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ABSTRACT 

The purpose of this paper is to ascertain the reliability of a zero-dimensional approach, 

aimed to design a double rotor kinetic turbine prototype, by means of computational fluid 

dynamic analysis. The interaction between the flow and the blade of the turbine prototype 

external rotor is evaluated. The calculation is carried out by a three-dimensional analysis 

using the commercial code FLUENT 15.0. In the present work, the Reynolds Averaged 

Navier-Stokes approach is used, with the two-equation Realizable k-epsilon turbulence 

model. The blades profile is a NACA 4412 interacting with flow at an attack angle of 4°, 

which is kept constant along the blade height. The estimation of the forces acting on the 

blades allows a more accurate evaluation of the blade lift coefficient, which is useful to 

design the blades geometry and to compute the power coefficient, previously estimated 

by the traditional mono-dimensional approach. 

KEYWORDS 

Tidal currents, Turbine prototype, Zero dimensional sizing, CFD analysis of external 

rotor, Power coefficient evaluation, Blades lift evaluation. 

INTRODUCTION 

Despite actual research lines concentrating on local resources by favouring the 

approach of smart systems [1], marine current energy is one of the emerging renewable 

energy forms [2], as it constitutes a huge source of kinetic energy owing to regular tidal 
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cycles influenced by the moon’s phases [3]. Wind, wave and solar power often require 

backup from traditional forms of power generation [4]. On the contrary, the inherent 

predictability of tidal power is highly attractive for grid management, as it does not 

require fossil fuel backup systems. Tidal turbines are usually installed on the seabed, at 

prescribed locations characterized by high tidal current velocities or strong continuous 

ocean currents, which extract energy from the flowing water [5]. To date, few 

commercial-scale devices have been manufactured and tested, although many innovative 

tidal and ocean stream energy devices have been proposed [6]. The machines, which 

currently work in tidal currents, have a non-competitive Levelized Cost Of Energy 

(LCOE) [7]. 

An important contribution to the development of such technologies is given by 

metocean stations, mounted on monopiles or buoys equipped with meteorological 

sensors, which help the designer to know numerous model parameters [8]. 

The team Unical Sintenergy has developed a new turbine working like a kite [9]. It 

can be moored to the shore by a simple rope and is able to reach an equilibrium position 

in the sea [10]. The machine is able to work even when the tide reverses its direction [11].  

After several design attempts [12], a zero-dimensional model useful for the optimal 

sizing of the machine is chosen. The machine has two counter rotating rotors, an external 

and an internal one [13]. The aforementioned model requires, however, an accurate 

knowledge of the fluid dynamic behaviour of the external rotor. From a methodological 

point of view, therefore, the present work couples a zero-dimensional approach and a 

CFD analysis. The scope of the CFD analysis, in particular, is the evaluation of the 

effects of the three-dimensional flow field on the rotor’s performance. By a comparison 

between both approaches, it is possible to ascertain the reliability of the zero-dimensional 

approach in the turbine design process; in such a case, the advantages in terms of 

computational effort with respect to the CFD are significant. 

In this paper, the sizing of a prototype with 1 m external diameter rotor is carried out 

by the application of the proposed methodology. 

SINTENERGY TURBINE 

Sintenergy introduced an innovative way to convert energy from tidal currents, which 

is efficient and cost effective (see Figure 1).  

 

 
 

Figure 1. Working scheme of the turbine prototype 

Components Forces 

External rotor Deflector lift force (LR) 

Internal rotor Turbine thrust (T) 

Deflector Resultant force (R) 

Stator Archimedes’ thrust (TA) 

Frame Turbine weight (W) 

Floating stabilizer Flows 

 Flow velocity (VF) 
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The working principle is widely described in previous works [14, 15] and the most 

meaningful features in terms of mechanical and fluid dynamic solutions are briefly 

summarized.  

The machine has two contra-rotating rotors (1, 2) turning in a stator (4), which 

converts the kinetic energy thanks to a built-in generator (permanent magnets). A central 

deflector (3) maintains the machine always facing the flow, meanwhile a vertical 

stabilizer, a sort of buoy (7), keeps the machine at the expected depth. The turbine is 

connected to the coast by means of a rope (6) stretched by the resultant R (see Figure 1), 

which creates an angle β with the coast. This angle does not change during the machine 

operation [11]. 

The equilibrium equations of the moments, due to the various forces, are described in 

[10], together with the machine design procedure. It shows that the deflector lift and drag 

coefficients and, particularly, the external rotor design are key elements for the whole 

machine design. 

This last aspect is the focus of the present work. In the next sections, the sizing of the 

machine by means of the zero-dimensional approach is firstly illustrated, and then a 

three-dimensional analysis of the external rotor is carried out. 

SIZING OF THE PROTOYPE 

The hydrodynamic design of a generic tidal turbine provides the blade external shape, 

i.e. the chord and twist distributions along the blade, which result in optimal performance 

of the tidal turbine over its lifetime. The next figure (Figure 2) highlights the required 

input. 

 

 
 

Figure 2. Input of the blade sizing 

 

The traditionally used formulas [16] are reported in the following: 
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where the various parameters are indicated in Table 1.  
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Table 1. Parameters of the blade sizing 

 
Parameter Symbol 

Chord c 

Blades lift coefficient CLb 

Number of blades z 

Incidence angle αp 

Tip speed ratio λ 

Radius/tip diameter µ 

Functional angle φ 

Attack angle βp 

 

The Sintenergy turbine is sized by using the previous formulas and by taking into 

account that the ratios between the three diameters (external, mean, and internal ‒ see 

Figure 1) are optimized by considering the equilibrium law of all the involved forces and 

the equilibrium to the rotation of the two rotors [12]. The necessity to have two rotors 

balanced with equal torque but rotating in opposite direction implies equal power for each 

rotor. 

The sizing of the blades starts from the choice of the parameters λ and z of the external 

rotor. In a previous work [13] it was estimated that the optimal configuration is λ = 2.5 and  

z = 6.  

The overall power can be calculated as: 
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Based on the Prandtl theory [16], the power coefficients Cp1 and Cp2 are expressed as 

a function of tip-speed ratio λ, blades number z and blade efficiency Eb: 
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By fixing the diameters ratio Di/De equal to 0.3, it is possible to size the whole 

machine. In Table 2 the main design parameters are reported. 

 
Table 2. Main parameters 

 
Parameter Symbol Value 

External diameter De 1.08 m 

Intermediate diameter Dm 0.8 m 

Internal diameter Di 0.32 m 

External blade height h1 0.14 m 

Internal blade height h2 0.24 m 

Diameters ratio Di/De 0.3 

External rotor area A1 0.42 m2 

Internal rotor area A2 0.42 m2 

External rotor tip speed ratio λ1 2.5 

Internal rotor tip speed ratio λ2 1.84 

External rotor power coefficient Cp1 0.3 

Internal rotor power coefficient Cp2 0.3 

External rotor number of blades z1 6 

Internal rotor number of blades z2 6 

rpm n 132 

Mechanical efficiency ηm 0.9 

Electrical efficiency ηe 0.85 
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From eq. (5), the nominal power calculated for a tidal current velocity peak of 3 m/s 

(Strait of Messina – Italy), will be equal to 2.7 kW, by taking into account an 

electro-mechanical efficiency of 0.8. 
The CFD analysis of the external rotor is necessary to assess the validity of the blades lift 

coefficient (CLb), fixed at 0.4 by means of the zero-dimensional approach [17], it being a key 

parameter for the blades sizing. Then, it is necessary to evaluate the accuracy of the Cp coefficient, 

estimated by eq. (6).  

EXTERNAL ROTOR NUMERICAL ANALYSIS 

This section describes the computational method used to model the machine external 

rotor and shows some preliminary results of the numerical analysis. The CFD analysis 

focused on the rotor power coefficient, lift and drag coefficients and efficiency; 

furthermore, the flow field characteristics and the wake generated behind the rotor are 

shown.  

The numerical simulations are performed for one operating condition considering a 

free-stream velocity of 3 m/s and an angular speed rotor of 132 rpm, obtained by 

considering an optimum tip-speed ratio λ = 2.5, for the external diameter of the external 

rotor, which is De = 1.08 m.  

Computational and analysis method 

The commercial software FLUENT 15.0 is used to solve the Reynolds Averaged 

Navier-Stokes (RANS) equations, which are expressed in the following form [18]:  

 ��
�� + �

���
����	 = 0 (7)

 �
�� ����	 + �

��� ������ = ��
��� + �

��� �� ������� + ������ − 2
3 ���

������ �� + �
��� −�������������� (8)

 
where ui denotes the ensemble-averaged velocity component. The additional terms 

−�������������� represent the effect of turbulence and are known as Reynolds stresses. Several 

models are available to close the RANS equations and to compute the Reynolds stresses. 

The two-equation models are widely adopted and give good accuracy in the simulation of 

rotating flows [19]. Better results could be obtained by using the Reynolds Stress Model 

[20], which, for 3D flows, involves more than two equations, or Large Eddy Simulations 

(LES) and Direct Numerical Simulation (DNS). O’Doherty et al. [20] made a 

comparison among several turbulence models for the simulation of a horizontal axis tidal 

turbine. The results show that only small differences occur among all the presented 

turbulence models. Owing to the lower computation cost and considering that a high 

degree of accuracy is out of the scope of our work, one of the simplest models and in 

particular the Realizable k-epsilon model was selected for the current simulations.  

The above equations are discretized by a control-volume-based technique. A second 

order upwind scheme is used for spatial discretization [18]. The convergence criterion for 

each parameter is set that the residual in the control volume is smaller than 10−5. 

Grids and boundary conditions 

An unstructured domain is built around the foil; it is cylinder shaped with the cylinder 

axis coinciding with the machine axis (Figure 3). In proximity of the foil surface, the grid 

is refined by creating a prism layer, whose first thickness is 0.01 mm obtained by 

imposing the y+ ~ 1, according to the following: 
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�� = 0.172
∆�

$
%&'.( (9)

 

where L is the external rotor blade average chord length (L ~ 0.08 m), and Re is computed 

considering L as the characteristic length. A growth factor of 1.2 is used. This allows the 

computation of the hydrodynamic actions in the boundary layer.  

A grid dependence study is also presented in order to evaluate the grid independency 

and to assess the accuracy level of the proposed numerical solution. To this aim, three 

grids (G1, G2 and G3) were built, with refinement ratio of √2 and the lift and drag 

coefficients are used as key parameters to evaluate the grid convergence. 

 

 
 

Figure 3. Particulars of the computational domain. 

 

The locations of boundary conditions can be seen in Figure 3; the intake section is 

located 1 De ahead of the rotor, the outflow section is located 1.5 De behind the rotor and 

the diameter of the cylindrical domain is 2.5 De, where De indicates the external rotor 

diameter.  

Among the variety of approaches available in FLUENT to model problems involving 

moving parts, the Single Rotating Reference Frame approach (SRF) is used in the current 

simulations. This approach, in fact, is suitable for all the cases, which involve a single 

rotating part (i.e. no stators or baffles): the domain moves with the single rotating frame; 

the flow in the non-inertial reference frame becomes steady and, consequently, the 

analysis is simplified and less computationally expensive. When this approach is used, 

the boundary conditions have to fulfil some requirements: in particular, the no-slip 

condition on the rotating elements, which are moving walls with the relative frame, is 

defined by enforcing the fluid relative velocity to zero. In the far-field, which is a 

non-moving wall with the reference frame, the no-slip condition requires that the 

absolute velocity is zero on the walls. Finally, a rotationally periodic boundary about the 

axis of rotation is applied; the computational domain is built for one sixth of the machine 

with the aim to reduce the computational effort. 

The initial and boundary conditions are summarized in Table 3.  
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Table 3. Initial and boundary conditions 

 

Zone Boundary type Initial conditions 

Inlet Velocity inlet v0 = 3 m/s 

Exit Outflow - 

Periodic Periodic - 

Foil 
Moving wall,  

relative velocity = 0 
- 

Farfield 
Fixed wall, 

absolute velocity = 0 
- 

Grid convergence study 

The three grids G1, G2 and G3 are 1.44, 1.02 and 0.72 M elements, respectively. A 

comparison, for lift and drag coefficients, among simulation results S1, S2 and S3, which 

correspond to the fine, medium and coarse grid respectively, is carried out. The results 

are summarized in Table 4. They show εi,i−1 as percentage of the finer solution, which is 

defined as: 

 

*�,�,- = .� − .�,-.� × 100      1 = 1 … 3     (10)

 

where Si is the result of finer grid and Si−1 is the coarse grid. 

Results show that monotonic convergence is reached by increasing the mesh quality, 

as the difference between the finer and coarser solution decreases with increasing the 

number of grid points. However, the difference between S1 and S2 is not high enough to 

justify the use of the finest mesh, and consequently the medium grid G2 is a good 

compromise between solution accuracy and computational effort. 

 
Table 4. CFD simulations with different grids 

 

Grid Grid points 
CLb CDb 

S ε12 S ε12 

G1 1.44 M 0.3506 0.14 0.02790 0.53 

G2 1.02 M 0.3501 0.92 0.02805 6.34 

G3 0.72 M 0.3469  0.02983  

RESULTS 

The validation of the numerical model is made by a comparison of the computed lift 

and drag coefficients on the blades with the experimental data available in the literature. 

In particular, the Prandtl correction due to finite foil length, as given by [17]: 

 

3 =  3'
1 + 3'4 ∙ 6% ∙ &7

 
(11)

 

was applied to the infinite foil lift coefficient, which, for 4° angle of attack is CLb,inf
  = 0.8; 

the estimated lift coefficient for the finite length foil, according to eq. (10), is CLb,th = 0.4. 

The simulation value is CLb,sim = 0.35. The difference between the estimated and the 

simulated value amounts to −12.5%. Similarly, the experimental drag coefficient for the 

NACA 4412 infinite foil amounts to CDb = 0.006; the corrected value which considers the 

finite length effects and, consequently, the lift induced drag is CDb,th = 0.032. The drag 
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coefficient computed by the numerical simulations is CDb,sim = 0.028 with an error 

amounting to −12%. These values are in good agreement with the expected theoretical 

values; furthermore, the path-lines depicted in Figure 4 show that the expected helical 

wake vortex and the tip vortex on the blade edge are well captured. Consequently, the 

numerical results can be considered, at this stage of the turbine design process, to be quite 

useful for a rough estimation of the coefficient of power and of blade efficiency.  

 

 
 

Figure 4. Path lines coloured by velocity magnitude: helical vortex wake region (top);  

tip vortex (bottom) 

 

The power coefficient is the ratio of the power extracted by the turbine to the total 

power contained in the free-stream, Cp = P/P0. The power, P0, contained in the free 

stream and related to the external rotor, is computed as: 

 

8' = 1
2 � 4�9:; − 9<; 	

4 >'? (12)

 

The computed power coefficient is Cp,sim = 0.3 which is significantly less than the 

Betz limit (59%). 

The numerical results are also useful for the blade efficiency estimation, which is 

computed as: 
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b

C

C
=E  (13)

 

and amounts to Eb ≈ 10. 

The prototype under analysis has been designed with 6 blades and λ = 2.5. In these 

conditions the estimated value of the power coefficient related to the external rotor Cp1 

[see eq. (6)] is equal to 0.34. The difference (about 11%) is probably due to any effects 

the one dimensional analysis doesn’t consider.  

Figure 5 shows the static relative pressure distribution at the inlet and exit of the 

computational domain; it can be observed that, at the exit, the pressure is lower with 

respect to the inlet. According to Betz theory for ideal wind turbines, in fact, downstream 

of the rotor, the power release to the rotor causes both a free stream speed reduction as 

well as a pressure drop [16]. However, the pressure tends to increase and to reach the inlet 

value; on the contrary, the stream velocity diminishes and reaches the limit value of 1/3 

of its undisturbed value. For real turbines, the blades generate a helical wake vortex, 

which rotates in the opposite direction with respect to the blades; furthermore, viscous 

effects must be taken into account. Despite the real phenomena affecting free stream 

pressure and velocity, their global trend is quite consistent with respect to the ideal 

theory. This behavior is only slightly visible in the present simulations. 

 

 
 

Figure 5. Static pressure distribution at inlet and exit of the computational domain 

 

Figure 6 shows the pressure distribution at several sections of the computational 

domain along the axis direction on the left, and the corresponding tangential velocity 

distribution, on the right. The sections are located at z/De = 0.1, 0.5, 1 and 1.5, where  

z = 0 indicates the rotor position and the z direction is positive towards the domain exit. 

The pressure distribution shows a slow increase from section z/De = 0.1, which is behind 

the rotor, very close to the blades, to z/De = 1.5, which is the rotor exit. After the energy 

release to the rotor blades, the flow undergoes a strong pressure reduction (Figure 6 

top-left). The pressure then tends to increase along the axis but it is much lower than the 

inlet pressure. This suggests that the domain considered for computations is still limited 

in length and does not allow the expected pressure recovery. The velocity flow field, 

depicted in Figure 6 (right) shows the tangential velocity distribution and results 

demonstrate that the pressure increase is due to this velocity component, which reduces 

in the flow direction. 
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Figure 6. Static pressure distribution (left) and contours of velocity (right) along rotor axis, 

at sections z/D = 0.1, 0.5, 1,1.5 

CONCLUSIONS 

The sizing of a turbine kinetic prototype collecting energy from the tidal currents has 

been done by using a zero dimensional approach. Subsequently, the computational fluid 
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dynamic analysis of the flow through external rotor has been carried out with the aim to 

ascertain the reliability of the zero-dimensional approach. 

The results show the lift coefficient on the blade (CLb,sim = 0.35) is lower than that 

predicted by zero-dimensional analysis (CLb,th = 0.4). Moreover, the results show that the 

rotor power coefficient (Cp,sim = 0.3) is lower than that predicted from the zero 

dimensional analysis (Cp = 0.34).  

The predicted maximum power is about 2.7 kW for tidal currents around 3 m/s. By 

taking into account the CFD results, the next steps will optimize the prototype geometry, 

improving, therefore, the overall performance. Finally, the tests scheduled in an 

experimental centre in 2017, will clarify the validity of the proposed method. 

HIGHLIGHTS  

• A new marine turbine prototype is designed by means of a zero-dimensional 

approach; 

• The turbine is self-balanced and maintains the equilibrium position by means of a 

deflector inserted in the stator, a buoy and two counter rotating rotors; 

• The blades of the two rotors are designed by means of traditional formulas found 

in literature; 

• Computational fluid dynamic analysisis carried out with the aim to ascertain the 

reliability of the zero-dimensional approach. 

NOMENCLATURE 

a0  infinite foil lift curve slope      [-] 

a  finite foil lift curve slope      [-] 

A1  external rotor area                [m2] 

A2  internal rotor area                [m2] 

AR  foil aspect ratio       [-] 

c  chord                   [m] 

CD  drag coefficient       [-] 

CD,th  theoretical value of the drag foil coefficient    [-] 

CD,sim  simulated value of the drag foil coefficient    [-] 

CL  lift coefficient       [-] 

CLb  blade lift coefficient       [-] 

CL,inf  infinite lift foil coefficient      [-] 

CLb,th  blade theoretical value of the lift foil coefficient   [-] 

CLb,sim  blade simulated value of the lift foil coefficient   [-] 

Cp  power coefficient       [-] 

Cp1  external rotor power coefficient     [-] 

Cp2  internal rotor power coefficient     [-] 

Di  internal diameter                 [m] 

De  external diameter                 [m] 

ew  Oswald’s factor       [-] 

Eb  blade efficiency       [-] 

h1  external blade height                 [m] 

h2  internal blade height                 [m] 

Lr  deflector lift        [-] 

n  rotational speed               [rpm] 

P  power machine                [kW] 

P0  flow power                 [kW] 

R  resultant force                 [N] 

Re  Reynolds Number       [-] 
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r  radius                   [m] 

TA  Archimedes’ thrust                 [N] 

T  blades thrust                  [N] 

W  machine weight                 [kg] 

ui  ensemble-averaged fluid velocity component            [m/s] 

v0  undisturbed tidal velocity               [m/s] 

z  number of blades       [-] 

z1  external rotor number of blades     [-] 

z2  internal rotor number of blades    [-] 

Greek letters 

αp  incidence angle       [rad] 

β  positioning angle       [rad] 

βp  attack angle        [rad] 

ηe  electrical efficiency         [-] 

ηm  mechanical efficiency        [-] 

φ  functional angle       [rad] 

λ  tip speed ratio         [-] 

µ  radius/tip diameter         [-] 

µ  water dynamic viscosity                [Pa s] 

ρ  water density                 [kg/m3] 
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