
K. Skračić i dr. Arhitektura i protokol za raspodijeljenu autentifikaciju korisnika

Tehnički vjesnik 24, Suppl. 2(2017), 303-311 303

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online)
https://doi.org/10.17559/TV-20151114105745

A DISTRIBUTED AUTHENTICATION ARCHITECTURE AND PROTOCOL

Kristian Skračić, Predrag Pale, Branko Jeren

Original scientific paper
Most user authentication methods rely on a single verifier being stored at a central location within the information system. Such information storage
presents a single point of compromise from a security perspective. If this system is compromised it poses a direct threat to users’ digital identities if the
verifier can be extracted from the system. This paper proposes a distributed authentication environment in which there is no such single point of
compromise. We propose an architecture that does not rely on a single verifier to authenticate users, but rather a distributed authentication architecture
where several authentication servers are used to authenticate a user. We consider an authentication environment in which the user authentication process is
distributed among independent servers. Each server independently performs its own authentication of the user, for example by asking the user to complete
a challenge in order to prove his claim to a digital identity. The proposed architecture allows each server to use any authentication factor. We provide a
security analysis of the proposed architecture and protocol, which shows they are secure against the attacks chosen in the analysis.

Keywords: authentication factors; digital identity; distributed authentication architecture; distributed authentication protocol; distributed user
authentication

Arhitektura i protokol za raspodijeljenu autentifikaciju korisnika

Izvorni znanstveni članak
Većina metoda autentifikacije korisnika oslanjaju se na jedan verifikator koji se pohranjuje na središnjem mjestu unutar informacijskog sustava. Takva
pohrana osjetljivih informacija predstavlja jedinstvenu točku ispada iz sigurnosne perspektive. Kompromitacija verifikatora jednog sustava predstavlja
izravnu prijetnju korisnikovom digitalnom identitetu. U radu se predlaže raspodijeljeno okruženje za autentifikaciju u kojem ne postoji takva točka ispada.
Rad opisuje arhitekturu koja omogućuje raspodijeljenu autentifikaciju korisnika u kojoj više autentifikacijskih poslužitelja sudjeluju u provjeri
autentičnosti korisnika. Razmatra se autentifikacijsko okruženje u kojem se proces autentifikacije korisnika raspodjeljuje na više nezavisnih poslužitelja.
Svaki poslužitelj samostalno obavlja autentifikaciju korisnika, na primjer tražeći od korisnika da odgovori na izazov kako bi dokazao da je vlasnik
digitalnog identiteta. Predložena arhitektura omogućuje svakom poslužitelju da koristi drugi autentifikacijski faktor. Provedena je sigurnosna analiza
predložene arhitekture i protokola, čime se dokazuje otpornost sustava od napada odabranih u analizi.

Ključne riječi: autentifikacijski faktori; digitalni identitet; raspodijeljena autentifikacija korisnika; raspodijeljeni autentifikacijski protokol;
raspodijeljena arhitektura za autentifikaciju

1 Introduction

User authentication presents one of the basic security
requirements in information systems. Generally speaking,
authentication can be described as a process in which a
user offers some form of proof that he is the same user
who registered the account. A proof of identity can be any
piece of information that an authentication server accepts:
something users have in their possession, something they
know or something they are. These are called
authentication factors [1]. Usually, in current practice,
only one authentication server (AS) is in charge of storing
the data used for authentication. When the user offers the
requested proof of identity, the authentication server
evaluates this proof and grants access to the user. This
form of user authentication is centralized. For example,
when a user tries to access his account on a typical web
application he is prompted to enter a password.
Traditionally, the web application holds the information
about the user’s account and his password. When the user
submits his password during log-in process, the
application compares the stored password to the
submitted password. If they match, the user is granted
access to the application. In other words, all the
information needed to authenticate the user is held on a
single system. This makes such systems the single point
of compromise for securing digital identities. In other
words, in case an attacker gains access to the web
application, he can extract enough information to
compromise the user’s digital identity. Additionally, such
systems often have multiple redundant copies of sensitive

data [2]. By replicating confidential information across
multiple servers, the risk of a successful attack becomes
higher with every redundant copy [3].

We conclude there are two weaknesses in the
described authentication method. First, just one piece of
information is not strong enough for all applications.
Second, since many users tend to use the same secret
information (e.g. password) for several servers [4],
revealing their identity on one compromised server,
threatens their accounts on other servers with the same
secret information. We believe that such an infrastructure
does not offer enough security and that an attacker can
significantly compromise the digital identity of a
legitimate user by gaining access to the system [5]. In
some current implementations, the authentication server
can be completely separated from the server running web
applications. For example, single sign-on schemes [6] are
based on this concept. However, even in these
circumstances the same security risk is present if the
authentication information is stored on one server. The
only difference in this scenario would be a different attack
vector than with web applications.

The aim of this paper is to present a novel distributed
user authentication architecture. From a security
standpoint, in a distributed user authentication
environment, there is no single point of compromise. The
digital identities of all users of a system remain secure
even in case one node is compromised. This is possible
because no single node has enough information to fully
authenticate a user. Instead, every node holds just a part

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/91992558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A distributed authentication architecture and protocol K. Skračić et al.

304 Technical Gazette 24, Suppl. 2(2017), 303-311

of the needed information. We describe the required
authentication information in more detail later.

The main concept in which distributed authentication
differs from traditional authentication is that user
authentication is no longer done on the system the user
demands access to, or any other single server. Instead of
authenticating the user locally, the system passes this duty
to other independent systems and trusts their decision.
Thus, the authentication process itself is distributed
amongst two or more independent systems.

1.1 Review of distributed authentication protocols

 The idea of distributed authentication is not new.
There has been some research on authentication in a
distributed manner (e.g., Kerberos [7]), as well as the
combination of authentication and authorization in
distributed systems (e.g., Keynote [8]). Distributed
authentication is commonly associated with single sign-on
schemes [6] or federated identity [9]. In this paper, we
consider distributed authentication to be a process in
which a user's claim to a digital identity is verified by two
or more independent systems.

The research in [8] describes a distributed
authentication model in which a single secure server is
used to store secret information while other nodes carry
out the processing needed to authenticate a user. An
important benefit of this authentication model is that it
requires no key management since the processing nodes
do not handle secret data. There are many issues with
achieving consistency of replicated private keys as well as
achieving their secure distribution [10]. The model in [8]
reduces secure server load compared to systems that run
asymmetric crypto algorithms on a single server. The
model is based on the SASC (Server-Aided Secret
Computation) protocol, which enables a client to use the
computing power of a server without revealing its secret
information. Although this model reduces the risk of
exposing the authentication server’s private key, its
performance is low compared to the conventional
approaches where each node has a private key and is
trusted by the secure server. This model strengthens the
security of authentication systems based on public key
cryptography in that it bypasses the need for key
management in distributed authentication systems.
However, the model is only suitable for public key based
user authentication. Also, the risk of stolen identity is still
present in case where the secure server is compromised.
The research in [11] introduces a new multi-server
authentication scheme. The scheme is based on a
registration centre, an authentication server and a smart
card. A user has to register a digital identity with the
registration centre, which then generates a set of
parameters and stores them both locally and on a smart
card. The smart cards are then delivered to the user via a
secure channel. When a user wishes to authenticate with
another server, he uses his smart card to compute an
authentication message. The authentication server
communicates with the registration centre to verify the
validity of the user’s authentication message and grants
access to the user. This way the secret data is not stored in
a central location, but is distributed across an array of
smart cards. However, the cost and complexity of

implementing and maintaining such a scheme may be too
large for some systems.

Single sign-on has become increasingly popular,
because of the increasing number of Internet services an
average user uses in a day. The idea behind single sign-on
scheme is that there is a single authentication server,
which is used to authenticate the user for multiple
services. Single sign-on schemes have an inherent flaw.
They assume a service provider will trust a single third
party system. The work under [12] tries to address this
issue by distributing the authentication server on n
different servers and using threshold cryptography. The
scheme is based on sharing pieces of the authentication
server’s private key across a number of servers. This is
achieved using a (t, n) threshold scheme with which the
private key is split into n partial keys. In order for the
authentication response to be valid, at least t servers have
to sign it with their partial key. After at least t servers sign
the response, the message appears to be signed by the
authentication server’s private key. This scheme aims to
increase the level of security for the central authentication
server. By dividing the key using a (t, n) threshold scheme
the compromise of a single authentication server will not
result in a compromise of the private key. Instead, an
attacker would have to compromise at least t
authentication servers. The downside of this scheme is
that it still uses the classic username and password to
authenticate users. Such an approach makes the method
vulnerable to password stealing attacks. As a response to
this, [12] suggests using two-factor authentication. Each
user would have a unique USB device for additional
authentication purposes. Such an approach makes this
scheme complex and raises the overall cost of
implementation and maintenance.

We conclude that existing distributed authentication
methods only use predefined authentication factors and do
not allow a combination of more than one factor.
Therefore, any change in the authentication factor
requires additional adaptation.

2 Research to define a distributed authentication

architecture and protocol

We hypothesize that by using distributed
authentication schemes for the very process of
authenticating users, the security of digital identities can
be enhanced. At the same time, we argue that a distributed
authentication scheme should be cost efficient and easy to
implement. This is very important from practical point of
view because, as stated in [11], the marginal security
benefits of any proposed mechanism may be outweighed
by the complexity of implementing it, making it unusable
in real word scenarios.

In this paper, we propose a new authentication
scheme based on distributing the authentication process
on more servers. The difference of our proposal from
existing research is that we consider a distributed
authentication environment with multiple nodes, in which
each node holds some independent piece of information
about the user that wishes to authenticate. The
independent pieces of information are not bound together
in any way (such as with threshold secret sharing).

K. Skračić i dr. Arhitektura i protokol za raspodijeljenu autentifikaciju korisnika

Tehnički vjesnik 24, Suppl. 2(2017), 303-311 305

The contribution of the proposed architecture is that
the user’s digital identity remains secure even in the case
one or more of the servers are compromised. This is
achieved by using an authentication method in which the
authentication information is neither stored on the server
the user wishes to access nor on any other single
authentication server. Instead, based on the requirements
described in [13], the authentication server consults with
other, mutually independent, nodes (servers) that hold
information relating to the user’s digital identity. Each
node holds just a piece of information about the user who
wishes to authenticate. A user is considered authenticated
only when a predefined number of nodes confirm the
user's responses. Such an approach also aligns with the
research in [14], which proposes a user authentication
method based on vouching. Although that research is
based on the premise that one user validates another’s
claim to a digital identity, the same principle may be
applied in an environment where a claim is verified by
one or more independent systems. Our contribution in this
paper is focused on creating a protocol that enables secure
authentication in such a distributed environment. One of
the key benefits of the proposed authentication
architecture is that it does not impose a specific
authentication factor. Instead, each AS can choose to
generate challenges based on the factor of their choosing.
This is a similar process to multimodal biometric systems
[15] in which two or more biometrics are used to
determine the authenticity of the user. The architecture
itself does not rely on cryptographic one-way functions to
secure user credentials, as such solutions have been
compromised in some cases [16].

We define the terminology necessary for describing
the proposed authentication architecture.

− Client – a user that wishes to gain access to a specific

service on an Application server
− Client ID – an identifier that is used to associate the

challenges with the client. The identifier is used to
identify a client in each DAS and the FAS

− Authentication session – defines a set of steps and
servers responsible for authenticating a user once

− Application server (AS) - the node that the client
wishes to gain access to and relies on the FAS to
authenticate the user

− Front-end Authentication Server (FAS) – the
primary node contacted by the application server,
whose role is to communicate with the user during
authentication. This node will forward the
authentication challenges from the DAS servers to
the user, and user's responses to the DAS servers as
well as make final decision whether to authenticate
the user or not based on decisions from the DAS
servers

− Distributed Authentication Server (DAS) – the
node that creates challenges for the user and verifies
his answers

− DAS challenge – a question posed to the client in
order to authenticate them,

− Manifest – a common data structure used to carry
relevant information between FAS and DAS during
an authentication session. The Manifest contains

challenges presented by the individual DAS servers
and answers given by the client.

2.1 Distributed authentication protocol

 The protocol describes the behaviour of the DAS, the
behaviour of the FAS, and the content of the Manifest.
The protocol is independent from the challenge that the
DAS generates for a user. Defining a particular
authentication challenge is beyond the scope of this paper.
In general, the challenge can be anything the DAS deems
appropriate for the current user, using any authentication
factor: biometrics, hardware tokens or any other
combination thereof. The proposed authentication
protocol consists of three cycles. During the first cycle the
FAS gathers a number of challenges from the available
DAS servers. During the second cycle the challenges are
presented to the client and the client answers them.
During the third cycle the answers are evaluated by the
DAS servers that presented the challenge. The first and
third cycles are similar. The only difference between them
is that during the third cycle the Manifest contains
answers instead of challenges. The following steps
describe the authentication protocol. Tab. 1 and Fig. 1
explain the steps in more detail.

Table 1 Symbol explanation
Symbol Explanation

IDCLIENT The client identifier (username or other)
ENV The envelope
ENVSIG The envelope signature
DWN The drawer for the Nth DAS
SDWDASN Signature of the initialized drawer for the Nth

DAS
EDWDASN Encrypted initialized drawer for the Nth DAS
PRX Private key operation (signature generation)

using X’s private key
PUX Public key operation (encryption) using X’s

public key
CHDASN Challenge from the Nth DAS
DWCDASN The drawer for the Nth DAS populated with a

challenge for the user
CHADASN The clients answer to the challenge of the Nth

DAS
DWAN The drawer for the Nth DAS populated with the

clients answer
SDWADASN Signature of the drawer for the Nth DAS

populated with the client answers
EDWADASN Encrypted empty drawer for the Nth DAS
VOTEDASN The vote of the Nth DAS
DWVDASN The drawer for the Nth DAS populated with its

vote
SDWVFASN Signature of the drawer for the Nth DAS

populated with its vote
EDWVFASN Encrypted drawer for the Nth DAS populated

with its vote

Step 1: Client FAS:IDCLIENT
The authentication session begins once the client

initiates the authentication process with the FAS. Since
the client is already registered with the FAS, prior to
requesting access, the FAS knows which DAS servers can
be used to authenticate this client. It then chooses at
random a subset of the DAS servers capable of
authenticating the client and compiles the manifest as

A distributed authentication architecture and protocol K. Skračić et al.

306 Technical Gazette 24, Suppl. 2(2017), 303-311

described in the previous chapters. The FAS populates the
Envelope of the Manifest, creates the DAS Drawers, sets
the DAS operation to "generate" and digitally signs the
envelope with its private key and encrypts it using its
public key. Also, each DAS drawer is encrypted with the
DAS's public key and digitally signed by the FAS's
private key. Encryption is used to preserve confidentiality
of transferred data, while the digital signature ensures
Drawer authenticity and non-repudiation.

Figure 1Proposed authentication scheme

Step 2: FAS DASN: ENV, ENVSIG, SDWDASN,

EDWDASN
The DAS server decrypts its Drawer using its private

key and checks the validity of the content with the FAS's
public key. The DAS server then generates a challenge, or
a number of challenges, for the client identified to the
DAS server with the Client ID. Once done, the challenges
are put within the Drawer and encrypted using the FAS's
public key and signed using the DAS's private key. The
DAS server then sends the Manifest to the next DAS
server. If the next DAS does not respond, it will try to
connect to the following DAS in the list, and so on until it
finds a DAS that responds. In case there are no remaining
DAS servers in the list or in case none of the DAS servers
responds, the Manifest is returned to the FAS.

Step 3: DASN FAS: ENV, ENVSIG, SDWFASN,
EDWFASN

The FAS checks the envelope validity and the
validity of the content in all DAS Drawers. The validity
check is done by verifying the signatures of the Drawers
and the Envelope, and decrypting them. If a decrypted
Drawer is not valid it means there was a fault with the

corresponding DAS server. Once the validity of the
content is verified, the FAS checks if the required number
of DAS servers has generated the necessary challenges. In
case this condition is not met, the FAS server has to
repeat the above process again with other DAS servers
until the required number is met.

Step 4: FAS Client: CHDASN
The FAS forwards the challenges to the client. This

can be done, one by one, sending next challenge only
after the response to the previous one has been sent by the
client, or in a batch, and then receiving responses in a
batch, as well.

Step 5: Client FAS: CHADASN
The client sends their answers to the FAS, one by

one, or in a batch.
Step 6: FAS DASN: ENV, ENVSIG, SDWADASN,

EDWADASN
The FAS populates DASs’ Drawers with the client’s

answers and by setting the DAS operation to verify. Like
in the first cycle, the Manifest is sent to the first DAS in
the list. The DAS verifies the signature of its drawers and
checks the client’s answers. Based on the answer, the
DAS makes a decision on the authenticity of the client
and places its vote in its drawer and encrypts it using the
FAS public key.

Step 7: DASN FAS: ENV, ENVSIG, SDWVFASN,
EDWVFASN

Once the Manifest returns, the Drawers and Envelope
are verified like in the first cycle. If the required number
of DAS servers has not voted, the authentication session
starts again to fill the missing number of DAS servers
(previous votes are not forgotten). Once all the necessary
DAS servers have voted, the votes are evaluated and the
decision is made if access will be granted to the client.

2.2 Client registration

A client has to register once with the FAS, prior to
initiating an authentication request. During the
registration process, the client registers a set of DAS
servers he wishes to use for authentication. As presented
in [17], there are many problems with creating and
maintaining a global user identity. Thus, for each DAS
the client must provide his ID known to a specific DAS,
with which this DAS can generate a challenge for that
client.

The client may choose any set of DAS servers he is
registered with to authenticate him. However, from user
proposed set, a subset is created consisting of DAS
servers with which the FAS server has previously
established relationship and has exchanged their public
keys. This mode of operation was chosen as it may be
more cost effective for a FAS server to only communicate
with a set of DAS servers with which it has already
established a trusted connection, rather than trying to
establish relationship each time a user proposed some new
DAS.

2.3 Modes of operation

During execution, the proposed protocol offers two
types of data exchange modes to choose from. We call
them: centralized polling and round robin mode. During

K. Skračić i dr. Arhitektura i protokol za raspodijeljenu autentifikaciju korisnika

Tehnički vjesnik 24, Suppl. 2(2017), 303-311 307

centralized polling mode, the FAS sequentially initiates a
connection with each DAS separately. This means that the
list of next DAS servers is always empty. In round robin
mode, the FAS sends the Manifest to the first DAS which
responds (e.g. DAS1). Upon generating the challenges,
the first DAS sends the Manifest to the next DAS on the
list that responds, and so on. The last DAS server sends
the Manifest Back to the FAS.

Such a protocol allows for configurable levels of fault
tolerance and FAS load optimization during
communication. The round robin mode offers higher
performance but lower fault tolerance, while the
centralized poling mode achieves higher fault tolerance
but has lower performance. Distributing a process among
multiple servers is a common method for removing
performance bottlenecks in user authentication [7].

Each FAS can define its own set of rules regarding its
interaction with the DAS servers which may depend on
the required fault tolerance and performance
characteristics. We also note that the proposed
architecture has no single point of compromise. Also, the
same DAS can be used in two different modes by two
different FAS servers. Since the FAS server has no
verifiers, its compromise cannot lead to a compromise of
the user’s digital identity.

2.4 Manifest structure and initialization

 When the FAS receives the client’s authentication
request it instantiates a Manifest. Based on the desired
mode of operation, the Manifest will be passed to one or
more DAS servers randomly chosen from the client’s list
and then be sent back to the FAS. For such a dynamic
communication model to work we choose to define a
common data structure that will be used for exchanging
data between the FAS and the DAS servers during the
authentication session. As described previously, we call
this structure the Manifest. In order for the
communication protocol to work as described, the
Manifest has to have the structure and content as shown in
Fig. 2.
 In order for the FAS to be sure that the Manifest was
not tampered with during communication, it has to store
some metadata about the authentication session. For this
reason we introduce an Envelope element within the
Manifest. The Envelope holds the client’s ID on the FAS
and the required number of DAS servers to authenticate
the client. This data is necessary for the FAS to be
stateless. Additionally, the Envelope holds a hashed list of
all DAS servers that were supposed to be used in the
authentication session. For each DAS server that is to be
used during an authentication session, certain information
has to be passed between the FAS and the DAS server.
This data needs to be kept securely since it includes the
challenges that will authenticate the users and the DAS
evaluation of the client’s responses. In order to prevent
tampering with this information, each DAS shares a secret
container with the FAS. We call this container a DAS
Drawer and it is encrypted and digitally signed in order to
keep integrity and confidentiality. Encryption and digital
signatures are done using the RSA algorithm. Each DAS
Drawer holds that DAS’s ID of the client wishing to
authenticate, the FAS return address, and the requested

DAS operation. The DAS operation specifies which
action the DAS server should perform: challenge
generation or answer verification. Thus, the Drawer has a
list of challenges and a field for the DAS's vote.
Additionally, the Drawer holds a list of DAS servers that
are next in line. Based on the chosen mode of operation,
the Drawer is populated with the appropriate number of
DAS servers.
 The DAS vote is implemented as a Boolean variable.
This is also similar to biometric authentication in which a
user's biometric trait is measured and compared to a
stored template [18]. Additionally, we propose that each
DAS server should have its own internal scale based on
which it will decide if a user is authentic or not. The final
DAS votes are summed up and evaluated by the FAS. If
all the votes (or a specific number of votes as suggested in
[14]) are positive, the user is authenticated.
In order for a DAS to know how to access its drawer, a
separate element is introduced to the Manifest, the
Address book. Its purpose is to hold a list of all DAS
drawers in the Manifest and their relative location within
it. By accessing the Address book, a DAS can
immediately retrieve its Drawer from the Manifest and
attempt to decrypt it using its private key. In order to keep
an attacker from identifying which DAS servers are used
for a specific Client, DAS names are hashed.

Figure 2 Manifest structure

2.5 Usability

As explained in [19], usability is a key component of
each authentication system. As explained in the previous
sections, the proposed system does not impose any new
requirements on the client except the need for providing
more than one credential during authentication. From a
client’s perspective, the system integrates transparently
with existing authentication schemes and the complexities
of the underlying mechanisms are not evident to the
client. From the application server perspective,
implementing the proposed authentication protocol is the
same as implementing any single sign-on scheme.

Therefore, we argue that the proposed system
leverages the usability of existing authentication methods

A distributed authentication architecture and protocol K. Skračić et al.

308 Technical Gazette 24, Suppl. 2(2017), 303-311

and is thus as usable as the chosen authentication methods
and factors.

3 Security analysis

The most important benefit of this architecture is its
resistance to cyber attacks. In the following sections we
show that an attacker would have to compromise all DAS
servers involved in the current authentication session in
order to compromise a digital identity. Additionally, even
if an attacker manages to compromise all DAS servers
used to authenticate one user, he is unable to steal the
digital identity of another user that uses different DAS
servers to authenticate with the same FAS. Also, by
compromising the FAS, an attacker does not gain access
to a user’s digital identity since it is not stored on the
FAS.

The proposed security measures are based on public
key cryptography [20]. Traditionally, public key
cryptography is used to establish a session key used to
encrypt data with a symmetric algorithm. Such an
approach is used because symmetric algorithms are faster
than asymmetric ones. In the proposed protocol we only
use asymmetric algorithms. Thus, no session key is
established. Although they have lower performance, we
argue that the use of asymmetric algorithms is not a
problem for the proposed environment. The reason for
this is twofold. First, the amount of data that is encrypted
and decrypted is smaller than in environments that
establish session keys (e.g. Web sites with HTTPS).
Secondly, advances in running asymmetric algorithms in
multithreaded environments [21] have been made. Also,
the use of elliptic curve algorithms may additionally
increase performance as described in [22].

This protocol assumes that each DAS has its own pair
of private and public keys and that the FAS and the DAS
servers have exchanged their public keys prior to the
authentication session. This needs to be done only once
between each FAS – DAS pair and will remain valid
forever, or until one member of the pair changes its
public-private key.

3.1 Malicious DAS

A malicious DAS attack is when one or more servers
are corrupted or in collusion with an adversary. If a
malicious DAS tries to change the data entered by a
legitimate DAS server, the FAS will see that the Manifest
was tampered with based on the digital signature in the
envelope. Thus, tampering with the content will cause the
authentication session to be void, and would have to be
restarted. Even if a malicious DAS changes the entire
Manifest content, it cannot generate a valid digital
signature for a legitimate DAS server. When the FAS
receives the populated Manifest it checks that all the
signatures are valid. Based on this we conclude that a
malicious DAS server cannot change the content of the
Manifest since this will be detected. Passive attacks
involving malicious DAS servers involve recording
challenges and answers. During the first cycle of the
protocol, the challenges are encrypted using FAS's public
key. Thus, a malicious DAS cannot read the challenges as
it does not know FAS's private key.

3.2 Manifest interception and manipulation

In the proposed protocol, a message can be
intercepted by compromising the DAS or the FAS, or by
compromising the underlying TCP/IP infrastructure (e.g.
a router between two DAS servers). However, since the
Manifest used for communication between the DAS
servers and the FAS is secured using private key
cryptography, by intercepting the Manifest the attacker
can neither read its content nor falsify it.

The communication between the client and the FAS
may or may not be secured. Since users usually do not
pay attention to certificates and server signatures [23], a
man-in-the-middle attack is possible. As described in
[23], an attacker may insert himself in a secured
connection between the client and the server by using a
forged certificate. An attacker creates a TLS/SSL
connection with the client and the server. This way, the
server and the client think they are communicating with
each other and the attacker can intercept their data.
Currently, there is no ideal solution to this problem as it is
up to the users and their browsers to detect forged
certificates.

Another possible attack consists of replaying the
positive votes from the DAS. If an attacker manages to
record a successful authentication session and record the
positive votes in the Manifest before it is sent to the FAS,
the recorded messages may be sent again at a later time.
For this reason we introduced a signed timestamp in the
Manifest Envelope. This prevents the attacker from
reusing a recorded session at a later time. Since the
timestamp is generated and verified locally on the FAS,
there is no need for clock synchronization amongst
distributed systems. Another countermeasure is the fact
that the FAS chooses the necessary DAS servers at
random for each session. As described earlier, the DAS
servers used for an authentication session are unknown
until the FAS randomly chooses them during Manifest
initialization.

We conclude that no relevant or sensitive information
about the authentication session or client's digital identity
can be obtained by intercepting or manipulating the
Manifest.

3.3 Compromised FAS

The FAS does not keep any secret client information
in its storage. Thus, its information cannot be leveraged to
directly compromise a digital identity. Additionally, a
compromise of one FAS does not help compromise other
FAS or DAS servers as they are independent systems.
However, with a compromised FAS it is possible to
intercept and decrypt the Manifest content, as well as
DAS Drawers since it is encrypted for the FAS. Thus, a
compromised FAS could be used to record legitimate
client answers to challenges. Of course, this is only a
problem if the challenges repeat over time.

To prevent such an attack, we propose an additional
security measure. Instead of encrypting the challenges
with FAS's public key, a DAS can encrypt them using the
Client's public key. Also, the Client would encrypt his
answers with the DAS's public key. This way, the FAS
would never know what the challenges and answers are

K. Skračić i dr. Arhitektura i protokol za raspodijeljenu autentifikaciju korisnika

Tehnički vjesnik 24, Suppl. 2(2017), 303-311 309

and could not use them. As described by [24], the main
design issue in authentication schemes is the choice of
cryptographic algorithms and the amount of trust placed
on a third party. We conclude that a compromised FAS
cannot be used to compromise a client's digital identity.

4 Performance analysis of the proposed protocol

The proposed protocol relies strongly on public key
cryptography. Thus, its performance relies mainly on the
performance of the chosen cryptographic algorithms. In
this section we give a performance analysis based on the
cryptographic operations that take place in an
authentication session. The notation Tenc, Tdec and Tsig
denotes the time complexity of the encryption function,
the decryption function and the digital signature function
(both signature verification and generation), respectively.

4.1 Analytical approach

The proposed protocol has three major operations that
are computationally intensive and that make use of
cryptographic functions:
− Manifest initialization: the FAS has to initialize the

Manifest before sending it to a DAS. The
initialization occurs both times the FAS forwards the
Manifest to a DAS (when soliciting challenges from
DASs' and forwarding Client responses),

− Manifest check: FAS checks the integrity of the
Manifest,

− DAS actions: DAS servers when they check the
validity of their drawer and populate the manifest
with their challenges

Tab. 2 describes the performance cost based on the

number of cryptographic operations per session. Since
this depends on the number of DAS server involved in an
authentication session, we use the notation N to denote the
number of DAS servers used.

Table 2 Cryptographic operations used
 Round robin Centralized polling

Tsig 6 + 2 * N 2 + 6 * N
Tenc 4 + 2 * N 2 + 4 * N
Tdec 4 + 2 * N 2 + 4 * N

 We implemented and tested the proposed protocol
and architecture and measured their performance. Our
performance analysis shows that average time for
encryption and decryption a message of 10000 characters
in memory using the RSA algorithm with key size of 512
bits is 110 milliseconds, and 70 milliseconds respectively.
It was tested on a 3.20 GHz AMD Phenom II X6 CPU PC
with 6.00 GB of RAM. The results we measured are
similar to those in [25]. The average time for signature
generation and verification using the RSA algorithm is 10
milliseconds. Thus, the average time of Tsig is 20
milliseconds. Our measurements are equal to those in
[26]. Based on these average values we estimate the total
time cost of the authentication protocol with regard to the
number of DAS server (N) involved. Tab. 4 presents the

time estimate for the first Cycle of the protocol in Round
robin and Centralized polling mode. The time estimate for
Cycle 3 is the same. We note that Centralized polling has
lower performance, but offers increased security as
described in previous chapters.

4.2 Practical approach

 We tested the proposed architecture and protocol in a
laboratory environment and measured the following
results as described in Tab. 3. We implemented the
system using the Java programming language and
BouncyCastle library as the provider for the
cryptographic functions. We choose this provider as it is
commonly used to provide cryptographic functions like in
existing research [27], [28], [29], [30]. As can be seen in
Fig. 4, the implementation achieves greater performance
than the analytical estimation when up to 10 DAS servers
are used. This performance boost can be explained by the
effect of the Java Just-in-Time (JIT) Compiler as
described in [31] and [32].We note that for 15 and more
DAS servers, the overall execution time increases
exponentially. This is due to the changes in Manifest size
over time. As shown in Table 3, Table 4 and Figure 3, in
round robin mode the Manifest size grows with the
number of DAS servers. Also, our laboratory cluster
cannot efficiently manage more than 10 nodes at a time
due to limitations of virtualized environments. However,
we propose that 10 DAS servers are enough for most use
cases. As the user has to answer 10 or more challenges
from 10 different DAS servers, usability becomes an
issue.

Table 3 Time estimation for one cycle of Round robin mode
N Tsig (ms) Tenc (ms) Tdec (ms) TOTAL (sec)
2 100 440 280 0,82
3 120 550 350 1,02
4 140 660 420 1,22
5 160 770 490 1,42

10 260 1320 840 2,42
15 360 1870 1190 3,42

Table 4 Time estimation for one cycle of Centralized polling mode

N Tsig (ms) Tenc (ms) Tdec (ms) TOTAL (sec)
2 140 550 350 1,04
3 200 770 490 1,46
4 260 990 630 1,88
5 320 1210 770 2,3

10 620 2310 1470 4,4
15 920 3410 2170 6,5

Based on the performance results, we stipulate that

the overall time spent on cryptographic operations is
lower than the time spent by the user to issue a response
to the challenges presented. Additionally, the time could
be lower by using elliptic curve algorithms [33]. The
centralized polling mode could be further optimized if the
challenges are presented to the user as they are received
by the FAS. While the user is answering the challenge of
the first DAS, the FAS asks the second DAS to provide a
challenge, thus lowering the overall time the user is idle.

A distributed authentication architecture and protocol K. Skračić et al.

310 Technical Gazette 24, Suppl. 2(2017), 303-311

Figure 3 Manifest size comparison

Figure 4 Performance comparison

5 Conclusion

In this paper, we proposed a new distributed user

authentication architecture and protocol that allows a user
to be authenticated in a distributed manner. We also
analysed potential security issues and proposed
countermeasures to prevent them from compromising a
digital identity. The analysis has shown that the proposed
distributed authentication architecture offers considerably
more security than current authentication methods.
Specifically, the architecture prevents a compromise of a
digital identity when a single server is compromised. A
key benefit of the proposed authentication architecture is
that it does not impose a specific authentication factor.
Instead, each DAS can use any authentication factor
which is appropriate for the system. We suggest that this
flexibility makes the proposed architecture and protocol
impervious to change.

6 References

[1] O'Gorman, L. Comparing passwords, tokens, and

biometrics for user authentication. // Proceedings of the
IEEE, 91, 12(2003), pp. 2021-2040.
https://doi.org/10.1109/JPROC.2003.819611

[2] Gärtner, F. C. Fundamentals of fault-tolerant distributed
computing in asynchronous environments. // ACM Comput.
Surv., 31, 1(1999), pp. 1-26.

https://doi.org/10.1145/311531.311532
[3] Tanaraksiritavorn, S.; Mishra, S. A Privacy Preserving

Intrusion Tolerant Voting Architecture. // Network
Computing and Applications, NCA 2009. Eighth IEEE
International Symposium on, 9, (2009), pp. 148-155.

[4] Morris, R.; Thompson, K. Password security: a case
history. // Commun. ACM, 22, 11(1979), pp. 594-597.
https://doi.org/10.1145/359168.359172

[5] Herley, C.; Oorschot, P. C.; Patrick, A. S. Passwords: If
We're So Smart, Why Are We Still Using Them? // in
Financial Cryptography and Data Security, Springer-
Verlag, 2009, pp. 230-237.

[6] Radha, V.; Reddy, D. H. A Survey on Single Sign-On
Techniques. // Procedia Technology, 4, 0(2012), pp. 134-
139. https://doi.org/10.1016/j.protcy.2012.05.019

[7] Liu, H.; Luo, P.; Wang, D. A distributed expansible
authentication model based on Kerberos. // Journal of
Network and Computer Applications, 31, 4(2008), pp. 472-
486. https://doi.org/10.1016/j.jnca.2007.12.003

[8] Keromytis, A. Transport Layer Security (TLS)
Authorization Using KeyNote. // Columbia University,
RFC 6042, Oct. 2010.

[9] Sullivan, R. K. The case for federated identity. // Network
Security, vol. 2005, 9(2005), pp. 15-19.
https://doi.org/10.1016/S1353-4858(05)70283-X

[10] Hong, S.-M.; Lee, S.; Park, Y.; Cho, Y.; Yoon, H. On the
construction of a powerful distributed authentication server
without additional key management. // Computer
Communications, 23, 17(2000), pp. 1638-1644.
https://doi.org/10.1016/S0140-3664(00)00250-4

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

0 2 4 6 8 10 12 14 16

Si
ez

 o
f m

an
ife

st
 (c

ha
ra

ct
er

s)

Number of DAS servers

RoundRobin - manifest

CentPolling - manifest

0
1
2
3
4
5
6
7
8
9

10

0 5 10 15 20

Du
ra

tio
n

in
 se

co
nd

s

Number of DAS servers

Round Robin (estimate)

Centralized Polling (estimate)

Round Robin (implementation)

Centralized Polling
(implementation)

K. Skračić i dr. Arhitektura i protokol za raspodijeljenu autentifikaciju korisnika

Tehnički vjesnik 24, Suppl. 2(2017), 303-311 311

[11] Tsai, J.-L. Efficient multi-server authentication scheme
based on one-way hash function without verification table.
// Computers & Security, 27, 3-4(2008), pp. 115-121.
https://doi.org/10.1016/j.cose.2008.04.001

[12] Brasee, K.; Kami Makki, S.; Zeadally, S. A Novel
Distributed Authentication Framework for Single Sign-On
Services. // Sensor Networks, Ubiquitous and Trustworthy
Computing, 2008. SUTC'08. IEEE International
Conference on, pp. 52-58, 11.

[13] Skracic, K.; Pale, P.; Jeren, B. Knowledge based
authentication requirements. // in 2013 36th International
Convention on Information Communication Technology
Electronics Microelectronics (MIPRO), 2013, pp. 1116-
1120.

[14] Yesberg, J. D.; Anderson, M. S. Quantitative authentication
and vouching. // Computers & Security, 15, 7(1996), pp.
633-645. https://doi.org/10.1016/S0167-4048(96)00014-4

[15] Rodrigues, R. N.; Ling, L. L.; Govindaraju, V. Robustness
of multimodal biometric fusion methods against spoof
attacks. // Journal of Visual Languages & Computing, 20,
3(2009), pp. 169-179. https://doi.org/10.1016/j.jvlc.2009.01.010

[16] Kumar, H. et al. Rainbow table to crack password using
MD5 hashing algorithm. // Information & Communication
Technologies (ICT), 2013 IEEE Conference on, pp. 433-
439, Apr. 2013.

[17] Lampropoulos, K.; Denazis, S. Identity management
directions in future internet. // Communications Magazine,
IEEE, 49, 12(2011), pp. 74-83.
https://doi.org/10.1109/MCOM.2011.6094009

[18] Jain, A.; Nandakumar, K.; Ross, A. Score normalization in
multimodal biometric systems. // Pattern Recognition, 38,
12(2005), pp. 2270-2285.
https://doi.org/10.1016/j.patcog.2005.01.012

[19] Weir, C. S.; Douglas, G.; Richardson, T.; Jack, M. Usable
security: User preferences for authentication methods in
eBanking and the effects of experience. // Interacting with
Computers, 22, 3(2010), pp. 153-164.
https://doi.org/10.1016/j.intcom.2009.10.001

[20] Hellman, M. An overview of public key cryptography. //
Communications Society Magazine, IEEE, 16, 6(1978), pp.
24-32. https://doi.org/10.1109/MCOM.1978.1089772

[21] Dongara, P.; Vijaykumar, T. N. Accelerating private-key
cryptography via multithreading on symmetric
multiprocessors. // in Proceedings of the 2003 IEEE
International Symposium on Performance Analysis of
Systems and Software, 2003, pp. 58-69.

[22] Gupta, V.; Gupta, S.; Chang, S.; Stebila, D. Performance
analysis of elliptic curve cryptography for SSL. // in
Proceedings of the 1st ACM workshop on Wireless
security, Atlanta, GA, USA, 2002, pp. 87-94.

[23] Callegati, F.; Cerroni, W.; Ramilli, M. Man-in-the-Middle
Attack to the HTTPS Protocol. // Security & Privacy, IEEE,
7, 1(2009), pp. 78-81. https://doi.org/10.1109/MSP.2009.12

[24] Gollmann, D.; Beth, T.; Damm, F. Authentication services
in distributed systems. // Computers & Security, 12,
8(1993), pp. 753-764.
https://doi.org/10.1016/0167-4048(93)90041-3

[25] Fatemi Moghaddam, F.; Karimi, O.; Alrashdan, M. T. A
comparative study of applying real-time encryption in cloud
computing environments. // Cloud Networking (CloudNet),
2013 IEEE 2nd International Conference on, pp. 185-189,
Nov. 2013.

[26] Wen-bi Rao; Quan Gan. The performance analysis of two
digital signature schemes based on secure charging
protocol. // Wireless Communications, Networking and
Mobile Computing, 2005. Proceedings. 2005 International
Conference on, vol. 2, pp. 1180-1182, Sep. 2005.

[27] Jachtoma, P.; Sakowicz, B.; Wojciechowski, J.;
Napieralski, A. Application for Assigning Grades to
Students using Public Key Infrastructure. // Mixed Design

of Integrated Circuits and System, 2006. MIXDES 2006.
Proceedings of the International Conference, pp. 773-778,
2006.

[28] Lo, J. L.-C.; Bishop, J.; Eloff, J. H. P. SMSSec: An end-to-
end protocol for secure SMS. // Computers & Security, 27,
5-6(2008), pp. 154-167.

[29] Castiglione, A. et al. Engineering a secure mobile
messaging framework. // Computers & Security, 31,
6(2012), pp. 771-781.
https://doi.org/10.1016/j.cose.2012.06.004

[30] Vigil, M.; Buchmann, J.; Cabarcas, D.; Weinert, C.;
Wiesmaier, A. Integrity, authenticity, non-repudiation, and
proof of existence for long-term archiving: A survey. //
Computers & Security, 50, (2015), pp. 16-32.
https://doi.org/10.1016/j.cose.2014.12.004

[31] Cramer, T.; Friedman, R.; Miller, T.; Seberger, D.; Wilson,
R.; Wolczko, M. Compiling Java just in time. // Micro,
IEEE, 17, 3(1997), pp. 36-43.
https://doi.org/10.1109/40.591653

[32] Suganuma, T. et al. Overview of the IBM Java Just-in-Time
Compiler. // IBM Systems Journal, 39, 1(2000), pp. 175-
193. https://doi.org/10.1147/sj.391.0175

[33] Lauter, K. The advantages of elliptic curve cryptography
for wireless security. // Wireless Communications, IEEE,
11, 1(2004), pp. 62-67.
https://doi.org/10.1109/MWC.2004.1269719

Authors’ addresses

Kristian Skračić, mag. ing. comp.
Sveučilište u Zagrebu
Fakultet elektrotehnike i računarstva
Unska 3, 10 000 Zagreb, Croatia
Kristian.Skracic@fer.hr

Predrag Pale, PhD
Sveučilište u Zagrebu
Fakultet elektrotehnike i računarstva
Unska 3, 10 000 Zagreb, Croatia
Predrag.Pale@fer.hr

Branko Jeren, PhDFull Professor
Sveučilište u Zagrebu
Fakultet elektrotehnike i računarstva
Unska 3, 10 000 Zagreb, Croatia
Branko.Jeren@fer.hr

	1 Introduction

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

