
A Weakly Coupled Adaptive Gossip Protocol for Application Level Active Networks

Ibiso Wokoma, Ioannis Liabotis, Ognjen Prnjat, Lionel Sacks, Ian Marshall
Department of Electronic and Electrical Engineering, University College London,

Torrington Place, London WC1E 7JE, England, UK
email:{ i.wokoma, i.liaboti, o.prnjat, lsacks, imarshall} @ee.ucl.ac.uk

Abstract

With the sharp increase in heterogeneity and
distribution of elements in wide-area networks, more
flexible, efficient and autonomous approaches for
management and information distribution are needed. This
paper proposes a novel approach, based on gossip
protocols and firefly synchronisation theory, for the
management policy distribution and synchronisation over
a number of nodes in an Application Level Active Network
(ALAN). The work is presented in the context of the IST
project ANDROID (Active Network Distributed Open
Infrastructure Development), which is developing an
autonomous policy-based management system for ALAN.
The preliminary simulation results suggest that with the
appropriately optimised parameters, the algorithms
developed are scalable, can work effectively in a realistic
random network, and allow the policy updates to be
distributed efficiently throughout the active network with a
lower latency than other similar types of gossip protocols.

1 Introduction

The process of efficiently distributing large amounts of

information in communication networks has always been a
critical issue. Traditional methods of communication
based on strong consistency protocols and flooding are
becoming inefficient for quickly changing information or
when faced with situations in which failures are inevitable.
Similarly, the traditional centralised approach to network
and service management does not work well in large
complex heterogeneous networks, and the need for an
automated, distributed and decentralised management
approach is rising.

Gossip protocols [1] provide a robust technique for
distributing replicated data in wide-area networks.
Messages can be propagated from one node of a group to
another until all the nodes in the group receive the
message. This form of event message delivery means that
the nodes are guaranteed to receive the message even if

some nodes become disconnected. A modified form of
TSAE (Time-Stamped Anti-Entropy) [2] is used in this
paper to demonstrate how policies can be distributed in an
active network. It is used in conjunction with an algorithm
based loosely on the interaction of fireflies; the event
synchronisation of their flashing lights when they form a
group can be likened to the synchronisation of messages in
a group of nodes.

This paper considers the issues of management policy
distribution in the context of the IST project ANDROID
(Active Network Distributed Open Infrastructure
Development). ANDROID is developing a policy-based
[3][4] management system for application-level active
networks (ALAN) [5]. The ANDROID project has
adopted a policy-based management approach to cater for
this [6]. A management policy could apply to a group of
nodes positioned in different areas of the network. Thus,
the management policies, as they are introduced in the
managed active network, need to be efficiently distributed,
the rest of the group must be made aware of the change.
This is achieved through efficient propagation of copies of
the new policy within the group.

This paper focuses on mechanisms for policy
distribution and synchronisation over a number of active
servers that would allow the management system to
become more adaptive and autonomous to overcome the
shortcomings of centralised control. The proposed
mechanisms can be applied to many systems requiring the
same distributed peer-to-peer approach to information
sharing such as applications in ubiquitous computing and
sensor networks.

2 Background

2.1 Gossip Protocols

In systems where information is replicated in several
places, updates must be propagated to all the nodes
efficiently to maintain consistency, i.e. they all receive the
same set of messages; but any trade-off with availability
should be avoided. For example in mobile telephony, huge

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/92006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

centralised directories are required and lack of capacity or
inconsistency causes denial of service. If strong
consistency is not required the system can have higher
availability. Weak consistency protocols can offer
appropriate solution because after temporary divergence
from the “correct” value, all the nodes will eventually be
updated when the devices are reconnected. This is
completely sufficient for many policy based management
tasks. The advantages are that out-of-date nodes can still
be accessed giving better availability and the delay in
propagation allows the updates to occur when the system
is less loaded. As a result, gossip can be described as a
type of weak consistency protocol where update requests
are propagated via delayed point-to-point communications
between nodes in batches.

TSAE is a gossip protocol that gives the benefits of
weak consistency while keeping the network traffic low
and maintaining the updates at each node. Each node
stores a log of the update information with a record of the
time it was received. When a node updates its’ neighbour,
an anti-entropy session takes place where the content of
their logs are exchanged similar to Bayou's anti-entropy
protocol [7]. The nodes can determine the policies they do
not have through the exchange of summary vectors and
receive new policies exactly once thus minimising traffic.
At the end of the session both nodes have the same logs.

Implementing TSAE involves considering the partner
selection strategy where the node selects the neighbour it
wants to communicate with. The partner selection strategy
in this paper depends on the theory behind firefly flashing.

2.2 Fireflies

Self-organised criticality is one of the core ideas that
emerge out of complex system theory where a system with
dynamical non-equilibrium statistical properties evolves to
a critical state without altering external parameters.
Systems with these features can give rise to useful large-
scale attributes (emergence) without rigid engineering and
control. Many biological systems evolve in this way to
have coherent behaviour out of seemingly random low-
level activities making these systems useful analogies for
analysing non-linear technical systems [8]. The biological
model used here is the phenomena of firefly
synchronisation. Fireflies are known to emit flashes at
regular intervals when isolated but when they come
together, they entrain the pulsing of their lights to
converge upon the same rhythm as that of other fireflies in
the group until synchronicity is reached [9].

Fireflies flash at a predetermined point in a periodic
oscillation that can be modelled as a periodic counter
driven by an internal clock. Synchronicity is achieved in a
group of fireflies when the fireflies can observe the flashes
of their neighbours. This is achieved through the simple
mechanism of advancing the clock cycle whenever one

sees a flash, unless one was also flashing. The fireflies are
said to be pulse-coupled because one firefly affects the
state of the others only when the firefly flashes.

This phenomenon is explained by Peskin’s model [10],
which gives an equation that models the interaction of two
pulse-coupled oscillators and proves that the oscillators
will almost always synchronize if they obey his equation.
Renato E. Mirollo and Steven H. Strogatz [11] went on to
prove that this was true for a network of any number of
identical pulse-coupled integrate-and-fire oscillators by
basing their proof on absorption, which occurs when two
oscillators of different phase synchronize and remain
locked in phase.

When relating this to a group of nodes in an active
network, the synchronisation of flashes can be equated to
the synchronisation of the rate of updates. This rate is
likely to vary when new policies are added to the network
but the nodes take steps on low-level basis to make the
rate identical on a global scale. This is achieved at
synchronization when the network is consistent with all
the nodes having logs with the same policies.

3 Testing the Firefly/Gossip Model

The model consisted of a square lattice network of

nodes that were each connected to their nearest
neighbours. Each node had a timer that was decremented
each time step, a store that held a record of the policies at
the node and a group membership label that determined
the subset of visible neighbours the node was authorised to
communicate with. The nodes also had a flash interval that
determined when the node was next going to talk to other
group members to check for new policies, i.e. “flash”, and
an event record that allowed the node to select which
group members to talk to according to how frequently they
flashed. The network was simulated and the tests in the
following sections were carried out.

3.1 Optimisation

A lattice network of 100 nodes was created and the

optimal conditions for the network operation were found
by changing variables to observe the effect two
parameters. The first is the synchronisation time, which is
the time it takes for a policy to spread throughout network,
and the second is the network traffic, the amount of
communication between flashing nodes and the
surrounding neighbours.

The nodes had a maximum flash interval to limit the
average flash interval increase due to the addition of new
policies. If the average was below the maximum flash
interval then it was because a new policy had been added
to the network. The synchronisation time and network
traffic was recorded for maximum flash intervals between
10 and 70 epochs to give the graph shown in Figure 1.

Figure 1: Graph to show the effect of varying the
maximum flash interval between 10 and 70 epochs on
the synchronisation time and network traffic for a
lattice network of 100 nodes

Figure 1 shows the variation of the synchronisation
time with the maximum flash interval. The network spends
more time in a consistent state when the maximum flash
interval is low but consideration must be given to the high
amount of traffic caused by the low maximum flash
interval.

When deciding on a good operating point for the
network, the requirements for low synchronisation time
and low background network traffic have to be achieved,
hence, from Figure 1 a maximum flash interval of 20
epochs seemed to be a reasonable choice for this case. For
higher flash intervals from Figure 1, there are very low
reductions in traffic but higher synchronization times.

3.2 Scalability

The number of nodes on the lattice was varied between

72 and 132 nodes and the synchronization times for
network were recorded and used to find the update latency.
This is the synchronization time measured as a multiple of
the maximum flash interval. The graph in Figure 2 shows
how the update latency varies with the number of nodes
for the firefly/gossip model and for TSAE experiments
described in [2]. Different partner selection strategies and
distributions of anti-entropy sessions were tested to find
the most effective way of reducing the update latency. In
[2], it was found that nodes choosing to have anti-entropy
sessions with the most out-of-date nodes first worked the
best. This oldest-first partner selection strategy gave
reasonable update latencies when the time between two
successive anti-entropy sessions was generated uniformly
from the time interval [0.9T, 1.1T] where T is the flash
interval.

Figure 2: Graph to show how the average update
latency varies with the number of nodes for the
firefly/gossip model and for the TSAE with oldest-first
partner selection strategy

Figure 2 shows the increase in the number of nodes

leads to larger synchronisation times. The synchronisation
time scales well with the logarithm of the number of
nodes, so a mathematical relationship can be developed to
predict the synchronisation times for networks of any size.

The partner selection strategy used in this paper is
based on the timing of firefly flashing with the use of
event records and Figure 2 shows that this strategy is more
effective than the TSAE with the oldest-first partner
selection strategy because of the lower update latency. The
firefly/gossip model reduces the update latency by a factor
of 4 because of the dynamic nature of the network that
reacts quickly to the presence of a new policy.

3.3 Different Network Topologies

A square lattice of nodes is a simple topology but does

not reflect a real network. The algorithm was tested on a
random network based on the Autonomous System
connectivity of the Internet. The connection matrix for the
network was created using an Internet Topology Generator
called Inet that gives networks of any size, the smallest
containing 3037 nodes. The paper in [12] compares Inet to
other generated topologies and Inet -2.0 was found to be
suitable for modelling Internet-like characteristics making
it good for testing how well the firefly/gossip model works
in a real network.

A text file of the connections between 3037 nodes was
generated using Inet -2.0 to give the random network to be
compared to a lattice network of 3025 nodes. The
percentage of nodes that receive the new policy over time
for both types of networks is given in Figure 3. Policy
synchronization was achieved in the random network by
increasing the amount of time the nodes had to remember
their neighbours and the same was condition was applied
to the lattice network to keep the test fair.

Figure 3: Graph to show the percentage of nodes that
have received a new policy over time in a random
network and a lattice network

Figure 3 shows that in the random network, the policy

spreads very quickly in comparison to the lattice network.
In the random network, the synchronisation time is 91
epochs whereas in the lattice network it is 640 epochs.
Node 0 is a highly connected node that has a high number
of neighbours so when a policy is added to it, it takes a
short time for copies of the policy to spread to the
surrounding neighbours. In comparison, the spread of the
policy is more evenly distributed in the lattice network so
it would take a longer time.

4 Conclusion

Policy synchronisation can be implemented by using a
weakly coupled adaptive gossip protocol where the timing
of the gossips is related to firefly flashing. The result is an
algorithm that is effective at spreading policies in the
network if certain system parameters are optimised. A
maximum flash interval has to be applied to allow the
nodes to keep in memory a list of the neighbours to
communicate with. To achieve optimal performance of the
algorithm, the maximum flash interval has to be set at a
value where the background traffic and synchronization
time are reasonably low.

The synchronisation time for networks of any size can
be deduced from the results and can be used to program
how long a node has to remember a policy before being
able to delete it from its hash table. In comparison to other
methods of partner selection strategies used in the TSAE,
this firefly/gossip model is more effective at spreading the
policies quickly.

The algorithm worked better in the random network
approximating Internet connectivity than it did in a lattice
network. To ensure that policy synchronization was
achieved in the random network, the amount of time the
nodes had to remember their neighbours was much higher
for the random network than the lattice network. This

means that more memory is needed for the nodes of a
random network to maintain larger event records so that
less connected nodes are guaranteed to receive copies of
the new policy even if they do not flash frequently.

A limitation is that the experiments conducted are
focused on a very simplified model of a complex network.
For instance, it is difficult to determine what level of
traffic is acceptable given that the nodes will have many
other tasks to carry out. With more investigation this could
be resolved and further work could also involve assessing
how well the algorithm works in other network topologies
such as ring, star, mesh, small worlds and scale-free
topologies and investigating different policy arrival rates.

5 References

[1] R. A. Golding et al, “Modeling replica divergence in a weak-
consistency protocol for global-scale distributed data bases”,
Technical report UCSC-CRL-93-09, Computer and Information
Sciences Board, University of California, February 1993.

[2] C. L. van Eijl, C. Mallia, "The time-stamped anti-entropy
protocol- a weak consistency protocol for replicated data", BT
document.

[3] “D1: Refined Architecture”, an ANDROID document,
August 2000.

[4] M. Sloman, E. Lupu, "Policy Specification for Programmable
Networks", Proceedings of IWAN '99 Conference, Springer-
Verlag, 1999.

[5] M. Fry, A. Ghosh, "Application Level Active Networking",
Computer Networks, pp. 655-667, 1999.

[6] Mike Fisher, Paul Mckee, et. al "Policy-based Management
for ALAN-enabled networks", submitted for Policy 2002.

[7] K. Petersen et al, “Flexible Update Propagation for Weakly
Consistent Replication”, Proceedings of ACM Symposium on
Operating Systems Principles, pp. 288-30, October 1997.

[8] M. Resnick, “Turtles, Termites, and Traffic Jams”, MIT
Press, 1997.

[9] U. Wilensky et al, “Learning Biology through Constructing
and Testing Computational Theories”, Proceedings of the Second
International Conference on Complex Systems, 1998.

[10] C. S. Peskin, “Numerical analysis of blood flow in the
heart”, Journal of Computational Physics, pp 220-2521977.

[11] R. E. Mirollo, S.H. Strogatz, “Synchronization of pulse-
coupled biological oscillators”, SIAM J. Applied Mathematics,
1990.

[12] C. Jin, Q. Chen, S. Jamin, “Inet: Internet Topology
Generator”, University of Michigan Computer Science
Department Technical Report, 2000.

