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5 Abstract

6 A novel approach to quality of service control in an active service network (application layer active network) is

7 described. The approach makes use of a distributed genetic algorithm based on the unique methods that bacteria use to

8 transfer and share genetic material. We have used this algorithm in the design of a robust adaptive control system for

9 the active nodes in an active service network. The system has been simulated and results show that it can o�er clear

10 di�erentiation of active services. The algorithm places the right software, at the right place, in the right proportions;

11 allows di�erent time dependencies to be satis®ed and simple payment related increases in performance. Ó 2001 Elsevier

12 Science B.V. All rights reserved.
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14 1. Introduction

15 To be popular with customers an active service
16 platform must provide some clear service quality
17 assurances. Users of an active service network
18 supply the programs and policies required for their
19 custom services in transport packets alongside
20 their data. Clearly it should be possible for these
21 users to specify the Quality of Service (QoS) using
22 any metric that is important to them. The rate of
23 loss of packets carrying service requests or policies,
24 and the service response time (latency) are two
25 obvious examples. In this paper we discuss the
26 management of QoS in an application layer active
27 network (ALAN) [1] that enables users to place
28 software (application layer services) on servers
29 embedded in the network. Despite the obvious
30 virtual networking overheads, the resulting end to

31end service performance will often be signi®cantly
32better than if the services executed in the user's end
33systems (as at present). For example, a network
34based conference gateway can be located so as to
35minimise the latency of the paths used in the
36conference, whereas an end system based gateway
37will usually be in a sub-optimal location.
38For the purposes of this work we have assumed
39that the latency and loss associated with the net-
40work based servers is signi®cantly greater than the
41latency and loss associated with the underlying
42network. In the case of latency this is clear ±
43packet handling times in broadband routers are
44around 10 ls, whilst the time taken to move a
45packet into the user space for application layer
46processing is a few milliseconds. In the case of loss
47the situation is less clear since currently servers do
48not drop requests, they simply time-out. However,
49measurement of DNS lookup [2] suggest DNS
50time-outs due to server overloads occur signi®-
51cantly more frequently than DNS packet losses, so
52we feel our assumption is reasonable.
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53 In Section 2 we brie¯y describe our active ser-
54 vices platform ALAN and its associated manage-
55 ment system. We then justify our approach to QoS
56 in an ALAN environment. We then describe a
57 novel control algorithm, which can control QoS in
58 the desired manner. Finally we show the results of
59 some simulations using the novel algorithm. The
60 results are very encouraging and illustrate for the
61 ®rst time that a distributed AI approach may be a
62 productive QoS management tool in an active
63 services network. However, further work is re-
64 quired before we can justify the use of our ap-
65 proach in a working active network.

66 2. ALAN

67 ALAN [1] is based on users supplying java
68 based active code (proxylets) that runs on edge
69 systems (dynamic proxy server ± DPS) provided by
70 network operators. Messaging uses HTML/XML
71 and is normally carried over HTTP. There are
72 likely to be many DPSs at a physical network node
73 (at least one for each service provider using the
74 node). It is not the intention that the DPS is able
75 to act as an active router. ALAN is primarily an
76 active service architecture, and the discussion in
77 this paper refers to the management of active
78 programming of intermediate servers. Fig. 1 shows
79 a schematic of a possible DPS management ar-
80 chitecture.
81 The DPS has an autonomous control system
82 that performs management functions delegated to
83 it via policies (scripts and pointers embedded in

84XML containers). Currently the control system
85supports a conventional management agent inter-
86face that can respond to high level instructions
87from system operators [3]. This interface is also
88open to use by users (who can use it to run pro-
89grams/active services) by adding a policy pointing
90to the location of their program and providing an
91invocation trigger. Typically the management
92policies for the program are included in an XML
93meta®le associated with the code using an XML
94container [4,5], but users can also separately add
95management policies associated with their pro-
96grams using HTTP post commands. In addition
97the agent can accept policies from other agents and
98export policies to other agents. This autonomous
99control system is intended to be adaptive.
100Not shown in the ®gure are some low level
101controls required to enforce sharing of resources
102between users, and minimise unwanted interac-
103tions between users. There is a set of kernel level
104routines [6] that enforce hard scheduling of the
105system resources used by a DPS and the associated
106virtual machine that supports user supplied code.
107In addition the DPS requires programs to o�er
108payment tokens before they can run. In principle
109the tokens should be authenticated by a trusted
110third party. At present these low level management
111activities are carried out using a conventional hi-
112erarchical approach. We hope to address adaptive
113control of the o/s kernel supporting the DPS in
114future work.

1153. Network level QoS

116Currently there is great interest in enabling the
117Internet to handle low latency tra�c more reliably
118than at present. Many approaches, such as intserv
119[7], rely on enabling the network to support some
120type of connection orientation. This matches the
121properties of older network applications, such as
122telephony, well. However it imposes an unaccept-
123able overhead on data applications that generate
124short packet sequences. Given that tra�c forecasts
125indicate that by the end of the next decade tele-
126phony will be �5% of total network tra�c, and
127short data sequences will be around 50% of net-

Fig. 1. Schematic of proposed ALAN design.
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128 work tra�c, it does not seem likely that connec-
129 tion orientation will deliver optimal results.
130 A recent alternative has been to propose di�er-
131 entiated services [8], an approach that is based on
132 using di�erent forwarding rules for di�erent classes
133 of packet, and maintaining the properties of the
134 best class by admission control at the ingress to the
135 network. There are di�culties however.

· Admission control does not work well with
137 short packet sequences [9].

· The proposed algorithms assume Poisson burst
139 intervals when real tra�c is in fact fractional
140 Gaussian [10,11] and much harder to predict.

· The performance bene®ts can only be obtained
142 if the distribution of demand is such that only
143 a small proportion of the tra�c wishes to use
144 the better classes [12].

· The proposed classes typically propose a low
146 loss, low latency class that uses a disproportion-
147 ate proportion of the available network resourc-
148 es.

149 Despite the di�culties it is clear that di�erenti-
150 ated services is currently the best available alter-
151 native. It therefore seems advisable to base any
152 proposals for QoS management of active services
153 on the di�serv approach. However, it also seems
154 advisable to modify the approach and attempt to
155 avoid some of the di�culties identi®ed.

156 4. Emergent approach to di�erentiated active ser-

157 vices

158 We propose a new approach to di�erentiating
159 active services, controlled by an emergent control
160 algorithm. Users can request low latency at the
161 cost of high loss, moderate latency and loss, or
162 high latency and low loss by adjusting the time to
163 live (ttl) of the packets they send, either by ma-
164 nipulating the IP header or using a user de®ned
165 header extension. Short ttl packets will experience
166 high loss when the network is congested and long
167 ttl packets will experience high delay when the
168 network is congested. Users cannot request low
169 loss and low delay together. This choice means
170 that all the classes of service we support have ap-
171 proximately the same resource cost, since the low
172 latency class does not rely on low utilization and

173we can set the utilization to be the same for all the
174service classes. As a result we do not have to
175consider complex admission control to ensure a
176favourable demand distribution, and we do not
177have to allocate signi®cant resources to support a
178minority service. Two adaptations are possible if
179the performance is reduced by congestion; either
180the application sends less packets or the applica-
181tion persists until an application speci®c latency
182cut-o� is reached and then terminates the session.
183Services such as telephony would use a low laten-
184cy/high loss transport regime. This would require
185the application to be more loss tolerant than at
186present, however as mobile telephones demon-
187strate this is not hard to achieve. Interoperation
188with legacy telephones could be achieved by run-
189ning loss tolerant algorithms (e.g., FEC) in the
190PSTN/IP gateway. We do not believe that users
191want an expensive low loss, low latency service.
192The current PSTN exempli®es this service and
193users are moving to VoIP as fast as they are able,
194despite lower quality, in order to bene®t from re-
195duced prices.
196Near optimal end to end performance across the
197network is obtained by enabling the servers to
198retain options in their application layer routing
199table for fast path, medium path and slow path
200(i.e., high loss medium loss and low loss). Packets
201are then quickly routed to a server whose perfor-
202mance matches their ttl. This avoids any need to
203perform ¯ow control and force sequences of
204packets to follow the same route.
205For this approach to work well the properties of
206the servers must adapt to local load conditions.
207Fast servers have short queues and high drop
208probabilities, slow servers have long queues and
209low drop probabilities. If most of the tra�c is low
210latency the servers should all have short bu�ers
211and if most of the demand is low loss the servers
212should have long bu�ers. Adaptation of the bu�er
213length can be achieved using an adaptive control
214mechanism [13], and penalising servers whenever a
215packet in their queue expires. Use of adaptive
216control has the additional advantage that it makes
217no assumptions about tra�c distributions, and
218will work well in a situation where the tra�c has
219signi®cant long range dependency (LRD). This
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220 then resolves the ®nal di�culty we noted with the
221 current network level di�serv proposals.

222 5. Adaptive control

223 Conventional control of dynamic systems is
224 based on monitoring state, deciding on the man-
225 agement actions required to optimise future state,
226 and enforcing the management actions. In classical
227 control the decision is based on a detailed knowl-
228 edge of how the current state will evolve, and a
229 detailed knowledge of what actions need to be
230 applied to move between any pair of states (the
231 equations of motion for the state space). Many
232 control schemes in the current Internet (SNMP,
233 OSPF) are based on this form of control. There is
234 also a less precise version known as stochastic
235 control, where the knowledge takes the form of
236 probability density functions, and statistical pre-
237 dictions. All existing forms of tra�c management
238 are based on stochastic control, typically assuming
239 Poisson statistics.
240 Adaptive control [13] is based instead on
241 learning and adaptation. The idea is to compen-
242 sate for lack of knowledge by performing experi-
243 ments on the system and storing the results
244 (learning). Commonly the experimental strategy is
245 some form of iterative search, since this is known
246 to be an e�cient exploration algorithm. Adapta-
247 tion is then based on selecting some actions that
248 the system has learnt are useful using some selec-
249 tion strategy (such as a Bayesian estimator) and
250 implementing the selected actions. Unlike in con-
251 ventional control, it is often not necessary to as-
252 sume the actions are reliably performed by all the
253 target entities. This style of control has been pro-
254 posed for a range of Internet applications includ-
255 ing routing [14], security [15,16], and fault
256 ticketing [17]. As far as we are aware the work
257 presented here is the ®rst application of distributed
258 adaptive control to service con®guration and
259 management.
260 Holland [18] has shown that genetic algorithms
261 (GAs) o�er a robust approach to evolving e�ective
262 adaptive control solutions. More recently many
263 authors [19±21] have demonstrated the e�ective-
264 ness of distributed GAs using an unbounded gene

265pool and based on local action (as would be re-
266quired in a multi-owner internetwork). However,
267many authors, starting with Ackley and Littman
268[22], have demonstrated that to obtain optimal
269solutions in an environment where signi®cant
270changes are likely within a generation or two, the
271slow learning in GAs based on mutation and in-
272heritance needs to be supplemented by an addi-
273tional rapid learning mechanism. Harvey [23]
274pointed out that gene interchange (as observed in
275bacteria [24,25]) could provide the rapid learning
276required. This was recently demonstrated by
277Furuhashi [26] for a bounded, globally optimised
278GA. In previous work [27] we have demonstrated
279that a novel unbounded, distributed GA with
280``bacterial learning'' is an e�ective adaptive control
281algorithm for the distribution of services in an
282active service provision system derived from the
283ALAN. In this paper we demonstrate for the ®rst
284time that our adaptive control algorithm can de-
285liver di�erentiated QoS in response to user sup-
286plied metrics.

2876. Algorithm details

288Our proposed solution makes each DPS within
289the network responsible for its own behaviour.
290The active service network is modelled as a com-
291munity of cellular automata. Each automaton is a
292single DPS that can run several programs
293(proxylets) requested by users. Each proxylet is
294considered to represent an instance of an active
295service. Each member of the DPS community is
296sel®shly optimising its own (local) state, but this
297`sel®shness' has been proven as a stable model for
298living organisms [28]. Partitioning a system into
299sel®shly adapting sub-systems has been shown to
300be a viable approach for the solving of complex
301and non-linear problems [29].
302In this paper we discuss results from an imple-
303mentation that supports up to 10 active services.
304The control parameters given below are examples
305provided to illustrate our approach. Our current
306implementation has 1000 vertices connected on a
307rectangular grid (representing the network of
308transport links between the DPSs). Each vertex
309can support a single server (i.e., host) supporting a
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310 single DPS, so the network can support up to 1000
311 DPS nodes. In reality a network node (router)
312 would be associated with many such hosts, possi-
313 bly organised as a cluster. In this work we are
314 assuming that the latency associated with a DPS is
315 signi®cantly greater than that associated with bit
316 transport so we do not distinguish between DPS
317 links that are local and DPS links that are remote.
318 Each DPS has an amount of genetic material that
319 codes for the rule set by which it lives. There is a
320 set of rules that control the DPS behaviour. There
321 is also a selection of genes representing active
322 services. These de®ne which services each node will
323 handle and can be regarded as pointers to the ac-
324 tual programs supplied by users. Each node can
325 hold up to eight services (the limit is similar to that
326 imposed by available RAM in commodity com-
327 puters, such as could be used in future server
328 clusters). The service genes also encode some
329 simple conditionals that must be satis®ed for the
330 service to run. Currently each service gene takes
331 the form {x; y; z} where:

· x is a character representing the type of service
333 requested (A±J).

· y is an integer between 0 and 200 which is inter-
335 preted as the value in a statement of the form

``Accept request for service [Val(x)] if queue
337 length <Val(y)''.

· z is an integer between 0 and 100 that is inter-
339 preted as the value in a statement of the form

``Accept request for service [Val(x)] if busyness
<Val(z)% ''.

342 The system is initialised by populating a random
343 selection of network vertices with DPSs (active
344 nodes), and giving each DPS a random selection of
345 the available service genes. Requests are then en-
346 tered onto the system by injecting a random se-
347 quence of characters (representing service
348 requests), at a mean rate that varies stochastically,
349 at each vertex in the array. If the vertex is popu-
350 lated by a DPS, the items join a queue. If there is
351 no DPS the requests are forwarded to a neigh-
352 bouring vertex. The precise algorithm for this
353 varies and is an active research area, however the
354 results shown here are based on randomly select-
355 ing a direction in the network and forwarding
356 along that direction till a DPS is located. This is
357 clearly sub-optimal but is easy to implement. The

358tra�c arriving at each DPS using this model shows
359some LRD, but signi®cantly less than real WWW
360tra�c. Increasing the degree of LRD would be
361straightforward. However, the necessary change
362involves additional memory operations that slows
363down the simulation and makes the results harder
364to interpret. In any case inclusion of signi®cant
365LRD would not change the qualitative form of the
366main results since the algorithm is not predictive
367and makes no assumptions regarding the tra�c
368pdf. Each DPS evaluates the items that arrive in its
369input queue on a FIFO principle. If the request at
370the front of the queue matches an available service
371gene, and the customer has included payment to-
372kens equal to (or greater than) the cost for that
373service in the DPS control rules, the service will
374run. In the simulation the request is deleted and
375deemed to have been served, and the node is re-
376warded by a value equal to the speci®ed cost of the
377service. If there is no match the request is for-
378warded and no reward is given. In this case the
379forwarding is informed by a state table maintained
380by the DPS using a node state algorithm. Packets
381with a short ttl are forwarded to a DPS with a
382short queue and packets with a long ttl are for-
383warded to a DPS with a long queue. Each DPS is
384assumed to have the same processing power, and
385can handle the same request rate as all the others.
386In the simulation time is divided into epochs (to
387enable independent processing of several requests
388at each DPS before forwarding rejected requests).
389An epoch allows enough time for a DPS to execute
3903±4 service requests, or decide to forward 30±40
391(i.e., forwarding incurs a small time penalty). An
392epoch contains 100 time units and is estimated to
393represent O(100) ms. The busyness of each DPS is
394calculated by combining the busyness at the pre-
395vious epoch with the busyness for the current ep-
396och in a 0.8±0.2 ratio, and is related to the revenue
397provided for processing a service request. For ex-
398ample, if the node has processed three requests this
399epoch (25 points each) it would have 75 points for
400this epoch, if its previous cumulative busyness
401value was 65 then the new cumulative busyness
402value will be 67. This method dampens any sudden
403changes in behaviour. A brief schematic of this is
404shown in Fig. 2.
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405 The DPS also has rules for reproduction, evo-
406 lution, death and plasmid migration. It is possible
407 to envisage each DPS as a bacterium and each
408 request for a service as food. The revenue earned
409 when a request is handled is then analagous with
410 the energy released when food is digested. This
411 analogy is consistent with the metabolic diversity
412 of bacteria, capable of using various energy
413 sources as food and metabolising these in an aer-
414 obic or anaerobic manner.
415 Genetic diversity is created in at least two ways,
416 mutation and plasmid migration. Mutation in-
417 volves the random alteration of just one value in a
418 single service gene, for example:``Accept request
419 for service A if DPS <80% busy'' could mutate to
420 ``Accept request for service C if DPS <80% busy''
421 or alternatively could mutate to ``Accept request
422 for service A if DPS <60% busy''.
423 Plasmid migration involves genes from healthy
424 individuals being shed or replicated into the envi-
425 ronment and subsequently being absorbed into the
426 genetic material of less healthy individuals. If
427 plasmid migration does not help weak strains in-
428 crease their ®tness they eventually die. If a DPS
429 acquires more than 4±6 service genes through in-
430 terchange the newest genes are repressed (regis-
431 tered as dormant). This provides a long term
432 memory for genes that have been successful, and
433 enables the community to successfully adapt to
434 cyclic variations in demand. Currently, values for
435 queue length and cumulative busyness are used as
436 the basis for interchange actions, and evaluation is

437performed every ®ve epochs. Although the evalu-
438ation period is currently ®xed there is no reason
439why it should not also be an adaptive variable.
440If the queue length or busyness is above a
441threshold (both 50 in this example), a random
442section of the genome is copied into a `rule pool'
443accessible to all DPSs. If a DPS continues to ex-
444ceed the threshold for several evaluation periods, it
445replicates its entire genome into an adjacent net-
446work vertex where a DPS is not present. Healthy
447bacteria with a plentiful food supply thus repro-
448duce by binary ®ssion. O�spring produced in this
449way are exact clones of their parent.
450If the busyness is below a di�erent threshold
451(10), a service gene randomly selected from the
452rule pool is injected into the DPS's genome. If a
453DPS is `idle' for several evaluation periods, its
454active genes are deleted, if dormant genes exist,
455these are brought into the active domain, if there
456are no dormant genes the node is switched o�. This
457is analogous to death by nutrient deprivation.
458So if a node with the genome {a, 40, 50/
459c ,10, 5}has a busyness of >50 when analysed, it
460will put a random rule (e.g., c, 10, 5) into the rule
461pool. If a node with the genome {b, 2, 30/d, 30, 25}
462is later deemed to be idle it may import that rule
463and become {b, 2, 30/d, 30, 25/c, 10, 5}.

4647. Experiments

465The basic tra�c model outlined above was ad-
466justed to enable a range of ttls to be speci®ed. The
467ttls used were 4, 7, 10, 15, 20, 25, 30, 40, 50, 100
468(expressed in epochs). Approximately the same
469number of requests were injected at each ttl. The
470DPS nodes were also given an extra gene coding
471for queue length, and penalised by four time units
472whenever packets in the queue were found to have
473timed out. A DPS with a short queue will handle
474packets with a short ttl more e�ciently since the ttl
475will not be exceeded in the queue and the DPS will
476not be penalised for dropping packets. Thus if
477local demand is predominantly for short ttl DPS
478nodes with short queues will replicate faster, and a
479colony of short queue nodes will develop. The
480converse is true if long ttl requests predominate. If
481tra�c is mixed a mixed community will develop. In

Fig. 2. Future network model.
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482 Fig. 3 the red dots represent DPS nodes with long
483 queues, the blue dots represent intermediate
484 queues and the green dots represent short queues.
485 It is clear that the distribution of capability
486 changes over time to re¯ect the distribution of
487 demand, in the manner described above.
488 In Fig. 4 we show the average request drop rate
489 across the network of bacteria illustrated in Fig. 3,
490 and compare the performance with a number of
491 alternative methods of distributing the active ser-
492 vices. The alternatives are:

· Random static placement of services at network
494 nodes.

· Caching of requested services with a random re-
496 placement algorithm (Cache I).

· Caching of requested services using a least re-
498 cently used replacement algorithm (Cache II).

499 The tests were performed at loads of 10% (low),
500 40% (medium) and 80% (high). At low loads all the
501 algorithms o�er similar performance levels. As
502 might be expected, at medium and high load our
503 algorithm is a signi®cant improvement over ran-

504dom placement. More surprisingly it also signi®-
505cantly outperforms caching. We believe this is due
506to the small size of the caches. Each cache holds up
507to eight services (i.e., the same as the bacteria).
508This is intended to represent the number of
509proxylets that can be held in the RAM of a low
510spec PC, such as might be used in a commodity
511based cluster at a network server farm. Since the
512load time for proxylets is currently long (�1 s) we
513do not model disk based caching.
514Fig. 5 shows the average end to end latency
515experienced by service requests in our modelled
516network, and compares it with the latency experi-
517enced using the alternative active service distribu-
518tion mechanisms listed above. As before the
519adaptive bacterial approach is as good as the other
520alternatives at low loads, and is clearly an im-
521provement over the best alternative (standard
522LRU based caching ± CacheII) at medium and
523high loads. We are therefore con®dent that our
524algorithm is delivering a useful level of perfor-
525mance.

Fig. 3. Distribution of DPS nodes with short medium and long queues at three di�erent times.

Fig. 4. Request drop rates for di�erent distribution mecha-

nisms.

Fig. 5. Average latency of several approaches to distributing

active services.
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526 Fig. 6 illustrates the di�erentiated QoS delivered
527 by the network of DPS nodes. The time taken to
528 process each request is shown on the y access and
529 the elapsed system time is shown on the x axis. It

530can be seen that the service requests with shorter
531times to live are being handled faster than those
532with a longer time to live, as expected. Fig. 7 shows
533the expected corrollary. More service requests with

Fig. 6. Di�erent latencies for requests with di�ering times to live.

Fig. 7. Di�erent dropping rates for requests with di�ering times to live.
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534 short ttls are being dropped. This is due to them
535 timing out, and is the essential down-side to
536 specifying a short ttl. Although the numbers of

537requests at each ttl value are roughly equal, fewer
538short ttl requests are handled.
539In addition to varying the latency and loss as-
540sociated with service requests users may also wish

Fig. 8. E�ects of di�erent charging levels on age related QoS.

Fig. 9. E�ects of di�erent charging levels on dropping of requests.
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541 to vary the price they are willing to pay. In the
542 basic algorithm it was assumed that the network
543 provider allocated a reward to each DPS for pro-
544 cessing a service request. We investigated the im-
545 pact of allowing the DPS to collect a greater
546 reward. In the modi®ed model the DPS is re-
547 warded by the amount of tokens the user includes
548 with the request. The tra�c input was adjusted so
549 that requests for di�erent services carried di�erent
550 amounts of payment tokens. Initially the DPS
551 nodes were rewarded equally (25 `tokens') for each
552 of three services A, B and C. After 500 epochs the
553 rate of reward is changed so that each DPS is re-
554 warded four times as much for processing service
555 C (40 tokens) as it is for processing service A (10
556 tokens), with B staying at 25. This is equivalent to
557 o�ering users a choice of three prices for a single
558 service. Fig. 8 shows the latency of service requests
559 for the three di�erent service types.
560 It is apparent that within 100 epochs the average
561 latency for providing service C is reduced while the
562 latency for A is increased. Fig. 9 shows that re-
563 quests for service A are also dropped (due to
564 timing out) more than requests for service B and
565 C. Before the change in reward the numbers of
566 DPSs handling each service were similar. After the
567 reward rate change the plasmids for handling
568 services C and B have spread much more widely
569 around the network at the expense of the plasmid
570 for the relatively unrewarding service A. After
571 1000 epochs the rate of requests for all three ser-
572 vices was returned to the original state. It can be
573 seen, in both ®gures, that equality in quality of
574 service, both in terms of loss rate and latency,
575 quickly returned.
576 These last results indicate that the control
577 method could potentially be used for a range of
578 user speci®ed parameters. We see no reason why
579 other parameters of interest could not be added to
580 the model, and are very encouraged by the initial
581 results. In particular we note that the latencies and
582 loss rates are comparable to those obtained in
583 many conventional approaches to di�erentiated
584 services, but many of the di�culties concerning
585 admission control have been avoided.

5868. Conclusions

587Our initial results show that the long-term self-
588stabilising, adaptive nature of bacterial communi-
589ties are well suited to the task of creating a stable
590community of autonomous active service nodes
591that can o�er consistent end to end QoS across a
592network. The methods used for adaptation and
593evolution enable probabilistic guarantees for met-
594rics such as loss rate and latency similar to what
595can be achieved using more conventional ap-
596proaches to di�erentiated services.
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