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Abstract. In this paper we formulate and analyze the mixed for-
mulation of the one-dimensional equilibrium model of elastic stents. The
model is based on the curved rod model for the inextensible and unshear-
able struts and is formulated in the weak form in [5]. It is given by a system
of ordinary differential equations at the graph structure. In order to numer-
ically treat the model using finite element method the mixed formulation
is plead for. We obtain equivalence of the weak and the mixed formulation
by proving the Babuska–Brezzi (inf-sup) condition for the stent structure.

1. Introduction

A stent is a mesh tube that is inserted into a natural conduit of the body
to prevent or counteract a disease-induced localized flow constriction. For
instance, to keep the arteries open, a stent is inserted at the location of the
narrowing. Performance of coronary stents depends on the mechanical prop-
erties of the material the stent is made of and on the geometrical properties
of a stent, e.g., number of stent struts, their length, their placement, the strut
width and thickness, geometry of the cross section of each stent strut, etc.
As a consequence the behavior of the stents is very complex and reliable and
efficient models are desirable.

Since the stents are usually made of metals we consider a stent to be a
three-dimensional elastic body defined as a union of three-dimensional struts.
If the deformations in the problem are small behavior of stents can be mod-
eled by the linearized elasticity. The equations of linearized elasticity in thin
domains are very demanding for numerical approximation and qualitative
analysis. Therefore, it is appealing to construct a more simple analytical ap-
proximation. The one-dimensional model of stents was first considered in [15]
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and then reformulated in [5] as a system of ordinary differential equations
given on the graph defined by the middle curves of the stent struts. The
model is one-dimensional in a sense that it is given by the ordinary differen-
tial equations with respect to the natural parameter of the middle curves of
the struts as the variable (arc-length variable). However the model describes
full three-dimensional behavior of the stent. Thus, each stent strut is mod-
eled using the curved rod model (see [10,11] for the rigorous derivation of the
model from three-dimensional elasticity) and a set of transmission conditions
at joints (vertices of the graph) describing: continuity of displacement and
rotation and equilibrium of forces and couples. Note that the model is not
restricted to stents but can be used to model behavior of any elastic structure
made of elastic bodies which are thin in two directions (rod–like).

The function space on which the stent model is posed in the weak formu-
lation, includes conditions of inextensibility and unshearability of rods that
model struts. Therefore to build a finite element approximation within this
function space (V Ker

S in Section 3) one needs to fulfill these restrictions with
each finite element function. However this is not a simple task. The associ-
ated mixed formulation removes the conditions from the function space using
the Lagrange multipliers. These conditions then become adjoined equations.

When the stent is considered solely with no interaction with surrounding,
natural boundary conditions are of the Neumann type, i.e., contact forces
are prescribed. As usual associated to this pure traction problems are two
qualitative properties, a necessary condition for the existence (total force and
moment are zero, see (3.8)) and nonuniqueness of the solution of the problem
(up to an infinitesimal rigid deformation, see (3.7)). We remove both no-
tions by fixing the total displacement and total infinitesimal rotation in (3.7).
This adds two more equations in the mixed formulation (and two Lagrange
multipliers from R3).

The main tool to obtain the equivalence of the classical weak (variational)
formulation and the mixed formulation is the Babuska-Brezzi condition, see
[7, Theorem 4.1 and Corollary 4.1] or [3, Theorem II.1.1]. To obtain it we
use techniques applied in [18] and [16] for solving a particular problem on the
same graph prescribed by the stent, but for simplified constitutive law, zero
forces and prescribed non-zero extension and shear of the cross–section. The
solution is obtained by explicitly integrating problems on struts, and then
incorporating the solution, with respect to the topology of the graph, into a
large algebraic system.

In Section 2 we start with the problem on a single curved rod and the
formulation of its mixed formulation to introduce the problem and present
the ideas. Then, in Section 3 we formulate the stent model, recall the H1

space on the graph, and prove the Poincaré type inequality for this space.
Using this estimate we prove the ellipticity of the stiffness form on the space
that includes inextensibility and unshearability of rods. Finally we prove the
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Babuska-Brezzi inf − sup condition for the stent structure in Lemma 3.5 which
then gives the equivalence of the formulations.

2. 1D curved rod model

2.1. Differential formulation. A three-dimensional elastic body with its two
dimensions small comparing to the third is generally called an elastic rod, see
Figure 1. A curved rod model is a one-dimensional approximation of a "thin"

t
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F

Figure 1. 3D thin elastic body

three-dimensional curved elastic structure given in terms of the arc-length of
the middle curve of the rod as an unknown variable. Thus in order to build
the model a natural parametrization Φ : [0, l]→ R3 of the middle curve of the
curved rod (red in Figure 1) has to be given. Further, let the cross-section of
a rod be rectangular, of width w in direction of the binormal b on the middle
curve and thickness t in direction of the normal n on the middle curve.

One-dimensional equilibrium model for curved elastic rods we use here is
given by the following first order system. For a given force with line density
f the model is expressed in terms of (u,ω, q,p) that satisfy

0 = p′ + f ,(2.1)
0 = q′ + t× p,(2.2)
0 = ω′ −QH−1QTq,(2.3)
0 = u′ + t× ω(2.4)

together with associated boundary condition. Here, u is the displacement of
the middle curve, ω is the vector of the infinitesimal rotation of the cross-
sections, q is the contact couple and p is the contact force. The first two
equations describe the balance of contact force and contact moment, respec-
tively, while the last two equations describe the constitutive relation for a
curved, linearly elastic rod. The last equation can be interpreted as the con-
dition of inextensibility and unshearability of the rod. The matrices H and
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Q are given by

H =

 µK 0 0
0 EI11 EI12
0 EI12 EI22

 , Q =
[

t n b
]

see e.g. [4]. Here E = µ(3λ+2µ)/(λ+µ) is the Youngs modulus of the material
(µ and λ are the Lamé constants), Iij are the moments of inertia of the cross-
sections and µK is the torsion rigidity of the cross-sections. Therefore, H
describes the elastic properties of the material the rods (struts) are made of
and the geometry of the cross-sections.

This model is linearization of the Antman-Cosserat model for inextensible,
unshearable rods, see [1] for the nonlinear model and [5] for the linearization.
The model can also be seen as a linearization of the nonlinear model derived by
Scardia in [12] from three-dimensional nonlinear elasticity. It was show in [10]
and [11] that the solution of the one-dimensional model can be obtained as a
limit of solutions of equilibrium equations of three-dimensional elasticity when
thickness of the cross-sections (both, w and t) tend to zero. Corresponding
result for the dynamic case is given in [13]. Therefore, for three-dimensional
rods which are thin enough one-dimensional curved rod model can provide
well enough approximation. Moreover, in [14], it was shown that curved
geometry can be approximated with a piecewise straight geometry with an
error estimate. This will further simplify the equations of the one-dimensional
model.

2.2. Mixed and weak formulations. To obtain classical existence and unique-
ness result one classically rewrites the problem in the weak/variational formu-
lation. In the weak formulation inextensibility and unshearability conditions
are incorporated in the function space which complicates the numerical ap-
proximation of the problem. Therefore the mixed formulation of (2.1)-(2.4)
is called for.

Let us take (ũ, ω̃) ∈ V = H1(0, ℓ;R3) × H1(0, ℓ;R3) and multiply (2.1)
by ũ and (2.2) by ω̃ and sum the equations and integrate them over [0, ℓ].
We obtain

0 =
∫ ℓ

0
p′ · ũds+

∫ ℓ

0
f · ũds+

∫ ℓ

0
q′ · ω̃ds+

∫ ℓ

0
t× p · ω̃ds.

After partial integration in the first and the third term on the right hand side
we obtain

0 = −
∫ ℓ

0
p · ũ′ds+

∫ ℓ

0
f · ũds−

∫ ℓ

0
q · ω̃′ds+

∫ ℓ

0
ω̃ × t · pds

+ p(ℓ) · ũ(ℓ)− p(0) · ũ(0) + q(ℓ) · ω̃(ℓ)− q(0) · ω̃(0).
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Inserting q from (2.3) we obtain

0 = −
∫ ℓ

0
p · (ũ′ + t× ω̃)ds+

∫ ℓ

0
f · ũds−

∫ ℓ

0
QHQTω′ · ω̃′ds

+ p(ℓ) · ũ(ℓ)− p(0) · ũ(0) + q(ℓ) · ω̃(ℓ)− q(0) · ω̃(0).

Finally from (2.4) for all p̃ ∈ L2(0, ℓ;R3) we obtain∫ ℓ

0
p̃ · (u′ + t× ω)ds = 0.

Let us define function spaces V = H1(0, ℓ;R3)×H1(0, ℓ;R3), Q = L2(0, ℓ;R3),
bilinear forms

k : V × V → R, k((u,ω), (ũ, ω̃)) =
∫ ℓ

0
QHQTω′ · ω̃′ds,

b : Q× V → R, b(p, (ũ, ω̃)) =
∫ ℓ

0
p · (ũ′ + t× ω̃)ds,

and the linear functional

l : V → R, l(ũ, ω̃) =
∫ ℓ

0
f · ũds.

Now the mixed formulation of the one rod problem (2.1)-(2.4) is given by:
find ((u,ω),p) ∈ V ×Q such that

(2.5)

k((u,ω), (ũ, ω̃)) + b(p, (ũ, ω̃))
= l(ũ, ω̃) + q(ℓ) · ω̃(ℓ)− q(0) · ω̃(0)

+ p(ℓ) · ũ(ℓ)− p(0) · ũ(0), (ũ, ω̃) ∈ V,
b(p̃, (u,ω)) = 0, p̃ ∈ Q.

For a single rod, the boundary conditions at s = 0, ℓ need to be prescribed.
At this point we assume (the most difficult case for the subsequent analysis)
that the rod is clamped at s = 0 and s = ℓ, i.e.,

u(0) = ω(0) = u(ℓ) = ω(ℓ) = 0.

Therefore we define the function space containing these boundary conditions,
namely

V0 = {(u,ω) ∈ V : u(0) = ω(0) = u(ℓ) = ω(ℓ) = 0}.
Now the mixed formulation is given by: find ((u,ω),p) ∈ V0 ×Q such that

(2.6)
k((u,ω), (ũ, ω̃)) + b(p, (ũ, ω̃)) = l(ũ, ω̃), (ũ, ω̃) ∈ V0,

b(p̃, (u,ω)) = 0, p̃ ∈ Q.

Remark 2.1. For the stent problem, the boundary conditions will be
given by the kinematic and dynamic contact conditions. They consist of
continuity of displacement and infinitesimal rotation and requirement that the
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sum of contact forces be equal to zero, and that the sum of contact moments
be equal to zero, for all rods meeting at the given vertex.

To the problem (2.6) we can also associate the weak formulation. For
that we first define the subspace

V Ker
0 = {(u,ω) ∈ V0 : u′ + t× ω = 0}

of V0 which includes the inextensibility and unshearability condition given by
(2.4). Then the weak/variational formulation is given by: find (u,ω) ∈ V Ker

0
such that

(2.7) k((u,ω), (ũ, ω̃)) = l(ũ, ω̃), (ũ, ω̃) ∈ V Ker
0 .

Note also that the form b defines the linear operator B : V → Q′ by

b(p, (ũ, ω̃)) = Q′⟨B(ũ, ω̃),p⟩Q.

This operator is important for the analysis of the mixed formulation.

Lemma 2.2. One has:
a) the form k is V Ker

0 –elliptic.
b) B(V0) is closed in Q′.

– If the parametrization of the middle curve of the rod Φ is not
affine then ImB = Q = L2(0, ℓ;R3).

– If Φ is affine with constant tangent t then

B(V0) = {λ ∈ L2(0, ℓ;R3) :
∫ ℓ

0
λ(s)ds · t = 0}.

Proof. a) For (u,ω) ∈ V Ker
0 we estimate using the Poincare inequality

three times
∥(u,ω)∥2

V ≤ C(∥u′∥2
L2(0,ℓ;R3) + ∥ω′∥2

L2(0,ℓ;R3))

≤ C(∥u′ + t× ω∥2
L2(0,ℓ;R3) + ∥t× ω∥2

L2(0,ℓ;R3) + ∥ω′∥2
L2(0,ℓ;R3))

≤ C∥ω′∥2
L2(0,ℓ;R3) = C∥QTω′∥2

L2(0,ℓ;R3)

≤ C

min σ(H)
k((u,ω), (u,ω)).

b) Let us take λ ∈ Q. We try to find (u,ω) ∈ V0 such that

λ = u′ + t× ω.

For that we search for the solution of the system

(2.8)

p′ = 0,
q′ + t× p = 0,
ω′ − q = 0,
u′ + t× ω = λ
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such that (u,ω) ∈ V0. Note that we actually need to solve only the last equa-
tion and that the first three equations are arbitrary. However this formulates
the system very similar to the one already analyzed in [18]. Therefore, for
some constants P ,Q ∈ R3 one has

p(x) = P , q(x) = Q−
∫ x

0
t(s)× P ds = Q−AΦ(x)−Φ(0)P ,

where Av is the skew-symmetric matrix associated with the vector v, i.e.,
Avx = v × x. Integrating the third equation in the system we obtain

−ω(x) = ω(ℓ)− ω(x) =
∫ ℓ

x

q(s)ds =
∫ ℓ

x

Q−AΦ(s)−Φ(0)P ds

= (ℓ− x)Q−
∫ ℓ

x

AΦ(s)−Φ(0)dsP .

Now from the fourth equation we obtain

−u(x) = u(ℓ)− u(x) =
∫ ℓ

x

λ(s)− t(s)× ω(s)ds

=
∫ ℓ

x

λ(s)ds−
∫ ℓ

x

Φ′(s)× ω(s)ds

=
∫ ℓ

x

λ(s)ds+
∫ ℓ

x

Φ(s)× ω′(s)ds+ Φ(x)× ω(x)

=
∫ ℓ

x

λ(s)ds+
∫ ℓ

x

Φ(s)× q(s)ds+ Φ(x)× ω(x)

=
∫ ℓ

x

λ(s)ds+
∫ ℓ

x

Φ(s)×
(
Q−AΦ(s)−Φ(0)P

)
ds+ Φ(x)× ω(x)

=
∫ ℓ

x

λ(s)ds+
∫ ℓ

x

AΦ(s)dsQ−
∫ ℓ

x

AΦ(s)AΦ(s)−Φ(0)dsP

+ Φ(x)× ω(x).

Applying the boundary conditions at x = 0, for u,ω we obtain the equations

0 = ℓQ−
∫ ℓ

0
AΦ(s)−Φ(0)dsP ,

0 =
∫ ℓ

0
λ(s)ds+

∫ ℓ

0
AΦ(s)dsQ−

∫ ℓ

0
AΦ(s)AΦ(s)−Φ(0)dsP .

Multiplying the first equation by A−Φ(0) and adding to the second we obtain

0 =
∫ ℓ

0
λ(s)ds+

∫ ℓ

0
AΦ(s)−Φ(0)dsQ−

∫ ℓ

0
AΦ(s)−Φ(0)AΦ(s)−Φ(0)dsP .
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Thus the system for constant vectors P and Q is given by

(2.9)

[
ℓI −

∫ ℓ
0 AΦ(s)−Φ(0)ds∫ ℓ

0 AΦ(s)−Φ(0)ds −
∫ ℓ

0 AΦ(s)−Φ(0)AΦ(s)−Φ(0)ds

] [
Q
P

]
=
[

0
−
∫ ℓ

0 λ(s)ds

]
.

The matrix of the system, denote it by M6×6, is symmetric. Moreover, for
all Q,P ∈ R3

M6×6
[

Q
P

]
×
[

Q
P

]
= ℓQ ·Q− 2

∫ ℓ

0
AΦ(s)−Φ(0)dsP ·Q−

∫ ℓ

0
AΦ(s)−Φ(0)AΦ(s)−Φ(0)dsP · P

=
∫ ℓ

0

(
Q−AΦ(s)−Φ(0)P

)
·
(
Q−AΦ(s)−Φ(0)P

)
ds ≥ 0

and thus is positive semidefinite. It is positive definite unless, for some 0 ̸=
(Q,P ) ∈ R6

0 =
∫ ℓ

0

(
Q−AΦ(s)−Φ(0)P

)
·
(
Q−AΦ(s)−Φ(0)P

)
ds.

Then
Q−AΦ(s)−Φ(0)P = 0, s ∈ [0, ℓ].

Choosing s = 0 we obtain Q = 0. Therefore
AΦ(s)−Φ(0)P = 0, s ∈ [0, ℓ].

If Φ is not affine (the rod is not straight) this implies P = 0 and therefore
M6×6 is regular. Hence we have the unique solution of (2.8). Therefore
ImB = Q′ = L2(0, ℓ).

If Φ is affine, i.e., Φ(s)−Φ(0) = st, for some constant vector t then M6×6

is of rank 5 with Ker M6×6 = span{(0, t)} and with the image Im M6×6 =
{(0, t)}⊥. Thus the system (2.9) has solution if and only if

(2.10)
∫ ℓ

0
λ(s)ds · t = 0.

Therefore the system (2.8) has a solution if and only if (2.10) holds. Therefore
{λ ∈ L2(0, ℓ;R3) :

∫ ℓ
0 λ(s)ds ·t = 0} ⊆ ImB. On the other hand for λ ∈ ImB

one has
u′ + t× ω = λ.

Integrating over [0, ℓ] we obtain

t×
∫ ℓ

0
ω(s)ds =

∫ ℓ

0
λ(s)ds.
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Thus (2.10) is fulfilled, B(V0) = {λ ∈ L2(0, ℓ;R3) :
∫ ℓ

0 λ(s)ds ·t = 0} and thus
ImB is closed (moreover of codimension 1).

Proposition 2.3. a) For every f ∈ L2(0, ℓ;R3) the problem (2.7)
has a unique solution (u,ω) ∈ V0.

b) For every f ∈ L2(0, ℓ;R3) the problem (2.6) has a unique solution
((u,ω),p) ∈ V ×Q. The function (u,ω) also satisfies (2.7).

c) If (u,ω) ∈ V0 is the solution of (2.7) then there is p ∈ Q such that
((u,ω),p) is solution of (2.6).

Proof. The statement a) is a direct consequence of Lemma 2.2a), con-
tinuity of forms k and b and linear functional l and the Lax–Milgram lemma.

Statements b) and c) are classical results about the linear variational prob-
lems with constraints, see [7, Theorem 4.1 and Corollary 4.1] or [3, Theorem
II.1.1].

3. Stent as a 3D net of 1D curved rods

3.1. Differential formulation. As mentioned earlier, stent is a three-dimensi-
onal elastic body defined as a union of three-dimensional struts. Each strut

Figure 2. Cypher stent by Cordis (upper figure) and its 1d
computer idealization (lower figure)

we model by the one-dimensional curved rod model. Thus for defining the
one-dimensional model we only need to prescribe:

• V set of nV vertices of the stent (points where middle lines meet),
• E set of nE edges of the stent (pairing of vertices),
• Φi : [0, ℓi] → R3 parametrization of the middle line of ith strut (edge
ei ∈ E), i = 1, . . . , nE ,
• µi, Ei parameters of material from which ith strut is made of, i =

1, . . . , nE ,
• Iiα,β α, β = 1, 2 and Ki moments of inertia and torsional rigidity of

cross-sections of ith strut, i = 1, . . . , nE .
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Note that N = (V, E) defines a graph and sets the topology of the stent.
Adding precise geometry of struts by prescribing parametrizations is also im-
portant. This actually introduces orientation in the graph however it is not
important for the mechanics of the system.

A one-dimensional model of the given three-dimensional stent is given by
the family of equations on each strut (edge)

0 = ∂sp
i + f i,(3.1)

0 = ∂sq
i + ti × pi,(3.2)

0 = ∂sω
i −Qi(Hi)−1(Qi)Tqi,(3.3)

0 = ∂su
i + ti × ωi(3.4)

for all ei ∈ E . Additionally, we need to prescribe the coupling conditions that
need to be satisfied at each vertex of the stent net where the edges (stent
struts) meet. As mentioned earlier, two sets of coupling conditions hold:

• the kinematic coupling condition: (u,ω) continuous at each vertex,
• the dynamic coupling condition: balance of contact forces (p) and

contact moments (q) at each vertex,

(3.5)

ωi(0) = ωk(ℓk), i ∈ J−j , k ∈ J
+
j , j = 1, . . . , nV ,

ui(0) = uk(ℓk), i ∈ J−j , k ∈ J
+
j , j = 1, . . . , nV ,∑

i∈J+
j

pi(ℓi)−
∑
i∈J−

j

pi(0) = 0, j = 1, . . . , nV ,

∑
i∈J+

j

qi(ℓi)−
∑
i∈J−

j

qi(0) = 0, j = 1, . . . , nV ;

here J−j stands for the set of all edges that leave (i.e. the local variable is
equal 0 at) the vertex j and J+

j stands for the set of all edges that enter (i.e.
the local variable is equal ℓ at) the vertex j.

This constitutes the one-dimensional model of stents. Since the body
is not fixed at any point the solution is not unique and there is associated
necessary condition for the existence. It is easy to check that the functions

(3.6) ui(s) = constu−Φi(s)×constω, ωi(s) = constω, i = 1, . . . , nE

satisfy (3.1)–(3.4) for zero loads (f i = 0, i = 1, . . . , nE). Thus, to obtain the
problem with unique solution we add the conditions

(3.7)
nE∑
i=1

∫ ℓi

0
uids =

nE∑
i=1

∫ ℓi

0
ωids = 0.
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Accompanied with this nonuniqueness are necessary conditions for the exis-
tence

(3.8)
nE∑
i=1

∫ ℓi

0
f i(s)ds = 0,

nE∑
i=1

∫ ℓi

0
Φi(s)× f i(s)ds = 0.

These conditions are exactly the equilibrium conditions for the total force and
the total moment. For more details in a bit more complex setting see [16,18].

Thus the model of stents we consider in the sequel is given by the rod
equations (3.1)–(3.4), contact conditions (3.5) and the conditions of zero mean
displacement and zero mean rotation (3.7).

3.2. Weak and mixed formulations. Next we turn to the weak and mixed
formulation of the problem. The kinematic coupling conditions are satisfied
by including this condition into the space of test functions, thereby requiring
that all possible candidates for the solution must satisfy the continuity of
displacement and the continuity of infinitesimal rotation at every net vertex
(avoiding the stent rupture (caused by jump in displacements or infinitesimal
rotations of the cross-section), in which case the model equations cease to be
valid). We begin by first defining the space of H1-functions uS , defined on
the entire stent net E , such that they satisfy the kinematic coupling condition
at each vertex V ∈ V. The vector function uS consist of all the state variables
(u,ω) defined on all the edges ei, i = 1, ..., nE , so that

uS = (y1, ...,ynE ) = ((u1,ω1), ..., (unE ,ωnE )).

The kinematic coupling condition requires that the displacement of the middle
line u, and the infinitesimal rotation of the cross-section ω, are continuous at
every vertex V ∈ V. More precisely, at each vertex V ∈ V at which the edges
ei and ej meet, the kinematic condition says that the trace of yi evaluated
at the value of the parameter s ∈ {0, ℓi} that corresponds to the vertex V ,
i.e., yi((Φi)−1(V )), has to be equal to the trace yj((Φj)−1(V )). Thus, for
k ∈ N, we define the space

H1(N ;Rk) =
{

uS = (y1, . . . ,ynE ) ∈
nE∏
i=1

H1(0, ℓi;Rk) :

yi((Φi)−1(V )) = yj((Φj)−1(V )), ∀V ∈ V,V ∈ ei ∩ ej
}
.

The dynamic coupling conditions, however, are satisfied in the weak sense
by imposing this condition in the weak formulation of the underlying equa-
tions. To get to the weak formulation of the mixed formulation of the stent
problem we sum up the weak forms of the mixed formulations for each strut
on a space of functions VS = H1(N ;R6) which are defined on the whole stent
and which are continuous in vertices (globally continuous). Then by the dy-
namic contact conditions contact couples and forces from the right hand side
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of (2.6) cancel out. Let us denote by

VS = H1(N ;R6), QS = L2(N ;R3)×R3×R3 =
nE∏
i=1

L2(0, ℓi;R3)×R3×R3

the function spaces and define bilinear forms obtained by summing the asso-
ciated forms for each rod
(3.9)

kS : VS × VS → R, kS(uS , ũS) =
nE∑
i=1

∫ ℓi

0
QiHi(Qi)T∂sωi · ∂sω̃ids,

bS : QS × VS → R, bS(pS , ũS) =
nE∑
i=1

∫ ℓi

0
pi · (∂sũi + ti × ω̃i)ds

+ α ·
nE∑
i=1

∫ ℓi

0
ũids+ β ·

nE∑
i=1

∫ ℓi

0
ω̃ids

and the linear functional

lS : VS → R, lS(ũS) =
nE∑
i=1

∫ ℓi

0
f i · ũids;

here, we use the notation
pS = (p1, . . . ,pnE ,α,β).

Let us also define the function space
V Ker
S = {ũS ∈ VS : bS(p̃S , ũS) = 0, p̃S ∈ QS}.

Now the weak formulation is given by: find uS ∈ V Ker
S such that

(3.10) kS(uS , ũS) = lS(ũS), ũS ∈ V Ker
S .

More details on the model can be found in [5]. This model actually is not
limited for stents. It can be used to model any elastic structure made of
rods. The associated static model is rigorously justified in [8] from three-
dimensional linearized elasticity. The weak formulation of the problem is
essential for obtaining the numerical approximation using the finite element
method. However because of the inextensiblity and unshearability constraints
that are difficult to satisfy by the finite elements the mixed problem is impor-
tant.

The mixed formulation of the problem (3.10) is given by: find (uS ,pS) ∈
VS ×QS such that

(3.11)
kS(uS , ũS) + bS(pS , ũS) = lS(ũS), ũS ∈ VS ,
bS(p̃S ,uS) = 0, p̃S ∈ QS .

In the sequel we analyze the existence and uniqueness and the relation of
the solution of the weak and mixed formulations. Obvious part is that any
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solution (uS ,pS) ∈ VS × QS of the mixed formulation is the solution of the
weak formulation. For the opposite some more analysis has to be made.

Equivalence of the weak formulation and the mixed formulation is im-
portant in order to go back to the strong formulation. Then from the mixed
formulation it is easy to conclude the regularity result, namely

pi ∈ H1(0, ℓi), qi ∈ H2(0, ℓi), ωi ∈ H3(0, ℓi), ui ∈ H4(0, ℓi).

Even more smoothness is obtained if the force density is assumed more regular
on edges. Further, the strong formulation is then given by: find (ui,ωi, qi,pi),
i = 1, . . . , nE and α,β ∈ R3 that satisfy the equations at edges

(3.12)

∂sp
i −α + f i = 0, i = 1, . . . , nE ,

∂sq
i + ti × pi − β = 0, i = 1, . . . , nE ,

∂sω
i −Qi(Hi)−1(Qi)Tqi = 0, i = 1, . . . , nE ,

∂su
i + ti × ωi = 0, i = 1, . . . , nE ,

that has total mean displacement and rotation zero, i.e. (3.7) holds and that
the kinematic and dynamic contact conditions (3.5) at all vertices hold.

Remark 3.1. Inserting the displacements and infinitesimal rotations from
the kernel of the stent operator, i.e. of the form (3.6), in the mixed formulation
(3.11) we obtain the equation

α ·
nE∑
i=1

∫ ℓi

0
(constu −Φi(s)× constω)ds+ β ·

nE∑
i=1

∫ ℓi

0
constωds

=
nE∑
i=1

∫ ℓi

0
f i · (constu −Φi(s)× constω)ds,

for all constu, constω ∈ R3. This implies

α =
nE∑
i=1

∫ ℓi

0
f ids

/ nE∑
i=1

ℓi,

β =

(
−

nE∑
i=1

∫ ℓi

0
f i ×Φi(s)ds+ α×

nE∑
i=1

∫ ℓi

0
Φi(s)ds

)/ nE∑
i=1

ℓi.

Note that the weak formulation (3.10) will have a unique solution as a con-
sequence of Lemma 3.3, since the form kS is V Ker

S –elliptic. Also, there is no
necessary condition for the existence. The role here has been done by the
multipliers α and β since they are chosen such that f i − α satisfy the nec-
essary conditions of the form (3.8). Note further that if we take loads that
satisfy necessary condition (3.8) then α = β = 0.

First we prove the Poincare type estimate on the stent.
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Lemma 3.2. There is C > 0 such that
nE∑
i=1
∥ui∥2

H1(0,ℓi;R3) ≤ CP

(
nE∑
i=1
∥∂sui∥2

L2(0,ℓi;R3) + |
nE∑
i=1

∫ ℓi

0
ui|2

)
,

uS = (u1, . . . ,unE ) ∈ H1(N ;R3).

Proof. Let us suppose that the estimate does not hold. Then there is a
sequence (uSn) ⊂ H1(N ;R3) such that

(3.13)
nE∑
i=1
∥uin∥2

H1(0,ℓi;R3) = 1

and that

(3.14)

uin ⇀ ui weakly in H1(0, ℓi;R3), i = 1, . . . , nE ,
∂su

i
n → 0 strongly in L2(0, ℓi;R3), i = 1, . . . , nE ,

nE∑
i=1

∫ ℓi

0
uin → 0.

From the first and second convergence ∂sui = 0 and thus ui = const, i =
1, . . . , nE due to the continuity requirement from the definition of H1(N ;R3).
From the first and third convergence in (3.14) we obtain that

nE∑
i=1

∫ ℓi

0
ui = 0.

This now implies uS = 0. The first and second convergence in (3.14) also
imply uin → ui strongly in H1(0, ℓi;R3) for i = 1, . . . , nE , i.e., uin → 0
strongly in H1(0, ℓi;R3), which is in contradiction with (3.13).

Lemma 3.3. The form kS is V Ker
S –elliptic.

Proof. As in the proof of Lemma 2.2 we estimate the function uS ∈
V Ker
S . In the first estimate we use Lemma 3.2 and (3.7)

∥uS∥2
H1(N ;R6) =

nE∑
i=1

(∥ui∥2
H1(0,ℓi;R3) + ∥ωi∥2

H1(0,ℓi;R3))

≤ CP (
nE∑
i=1

(∥∂sui∥2
L2(0,ℓi;R3) + ∥∂sωi∥2

L2(0,ℓi;R3))

+ |
nE∑
i=1

∫ ℓi

0
ui|2 + |

nE∑
i=1

∫ ℓi

0
ωi|2)

≤ 2CP
nE∑
i=1

(∥∂sui + ti × ωi∥2
L2(0,ℓi;R3) + ∥ti × ωi∥2

L2(0,ℓi;R3)

+ ∥∂sωi∥2
L2(0,ℓi;R3))
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= C

nE∑
i=1
∥∂sωi∥2

L2(0,ℓi;R3) ≤
C

mini σ(Hi)
kS(uS ,uS).

Together with continuity of the forms kS , bS and the linear functional lS
this Lemma implies the existence theorem for the weak formulation (3.10).
We proceed with the analysis of the mixed formulation only for stents which
belong to the class S (see below) since then we know how to prove the inf sup
estimates (see Lemma 3.5 for more details).

Definition 3.4. The stent belongs to the class S if one of the following
is satisfied

• all edges are curved,
• there are straight edges. Then∑

i∈J+
j

αit
i −

∑
i∈J−

j

αit
i = 0, j = 1, . . . , nV , ⇔ αi = 0, i = 1, . . . , nE ;

here αi = 0 for edges which are not straight.

Lemma 3.5. Let the stent be in the class S. Then there is βBB > 0 such
that

inf
p̃S∈QS

sup
ũS∈VS

bS(p̃S , ũS)
∥p̃S∥QS

∥ũS∥H1(N ;R6)
≥ βBB .

Proof. For a given p̃S = (λ1, . . . ,λnE ,α,β) ∈ QS we will find uS =
((u1,ω1), . . . , (unE ,ωnE )) ∈ VS such that

(3.15)

∂su
i + ti × ωi = λi, i = 1, . . . , nE ,

nE∑
i=1

∫ ℓi

0
uids = α,

nE∑
i=1

∫ ℓi

0
ωids = β,

and such that there is a constant C independent of uS and p̃S for which

(3.16) ∥uS∥H1(N ;R3) ≤ C∥p̃S∥QS
.

The statement of the lemma then follows since

sup
ũS∈VS

bS(p̃S , ũS)
∥p̃S∥QS

∥ũS∥H1(N ;R6)
≥

∥p̃S∥2
QS

∥p̃S∥QS
∥uS∥H1(N ;R6)

= ∥p̃S∥QS

∥uS∥H1(N ;R6)
≥ 1
C

=: βBB .
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We impose more restrictions that still lead us to the solution of (3.15):

(3.17)

∂sp
i = 0, i = 1, . . . , nE ,

∂sq
i + ti × pi = 0, i = 1, . . . , nE ,

∂sω
i − qi = 0, i = 1, . . . , nE ,

∂su
i + ti × ωi = λi, i = 1, . . . , nE ,

nE∑
i=1

∫ ℓi

0
uids = α,

nE∑
i=1

∫ ℓi

0
ωids = β,

and the functions (ui,ωi, qi,pi), i = 1, . . . , nE have to satisfy the kinematic
and dynamic contact conditions:

(3.18)

Ωj = ωi(0) = ωk(ℓk), i ∈ J−j , k ∈ J
+
j , j = 1, . . . , nV ,

U j = ui(0) = uk(ℓk), i ∈ J−j , k ∈ J
+
j , j = 1, . . . , nV ,∑

i∈J+
j

pi(ℓi)−
∑
i∈J−

j

pi(0) = 0, j = 1, . . . , nV ,

∑
i∈J+

j

qi(ℓi)−
∑
i∈J−

j

qi(0) = 0, j = 1, . . . , nV .

This system corresponds to the equilibrium stent problem with zero forcing,
for specific material and with the proposed extension given by λi’s. This
problem is very similar to (3.1)–(3.5).

From the first equation in (3.17) we conclude that all pi are constant.
Integrating the second equation we obtain that

qi(s) = qi(ℓi) +
∫ ℓi

s

ti(r)dr × pi = qi(ℓi) + Φ̃i(s)× pi,

where Φ̃i(s) = Φi(ℓi) −Φi(s). Let us now insert the values for pi and qi to
the dynamical contact conditions (the last two in (3.18)). We obtain

(3.19)

∑
i∈J+

j

pi −
∑
i∈J−

j

pi = 0, j = 1, . . . , nV ,

∑
i∈J+

j

qi(ℓi)−
∑
i∈J−

j

(qi(ℓi) + Φ̃i(0)× pi) = 0, j = 1, . . . , nV .

Let AI ∈ M3nV ,3nE (R) denote the incidence matrix of the oriented graph
(V, E) with three connected components (organized in the following way: a
3× 3 submatrix at rows 3i− 2, 3i− 1, 3i and columns 3j − 2, 3j − 1, 3j is I if
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the edge j enters the vertex i, −I if it leaves the vertex i or 0 otherwise). Let
us also denote projectors

PiE ∈M3,3nE , PjV ∈M3,3nV

on the coordinates 3i− 2, 3i− 1, 3i and 3j − 2, 3j − 1, 3j, respectively. Then
we define the matrix

(3.20) AΦ =
nV∑
j=1

∑
i∈J−

j

(PjV)TAΦ̃i(0)P
i
E

(the matrix Av is the skew-symmetric matrix associated with the axial vector
v, i.e., Avx = v × x,x ∈ R3). Using the notation

P = ((p1)T , . . . , (pnE )T )T , Q = ((q1(ℓ1))T , . . . , (qnE (ℓnE ))T )T

since
PjVAΦP =

∑
i∈J−

j

AΦ̃i(0)P
i
EP =

∑
i∈J−

j

Φ̃i(0)× pi

the equations (3.19) can be written by
(3.21) −AIP = 0, −AIQ + AΦP = 0.

The integration of the third equation in (3.17) implies

(3.22)
ωi(s)− ωi(0) =

∫ s

0
qi(r)dr = sqi(ℓi) +

∫ s

0
Φ̃i(r)× pidr

= sPiEQ +
∫ s

0
AΦ̃i(r)drP

i
EP .

Integration of the fourth equation in (3.17) implies

ui(ℓi)− ui(0) = −
∫ ℓi

0
ti(s)× ωi(s)ds+

∫ ℓi

0
λi(s)ds

= −
∫ ℓi

0
∂sΦi(s)×

(
ωi(0) +

∫ s

0
qi(r)dr

)
ds+

∫ ℓi

0
λi(s)ds

= −Φ̃i(0)× ωi(0)−
(

Φi(s)×
∫ s

0
qi(r)dr

) ∣∣∣∣ℓi

0

+
∫ ℓi

0
Φi(s)× qi(s)ds+

∫ ℓi

0
λi(s)ds

= −Φ̃i(0)× ωi(0)−Φi(ℓi)×
∫ ℓi

0
qi(s)ds

+
∫ ℓi

0
Φi(s)× qi(s)ds+

∫ ℓi

0
λi(s)ds

= −Φ̃i(0)× ωi(0)−
∫ ℓi

0
Φ̃i(s)× qi(s)ds+

∫ ℓi

0
λi(s)ds.



236 L. GRUBIŠIĆ, J. IVEKOVIĆ, J. TAMBAČA AND B. ŽUGEC

Therefore

(3.23)
ui(ℓi)− ui(0) = −AΦ̃i(0)ω

i(0)−
∫ ℓi

0
AΦ̃i(s)(P

i
EQ + AΦ̃i(s)P

i
EP )ds

+
∫ ℓi

0
λi(s)ds.

Next we introduce three vectors
Ω = ((Ω1)T , . . . , (ΩnV )T )T ,
U = ((U1)T , . . . , (UnV )T )T ,

Λ = ((
∫ ℓ1

0
λ1(s)ds)T , . . . , (

∫ ℓnE

0
λnE (s)ds)T )T .

The equation (3.22) for s = ℓi is now given by

PiEAT
IΩ = ℓiPiEQ +

∫ ℓi

0
AΦ̃i(s)dsP

i
EP .

Thus we obtain

AT
IΩ =

nE∑
i=1

(PiE)TPiEAT
IΩ = (

nE∑
i=1

(PiE)T ℓiPiE)Q+(
nE∑
i=1

(PiE)T
∫ ℓi

0
AΦ̃i(s)dsP

i
E)P

which gives the third equation

(3.24) −AT
IΩ + NKQ + NKAΦ̃

P = 0,

where the matrices

NK =
nE∑
i=1

(PiE)T ℓiPiE , NKAΦ̃
=

nE∑
i=1

(PiE)T
∫ ℓi

0
AΦ̃i(s)dsP

i
E

are block diagonal matrices with diagonal elements given by

ℓiI and
∫ ℓi

0
AΦ̃i(s)ds,

respectively.
The last equation we obtain from the integration of the fourth equation,

i.e. (3.23). Let us use the notation: σ(i) = numeration of the leaving vertex
of the edge i. Then we obtain

PiEAT
IU = −AΦ̃i(0)P

σ(i)
V Ω−

∫ ℓi

0
AΦ̃i(s)ds PiEQ

−
∫ ℓi

0
AΦ̃i(s)AΦ̃i(s)ds PiEP + PiEΛ.

Therefore, similarly as before we obtain

(3.25) −AT
IU −AQΩ−NKAΦ̃

Q−NAΦ̃KAΦ̃
P + Λ = 0,
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where

NAΦ̃KAΦ̃
=

nE∑
i=1

(PiE)T
∫ ℓi

0
AΦ̃i(s)AΦ̃i(s)ds PiE

is the diagonal matrix with diagonal elements given by
∫ ℓi

0 AΦ̃i(s)AΦ̃i(s)ds

and

AQ =
nE∑
i=1

(PiE)TAΦ̃i(0)P
σ(i)
V .

Note that the sum in the definition of AΦ is over all exiting edges from all
vertices. Therefore this sum can be written over all edges but for prescribed
exiting vertex. Therefore AQ = −AT

Φ! Therefore the system given by (3.21),
(3.24), (3.25) for (U ,Ω,Q,P ) can be written by

(3.26)
(

B AT

A 0

)(
x
u

)
=
(

f
0

)
,

where

B =
(

NK NKAΦ̃
−NKAΦ̃

−NAΦ̃KAΦ̃

)
, A =

(
−AI AΦ

0 −AI

)
,

x =
(

Q
P

)
, u =

(
Ω
U

)
, f =

(
0
Λ

)
.

Following [17] we compute the null space of the matrix

H =
(

B AT

A 0

)
as

Ker(H) =
{(

x
u

)
: x ∈ Ker(B) ∩Ker(A), u ∈ Ker(AT )

}
and since according to [18, Lema 3.1] we have for stents of class S that
Ker(B)∩Ker(A) = {0} we see that the vector ϕ :=

(
fT 0

)T is orthogonal
to Ker(H). For Hermitian matrices H this is equivalent to the statement that
ϕ ∈ Im(H), and so the system (3.26) has at least one solution χ such that
Hχ = ϕ.

Let now H+ be the Moore-Penrose generalized inverse of H. It is the
unique Hermitian matrix H+ such that matrices HH+ and H+H are both
orthogonal projections onto Im(H) and Im(H+) respectively. Recall that a
matrix is an orthogonal projection if it is Hermitian and idempotent.

Thus the vector
χ0 := H+ϕ

satisfies
Hχ0 = HH+ϕ = ϕ,

since ϕ ∈ Im(H) implies HH+ϕ = ϕ. Therefore χ0 is a particular solution
of (3.26) whose norm is controlled by ∥ϕ∥ = ∥f∥. Thus for

(
xT uT

)T := χ0
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there is a constant C = ∥H+∥, depending only on the geometry of the stent
such that

∥x∥ ≤ C∥f∥ ≤ C∥Λ∥, ∥u∥ ≤ C∥f∥ ≤ C∥Λ∥.
Using the definition of x,u and Λ we obtain

(3.27) ∥P ∥2 + ∥Q∥2 + ∥Ω∥2 + ∥U∥2 ≤ C
nE∑
i=1
∥λi∥2

L2(0,ℓi;R3).

These constants (U ,Ω,Q,P ) uniquely determine the function uS by (3.22)
and (3.23) and for this solution one has

(3.28) ∥uS∥2
H1(N ;R6) ≤ C

nE∑
i=1
∥λi∥2

L2(0,ℓi;R3).

Next we need to satisfy the last two equations in (3.15), so we define

Ω = 1∑nE
i=1 ℓi

(
β −

nE∑
i=1

∫ ℓi

0
ωi(s)ds

)
,

U = 1∑nE
i=1 ℓi

(
α−

nE∑
i=1

∫ ℓi

0
ui(s)ds+

nE∑
i=1

∫ ℓi

0
Φi(s)ds×Ω

)
.

Now we denote ûi = ui + U − Φi × Ω, ω̂i = ωi + Ω. Then (ûi, ω̂i, qi,pi)
satisfies the same equations as (ui,ωi, qi,pi), i.e., (3.17) and (3.18), but with
different values in contacts, namely
ûi(0) = U−Φi(0)×Ω, ω̂i(0) = Ω, ûi(ℓi) = U−Φi(ℓi)×Ω, ω̂i(ℓi) = Ω.
However,
uα,β
S = ((u1 +U −Φ1×Ω,ω1 +Ω), . . . , (unE +U −ΦnE ×Ω,ωnE +Ω)) ∈ VS

and U and Ω are defined such that
nE∑
i=1

∫ ℓi

0
ûids =

nE∑
i=1

∫ ℓi

0
uids+

nE∑
i=1

ℓiU −
nE∑
i=1

∫ ℓi

0
Φi ×Ωds = α,

nE∑
i=1

∫ ℓi

0
ω̂ids =

nE∑
i=1

∫ ℓi

0
ωids+

nE∑
i=1

ℓiΩ = β.

Therefore from (3.28) we obtain
(3.29)

∥uα,β
S ∥2

H1(N ;R6) ≤ C

(
nE∑
i=1
∥λi∥2

L2(0,ℓi;R3) + ∥U∥2 + ∥Ω∥2

)
≤ C∥p̃S∥2

QS
.

Thus the function uα,β
S satisfies (3.15) and (3.16) as announced and thus the

lemma is proved.

Proposition 3.6. a) The problem (3.10) has a unique solution.
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b) For every lS ∈ L2(0, ℓ;R3)′ the problem (3.11) has a unique solution.
This solution satisfies also the problem (3.10).

c) Let uS ∈ V Ker
S be the solution of (3.10) then there is pS ∈ QS such

that (uS ,pS) satisfies (3.11).
d) There exsits a constant C such that

∥uS∥VS
+ ∥pS∥QS

≤ CLBB∥lS∥L2(E;R3).

Proof. As in Proposition 2.3 the statement a) is a direct consequence
of Lemma 3.3a), continuity of forms kS and bS and linear functional lS and
the Lax–Milgram lemma.

Again, as in Proposition 2.3 the statements b) and c) are classical results
about the linear variational problems with constraints, see [7, Theorem 4.1
and Corollary 4.1] or [3, Theorem II.1.1].
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Mješovita formulacija jednodimenzionalnog ravnotežnog modela
elastičnog stenta

Luka Grubišić, Josip Iveković, Josip Tambača i Bojan Žugec

Sažetak. U ovom radu formuliramo i analiziramo mješovitu
formulaciju jednodimenzionalnog ravnotežnog modela elastičnog
stenta. Model je baziran na modelu zakrivljenog štapa za ne-
produljive i nesmičljive bridove. Originalna formulacija modela
je dana u slaboj formulaciji u [5], a može se zapisati kao sustav
običnih diferencijalnih jednadžbi na grafu. Zbog uvjeta u prostoru
u formulaciji modela za numerički tretman metodom konačnih
elemenata poželjno je napisati model u mješovitoj formulaciji.
U ovom radu pokazujemo da je zadovoljen Babuska–Brezzijev
(inf-sup) uvjet za model stenta, što povlači ekvivalenciju slabe i
mješovite formulacije modela.
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