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Biomass availability is one of the key factors for biogas production in the future. 
The current status and possibilities for utilizing harvest residues (soybean straw, corn 
stover and sunflower stalk) in Croatia for biogas production is given. In the last few de-
cades, different pretreatment methods have been developed for the degradation of differ-
ent lignocellulosic biomass, but many of them are environmentally unfriendly and some-
times very expensive. More research and development is necessary in order to find both 
economically and environmentally friendly pretreatment methods. This paper provides a 
review on the mechanical, physical, and biological methods used for different lignocellu-
lose material pretreatment. Harvest residues are usually left in the field, but with the 
improvement of the pretreatment process along with soil protection, they could be used 
for the production of huge amounts of energy in the future.
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Introduction

Overall pollution and the need to reduce green-
house gas emissions, issues related to human and 
animal health and food safety, the constantly grow-
ing trend in fossil fuel consumption and fast-grow-
ing economies, are warning signs of an energy and 
human society crisis.1–3 The Kyoto Protocol, the EU 
Renewables Directive 2001/77/EC, and the Europe-
an Biomass Action Plan are concerned about these 
world problems striving to encourage the develop-
ment of the renewable energy sector and conse-
quently reduce waste production and greenhouse 
gas emissions as well as increase energy efficiency, 
which would all lead to a more sustainable future.2 
With its full EU membership, Croatia is committed 
to achieve the aforementioned goals, and is there-
fore obliged to adopt a National Renewable Energy 
Action Plan. This document states that, in 2020, 
solid biomass (wood biomass and biomass from ag-
riculture) will play the main role in total renewable 
energy for the production of thermal energy in Cro-
atia.4 As Croatia’s import dependence on energy 
supply increases each year, the utilization of alter-

native energy sources becomes a major issue for 
future development. Renewable energy technolo-
gies have many benefits, like reduced greenhouse 
gas emissions, decreased fossil fuel use and energy 
resource diversification. Agricultural biomass ex-
ploitation is favorable in the Slavonia and Baranja 
and Vukovar-Srijem Counties, in the eastern part of 
Croatia where the highest biomass energy potential 
is estimated through thorough analysis.5,6

Out of Croatia’s total area, around 52 % is ag-
ricultural land7. Agricultural land refers to land that 
is arable, under permanent crops, or under perma-
nent meadows and pastures.8,9 Almost 1/3 of the ar-
able land is under corn, soybean and sunflower pro-
duction.7 Harvested areas and production of corn, 
soybean and sunflower for a period of 5 years 
(2010–2014) in Croatia is presented in Table 1. 
These three crops generate considerable amounts of 
residues, and are therefore an important source of 
energy.10 It has been estimated that, based on a 
10-year-period (2002–2011), 367 million tons of to-
tal agricultural residues are annually produced in 
the EU, whereas 62 million tons is contributed from 
corn production, 9 million tons from sunflower pro-
duction, and 2 million tons from soybean produc-
tion.11 If one-third of the residues should remain in 

*Corresponding author: Marina.Tisma@ptfos.hr, phone number:  
+385 31/224-358, fax number: +385 31/207-115

doi: 10.15255/CABEQ.2016.985

Review 
Received: September 30, 2016 

Accepted: July 24, 2017

Đ. Kovačić et al., Soybean Straw, Corn Stover and Sunflower Stalk…
187–198

This work is licensed under a 
Creative Commons Attribution 4.0 

International License

mailto:Marina.Tisma@ptfos.hr
https://doi.org/10.15255/CABEQ.2016.985
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


188	 Đ. Kovačić et al., Soybean Straw, Corn Stover and Sunflower Stalk…, Chem. Biochem. Eng. Q., 31 (3) 187–198 (2017)

the field to maintain soil moisture, protect soil car-
bon, nutrients and soil structure, and to reduce ero-
sion, and one-third is mainly left for other uses like 
animal feeding and bedding, then around 122 mil-
lion tons of residues are currently available for bio-
energy in the EU.12

Considering the possibility of bioenergy pro-
duction in Croatia (Table 2), the technical potential 
of corn stover is estimated at 0.37 million tons, soy-
bean straw at 0.02 million tons, and sunflower at 
7.8 thousand tons. An average value for a 5-year 
(2010–2014) production was used for calculating 
total production based on harvest index. Harvest in-
dex is the term used to quantify the yield of a crop 
species (grain, tuber, or fruit) versus the total 
amount of biomass that has been produced, and is 
defined as the ratio of yield to total plant above 
ground biomass. There is a wide variation in the 
data because yields and above ground biomass can 
vary widely from year to year and by soil type.13 
For this calculation, recommended harvest indices 
were used for all three plants.

In order to determine the estimation of residues 
production based on harvest index (marked as A), a 
5-year average production was multiplied by the 
harvest index value*. Thirty percent of A was as-
sumed to remain in the field for soil protection (data 
marked as B). Moreover, if the difference between 
A and B is multiplied by 0.3 (assumption that 30 % 
of residues could be used for technical potential), 
the amount of residues that could be used as techni-
cal potential is obtained (marked as C). The rest is 
needed for livestock support.

The world production of corn, soybean, and 
sunflower for the period 2014–2015 was 1009.68, 
318.57, and 39.62 million tons, respectively.14 Ac-
cording to the recommended harvest indices, annual 
residues of corn, soybean and sunflower for that pe-
riod were determined as 1009.68, 318.57, and 15.85 
million tons, respectively.

Utilization of slurries and manures from pigs, 
cattle and other domestic animals (resource easily 
available on many farms) together with the afore-
mentioned agricultural residues, through anaerobic 
co-digestion creates biogas, a renewable source of 
energy.15,16 Anaerobic co-digestion of agricultural 
wastes and residues is supposed to be one of the 
main alternatives in the energy sector because it is 
considered a complete waste-to-energy transforma-
tion.1

Biogas plants can be categorized according to 
the type of digested substrates, according to the 
technology applied or according to size. In Europe, 
there are many agricultural biogas plants and they 
usually co-digest manure and energy-rich co-sub-
strates, like different plant extracts, plants, weeds, 
crop residues, and ensiled materials that are avail-
able naturally in the surroundings.17,18 Manure is 
rich in nitrogen but lacks carbon, so using manure 
alone may not represent the most efficient way to 
produce biogas. Therefore, a high carbon content 
plant material is usually added as co-substrate to 
improve the C/N ratio and decrease the risk of am-
monia inhibition.19,20 Common plant materials which 
are mostly used in European biogas plants are crops 
and silages, and they present first generation biogas.

However, crops are the most important source 
of food and feed in the world, and the food demand 

*Calculations are based on the recommended harvest index: for corn 
1.0, soybean 1.0, and sunflower 0.4.

Ta b l e  1 	–	Harvested area and production of corn, soybean and sunflower in Croatia for a 5-year period

  2010 2011 2012 2013 2014

Corn
Harvested area (ha) 296 768 305 130 299 161 288 365 252 567

Total production (t) 2 067 815 1 733 664 1 297 590 1 874 372 2 046 966

Soybean
Harvested area (ha) 56 456 58 896 54 109 47 156 47 104

Total production (t) 153 580 147 271 96 718 111 316 131 424

Sunflower
Harvested area (ha) 26 412 30 041 33 534 40 805 34 869

Total production (t) 61 789 84 960 90 019 130 576 99 489

*Source: Croatian Bureau of Statistics, 2015

Ta b l e  2 	–	Average production of corn, soybean and sunflow-
er in Croatia for a 5-year period (2010–2014) and 
average technical potential of their residues

Corn Soybean Sunflower

5-year-average production (t) 1804.081 128.061 93.366

Estimate of residues production 
based on harvest index (t) A 1804.081 128.061 37.346

30 % of residues needed for soil 
protection (t) B 541.224 38.418 11.204

30 % of residues for technical 
potential (t) C 378.857 26.893 7.843
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is expected to increase in the future. Additionally, 
using crops as feedstock for biofuels production 
may have a huge impact on biodiversity and land 
use, but the main problem is the food vs. fuel con-
troversy. As a replacement, one way to avoid the 
negative effects of producing biofuels from food 
supplies is to use lignocellulosic biomass. In other 
words, second-generation feedstocks should be fa-
vored. These second-generation feedstocks are lig-
nocellulosic agro-industrial byproducts which have 
no market and are destined for landfills or remain in 
the fields after harvesting. However, current tech-
nologies for processing these feedstocks are not 
cost effective and are still being developed, because 
there are a number of technical barriers that need to 
be overcome.21,22

Currently, there are 13 biogas plants in Croatia 
(according to the Croatian Chamber of Economy re-
port of March 201523), and 10 of them are using 
agricultural feedstock (mostly manures as the base 
substrate, and silage as the co-substrate) in the pro-
cess. None of them co-digests harvest residues like 
straws and stovers.

According to the European Biogas Association’s 
(EBA)24 Biogas Report 2016, there were 17  376 
biogas plants in Europe by late 2015. Most of them 
are producing biogas from agricultural feedstock 
like energy crops, agricultural residues, catch crops, 
and animal manure. Usually, this is performed by 
anaerobic co-digestion of animal manure and agri-
cultural feedstock. Only a few biogas plants are 
producing biogas using harvest residues.25 The po-
tential from agriculture is still largely unexplored 
and unexploited, and this sector is expected to have 
huge growth rates in the coming years.26

The objective of this paper was to provide a) an 
overview of the annual production of corn, soybean, 
and sunflower, and their harvest residues in the 
world and in Croatia; b) information on lignocellu-
lose-rich material chemical composition, and c) an 
overview of different environmentally friendly pre-
treatment methods for bioconversion of harvest res-
idues in order to achieve higher biogas yields via 
anaerobic digestion (AD).

Agricultural lignocellulosic biomass

The term “lignocellulosic biomass” refers to 
higher plants, softwood or hardwood. The composi-
tion of agricultural lignocellulosic biomass depends 
on its source, but typically is comprised of about 
40–50 % cellulose, 20–30 % hemicellulose, and 
10–25 % lignin.27,28

Cellulose is the main component of lignocellu-
lose cell walls, which gives a plant hardness and 
chemical stability. It is a linear polysaccharide poly-
mer made of long chains of cellobiose units linked 

via β-1,4 glycosidic linkages. In the cellulose 
chains, a number of hydroxylic groups are present-
ed leading to the formation of hydrogen bonds, 
while cellulose chains are interlinked by hydrogen 
bonds and van der Waals forces. Because of differ-
ent orientations throughout the structure, cellulose 
molecules have different levels of crystallinity – 
low crystallinity (amorphous regions), and high 
crystallinity (crystalline regions).29 The crystalline 
form prevails in the major part of the cellulose and 
is hardly hydrolyzed in comparison to amorphous 
form. It is therefore expected that high-crystallinity 
cellulose will be more resistant to enzymatic hydro-
lysis, but reduction of crystallinity will increase the 
degradability.30

Hemicellulose is a term used to represent a 
family of polysaccharides, such as pentoses (xylose 
and arabinose), hexoses (glucose, galactose, man-
nose and/or rhamnose), and acids (glucuronic acid, 
methyl glucuronic acid, and galacturonic acid).27,29,31 
The dominant component of hemicelluloses from 
hardwood and agricultural plants is xylan, while in 
softwoods glucomanan dominates. Hemicelluloses 
have a lower molecular weight than cellulose and 
are more amorphous, random, and branched with 
little strength that makes it highly susceptible to bi-
ological, thermal, and chemical hydrolysis.29,32

Lignin is the most complex polymer in nature.27 
It is a large and complex aromatic and hydrophobic 
amorphous heteropolymer consisting of three dif-
ferent phenylpropane alcohols: p-coumaryl, conifer-
yl and sinapyl, and their quantity varies according 
to species, maturity, and the space localization in 
the cell. Lignin gives the plant a structural rigidity, 
impermeability, and resistance against microbial at-
tacks and oxidative stress. It is insoluble in water 
and optically inert, and therefore very difficult to 
degrade. The higher the lignin content, the greater is 
the resistance of the biomass to degradation. Lignin 
is a major barrier in the lignocellulosic biomass bio-
conversion process.29,32

Harvest residues could be a good source for 
AD, due to large availability of biomass. However, 
agricultural biomass like sunflower stalk, corn sto-
ver, and soybean straw contain complex structure of 
lignocellulose, and does not contain easily fer-
mentable free sugars (Table 3). Therefore, its bio-
transformation to biofuels cannot be easily conduct-
ed.33–36

However, these lignocellulosic biomasses con-
tain soluble, fermentable sugars (Table 4), natural 
intermediates in conversion to biofuels, but access 
to sugars is hindered by the recalcitrance of plant 
cell walls. Therefore, deriving sugars from this ma-
terial requires mechanical, physical or chemical dis-
ruption.51
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Pretreatments of lignocellulosic biomass 
as a crucial step in biogas production

Pretreatment is a crucial process step for the 
bioconversion of lignocellulosic biomass into biofu-
els. There are a number of different pretreatment 
technologies developed, but there are also technical 
barriers that make them expensive.27 Pretreatment 
methods should be economically and practically vi-
able57, should improve the formation and avoid the 
loss or degradation of carbohydrates, avoid the for-
mation of byproducts that are inhibitory to the hy-
drolysis and fermentation processes, and avoid con-
sumption of chemicals.58

The goal of the pretreatment process is to: (a) 
increase the surface area and porosity of the bio-
mass, (b) alter lignin structure, (c) depolymerize 
hemicellulose, (d) remove lignin, and (e) reduce the 
crystallinity of cellulose.27,58

Pretreatment methods can be divided into dif-
ferent categories: mechanical, physical, chemical, 
biological and various combinations of these.27,29,32 

Further in the text, the most common pretreatment 
methods used for corn, soybean and sunflower har-
vest residues (or the residues similar to them ac-
cording to the chemical composition) are discussed 
in more detail. To our knowledge, the AD of soy-
bean straw and sunflower stalk has not been studied 
in detail so far. Therefore, there is not much infor-
mation on their degradability and possibility of uti-
lization for biogas production. Generally, only a 
few authors have conducted research on these feed-
stocks regarding biofuels production. In contrast, 
there is much more research conducted using corn 
stover. Pretreatments that are quite expensive and 
aggressive to nature have mostly been studied so 
far. The aim of this paper was to present pretreat-
ment methods that do not apply aggressive chemi-
cals and agents, and are not harmful to nature, as 
well as to emphasize the need for their further de-
velopment and improvement.

Mechanical pretreatment

Mechanical pretreatment is considered one of 
the most expensive processing steps in lignocellu-
lose biomass conversion. However, it is also a cru-
cial step which greatly contributes to the increase in 
hydrolysis efficiency and consequently higher bio-
gas yields59,60 It could be carried out easily by mills 
or shredders in every agro-biogas plant.61

The energy requirements of mechanical pre-
treatment depend on the type of the mill, initial and 
final particle sizes, material characteristics (amount, 
composition and moisture content).62 The choice of 
the right comminution device depends particularly 
on the moisture content in the material.60 Colloid 
mills and extruders are suitable for comminuting of 
wet materials with moisture contents of more than 
15–20 % (wet basis), while different milling devic-
es (hammer mills, knife mills, two-roll mills, attri-
tion mills) are suitable for comminuting of dry ma-
terials with moisture contents of up to 10–15 % 
(wet basis). The ball or vibratory ball mills, as uni-
versal types of comminuting devices, can be used 
for either dry or wet materials.30

Chipping, milling or grinding lead to the reduc-
tion of the particle size increasing the accessible 
surface area, reducing the degree of cellulose crys-
tallinity and the degree of cellulose and hemicellu-

Ta b l e  3 	–	Chemical composition of lignocellulosic biomass

Lignocellulosic 
biomass Parameter Content (%) References

Sunflower stalk

Total solids 94–96 36,37

Volatile solids 88–89 36,37

Cellulose 34–42 37–40

Hemicellulose 19–33 37–40

Klason lignin 12–30 34,37,38,40

Corn stover

Total solids 94–97 41,42

Volatile solids 88–92 41,42

Cellulose 31–41 32,40,41,43–45

Hemicellulose 19–34 32,40,41,43–45

Klason lignin 14–18 40,41,45

Soybean straw

Total solids 87–88 46,47

Volatile solids 91 48

Cellulose 25–49 49,50

Hemicellulose 12–29 49,50

Klason lignin 18 50

*All values are shown on a total solids basis (expect TS)

Ta b l e  4 	–	Polysaccharides composition in corn, soybean and sunflower harvest residues

Agricultural residue Glucan (%) Xylan (%) Arabinan (%) Galactan (%) Mannan (%) References

Corn stover 26.5–40.9 14.8–25.8 1.6–6.1 0.7–3.0 0–1.8 32,44,45,52,53

Soybean straw 34.09 11.4 1.0 1.8 1.8 54

Sunflower stalk 31.5–39.0 14.8–24.4 0.66–3.1 1.3–2.0 – 34,55,56

*All values are shown on a total solids basis
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loses polymerization.29,32 By breaking the large 
structures, the efficiency of the hydrolysis increas-
es.59 It is well documented that smaller particles are 
better digested in biogas production particularly if 
combined with some other pretreatment method.30 
Sharma et al.43 conducted experiments with differ-
ent particle sizes (0.088, 0.40, 1, 6 and 30 mm) of 
forest and agricultural residues, and found that the 
highest biogas yield was obtained using the smallest 
substrate particles (0.088 and 0.40 mm). Zheng et 
al.64 examined different particle sizes of corn stover 
and concluded that smaller particles (53–75 µm) are 
more susceptible to hydrolysis than larger particles 
(425–710 µm). Xiao et al.65 obtained higher meth-
ane yields by reducing particle sizes of alkaline pre-
treated corn stover from 5–20 mm to 0.075–5 mm. 
In their pilot-scale experiment, Schell and Har-
wood66 showed that lignocellulose particle size of 1 
to 2 mm is effective for hydrolysis. Menardo et al.67 
conducted various mechanical and thermal treat-
ments prior to AD of four agricultural byproducts. 
An net electrical energy balance was also complet-
ed to analyze the feasibility of the pretreatments ac-
cording to energy input and output. Mechanical 
treatment included particle size reduction to 5.0, 
2.0, 0.5, and 0.2 cm, whereas size reduction to 0.5 
resulted in the increase in methane yield and electri-
cal energy balance. Mshandete et al.68 investigated 
the effect of sisal fibre particle size reduction on 
biogas production. The sisal fibres were reduced to 
2, 5, 10, 30, 50, 70 and 100 mm particle size and 
anaerobically digested in mesophilic batch reactors 
with sisal wastewater sludge used as inoculum 
during 65 days. The results showed that the meth-
ane yield was inversely proportional to particle size, 
with respect to a best result obtained from 2 mm 
particle size which resulted in 23 % higher methane 
yield (0.22 m3 kg–1 VS) compared to untreated sisal 
fibres (0.18 m3 kg–1 VS). Liu et al.69 conducted 
steam explosion pretreatment of corn stover with 
particle sizes at 2.5, 2.0, 1.5, 1.0, and 0.5 cm in or-
der to improve its enzymatic digestibility. The re-
sults showed a higher amount of byproducts and 
lower sugar recoveries for the larger biomass parti-
cles (2.5 cm) during pretreatment, while sugar con-
versions and yields were higher during enzymatic 
hydrolysis. According to these results, larger corn 
stover particles would be more suitable for steam 
explosion pretreatment, reducing process costs at 
the same time.

Physical pretreatment

There are many different methods that are clas-
sified in this group, like steam explosion, hydro-
thermolysis, extrusion, and irradiation.29,30 Accord-
ing to Mtui,70 temperature and irradiation are the 

most successful physical treatments used in the pro-
cessing of lignocellulosic biomass.

In the process of steam explosion or autohydro-
lysis, the lignocellulosic material is heated to high 
temperatures (160–260 °C) with high-pressure satu-
rated steam (0.69 to 4.83 MPa) for a short time (a 
few seconds to a few minutes), and then the pres-
sure is promptly reduced to complete the reaction, 
which causes the material to explode. This method 
is one of the most common pretreatment methods 
for lignocellulosic material and is commercially 
available.29 Sunflower stalks were subjected to 
steam explosion pretreatment, in order to optimize 
pretreatment temperature in the range 180–230 °C, 
accompanied by enzymatic hydrolysis. The highest 
glucose yield was obtained at 220 °C, while the 
highest hemicellulose recovery was obtained at 210 
°C.39 Bondesson et al.71 pretreated corn stover using 
steam explosion with and without addition of sul-
phuric acid as catalyst, and examined the effect of 
residence time and temperature on glucose and xy-
lose recovery. The highest glucose yield was 
achieved after pretreatment at 210 °C for 10 min 
without the addition of catalyst and followed by en-
zymatic hydrolysis. The highest yield with the addi-
tion of catalyst was achieved at 200 °C for 10 min. 
The highest methane yield was obtained from the 
material pretreated with acid.

Hydrothermolysis or pretreatment in liquid hot 
water and high pressure is highly effective for en-
larging the accessible surface area of cellulose, for 
improvement of cellulose degradability and for en-
hancement of sugar extraction.29 Mosier et al.72 pre-
treated corn stover in liquid hot water and reported 
optimal conditions at 190 °C and 15 min, in which 
90 % of cellulose was converted by subsequent en-
zymatic hydrolysis. Chandra et al.73 pretreated 
wheat straw using hydrothermolysis which resulted 
in 9.2 % higher biogas yield and 20 % higher meth-
ane yield compared to untreated wheat straw sub-
strate.

Extrusion is a process that combines multiple 
operations, like high shear, temperature (60 to 300 
°C), and pressure (up to 30 MPa).29,74 Extrusion 
causes depolymerization of cellulose, hemicellu-
lose, lignin, and protein, and sometimes also ther-
mal degradation of sugars and amino acids. Hjorth 
et al.75 tested five agricultural biomasses (straw, 
fresh grass, solid fraction of manure, and deep litter 
from cattle) for the biogas production by using ex-
trusion as pretreatment. Extrusion accelerated the 
degradation of the majority of organic compounds 
which in turn increased methane yield by 18–70 % 
after 28 days of AD, and 9–28 % after 90 days of 
AD. The rate of biogas production from extruded 
materials was faster in comparison to untreated ma-
terials, especially when straw was used.
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Irradiation includes ultrasound, microwaves, 
gamma-rays, electron beam, and electrokinetic dis-
integration.29,30,74 Like in all other methods, when 
applying irradiation it is important to prevent the 
formation of inhibitors (e.g. phenolic compounds 
and furfural) by choosing the optimal process con-
ditions.29

Microwave technology is the most studied irra-
diation pretreatment method.29 It is effective in re-
ducing the lignin ratio and the proportion of cellu-
lose and hemicellulose, but usually combined with 
some chemical which is not favored.76–78 Deepanraj 
et al.59 suggested autoclave and microwave methods 
rather than thermal pretreatment of biomass material.

Ultrasound pretreatment disrupts cell wall 
structure and reduces the degree of polymerization. 
There is evidence that this pretreatment method 
cannot disintegrate lignocellulosic material, but it 
can improve accessibility to cellulose. It is usually 
used for pretreatment of water, industrial wastewa-
ter, sludge, manure, and different liquid effluents.74,79 
Liqian80 compared the performance of different pre-
treatment methods (thermal, chemical and ultra-
sound) on agricultural biomasses. Ultrasound had a 
positive effect on the methane yield (increase up to 
40 %) but considering the high energy input, it was 
stated as not profitable pretreatment.

Electric field or electroporation is used for a 
variety of processes in modern biotechnology but 
still has not been extensively studied, and the effect 
on lignocellulose is still not completely explained.74 

According to Kumar et al.,58 pulsed electric field 
can affect the structural changes in plant tissue in-
creasing the mass permeability and mechanical rup-
ture of the plant tissue. This method is currently of 
interest to the food industry.81 It is used for diffu-
sion of soluble substances, juice extraction, and de-
hydration.82–85 In biogas production high electric 
field strengths in the range of 5–20 kV cm–1 are 
used, causing the rupture of cells and creating pores 
in the cell membrane, making intracellular content 
available for fermentation. Electroporation also fa-
cilitates the entry of enzymes in the cell, causing 
the breakdown of cellulose and hemicellulose into 
their constituent sugars which are fermentable. 
Lindmark86 studied the influence of electroporation 
on lay crop silage for biogas production and con-
cluded that it holds the greatest potential for im-
proving the efficiency of a biogas plant.

Biological pretreatment

Biological pretreatments mainly include fungal 
pretreatment, pretreatment by microbial consortium, 
and enzymatic pretreatment. The most commonly 
used microorganisms are white, brown, and soft-rot 
fungi, but actinomycetes and bacteria can be used 

for this purpose as well. Biological methods require 
low energy input and are performed under mild pro-
cess conditions. However, the reaction rate of poly-
mer hydrolysis using biological methods are usually 
very low and those methods require strict control of 
microorganism growth conditions, which limits 
their application for commercial purposes.27,29,87,88

Wood-rotting fungi that are commonly found in 
nature are among a number of organisms that can 
degrade lignocellulose components to various ex-
tents, and are generally grouped into soft-rot, 
brown-rot, and white-rot fungi.89 White-rot fungi 
can degrade and mineralize all three major wood 
polymers: cellulose, hemicellulose, and lignin, 
whereas lignin can be degraded extensively result-
ing in a bleached appearance of degraded wood.90 
This ability is due to the fact that white-rot fungi 
produce a variety of enzymes, such as lignin perox-
idases, manganese-dependent peroxidases, and lac-
cases that degrade the lignin.91 Planinić et al.92 treat-
ed lignocellulose waste from the agro-, food and 
wood industries for 7 days with T. versicolor, which 
resulted in lignin conversion up to 71 %. Tišma et 
al.93 studied Trametes versicolor growth on glucose, 
fructose, and sucrose, and developed a mathemati-
cal model of the process composed of sucrose hy-
drolysis catalyzed by intracellular enzyme, and mi-
crobial growth on glucose and fructose. Tišma et 
al.94 used diverse media (industrial waste) for T. 
versicolor MZKI G-99 submerged cultivation with 
the aim of enzyme laccase production. Waste from 
the paper industry showed the highest potential for 
laccase production. It was proved a safe and inex-
pensive substrate for commercial production of lac-
case. However, fungal degradation of lignocellulose 
waste so far has not been an approach of commer-
cial significance. Phutela et al.95 pretreated paddy 
straw using Trichoderma reseei MTCC 164 and Co-
riolus versicolor MTCC 138 at different time inter-
vals, and then anaerobically digested straw. Paddy 
straw pretreated with T. reesei showed 20.8 % en-
hanced biogas production, while straw treated with 
C. versicolor showed 26.2 % enhanced biogas pro-
duction with a maximum of 19.1 % reduction in 
lignin. Liu et al.96 pretreated corn stover silage by 
Phanerochaete chrysosporium in solid-state fer-
mentation to enhance methane production via AD. 
It was found that P. chrysosporium degraded cellu-
lose, hemicellulose, and lignin up to 19.9, 32.4, and 
22.6 %, respectively. Consequently, pretreated corn 
stover silage achieved up to 23 % higher methane 
yield than the untreated corn stover silage. Liu et 
al.97 pretreated yellow corn stover and corn stover 
silage with white-rot fungi to enhance biogas pro-
duction. The pretreatment of yellow corn stover was 
accompanied by 38.3 % cellulose, 42.2 % hemicel-
lulose, and 39.1 % lignin degradation, while the 
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pretreatment of corn stover silage was accompanied 
by 9.9 % cellulose, 23.2 % hemicellulose, and 15.2 % 
lignin degradation. The reducing sugar yield of pre-
treated corn stover and corn stover silage after en-
zymatic hydrolysis was 195.8 mg g–1 and 67.7 mg g–1, 
respectively, which indicated that much more corn 
stover was degraded in comparison to pretreated 
corn stover silage. The results also showed 29.2 % 
higher methane production of pretreated corn stover 
silage after 21 days of AD in comparison to untreat-
ed corn stover silage, and 73.1 % higher methane 
production after 60 days of digestion. Higher biogas 
yield of pretreated corn stover was not achieved. 
Some other lignocellulosic biomass like wheat 
straw98–100, Japanese cedar wood101, and rice straw102,103, 

have also been successfully degraded using white-
rot fungi, which ultimately affected the increase in 
the production of biogas.

Microbial consortium consists of microbes 
screened from natural environments in which rotten 
lignocellulosic material is the substrate. In contrast 
to fungal pretreatment, which is mainly applied for 
lignin degradation, a microbial consortium usually 
has high ability to degrade cellulose and hemicellu-
lose.29 Kangrang et al.104 investigated the effect of 
microbial consortia obtained from cattle and horse 
manure, and decomposed wood for production of 
cellulase, and further enhancement of biogas pro-
duction from rice straw. To select the most efficient 
consortium, cellulase enzymes were extracted and 

Ta b l e  5 	–	Literature review of research for corn stover pretreatment methods

Pretreatment 
method Process Pretreatment conditions Results References

Mechanical

Size reduction 
(knife mill) Particle size: 0.5–2.5 cm Up to 100 % glucan recovery, and 83 % 

xylan recovery
109

Size reduction 
(scissors, food 

mixer-cutter and 
knife mill)

Particle size: 0.2–5.0 cm
Reduced organic matter degradation time; 

no significant improvement in methane 
production (up to 272 dm3

N kg–1 VS)
67

Size reduction 
(grinder) Particle size: 2–20 mm

Decrease in the organic solid content by 
nearly 80 %, up to four-fold reduction in 

total solids after AD
110

Physical
Thermal treatment Autoclave, T = 90 and 120 °C,  

t = 30 min
No significant improvement in the methane 

yields (up to 267 dm3
N kg–1 VS)

67

Thermal treatment Fluidized bed-pyrolysis reactor,  
T = 180, 200 and 220 °C, t = 1 s

Up to 33 % reduction in lignin; 10 % 
improvement in biogas yield

111

Biological

Fungal treatment

Pleurotus ostreatus and Trametes 
versicolor; inoculated in sterile 

polypropylene bags with membrane 
that permitted gas exchange,  
T = 20 °C, t = 1–4 months

Changes in chemical composition of corn 
stover were not beneficial to the feed value 
of the crop and resulted in high losses of 

dry matter

112

Enzymatic treatment
Commercial cellulase – Accellerase 

1500, and Novozyme 188,  
T = 50 °C, t = 168 h

Enzymatic hydrolysis was conducted after 
mechanical pretreatment and subsequent 

steam explosion; up to 99 % glucan 
conversion, and up to 82 % xylan 

conversion; lignin recovery around 75 %

109

Enzymatic treatment

Cellulase (Spezyme CP) and 
Multifect xylanase; 1-dm3 glass 

reactors in walk-in incubation room, 
T = 37 ± 1 °C, t = 30 days

Around 37 % cellulose removal, and 30 % 
hemicellulose removal; up to 135 dm3 kg–1 

VS of total methane yield
113

Fungal treatment
Flasks, Phanerochaete 

chrysosporium; T = 28 °C,  
t = 30 days 

55 % degradation of cellulose, 64 % of 
hemicellulose, and 61 % of lignin; no 

significant influence on biogas production
114

Enzymatic treatment NS81210 cellulase complex and 
NS81220 protease

Up to 11 % higher biogas yield; up to 9 % 
higher methane yield

115

Enzymatic treatment

Laccase, manganese peroxidase, 
and versatile peroxidase; anaerobic 

air-tight batch reactors,  
V = 250 dm3, T = 30 °C;  

t = 6 and 24 h

No evidence of inhibitors, high yield; 
laccase increased methane yield by 25 %, 

and peroxidase increased methane yield by 
17 %; no sinergy between enzymes 

detected; up to 16 % increased methane 
yield after treatment with both enzymes

116
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their activities were analyzed. The results suggested 
that microbial consortium obtained from cattle ma-
nure is the best candidate for biogas production, and 
the highest cumulative biogas yield was 104.6 dm3 g–1. 
Yan et al.105 cultivated mesophilic lignocellulolytic 
microbial consortium BYND-5 and applied it to en-
hance the biogas production from rice straw. The 
results showed degradation efficiency of BYND-5 
for rice straw of more than 49 % after 7 days of 
cultivation at 30 °C.

Enzymatic pretreatment is applied prior to or in 
the AD of biomass in order to increase biogas pro-
duction. These are cellulases and hemicellulases, 
hydrolytic enzymes, which are too expensive, and 
enhancement in biogas production is minimal. 
Therefore, their application in AD is limited.29 Spa-
jić106 in his doctoral research, tested different sub-
strates from agriculture and food industry (pig ma-
nure as base substrate, and cheese whey, brewery 
yeast, slaughter waste and corn silage as co-sub-
strates) for biogas potential. Before anaerobic co-di-
gestion, ultrasound and enzymatic pretreatments 
(using enzyme Spezyme CP) were conducted on all 
samples. After ultrasound pretreatment and subse-
quent anaerobic codigestion, up to 34 % higher 
methane yield was achieved, whereas enzymatic 
hydrolysis did not have effect on methane yield in-
crease. Boussaid and Saddler107 showed that higher 
enzyme loadings are needed for lignin substrates as 
the adsorption of enzymes to lignin is more diffi-
cult, and when using commercial enzyme mixtures 
because of the lower specific enzyme activity. 
Therefore, Gao et al.108 conducted the “in-house” 
developed enzyme cocktail optimization for degra-
dation of corn stover, instead of using expensive 
commercial enzymes. The results showed high glu-
cose (around 80 %) and xylose (around 70 %) yields 
with moderate enzyme loading (~20 mg protein g–1 
glucan).

As mentioned previously, there is limited liter-
ature information available on the soybean straw 
and sunflower stalk usage in biogas production. The 
results on corn stover degradation, using different 
pretreatment methods, with the aim of its further 
application in biogas production, are presented in 
Table 5.

Conclusion

Biogas is a renewable energy source the pro-
duction of which depends on availability and type 
of biomass. By using biomass for energy produc-
tion, productive land is destined to supply energy, 
not food or feed, which could have a huge impact 
on biodiversity and land use. However, the main 
problem is the food vs. fuel controversy. Therefore, 

utilization of crops for biogas production should be 
substituted with lignocellulosic residual biomass, 
which originates after harvest or crops processing. 
These byproducts have no market and are destined 
for landfills or remain in the fields after harvesting. 
Their chemical structure is complex and hard to de-
grade, which represents a challenge. Therefore, the 
pretreatment step of lignocellulosic biomass is cru-
cial in their usage for biogas production. However, 
the pretreatment step is considered as rate-limiting 
step and governs the final cost of products.

Croatia recognizes the biogas potential but it is 
still poorly utilized compared to other EU states. 
Regarding lignocellulosic residues potential, espe-
cially of these three crops (corn, soybean and sun-
flower) that are of huge importance for Croatia, the 
situation is promising. However, methods that are 
used as pretreatment of lignocellulosic biomass are 
still too expensive and not cost-effective. They are 
still under development and the goal is to find tech-
nologies that protect and care for the environment 
and are not expensive. The point is not to produce 
as much energy as possible by any means, but to 
produce energy in a sustainable manner that will 
benefit all.
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L i s t  o f  s y m b o l s

AD 	–  anaerobic digestion
VS 	 –  volatile solids
T	 –  temperature, °C
t 	 –  time, min
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