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Abstract 
 

With the sharp increase in heterogeneity and 
distribution of elements in wide-area networks, more 
flexible, efficient and autonomous approaches for 
management and information distribution are needed. This 
paper proposes a novel approach, based on gossip 
protocols and firefly synchronisation theory, for the 
management policy distribution and synchronisation over 
a number of nodes in an Application Level Active Network 
(ALAN). The work is presented in the context of the IST 
project ANDROID (Active Network Distributed Open 
Infrastructure Development), which is developing an 
autonomous policy-based management system for ALAN. 
The preliminary simulation results suggest that with the 
appropriately optimised parameters, the algorithms 
developed are scalable, can work effectively in a realistic 
random network, and allow the policy updates to be 
distributed efficiently throughout the active network with a 
lower latency than other similar types of gossip protocols. 

 
 

1 Introduction 
 
The process of efficiently distributing large amounts of 

information in communication networks has always been a 
critical issue. Traditional methods of communication 
based on strong consistency protocols and flooding are 
becoming inefficient for quickly changing information or 
when faced with situations in which failures are inevitable. 
Similarly, the traditional centralised approach to network 
and service management does not work well in large 
complex heterogeneous networks, and the need for an 
automated, distributed and decentralised management 
approach is rising. 

Gossip protocols [1] provide a robust technique for 
distributing replicated data in wide-area networks. 
Messages can be propagated from one node of a group to 
another until all the nodes in the group receive the 
message. This form of event message delivery means that 
the nodes are guaranteed to receive the message even if 

some nodes become disconnected. A modified form of 
TSAE (Time-Stamped Anti-Entropy) [2] is used in this 
paper to demonstrate how policies can be distributed in an 
active network. It is used in conjunction with an algorithm 
based loosely on the interaction of fireflies; the event 
synchronisation of their flashing lights when they form a 
group can be likened to the synchronisation of messages in 
a group of nodes. 

This paper considers the issues of management policy 
distribution in the context of the IST project ANDROID 
(Active Network Distributed Open Infrastructure 
Development). ANDROID is developing a policy-based 
[3][4] management system for application-level active 
networks (ALAN) [5]. The ANDROID project has 
adopted a policy-based management approach to cater for 
this [6]. A management policy could apply to a group of 
nodes positioned in different areas of the network. Thus, 
the management policies, as they are introduced in the 
managed active network, need to be efficiently distributed, 
the rest of the group must be made aware of the change. 
This is achieved through efficient propagation of copies of 
the new policy within the group. 

This paper focuses on mechanisms for policy 
distribution and synchronisation over a number of active 
servers that would allow the management system to 
become more adaptive and autonomous to overcome the 
shortcomings of centralised control. The proposed 
mechanisms can be applied to many systems requiring the 
same distributed peer-to-peer approach to information 
sharing such as applications in ubiquitous computing and 
sensor networks.  

 
2 Background 
 
2.1 Gossip Protocols 
 

In systems where information is replicated in several 
places, updates must be propagated to all the nodes 
efficiently to maintain consistency, i.e. they all receive the 
same set of messages; but any trade-off with availability 
should be avoided. For example in mobile telephony, huge 
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centralised directories are required and lack of capacity or 
inconsistency causes denial of service. If strong 
consistency is not required the system can have higher 
availability. Weak consistency protocols can offer 
appropriate solution because after temporary divergence 
from the “correct” value, all the nodes will eventually be 
updated when the devices are reconnected. This is 
completely sufficient for many policy based management 
tasks. The advantages are that out-of-date nodes can still 
be accessed giving better availability and the delay in 
propagation allows the updates to occur when the system 
is less loaded. As a result, gossip can be described as a 
type of weak consistency protocol where update requests 
are propagated via delayed point-to-point communications 
between nodes in batches. 

TSAE is a gossip protocol that gives the benefits of 
weak consistency while keeping the network traffic low 
and maintaining the updates at each node. Each node 
stores a log of the update information with a record of the 
time it was received. When a node updates its’ neighbour, 
an anti-entropy session takes place where the content of 
their logs are exchanged similar to Bayou's anti-entropy 
protocol [7]. The nodes can determine the policies they do 
not have through the exchange of summary vectors and 
receive new policies exactly once thus minimising traffic. 
At the end of the session both nodes have the same logs. 

Implementing TSAE involves considering the partner 
selection strategy where the node selects the neighbour it 
wants to communicate with. The partner selection strategy 
in this paper depends on the theory behind firefly flashing. 

 
2.2 Fireflies 
 

Self-organised criticality is one of the core ideas that 
emerge out of complex system theory where a system with 
dynamical non-equilibrium statistical properties evolves to 
a critical state without altering external parameters. 
Systems with these features can give rise to useful large-
scale attributes (emergence) without rigid engineering and 
control. Many biological systems evolve in this way to 
have coherent behaviour out of seemingly random low-
level activities making these systems useful analogies for 
analysing non-linear technical systems [8]. The biological 
model used here is the phenomena of firefly 
synchronisation. Fireflies are known to emit flashes at 
regular intervals when isolated but when they come 
together, they entrain the pulsing of their lights to 
converge upon the same rhythm as that of other fireflies in 
the group until synchronicity is reached [9]. 

Fireflies flash at a predetermined point in a periodic 
oscillation that can be modelled as a periodic counter 
driven by an internal clock. Synchronicity is achieved in a 
group of fireflies when the fireflies can observe the flashes 
of their neighbours. This is achieved through the simple 
mechanism of advancing the clock cycle whenever one 

sees a flash, unless one was also flashing. The fireflies are 
said to be pulse-coupled because one firefly affects the 
state of the others only when the firefly flashes. 

This phenomenon is explained by Peskin’s model [10], 
which gives an equation that models the interaction of two 
pulse-coupled oscillators and proves that the oscillators 
will almost always synchronize if they obey his equation. 
Renato E. Mirollo and Steven H. Strogatz [11] went on to 
prove that this was true for a network of any number of 
identical pulse-coupled integrate-and-fire oscillators by 
basing their proof on absorption, which occurs when two 
oscillators of different phase synchronize and remain 
locked in phase.  

When relating this to a group of nodes in an active 
network, the synchronisation of flashes can be equated to 
the synchronisation of the rate of updates. This rate is 
likely to vary when new policies are added to the network 
but the nodes take steps on low-level basis to make the 
rate identical on a global scale. This is achieved at 
synchronization when the network is consistent with all 
the nodes having logs with the same policies. 

 
3 Testing the Firefly/Gossip Model 

 
The model consisted of a square lattice network of 

nodes that were each connected to their nearest 
neighbours. Each node had a timer that was decremented 
each time step, a store that held a record of the policies at 
the node and a group membership label that determined 
the subset of visible neighbours the node was authorised to 
communicate with. The nodes also had a flash interval that 
determined when the node was next going to talk to other 
group members to check for new policies, i.e. “flash”, and 
an event record that allowed the node to select which 
group members to talk to according to how frequently they 
flashed. The network was simulated and the tests in the 
following sections were carried out. 

 
3.1 Optimisation 

 
A lattice network of 100 nodes was created and the 

optimal conditions for the network operation were found 
by changing variables to observe the effect two 
parameters. The first is the synchronisation time, which is 
the time it takes for a policy to spread throughout network, 
and the second is the network traffic, the amount of 
communication between flashing nodes and the 
surrounding neighbours. 

The nodes had a maximum flash interval to limit the 
average flash interval increase due to the addition of new 
policies. If the average was below the maximum flash 
interval then it was because a new policy had been added 
to the network. The synchronisation time and network 
traffic was recorded for maximum flash intervals between 
10 and 70 epochs to give the graph shown in Figure 1. 



 
Figure 1: Graph to show the effect of varying the 
maximum flash interval between 10 and 70 epochs on 
the synchronisation time and network traffic for a 
lattice network of 100 nodes 
 

Figure 1 shows the variation of the synchronisation 
time with the maximum flash interval. The network spends 
more time in a consistent state when the maximum flash 
interval is low but consideration must be given to the high 
amount of traffic caused by the low maximum flash 
interval.  

When deciding on a good operating point for the 
network, the requirements for low synchronisation time 
and low background network traffic have to be achieved, 
hence, from Figure 1 a maximum flash interval of 20 
epochs seemed to be a reasonable choice for this case. For 
higher flash intervals from Figure 1, there are very low 
reductions in traffic but higher synchronization times. 

 
3.2 Scalability 

 
The number of nodes on the lattice was varied between 

72 and 132 nodes and the synchronization times for 
network were recorded and used to find the update latency. 
This is the synchronization time measured as a multiple of 
the maximum flash interval. The graph in Figure 2 shows 
how the update latency varies with the number of nodes 
for the firefly/gossip model and for TSAE experiments 
described in [2]. Different partner selection strategies and 
distributions of anti-entropy sessions were tested to find 
the most effective way of reducing the update latency. In 
[2], it was found that nodes choosing to have anti-entropy 
sessions with the most out-of-date nodes first worked the 
best. This oldest-first partner selection strategy gave 
reasonable update latencies when the time between two 
successive anti-entropy sessions was generated uniformly 
from the time interval [0.9T, 1.1T] where T is the flash 
interval.  

 

 
Figure 2: Graph to show how the average update 
latency varies with the number of nodes for the 
firefly/gossip model and for the TSAE with oldest-first 
partner selection strategy 

 
Figure 2 shows the increase in the number of nodes 

leads to larger synchronisation times. The synchronisation 
time scales well with the logarithm of the number of 
nodes, so a mathematical relationship can be developed to 
predict the synchronisation times for networks of any size. 

The partner selection strategy used in this paper is 
based on the timing of firefly flashing with the use of 
event records and Figure 2 shows that this strategy is more 
effective than the TSAE with the oldest-first partner 
selection strategy because of the lower update latency. The 
firefly/gossip model reduces the update latency by a factor 
of 4 because of the dynamic nature of the network that 
reacts quickly to the presence of a new policy. 
 
3.3 Different Network Topologies 

 
A square lattice of nodes is a simple topology but does 

not reflect a real network. The algorithm was tested on a 
random network based on the Autonomous System 
connectivity of the Internet. The connection matrix for the 
network was created using an Internet Topology Generator 
called Inet that gives networks of any size, the smallest 
containing 3037 nodes. The paper in [12] compares Inet to 
other generated topologies and Inet -2.0 was found to be 
suitable for modelling Internet-like characteristics making 
it good for testing how well the firefly/gossip model works 
in a real network.  

A text file of the connections between 3037 nodes was 
generated using Inet -2.0 to give the random network to be 
compared to a lattice network of 3025 nodes. The 
percentage of nodes that receive the new policy over time 
for both types of networks is given in Figure 3. Policy 
synchronization was achieved in the random network by 
increasing the amount of time the nodes had to remember 
their neighbours and the same was condition was applied 
to the lattice network to keep the test fair. 



 
Figure 3: Graph to show the percentage of nodes that 
have received a new policy over time in a random 
network and a lattice network 

 
Figure 3 shows that in the random network, the policy 

spreads very quickly in comparison to the lattice network. 
In the random network, the synchronisation time is 91 
epochs whereas in the lattice network it is 640 epochs. 
Node 0 is a highly connected node that has a high number 
of neighbours so when a policy is added to it, it takes a 
short time for copies of the policy to spread to the 
surrounding neighbours. In comparison, the spread of the 
policy is more evenly distributed in the lattice network so 
it would take a longer time. 

 
4 Conclusion 
 

Policy synchronisation can be implemented by using a 
weakly coupled adaptive gossip protocol where the timing 
of the gossips is related to firefly flashing. The result is an 
algorithm that is effective at spreading policies in the 
network if certain system parameters are optimised. A 
maximum flash interval has to be applied to allow the 
nodes to keep in memory a list of the neighbours to 
communicate with. To achieve optimal performance of the 
algorithm, the maximum flash interval has to be set at a 
value where the background traffic and synchronization 
time are reasonably low. 

The synchronisation time for networks of any size can 
be deduced from the results and can be used to program 
how long a node has to remember a policy before being 
able to delete it from its hash table. In comparison to other 
methods of partner selection strategies used in the TSAE, 
this firefly/gossip model is more effective at spreading the 
policies quickly.  

The algorithm worked better in the random network 
approximating Internet connectivity than it did in a lattice 
network. To ensure that policy synchronization was 
achieved in the random network, the amount of time the 
nodes had to remember their neighbours was much higher 
for the random network than the lattice network. This 

means that more memory is needed for the nodes of a 
random network to maintain larger event records so that 
less connected nodes are guaranteed to receive copies of 
the new policy even if they do not flash frequently. 

A limitation is that the experiments conducted are 
focused on a very simplified model of a complex network. 
For instance, it is difficult to determine what level of 
traffic is acceptable given that the nodes will have many 
other tasks to carry out. With more investigation this could 
be resolved and further work could also involve assessing 
how well the algorithm works in other network topologies 
such as ring, star, mesh, small worlds and scale-free 
topologies and investigating different policy arrival rates. 
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