

Ad hoc sensor network experimentation using the RCX by Mindstorms

Antonio E. Gonzalez-Velazquez
University College London

Electronic and Electric Engineering
Torrington Place,

London,WC1E 7JE,U.K.
ae.gonzalez@ucl.ac.uk

 Lionel Sacks
University College London

Electronic and Electric Engineering
Torrington Place,

London,WC1E 7JE,U.K.
lsacks@ee.ucl.ac.uk

Ian W. Marshall
BTexact Technologies

B54 Rm143 Adastral Park
Martlesham Heath Suffolk IP5 3RE

BTExacT Technologies
ian.w.marshall@bt.com

Abstract

In this paper we present work in progress on sensor
networks, specifically the testing of our hypotheses and
improvements made to the platform we chose for
prototyping: The RCX by Mindstorms. RCX is better
known for its practical robotics characteristics and it
has a wide set of running applications developed by the
community; however, we identified some internal
characteristics such as the micro operating
environment and minimal resources, like computing
power, battery among others, that made it a good
prospect for being considered as a ready-node in an ad
hoc network, a unique assignment for it.

Having an existent ready-node for sensor ad hoc
networks prepared to behave as one is distinctive, and
we take the opportunity to describe in this paper why
the RCX can be advantageous and suitable for these
activities. We will introduce a new ad hoc
communication protocol with special characteristics
that has been implemented and still is in the stage of
experimentation and collection of data, running on a
group of RCX over a modified version of LegOS using
the infrared interface. The introduced Find-a-friend
communication protocol, proposes a simple mechanism
for establishing communication in an autonomous and
self-configured group of nodes.

Introduction

Sensor networks have specific restraints and conditions
that have attracted consistent research; although some
of these characteristics have been extensively
modelled, there is still no agreement on a definite
structure or conditions. Most of the relevant research
has proposed algorithms and methods for sensor
networks assuming specific conditions, outside of
those conditions the algorithms and methods cannot be
easily extended, and consequently, comparing them is
not an easy task. On the other hand, having these
specific scenarios exposes a different approach to the

traditional interest for finding the only-standard-agreed
method.

The well-known “Robotic Invention System”(RIS) by
Mindstorms has frequently attracted the attention of
enthusiasts for its abilities to respond to external input;
it comes with a graphical programming environment
and software Developers Kit to use its functionality to
programs running on the Windows platform. Robotics
has been the main use for RIS, along with some people
who have proposed and successfully employed
upgraded programming environments such as TinyVM,
NQC, legOS and lejOS.

The “programmable brick” as it is known by the
community, is the heart-and-brain of RIS containing an
8-bit MCU with its related peripherals and companion
circuitry; legOS and other environments base their
efforts on the simplicity of the RCX design to
implement “operating systems” that should drive this
small specialized computer for their robotic purposes.
The MCU is the HD8/3292, the smallest member of the
3297 Hitachi family of micro-controllers, within the
H8/300 8-bit architecture. It internally holds 16KB in
ROM and 512B in RAM, uses 8-bit addressing,
contains 16KB masked ROM meanwhile the 32 KB
RAM are accessed as external in the address map, it
uses an Infrared interface for downloading and
communication purposes.

In this paper, we start depicting the RCX as the
physical corpus in an ad hoc network node. Given
characteristics for nodes in an ad hoc network outlined
in previous papers, we are going to address the issue of
whether or not it is feasible to adapt the RCX to
support an operating environment specifically for the
task.

We will explain the specific implementation of an ad-
hoc communication protocol for sensor networks using
the RCX as the model node that could favourably
extend features currently available for this platform
and allow us to experiment and develop better
understanding of some of the complexities in this field.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/92004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Related work

In 1997, Evans et al proposed a platform for embedded
mobile networking in its Piconet Project 1. Although it
had different strategies for network transport, it
addressed concerns for platform design and
implementation details for updating software at nodes.
There has been general recognition of the importance
of the sensors as the simplest devices participating in
an ad hoc network, and 2 is a good example where
members of UC Berkeley outline their project named
Smart Dust, in which they aimed to build simple nodes
that were wireless sensors measuring 1 mm3. They
inserted a well-equipped and full-featured node called
the “base station” to assist in several tasks in their
proposals, reducing the load on the smaller nodes with
some loss of flexibility for mobile behaviour of the so-
called “motes”. This project includes practical
observations for actual limitations of executing security
algorithms in suitable micro-controllers and micro-
processors living inside the energy limited sensor
nodes. They also provide specific proposals to
overcome these limitations.

A great deal of research has been carried out in the area
of sensor networks, giving the variety of immediate
applications envisaged, as in 3-10 where the wide range
of proposals can be easily identified, each with a
specific focus and assumptions. What begins to
emerge are efforts to take into consideration energy,
location, complexity and security issues on widely
dispersed but highly vulnerable nodes.

Why an Ad hoc network could be a good place for
the RCX

We have explored ad hoc networks issues, and chosen
to focus on simple devices as the physical holders for
the participant nodes. Projects like SmartDust have
already used 8-bit MCUs with single sensor inputs, and
they have explained their reasons to support their
choices.

The limitations for memory, CPU power and battery,
have driven the conceptualisation of the nodes; finding
a suitable platform with the right operating
environment is not an easy task. Basically, there are
two choices for the hardware platform, as well as for
the operating environment: use an existent one or
develop a new one.

The RCX possesses a unique combination of
characteristics:

− The computation platform has proven suitable
and reliable for task driven endeavours,
although there are no metrics available at the
moment.

− IR is reliable and functional for extending ad
hoc communication

− There is a complete set of hardware drivers
already available for their main inputs/outputs

− It is energy conscious and has a sense of
mobility

− Amongst its operating environments, LegOS 11
is one of the most stable and the full code is
open to public participation under the GNU
licence.

Using RCX-LegOS12 as the developing platform for ad
hoc efforts looks promising; it could give the facility to
quickly implement ideas from the notebook and try
them out in the field field. We should find out if using
the RCX-platform in this way could provide better
conditions than developing a complete new one
without having all the requirements in advance.

Given our interest in making the nodes self-
configuring, self-upgradeable and autonomous, I think
it is crucial that our platform is able to “survive” in the
ad-hoc network with a minimal amount of dependency
on user intervention. Code in RAM cannot be
completely reliable given volatile characteristics in
storage, faults and phases between changes of
operating environment.

LegOS Network Protocol (LNP)

LNP is the LegOS communications module; it provides
basic communication functionalities to programs
through a simple set of calls. It takes advantage of the
IR interface available and the basic communications
skills built on the RCX.

Basic IR communication in the RCX
As in 13 describes that the RCX uses a 38kHz carrier,
with sampling rate at 2400 bps, which makes each bit
approx 417µs; the IR protocol associated with sending
a "message" to the RCX corresponds to bit encoding is
2400 bps, NRZ, 1 start, 8 data, odd parity, 1 stop bit. A
'0' is coded as a 417us pulse of 38kHz IR, a '1' bit is
417us of nothing to send.

Meanwhile for the packet level every packet has the
form :
 0x55 0xFF 0x00 D1 ~D1 D2 ~D2 ... Dn ~Dn C ~C
where D1...Dn are the message data, and C = D1 + D2
+ ... Dn.

The data for sending an IR message is F7 followed by
the 8 bit "message". For example, the following is a
packet sending the message “0x12” to the RCX:
 0x55 0xFF 0x00 0xF7 0x08 0x12 0xED 0x09 0xf6

Kekoa14 writes:
“The scheme used to transmit data results in an equal
number of zero bits and one bits, allowing a receiver to
compensate for a constant signal bias (caused by

ambient light) simply by subtracting the average signal
value. Note that the header also has an equal number of
ones and zeros; this warms up the receiver before the
real data arrives.”

The basic use of this format is the interchange of
opcodes between RCX and the IR tower connected to a
PC; the opcodes activate specific actions and stored
functions on each side, having some specific reply and
others do not expect one.

Internals in LNP

Luis Villa mentions: “LNP has two messaging layers,
the integrity layer and the logical layer. The integrity
layer makes sure that packets get through uncorrupted,
but they aren't directed anywhere in particular. The
logical layer adds addressing on top of the integrity
layer, so that packets can be directed to a specific port
on a specific device.”

The programmer has the opportunity to use pairs of
functions for receiving and sending messages, with the
difference of having an addressed port and RCX Id, or
not addressing information. The latter could be
considered to be similar to a broadcast message, given
that it indicates to all the potential receivers that the
message could be for everyone. One application should
always be set up and ready to receive the appropriate
messages in order to read its contents.

The addressed port and RCX ID use one byte in the
message transmitted using an agreed subnet mask,
giving up to 255 potential different combinations of
addresses and ports; an additional transmitted byte
used as a checksum provides the opportunity for
detecting simple errors in the transmission.
Additionally to the previous functions, programmers
could call functions relative for lnp_logical_write() that
do not use the previous addressing scheme and allows
different frame structure to be built. Although the
routines for detecting collisions15 for sending and
receiving are limited, it gives primary detection for
listening to IR echoes and they are effective for the
common use the RCX usually has.
LNP was intended as a protocol to extend the
communications facilities for robotic purposes, and
allows the users to have the opportunity of having a
means of collaboration from the program itself outside
of the pre-built functions. Every RCX in LNP has the
chance of receiving all the packets in sight, but it is not
able to do anything else but receive them by a program.

Find-a-friend: an Ad hoc Protocol for Sensor
Networks
Once we identified that RCX could be a suitable
platform for executing real ad hoc functions, we
needed to build a suitable communication mechanism

for the members of the network. RCX characteristics,
particularly the Infrared interface, along with our
previous work gave the main elements for proposing
Find-a-friend, as an ad hoc protocol.

In the proposal of Find-a-friend it has been considered
that RCX’s Infrared interface represents a directed
transmission with no carrier sense, and some basic
medium access should be implemented. When a
specific node is not in the illumination cone of any
sender, our specific could potentially spin or move
itself through the space available until it has contact
with the scope of another member of the network.
Although is possible to increase the range of the
transmission to cover longer distances, that does not
guarantee the existence of a node and in close
environments can easily induce more “infrared light-
noise”.

Thus Find-a-friend makes it essential for these nodes to
find at least one “friend” to communicate with, and
makes the vicinity area a more desirable space where
the nodes can “live”. Further optimisation to this
vicinity could bring more benefits.

In order to keep most of the information available
fairly current, and to produce information for nodes to
evaluate and reconsider their decisions, we have
produced a mechanism for unattached data spreading,
similar to gossiping. A single node always has the
ultimate decision whether to assess this data and
evaluate actions, including its own, that could affect its
participation in the network.

We have been building this protocol expecting to
provide a simple and small set of function calls for
accessing its functionalities, increasing the range of
applications to be tested adding to the wide set already
available from the LegOS and RCX community. We
expect to develop better understanding of running
sensor applications using ad hoc networks, and reduce
the time to implement improvements and carrying
experimentations.

The following scenario has been assumed:

 There are RCX freely available in a close
environment, with limited “light noise”

 There may be access to one or more “super-
nodes”, with potential additional capacities
and needs, able to share information about
their findings.

 The nodes are able to collect sampling data
for themselves with local parameters and
policies.

 Nodes are happy to share information about
their collection if some flow is established,
whenever they belong to the same group.

 There is no explicit demand to establish one
route from every node to every other,

therefore the routes are built by demand and
kept current locally.

 The nodes push feed back to their
neighbourhood for two main reasons: to
spread information about their general success
and state, and to give the opportunity to the
original sources to accomplish end to end
decisions to improve efficiency transmission
as required.

 Long latency is expected.
 No specific topology is explicitly expected,

and the number of members could start from a
handful to a few dozen; a larger number of
nodes has not yet received attention, although
there is no indication that this could not be
faced.

 Nodes are willing for cooperation adding
source route information to a request packet

Main components

Hello/Heartbeat
This process should be permanently running, in a
periodic/event basis. When the node starts operation, it
is used for sending advice to the vicinity about its
presence. The listeners do not have an enforced action
to do, although in the best cases, they could add the
presence of the node in this vicinity.
When running in a periodic basis, every node should
find suitable to its own conditions, a period of time in
which it has not transmitted data and wants to keep
others informed about its presence and status. The data
sent should comply with the Fellowship-Dataframe
(FD) containing information potentially useful to other
members. In this case this process is similar to the
implementation of Hello or Heart beat similar to other
proposals.
When the node has been transmitting in recent time, it
doesn’t need to send “Hello type” messages, given that
the others are aware of its presence; the node might
wish to send the FD as a piggyback of its
transmissions, either as a broadcast or as an addressed
message.
This process should be checking the Last-time-to-
transmit (LTT) register to identify it it is necessary to
broadcast a new FD.

Find-a-friend/find-fellowship
This process is very important for our proposal, given
that it holds the task of finding a suitable
fellow/fellowship to be attached to. If it succeeds, it
will use the fellowship information available to arrange
its conditions, such as battery power, range, direction,
position, etc.
Fundamentally, finding a suitable fellowship to
communicate with enables the node to know the
conditions and reach their scope in terms of members
and services. For the incoming node, it allows it to

share more efficiently the shared transmission medium,
for those already members of the fellowship, it can
activate this process in order to extend or widen the
actual scope of the fellowship using local resources
they are willing to provide, eg, increase power range in
order to help some messages to reach beyond the local
vicinity.

Using this process, the node is able to update its
Fellowship table (FT) and being able to take decisions
around more reliable nodes, and their conditions and
experiences they are having in the vicinity. Every node
should handle this information for its own purposes.

Route-Request (RR)/Route-Request-Reply (RRR)
This implementation is similar to other common and
widely available dynamic routing protocols. The
purpose of transmitting a message carrying this flag is
to request information about acknowledging a path
where the source could reach the final destination.
Given this definition, the kind of answers it is possible
to obtain are not restrained to direct communication of
the respondent, they also include potential routes that
the respondent has been receiving depending on his
own conditions of freshness. The freshness could be
modified for the respondent if it evaluates there are not
conditions where it can be trusted, given time, contrary
indications, and similar.

For our specific scope, it is more likely to receive this
kind of hard routes prior to establishing
communication with the Tower, collector of samplings
and potential generator of control requests to nodes.
Having specific routes to a very common target
reduces overhead on finding dynamic routes for every
node, and particularly it opens the opportunity to build
a trended “flow” of data to the collectors of
information or other strong source of data requests.

Not many applications in this environment should
require a FR, and those should be ready to afford costs
associated to keeping a FR current; there are other
elements that could help to decrease or increase the
premiums of having FR implemented, like mobility,
CPU consumption and nodes likeliness for going to
sleep for saving power.

Time to Live
This implementation still requires revision from a
wider perspective. So far it has been useful for
controlling the number of requests flowing in the actual
network. However, it is envisaged that further
information from bigger simulations or deployments
could be helpful to distinguish the relevance of this
implementation.
Its original purpose is to avoid having messages
running over very long periods of time in the network
and preventing broadcasts from flooding far outside the
vicinity. We plan to develop new tools to improve
control of long-lived packets.

Transmission Window
The transmission window is the mechanism used to
receive and transmit messages prior to reaching the
medium. In this way, Window Array (WA) should
always be available with information about messages
being transmitted and received. Similar to the Sliding
Window implementation in TCP/IP suite, but there
should be modifications to the size and use in this
environment, given the longer latency for each
message and the lack of requirements for a tight
handshake between sender and receiver, in some cases
the sender could not have a known receiver prior to the
transmission.

The sliding window implementation could be very
helpful in the cases where some route RR has been
issued, and some RRR is in the way. If a specific
application requires better knowledge of the reception
at the other end, it is recommendable to implement a
fixed route first, and then use this route as long as it is
possible to receive further FD that helps it to
understand the effectiveness of the approach. Sending
duplicate data should not be discarded.

Given that sensor nodes have reduced resources, how
they select the moment for next transmission (TNT)
and the amount of data they can keep before they start
discarding data are important decisions. Collecting
more precise results about suitable Total travelled time
(TTT) for each packet could help to develop better
understanding of this problem; it is expected that this
number increases in proportion with the size of the
network among other characteristics.

For this kind of working environment, I am proposing
that the transmission between sender and transmitter
should keep as little state information as possible, and
trying to have more understanding with the members of
its vicinity about environmental conditions; in cases
where the node requires a more reliable circuit setting a
Fixed route represents an appropriate alternative.

Fellowship-Dataframe(FD)
This data structure is fundamental in the design of this
proposal. This dynamic self-contained structure
provides the main mechanism for spread “vicinity
awareness”. With its vicinity scope, spontaneous
distribution and uncommitted data, the nodes receive
and transmit this structure for sharing its status with the
rest of the vicinity.

After receiving this structure, a node could use it to
assist its awareness about its environment and
potentially its own performance according to its
neighbours’ perspective. At least a couple of them have
been implemented, describing the basic node
transmission status (collisions, successes, succeeded
forwards, total packets transmitted, and known direct

neighbours) and its hardware status (program version,
energy and running time since last upload).

The assumptions to model this structure and send it,
either periodically or event based are:

- Once the vicinity where the node is running
has been identified, reducing the number of
collisions and increasing the performance for
data transmission represent the next challenge.
It is envisaged that the nodes could implement
some method for coordination of efforts, and
have a closer anticipation of potential
transmitting nodes.

- Given the former, the nodes have the choice
of either:

o Listening to the medium and locally
evaluate the moment for trying its
Time for next transmission (TNT):

 Indicating its new presence
in the neighbourhood

 If enough resources, and
probably active in
transmission, broadcast its
Local-Fellowship-
Dataframe (LFD)

 Send regular data with or
without FD

o Listening to the medium and update
its LFD

o Listening to the medium and given
its own resources, broadcast its LFD.

o Avoiding listening to the medium
and save resources (may be going to
sleep-mode and saving energy) and
may be calculating its time for
awakening.

Every node has three choices for sending its packet,
either broadcasting or addressing a message to a
specific member of the fellowship and using a
previously established Fixed Route (FR). A node could
evaluate the appropriate next hope node (NHN) to
whom it should address the next message, given its
own LFD and the understanding it can estimate from
the vicinity, based on elements like known neighbours
and their performance, their recent forward-success
history and their perspective.

This proposal has specific interest in demonstrating
how the loose control of routing and high collaboration
in the neighbourhood could be useful on specific ad
hoc sensor networks.

Further work

We are in the process of implementing a method to
evaluate with more accuracy how our proposal is
working, how each node sees, records and reports its
performance is one of the main issues under

evaluation. We are looking forward to evaluating the
gathered results and making further adjustments.

We will need to do further analysis and tests to provide
a stable API to offer the proposed functionality be used
by programs running under the LegOS environment,
and at the same time evaluate how the operating
environment in LegOS is suitable for this new set of
challenges.

We still need to consider when simulation could be
brought to this project; we would like to implement its
corresponding simulation model for adding elements
different to those available in the implementation stage.

Conclusion
We have presented a specific experience for ad hoc
sensor networking using the RCX device as a ready
node for experimentation; we believe that this
approach will bring even more benefits for our ad hoc
networking interests once a reliable and stable
communication protocol is in place. Find-a-friend
proposes a simple decision mechanism for cpu
constrained devices to establish medium to constant
communication with specific interest and reliance in
the vicinity of the node, drawing a specific scenario for
data flowing through the network, leaving
opportunities for further improvement and for
considering further capabilities.

Reference List

 1. F. Bennett et al., IEEE-Personal-
Communications.vol.4, no.5; Oct.1997; p.8-15
no.5; Oct. 1997; p.8-155, -155 (1997).

 2. J. Hill et al., Acm Sigplan Notices 35, 93-104
(2000).

 3. R. A. Burne et al., Proceedings-of-the-SPIE --
The-International-Society-for-Optical-
Engineering.vol.3713; 1999; p.238-48 of-the
(1999).

 4. S. Arnon, Electronics-Letters.vol.36, no.2; 20
Jan.2000; p.186-7 no.2; 20 Jan. 2000; p.186-
77, -77 (2000).

 5. K. Sohrabi, J. Gao, V. Ailawadhi, G. J. Pottie,
IEEE-Personal-Communications.vol.7, no.5;
Oct.2000; p.16-27 no.5; Oct. 2000; p.16-277,
-277 (2000).

 6. E. Shih, B. H. Calhoun, H. C. Seong, A. P.
Chandrakasan, Proceedings IEEE Computer
Society Workshop on VLSI 2001.Emerging
Technologies for VLSI Systems.IEEE

Computer Society, Los Alamitos, CA, USA;
2001; xiv+177 pp.p.16-21 Los Alamitos, CA,
USA-211 (2001).

 7. W. W. Manges, Sensors.vol.17, no.5; May
2000; p.72-7 no.5; May 2000; p.72-77, -77
(2000).

 8. S. S. Iyengar, Computer-Science-and-
Informatics.vol.21, no.1; July 1991; p.29-41
no.1; July 1991; p.29-411, -411 (1991).

 9. R. Min et al., VLSI Design 2001.Fourteenth
International Conference on VLSI
Design.IEEE Comput.Soc, Los Alamitos, CA,
USA; 2001; xxxvii+541 pp.p.205-10 Los
Alamitos, CA, USA-100 (2001).

 10. M. Fondl and L. Linse, Sensors.vol.17, no.12;
Dec.2000; p.29-31 no.12; Dec. 2000; p.29-
311, -311 (2000).

 11. Noga, M. L. "Designing the legOS
multitasking operating system". Dr.Dobb's
Journal . 1-11-0099.

 12. S. Nielsson, "Introduction to the LegOS
kernel"
2000).http://news.lugnet.com/jump.cgi?htt
p://legOS.sourceforge.net/docs/kerneldoc.
ps

 13. Villa, Luis. LegOS HOWTO. LegOS WWW .
1-10-2000.

http://legos.sourceforge.net/HOWTO/

 14. Kekoa Proudfoot. RCX Internals. Kekoa
Proudfoot web site . 1-1-1998.

http://graphics.stanford.edu/~kekoa/rcx/

 15. LegOS news group. LEGO®
MINDSTORMS(tm) Internals. LegOS WWW
. 23-5-2002.

http://www.crynwr.com/lego-robotics/

