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SOME EXTENSIONS OF THE NOTION OF LOOP
GRASSMANNIANS

Ivan Mirković

To Sibe Mardešić

Abstract. We report an ongoing attempt to establish in algebraic
geometry certain analogues of topological ideas, The main goal is to as-
sociate to a scheme X over a commutative ring k its “relative motivic
homology” which is again an algebro geometric object over the base k.
This is motivated by Number Theory, so the Poincare duality for this rela-
tive motivic homology should be an algebro geometric incarnation of Class
Field Theory.

1. Introduction

1.1. A geometric view on Number Theory. We propose an algebro geometric
framework for the basic organizational principles in Number Theory frame-
work, the Class Field Theory and its nonabelian version, the Langlands con-
jectures. The setting for this will be Geometric Representation Theory, the
strategy of encoding algebraic problems into algebro geometric objects.

This paper is actually twice removed from Number Theory itself. First,
I restrict to the baby case of Number Theory where the field Q of rational
numbers is replaced by its geometric analogue, the field of rational functions
on a curve defined over a finite field. At present geometric method works
the best in this case. Second, the number theoretic interest is primarily in
the “topological” aspect of schemes, i.e., one works in étale topology (or D-
modules). However, we will use Zariski topology and strive towards a “proper”
Zariski grounding for the “topological” questions.

After these two drastic simplifications something is still left as one can
try to extend the experience of number theory to general algebro geometric
objects (curves can be replaced by algebraic varieties and finite fields with
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general commutative rings). The classical results of this type are the Abel-
Jacobi construction of Jacobians, the canonical self duality of Jacobians and
the Contou-Carrère symbol.

In this setting Class Field Theory appears to be concerned with the
Poincare duality for a certain “relative motivic homology” in algebraic ge-
ometry (section 2). In the abelian case my optimistic attitude is that the
shape of this program is “reasonably” clear.(1) Now, the content of Langlands
conjectures should be a nonabelian version of Poincare duality. However, in
this nonabelian case such formulation is not clear in dimension one and even
the nature of the basic objects is presently not known beyond dimension one.

1.2. Loop Grassmannians. From the present geometric point of view a loop
Grassmannian G(G) of a group G is the homology of a formal one dimensional
disc with coefficients in G. The exposition here will be concerned with the
modifications of the notion of loop Grassmannians. From the Number Theory
point of view a loop Grassmannian is a geometrization of Hecke operators and
for physicists this is a realization of ’t Hooft operators in QFT.

Loop Grassmannians G(G) of algebraic groups G are recalled in section
3, together with a generalization, the loop Grassmannians G(G,Y ) with a
“condition Y ” where Y is a G space with a chosen point y. Here G(G,Y )
consists of elements of G(G) whose “singularity gets resolved in Y ”. Here
G(G,Y ) and G(G) are general cohomological constructions and G(G,Y ) is
used in order to systematically deal with the geometry of interesting subspaces
of G(G).

Section 4 presents another generalization of loop Grassmannians. From
the data of a set I, a quadratic form Q on Z[I] and a poset P , one produces
“loop Grassmannian” GP (I,Q). This in particular provides a “semi-infinite”
reconstruction of ordinary loop Grassmannians based on finite subschemes of
a curve.

Section 5 is a homage to the Kamnitzer-Knutson conjecture on a rela-
tion of loop Grassmannians and quivers. This still open conjecture was an
inspiration for the work in section 4.

Finally, section 6 lists the attempts towards constructing loop Grassman-
nians in arbitrary dimension.

1.2.1. Some roots of this project. My background is in Geometric Rep-
resentation Theory. At its height this field bridges the chasm between the
Langlands program in Number Theory and the Quantum Field Theory in
physics. At an infinity of the present project lies its goal, a transparent
algebro-geometric foundation for these developments, uniform across various
cases and dimensions.

1For the 1-dimensional Number Theory the étale Class Field Theory has been given
a Poincare duality interpretation by Mazur. I do not yet understand the relation with the
present geometric Class Field Theory.
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One “new” ingredient here is the notion of local spaces which is a version
of the Beilinson-Drinfeld notion of factorization spaces. I have formulated it
at the time of the paper [11] as a formalization of the Finkelberg-Schechtman
work [4] on quantum groups and its version [11] on semi-infinite loop Grass-
mannians. However, this notion first became useful when I tried to under-
stand the Kamnitzer-Knutson conjecture on the relation of quivers and loop
Grassmannians [12].

1.2.2. Acknowledgments. For me Sibe Mardešić is a friendly and beautiful
presence in my life, an enthusiast for mathematics and for life. His deep impact
on me came from my impression that Sibe was able to make the right decisions
in all aspects of his life with others.

Some parts of this project are with Yaping Yang and Gufang Zhao as
indicated below. I have received much help from many people. In particular
some key ideas here were only made possible by extensive discussions with
Sam Raskin and Nick Rozenblyum. Zhijie Dong has found numerous errors
and several counter-examples for my conjectures. This text also uses the notes
of Raeez Lorgat on my lectures at the Schrödinger Institute in Wien (January
2017).

This work has been partially supported by NSF grants, a sabbatical se-
mester from U. of Massachusetts at Amherst and the Simons Fellowship that
extended the sabbatical semester to a full year. Some key breakthroughs oc-
curred during visits to two mathematical institutions. In Fall semester of 2014
I was at the Mathematical Sciences Research Institute in Berkeley during their
Geometric Representation Theory program (funded by MSRI as a Simons Re-
search Professor and as an Eisenbud Research Professor). I spent February
of 2015 at University of Chicago (funded by their Mathematics Department).

2. Geometric Class Field Theory

The Geometric Class Field Theory presently exists only in dimension one.
Here we find a way to restate the known results in a way which is uniform in
local and global situations and suggests a generalization to arbitrary dimen-
sion.

2.1. Homology as free abelian group.
2.1.1. Free abelian group AX generated by X. In a given setting S for a

space X ∈ S we denote by SX the free commutative monoid (“semigroup”)
object generated by X in S (or in a given larger class S̃). Also, AX denotes
the free abelian group object generated by X.

In sets: SX = N[X] and AX = Z[X]. In categories S∅ = A∅ is a point
while Spt = (FS,⊔) is the tensor category of finite sets with disjoint union.
This is related to exponentiation since for a groupoid category C the size gets
exponentiated: |AC | = e|C|. In the setting of categories Apt is in some sense
the sphere spectrum.
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In the homotopy category of pointed topological spaces, SX is the infinite
symmetric power of X while AX is its group completion. By the Dold-Thom
theorem this AX is essentially the total homology H∗(X,Z). More precisely
Hi(X,Z) = πi(AX) is a truncation of the group object AX .

2.1.2. Free abelian group AX as homology of X. The above Dold-Thom
theorem says that in the homotopy category of pointed topological spaces the
free abelian group AX is a “derived” version of homology. This is intuitively
clear from the defining property Hom(AX ,A) = Map(X,A) of AX . In a
nonderived setting the right hand side is H0(X,A) but when we work in a
derived setting it becomes the (derived version of) the cohomology H∗(X,A).
So, the derived AX satisfies the property of homology that the A-dual of
homology is the cohomology with coefficients in A.

Suslin has imitated the Dold-Thom mechanism in algebraic geometry, his
incarnation of homology is the sheaf with transfers ZtrX . This was extended
by Voevodsky to a construction of motivic (co)homology. We will follow the
same idea but we will take a slightly different route towards constructing a
“relative motivic homology” which is expected to be a simplification of motivic
homology useful for Geometric Class Field Theory.

2.2. The local geometric Class Field Theory of Contou-Carrère.
2.2.1. AX for ind-finite indschemes. Over a given commutative ring k

we consider the setting Schfk of finite k-schemes and the class C of affine
commutative group indschemes. For a finite scheme F over k we are interested
in AF ∈ C, the object of C freely generated by F .

Lemma. AF exists and it is given by the “double dual”

HomC[MapSchk(F,Gm), Gm].

Proof. The key is that the Cartier duality operation D = HomC(−, Gm)
on C is involutive. The double dual construction satisfies the defining property
of AF since for any A ∈ C

HomC[D
(
MapSchk(F,Gm)

)
, A] = HomC[DA, MapSchk(F,Gm)]

= MapSchk(F, HomC [DA, Gm] ) = MapSchk(F,A).

Remarks. (0) The lemma automatically extends to ind-finite ind-
schemes F .

(1) Group AF can be called multiplicative distributions on F . If we replace
Gm by Ga we would find that the ordinary distributions on F form the vector
space generated by F .
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2.2.2. G(Gm) is the group indscheme Ad generated by a disc d. For a
smooth curve C Hilbert schemes of points HnC are the same as symmetric
powers SnC. This is a monoid for the operation of addition of divisors. In
terms of the ideal ID = OC(−D) of a subscheme D⊆C this is the tensoring
of line bundles: ID′+D′′ = ID′⊗OC

ID′′ .
Consider the formal disk d = ĉ at a point c ∈ C. This is an ind-finite

indscheme.
Corollary. The canonical map Sd → Ad is the same as the Abel-Jacobi

map
S•d = H•d ι

↪→ G(Gm) for ι(D) def= Od(−D).
Proof. Any map f : d→ A withA a commutative monoid in indschemes

extends canonically to a homomorphism of monoids F : Hd → A, the value
at a finite subscheme D is the integral of f over D. Therefore Hd = Sd.

Since the reduced part dred of d is a single point c, the reduced parts
of Sd⊆Ad are Nc⊆Zc. The points of H•d over a k-ring k′ are the monic
polynomials zn + a1z

n−1 + · · ·+ a0 with all ai ∈ k′ nilpotent.
Group (Gm)K is the product of 4 subgroups Gm (the constant loops in

Gm), Z (loops that are powers of z) and of the positive and negative congru-
ence subgroups (K+)(k′) = 1+zk′[[z]] and (K−)(k′) = 1+z−1Nk′ [z−1] where
Nk′⊆k′ is the ideal of nilpotent elements [6]. Now, G(Gm) = (Gm)K/(Gm)O =
zZ×K−. This is the same as what one obtains from (Hd,+) by inverting a
single element, the center c of the disc (when one views H•d in terms of monic
polynomials this means inverting the equation z of c).

Corollary. The identification Ad ∼= G(Gm) is a Poincare duality in
algebraic geometry.

“Proof”. Poincare Duality is the identification of homology and the
compactly supported cohomology. We have argued above that Ad is the value
of a certain homology on d. We have identified Ad with G(Gm) which is
by definition the local cohomology of the disc at the point c ∈ d of Gm[1].
However, due to the nature of d (when one removes c one removes all compact
subschemes of d), this is also the compactly supported cohomology of d.

Finally, we saw that the isomorphism Ad
∼=−→ G(Gm) is generated by the

Abel-Jacobi map d → G(Gm), x 7→ Od(−x). This can be interpreted as the
use of the diagonal ∆d in d×dc where dc is obtained by embedding d into a
smooth compact curve and then collapsing the complement of the point c.
This indeed fits into the Poincare Duality pattern.

2.3. An axiomatic setting for relative motivic cohomology. Let Schk denote
the k-schemes of finite type. The meaning of the abelian group generated by
a k-scheme X ∈ Schk depends on the class of groups (“the setting”) that one
considers. Here we axiomatize the necessary properties for such settings.



58 I. MIRKOVIĆ

2.3.1. A setting C for constructing AC
X . Here, C should be an infinity

category of commutative group objects in higher algebraic k-stacks, with the
following structures

(1) compatible inner Hom functors

Schok×C Map−→ C and Co×C Hom−→ C,

(2) a dualizing object D ∈ C, i.e., we ask that the functor
D def= Hom(−,D) : C→ C is an involution on C.

Once we have such setting one can form the corresponding free abelian
groups just as in the case of finite schemes:

“Lemma”. For X ∈ Schk there exists an object AC
X of C freely generated

by X. This is

Hom[Map(X,D),D] = D[Map(X,D)].

Remarks. (1) Having a dualizing object D guarantees existence of AC
X

which is the C-version of homology.
It also gives a reasonable cohomology theory H∗(−,D). The Poincare

Duality for this cohomology theory is then a natural isomorphism of AC
X with

H∗c (X,D).
(2) In reality we have an increasing sequence of categories Cn (for us

these will be the groups in ≤ n-stacks over k), with the corresponding duality
objects (we will use Gm[n]). Then all these AnX = ACn

X form a system AX
which is the homology that we are interested in. (An example of truncations
of this type, i.e., as AnX truncates AX , is the Deligne cohomology.)

Example. Let C be a complete smooth connected curve with the Pi-
card scheme Pic(C). Then the system AnC stabilizes at n = 1 and the only
nontrivial map is the truncation to the connected components

A1
X = BunGm(C) = Pic(C)/Gm � A0

X = Z .

2.4. Relative motivic cohomology conjecture.
2.4.1. Conjecture. In the above setting there exists a cohomology theory

for k-schemes with values in commutative group objects in higher algebraic
k-stacks, such that

1. Its homology H∗(X,Z) is A•X .
2. It has the four functors functoriality: f∗, f! and f∗, f !.
3. For smooth schemes it satisfies Poincare duality.

Theorem. True in dimension ≤ 1.

There are more expectations:
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(a) This should be the relative version of the (diagonal part of) motivic
cohomology in the sense that the value on a k-scheme should be the
k-representable part of the diagonal motivic cohomology. (The usual
motivic cohomology is a group in sets and when one can make it into a
functor in k-algebras this functor need not be representable in algebraic
geometry over k.)

This version should be easier than the original. In the original construction the
geometric cycles are irreducible varieties which are not allowed to degenerate
to schemes. The conjectural construction axiomatized above would be more
direct with fewer restrictions, for instance it should have a local theory and a
Cartier duality.

One should also be able to reconstruct A•X as in Voevodsky theory, using
the “k-relative” analogue of the category of finite correspondence (based on
the construction ZlocX in 4.1.2).

(b) Its Poincare duality should be the geometric CFT (at present only
known for curves). This may opens a door to higher geometric Lang-
lands.

(c) The “theory of higher adeles” deals with a certain formally open cover
of a scheme, a scheme has Grothendieck’s “universal” stratification
by generic points of irreducible subschemes and it generates a formally
open cover by formal neighborhoods of such generic points The relative
motivic homology A•X should be computable in terms of this cover.

2.4.2. Example: Relative Milnor K-theory of higher local fields. Motivic
cohomology is understood in weight one (essentially dimension one) and for
fields. For a field K one can describe the diagonal part of motivic cohomology
algebraically as its Milnor K-theory

KM∗ (K) def= T •Z (K∗)/⟨Steinberg relation⟩.

If k is a field then the n-dimensional local field Kn = k((x1))· · ·((xn)) has
itself a structure of an indscheme over k. Now we define its relative (to k)
Milnor K-theory KMi (Kn/k) by the same formula but now calculated in the
tensor category (C,⊗C) of commutative affine group indschemes over k. We
define this tensor structure as the Cartier dual of bilinear maps into Gm :

A⊗CB
def= D[BilA,B(Gm)].

Now the diagonal part of the Poincare duality for Spec(Kn) in relative motivic
cohomology should be the following.

Conjecture (with Nick Rozenblyum). The corresponding 2 dimen-
sional Contou-Carrère (see [14]), gives Cartier duality of KMi (Kn/k) and
KMj (Kn/k) for i+ j = n+ 1.
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Remarks. (1) For n = 1 this is the local geometric Class Field Theory
of Contou-Carrère. In general. ASpec(Kn)/k should be KMn (Kn/k).

(2) Here, it is essential that our tensor product satisfies an unusual prop-
erty that Gm⊗CGm = 0. The duality is also not true for the original Milnor
K-theory of Kn which is “too large” ([14]).

3. Loop Grassmannians G(G) in Drinfeld’s language of finitely
supported maps.

Here we recall the loop Grassmannians G(G) of algebraic groups G. We
consider a generalization, the loop Grassmannians G(G, Y ) with a “condition
Y ” where Y is a G space with a chosen point y. This is a sub-indscheme of
G(G) consisting of objects whose “singularity gets resolved in Y ”.

3.1. Loop Grassmannians as partial flag varieties.
3.1.1. The standard loop Grassmannians G(G). Let k be a commutative

ring and let O = k[[z]] ⊆ K = k((z)) be the Taylor and Laurent series
over k. For an algebraic group scheme G denote by GO⊆GK its disc group
scheme and loop group indscheme over k whose points over a k-algebra k′
are GO(k′) = G(k′[[z]]) and GK(k′) = G

(
k′((z))

)
. The standard loop

Grassmannian is the ind-scheme given by the quotient in the fpqc topology

G(G) = GK/GO.

When G is reductive then G(G) is a partial flag variety of the corresponding
Kac-Moody group Ĝ.

Example. The loop Grassmannian of G = GL(V ) is the space of lattices
in VK, i.e., the union of all

Lp,q
def= {zpVO⊆ L ⊆z−qVO; L is an O-submodule}, p, q ∈ N.

Taking the quotient by the lower bound this is seen as the z-fixed part
Gr(z−qVO/zpVO)z of a finite dimensional Grassmannian. We see for G =
GL(V ) the general fact that the loop Grassmannian G(G) is an ind-system of
finite dimensional schemes (and these schemes are proper for reductive groups
G).

Subexample. In this realization one can compute. Say, L−1,0 is
Gr(V ) def= ⊔p Grp(V ). For dim(V ) = 2 this decomposition of L−2,0 has terms
for 0 ≤ p ≤ 4 and the reduced part of these are

[L−2,0]red ∼= pt ⊔ P1 ⊔ TP1 ⊔ P1 ⊔ pt.

Here, the middle term is the one point compactification of the tangent bundle.
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3.1.2. Parameterization of orbits in G(G). Let G be reductive with a
Borel subgroup then let B = N n T and let W be the corresponding Weyl
group, the quotient NG(T )/T of the normalizer of the Cartan T .

Notice that the coweights, i.e., the cocharacters X∗(T ) of the Cartan
subgroup embed into G(T ) by restricting a cocharacter λ : Gm → T to the
punctured formal neighborhood of 0 in A1. For λ ∈ X∗(T ) we will also denote
by λ the corresponding point in G(T )⊆G(G).

The partial flag variety G(G) has several kinds of Schubert cell decomposi-
tions given by the orbits of the Iwahori subgroup I⊆GO, the negative Iwahori
subgroup I−⊆Gk[z−1] and the loop group NK (and by certain mixtures of
these). All these classes of orbits are parameterized by X∗(T )⊆G(G).

3.1.3. Powers of a space. One way to develop a homology theory is to
start with a given notion of powers of a space M . Besides the Cartesian
powers Mn we also have symmetric versions and comparison maps

Mn −−−−→ SnM ←−−−− HnM ←−−−− INnMy
RM .

(1) A symmetric power is a categorical quotient Sn = M (n) def= Mn//Sn.
(2) A Hilbert power HnM = M [n] is the principal irreducible component of

the moduli HilbnM of length n subschemes of M (the closure of the
submoduli of discrete subschemes).

(3) An Ito-Nakamura power INnM is the principal irreducible component
of the moduli of Sn-clusters in M , i.e., Sn-invariant subschemes D of
M such that O(D) is a regular representation of Sn.

(4) The Ran space RM which is the moduli of all finite subsets of M . This
is a certain ind-system of powers Mn where the maps in the systems
kill the ordering of points and their multiplicities. It is a notion of an
infinite power of a space.

Remark. Any map of M into a group extends to Mn. If the group is
commutative this factors through SnM .

3.1.4. Cohomology: The Beilinson-Drinfeld loop Grassmannian. For a fi-
nite subset E of a smooth curve C, the first G-cohomology of C with the
support at E is the moduli H1

E(C,G) of pairs (T , τ) of a G-torsor T over C
and its section (i.e., trivialization) τ over C − E. Notice that this is also the
moduli of maps of pairs Map[(C,C − E), (B(G), pt)] (a map from C to the
classifying space B(G) is a G-torsor T over C while the compatibility of the
map C

T−→ B(G) with the canonical map C − E → pt is a trivialization τ of
T over C − E.)
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As E varies in the Ran space RC one assembles the spaces

G(G)E
def= H1

E(C,G) = Map[(C,C − E), (B(G), pt)]

into an ind-scheme G(G) = GC(G) over RC called the Beilinson-Drinfeld loop
Grassmannian.

Lemma. A choice of a local coordinate z on the formal neighborhood ĉ of
a point c ∈ C gives an isomorphism of the simplest fiber with the standard
loop Grassmannian

G(G)
∼=−→ G(G)c.

Proof. The map GK → H1
c (ĉ, G) by g 7→ (G×ĉ, g) is surjective since

any G-torsor on ĉ is trivial, It factors to an isomorphism G(G)
∼=−→ H1

c (ĉ, G)
because the group GK is the moduli of triples (T , τ, τin) of a G-torsor T on
C and sections τ, τin of T over ĉ− c and ĉ.

Finally, the restriction from C to ĉ gives H1
c (C,G)

∼=−→ H1
c (ĉ, G).

3.2. Loop Grassmannians G(G,Y ) with a condition Y . Drinfeld noticed that
a number of important constructions are moduli of maps of pairs. This is
used here to define a kind of cohomology with an “extra condition”. This is
just a formalization of Drinfeld’s description of zastava spaces.

For any G-space Y with a point y, the “loop Grassmannian with the
condition (Y, y)” is the space G(G,Y ) above RC with the fiber at E ∈ RC
given by

G(G,Y )E
def= Map[(C,C − E), (Y/G, pt)].

Lemma. Y = G(G,Y ) is a factorization space, i.e., there is a canonical
and consistent system of identifications of fibers at disjoint E′, E′′ ∈ RC ,

YE′×YE′
∼=−→ YE′⊔E′′ .

Example. [The Beilinson-Drinfeld fusion] As different points a, b ∈ C
approach a single point c the pair {a, b} approaches in RC the singleton {c}.
Therefore, G(G,Y )a×G(G,Y )b = G(G,Y ){a,b} approaches G(G,Y )c in the
total space of G(G). This is actually an ind-flat degeneration of G(G)2 to
G(G), i.e., it is flat on finite dimensional pieces.

Subexample. For G = GL2, the product P1×P1 ⊆ G(G)a,b converges to
TP1⊆ G(G)c. (This happens inside a P3-bundle – a smooth quadric xy = uv
degenerates to a singular quadric xy = u2.)

3.2.1. Usefulness of G(G,Y ). Each G(G, Y ) is a subfunctor of G(G,pt) =
G(G) and a pair (T , τ) in G(G)E lies in G(G,Y )E iff the singularities of the
section τ at E is “no worse then what Y allows”.

Moreover, if Y is a separated scheme then G(G,Y ) = G(G,G·y), so the
only relevant case is when the orbit G·y is dense in Y .
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The interesting subschemes of G(G) such as orbits, closures of orbits and
intersections of such are of the form G(G,Y ). This allows performing tradi-
tional calculations on G(G) in terms of finite dimensional objects Y . Here are
some elementary properties.

Lemma. (a) [Fibered products] If G is a quotient(2) of one of the groups
Gi then

G(G1, Y1)×G(G,Y )G(G2, Y2) ∼= G(G1×GG2, Y1×Y×Y2).
For example the conjunction of conditions in G(G) is given by the product of
condition spaces: ∩ G(G,Yi) = G(G,

∏
Yi).

(b) [Subgroups] For K⊆G we have an inclusion of functors G(K)⊆G(G).
There is a restriction statement

G(G,Y ) ∩ G(K) = G(K,Y ) = G(K,K·y)
and an induction statement

G(K,Y ′) = G(G,G×KY ′) ⊆ G[G, (G×KY ′)aff] ⊆ G(G).
For instance, for a Cartan T in a reductive G the T -fixed points are G(G)T =
G(T ). Therefore G(G,Y )T = G(T, T ·y).

(c) [Symmetries] Let A⊆G be the stabilizer of y ∈ Y and let Ȧ be any
subgroup of the normalizer NG(A) whose action on G/A extends to Y . Then
the group Ä def= AKȦO⊆GK preserves G(G,Y )⊆G(G).

3.2.2. Example: Vinberg semigroups. The usual Vinberg semigroup is de-
fined for semisimple groups with π1G = 0. For any homogeneous space G/A
which is quasi-affine (open in an affine variety) we define its Vinberg semigroup
as the double centralizer

VA = EndZA [(G/A)aff] for ZA
def= AutG×NG(A)(G/A).

Let VA be its group part. We will only consider the case when G is reductive,
then let B = NnT be a Borel subgroup and let B̌ = Ť Ň be the corresponding
data for the Langlands dual group Ǧ.

Theorem. (a) G/A is quasi-affine whenever A is a normal subgroup of
a parabolic P , and lies between the unipotent radical U of P and the derived
subgroup P ′ of P .

(b) When π1G = 0 the usual Vinberg semigroup of G equals VN .
(c) The intersection cohomology of G(VN ,VN ] is the ring of functions on

the “base affine space” of the Langlands dual group:
IC[G(VN ,VN ] = O(Ǧ/Ň).

The irreducible components of G(N,G/B) form a natural basis of the envelop-
ing algebra U(ňZ) for the Lie algebra ň of Ň .

2In the general case of maps Gi → G the formula is just a bit more complicated.
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(d) If G is adjoint so that it has the wonderful compactification G then

G(G,G)red = ⊔λ∈X∗(T )/W GO·λ.

Remark. For any semigroup closure G of G the geometric Satake for-
malism with G(G,G) instead of G(G), produces a semigroup G

v

. For example,
(VG,N )v = VǦ,Ň . Under certain nondegeneracy conditions this is a bijection
of semigroup closures of G and Ǧ.

4. Reassembling G(G) from infinitesimals and generalizations
GP (I,Q)

This is an extension of the construction from [12]. For a set I, a quadratic
form Q on Z[I] and a poset P it produces spaces ZP (I,Q) (“zastava space”),
SP (I,Q) (“semi-infinite space”), GP (I,Q) (“loop Grassmannian”). When the
data correspond to a semisimple adjoint algebraic group G the last object is
the usual loop Grassmannian G(G) reconstructed from the point of view of its
finite dimensional pieces. (These “pieces” are intersections of closures of orbits
of loop groups N±K in G(G) for unipotent radicals N± of two opposite Borel
subgroups of G. These orbits are two opposite semi-infinite stratifications
from 3.1.2.)

4.0.1. Data. From the point of view of a semisimple adjoint algebraic
group G the set I is the set of simple coroots. It encodes the Cartan T of G
as (Gm)I and it provides an auxiliary polarization – a direction in which the
loop Grassmannian is grown from finite dimensional pieces related to finite
schemes. The quadratic form Q is in this case the basic level of G (up to a
diagonal shift).

For the reconstruction of G(G) the poset P is a point. However, when
P is [m] = {1 < · · · < m} we get the version G[m](G) of G(G) which is
the natural space for realizing the level m representations of the affine Lie
algebra, this reproduces for positive level m the analogues of the “magical”
properties of level one basic representations. The motivation for introducing
[m] in the present setting is an outgrowth of the Kamnitzer-Knutson work on
quiver Grassmannians.

4.0.2. “Remember infinitesimals”. The geometry underlying a loop Grass-
mannians G(G) is that of a formal disc d which is itself an ind-system of finite
subschemes. In this section we describe G(G) in terms of the Hilbert scheme
Hd = H•d, the moduli of these finite subschemes.

In the commutative case, the relation is transparent as G(Gm) is the group
generated by the semigroup Hd. For this reason the presentation of the loop
Grassmannian G(G) of a reductive group in terms of infinitesimals will take
the form of a close relation of G(G) to G(T ) for the Cartan T of G. Poetically,
we recover G(G) by following the accumulation of “dust” (the infinitesimals)
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that produces G(T ) and we give it a desired shape of G(G) by adding a little
“water” (a quadratic form) to glue the dust.

Remark. This idea of remembering with a space M its relation to
finite schemes (“infinitesimals”) appears as “rigid” geometry in p-adic theory
and as “semi-infinite” constructions for loop groups. This is also implicitly
present in Hodge theory. In characteristic zero the nth piece of the Hodge
filtration FnDX⊆DX on the sheaf of differential operators comes from the nth

infinitesimal neighborhood of the diagonal ∆X⊆X2. For a scheme X over a
finite field F the mixed sheaves on X reflect the system of approximations of
X by finite sets of points over finite extensions of F.

4.1. Local spaces.
4.1.1. Colored local spaces over a scheme. For a set I we will call HX×I ∼=

(HX)I the I-colored Hilbert scheme of points for a scheme X. It is a disjoint
union of moduli HαX×I ∼=

∏
i∈I HαiX of subschemes of degree α ∈ N[I]. For

a space Z over HX×I we denote the fiber at D ∈ HαX×I by ZD and Zα is the
restriction to HαX×I .

An I-colored local space Z over a scheme X is a space Z → HX×I over the
I-colored Hilbert scheme of points of X, together with a system of consistent
isomorphisms for disjoint D′, D′′ ∈ HX×I

ιD′,D′′ : ZD′×ZD′′
∼=−→ ZD′⊔D′′ .

Examples. (0) For a ∈ X and i ∈ I we will call the fiber Zai at ai ∈ X×I
the i-particle at a. The regular partHregX×I ofHX×I consists of all D = (Di)i∈I
such that subschemes Di⊆X are discrete and disjoint. The locality reduces
the regular fibers to products of fibers of particles: ZD ∼=

∏
ai∈D Zai. The

remaining fibers are then viewed as collisions of particles. So, when Z → HC
is flat all fibers are degenerations of products of particles.

(1) A weakly local space is when the structure maps ι are only embeddings.
Any weakly local space Z has its local part Zloc⊆Z which is the least local
subspace of Z that contains all particles. So, at D ∈ HregX×I the fiber is
ZlocD =

∏
ai∈D Zai and Zloc is the closure in Z of its restriction to HregX×I .

More generally, one could pick up a collection of subschemes of various fibers
and generate inside Z a local space with these particles.

(2) A local structure on a vector bundle V over a local space Z is a system
of isomorphisms V |ZD′⊔D′′

∼= V |ZD′�V |ZD′′ . By the Segre embedding its
projective bundle P(V ) is a weakly local space. Its local part P(V )loc is called
the local projective space Ploc(V ) of a local vector bundle V .

4.1.2. Example: Higher loop Grassmannians for the multiplicative group.
For any scheme X there is a local group ZlocX → HX (a group in local spaces)
with fibers (ZlocX )D

def= AD at D ∈ HX .
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The related group object in factorization spaces Zfac →RX has fibers at
E ∈ RX

(ZfacX )E
def= A

Ê
= lim

→ D∈HX , supp(D)⊆E
(ZlocX )D.

If X is a smooth curve C then we know that ZfacC is the loop Grassmannian
GC(Gm) (2.2.2). So, one can think of ZfacX as the loop Grassmannian of Gm
for arbitrary schemes X.(3)

Remark. Loop Grassmannians of Gm are limits of lattices. The reason
is that ZlocX → HX is flat. So, when a finite subset E of X converges to a
connected finite subscheme F of X then the lattice GX(Gm)E

def= AE = Z[E]
converges to the group ind-scheme AF = GX(Gm)F . In this way as one
assembles ĉ by “converging a countable subset” E of X to a single point
c ∈ X. Along the way the infinite rank lattice Z[E] converges to A

ĉ
, the

(higher) loop Grassmannian of Gm.

4.1.3. Local spaces and factorization spaces. Whenever a local space Z →
HX has a growth structure γD′,D : ZD′ ↪→ZD′′ for D′⊆D′′ (as in 4.1.2), it
defines a factorization space Zfac →RX with fibers

ZfacE
def= lim

→ HX∋D⊆Ê
ZD, E ∈ RX .

So, local spaces with growth are the same as factorization spaces with HX -
filtration. One may think of a local space structure on a factorization space
loosely as a “nonlinear Hodge filtration”.

4.1.4. Notions of local spaces. Any notion of powers of a space (see 3.1.3)
comes with its own version of the formalism of local spaces. The original
case used Hilbert powers as we do here. Crucially, Finkelberg noticed that
one needs Cartesian powers in order to fit the Calogero-Moser spaces in the
definition of local spaces. Local vector bundles for Cartesian powers include
the fusion vector bundles of Feigin-Loktev ([8]).

Examples of local vector bundles for symmetric powers are the local
Weyl modules of Chari-Pressley [7] (extended to the multidimensional case
by Feigin-Loktev [9]). The Ito Nakamura powers are the natural setting for
the Feigin-Loktev formula for fusion powers of a vector space ([9]).

Remark. One also has an additive notion of local spaces where product
is replaced by disjoint union.

3Consider a point 0 in an affine space An with coordinates x1, ..., xn. In characteristic
zero the fiber GX(Gm)0 = A

0̂
is isomorphic to polynomials in xi

−1 with nilpotent coeffi-
cients. A canonical description involves the nth wedge power of the negative congruence
subgroup.
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4.2. Generalization GP (I,Q) of loop Grassmannians of reductive groups. The
data here are a finite set I, a quadratic form Q on the based lattice Z[I] and
a finite poset P . We work on a smooth curve C and with its simplest local
space HC×I .

4.2.1. I-colored local line bundles L(I,Q) over C. It is well known that
a symmetric matrix Q gives a local line bundle on HC×I by modifying the
trivial line bundle along the discriminant divisors ∆ij in the Hilbert scheme
HC×I

L(Q, I) def= OHC×I
(
∑
i≤j

Qij∆ij).

4.2.2. I-colored local vector bundles V P (I,Q) over C. We will now induce
the line bundle L(I,Q) to a local vector bundle V P (I,Q) over C on HC×I
along a poset P . The moduli RepX(P ) of “X-representations of P”, is a
correspondence

RepX(P ) π,σ−−−−→
⊆

(HC×I)P×HC×I .

The fiber σ−1D at D ∈ HC×I is Homposet(P,HD), where the moduli HD of
subschemes of a finite scheme D is a poset for inclusions. Its elements are all
systems D• = (Dp)p∈P ∈ (HC×I)P such that p ≤ q implies Dp⊆Dq⊆D.

This correspondence can be used to induce a family of local vector bundles
V p on HC×I indexed by p ∈ P , to a single local vector bundle

IndP (V •) def= σ∗π
∗(�p∈P V p).

on the same space HC×I . The local vector bundle VP (I,Q) on HC×I is
obtained when all Vp are taken to be the line bundle L(I,Q):

VP (I,Q) def= IndP (L(I,Q)).
Its fiber VP (I,Q)D at D ∈ HC×I is the global sections over RepX(D) of the
line bundle whose fiber at the point D• is ⊗p∈P L(I,Q)Dp .

4.2.3. The “Grassmannians” associated to a local vector bundle on HC×I .
To a local vector bundle V on HC×I we associate its zastava space Z(V) which
is the colored local projective space Ploc(V) over the curve C.

In the case of V = V P (I,Q) its zastava space

ZP (I,Q) def= Z(V P (I,Q)) = Ploc[V P (I,Q)]
has a growth structure (see 4.1.3), so we can define the corresponding semi-
infinite space as the associated factorization space SP (I,Q) def= ZP (I,Q)fac.
So, the fiber at E ∈ RC is the limit of zastava fibers ZP (I,Q)D as finite
subschemes D fill the formal neighborhood Ê of E in C

SP (I,Q)E = lim
→ HC×I∋D⊆Ê

ZP (I,Q)D.
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Finally, N[I] acts on SP (I,Q) and the corresponding loop Grassmannian
is defined as

GP (I,Q) def= Z[I]×N[I] S
P (I,Q).

4.2.4. The case when P is a point. In this case we will omit P from the
notation. Notice that all particles are now P1.(4) So, one is constructing
G(I,Q) by colliding P1’s according to a prescription given by the quadratic
form Q.

Theorem. Let I be the set of simple coroots of an adjoint semisimple
group G of simply laced type. Let Q is (a shift of) the basic level of G(5), then
GP (I,Q) is the usual loop Grassmannian G(G).

Remark. Similarly, when P = [m] = {1 < · · · < m} then all particles
are Pm. Moreover, this Pm is naturally the mth symmetric power of the
particle P1 for m = 1.

4.3. Some explanations. For a torus T = Gm
I the loop Grassmannian G(T )

is obtained from the moduli Hd of infinitesimals in the disc d as the abelian
group Ad×I generated by the monoid Hd×I . We may view G(T ) as a cloud
of dust accumulated on the lattice X∗(T ) = Z[I] since G(T ) is the product of
X∗(T ) and of the connected component G(T )0, but the reduced part of G(T )0
is a point.(6)

In order to assemble the loop Grassmannian G(G) from Hd×I at the same
time we use a quadratic form Q in X∗(T ). Its geometric incarnation is a line
bundle L(I,Q) on the space Hd×I of infinitesimals. In terms of groups this
line bundle is a restriction via Hd×I ↪→G(T )⊆G(G) of the standard line bundle
OG(G)(1) on G(G).

It is known that for simply laced groups the restriction under G(T )⊆G(G)
is an isomorphism of global sections of OG(G)(1) over G(G) and G(T ). (In
algebra this fact is the decomposition of the basic representation into Fock
spaces.) This suggests that we should be able to describe G(G) in terms of
the line bundle L(I,Q) on infinitesimals.

The way this is done by the formalism of local spaces is that one observes
that certain T -invariant copies of P1 in G(G) have the properties that

(i) the restriction of OG(G)(1) to this P1 is OP1(1),
(ii) (P1)T consists of two points.
(iii) (P1)T⊆ G(G)T = G(T ) lies in HC×I⊆G(T ) consists of two points.

4In general for a ∈ C and i ∈ I the fiber ZP (I, Q)ai is Ploc[V P (I, Q)]ai =
P[V P (I, Q)ai] and V P (I, Q)ai is the vector space of sections of the line bundle L(I, Q)
over RepX(P )ai. When P is a point RepX(P )ai is the set {∅, ai} so V P (I, Q)ai is two
dimensional.

5This is a certain W -invariant quadratic form on the coroot lattice.
6For a reductive G the loop Grassmannian G(G) is reduced iff G is semisimple.



SOME EXTENSIONS OF THE NOTION OF LOOP GRASSMANNIANS 69

Such P1 can naturally be reconstructed from L(I,Q) since

Γ[P1,OG(G)(1)] = Γ[P1,OP1(1)] = Γ[(P1)T ,OP1(1)] ∼= Γ[(P1)T ,L(I,Q)].

Finally one observes that these copies “generate” inside G(G) the zastava
space from [11] and this is what is here called ZP (I,Q).

The “algebraic structure” on G(G) that one uses to generate the zastava
space is the Beilinson-Drinfeld fusion on the loop Grassmannian (see 3.2).
The restriction of the Beilinson-Drinfeld fusion to the zastava subspace of
G(G) is the above locality structure on ZP (I,Q).

So, what we do amounts to reconstructing the zastava subspace of G(G)
and the restrictions of the fusion structure and the line bundle OG(G)(1) to
zastavas in terms of the based quadratic form (I,Q).

4.3.1. From linear algebra to algebraic geometry. One of basic facts about
reductive groups is their parallel existence in combinatorics (Dynkin graphs),
linear algebra (lattices, cones, quadratic forms) and in algebraic geometry (al-
gebraic groups). I would like to re-describe the passage to algebraic geometry
in terms of the conjectural relative motivic cohomology.

To get from the cocharacter lattice X∗(T ) to a torus T , consider a point
c
i
∈ C of a smooth curve C. Let C

q
�pt be the structure map. In terms of

the conjectured functoriality of the relative motivic cohomology the dualizing
sheaf q!Z of C should be the constant sheaf whose fiber is the classifying
space B(Gm) of the multiplicative group. Then the homology of C should
be q!q

!Z. When C is the formal neighborhood â of its point a, this indeed
says something we know, that the homology of C is the compactly supported
cohomology of B(Gm) = Gm[1], i.e., the loop Grassmannian of Gm.

So, the cocharacter lattice X∗(T ) of a torus T gives B(T ) as i∗q!(X∗(T )).
Since this B(T ) is a group we recover T as 1×B(T )1. Now one can hope to get
B(G) (and G) “mechanically” by some version of the i∗q!-pull back of linear
algebra data from a point via a curve. The construction of GP (I,Q) produces
directly the loop Grassmannian, i.e., it is of the form q!q

!Z. So, we have not
displayed B(G) at the first step q!Z. However, this construction starts with
line bundle L(I,Q) which indeed seems to be a pull back of type q! of the
lattice X∗(T ) = Z[I] = AI and the quadratic form Q.

4.3.2. From combinatorics to linear algebra. The combinatorial incarna-
tion of a simply laced group is its Dynkin graph (I, E). The passage to linear
algebra is the operation A of forming free abelian groups. It takes a set I
to the lattice Z[I] = AI and the incidence matrix Q (recording the num-
ber of edges) to the quadratic form Q = AQ on AI (we extend the function
Q : I×I → N linearly to Q : Z[I]⊗Z[I]→ Z).

4.3.3. Locality equations. For a colored local vector bundle V over a local
space Z the fiber Ploc(V )D of Ploc(V ) at a point D ∈ HC×I is a subscheme
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of the projective space P(VD). I call the equations of Ploc(V )D in P(VD) the
locality equations at D.

In the case of local vector bundles V (I,Q) that correspond to a group
G, the limit of these locality equations are the equations for the standard
embedding of the loop Grassmannian G(G) into a projective space. These are
known to be equivalent (by the boson-fermion correspondence) to some stan-
dard integrable differential equations of mathematical physics, for instance
for G = SL(V ) one gets the modified KdV hierarchies.

What is known about locality equations for data (I,Q) is due to Yaping
Yang. Writing these equations in general (and hopefully also for higher di-
mensional loop Grassmannians) is an ongoing project with Yaping Yang and
Gufang Zhao. We are interested in whether we can get more integrable hier-
archies in this way (and also of any possible role of the finite approximations
corresponding to points D ∈ HX×I).

5. A conjectural relation of loop Grassmannians and quivers

In 5.0.1 we recall the relation of semisimple Lie algebras and quivers. In
5.0.2 we recall the known relations between quivers and loop Grassmannians,
the important one for us is the Kamnitzer-Knutson conjecture. In 5.0.3 we
formulate a (conjectural) upgrade of this conjecture and finally in 5.0.4 we
express a vague expectation that this upgrade is related to symplectic duality.

5.0.1. Semisimple Lie algebras and quivers. A quiverQ is a directed graph
i.e. a pair of sets (I, E) of vertices and of directed edges connecting them. One
can think of a quiver Q as a way of describing the category PQ freely generated
by Q, the path category of Q. Notice that a group Γ acting on Q also acts on
PQ and so we get the stack quotient category PQ/Γ which we think of as the
path category of the “stack quiver” Q/Γ.

Example. We will consider Dynkin graph of a semisimple Lie algebra g
as a stack graph. The usual notion of the Dynkin graph of g is really a graph
only when G is simply laced (otherwise “vertices” have different lengths). The
folding philosophy says that a multiply laced Dynkin graph (I, E) should be
considered as a stack quotient of a simply laced Dynkin graph (I ′, E′) by a
finite group Γ of symmetries (the length of vertices in (I ′,Γ′)/Γ now arises
from stabilizers of vertices in I ′). By choosing directions of edges we get
a (stack) quiver Q = Q′/Γ and therefore also its path category PQ. By a
representation of Q over k we mean a functor from PQ to the category of
finite dimensional vector spaces over k.

The importance of quivers in representation theory is due to several well
known ways to reconstruct the enveloping algebra and integrable represen-
tations of the Lie algebra g of G from the moduli of representations of the
corresponding quiver Q, its preprojective algebra ΠQ or Nakajima’s double of
Q.
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5.0.2. Quivers and loop Grassmannians. Moduli of representations of
quivers and the perverse sheaves on loop Grassmannians provide two mod-
ern constructions of irreducible representations of semisimple algebraic groups
that provide a new level of precision, the natural basis of representations. An
advantage of the first one is that it constructs the category of representations
while the second is simpler and has larger scope as it applies to arbitrary
graphs. One can say that the GP (I,Q) idea formally extends the loop Grass-
mannian construction to generality of arbitrary quivers. (It actually allow
more inputs since the quadratic forms that we get from graphs satisfy condi-
tions such as Qij ≥ 0 for i ̸= j.) However, at present it is not known what
remains from the Satake mechanism in larger generality.

A substantial relation between these two constructions has been an
outstanding problem, it was resolved recently by Braverman-Finkelberg-
Nakajima [3] (see also [15]). I am particularly interested in the version of
this relation conjectured earlier by Kamnitzer-Knutson.(7)

Consider a simply laced semisimple Lie algebra g, its adjoint group G
and the quiver Q given by an orientation of the Dynkin graph of g. It is
known [1] that the irreducible components V of the variety of representations
of the preprojective algebra ΠQ of Q are in a canonical bijection with certain
irreducible subvarieties XV of the corresponding loop Grassmannian G(G),
called MV-cycles [13].

The quiver Grassmannian GrΠQ
(

.

V ) of a representation
.

V of the prepro-
jective algebra ΠQ is the moduli of all ΠQ-submodules of

.

V . More gen-
erally, for any poset P one can consider the space GrPΠQ

(
.

V ) of representa-
tions of P in GrΠQ

(
.

V ) and Kamnitzer-Knutson considered the case when P
is [m] = (1 < · · · < m).

When representation
.

V is generic in the irreducible component V ,
Kamnitzer-Knutson predict a relation between its mth quiver Grassmannian
Gr[m]

ΠQ
(

.

V ) and the mth line bundle OG(G)(m) on the loop Grassmannian G(G)
of G.

Conjecture (Kamnitzer-Knutson). The following vector spaces have the
same dimension: (i) the cohomology of Gr[m]

ΠQ
(

.

V ) and (ii) sections of OG(G)(m)
over the MV cycle XV .

5.0.3. Fixed points in MV cycles. Kamnitzer-Knutson were interested in
upgrading this to a categorical statement. The following attempt was made
possible by intense discussions with Kamnitzer-Knutson over a long period.

Conjecture. Let
.

V be a generic representation in an irreducible com-
ponent V and XV the corresponding MV cycle in G(G).

7While [3] considers closures of the disc group orbits, Kamnitzer-Knutson consider a
larger class of MV-cycles.
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(a) Any poset P defines a “generalized” loop Grassmannian GP (G) of G.
For each MV cycle X in G(G), there is a canonical subscheme XP of GP (G).
Then the cohomology of GrPΠQ

(
.

V ) is the ring of functions on the subscheme
((XV )P )T of points in (XV )P fixed by a Cartan subgroup T of G.

(b) [“Miniscule phenomena”] For the natural line bundle OGP (G)(1) on
GP (G) and any MV cycle X in G(G), the restriction of sections from XP to
(XP )T is an isomorphism.

(c) When P = [m] then for any MV cycle X in G(G), the pairs
X [m],OG(m)(G)(1) and X,OG(G)(m) give the same sections

Γ[X [m],OG(m)(G)(1)] ∼= Γ[X,OG(G)(m)].

Remarks. (0) Yaping Yang and Gufang Zhao have formulated and
proved a zastava version of the conjecture (a). The MV cycles are exactly the
irreducible components of zastava spaces. Their version replaces a single MV
cycle with the whole zastava space that contains it. On the quiver side this
corresponds to degenerating the representation to zero.

(1) My student Zhijie Dong has constructed a map in one direction in the
conjecture (a), from functions on the subscheme ((XV )P )T to the cohomology
ring GrPΠQ

(
.

V ) of the quiver Grassmannian.

5.0.4. Symplectic duality and Higgs-Coulomb duality. These are two con-
jectural frameworks for the “same” phenomenon, observed respectively in
mathematics and in physics. Here, the Higgs and Coulomb branches are
two irreducible components of the moduli of vacua of a given quantum field
theory. A prominent case of the Higgs-Coulomb duality is the above rela-
tion of quivers and loop Grassmannians established in [3]. One aspect of the
symplectic duality is the following general conjecture.

Conjecture (Hikita). When X and Y are symplectic dual, the coho-
mology of X realizes the fixed locus of a torus action on Y :

H∗(X) ≃ O(Y T ).

I expect that the conjecture 5.0.3 is an example of the Hikita conjecture
and therefore a manifestation of the symplectic and Higgs-Coulomb dualities.
It should extend the scope of application of these dualities to the relation of
quivers and loop Grassmannians from simply laced Dynkin quivers and their
loop Grassmannians to all quivers and to the generalized loop Grassmannians
GP (I,Q) introduced in section 4.

6. Loop Grassmannians in arbitrary dimension

In section 2 we have reviewed the (Zariski aspect of) Geometric Class
Field Theory. The conclusion was that the loop Grassmannian G(Gm) of the
simplest reductive group Gm can be viewed as the homology of the disc d
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for a still conjectural relative motivic cohomology theory and that the (Zariski
aspect of) Geometric Class Field Theory in dimension one is the Poincare
duality for this relative motivic cohomology. Conjecturally such Poincare
duality will exist in any dimension and we will then call it the (Zariski aspect
of) general Geometric Class Field Theory.

Presently it is not known what any version of the Langlands program
would mean in higher dimension. One approach to this question is to extend
a well understood local geometric construction, the loop Grassmannian, to
higher dimension. It seems clear how to do that for commutative groups
(4.1.2). Beyond that I only have some preliminary thoughts in this direction.

The reductive groups may be too rigid for higher dimension as they have
no higher cohomologies. So, one possible preliminary step (in dimension one)
is section 4 where we “get rid” of the group G. We reconstruct the first
nonabelian cohomology G(G) from geometry without using G. Instead one
uses a simpler (“0-dimensional”) data of a based quadratic form (I,Q).

Another possible step is to construct some version of loop Grassmannians
in higher dimensions. Much has been understood about two dimensional
loop Grassmannians by Braverman-Finkelberg [5]. For arbitrary dimension a
program has been formulated by Feigin-Loktev [8] (see also [10]). This is also
the subject of an ongoing project with Yaping Yang and Gufang Zhao.
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Neka poopćenja pojma grassmaniana petlji

Ivan Mirković

Sažetak. Tema članka je pokušaj konstrukcije algebarsko
geometrijskih analogona nekih topoloških ideja. Osnovni cilj je da
se shemi X nad komutativnim prstenom k pridruži njena “rela-
tivna motivska homologija”, koja je opet algebarsko geometrijski
objekt nad bazom k. Ovaj projekt je motiviran teorijom brojeva
i očekuje se da će Poincareova dualnost za relativnu motivsku
homologiju biti algebarsko geometrijska inkarnacija Teorije polja
klasa.
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