled the effect of depression on dementia and AD 

stratified on APOE genotype.  

 

6.2 Study II: Genetic susceptibility to CVD and risk of dementia 

Study II consisted of two parts. The first part focused on the association between non-stroke 

CVD and dementia, and how genetic susceptibility to CAD influences the risk of dementia 

and the association between the two diseases. In the second part, we utilized summary 

statistics from published GWASs to investigate the genetic overlap between CAD and AD, as 

well as with their shared risk factors. 

 

In the first part, we included all 13,231 participants in the sub-studies who had genotypic 

and dementia information available. We utilized a cohort design, following individuals from 

1978 or the age of 50, until the end of 2014, death, or dementia onset, whichever occurred 

first. All available dementia information was included, and in addition to dementia, AD and 

VaD were modeled as separate outcomes. Non-stroke CVD events were retrieved from the 

NPR and modeled as a time-dependent exposure. Individuals were considered unexposed 

up until the time of CVD diagnosis, followed by one exposure level during the first three 

years after diagnosis, and a second exposure level more than three years after diagnosis77. A 

GRS for CAD was created based on the CARDIoGRAMplusC4D consortium’s most recent 

GWAS, where they identified 55 SNPs associated with CAD 78. For each individual, the 

number of risk alleles at each locus was summed up to an un-weighted score, which was 

used as a measure of genetic susceptibility to CAD. All models were adjusted for age, sex, 

education (dichotomized into more or less than 7 years), and T2D. Relatedness among the 

twins was accounted for by using robust sandwich estimators. 

The Cox proportional hazard model with age as the underlying timescale was used in three 

main models: 1) the effect of the CAD GRS on dementia, 2) the effect of non-stroke CVD on 

dementia, and 3) the effect of non-stroke CVD on dementia, stratified on quartiles of the 

CAD GRS. All analyses were performed using STATA 13.  
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Figure 4: Workflow in the second part of study II. For each phenotype, SNP p-values from GWAS 

summary statistics were converted to gene-based p-values using the VEGAS approach. Significant 

genes for each outcome were then compared, and genes overlapping between AD or CAD and at 

least one of the shared risk factors were visualized in a heat map. In addition, we tested the 

statistical significance of the number of overlapping genes. We also used pathway analysis to identify 

biological pathways in which the overlapping genes are involved. GWAS, genome-wide association 

study; Vegas, Versatile Gene-based Association Study; AD, Alzheimer´s disease; CAD, coronary artery 

disease. 

 

In the second part of study II, we utilized summary statistic from GWASs of AD8 and CAD78, 

as well as their shared risk factors body-mass index (BMI)79, T2D80, systolic- and diastolic 

blood pressure (SBP and DBP)81 and the lipid fractions high-density lipoprotein (HDL), low- 

density lipoprotein (LDL), triglycerides (TG), and total cholesterol (TC)82. The work-flow is 

summarized in figure 4. For each set of summary statistics, we used the ‘Versatile Gene-

based Association Study’ (VEGAS) approach83 to obtain gene-level p-values. The method 

combines p-values from all SNPs within a gene into a gene-based p-value, while also 

accounting for the correlations among the included SNPs. In total, 17,581 genes were 

included, and genes with p-value below 2.84x10-6 were considered significant after 

Bonferroni correction. Genes were considered as overlapping if they were significant for 

more than one phenotype. A heat map was created visualizing the number of significant 

genes shared by either AD or CAD and at least one of the other phenotypes. The number of 

overlapping genes between two traits was compared to what would be expected under the 

null hypothesis, and the significance of the overlap was calculated using a binomial test. To 
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identify biological pathways in which the overlapping genes are involved, we used the 

Consensus Path Database84; this web-based tool allows testing for pathway enrichment of 

selected genes, adjusting for multiplicity by presenting false discovery rate corrected p-

values as q-values. 

 

6.3 Study III: APOE DNA methylation and late-life disease 

In study III, we investigated leukocyte DNA methylation in the APOE gene in relation to 

dementia and CVD. 

We used information from the last available blood sample for each of the 447 individuals 

with methylation information. Dementia, AD, and CVD were modeled as separate 

outcomes. Dementia information from both the clinical ascertainment and from registers 

was used to identify cases. CVD cases were identified from the NPR and CDR, and included 

diagnoses of both stroke and non-stroke CVD. The CpG sites within the APOE gene were 

categorized into three regions based on previous work85. Region 1 included CpG sites in the 

promoter region, region 2 sites residing in the first two exons and introns, and region 3 

covered the fourth exon, which also harbors the ε2 and ε4 alleles. The mean methylation 

level across the sites in each region was used in the models.  

All analyses were performed in STATA 13. We first used unconditional logistic regression 

models to test the association between methylation levels in each region and the three 

outcomes. Covariates included were age at blood draw, sex, and smoking. Relatedness of 

the twins was accounted for by using robust sandwich estimators. Secondly, we used 

conditional logistic regression to compare methylation levels in discordant twin pairs. These 

models were adjusted for age at blood draw and smoking. 

To study genotype specific effects, we included an interaction term between APOE 

genotype and the CpG regions in the unconditional logistic regression model described 

above. APOE genotype was categorized into ε3/ε3, ε2 carriers (ε2/ε2 and ε2/ε3), and ε4 

carriers (ε3/ε4 and ε4/ε4). While the ε2 allele decreases the risk of dementia and the ε4 

allele increases the risk, both alleles increase the risk of CVD.  Individuals with ε2/ε4 were 

therefore excluded from the analyses in order to investigate the effect of each of the alleles 

individually. 

To compare the association between cases already diagnosed at blood sample to those with 

incident disease, dementia, AD, and CVD were divided into prevalent and incident cases and 

modeled separately in the unconditional logistic regression model.  
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6.4 Study IV: DNA methylation in AD associated genes 

A previous study by Yu et al. investigated methylation levels in 28 AD related genes in post-

mortem brain samples from the PFC86. They found five of the genes to be differentially 

methylated in AD cases compared to controls, namely SORL1, ABCA7, HLA-DRB5, SLC24A4, 

and BIN1. The primary aim of study IV was to try to replicate these findings in leukocytes 

collected prior to death. In addition, we also aimed to replicate the findings in post-mortem 

brain samples, and to investigate how methylation in leukocytes for those genes is 

correlated with methylation in neuronal cells. 

For this purpose, we utilized the methylation data from leukocytes as well as from PFC and 

CER samples. From the leukocyte samples, we excluded individuals selected for Parkinson’s 

disease (n=16) or where the blood sample was collected prior to the age of 60 (n=4). For the 

remaining 427 individuals we selected the last available sample prior to disease onset for 

dementia cases, alternatively the first sample available after disease onset. To obtain a 

similar age at blood draw, we selected the last available sample for controls. All 39 samples 

from neuronal cells were included. 

Dementia from the clinical ascertainment combined with information from registers after 

end of follow-up was used as the outcome for analyses of leukocyte methylation. As part of 

AD diagnosis during autopsy, the amount and spread of neurofibrillary tangles in the brain 

are measured and categorized into Braak stage 0-V87. For a better measure of AD pathology 

at the time of death, we used Braak staging as the outcome for analyses of neuronal cell 

methylation. For all three tissue types, we selected all available CpG sites within and 100Kb 

around the five genes of interest.  

In the first step, we ran regression models to study the association between each CpG site 

and dementia, AD, or Braak stage. For the leukocyte samples, we used a logistic regression 

model adjusted for sex and age at blood sample or death, with robust sandwich estimators 

to correct for relatedness. In addition, we ran conditional logistic regression to study the 

differences in methylation within discordant twin pairs. The co-twin control models were 

adjusted for age at blood sample. For the neuronal cell samples, we used linear regression 

of methylation in relation to Braak-staging. These models were adjusted for sex, age at 

death, and batch effects. 

In the second step, we used the Fisher product method to combine the p-values from the 

regression models into a test statistic for each gene. The statistical significance of the 

obtained test statistics was tested using random permutations (n=1,000) with α=0.05 as the 

significance level. The null hypothesis underlying this method is that none of the CpGs in the 

gene are associated with the outcome.  
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To investigate whether methylation levels correlate in leukocytes, PFC, and CER cells, we 

calculated Pearson correlations for methylation levels in each CpG within the genes across 

the three tissues. All analyses were performed in R 3.3.2. 
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7 MAIN RESULTS AND INTERPRETATION 

 

7.1 Study I: APOE modifies the association between depression and 

dementia, but only for depression more than ten years prior to 

dementia onset 

Out of the 804 dementia cases, 469 were diagnosed with AD, and the mean age at dementia 

onset was 78 years. A total of 424 out of the 1519 unique individuals included in the study 

met the criteria for depression. Of these, 332 had their first record of depression within ten 

years of dementia, and 92 more than ten years prior to dementia onset in the case. The 

mean age at onset for depression was 74 years. The age range of depression within ten 

years of dementia onset was 58-90 years, and that of depression more than ten years prior 

to dementia was 23-79 years. 

The association between depression and dementia was stronger for depression within ten 

years of dementia onset (incidence rate ratio (IRR) 4.46, 95% confidence interval (CI) 3.44-

5.76 for dementia, IRR 3.45, 95% CI 2.39-4.98 for AD) than for depression with onset more 

distal to dementia (IRR 1.58, 95% CI 1.07-2.34 for dementia, IRR 1.75, 95% CI 1.01-3.03 for 

AD). When stratifying on APOE ε4 genotype, the association between depression within ten 

years of dementia and disease was similar in the two genotype categories (Figure 5). 

However, depression with onset more than ten years prior to dementia onset significantly 

interacted with APOE ε4 genotype (p=0.01 for both dementia and AD) and was a risk factor 

only in carriers of the ε4 allele.  

The same overall pattern was seen when depression was categorized into late-life versus 

midlife depression, but interestingly the difference between the two depression categories 

was not as evident (late-life depression: IRR 3.56, 95% CI 2.81-4.51 for dementia, IRR 2.93 

95% CI 2.08-4.12 for AD. Midlife depression: IRR 2.43, 95% CI 1.35-4.35 for dementia, IRR 

2.63, 95% CI 1.13-6.09 for AD). 

While the association between late-life depression and dementia has been relatively robust 

in previous studies, the association between depression earlier in life and dementia has 

been more inconsistent88. Our findings may shed light on the complexity of the association 

in two ways. Firstly, the effect of depression within ten years of dementia was robust 

regardless of APOE genotype, while depression more distal to dementia was a risk factor 
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only in carriers of the ε4 allele. Importantly, this shows there are differences between 

depression occurring close in time to dementia onset and depression occurring earlier in life, 

further strengthening the theory of depression as a prodromal feature. This also indicates 

that the discrepancies in previous studies of depression earlier in life and dementia may to 

some extent be explained by genetic factors, such as APOE genotype.  

 

 

 

Figure 5: The association between depression and dementia, stratified by APOE genotype. 

Incidence rate ratios and 95% confidence intervals of dementia and Alzheimer’s disease in the 

presence of depression in carriers and non-carriers of APOE ε4. Incidence rate of dementia in 

individuals with depression within ten years of dementia or more than ten years prior to dementia is 

compared to non-depressed individuals within the same genotype category. The models are 

adjusted for age, sex, sub-study, education, previous stroke, and sources of depression data 

available. APOE, apolipoprotein E. 
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Secondly, categorizing depression in relation to time to dementia onset led to a more 

marked difference in the association between the two depression categories and dementia 

than when depression was categorized in relation to age at onset. There was considerable 

overlap in the age range of depression within ten years and more than ten years prior to 

dementia. Hence, when using the age cut-off, some individuals with depression close in time 

to dementia onset are included in the midlife depression category, and some with 

depression more than ten years prior to dementia will be categorized as having late-life 

depression. The more marked difference for depression categorized in relation to time to 

dementia onset again indicates that the depression may very well be a prodromal feature 

occurring in the pre-clinical stage of dementia, and the association thus less dependent on 

age at onset.  

 

7.2 Study II: No evidence of genetic overlap between CVD and dementia, 

but shared influences from lipids 

The first part of this study focused on how genetic susceptibility to CAD influences the risk of 

dementia and its association with CVD.  

The 13,231 individuals included in the study yielded 304,949 person years. During the study 

period, 1,430 individuals were diagnosed with dementia, of whom 868 had AD and 312 VaD. 

The mean age at dementia onset was 80 years. A total of 2,630 individuals were diagnosed 

with CVD at a mean age of 70 years.  

The main findings from study II are summarized in Table 2. There was a 92% increase in the 

hazard rate of dementia during the first three years after a CVD diagnosis, which was 

reduced to normal after that. Similar findings have been shown in previous studies77,89, but 

considering the long pre-clinical phase of dementia the nature of it is unclear. It is plausible 

that the CVD event acts as a stressor, leading to manifestation of dementia in susceptible 

individuals while those resilient are more likely to recover. The same effect was present in 

both AD and VaD, but stronger for VaD. 

There was no association between the CAD GRS and dementia or its subtypes (hazard ratio 

(HR) 1.01, 95% CI 1.00–1.02 for dementia, HR 1.01, 95% CI 0.99–1.03 for AD, HR 1.01, 95% CI 

0.98–1.04 for VaD). However, the GRS modified the association between CVD and dementia, 

such that the association was stronger in higher quartiles of the score (Table 2). This 

indicates that, although not having an increased risk of dementia overall, individuals with 

higher genetic susceptibility to CVD may be more susceptible to the stress induced by 

suffering from a CVD, and hence more likely to progress into dementia after such an event.
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Table 2: Risk of dementia after a CVD diagnosis, for the total sample and stratified by quartiles of genetic risk score for CAD. Hazard ratios and 95% confidence 

intervals of dementia within the first three years after a CVD diagnosis and more than three years after a CVD diagnosis, for the total sample and stratified on genetic 

risk score for CAD. The model is adjusted for age, sex, education and type 2 diabetes during follow-up. CAD, coronary artery disease; CVD, cardiovascular disease. 

 Total sample Stratified on CAD genetic risk score 

   1st quartile 2nd quartile 3rd quartile 4th quartile Trend p-value 

All dementia 
           

First 3 y after CVD 1.92 (1.57-2.36) 1.59 (1.05-2.41) 1.82 (1.19-2.78) 2.38 (1.65-3.42) 1.91 (1.28-2.86) p<0.000001 

> 3 y after CVD 1.08 (0.92-1.26) 1.11 (0.81-1.51) 0.84 (0.61-1.18) 1.34 (1.02-1.78) 1.02 (0.74-1.40) p=0.35 

Alzheimer´s disease 
           

First 3 y after CVD 1.47 (1.11-1.95) 1.65 (0.97-2.79) 1.36 (0.75-2.48) 1.09 (0.56-2.12) 1.64 (1.00-2.70) p=0.02 

> 3 y after CVD 0.84 (0.67-1.05) 0.96 (0.63-1.49) 0.81 (0.52-1.25) 0.88 (0.58-1.35) 0.71 (0.47-1.08) p=0.70 

Vascular dementia 
           

First 3 y after CVD 2.68 (1.85-3.89) 1.30 (0.52-3.30) 1.80 (0.77-4.18) 5.61 (3.24-9.71) 2.56 (1.08-6.08) p<0.000001 

> 3 y after CVD 1.35 (0.99-1.83) 0.76 (0.37-1.57) 1.04 (0.57-1.89) 1.99 (1.15-3.42) 1.92 (1.05-3.48) p=0.01 
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The second part of study II utilized GWAS summary statistics to investigate the shared 

genetic architecture between AD, CAD, and their common risk factors. As seen in Figure 6, 

no gene was significantly associated with both AD and CAD. However, both diseases had a 

significant number of genes in common with total cholesterol and LDL. Pathway analysis of 

the shared gene clusters identified 17 pathways for genes shared by AD and lipids, and 13 

pathways for genes shared by CAD and lipids. Out of these, six of the pathways were 

identified for both AD and lipids and CAD and lipids, namely the statin pathway (q = 5.82 × 

10−5 and q = 9.88 × 10−4), chylomicron-mediated lipid transport (q = 7.95 × 10−4 and q = 4.36 

× 10−4), lipoprotein metabolism (q = 1.40x10−3 and q = 3.70 × 10−5), retinoid metabolism and 

transport (q = 2.48 × 10−3 and q = 1.50 × 10−3), lipid digestion, mobilization, and transport (q 

= 3.88 × 10−3 and q = 9.26 × 10−5) and visual phototransduction (q = 7.95 × 10−3 and q = 4.70 

× 10−3). This provides clues to the mechanisms by which the CAD GRS may modify the 

association between CVD and dementia. It is possible that individuals with a lipid 

dysregulation have higher risk of both CVD and dementia, as well as being more susceptible 

to develop dementia after a CVD. It should be mentioned that several of the SNPs included 

in the GRS for CAD reside in genes related to lipid levels82, further indicating the importance 

of lipid regulation as a player in the association between CVD and dementia. Cholesterol is a 

well-established risk factor for CVD90. With the brain harboring 25% of the cholesterol in the 

body, and APOE functioning as a cholesterol transporter, it is also highly relevant to 

dementia91. However, since the brain has its own cholesterol metabolism, it is possible that 

different parts of the same pathways influence the risk of dementia and CVD. 

A previous study that used LD-score regression to investigate genetic correlation across 

multiple phenotypes found no evidence of genetic overlap between AD and CAD14. In 

contrast to our findings however, BMI, T2D, blood pressure, and the lipid fractions all had a 

significant genetic correlation with CAD, while only HDL correlated with AD. One explanation 

for the discrepancies is that LD-score regression and the VEGAS method operate on 

different genetic levels. While LD-score regression utilizes information from all SNPs, VEGAS 

is focused on functional genes and will miss signals in the noncoding regions. In addition, 

VEGAS uses the p-values for each SNP while LD-score regression uses the β-values and the 

direction of it. In the latter, it may happen that small effects of opposite directions cancel 

out. 

Taken together, the findings from study II indicate that there is an increased risk of 

dementia during the first years after a CVD diagnosis, and that this effect is stronger for 

genetically predisposed CVD compared to CVD with a lower genetic risk. However, the 

association is not due to genetic overlap, but may stem from shared influences from lipid 

dysregulation.  
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Figure 6: Heat map and significance of genes associated with AD or CAD and their shared risk 

factors. Each row represents one gene, and each column one phenotype. Blue color indicates no/low 

significance while purple indicates high significance. The Fisher p-values for the number of 

overlapping genes are presented in the table. CAD, coronary artery disease; T2D, type 2 diabetes; 

SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body-mass index; HDL, high-density 

lipoprotein; TG, triglycerides; AD, Alzheimer's disease; TC, total cholesterol; LDL, low-density 

lipoprotein. 
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7.3 Study III: Hypermethylation in the promoter region of APOE is 

associated with dementia 

Among the 447 individuals with methylation information available, we identified 135 

dementia cases, of whom 82 had AD. Eighty-four individuals were already diagnosed with 

dementia at time of blood draw, and 51 were incident cases. The mean age at diagnosis was 

81 years. The sample included 181 complete twin pairs, of which 40 were discordant for 

dementia and 22 for AD. 

We identified 205 individuals with a diagnosis of CVD, of which 112 were already diagnosed 

at time of blood draw and 93 were incident. Mean age at diagnosis was 78 years. Among the 

complete twin pairs, 69 were discordant for CVD. 

Dementia and AD patients had significantly higher levels of methylation in the promoter 

region of APOE than controls (Figure 7). The signal was stronger in co-twin control analyses, 

showing that the effect is not due to genetic or shared environmental factors. No difference 

in methylation levels was detected in the other two regions of the gene. No other study has 

investigated the association between APOE methylation and dementia or AD in leukocytes, 

but some have done so using post-mortem brain samples with largely inconclusive findings. 

Two EWASs38,39 and one study of methylation in AD related genes did not detect an 

association between APOE methylation and AD86. Conversely, one study of AD related 

genes92 and one focusing on the CpG island in the 3´ exon of APOE93 found a significant 

difference in methylation levels between cases and controls.  

Interestingly, when analyzing prevalent and incident dementia separately we identified a 

stronger signal in incident (odds ratio (OR) 1.41, 95% CI 1.02-1.96) than prevalent (OR 1.25, 

95% CI 0.97-1.62) disease. Some previous work has been done on circulating APOE levels. 

Although findings are inconsistent91, two studies found an association between lower 

plasma levels of APOE and incident dementia94,95. Since promoter DNA methylation down 

regulates gene expression96, these findings are in line with ours. There is evidence of 

correlation between APOE metabolism in the periphery and the CNS94, and it is hence 

plausible that lower levels of circulating APOE either increase the risk of dementia or are an 

effect of the ongoing disease process. Although APOE levels both in blood and cerebrospinal 

fluid differ by APOE genotype91, stratifying on genotype did not indicate a genotype specific 

effect for APOE methylation on dementia (interaction p-value 0.47 for region 1, 0.62 for 

region 2, and 0.99 for region 3). Results were similar for AD. 

 There was no association between APOE methylation and CVD, in the full sample or in co-

twin control analyses (Figure 7). No differences were detected between prevalent and 

incident disease, nor was there any evidence of genotype specific effects (interaction p- 

value 0.40 for region 1, 0.97 for region 2, and 0.54 for region 3). To the best of our 

knowledge, only one previous study has investigated APOE methylation in CVD, finding no  
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Figure 7: Odds ratio and 95% confidence intervals of dementia, AD, and CVD in relation to 

methylation in three regions of the APOE gene. Analyses of the total sample are adjusted for age, 

sex, smoking, and relatedness among twins, and co-twin control analyses for age and smoking.  
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difference in methylation of the promoter region in CAD patients compared to controls97. 

Studies of circulating APOE levels in relation to CVD are conflicting, but a review 

summarizing the findings for ischemic heart disease found indications that higher APOE 

levels are associated with a higher risk of disease91. 

 

7.4 Study IV: Methylation of SORL1 and BIN1 in leukocytes is associated 

with dementia and AD 

Out of the 427 twins with methylation information from leukocytes, we identified 136 

dementia cases, of which 85 were diagnosed with AD. The mean age at blood sample was 

78 years, and mean age at dementia diagnosis 81. Among the 170 complete pairs included 

in the sample, 39 were discordant for dementia and 22 for AD. 

Of the 39 twins with methylation information from neuronal cells, we identified 32 

dementia cases, of which 21 had AD. Mean age at onset was 79 and mean age at death 88 

years. According to the Braak staging, 18 of the twins had stage III or above, indicating 

presence of neurofibrillary tangles, while 17 had few or no neurofibrillary tangles.  

The main findings from study IV are visualized in Figure 8. We detected a significant 

difference in leukocyte methylation of SORL1 in dementia cases compared to controls 

(p=0.03) as well as in dementia discordant twin pairs (p=0.01). SORL1 is a receptor for APOE-

rich lipoproteins, and there is evidence of decreased levels in the brains of AD patients98. 

One previous study has investigated methylation and expression levels of SORL1 in relation 

to AD, but found no such association in neuronal cells or leukocytes 99. Considering the 

strong association between SORL1 and AD98, this warrants further investigation. 

There was a significant difference in leukocyte methylation of BIN1 in AD discordant twin 

pairs (p=0.04), which did not reach significant at the α=0.05 level in the full sample (p=0.06). 

BIN1 has been identified in both GWAS8 and EWAS38 of AD, and studies have shown 

increased expression levels of BIN1 both in the frontal cortex100 and blood101 of AD patients. 

Little is known about the mechanism through which the gene influences the risk of AD, but 

there is evidence it is mainly through interaction with Tau pathology102. 

We did not detect any difference in methylation level in any of the genes in cells from the 

PFC or CER, likely due to the substantially smaller sample size. 

The CpG specific correlation between the three tissues varied across CpG sites, ranging 

between -0.62 to 0.94 with a median of 0.09. Similar variability has been shown in a 

previous study103. This, together with our findings in SORL1 and BIN1, indicates that some 

methylation differences related to AD may indeed be present both in the affected neurons 

and in leukocytes.  
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Figure 8: Gene-wide DNA Methylation in leukocytes in relation to dementia and Alzheimer´s 

disease, and in cells from the pre-frontal cortex and cerebellum in relation to Braak staging. 

Histogram and smoothed density function of the test statistics from randomly permutated data, with 

the vertical line representing the test statistic from the actual data. Logistic regression models of CpG 

M-values in relation to dementia and AD, and linear regression models of CpG M-values in relation to 

Braak staging. The full models were adjusted for age at blood sample, sex, and relatedness among 

twins. Models of neuronal cells were additionally adjusted for batch effects. The co-twin control 

models were adjusted for age at blood sample. P-values for each CpG site across the gene were 

combined into a test statistic using the Fisher product method, and the significance of the test 

statistic tested using random permutations. The co-twin control permutation test for ABCA7 and AD 

did not converge. AD, Alzheimer´s disease. 
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7.5 Methodological considerations 

7.5.1 Potential sources of systematic errors 

The studies included in this thesis combine genetic information and robust statistical 

designs. They are based on well-established cohorts, with long follow-up time and rich 

phenotypic as well as genetic and epigenetic data. The possibility to follow participants 

through register linkage after end of follow-up further strengthens the studies. While twin 

status of the participants was not taken advantage of in the first two studies, it was of great 

importance for study III and IV. Nevertheless, as in all epidemiological studies, there are 

several methodological considerations that need to be taken into account. 

Misclassification bias 

The main limitation across these studies is identification of cases of dementia, depression, 

and CVD. Using data from registers enables us to retrieve information after the end of 

follow-up as well as information about diseases not assessed clinically as part of the studies, 

but there are several issues with this type of information. Since all diseases studied are 

primarily diagnosed outside the hospital setting and range from mild to more severe forms, 

it is possible that we only detect the more severe cases, as those more often require 

overnight stay at the hospital or specialist care. This is a substantial problem for depression 

diagnosis, where many cases would likely be missed in the registers. Indeed, very few cases 

were identified through this source in study I. The validity of dementia diagnoses from the 

NPR and CDR has been studied104, and while the specificity is near perfect (>98%), the 

sensitivity is only 63% when both registers are combined. No such study has been 

performed on the PDR. Including information from all three registers likely increases the 

sensitivity, but there is of course a risk that the specificity is decreased due to prescription of 

dementia medications to patients with mild cognitive impairment. The low sensitivity 

would, as long as the misclassification is non-differential in relation to the exposure, bias the 

estimate toward the null. Differentiation between AD and VaD is likely a bigger issue and the 

subtype specific findings should be interpreted with caution.  

In study II, we used a broad definition of non-stroke CVD to increase the power. However, 

we also ran sensitivity analyses using a strict definition of CAD, which only includes primary 

diagnoses of myocardial infarction or unstable angina. In the NPR, this definition has been 

shown to have validity above 95%105,106. Sensitivity analysis using this definition showed the 

same pattern as when the broader CVD definition was used. 

There is of course a risk that having a register diagnosis for one disease increases the 

likelihood of receiving a diagnosis also of other diseases. This was mainly a concern in study 

II, where information about both exposure and outcome was extracted from the registers. If 
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this type of misclassification is present, it would inflate the estimates. However, using only 

clinically ascertained or the strict definition of CAD showed no indication of such a bias.  

Another issue worth mentioning, not only with regard to using register data but also in 

general for diseases with a long preclinical stage, is estimation of the age at onset. It is likely 

that there is a delay between actual age at onset and register diagnosis. This further 

complicates associations as the diseases studied in this thesis begin years before 

manifestation. This of course needs to be considered when interpreting the findings from 

both study I and study II, since there is strong evidence of temporal effects. 

Selection bias 

Selection bias may arise when some individuals are more likely to participate in the study 

than others. This is certainly a problem in studies of aging, where individuals not only have 

to be healthy enough and willing to participate, but also to have survived long enough to be 

eligible. Furthermore, to be eligible for most of the sub-studies of aging used in this thesis, 

both members of the pair had to still be alive. This may lead to a study sample that is 

healthier than the general population and furthermore have a lower genetic susceptibility to 

severe diseases and mortality.  

Residual confounding and reverse causation 

We have done our best to adjust for any confounders, but the risk of residual confounding is 

always present in observational studies. Another issue is reverse causation, which is a major 

concern when studying late-life diseases with complex pathology and a long pre-clinical 

phase. Although certainly worth considering for study I and II, this is a chief concern in study 

III and IV. It is impossible to say whether the observed differences in methylation are a cause 

of dementia, or rather a consequence of the disease progress. 

7.5.2 Ethical considerations 

All participants included in the five sub-studies of aging provided informed consent, and the 

studies were approved by the Regional Ethics Board at Karolinska Institutet. Additionally, all 

data were pseudomized, using anonymous identifiers. As researchers, we have never had 

access to the personal identification number, name, or address of the participants. All data 

included in this thesis are stored on secure servers, where only those involved in the 

projects have access to the data. 

In all research, the potential benefits must overweigh the cost for the participants, and 

another ethical issue is the discomfort the different testing phases may have induced. This is 

certainly not less of a problem in studies of elderly individuals, especially those with 

cognitive deficits. Collection of blood samples is of course directly associated with a certain 

amount of physical pain, but in addition, being interviewed and filling out questionnaires 
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may inflict some emotional distress, as many of the questions are of a personal nature. All 

participation is of course voluntary, and declination to participate must be respected. The 

time and effort made by the participants to contribute to this research is truly impressive, 

and we owe them much gratitude! 
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8 GENERAL DISCUSSION AND FUTURE DIRECTIONS 

 

The studies included in this thesis focused on the role of genetic and epigenetic factors in 

dementia, and how they influence the associations between dementia, depression and CVD.  

The findings from the first two studies highlight the complexity of late-life comorbidities, 

and the importance of taking both genetic factors and timing into account when studying 

these associations. The importance of considering timing when investigating risk factors for 

dementia has been shown not only for depression and CVD: e.g. higher BMI during midlife is 

associated with an increased risk of dementia107, while high BMI in late life is associated 

with a lower risk108. The same pattern has been observed for high blood pressure109. It is 

plausible that all these factors during midlife do in fact increase the risk of dementia, but 

that they when measured during late life rather are a result of pre-clinical dementia 

progression. This also complicates investigations of genetic overlap and gene-environment 

interactions in late-life comorbidities. Even if genotypes are stable across the lifespan, their 

effect on dementia might differ with age. 

Findings from the third and fourth study showed that not only allelic variation, but also 

methylation variation of genes related to AD is of importance for the disease. While 

methylation levels in the neuronal cells affected by disease are of great value to better 

understand the disease mechanism, the important limitation is of course that the tissue can 

only be collected post-mortem. Blood samples on the other hand, are easily accessible, and 

the possibility to collect samples over time opens up the possibility for both identification of 

biomarkers and a better understanding of disease progression. Findings from study IV 

indicate that methylation in some genes is in fact related to AD both in neuronal cells and in 

the PFC. This is indeed plausible since the effect of environmental factors may influence 

methylation throughout the body. Since dementia is complex and multifactorial, it may well 

be that methylation in blood is also relevant to disease risk and progression. In addition, 

there is a complex interplay between genetic variants and methylation, which would have 

the same influence on methylation across body systems.  

Epigenetic factors may be the central in gene-environment interactions. Environmental 

factors throughout our lives have the potential to influence gene-specific as well as global 

methylation, and thereby affect the long term risk of disease110. However, the presence of 

meQTLs complicates interpretations as much of the effect of methylation may in fact be 
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driven by genotype. The co-twin control design is invaluable in this setting since it offers a 

natural way to adjust for the genetic factors. Interestingly, in both study III and study IV, the 

observed signals were stronger in the co-twin control analyses, despite a low number of 

discordant pairs. This further strengthens the finding, as it indicates that the association is 

not a result of genetic variants within the genes of interest. 

Late-life diseases indeed have complex etiologies as well as associations. Many common risk 

factors such as smoking, low education, low physical activity, and unhealthy diet are 

associated with several late-life diseases, and it is likely that a similar pleiotropy can be 

found on the genetic level. The APOE gene is one such example. Other than the strong 

association with dementia, the gene is also associated with CVD, but in this case both the ε2 

and the ε4 allele increases the risk of disease111. Studies of APOE and depression have been 

more inconsistent, but a meta-analysis concluded that, like for dementia, the ε2 allele 

decreases the risk of depression while the ε4 allele increases the risk112. However, the latter 

was true only for late-life depression, and it is hence plausible that the detected association 

is in fact with pre-clinical dementia. Not only is the APOE gene associated with all three 

diseases, there is also evidence of interactive effects. In addition to the interaction detected 

between APOE and midlife depression, the same pattern has been seen for CVD, with only 

ε4 carriers having a higher risk of dementia after a CVD diagnosis77. As methylation of the 

gene is also associated with dementia, the gene is an interesting target for further studies of 

gene-environment interactions mediated by methylation.  

One reason for the lack of success in treatment development may well be that once 

symptoms appear the neurodegeneration has already advanced to a stage where it is too 

late to treat. Early detection of preclinical dementia would open up for new treatment 

strategies, where the disease process could be halted or slowed down before the disease 

reaches the advanced stage where symptoms appear. By delaying onset with as little as one 

year, the prevalence may be decreased by 9 million cases over the next 40 years109. This 

highlights the need for better identification of pre-clinical dementia. To achieve this, it is 

likely that a combination of biomarkers, genetic risk, epigenetic patterns, comorbidities, and 

prodromal symptoms will be most informative. Even if there is still a long way to go, a better 

understanding of these factors as well as of the interplay between them will help elucidate 

the disease mechanisms and hopefully help us avoid the expected increase in dementia 

prevalence. 
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9 CONCLUSIONS 

 

I. Depression within ten years of dementia onset is associated with a higher risk of 

dementia regardless of APOE genotype, while depression more distal to 

dementia onset is a risk factor only in carriers of the ε4 risk allele. 

 

II. Genetically predisposed CVD is more strongly associated with dementia than 

CVD with a lower genetic risk. The association between CVD and dementia is not 

due to shared genetic architecture, but may stem from shared influences from 

lipid dysregulation. 

 

III. Hypermethylation of the promoter region of the APOE gene in leukocytes is 

associated with higher odds of dementia and AD, but not CVD. The effect is not 

dependent on APOE genotype, and remained when comparing dementia 

discordant twin pairs, which indicates it is not explained by genetic factors. 

 

IV. In addition to carrying genetic variants associated with AD and being 

differentially methylated in cortical cells from AD patients, SORL1 and BIN1 are 

also differentially methylated in leukocytes collected pre-mortem from dementia 

and AD patients, respectively. Findings were stronger in discordant twin pairs, 

indicating the association is not due to genetic factors. 
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