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Definition and prevalence of ID/MR 

Intellectual disability/ mental retardation 
(ID/MR) is defined as a disability characterized 
by significant limitations in intellectual 
functioning and in adaptive behavior; condition 
covers everyday social and practical skills and 
begins before the age of 18. Intellectual 
functioning, also called intelligence, refers to 
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general mental capacity, such as learning, 
reasoning, problem solving and so on. Adaptive 
behavior is the collection of conceptual 
(language and literacy), social (interpersonal 
skills, social responsibility) and practical skills 
(activities of daily living and personal care, 
occupational skills, healthcare) that are learned 
and performed by people in their everyday living 
(1). 

Abstract 

Intellectual disability/mental retardation (ID/MR) is defined as incomplete mental and cognitive 
development present before the age of 18. There are number of pre-natal and post-natal risk factors 
that can cause ID/MR but 25 %-50 % of all have genetic causes. In the general population, the 
prevalence of ID/MR is about 2 %-3 %. Use of standard cytogenetic methods analysis of 
chromosomes (GTG banding) and FISH (Fluorescent in Situ Hybridization) reveals only a small 
number of causes, but when using new molecular genetics techniques (like chromosomal microarray 
and next generation sequencing), the rate of causes of ID/MR is increased and new candidate genes 
for ID/MR have been discovered. Establishing a diagnosis of ID/MR is important for the patient and 
it provides genetic counseling for parents. 

(Tomac V, Pušeljić S, Škrlec I, Anđelić M, Kos M, Wagner J. Etiology and the Genetic Basis of 
Intellectual Disability in the Pediatric Population. SEEMEDJ 2017;1(1);144-153) 
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The intelligence quotient test (IQ test) is a major 
tool in measuring intellectual functioning, which 
is the mental capacity for learning, reasoning, 
problem solving and so on. A test score below or 
around 70 or as high as 75 indicates a limitation 
in intellectual functioning. IQ testing became the 
way to define groups and classify people within 
them (1). According to IQ testing, ID/MR is 
categorized as: mild (IQ 50 - 55 to 70), moderate 
(IQ 35 - 49 to 50 - 55), severe retardation (IQ 25 - 
20 to 35-40), or profound retardation (IQ below 
20). 

The prevalence of ID/MR varies considerably 
due to the different criteria and methods used in 
the diagnosis. This problem is present in 2 % to 3 
% of the children's population, especially 
because 5 % to 10 % of children have motor 
impairment, isolated speech and language 
delay, severe primary sensorial deficits and 
pervasive disabilities. ID/MR is more frequent in 
countries of lower socioeconomic status due to 
increased incidence of anoxia, birth trauma and 
newborn brain infections (2). The prevalence of 
mental retardation in developed countries is 
thought to be 2% to 3%. The prevalence of mild 
ID/MR more often depends on external 
environmental factors (level of maternal 
education, access to education, opportunity and 
access to healthcare), while the prevalence of 
severe ID/MR is relatively stable (3). 

Diagnosis is highly dependent on a 
comprehensive personal and family medical 

history, a complete physical examination and a 
careful developmental assessment of the child. 
When diagnosing ID/MR, it is very important to 
know how it is defined and classified. 

Etiology and epidemiology of ID/MR 

The etiology of ID/MR has heterogeneous 
environmental and genetic causes, summarized 
in Table 1 (4, 5). Prenatal factors are 
environmental (mother infection in pregnancy 
such as rubella infections, syphilis, 
toxoplasmosis, cytomegalovirus and HIV 
infections), teratogenic (the use of drugs such as 
thalidomide, phenytoin and warfarin sodium in 
early pregnancy, radiation), chromosomal 
abnormalities (e.g. trisomy 21), cryptic 
chromosomal abnormalities (deletions or 
duplications) and genetic mutations. Perinatal 
factors are prematurity and asphyxia, while 
postnatal factors are sepsis, meningitis, 
encephalitis (commonly caused by HSV 1/2) and 
various multifactorial causes (poverty and 
cultural factors). 

Genetic factors are thought to cause ID/MR in 
about 25% to 50% of cases (6). Specifically, 
genetic factors are estimated to be the cause of 
moderate and severe ID/MR (IQ<50) in 0.3  % to 
0.5 % of cases, of mild ID/MR (IQ ranging from 50 
to 70) in 1 % to 3 % of cases and of severe ID/MR 
in 25 % to 50 % of cases (7). 

Table 1. Environmental and genetic causes of intellectual disability 

Prenatal factors Perinatal factors Postnatal factors 

Genetic: 
chromosomal abnormalities 
cryptic chromosome abnormalities 
deletions/duplications 
contiguous gene syndromes 
monogenic diseases 

prematurity 
low birth weight 
asphyxia 

sepsis/meningitis,  
encephalitis (HSV 1/2) 
various multifactorial causes 
(poverty and cultural factors) 

Environmental: 
infections (toxoplasmosis, syphilis, rubella, 
cytomegalovirus and HIV infections) 
mother disease (diabetes) 
teratogenic factors (drugs and radiation) 

  

Metabolic: 
neonatal hypothyroidism 
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Based on the symptoms’ presentation, ID/MR is 
divided into two groups: syndromic and non-
syndromic ID/MR. In non-syndromic ID/MR, the 
only pathological manifestation is cognitive 
deficit, and there are no changes in phenotype 
and no associated anomalies of organ systems. 
It can be inherited in three ways: autosomal 
recessive, autosomal dominant or X-linked 
mode. Syndromic ID/MR is related to 
phenotypic dysmorphy (craniofacial, skeletal), 
growth changes, neuromuscular changes and 
metabolic diseases (8). 

Chromosomal abnormalities 

Aberrations in the autosomal chromosome 
number in live-born babies are restricted to 
aneuploidies. These abnormalities represent 
about 10 % of the ID/MR that can be detected 
with conventional cytogenetic methods (9). The 
majority of cases involve trisomy 21 with a 
prevalence of 1 to 700, which is clinically 
expressed as Down syndrome (10). Other rare 
chromosomopathies include trisomy 13 (Patau 
syndrome) with a prevalence between 1 in 5,000 
and 1 in 29,000 live births (11), trisomy 18 
(Edwards syndrome) with a prevalence of 1 to 
3600 and 1 to 8500 (12), and they are usually 
lethal in the first week of life. Monosomy of any 
autosomal chromosome is lethal in the earliest 
stage of embryonic life. There are autosomal 
structural abnormalities such as Wolf-
Hirschhorn syndrome (microdeletion 4p) with a 
prevalence of 1 to 50,000 (13), Cri du Chat 
syndrome (microdeletion 5p) with a prevalence 
of 1 to 50 000 (14) and sex chromosomal 
aneuploidies such as Klinefelter syndrome 
(47,XXY) with a prevalence of 1 in 500 to 1,000 
newborn males (15). 

Contiguous gene syndromes 

Contiguous gene syndromes are disorders 
caused by chromosomal abnormalities, such as 
deletions and duplications, which result in an 
alteration of normal gene dosage. For most 
autosomal loci, deletion causes a reduction of 
gene dosage to structural and functional 
monosomy. Haploinsufficiency for specific 
genes in the critical interval is implicated for 

del(7)(q11.23q11.23) in Williams syndrome, for 
del(8)(q24.1q24.1) in Langer-Giedion syndrome, 
del(17)(p13.3) in Miller-Dieker syndrome, and for 
del(22)(q11.2q11.2) in DiGeorge syndrome and 
velocardiofacial syndrome (16). 

Genomic imprinting 

Genomic imprinting is a situation in which there 
is gene expression from only one of the two 
alleles inherited from each parent, and it is 
based on epigenetic modifications of specific 
allele, such as histone acetylation/methylation 
and DNA methylation (17). 

The deletion of a chromosome segment 
containing the active allele of an imprinted gene 
results in structural monosomy but functional 
nullisomy (e.g., paternal del(15)(q11.2q13) in 
Prader-Willi syndrome and maternal 
del(15)(q11.2q13) in Angelman syndrome). 
Uniparental disomy for the homologue 
containing the inactive allele results in structural 
disomy but functional nullisomy (e.g., maternal 
disomy 15 in Prader-Willi syndrome and paternal 
disomy 15 in Angelman syndrome). 

Idiopathic ID/MR 

Current research has been directed to clarify the 
genetic base of what was accepted as 
“'idiopathic ID/MR”.  The most prevalent 
structural variations in the human genome are 
copy number variations (CNVs), which appear 
predominantly in the subtelomeric regions.  
Genomic variations are a frequent cause of 
miscarriage, congenital anomalies (CA) and 
intellectual disability (ID) (18). 

Pathogenic CNVs have been detected in 10 % to 
15 % of patients with idiopathic ID/MR, especially 
with use of microarray technology. Most of CNVs 
are de novo mutations, but there are also rare 
inherited mutations with unknown significance 
(19). 

Over the last few years, cryptic chromosomal 
anomalies, particularly subtelomeric and 
interstitial rearrangements (including 
microdeletions as well as balanced 
translocations and other chromosomal 
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aberrations) less than 3–5 Mb, have emerged as 
a significant cause of “idiopathic ID/MR” (20-22). 

About half of all segmental aneusomies are 
found on subtelomeric and terminal regions of 
chromosomes that are gene-rich, and they are 
responsible for 5% to 7% of all cases of ID/MR 
(23, 24). 

Monogenic causes 

X-linked mental retardation (XLMR) is a common 
cause of monogenic intellectual disability, 
because most of genes causing ID/MR are 
found on the X chromosome. X-linked forms of 
mental retardation are estimated to cause 10-
20% of all inherited cases of ID/MR. There is a 
higher prevalence of ID/MR among males 
relative to females (1.8 in 1000 males; carrier 
females 2.4 in 1000). However, female carriers 
may manifest mild symptoms, due to a skewed 
X-inactivation (25). 

Based on symptoms’ presentation, XLMR can be 
divided into three groups: 1) syndromes -  
characterized by multiple congenital anomalies 
(phenotypic dysmorphy, organ anomalies); 2) 
neuromuscular disorders - epilepsy, dystonia, 
spasticity, muscle weakness and so on without 
malformations and 3) nonspecific conditions 
(MRX) – isolated ID/MR is the only clinical 
manifestation. There are 215 XLMR conditions 
divided according to their clinical presentation: 
149 with specific clinical findings, including 98 
syndromes and 51 neuromuscular conditions, 
and 66 nonspecific forms (26). 

Fragile X syndrome (FRAXA, OMIM 309550) is 
the most common form of syndromic XLMR (20 
% of all XLMR cases), with a prevalence of 
approximately 1:5000 males, and causes 
intellectual disability in about 1 in 8000 females 
(27). Affected individuals have a folate-sensitive 
fragile site in the region Xq27.3, associated with 
an expansion of a trinucleotide repeat (CGG) in 
the 5'-noncoding region of a gene that encodes 
an RNA binding protein termed FMR1. 
Individuals with fragile X syndrome have a loss-
of-function variant of FMR1 caused by an 
increased number of CGG trinucleotide repeats 

(typically >200) accompanied by aberrant CpG 
methylation of FMR1 (28).   

Another common gene is MECP2 (methyl CpG 
binding protein 2 (OMIM 300005) on 
chromosome Xq28, which causes Rett 
syndrome, affecting approximately 1 in every 
10,000–15,000 females worldwide (29). But it is 
also identified in the clinical spectrum seen in 
males with severe neonatal-onset 
encephalopathy or with X-linked intellectual 
disability associated with psychosis, pyramidal 
signs, parkinsonian features and macro-
orchidism (PPM-X syndrome; OMIM 300055) 
(30). 

Evaluation and Testing 

The clinical geneticist has an important role in 
the evaluation of patients with intellectual 
disability and in making decisions about further 
genetic testing. Evaluation includes physical 
examination and the collection of family history 
information. The physical exam should focus on 
dysmorphological and neurological evaluation, 
congenital malformations, somatometric 
measurements and behavioral evaluations. In all 
patients with neurological symptoms, such as 
epilepsy and macro/microcephaly, 
neuroimaging studies - MRI (magnetic 
resonance imaging) should be performed for 
evaluation of brain malformations. If there are 
signs of metabolic disease, metabolic tests 
should be done (organic acid in urine, amino 
acids in serum, lactate, pyruvate) (31). 

When investigating a patient with ID/MR, with or 
without dysmorphic features, the initial analysis 
several years ago usually began with 
cytogenetic testing (GTG-banding). 

GTG banding (G-banding with Trypsin/Giemsa) 
is used for the detection of aneuploidy 
(abnormal number of chromosomes) and the 
identification of structural aberrations: deletions 
and translocations in chromosomal 
rearrangements only larger than 5–10 Mb. The 
overall yield of routine cytogenetic testing is 3.7 
% (32). 

Fluorescent in situ hybridization (FISH), using 
location specific probes, detects 
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submicroscopic alterations less than 5 Mb that 
cannot be observed using standard cytogenetic 
tests (GTG-banding). Today this method is used 
when a specific syndrome is suspected with 
high frequency in the general population (e.g., 
DiGeorge/velocardiofacial syndrome, Williams 
Beuren syndrome). The yield of FISH screening 
on patients with moderate to severe ID/MR is 6.8 
% (33).  

Candidates for subtelomere screening are 
patients with ID/MR and two or more 
dysmorphic features (mostly facial), congenital 
organ abnormalities, skeletal abnormalities, 
positive family history and pre/postnatal poor 
growth/overgrowth (34). 

Several assays are currently available to detect 
subtelomeric rearrangements, but subtelomeric 
FISH and subtelomeric MLPA have been the 
most frequently used. MLPA results needed to 
be confirmed using other more accurate 
techniques such as FISH or aCGH (35). 

With the introduction of comparative genomic 
hybridization on microarrays it is possible to 
screen the entire genome for evaluation of 
deletions and duplications of specific DNA 
sequences. Comparative genomic hybridization 
on microarrays (Array Comparative Genomic 
Hybridization - aCGH) and the technical basis of 
the method was first published in 1997 (36).  
Detection of subtle submicroscopic changes in 
a number of copies of DNA less than 1Mb is 
possible using different platforms. With the 
application of aCGH in patients with ID/MR it is 
possible to determine etiology in 20% of patients 
with normal karyotype and subtelomere 
screening with MLPA (36). 

Copy number variations (CNVs) are the most 
prevalent structural variations in the human 
genome, which appear largely in the 
subtelomeric regions and can be detected by 
aCGH. ID/MR is associated with variable sizes of 
CNVs (18).  

A disadvantage of the aCGH is that the 
identification of de novo CNVs of uncertain 
significance and unreported CNVs can be 
challenging to interpret. CNVs should be listed 
as benign or pathogenic, or reported as variants 

of unknown clinical significance (37). Pathogenic 
variants are detected in 15 % to 20 % of ID/MR 
patients (37, 38). Not all CNVs are fully 
penetrated or cause a spectrum of phenotypes, 
including intellectual disability, autism, 
schizophrenia, and dimorphisms. Such CNVs 
can pose challenges to genetic counseling. 
More variants of uncertain significance are found 
with higher density arrays (38). Sometimes, 
variants of unknown significance can be 
resolved by trio testing (mother, father and 
proband). Interpretation of those variants is very 
comprehensive and challenging, and demands 
bioinformatics and clinical knowledge. 

Next-generation sequencing (NGS) is DNA 
sequencing technology that sequences all 
genes in one genetic test. Exome sequencing 
analyzes all exons of protein coding genes in the 
genome known as a cause of the diseases 
(clinical exome sequencing) or all of the genes in 
the genome (whole genome sequencing). NGS 
in a clinical setting opens up possibilities for 
discovering the genetic contribution for a large 
percentage of ID/MR individuals at the first 
onset of symptoms and the possible opening up 
of pathways for therapeutic interventions (37). 
NGS is progressively being set up in clinical 
laboratories for the diagnosis of ID/MR because 
of a higher diagnostic yield and devaluation in 
costs. Many studies revealed the usefulness of 
using an integrative approach to examine 
genotype-phenotype variability (37, 39, 40).  

Whole exome sequencing (WES) is an 
impressive tool for identifying clinically 
undefined forms of ID/MR, especially when 
aCGH identified a de novo CNV of uncertain 
significance (37).  

The vast majority of benign variants are single 
base pair substitutions. With better coverage 
depth, WES is adequate for the detection for 
close to all (99.7 %) pathogenic variants (41). CNV 
analysis is still an active area of research in NGS 
variant analysis and has long been important in 
ID research. CGH microarrays can only detect 
unbalanced structural variants, while apparently 
balanced chromosomal rearrangements occur 
in 1.54 % of live births and contribute to 6 % of 
abnormal phenotypes including ID (42). Whole 
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genome sequencing (WGS) has the potential to 
uncover all forms of genetic variation in one test, 
and offers a higher diagnostic yield (43). In the 
study of Harripaul et al. of patients with severe 
ID, a diagnostic yield of 42 % was observed (42) 
which is a significant improvement over the 
diagnostic yield obtained by microarray, gene 
panels or WES (44). A summary of genetic 
methods used in diagnosing ID/MR is presented 
in Table 2. 

Discussion 

Defining the cause of intellectual 
disability/mental retardation (ID/MR) presents a 
diagnostic challenge. Mental retardation is 
present in about 1 % to 3 % of individuals in the 
general population, but there are many cases 
that cannot be explained despite novel 
technology and clinical investigations (24). 
Genetic factors are involved in many of the 
idiopathic cases of ID/MR. This conclusion is 

based on the fact that these patients often show 
signs such as dysmorphic features, growth 
retardation and malformations, or have a family 
history of mental retardation (6,7). 

The genetic heterogeneity of intellectual 
disability requires genome wide approaches, 
including the detection of chromosomal 
aberrations by chromosomal microarrays and 
whole exome sequencing adequate for 
discovering single gene mutations (45).  

For individuals with idiopathic ID/MR, autism 
spectrum disorders, or multiple congenital 
anomalies, chromosomal microarray analysis 
(CMA) is recommended as the first-line 
diagnostic test since it offers a much higher 
diagnostic yield (15 % to 20 %) compared with G-
banded karyotype analysis (3 %) (38,42). 

Despite those modern technologies, the genetic 
etiology of 80 % to 85 % of patients still remains 
unknown. NGS-based testing (targeted 

Table 2. Advantages and disadvantages of genetic methods for diagnosing intellectual disability 

Method Advantages Disadvantages 

GTG  
(G banding with Trypsin and 
Giemsa) 

Whole genome analysis 
Detection of unbalanced and 
apparently balanced 
chromosomal rearrangements 

Time consuming 
Small resolution (5 to 10 Mb) 

FISH  
(fluorescent in situ hybridization) 

Detection of unbalanced and 
apparently balanced 
chromosomal rearrangements and 
mosaicism 
Detection of small deletions and 
duplications 

Time consuming 
Small resolution (depend on the 
size of FISH probe, 30 to 100 kb) 

MLPA  
(multiplex ligation probe 
amplification) 

High-throughput 
Simultaneously analyses of 
several samples 
Multiplex technique (study of 
several regions of the human 
genome in a single reaction) 
Low cost 

Not whole genome analysis 
Sensitive to PCR inhibitors 

aCGH  
(microarray comparative genomic 
hybridization) 

Whole genome analysis  
High resolution (up to 40 kb) 

Impossibility of detection of 
apparently balanced 
chromosomal rearrangements and 
mosaicism   
CNVs of unknown significance in 
clinic 

NGS  
(next generation sequencing) 

Whole genome analysis 
High resolution (covering all 
coding variation) 
Single strand sequencing 

CNVs of unknown significance in 
clinic 
Expensive 
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multigene panels, whole exome sequencing or 
whole genome sequencing) for these cases, has 
a great potential to obtain diagnosis (44).  

The vast majority of individuals with ID/MR 
currently receive no molecular diagnosis, which 
is a shortcoming that significantly impacts health 
and life span. There is also a strongly negative 
correlation of survival with the severity of ID (46).  
It is important to emphasize that knowing which 
genes carry mutations that cause ID/MR can 
have huge benefits for diagnosis in clinics, and 
can lead to better understanding of each 
patient’s health issues, more appropriate care 
and treatment, improved overall health and life 
span, and appropriate counseling and planning 
for families. 
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ID/MR - intellectual disability/mental 
retardation; GTG- G-banding with 
Trypsin/Giemsa; FISH - Fluorescent in situ 
hybridization; MLPA-Multiplex Ligation 
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Comparative Genomic Hybridization; NGS – 
Next generation sequencing; CNVs - copy 
number variations; XLMR – X linked mental 
retardation; XLID – X linked intellectual disability; 
IQ- intelligence quotient test; FRAXA-fragile X 
syndrome; MRI - Magnetic resonance imaging; 
CA - congenital anomalies. 
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