
Communicating Process Architectures – 2002
James Pascoe, Peter Welch, Roger Loader and Vaidy Sunderam (Eds.)
IOS Press, 2002

353

Prioritised Dynamic Communicating Processes:
Part II

Fred BARNES and Peter WELCH
Computing Laboratory, University of Kent, Canterbury, KENT. CT2 7NF

���������	�
�������

Abstract. This paper illustrates the work presented in ‘Part I’, giving additional ex-
amples of use of channel-types, extended rendezvous and ����s that lean towards real
applications. Also presented are a number of other additions and extensions to the oc-
cam language that correct, tidy up or complete facilities that have long existed. These
include fixing the ��� ��	 bug, allowing an unconditional 
��� guard as the last in
a ��� ��	, replicator 
	�� sizes, run-time computed ��� replication counts, ��
��	
parameters and abbreviations, nested ���	��� definitions, inline array constructors
and parallel recursion. All are available in the latest release (1.3.3) of KRoC, freely
available (GPL/open source) from: ����������������������������������� .

1 Introduction

The previous paper [1] presented a number of extensions to the occam [2, 3] language within
the framework of KRoC/Linux [4]. This paper provides further examples for some of those
extensions, specifically mobile channel-types, the extended rendezvous and the ����.

Section 2 gives an example of a farmer-worker-harvester farm, implemented using ����
to create worker processes as needed. Also presented is a more traditional use of ����s,
using explicitly (compiler �������) ������ variables.

The extended rendezvous can be used to intercept a channel, without affecting the end-
to-end synchronisation between the processes either side. When used with (mobile) channel-
types, the extended rendezvous can be used to re-wire the process network (e.g. to plug in
infrastructure for distributed occam channels – KRoC.net [5]) without affecting the syn-
chronisation between the affected processes. Section 4 gives an example of this, along with
a more complex example which uses the ‘����’ (dynamic parallel process creation) as well.

Section 5 gives details of a number of other additions to the occam language, which
provide various new features and tidy up some old ones. These modifications have little
or no impact on the syntax of the language, being mostly changes to the occam compiler
(occ21) and the supporting run-time kernel (a heavily modified version of CCSP [6]).

2 Dynamic Process Farms

One application of ���� is for the dynamic creation and control of process farms. Figure 1
shows the process network for a worker-farm, with a ��������� !� to control the number
of ����ed processes running.

The ‘����!�’ generates work packets (maybe by receiving them from an external source
– not shown) and distributes them to a pool of ‘	���!�’s. The system arranges for a minimum
(‘�"��"#�!’) number of ‘	���!�’ processes to always be available for processing new jobs.
New ‘	���!�’s are started by the ‘��������� !�’ process, which maintains a count of the
number of idle processes, ����ing more at the start of the loop if needed (which will always

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/92027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


354 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – II

pool.manager

farmer

harvester

worker
pool

Figure 1: A ����ed worker-farm process network

be the case the first time round, providing that ‘�"��"#�!’ is greater than zero). In this code,
the number of worker processes will only ever increase (to suit demand).

The channel-type based code which implements these processes is as follows:

��� 	���  ������ !! ���"�� "#�� $���%��&

'�(��� ����)

��� (��� ��*����+,

��� '�(��� -.(�	� �����������/,

,

��� 	���  ������	 !! ���"�� "#�� $0��"�����&

'�(��� ����)

��� '�(��� -.(�	� ����1�+,

,

��� 	��� 
�2��� !! ���"�� "#�� $���1�%�3�4��&

'�(��� ����)

��� ��	 #51�����3�+, !! ����#34 $!6& �� #51� $76&

,

��� ������ $
����)  ������/ #38 
����)  ������	/ ���8 
����) 
�2���/ �#43�1&

 ���� 	���

'�(��� -.(�	� ��9,


�:

���' #3


�:

#3-��*����. / 	���

#3-�����������. + ��9

���' �#43�1

�#43�1-#51�����3�. / !6 !! ��11 %�3�4�� ��;�� ����#34

��� 5� ���� �3 <��9; $�#11 #3"�1"� ��%%�3#���#34 ����1�� �� <���;&

���' �#43�1

�#43�1-#51�����3�. / 76 !! ��11 %�3�4�� ��;�� 5�3�

,

��� 0��"����� $ ������	+ ���%��������&

 ���� 	���

'�(��� -.(�	� ����1�,


�:

���%��������-����1�. + ����1�

��� ��3��%� ����1�

,



F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – II 355

��� ���%�� $ ������+ ����������&

 ���� 	���

'�(��� -.(�	� ����,


�:

��� %�3�������� ����

(��� �3=,

����������-��*����. + �3=

����������-�����������. / ����

,

��� ���1�%�3�4�� $>�� ��	 %#3�#51�8 
����)  ������/ ���������������8


����)  ������	/ ��������%��������&


����) 
�2���/ �#43�1��1#,


�2���+ �#43�1��"�,


�:

�#43�1��1#8 �#43�1��"� ,? '�(��� 
�2���

������2

���	��� ��	 3�#51� �
 @,

 ���� 	���


�:

��

3�#51� A %#3�#51�


�:


�: # ? @ ��� %#3�#51� ! 3�#51�

���� ������ $���� ���������������8 ���� ��������%��������8

���� �#43�1��1#&

3�#51� ,? %#3�#51�

	���


���

��	 3,


�:

�#43�1��"�-#51�����3�. + 3 !! ����#34 $!6& �� #51� $76&

3�#51� ,? 3�#51� 7 3

,

The code which sets this network up is as follows:

>�� ��	 %#3�#51� �
 ���,


����)  ������/ #��1#,

 ������+ #��"�,


����)  ������	/ ���1#,

 ������	+ ���"�,


�:

#��1#8 #��"� ,? '�(���  ������

���1#8 ���"� ,? '�(���  ������	

���

���%�� $#��"�&

���1�%�3�4�� $%#3�#51�8 #��1#8 ���1#&

0��"����� $���"�&

,

Adding functionality to shut-down worker processes and to limit the number idle to some
maximum is trivial and is left as an exercise for the reader.



356 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – II

Note that the ��$%&� $'(�)* arrays are communicated efficiently by reference and that
no aliasing dangers (e.g. through parallel reference) are possible. Also, no memory leaks
occur as the space for such arrays is automatically recycled when the variables go out of
scope or are overwritten.

3 Data Sharing and ����ed Processes

With the introduction of dynamic process creation using the ����, new opportunities for
shared data race-hazards arise. Currently these can be handled through the use of explicit
compiler directives to disable usage-checking (‘������� ������’) and locks such as the
��������� and +��, [7] user-defined types [8] that provide, respectively, exclusive and
CREW (concurrent read exclusive write) access to shared data. Data passed by reference
to ����ed processes must have parallel usage checking disabled, else that will be quite prop-
erly rejected. However, no checks are then made to ensure correct usage patterns patterns for
lock claims and releases – or even that the necessary locks are passed and used at all! We
are considering providing direct language support for parallel data sharing that will enforce
secure (and very low overhead) control [7].

Meanwhile, here is an example of data sharing across ����ed processes that has the
necessary security explicitly programmed:

B�
� C�������1#9C

B����)� C�����#3�C

��� ������ $>�� ��	 #58 -.��	 5���8 �� 5��������8 
����) ��� (�	� ���/&


�:

���' ���


�:

�������#34 $C������ C8 @8 ���/&

����#3� $#58 @8 ���/&

�������#34 $C �����#34D3C8 @8 ���/&

 ���� 	���


�:

�1�#%����5����� $5��������&

��� ���5 ���% <5���;

��1��������5����� $5��������&

��� 1���1 �������#34

�1�#%���#������� $5��������&

��� ��#�� ����1�� 9��� �� <5���;

��1�������#������� $5��������&

,

��� �E�%�1� $��� (�	� �=9+8 
����) ��� (�	� ���/8 ���/&

��	 3,

-6FG.��	 �0���5�5���,

B���2'� 
����) �0���5�5���

�� 5��������,

B���2'� 
����) 5��������


�:

#3#�#�1#������� $5��������&

���' ���

����#3� $C0�� %�3= + C8 38 H8 �=9+8 ���/&

������2


�: # ? @ ��� 3

���� ������ $#8 5���8 5��������8 ���� ���/&

,



F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – II 357

This simply asks the user for a count, then launches that many ‘	���!�’ processes. Each
process launched claims the shared output channel ‘��-’ (to the screen), reports its existence
then goes into an infinite processing loop – having released the shared output channel (con-
trolled by the +&�%�). The first half of the loop claims concurrent read access to the data,
reads the needed data for processing (not shown), then releases the read lock. Local process-
ing on the data is then performed (not shown). The remainder of the loop claims exclusive
write access to the data, writes any results (not shown), then releases the write lock.

The channel ‘��-’ in the ‘	���!�’ process and the ‘.�’ and ‘!��’ channels on the
‘!/����!’ process are an anonymous form of a ������ channel-type, explained fully in
section 5.9.

This example is such that the ����%0� is not strictly required, since the following two
processes are equivalent (and this equivalence holds for any parameters that the ���+ ‘�’
might take):

������2


�: # ? @ ��� 3

���� � $#&

��� # ? @ ��� 3

� $#&

where we make use of the n-replicated ��� extension (section 5.4).

4 Extended Rendezvous and Channel-Types

Figure 2 shows a multiple client-server network that used a shared any-to-any channel to
enable a client and server to find each other. Here is example network code for this:

��� 	��� �������� !! �1#�3�����"�� �0�33�1!�=��

'�(��� ����)

��� ��	 3�E���"�3�+,

��� '�(��� -.(�	� �"�3��5���/,

,

��� �1#�3� �35 ���"�� ����


����) ��� ��������+ 1#3�, !! �3=!��!�3= %�9#1� �0�33�1 $����#�3 I�J&

���

��� # ? @ ��� 3�%��1#�3��

�1#�3� $���� 1#3�/& !! ����� �1#�3� �#�0 ���� �� �0� ������!�35

��� # ? @ ��� 3�%����"���

���"�� $���� 1#3�+& !! ����� ���"�� �#�0 ���� �� �0� #3���!�35

ServersClients

Figure 2: Multiple client-server network



358 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – II

A client seeking a server makes a shared mobile channel-structure (����&%0�) and out-
puts the server-end of this (of type ‘����&%0�1’) towards the set of servers hopefully waiting
on the shared channel:

��� �1#�3� $
����) ��� ��������+ ���/&

 ���� 	���

��������+ 1��"�, !! ���"��!�35

��������/ 1��1#, !! �1#�3�!�35


�:

1��1#8 1��"� ,? '�(��� �������� !! ������ �3�!��!�3�

!! %�9#1� �0�33�1!���������

���' ���

��� / 1��"� !! ��%%�3#���� ���"��!�35 $�35 1��� #�&

��� ��� <1��1#; �� ��%%�3#���� �#�0 � ���"��

,

Here is an outline for one of the servers:

��� ���"�� $
����) ��� ��������+ #3+&

 ���� 	���

��������+ �"�, !! ���"��!�35


�:

���' #3

#3 + �"� !! 4�� ���"��!�35 ���% � �1#�3�

��� ��� <�"�; �� ��%%�3#���� �#�0 �0� �1#�3�

,

Figure 3 shows the network after a client and server have communicated, now connected
(directly) by a private one-to-one channel-structure of type ����&%0�.

ServersClients

Figure 3: Multiple client-server network with a connected client and server

Using the extended rendezvous with channel-types opens up some interesting possibili-
ties. Figure 4 shows a multiple client-server network with a tap process. Clients and servers
still see shared channel-ends plugged into them, carrying the same server-end channel struc-
tures as before. This version of ‘-��’ is special in that it intercepts and keeps the channel-end
being passed, creates a new channel structure (of the appropriate type) and communicates
the new server end to the original destination. This code uses any-to-one and one-to-any
channels. Since the tap process in this example does not interfere with the synchronisation



F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – II 359

between the clients and servers, they (clients and servers) can only see the link as an any-to-
any channel – they cannot detect the tap! Note that no change has been made to the client
and server processes.

ServersClients

tap

Figure 4: Multiple client-server network with a ‘���’ process

The ‘-��’ process here (using the ‘����&%0�’ channel-type) is:

��� ��������1#3� $��� ��������+ #3+8 ���/8 
����) ��2/ ���1�4&

 ���� 	���

��������+ ���"�8 1��"�,

��������/ 1��1#,


�:

1��1#8 1��"� ,? '�(��� ��������

#3 ++ ���"�

��� / 1��"�

���� 1#3����� $���"�8 1��1#8 ���� ���1�4&

,

The ‘-��������"��’ process ����s ‘�"���-��’ each time a client communicates a server-
end to one of the servers. Note the use of the extended rendezvous to prevent the client
being aware that its output line is being tapped. Figure 5 shows the network after a client has
communicated with a server.

The ����ed ‘�"���-��’ process connects the two processes, and can be implemented so
that its presence is also undetectable to the client and server processes connected either side.
Figure 5 also shows a ‘��  !�’ process, to which the ����ed ‘�"���-��’ processes report.
A simple form of the ‘�"���-��’ process could be:

��� 1#3����� $��������+ ���%��1#8 ��������/ ����"�8 
����) ��2/ ���1�4&

���

 ���� 	���

��	 �,

���%��1#-3�E���"�3�. ++ �

����"�-3�E���"�3�. / �

���' ���1�4

��� ������ �"�3� �3 <���1�4;

 ���� 	���

'�(��� -.(�	� 9,

����"�-�"�3��5���. ++ 9

���%��1#-�"�3��5���. / 9

���' ���1�4

��� ������ �"�3� �3 <���1�4;

,



360 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – II

Clients Servers

tap

link.tap

logger

Figure 5: Multiple client-server network after forking a ‘1#3�����’

��� is used here to handle both channels in the chan-type independendly. This is also non-
terminating, which in a real-life situation is probably undesirable. For real-life protocols,
the point at which the client and server processes either side “let go” of the channels should
be deducible from the data communicated. Sometimes the usage pattern may be that the
channels only ever get used once, in which case the ‘,�%&� (�2�’s can be reduced to ‘��3’.
�&(ing implementations are also perfectly valid and probably desirable when we wish to
arrange termination by inspection of the data.

The ‘�"���-��’ need not be so simple however. It might be the case that the clients and
servers reside on different machines, with functionally dummy ‘server’ and ‘client’ processes
at either end, incorporating the ‘-��’ and necessary network infrastructure. In this case,
communication of the channel-end would result in a network-aware process being created on
either side to handle communication. In order to create the remote network-handling channel
(and possibly the whole remote ‘server’ as well), some form of networking infrastructure
needs to be available. As long as the network-handling processes synchronise properly over
the network, the ‘client’ and ‘server’ at either side will see the link as synchronous and will
be unaware of the networking. Figure 6 shows what such a network might look like.

Since the extended rendezvous can be used to intercept channels, without requiring mod-
ifications in the (originally) connected processes, this provides a simple method for distribut-
ing existing occam programs amongst nodes on a network. The only modifications required
would be in the code which sets up the process network, which could be reduced to just a sin-
gle ‘�2��’ compiler directive. The 2��d code would implement the network-aware versions
of existing processes, descoping the original local versions. This works equally well for code
with and without channel-types.

Building the infrastructure to support such a distributed system is not the direct concern
of this work, which merely provides a new way of doing it – hopefully much simpler, more
secure and more efficient than was previously possible. Vella [9] provides a lot of insight
into building such systems. The work there was done on the Sparc version of KRoC, in
the assembler kernel. For the Linux/i386 version of KRoC, we can use the occam socket
library [10] to implement the networking, as has been done by Goodacre [11] in a student
project and by Schweigler [5] in his M.Sc. thesis. A similar functionality also exists in
JCSP [12, 13, 14], which additionally allows the migration of processes.



F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – II 361

r.server

network.if

server.link

Clients

r.client

network.if

client.link

Servers

network

Figure 6: Remotely connected client-server network after communication and creation of link processes

5 Additional occam Extensions

This section describes a number of additional extensions to occam, which tidy-up minor
deficiencies in the language as it stood and also adds to it (such as the aforementioned n-
replicated ���).

5.1 �(�� in Replicators

One thing which occam has always lacked is a way of specifying a step size in replicators.
Strictly speaking, it is not needed, since the same effect is easy to achieve with the appropriate
abbreviation. Syntactically, a simple “�(�� exp” may be added to replicators – for example,
to sum the odd elements of an %0( array:

��	 �55���%,


�:

�55���% ,? @


�: # ? 6 ��� $
�K� ����=& � F 
	�� F

�55���% ,? �55���% 7 ����=-#.

The equivalent code, without a �(�� in the replicator, would be:

��	 �55���%,


�:

�55���% ,? @


�: # ? 6 ��� $
�K� ����=& � F

>�� ��	 # �
 $F D #& ! 6,

�55���% ,? �55���% 7 ����=-#.

In the same way as the start and length expressions in a replicator, variables used in the
step expression are fixed – i.e. they may not be the target of assignment or communication
in the replicated process. The implementation of different �(�� sizes is handled with two
new loop-end instructions. One of these is specific for a step-size of ��, the other handles
arbitrary step sizes.

�(�� expressions may be used in all replicators: %�, �&(, ��3 and ���.



362 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – II

5.2 Modified �&( Disabling Sequence

The �&( is implemented by enabling and disabling instructions for each type of guard. When
the �&( is entered, the guards are enabled one-by-one. After enabling, if none of the guards
are ready, the �&(ing process is descheduled – it will be rescheduled by a timeout (on a
timeout guard), or by an outputting process in the case of channel guards. Once rescheduled
(or if any ready guards were found during enabling), each guard is disabled. This is done
sequentially from the first guard to the last guard (same as the enabling sequence). For
each disabling guard, if the guard has fired (become ready), a pointer to the guarded-process
is stored inside the �&(er’s workspace, but only if no previous guards have become ready
(determined by checking the guarded-process pointer in the �&(er).

The same scheme was used in the implementation of both �&(s and ��% �&(s, such that
there was no visible difference between them. They are semantically quite different however.

A new set of disabling instructions (table 1) have been added to the underlying virtual
transputer byte-code [15, 16], which do not check the existing state of the guarded-process
pointer. i.e. if the guard is ready, these new instructions fire it regardless of any previously
fired guards. This causes the last ready guard examined to be selected, always. The modified
��% �&( disabling sequence simply processes the guards in reverse order, such that the first
ready guard under the ��% �&( is selected, but without the cost of the standard disabling test.
This fixes an old bug in the ��% �&(, which allowed the possibility of the second of two
(identical) guards to be wrongly selected (if the guard became ready between disabling of the
first and second instances of it in the ��% �&().

Mnemonic Parameters Description
�)�
 process-addr, pre-cond, chan-addr disable channel
�)�

 process-addr, pre-cond disable skip guard
�)�
	 process-addr, pre-cond, timeout disable timeout guard

Table 1: New ��	 disabling instructions

The modified implementation of the normal �&( is similar to the existing one, except that
we use the new instructions. This means that in the implementation of the standard �&(,
the last ready guard will be selected, rather than the first (as was the case previously). This
dramatically alters the behaviour between ��% �&( and �&( at run-time, in the hope that it
will make program errors more obvious – i.e. those where the programmer should have used
��% �&(, but instead used just �&(.

The reverse disabling sequence for ��% �&( has only been made possible by the �(��
extension for replicators, since previously there was no cheap way to run a replicated �&(

backwards – it would have involved a subtraction for each replication.

5.3 Modified ��%� in �&( Checking

A further modification to �&(s has been implemented, which changes the way ��%� guards
are checked. Previously, ��%� guards have always required an explicit pre-condition, often
just set to (�2�. This restriction has been relaxed for ��%� guards which appear as the last
guard in a ��% �&(. Any other placement of the ��%� guard must still use the explicit pre-
condition.

When the pre-condition and guard are ‘(�2� 4 ��%�’ (or where the precondition evalu-
ates to (�2� in the compiler), checks are made to ensure that it is not within a plain �&( and
only used as the last guard within a ��% �&(. Any checks that fail generate a warning from



F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – II 363

the compiler, unless it is in strict mode, where it will generate an error instead. For example,
the following will generate a compiler warning (or error in strict mode):

��	

� + E

��� 5� ��%��0#34

	��� L 
���

��� 5� ��%��0#34 �1��

But the obvious polling idiom:

��� ��	

� + E

��� 5� ��%��0#34


���

��� 5� ��%��0#34 �1��

is now accepted.

5.4 N-replicated ���s

This extension to the compiler allows a replicated ��� to have a non-constant replicator count.
In terms of the language, there is almost no change, except that now we allow non-constant
counts on ��� replicators. The drawback is that the compiler can no longer easily check the
parallel usage of variables and channels inside the replicated process. This is a result of the
way usage checking is performed – i.e. by brute force expansion of the replication (whose
count value must therefore be known statically). In contrast, Southampton’s Portable occam
Compiler (SPOC) [17] uses an algebraic checker and thus does slightly better here (unless
there’s a mod operator involved).

The n-replicated ��� is implemented using the Brinch-Hansen style memory pools [18].
The workspace and vectorspace for the processes are allocated from the free-lists and put
back once the process has finished. Unlike the ���� ([1]), memory is only returned to the
free lists after all the replicated ��� processes have terminated. This is partly due to the
way in which replicated ���s are handled inside the compiler. In theory, there should be no
problem in releasing resources early – processes just need to resign [7] from the (implicit)
���-barrier rather than sync on it. We will be looking into this.

Mobilespace is handled slightly differently, since it may not be returned to the free-lists
after use – parts of it may have been moved elsewhere. Unlike ����ed mobilespaces, which
sit on free-lists inside their respective enclosing mobilespaces, these mobilespaces are kept
inside a dynamic array, which is referenced by the encompassing mobilespace. The differ-
ence is largely due to performance considerations – it is cheaper to perform a read-only array
subscription than it is to pull a block off a free-list (which involves both a read and a write).
There is a cost associated with the handling of this array though, since it must be able to
extend dynamically – e.g., if the replicator is executed with successively increasing counts.

5.5 Recursion in occam

Recursion in occam has traditionally been prevented for two main reasons – one practical
and one specifically invented to frustrate it. Firstly, the previous lack of dynamic memory
would have imposed restrictions on the depth of recursion. Secondly, the scoping of names
in occam is such that they only become visible at the end of their declaration. For ���+s,
this means its own name is not valid inside its own code.



364 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – II

It is possible to fake recursion, often quite convincingly, by using the scoping of names to
an advantage [19]. In a ���+ called ‘���’, any previously defined ���+s also called ‘���’ are
in scope and perfectly valid. However, this often breaks when the ���+ involved is declared
at the outermost level – most UNIX linkers do not care much for multiply defined symbols.
Additionally, the depth of recursion is still restricted and there is not much scope for recovery
at the bottom-most level – i.e. the first defined ���+ of that name.

A version of recursion using a special locally defined ���+ (with a very similar name)
has been implemented for the Sparc version of KRoC by Wood in [20]. The Linux version
of KRoC (i.e. the work presented here) supports recursion by a slightly different language
mechanism, but with virtually the same (Brinch Hansen [18]) implementation for workspace
and vectorspace. ���+s which wish to be recursive must indicate this in their name using the
‘��+’ or ‘��+2��%5�’ keywords, for example:

����
�>� ��� �0#34 $���&

��� 9�5= �� �0#34

,

This modifier simply brings the name ‘-�"� ’ into scope early, thereby permitting its use
within the body of ‘-�"� ’. Another example of parallel recursion is the ‘."!6!’ process
from the parallel recursive version of the Sieve of Eratosthenes:

����
�>� ��� �#�"� $>�� ��	 ���3�8 ��� ��	 #3+8 ���/&

��

���3� ? @

 ���� 	���

��	 �%�,


�:

#3 + �%�

��� / �%�

	���

��� ��	 �,

��	 3,


�:

#3 + 3

��� / 3

���

�#1��� $38 #3+8 �/&

�#�"� $���3� ! 68 �+8 ���/&

,

The ‘���-’ parameter is used to limit the recursion. In the test-harness for this, it is set to a
little under 4800 initially, enough to generate all the prime numbers less than 1 million.

The implementation for recursive workspace and vectorspace is handled using the stan-
dard free-lists, allocated dynamically on recursive instances. Mobilespace is implemented
using a form of nested free-list. In the above example, if ‘."!6!’ required mobilespace
(which is not the case here) a pointer-slot would be allocated in its mobilespace for holding
the mobilespace of the recursive instance. This is initialised to ���(0��%0( on ���+ entry,
along with the mobiles already required, and allocated at the point of the recursive instance.

5.6 ���2&( Parameters and Abbreviations

Result parameters were suggested by Barrett for occam 3 [21]. These are reference pa-
rameters which explicitly return results, as opposed to standard reference parameters, whose



F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – II 365

input/output behaviour is unknown. The undefined-usage checker [22] expects reference pa-
rameters to have defined arguments before the call and to leave defined data before returning.
���2&( parameters change the behaviour of the undefinedness checker, which only checks
for definedness at the point the ���+ finishes, not when it is called. For example:

��� ��%�#3�� $��� ��	 #3+8 ��
��	 ��	 �&


�:

� ,? @

��� ���5 #3��4��� �35 %�5#�= �

,

���

��	 E,


�:

��%�#3�� $5����#3+8 E&

5������� / E

Without the ���2&( parameter, the undefined-usage checker will complain about ‘/’ not
being defined at the point of the call to ‘.���"�-.’. (In actual fact, this will compile without
warning since the undefined-checker examines the body of ‘.���"�-.’ and can see that ‘/’
is not read from before being written to. Separate compilation of a ���2&(-less ‘.���"�-.’
will generate this warning – or an error in strict mode).

Result abbreviations follow similar lines, i.e. only pragmatic changes in the compiler.
Result abbreviations are less common than their parameter counterparts, but are encountered
when a ���2&( parameter is turned into an abbreviation in an %0&%0� ���+. Inlining the
above code for example gives:

���

��	 E,


�:

!!MMM ������ ���

��� ��	 #3+ �
 5����#3+,

��
��	 ��	 � �
 E,


�:

� ,? @

��� ���5 #3��4��� �35 %�5#�= �

!!NNN

5������� / E

Both ���2&( parameters and abbreviations involve no significant changes in the compiler
code-generator and are handled in the same way as standard reference parameters and abbre-
viations – i.e. just dropping the ���2&( keyword.

5.7 Nested ���(�+�& Definitions

One minor irritation of the existing occam was the inability to use user-defined ���(�+�&s
as a component of another ���(�+�&. This is something we frequently wish to do, the alter-
native being to copy the relevant chunk of ���(�+�&.



366 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – II

An example of a nested sequential ���(�+�& is:

���	��� ����	 �
 ��	O ��	,,-.(�	�, !! #5O 5���

���	��� �����)�	�

�
�

������O ����	

�#%����

,

Previously, this would not have been allowed by the compiler and we would have had to
expand the declaration ouselves to:

���	��� �����)�	�

�
�

������O ��	O ��	,,-.(�	�, !! #5O 5���

�#%����

,

Variant (+���) protocol nesting is handled slightly differently. Using the above ‘&%0����(�’
protocol for example:

���	��� ��	�����

�
�

�����O ��	 !! #3���3�1 �����

���' �����)�	� !! #3�1�5� �����)�	� �����

,

The use of the ‘����’ keyword is just to emphasize the point that we are literally including
the cases from the ‘&%0����(�’ protocol. There is no mysterious sub-typing or inheritance
here. Variant protocol inheritance and usage have been investigated by Locke [23] and is
possible to implement, but has not been yet. The proposed mechanism would allow a ‘+��0
�� &%0����(�’ to be supplied as the argument to a ‘+��0 �� %0(��0�&’ formal parameter.
This is not the case as things stand however – ‘%0(��0�&’ and ‘&%0����(�’ are unrelated
protocols.

When nesting variant protocols, the compiler checks that all the tags remain distinct, as
it does for a flat protocol definition. Any conflicts result in a standard compiler error being
produced.

5.8 Array Constructors

Array constructors add a simple new functionality to occam. It is useful mainly because
the equivalent code looks somewhat peculiar. The syntax of array construction here is very
similar to the similar list construction operation commonly found in functional languages
(Miranda [24] for example). Their principle use is to initialise the elements of an array, for
example:

-6@.��	 P,


�:

P ,? -# ? @ ��� 
�K� P Q $R D #& ! 6.,

��� ��� <P;

The array constructor is an expression, so it must follow existing rules for such – i.e. no
side-effects. Although this example is trivial (we could have just used a simple ��3 loop to
initialise the array), it may be used in communication, as a parameter, or even be subscripted
or sliced.



F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – II 367

The general form of the array constructor is as follows:

“)” name = start ��� count � �(�� stride � “7” expression “*”

Only the count is used for generating the resulting array. The start and stride affect only the
replicator name value in the expression. The name, start, stride and count types are all %0(s.

Array constructors can be nested to create n-dimensional arrays. For example:

-6@@.-6@@.����SH %��0,


�:

%��0 ,? -# ? @ ��� 
�K� %��0 Q

-� ? @ ��� 
�K� %��0-#. Q

$
�� $$����SH 	��� #& � ���1�&& D

$�
 $$����SH 	��� �& � ���1�&& ..

��� ��� ��%����5 <%��0;

The array constructor is implemented by turning it (internally) into a 5�&�� process. These
are essentially in-line �20+(%�0s, but due to their very peculiar syntax are not used much.
The earlier example of a one-dimensional constructor assigned to ‘8’ is expanded by the
compiler into:

-6@.��	 P,


�:

P ,? $-6@.��	 ��%�,

>����


�: # ? @ ��� 
�K� P

��%�-#. ,? $R D #& ! 6

��
��	 ��%�

&

��� ��� <P;

The expansion of the ‘�!.�’ expression is much more convoluted, as is the case generally
with inline 5�&�� processes. Array constructors provide this functionality, but in a nice,
simple and consistent way.

In the same way as standard arrays (and array returning �20+(%�0s/5�&��s), array con-
structors may be subscripted or used in a slice. The compiler will generate lazy evaluation
code to compute these where possible, including any necessary checks for array-bounds. For
example:

��	 "8 #,


�:

��� ��%���� <#;

" ,? -3 ? 6@ ��� I@ 
	�� !6 Q ��� $3&.-#.

simplifies to:

��	 "8 #,


�:

��� ��%���� <#;


�:

��� �0��� �� �3���� �0�� <#; #� #3 �0� �1���5 ��34� -@!HJ.

" ,? ��� $6@ 7 $#D$!6&&&

Additionally, if ‘���’ is an %0&%0� �20+(%�0, then the code will reduce to just its body
preceded by a 5�& %0( abbreviation for ‘9:; < 9"=9>:???’.



368 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – II

5.9 Anonymous Channel-Types

Anonymous channel-types are a convenient way of creating a shared any-to-any channel.
Syntactically their declaration is like that of an ordinary occam channel, but with a ‘������’
prefix. For example:


����) ��� ��	 �,

� !! ������� #3 �0� ����� �� <�;

Internally, the compiler turns the declaration of ‘’ into a channel-type definition (suitably
scoped), and a pair of channel-ends (along with suitable initialisation code) which will form
the real shared channel. The types and variables created internally by the compiler have
invalid occam names, which prevents the accidental de-scoping of a real variable by a com-
piler generated variable (which would be a serious error). The type and code generated for
the above declaration is:

��� 	��� T�3�3���	 !! ��%�#1�� 4�3�����5 �=��

'�(��� ����)

��� ��	 E+,

,


����) T�3�3���	/ �T�1# !! �0���5 �1#�3�!�35


����) T�3�3���	+ �T�"� !! �0���5 ���"��!�35


�:

�T�1#8 �T�"� ,? '�(��� T�3�3���	 !! �11����� �35 #3#�#�1#�� �0�33�1

�

Within the body of process ‘�’, any occurrences of the ������ channel ‘’ will be replaced by
either: the ‘@�"’ or ‘@.6�’ end as appropriate; or the appropriate end with a subscription
to access the ‘real’ channel (field ‘/’ in the +��0 ('�� definition). This selection is controlled
by the usage of ‘’, i.e. whether a ‘������ +��0 %0(’ or a ‘+��0 %0(’ is expected. In the
latter case, the shared channel must be +&�%�ed before use.

When used in ���+ parameters, anonymous channel-types undergo a similar transforma-
tion, but apart from any needed type declaration no extra code is generated – only the type
and name of the variable are changed. For example:

��� ��� $
����) ��� ��	 ���/&

���' ��� !! 4��9 �0�33�1!�35


�: # ? HF ��� 6@@ 
	�� !R !! ��35 6@@ %����4��

��� / # !! $3� ��%���#��� #3���1��"#34&

,

��� 9�� $
����) ��� ��	 ���/&

��� $���/&

,

is transformed into:

��� ��� $
����) T�3�3���	/ ���T�1#& !! ���3����%�5 ��� 0��5��

���' ���T�1# !! ���3����%�5 �1�#%


�: # ? HF ��� 6@@ 
	�� !R

���T�1#-E. / # !! ���3����%�5 ��%%�3#���#�3

,

��� 9�� $
����) T�3�3���	/ ���T�1#& !! ���3����%�5 ��� 0��5��

��� $���T�1#& !! ���3����%�5 ��� ��11

,



F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – II 369

Anonymous (shared) channel-types are still subject to the same parallel usage and aliasing
rules as named shared channels. Thus in order to effectively share between parallel processes,
+&�0�s must be used.

6 Conclusions and Further Work

This paper has demonstrated the use of the ����, mobile channel-structure and extended-
rendezvous additions to occam and KRoC/Linux, as well as a number of extensions to the
existing syntax and semantics. The examples presented so far have been fairly simple, but
their scope is far reaching. A new version of the occam web-server visible at [25] is already
using these extensions successfully. Other demonstrator applications are on the way.

It is hoped that users of KRoC/Linux and occam will find these extensions useful and
report feedback to the community.

References

[1] F.R.M. Barnes and P.H. Welch. Prioritised Dynamic Communicating Processes: Part I. In James Pascoe,
Peter Welch, Roger Loader, and Vaidy Sunderam, editors, Communicating Process Architectures 2002,
WoTUG-25, Concurrent Systems Engineering, pages 331–361, IOS Press, Amsterdam, The Netherlands,
September 2002.

[2] Inmos Limited. occam 2.1 Reference Manual. Technical report, Inmos Limited, May 1995. Available at:
0���,������4���������������11�1�����%�5���%�3���#�3�.

[3] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997. ISBN: 0-13-674409-5.

[4] F.R.M.Barnes P.H.Welch, J.Moores and D.C.Wood. The KRoC Home Page, 2000. Available at:
0���,�������������������������������������.

[5] M. Schweigler. The Distributed occam Protocol - A New Layer On Top Of TCP/IP To Serve occam
Channels Over The Internet. Master’s thesis, Computing Laboratory, University of Kent at Canterbury,
September 2001. MSc Dissertation.

[6] J.Moores. CCSP – a Portable CSP-based Run-time System Supporting C and occam. In B.M.Cook, edi-
tor, Architectures, Languages and Techniques for Concurrent Systems, volume 57 of Concurrent Systems
Engineering series, pages 147–168, Amsterdam, the Netherlands, April 1999. WoTUG, IOS Press. ISBN:
90-5199-480-X.

[7] Peter H. Welch and David C. Wood. Higher Levels of Process Synchronisation. In A. Bakkers, editor,
Parallel Programming and Java, Proceedings of WoTUG 20, volume 50 of Concurrent Systems Engineer-
ing, pages 104–129, Amsterdam, The Netherlands, April 1997. World occam and Transputer User Group
(WoTUG), IOS Press. ISBN: 90-5199-336-6.

[8] D.C.Wood and J.Moores. User-Defined Data Types and Operators in occam. In B.M.Cook, editor,
Architectures, Languages and Techniques for Concurrent Systems, volume 57 of Concurrent Systems
Engineering Series, pages 121–146. WoTUG, IOS Press, the Netherlands, April 1999. ISBN: 90-5199-
480-X.

[9] Kevin Vella. Seamless Parallel Computing on Heterogeneous Networks of Multiprocessor Workstations.
PhD thesis, The University of Kent at Canterbury, Canterbury, Kent. CT2 7NF, December 1998.

[10] Fred Barnes. Socket, File and Process Libraries for occam. Computing Laboratory, University of Kent
at Canterbury, June 2000. Available at:
0���,�����������������������1����4���%9F�5���%�3���.

[11] I.N. Goodacre. occam NetChans, 2001. Project report.

[12] P.H.Welch. Process Oriented Design for Java – Concurrency for All. In PDPTA 2000, volume 1, pages
51–57. CSREA Press, June 2000. ISBN: 1-892512-52-1.



370 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – II

[13] P.H.Welch, J.R.Aldous, and J.Foster. CSP networking for java (JCSP.net). In P.M.A.Sloot, C.J.K.Tan,
J.J.Dongarra, and A.G.Hoekstra, editors, Computational Science - ICCS 2002, volume 2330 of Lecture
Notes in Computer Science, pages 695–708. Springer-Verlag, April 2002. ISBN: 3-540-43593-X.

[14] P.H. Welch and B. Vinter. Cluster Computing and JCSP Networking. In James Pascoe, Peter Welch,
Roger Loader, and Vaidy Sunderam, editors, Communicating Process Architectures 2002, WoTUG-25,
Concurrent Systems Engineering, pages 213–232, IOS Press, Amsterdam, The Netherlands, September
2002.

[15] Inmos Limited. The T9000 Transputer Instruction Set Manual. SGS-Thompson Microelectronics, 1993.
Document number: 72 TRN 240 01.

[16] M.D.Poole. Extended Transputer Code - a Target-Independent Representation of Parallel Programs.
In P.H.Welch and A.W.P.Bakkers, editors, Architectures, Languages and Patterns for Parallel and Dis-
tributed Applications, Proceedings of WoTUG 21, volume 52 of Concurrent Systems Engineering, pages
187–198, Amsterdam, The Netherlands, April 1998. WoTUG, IOS Press. ISBN: 90-5199-391-9.

[17] S. Wykes M. Debbage, M. Hill and Dennis Nicole. Southampton’s portable occam compiler (SPOC).
In R. Miles and A. Chalmers, editors, Proceedings of WoTUG 17: Progress in Transputer and Occam
Research, volume 38 of Concurrent Systems Engineering. IOS Press, The Netherlands, April 1994. ISBN:
90-5199-163-0.

[18] Per Brinch Hansen. Efficient Parallel Recursion. ACM SIGPLAN Notices, 30(12):9–16, December
1995. Reprinted in: The Origin of Concurrent Programming, edited by Per Brinch Hansen, pp. 525-534,
Springer, ISBN 0-387-95401-5. 2002.

[19] Michael D. Poole. Fixed Maximal Depth Recursion in occam. Number 16 in OUG Newsletter. IOS
Press, Netherlands, January 1992.

[20] D.C. Wood. An Experiment with Recursion in occam. In P.H.Welch and A.W.P.Bakkers, editors, Com-
municating Process Architectures, Proceedings of WoTUG 23, volume 58 of Concurrent Systems En-
gineering, pages 193–204, Amsterdam, the Netherlands, September 2000. WoTUG, IOS Press. ISBN:
1-58603-077-9.

[21] Geoff Barrett. occam 3 Reference Manual. Technical report, Inmos Limited, March 1992. Available at:
0���,������4���������������11�1�����%�5���%�3���#�3�.

[22] F.R.M. Barnes and P.H. Welch. Mobile Data, Dynamic Allocation and Zero Aliasing: an occam Exper-
iment. In Majid Mirmehdi Alan Chalmers and Henk Muller, editors, Communicating Process Architec-
tures 2001, volume 59 of Concurrent Systems Engineering, pages 243–264, Amsterdam, The Netherlands,
September 2001. WoTUG, IOS Press. ISBN: 1-58603-202-X.

[23] T.S. Locke. Towards a Viable Alternative to OO – extending the occam/CSP programming model. In
Majid Mirmehdi Alan Chalmers and Henk Muller, editors, Communicating Process Architectures 2001,
volume 59 of Concurrent Systems Engineering, pages 329–349, Amsterdam, The Netherlands, September
2001. WoTUG, IOS Press. ISBN: 1-58603-202-X.

[24] Simon Thompson. Miranda: The Craft of Functional Programming. Addison Wesley, July 1995. ISBN:
0-201-42279-4.

[25] F.R.M. Barnes. The occam Web-Server Home Page, 2000. Available at:
0���,������4���������������9�.


